WorldWideScience

Sample records for heat-resistant nicraly coating

  1. A study on heat resistance of high temperature resistant coating

    Zhang, Liping; Wang, Xueying; Zhang, Qibin; Qin, Yanlong; Lin, Zhu [Research Institute of Engineering Technology of CNPC, Tianjin (China)

    2005-04-15

    A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes,the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper

  2. A study on heat resistance of high temperature resistant coating

    Zhang, Liping; Wang, Xueying; Zhang, Qibin; Qin, Yanlong; Lin, Zhu

    2005-01-01

    A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes,the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper

  3. Heat-resistant hydrophobic-oleophobic coatings

    Uyanik, Mehmet; Arpac, Ertugrul; Schmidt, Helmut K.; Akarsu, Murat; Sayilkan, Funda; Sayilkan, Hikmet

    2006-01-01

    Thermally and chemically durable hydrophobic oleophobic coatings, containing different ceramic particles such as SiO2, SiC, Al 2O3, which can be alternative instead of Teflon, have been developed and applied on the aluminum substrates by spin-coating method. Polyimides, which are high-thermal resistant heteroaromatic polymers, were synthesized, and fluor oligomers were added to these polymers to obtain hydrophobic-oleophobic properties. After coating, Al surface was subjected to Taber-abrasio...

  4. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  5. Spallation of oxide scales from NiCrAlY overlay coatings

    Strawbridge, A.; Evans, H.E.; Ponton, C.B.

    1997-01-01

    A common method of protecting superalloys from aggressive environments at high temperatures is by plasma spraying MCrAlY (M = Fe, Ni and/or Co) to form an overlay coating. Oxidation resistance is then conferred through the development of an alumina layer. However, the use of such coatings is limited at temperatures above about 1100 C due to rapid failure of the protective oxide scales. In this study, the oxidation behaviour of air-plasma-sprayed NiCrAlY coatings has been investigated at 1200 C in 1 atm air. A protective alumina layer develops during the early stages, but breakaway oxidation occurs after prolonged exposure. The results suggest that the critical temperature drop to initiate failure is inversely proportional to the scale thickness, and an analytical model is put forward to explain this behaviour. Local surface curvature of the coating can lead to delamination within the oxide during cooling and it is shown that the largest individual pore in a spall region is the critical flaw for oxide fracture. (orig.)

  6. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding

    Vilar, R.; Santos, E.C.; Ferreira, P.N.; Franco, N.; Silva, R.C. da

    2009-01-01

    In the present work single and multiple layer NiCrAlY coatings were produced by laser cladding on (100) single-crystalline substrates of SRR99 Ni-based superalloy. Detailed structural characterisation and texture analysis by optical microscopy, scanning electron microscopy, X-ray diffraction and Rutherford backscattering showed that the NiCrAlY coatings consisted essentially of γ phase with yttrium oxide (Y 2 O 3 ) and a small proportion of yttrium-aluminum garnet (Al 5 Y 3 O 12 ) precipitated in the interdendritic regions. The coatings presented a columnar dendritic structure grown by epitaxial solidification on the substrate and inherited the single-crystalline nature and the orientation of the substrate. The coating material also showed a mosaicity and a defect density similar to those of the substrate. It can be expected that the protective effect of these coatings against oxidation is greatly enhanced compared with polycrystalline coatings because high diffusivity paths, such as grain boundaries, are eliminated in single-crystalline coatings, thus reducing mass transport through the coating.

  7. Thermal failure of nanostructured thermal barrier coatings with cold sprayed nanostructured NiCrAlY bond coat

    Zhang, Q.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X.; Li, C.J. [Xi' an Jiaotong Univ., Xi' an (China)

    2008-07-01

    Nanostructured YSZ is expected to exhibit a high strain tolerability due to its low Young's modulus and consequently high durability. In this study, a porous YSZ as the thermal barrier coating was deposited by plasma spraying using an agglomerated nanostructured YSZ powder on a Ni-based superalloy Inconel 738 substrate with a cold-sprayed nanostructured NiCrAlY as the bond coat. The heat treatment in Ar atmosphere was applied to the cold-sprayed bond coat before deposition of YSZ. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured YSZ. The results showed that YSZ coating was deposited by partially melted YSZ particles. The nonmelted fraction of spray particles retains the porous nanostructure of the starting powder into the deposit. YSZ coating exhibits a bimodal microstructure consisting of nanosized particles retained from the powder and micro-columnar grains formed through the solidification of the melted fraction in spray particles. The oxidation of the bond coat occurs during the heat treatment in Ar atmosphere. The uniform oxide at the interface between the bond coat and YSZ can be formed during isothermal test. The cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of TBCs mainly occurred through spalling of YSZ within YSZ coating. The failure characteristics of plasma-sprayed nanostructured YSZ are discussed based on the coating microstructure and formation of TGO on the bond coat surface. (orig.)

  8. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy

    Wang, Jinlong; Chen, Minghui; Cheng, Yuxian; Yang, Lanlan; Bao, Zebin; Liu, Li; Zhu, Shenglong; Wang, Fuhui

    2017-01-01

    Highlights: •Hot corrosion of three metallic coatings was investigated. •NiCrAlY coating loses protectiveness against hot corrosion due to scale spallation. •The two nanocrystalline coatings perform better than NiCrAlY in hot corrosion. •Ta oxidation leads to scale pitting and corrosion of the nanocrystalline coating. •Y addition in the nanocrystalline coating reduces such harmful effect of Ta. -- Abstract: Hot corrosion in sulfate salt at 850 °C of three metallic coatings is investigated comparatively. The NiCrAlY coating loses its protectiveness after 200 h corrosion. Its oxide scale spalls off partly and becomes porous as a consequence of basic fluxing. The nanocrystalline coating (SN) performs better than the NiCrAlY one, but its scale is porous as well. Oxidation and/or sulfidation of Ta account for the formation of pores. The yttrium modified nanocrystalline coating (SNY) provides the highest corrosion resistance. Yttrium completely inhibits oxidation and sulfidation of Ta. Its scale is intact and adherent, and exclusively composted of alumina.

  9. Oxidation protection of austenite steels by heat-resisting glass-and-enamel coatings

    Lobzhanidze, V.N.; Korchagin, V.S.

    1977-01-01

    The use of glass-enamel coatings for corrosion protection of austenitic steels during heat treatment has been investigated. When working out the composition of the protective coating, the method of mathematical planning of experiments has been used. It is shown that the coating under investigation can best be used in heat treatment of items with a prolonged time of heating to 1050 deg C (18-20 hr). The savings resulting from the introduction of the heat-resistant glass-enamel coating exceed 30000 roubles

  10. Corrosion behavior of Fe-Si metallic coatings added with NiCrAlY in an environment of fuel oil ashes at 700 C

    Salinas-Bravo, V.M.; Porcayo-Calderon, J.; Romero-Castanon, T. [Instituto de Investigaciones Electricas, Gerencia de Procesos Termicos., Av. Reforma 113, C.P. 62490 Col. Palmira. Temixco. Morelos (Mexico); Dominguez-Patino, G.; Gonzalez-Rodriguez, J.G. [U.A.E.M. Centro de Investigaciones en Ingenieria y Ciencias Aplicadas., Av. Universidad 1001, C.P. 62210, Col. Chamilpa. Cuernavaca, Morelos (Mexico)

    2005-07-01

    Electrochemical potentiodynamic polarization curves and immersion tests for 300 h at 700 C in a furnace have been used to evaluate the corrosion resistance of Fe-Si metallic coatings added with up to 50 wt.% of NiCrAIY. The corrosive environment was fuel oil ashes from a steam generator. The composition of fuel oil ashes includes high content of vanadium, sodium and sulfur. The results obtained show that only the addition of 20 wt.% NiCrAlY to the Fe-Si coating improves its corrosion resistance. The behavior of all tested coatings is explained by the results obtained from the analysis of every coating using electron microscopy and energy dispersive X-ray analysis. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  11. Pengaruh NiCrAlY, Ni/Cr2O3/CrxCy Sebagai Variasi Bond Coat Dengan Penambahan Lapisan Al2O3 dan YSZ Pada Inconel 625 Terhadap Struktur Mikro Lapisan Menggunakan Metode Flame Spraying

    Aprian Immanuel

    2017-01-01

    Full Text Available Thermal Barrier Coating (TBC berfungsi untuk mengurangi temperatur substrat serta meningkatkan daya tahannya terhadap korosi dan oksidasi. Pada penelitian ini, digunakan flame spraying dari variasi bond coat (Ni-Cr-Al-Y, (Ni/CrO3/CrXCY dan tanpa bond coat serta melapisi kembali lapisan bond coat dengan Al2O3 dan ZrO2 – 8%Y2O3 sebagai Thermal Barrier Coating untuk diteliti pengaruhnya terhadap struktur mikro lapisan yang terbentuk. Hasil flame spray diamati dengan SEM pada variasi bond coat NiCrAlY ditemukan beberapa serbuk dari material top coat dengan beberapa kondisi yaitu meleleh (melted, meleleh sebagian (semi melted, dan tidak meleleh (unmelted. Ditemukan poros yang merata hampir di seluruh permukaan sampel dan munculnya pengintian retak. Perbedaan sebelum dan sesudah perlakuan ada pada persebaran setiap unsur di setiap spesimen, dan lapisan oksida yang terbentuk pada seluruh variasi bond coat

  12. Failure Mechanism of a Stellite Coating on Heat-Resistant Steel

    Wang, Dong; Zhao, Haixing; Wang, Huang; Li, Yuyan; Liu, Xia; He, Guo

    2017-09-01

    The Stellite 21 coating on the heat-resistant steel X12CrMoWVNbN10-1-1 (so-called COSTE) used in a steam turbine valve was found to be fatigue broken after service at around 873 K (600 °C) for about 8 years. In order to investigate the failure mechanism, a fresh Stellite 21 coating was also prepared on the same COSTE steel substrate by using the similar deposition parameters for comparison. It was found that the Stellite 21 coating was significantly diluted by the steel, resulting in a thin Fe-rich layer in the coating close to the fusion line. Such high Fe concentration together with the incessant Fe diffusion from the steel substrate to the coating during the service condition (about 873 K (600 °C) for long time) induced the eutectoid decomposition of the fcc α-Co(Fe,Cr,Mo) solid solution, forming an irregular eutectoid microstructure that was composed of the primitive cubic α'-FeCo(Cr,Mo) phase and the tetragonal σ-CrCo(Fe,Mo) phase. The brittle nature of such α'/ σ eutectoid microstructure contributed to the fatigue fracture of the Stellite 21 coating, resulting in an intergranular rupture mode.

  13. Phase transformation and tribological properties of Ag-MoO3 contained NiCrAlY based composite coatings fabricated by laser cladding

    Wang, Lingqian; Zhou, Jiansong; Xin, Benbin; Yu, Youjun; Ren, Shufang; Li, Zhen

    2017-08-01

    Ag-MoO3 contained NiCrAlY based composite coating was successfully prepared on GH4169 stainless steel substrate by high energy ball milling and laser cladding. The microstructure and phase transformation were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction spectrum (XRD). The tribological behavior and mechanism from room temperature to 800 °C were investigated. Results showed that MoO3 in the composite powders transformed to Mo2C reinforcement under the high energy density of laser, and a series of opposite transformation occurred during friction process. The coating showed the lowest friction coefficient and low wear rate at 600 °C and 800 °C due to the generation of Ag2MoO4 during tribo-chemical reactions and the formation of lubrication glaze on the worn surface. Ag made effective lubrication when the temperature rose up to 200 °C. The coating displayed a relatively high friction coefficient (about 0.51) at 400 °C, because though MoO3 (oxidation products of Mo2C) and Ag2MoO4 were detected on the worn surface, they could not realize effective lubrication at this temperature. Abrasive wear, adhesive wear and plastic deformation contributed to the increased friction and wear.

  14. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  15. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  16. Coatings of active and heat-resistant cobalt-aluminium xerogel catalysts.

    Schubert, Miriam; Schubert, Lennart; Thomé, Andreas; Kiewidt, Lars; Rosebrock, Christopher; Thöming, Jorg; Roessner, Frank; Bäumer, Marcus

    2016-09-01

    The application of catalytically coated metallic foams in catalytic processes has a high potential for exothermic catalytic reactions such as CO2 methanation or Fischer-Tropsch synthesis due to good heat conductivity, improved turbulent flow properties and high catalyst efficiencies. But the preparation of homogenous catalyst coats without pore blocking is challenging with conventional wash coating techniques. Here, we report on a stable and additive free colloidal CoAlOOH suspension (sol) for the preparation of catalytically active Co/Al2O3 xerogel catalysts and coatings. Powders with 18wt% Co3O4 prepared from this additive free synthesis route show a catalytic activity in Fischer-Tropsch synthesis and CO2 methanation which is similar to a catalyst prepared by incipient wetness impregnation (IWI) after activating the material under flowing hydrogen at 430°C. Yet, the xerogel catalyst exhibits a much higher thermal stability as compared to the IWI catalyst, as demonstrated in catalytic tests after different heat agings between 430°C and 580°C. It was also found that the addition of polyethylene glycol (PEG) to the sol influences the catalytic properties of the formed xerogels negatively. Only non-reducible cobalt spinels were formed from a CoAlOOH sol with 20wt% PEG. Metallic foams with pores sizes between 450 and 1200μm were coated with the additive free CoAlOOH sol, which resulted in homogenous xerogel layers. First catalytic tests of the coated metal foams (1200μm) showed good performance in CO2 methanation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Robust, heat-resistant and multifunctional superhydrophobic coating of carbon microflowers with molybdenum trioxide nanoparticles.

    Wu, Yang; Zhao, Meiyun; Guo, Zhiguang

    2017-11-15

    Superhydrophobic materials have triggered large interest due to their widespread applications, such as self-cleaning, corrosion resistance, anti-icing, and oil/water separation. However, suffering from weak mechanical strength, plenty of superhydrophobic materials are limited in practical application. Herein, we prepared hierarchical carbon microflowers (CMF) dispersed with molybdenum trioxide (MoO 3 ) nanoparticles (MoO 3 /CMF) via a two-step preparation method. Taking advantage of high-adhesion epoxy resin and the modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES), the modified MoO 3 /CMF (PDES-MoO 3 /CMF) coating on various substrates shows great waterproof ability, excellent chemical stability, good mechanical durability, and self-cleaning property. More significantly, the prepared PDES-MoO 3 /CMF powder with high thermal stability (250°C) can be used for oil/water separation due to its special flower-like structure and superhydrophobicity/superoleophilicity. All of these advantages endow the superhydrophobic powders with huge potential in the practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Heat-resistant materials

    1997-01-01

    This handbook covers the complete spectrum of technology dealing with heat-resistant materials, including high-temperature characteristics, effects of processing and microstructure on high-temperature properties, materials selection guidelines for industrial applications, and life-assessment methods. Also included is information on comparative properties that allows the ranking of alloy performance, effects of processing and microstructure on high-temperature properties, high-temperature oxidation and corrosion-resistant coatings for superalloys, and design guidelines for applications involving creep and/or oxidation. Contents: General introduction (high-temperature materials characteristics, and mechanical and corrosion properties, and industrial applications); Properties of Ferrous Heat-Resistant Alloys (carbon, alloy, and stainless steels; alloy cast irons; and high alloy cast steels); Properties of superalloys (metallurgy and processing, mechanical and corrosion properties, degradation, and protective coa...

  19. Heat resistant protective hand covering

    Tschirch, R. P.; Sidman, K. R.; Arons, I. J. (Inventor)

    1984-01-01

    A heat-resistant aromatic polyamide fiber is described. The outer surface of the shell is coated with a fire-resistant elastomer and liner. Generally conforming and secured to the shell and disposed inwardly of the shell, the liner is made of a felt fabric of temperature-resistant aromatic polymide fiber.

  20. Influence of iron and beryllium additions on heat resistance of silicide coatings on TsMB-30 molybdenum alloy

    Zajtseva, A.L.; Fedorchuk, N.M.; Lazarev, Eh.M.; Korotkov, N.A.

    1985-01-01

    Alloying of titanium modified silicide coatings on TsMB-30 molybdenum alloy with iron or beryllium is stated to improve their protective properties. Coatings with low content of alloying elements have the best protective properties. Service life of coatings is determined by the formed oxide film and phase transformations taking place in the coating

  1. Plasma treatment of heat-resistant materials

    Vlasov, V A; Kosmachev, P V; Skripnikova, N K; Bezukhov, K A

    2015-01-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion. (paper)

  2. Wear- and heat resistance of vacuum-arc TiN and TiAlN based coatings with Si and Y additives

    Aksenov, I.I.; Belous, V.A.; Grigor'ev, A.N.; Ermolenko, I.G.; Zadneprovskij, Yu.A.; Kovalenko, V.I.; Lomino, N.S.; Marinin, V.G.; Tolmacheva, G.N.; Sobol', O.V.

    2011-01-01

    It is shown, that insertion of silicon additives into TiN coatings and of yttrium into TiAlN coatings in explored limits (to a few wht. %) leads to increasing of resistance against abrasive friction wear. At the same time silicon or yttrium presence in the coatings leads to loos of their columnar structure and demonstrate decrease in the cavitation resistance. It is supposed, that such distinction in behaviour of the given working performances is a consequence of that mechanisms of the coating surface fracture at action of cavitation and abrasive friction are different. All explored coatings of (Ti-Si)N composition are not oxidised up to 600 o C, and of (Ti-Al-Y)N coatings - up to 800 o C.

  3. The structure and physical-mechanical properties of the heat-resistant Ni-Co-Cr-Al-Y intermetallic coating obtained using rebuilt plasma equipment

    Tarasenko, Yu. P.; Tsareva, I. N.; Berdnik, O. B.; Fel, Ya. A.; Kuzmin, V. I.; Mikhalchenko, A. A.; Kartaev, E. V.

    2014-12-01

    Results of a study of the structure, physico-mechanical properties, and the resistance to heat of Ni-Co-Cr-Al-Y intermetallic coatings obtained by powder spraying on the standard UPU-3D plasma spray facility (plasmatron with self-establishing arc length) and on the rebuilt facility equipped with the enhanced-power PNK-50 plasmatron with sectionalized inter-electrode insert, are reported. Coatings of higher density ( ρ = 7.9 g/cm3) and higher microhardness (H μ = 770 kg-force/mm2) with lower porosity values ( P = 5.7 %, P c = 5.1 %, and P 0 = 0.6 %) and high resistance to heat ((M - M0)/M0 = 1.2) were obtained. The developed coating is intended for protection of the working surfaces of turbine engine blades in gas-turbine power plants.

  4. Heat-resistant inorganic binders.

    KUDRYAVTSEV Pavel Gennadievich,

    2017-04-01

    Full Text Available The authors consider some aspects of production of inorganic heat-resistant composite materials in which new classes of inorganic binders - the basic salts of various metals – are applied. The possibility to use hydroxochlorides and hydroxonitrates of aluminum, zirconium, chromium and a number of other metals as the binder has been shown. The main products of the thermal decomposition of all types of binders discussed in this paper are nano-dispersed highly refractory oxides. Increased pressure in the manufacture of these materials shifts the position of the minimum of the dependence «production strength – production temperature» in the direction of low temperatures. This effect is caused by decreased film thickness of the binder located between filler particles and hence by increased rate of transfer of the matter to the interface and by facilitated sintering process. Materials based on the systems containing chromium and some other elements in transitional oxidation states are colour. For this reason, they have the worst thermal conductivity under the same heat resistance compared to colorless materials.

  5. Heat-resistant materials 2. Conference proceedings of the 2. international conference on heat-resistant materials

    Natesan, K.; Ganesan, P.; Lai, G.Y.

    1995-01-01

    The Second International Conference on Heat-Resistant Materials was held in Gatlinburg, Tennessee, September 11--14, 1995 and focused on materials performance in cross-cutting technologies where heat resistant materials play a large and sometimes life-and performance-limiting roles in process schemes. The scope of materials for heat-resistant applications included structural iron- and nickel-base alloys, intermetallics, and ceramics. The conference focused on materials development, performance of materials in simulated laboratory and actual service environments on mechanical and structural integrity of components, and state-of-the-art techniques for processing and evaluating materials performance. The three keynote talks described the history of heat-resistant materials, relationship between microstructure and mechanical behavior, and applications of these materials in process schemes. The technical sessions included alloy metallurgy and properties, environmental effects and properties, deformation behavior and properties, relation between corrosion and mechanical properties, coatings, intermetallics, ceramics, and materials for waste incineration. Seventy one papers have been processed separately for inclusion on the data base

  6. Development of heat-resistant magnetic sensor

    Takaya, Shigeru; Arakawa, Hisashi; Keyakida, Satoshi

    2013-01-01

    A heat-resistant flux gate magnetic sensor has been developed. Permendur, which has high Curie point, is employed as the magnetic core material and the detection method of the external magnetic field is modified. The characteristics of the developed magnetic sensor up to 500degC were evaluated. The sensor output increased linearly with the external magnetic field in the range of ±5 G and the standard deviation at 500degC was about 0.85G. (author)

  7. Thermophysical Properties of Heat Resistant Shielding Material

    Porter, W.D.

    2004-01-01

    This project was aimed at determining thermal conductivity, specific heat and thermal expansion of a heat resistant shielding material for neutron absorption applications. These data are critical in predicting the structural integrity of the shielding under thermal cycling and mechanical load. The measurements of thermal conductivity and specific heat were conducted in air at five different temperatures (-31 F, 73.4 F, 140 F, 212 F and 302 F). The transient plane source (TPS) method was used in the tests. Thermal expansion tests were conducted using push rod dilatometry over the continuous range from -40 F (-40 C) to 302 F (150 C)

  8. Genetic determinants of heat resistance in Escherichia coli

    Ryan eMercer

    2015-09-01

    Full Text Available Escherichia coli AW1.7 is a heat resistant food isolate and the occurrence of pathogenic strains with comparable heat resistance may pose a risk to food safety. To identify the genetic determinants of heat resistance, 29 strains of E. coli that differed in their of heat resistance were analyzed by comparative genomics. Strains were classified as highly heat resistant strains, exhibiting a D60-value of more than 6 min; moderately heat resistant strains, exhibiting a D60-value of more than 1 min; or as heat sensitive. A ~14 kb genomic island containing 16 predicted open reading frames encoding putative heat shock proteins and proteases was identified only in highly heat resistant strains. The genomic island was termed the locus of heat resistance (LHR. This putative operon is flanked by mobile elements and possesses >99% sequence identity to genomic islands contributing to heat resistance in Cronobacter sakazakii and Klebsiella pneumoniae. An additional 41 LHR sequences with >87% sequence identity were identified in 11 different species of β- and γ-proteobacteria. Cloning of the full length LHR conferred high heat resistance to the heat sensitive E. coli AW1.7ΔpHR1 and DH5α. The presence of the LHR correlates perfectly to heat resistance in several species of Enterobacteriaceae and occurs at a frequency of 2% of all E. coli genomes, including pathogenic strains. This study suggests the LHR has been laterally exchanged among the β- and γ-proteobacteria and is a reliable indicator of high heat resistance in E. coli.

  9. Argon-arc welding of heat resisting aluminium alloys

    Ryazantsev, V.I.; Fedoseev, V.A.

    1997-01-01

    Welding of aluminium heat resisting alloys of the Al-Cu-Mg system is studied. The hot-shortness of heat-resistant alloys M40, 1150 and 1151 are at the level of aluminium alloys 1201 and by 2-3 times lower as compared to the aluminium alloy AMg6. The M40, 1150 and 1151 alloys have unquestionable advantages against other know aluminium alloys only at temperatures of welded structures operation, beginning with 150-2000 deg C and especially at 250 deg C

  10. Study on the heat-resistant EB curing composites

    Bao Jianwen; Li Yang; Li Fengmei

    2000-01-01

    There are many advantages in the EB-curing process of composites. Heat-resistant EB-curing composites could substitute for polyimide composites used in aeronautical engine. The effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical thermal analysis (DMTA). The experiment result shows that the mechanical property of the composites cured by EB could meet the needs of the aeronautical engine in 250degC. (author)

  11. Heat resistance insulation for NPP pipelines and components

    Yurchenko, V.G.; Nazarova, G.A.; Popov, A.M.; Matveeva, N.F.

    1986-01-01

    To insulate hot surfaces of NPP process equipment and pipes it is suggested to use heat resistant insulation of foam aminoimides (FAI). Relative toxicity of aceton and acetaldehyd evolved from FAI in the process of thermal and thermal-oxidative break-down was determined. FAI can be used at 200 deg C

  12. Microbial profile, antibiotic sensitivity and heat resistance of bacterial ...

    Aim: This study was aimed at determining the prevalence, antibiotic resistance and heat resistance profile of bacterial isolates obtained from ready to eat roasted beef (suya) sold in Abuja, Nigeria. Methods and Results: Fifty samples of suya were purchased from different vendors within the Federal Capital Territory and ...

  13. Welding of heat-resistant 20% Cr-5% Al steels

    Tusek, J.; Arbi, D.; Kosmac, A.; Nartnik, U.

    2002-01-01

    The paper treats welding of heat-resistant ferritic stainless steels alloyed with approximately 20% Cr and 5% Al. The major part of the paper is dedicated to welding of 20% Cr-5% Al steel with 3 mm in thickness. Welding was carried out with five different welding processes, i. e., manual metal-arc, MIG, TIG, plasma arc, and laser beam welding processes, using a filler material and using no filler material, respectively. The welded joints obtained were subjected to mechanical tests and the analysis of microstructure in the weld metal and the transition zone. The investigations conducted showed that heat-resistant ferritic stainless 20% Cr-5% Al steel can be welded with fusion welding processes using a Ni-based filler material. (orig.)

  14. Heat resistance of thermoduric enterococci isolated from milk.

    McAuley, Catherine M; Gobius, Kari S; Britz, Margaret L; Craven, Heather M

    2012-03-15

    Enterococci are reported to survive pasteurisation but the extent of their survival is unclear. Sixty-one thermoduric enterococci isolates were selected from laboratory pasteurised milk obtained from silos in six dairy factories. The isolates were screened to determine log(10) reductions incurred after pasteurisation (63°C/30 min) and ranked from highest to lowest log(10) reduction. Two isolates each of Enterococcus faecalis, Enterococcus faecium, Enterococcus durans and Enterococcus hirae, exhibiting the median and the greatest heat resistance, as well as E. faecalis ATCC 19433, were selected for further heat resistance determinations using an immersed coil apparatus. D values were calculated from survival curves plotted from viable counts obtained after heating isolates in Brain Heart Infusion Broth at 63, 69, 72, 75 and 78°C followed by rapid cooling. At 72°C, the temperature employed for High Temperature Short Time (HTST) pasteurisation (72°C/15s), the D values extended from 0.3 min to 5.1 min, depending on the isolate and species. These data were used to calculate z values, which ranged from 5.0 to 9.8°C. The most heat sensitive isolates were E. faecalis (z values 5.0, 5.7 and 7.5°C), while the most heat resistant isolates were E. durans (z values 8.7 and 8.8°C), E. faecium (z value 9.0°C) and E. hirae (z values 8.5 and 9.8°C). The data show that heat resistance in enterococci is highly variable. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Alloying principles for magnesium base heat resisting alloys

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  16. Development of heat resistant ion exchange resin. First Report

    Onozuka, Teruo; Shindo, Manabu

    1995-01-01

    In nuclear power stations, as a means of maintaining the soundness of nuclear reactors, the cleaning of reactor cooling water has been carried out. But as for the ion exchange resin which is used as the cleaning agent in the filtrating and desalting facility in reactor water cleaning system, since the heat resistance is low, high temperature reactor water is cooled once and cleaned, therefore large heat loss occurs. If the cleaning can be done at higher temperature, the reduction of heat loss and compact cleaning facilities become possible. In this study, a new ion exchange resin having superior heat resistance has been developed, and the results of the test of evaluating the performance of the developed ion exchange resin are reported. The heat loss in reactor water cleaning system, the heat deterioration of conventional ion exchange resin, and the development of the anion exchange resin of alkyl spacer type are described. The outline of the performance evaluation test, the experimental method, and the results of the heat resistance, ion exchange characteristics and so on of C4 resin are reported. The with standable temperature of the developed anion exchange resin was estimated as 80 - 90degC. The ion exchange performance at 95degC of this resin did not change from that at low temperature in chloride ions and silica, and was equivalent to that of existing anion exchange resin. (K.I.)

  17. Development of heat resistant ion exchange resin. First Report

    Onozuka, Teruo; Shindo, Manabu [Tohoku Electric Power Co., Inc., Sendai (Japan)

    1995-01-01

    In nuclear power stations, as a means of maintaining the soundness of nuclear reactors, the cleaning of reactor cooling water has been carried out. But as for the ion exchange resin which is used as the cleaning agent in the filtrating and desalting facility in reactor water cleaning system, since the heat resistance is low, high temperature reactor water is cooled once and cleaned, therefore large heat loss occurs. If the cleaning can be done at higher temperature, the reduction of heat loss and compact cleaning facilities become possible. In this study, a new ion exchange resin having superior heat resistance has been developed, and the results of the test of evaluating the performance of the developed ion exchange resin are reported. The heat loss in reactor water cleaning system, the heat deterioration of conventional ion exchange resin, and the development of the anion exchange resin of alkyl spacer type are described. The outline of the performance evaluation test, the experimental method, and the results of the heat resistance, ion exchange characteristics and so on of C4 resin are reported. The with standable temperature of the developed anion exchange resin was estimated as 80 - 90degC. The ion exchange performance at 95degC of this resin did not change from that at low temperature in chloride ions and silica, and was equivalent to that of existing anion exchange resin. (K.I.).

  18. Maleimido substituted cyclotriphosphazene resins for fire and heat resistant composites

    Kumar, D.; Fohlen, G. M.; Parker, J. A.

    1983-01-01

    A new class of fire- and heat-resistant matrix resins have been synthesized by the thermal polymerization of maleimido substituted phenoxycyclotriphosphazenes. The resins have exhibited a char yield of 82 percent at 800 C in nitrogen and 81 percent at 700 C in air. Graphite-fabric laminates based on a resin of this class have shown a limiting oxygen index of 100 percent even at 300 C. Details of the fabrication of the resins and the composites and testing procedures are discussed.

  19. Studying microstructure of heat resistant steel deoxidized by barium ferrosilicon

    A. Z. Issagulov

    2016-07-01

    Full Text Available The paper examined the nature and distribution of non-metallic inclusions in the heat-resistant steel 12H1MF (0,12 % С, 1 % Сr, 0,5 - 0,6 Mo, 0,5 % V, ferrosilicobarim. As a reference, used by steel, deoxidized silicon. Melting was carried out in a laboratory, research-metallic inclusions, their shape and distribution, pollution index were studied according to conventional methods. Studies have shown that ferrosilicobarim deoxidation in an amount of 0,1 - 0,2 %, reduce the overall pollution index of non-metallic inclusions and change the nature of their distribution.

  20. Application of thermal spray coatings for jet engines. Kokuki sangyo eno yosha no oyo

    Muto, Y [All Nippon Airways Co. Ltd., Tokyo (Japan)

    1992-10-31

    Application condition of spray coating on jet engine parts and characteristics of spray reparing process are explained. Spray coating used for jet engine is classified as recovery of dimension, crevice adjustment, improvement of resistance to friction, improvement of fretting resistance and heat resistance. Titanium alloy having better adhesion and acid resistance, is used as coating for dimensional recovery, where as nickel-crome-aluminium coating is used for the improvement of heat resistance of stainless steel, etc. Crevice adjustment coatings are used in rotating parts of jet engines, and they are of two types are; gel-double coating of aluminium, nickel-aluminium, etc., abrasive coating of aluminium oxide. Tungsten carbide and cobalt are used as coatings for the friction improvement. Nickel and indium, etc., are used as fretting resistance coating. Various types of ceramics together with heat resistance steels like HS-188 are used as coating for heat resistance improvement. 4 figs., 3 tabs.

  1. Analysis of creep effective stress in austenitic heat resistant steel

    Park, In Duck; Nam, Ki Woo

    2002-01-01

    This paper describes the comparison of calculated effective stress with experimental one in austenitic heat resistant steels, STS310J1TB and STS310S with and without a small amount of Nb and N. Based on a solute atoms diffusion model, contribution from soluble nitrogen to the high-temperature strength was numerically examined for austenitic heat-resisting Fe-Cr-Ni-N(STS310J1TB) and Fe-Cr-Ni(STS310S) alloys. The solute atmosphere dragging stress of dislocation was calculated in optional dislocation velocity of STS310J1TB and STS310S at 650 degree C, 675 degree C and 700 degree C. As a result of the numerical calculation, the solute atmosphere dragging stress of STS310J1TB was about 50 times larger than that of STS310S. When the temperature became high, the maximum value of solute atmosphere dragging stress was small and the velocity of moving dislocation was fast. From the relationship between the dislocation rate and the solute atmosphere dragging stress, the relation of both was proportional and the inclination is about 1 in the level with low velocity of moving dislocation. From above results, the mechanism of dislocation movement in STS310J1TB was the solute atmosphere dragging stress. The solute atmosphere dragging stress, which was calculated from the numerical calculation was close to the effect stress in stress relaxation tests

  2. Larson-Miller Constant of Heat-Resistant Steel

    Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-06-01

    Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.

  3. Corrosion testing of NiCrAl(Y) coating alloys in high-temperature and supercritical water

    Biljan, S.; Huang, X.; Qian, Y.; Guzonas, D.

    2011-01-01

    With the development of Generation IV (Gen IV) nuclear power reactors, materials capable of operating in high-temperature and supercritical water environment are essential. This study focuses on the corrosion behavior of five alloys with compositions of Ni20Cr, Ni5Al, Ni50Cr, Ni20Cr5Al and Ni20Cr10AlY above and below the critical point of water. Corrosion tests were conducted at three different pressures, while the temperature was maintained at 460 o C, in order to examine the effects of water density on the corrosion. From the preliminary test results, it was found that the binary alloys Ni20Cr and Ni50Cr showed weight loss above the critical point (23.7 MPa and 460 o C). The higher Cr content alloy Ni50Cr suffered more weight loss than Ni-20Cr under the same conditions. Accelerated weight gain was observed above the critical point for the binary alloy Ni5Al. The combination of Cr, Al and Y in Ni20Cr10AlY provides stable scale formation under all testing conditions employed in this study. (author)

  4. Heat-resistant mechanism of transgenic rape by 45Ca isotope tracer

    Xu Falun; Yang Yuanyou; Liu Ning; Liao Jiali; Yang Jijun; Tang Jun; Liu Zhibin; Yang Yi

    2012-01-01

    The Ca 2+ uptake differences of the rape with heat-resistant gene and the general rape were investigated by 45 Ca isotope tracer. The results showed that the rape with heat-resistant gene can strengthen the regulation of calcium absorption. The calcium regulation ability of the heat-resistant genes may be able to play in the rape aspect of the mechanism of resistance. (authors)

  5. Application of newly developed heat resistant materials for USC boilers

    Sato, T.; Tamura, K.; Fukuda, Y.; Matsuda, J.

    2004-01-01

    This paper describes the research on the development and improvement of new high strength heat resistant steels such as SUPER304H (18Cr-9Ni-3Cu-Nb-N), NF709 (20Cr-25Ni-1.5Mo-Nb-Ti-N) and HR3C (25Cr-20Ni-Nb-N) as boiler tube, and NF616 (9Cr-0.5Mo-1.8W-Nb-V) and HCM12A (11Cr-0.4Mo-2W-Nb-V-Cu) as thick section pipe. The latest manufacturing techniques applied for these steels are introduced. In addition the high temperature strength of Alloy617 (52Ni-22Cr-13Co-9Mo-Ti-Al) that is one of the candidate materials for the next generation 700 □ USC boilers is described. (orig.)

  6. Strength of heat-resistant materials. Vynoslivost' zharoprochnykh materialov

    Akimov, L M

    1977-01-01

    A presentation is made of the research results of the effect that metallurgical, technological, construction, and exploitation factors have on the durability of heat-resistant alloys, tested for mechanical, heat, and corrosion effects on metal in standard cylindrical and specially contoured samples under conventional conditions and conditional approaching operational ones. The causes of changes in fatigue strength of alloys are explained by the use of fractographic and metallographic analyses of fractures and structure. The book is intended for engineering--technical personnel at research institutes, and plant mechanical and metal studies laboratories in machine-building factories. The book may also be used by undergraduate and graduate students at institutions of higher learning specializing in the field of material studies and mechanical testing of steels and alloys. 176 references, 79 figures, 12 tables.

  7. Integrated Thermal Protection Systems and Heat Resistant Structures

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  8. Heat Resistance of Glued Finger Joints in Spruce Wood Constructions

    Martin Sviták

    2014-10-01

    Full Text Available The heat resistance of glued spruce wood was evaluated for different joint types and adhesives. Bending strength, modulus of elasticity, and also fracture evaluation were investigated on glued spruce samples made by the finger-jointed principle. Finger-jointed samples were glued with polyurethane (PUR and melamine-urea-formaldehyde (MUF adhesives. Heat loading was realized at temperatures 60, 80, and 110 °C and compared with wood with 20 °C. A static bending test with four-point flexural test was used. Elevated temperature and adhesive type had an important influence on the bending strength. On the other hand, adhesive type had a significant influence on the modulus of elasticity, but elevated temperature had no substantial influence.

  9. Influence of liquid copper-silver brazing alloy on properties of high-strength and heat resistant alloys and steels

    Semenov, V.N.

    1999-01-01

    The influence of temperature, heating rate, microstructure, the duration of Cu-Ag melt attack during brazing, the thickness and the material of barrier coating on properties of materials (Ni-Cr alloys, Cr-Ni steals, a Fe-Ni base EhJ-702 alloy) being brazed is studied. The tests of specimens with a brazing alloy are carried out in the temperature range of 780-1000 deg C. It is revealed that heat resistant alloys under brazing conditions experience brittle fracture. Multiphase structure coarse grain, increased hydrogen content mechanical stress concentrators are found to intensity embrittlement of the materials. The use of barrier coating displaying a chemical affinity to the brazing alloy results in a decrease of the tendency to embrittlement

  10. Correlation between stresses and adhesion of oxide scales on Si and Ti containing NiCrAlY alloys

    Vosberg, V.; Quadakkers, W.J.; Schubert, F.; Nickel, H.

    1998-09-01

    The relation between mechanical stresses and the adhesion of alumina scales on Si- and Ti-containing NiCrAlY alloys has been investigated. Therefore the Si and Ti contents in model alloys with the base composition Ni-20Cr-10Al-Y, which were cast to achieve high purity, were varied from 0 to 2 m/0 . These solid samples were subjected to cyclic oxidation in the temperature range from 950 to 1100 C. Growth and spallation of the oxide scale were observed by gravimetry. The stresses, present at ambient temperature, were periodically determined by X-ray stress evaluation. Using these results a reasoning of the mechanisms for stress relief and damage of the scale was carried out. The addition of Silicon as well as of titanium has an evident influence on phase composition of Ni-20Cr-10Al-Y type alloys. Due to the variation of phase stability regions the thermal expansion is affected by these additions in the range from 950 to 1100 C. The expansion is enlarged by the addition of Si and lowered with increasing Ti content. (orig.)

  11. Minimization of the negative influence on the biosphere in heavy oil extraction and ecologically clean technology for the injection of the steam with supercritical parameters in oil strata on the basis of new ecologically clean tubing pipes with heat-resistant coatings

    Komkov, M. A.; Moiseev, V. A.; Tarasov, V. A.; Timofeev, M. P.

    2015-12-01

    Some ecological problems related to heavy-oil extraction and ways for minimizing the negative impacts of this process on the biosphere are discussed. The ecological hazard of, for example, frequently used multistage hydraulic fracturing of formation is noted and the advantages and perspectives of superheated steam injection are considered. Steam generators of a new type and ecologically clean and costeffective insulating for tubing pipes (TPs) are necessary to develop the superheated steam injection method. The article is devoted to solving one of the most important and urgent tasks, i.e., the development and usage of lightweight, nonflammable, environmentally safe, and cost-effective insulating materials. It is shown that, for tubing shielding operating at temperatures up to 420°C, the most effective thermal insulation is a highly porous material based on basalt fiber. The process of filtration deposition of short basalt fibers with a bunch of alumina thermal insulation tubing pipe coatings in the form of cylinders and cylindrical shells from liquid pulp is substantiated. Based on the thermophysical characteristics of basalt fibers and on the technological features of manufacturing highly porous coating insulation, the thickness of a tubing pipe is determined. During the prolonged pumping of the air at an operating temperature of 400°C in the model sample of tubing pipes with insulation and a protective layer, we find that the surface temperature of the thermal barrier coating does not exceed 60°C. Introducing the described technology will considerably reduce the negative impact of heavy-oil extraction on the biosphere.

  12. Viability and heat resistance of murine norovirus on bread.

    Takahashi, Michiko; Takahashi, Hajime; Kuda, Takashi; Kimura, Bon

    2016-01-04

    Contaminated bread was the cause of a large-scale outbreak of norovirus disease in Japan in 2014. Contamination of seafood and uncooked food products by norovirus has been reported several times in the past; however the outbreak resulting from the contamination of bread products was unusual. A few reports on the presence of norovirus on bread products are available; however there have been no studies on the viability and heat resistance of norovirus on breads, which were investigated in this study. ce:italic>/ce:italic> strain 1 (MNV-1), a surrogate for human norovirus, was inoculated directly on 3 types of bread, but the infectivity of MNV-1 on bread samples was almost unchanged after 5days at 20°C. MNV-1 was inoculated on white bread that was subsequently heated in a toaster for a maximum of 2min. The results showed that MNV-1 remained viable if the heating period was insufficient to inactivate. In addition, bread dough contaminated with MNV-1 was baked in the oven. Our results indicated that MNV-1 may remain viable on breads if the heating duration or temperature is insufficient. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Heterogeneity of heat-resistant proteases from milk Pseudomonas species.

    Marchand, Sophie; Vandriesche, Gonzalez; Coorevits, An; Coudijzer, Katleen; De Jonghe, Valerie; Dewettinck, Koen; De Vos, Paul; Devreese, Bart; Heyndrickx, Marc; De Block, Jan

    2009-07-31

    Pseudomonas fragi, Pseudomonas lundensis and members of the Pseudomonas fluorescens group may spoil Ultra High Temperature (UHT) treated milk and dairy products, due to the production of heat-stable proteases in the cold chain of raw milk. Since the aprX gene codes for a heat-resistant protease in P. fluorescens, the presence of this gene has also been investigated in other members of the genus. For this purpose an aprX-screening PCR test has been developed. Twenty-nine representatives of important milk Pseudomonas species and thirty-five reference strains were screened. In 42 out of 55 investigated Pseudomonas strains, the aprX gene was detected, which proves the potential of the aprX-PCR test as a screening tool for potentially proteolytic Pseudomonas strains in milk samples. An extensive study of the obtained aprX-sequences on the DNA and the amino acid level, however, revealed a large heterogeneity within the investigated milk isolates. Although this heterogeneity sets limitations to a general detection method for all proteolytic Pseudomonas strains in milk, it offers a great potential for the development of a multiplex PCR screening test targeting individual aprX-genes. Furthermore, our data illustrated the potential use of the aprX gene as a taxonomic marker, which may help in resolving the current taxonomic deadlock in the P. fluorescens group.

  14. Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster

    Teramura Kouhei

    2011-06-01

    Full Text Available Abstract Background Temperature adaptation is one of the most important determinants of distribution and population size of organisms in nature. Recently, quantitative trait loci (QTL mapping and gene expression profiling approaches have been used for detecting candidate genes for heat resistance. However, the resolution of QTL mapping is not high enough to examine the individual effects of various genes in each QTL. Heat stress-responsive genes, characterized by gene expression profiling studies, are not necessarily responsible for heat resistance. Some of these genes may be regulated in association with the heat stress response of other genes. Results To evaluate which heat-responsive genes are potential candidates for heat resistance with higher resolution than previous QTL mapping studies, we performed genome-wide deficiency screen for QTL for heat resistance. We screened 439 isogenic deficiency strains from the DrosDel project, covering 65.6% of the Drosophila melanogaster genome in order to map QTL for thermal resistance. As a result, we found 19 QTL for heat resistance, including 3 novel QTL outside the QTL found in previous studies. Conclusion The QTL found in this study encompassed 19 heat-responsive genes found in the previous gene expression profiling studies, suggesting that they were strong candidates for heat resistance. This result provides new insights into the genetic architecture of heat resistance. It also emphasizes the advantages of genome-wide deficiency screen using isogenic deficiency libraries.

  15. Heat resistance of Salmonella in various egg products.

    Garibaldi, J A; Straka, R P; Ijichi, K

    1969-04-01

    The heat-resistance characteristics of Salmonella typhimurium Tm-1, a reference strain in the stationary phase of growth, were determined at several temperatures in the major types of products produced by the egg industry. The time required to kill 90% of the population (D value) at a given temperature in specific egg products was as follows: at 60 C (140 F), D = 0.27 min for whole egg; D = 0.60 min for whole egg plus 10% sucrose; D = 1.0 min for fortified whole egg; D = 0.20 min for egg white (pH 7.3), stabilized with aluminum; D = 0.40 min for egg yolk; D = 4.0 min for egg yolk plus 10% sucrose; D = 5.1 min for egg yolk plus 10% NaCl; D = 1.0 min for scrambled egg mix; at 55 C (131 F), D = 0.55 min for egg white (pH 9.2); D = 1.2 min for egg white (pH 9.2) plus 10% sucrose. The average Z value (number of degrees, either centigrade or fahrenheit, for a thermal destruction time curve to traverse one logarithmic cycle) was 4.6 C (8.3 F) with a range from 4.2 to 5.3 C. Supplementation with 10% sucrose appeared to have a severalfold greater effect on the heat stabilization of egg white proteins than on S. typhimurium Tm-1. This information should be of value in the formulation of heat treatments to insure that all egg products be free of viable salmonellae.

  16. Advanced ceramic coating development for industrial/utility gas turbines. Final report, 11 Mar 1979-1 Sep 1981

    Vogan, J.W.; Stetson, A.R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO 2 .82O 3 , CaO.TiO 2 , 2CaO.SiO 2 , and MgO.Al 2 O 3 . The best overall results were obtained with a CaO.TiO 2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO 2 .8Y 2 O 3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines

  17. Coatings for directional eutectics

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  18. Effect of ion plating TiN on the oxidation of sputtered NiCrAlY-coated Ti3Al-Nb in air at 850-950 C

    Rizzo, F.C.; Zeng, C.; Chinese Academy of Sciences, Shenyang; Wu, W.

    1998-01-01

    A single sputtered NiCrAlY coating and a complex coating of inner ion-plated TiN and outer sputtered NiCrAlY were prepared on the intermetallic compound Ti 3 Al-Nb. Their oxidation behavior was examined at 850, 900, and 950 C in air by thermal gravimetry combined with XRD, SEM, and EDAX. The results showed that Ti 3 Al-Nb followed approximately parabolic oxidation, forming an outer thin Al 2 O 3 -rich scale and an inner TiO 2 -rich layer doped with Nb at the three temperatures. The TiO 2 -rich layer doped with Nb dominated the oxidation reaction. The single NiCrAlY coating did not follow parabolic oxidation exactly at 850 and 950 C, but oxidized approximately in a parabolic manner, because the instantaneous parabolic constants changed slightly with time. Besides the Al 2 O 3 scale, TiO 2 formed from the coating surface at the coating-substrate interface. The deterioration of the coating accelerated with increasing temperature. The NiCrAlY-TiN coating showed two-stage parabolic oxidation at 850 and 900 C, and an approximate parabolic oxidation at 950 C. The TiN layer was effective as a barrier to inhibit coating-alloy interdiffusion

  19. Heat-resistant agent used for control sand of steam huff and puff heavy oil well

    Zhang, F. S.; Liu, G. L.; Lu, Y. J.; Xiong, X. C.; Ma, J. H.; Su, H. M.

    2018-01-01

    Heat-resistant agent containing hydroxymethyl group was synthesized from coal tar, which has similar structure with phenolic resin and could improve the heat resistance of phenolic resin sand control agent. The results showed that the heat resistance of the sand control agent was improved by adding 10% to 30% heat-resistant agent, after 280°C high temperature treatment for 7d, the compressive strength of consolidated core was increased to more than 5MPa. The compressive strength of consolidation core was not decreased after immersion in formation water, crude oil, acid or alkaline medium, which showed good resistance to medium immersion. The sand control agent had small core damage and the core permeability damage ratio of sand control agent consolidation was only 18.7%.

  20. Diversity Assessment of Heat Resistance of Listeria monocytogenes Strains in a Continuous-Flow Heating System

    Veen, van der S.; Wagendorp, A.; Abee, T.; Wells-Bennik, M.H.J.

    2009-01-01

    Listeria monocytogenes is a foodborne pathogen that has the ability to survive relatively high temperatures compared with other nonsporulating foodborne pathogens. This study was performed to determine whether L. monocytogenes strains with relatively high heat resistances are adequately inactivated

  1. Effect of Ultrasonic Waves on the Heat Resistance of Bacillus cereus and Bacillus licheniformis Spores

    Burgos, J.; Ordóñez, J. A.; Sala, F.

    1972-01-01

    Heat resistance of Bacillus cereus and Bacillus licheniformis spores in quarter-strength Ringer solution decreases markedly after ultrasonic treatments which are unable to kill a significant proportion of the spore population. This effect does not seem to be caused by a loss of Ca2+ or dipicolinic acid. The use of ultrasonics to eliminate vegetative cells or to break aggregates in Bacillus spore suspensions to be used subsequently in heat resistance experiments appears to be unadvisable. PMID:4627969

  2. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  3. Damping capacity and dynamic mechanical characteristics of the plasma-sprayed coatings

    Yu Liming; Ma Yue; Zhou Chungen; Xu Huibin

    2005-01-01

    The damping properties and dynamic mechanical performance of NiCrAlY coating, FeCrMo ferromagnetic coating, AlCuFeCr quasicrystalline coating and nanostructured ZrO 2 ceramic coating, which were prepared by plasma-spray method, were investigated. The measuring results of the dynamic mechanical thermal analyzer (DMTA) and the flexural resonance testing method show that the damping capacity (Q -1 ) of the coated sample has a notable improvement compared to the substrate, while the dynamic modulus has a dramatic decrease. The resonance frequency of the coated cantilever beam structure shifted to high-frequency, and the resonance amplitude, especially high mode resonance, was dramatically attenuated. The internal friction peaks were observed in the Q -1 -temperature spectrogram and a normal amplitude effects were shown in the coated samples damping characteristics. The damping mechanism based on the interaction between substrate and coating layer, and the microstructure of the coated sample were also discussed in this paper

  4. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  5. Heat resistant/radiation resistant cable and incore structure test device for FBR type reactor

    Tanimoto, Hajime; Shiono, Takeo; Sato, Yoshimi; Ito, Kazumi; Sudo, Shigeaki; Saito, Shin-ichi; Mitsui, Hisayasu.

    1995-01-01

    A heat resistant/radiation resistant coaxial cable of the present invention comprises an insulation layer, an outer conductor and a protection cover in this order on an inner conductor, in which the insulation layer comprises thermoplastic polyimide. In the same manner, a heat resistant/radiation resistant power cable has an insulation layer comprising thermoplastic polyimide on a conductor, and is provided with a protection cover comprising braid of alamide fibers at the outer circumference of the insulation layer. An incore structure test device for an FBR type reactor comprises the heat resistant/radiation resistant coaxial cable and/or the power cable. The thermoplastic polyimide can be extrusion molded, and has excellent radiation resistant by the extrusion, as well as has high dielectric withstand voltage, good flexibility and electric characteristics at high temperature. The incore structure test device for the FBR type reactor of the present invention comprising such a cable has excellent reliability and durability. (T.M.)

  6. Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli.

    Mercer, Ryan; Nguyen, Oanh; Ou, Qixing; McMullen, Lynn; Gänzle, Michael G

    2017-10-15

    The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae , including pathogenic strains of Salmonella enterica and Escherichia coli The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1 GI , yfdX2 , hdeD GI , orf11 , trx GI , kefB , and psiE GI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript "GI" [genomic island] if an ortholog of the same gene is present in genomes of E. coli ) LHR-encoded heat shock proteins sHSP20, ClpK GI , and sHSP GI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trx GI , kefB , and psiE GI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the

  7. Heat-resistant fungi of importance to the food and beverage industry.

    Tournas, V

    1994-01-01

    Spoilage of pasteurized and canned fruit and fruit products caused by heat-resistant molds have been reported repeatedly in recent years. Species most commonly implicated in fruit and fruit product disintegration are Byssochlamys fulva, Byssochlamys nivea, Neosartorya fischeri, Talaromyces flavus, and Eupenicillium brefeldianum. These organisms are saprophytic rather than parasitic and usually contaminate fruits on or near the ground. They can survive heat treatments used for fruit processing and can grow and spoil the products during storage at room temperature, which results in great economic losses. Mold heat resistance is attributed to the formation of sexual spores, ascospores. Ascospores have a wide range of heat resistance, depending on species, strain, age of organism, heating medium, pH, presence of sugars, fats, and acids in heating medium, growth conditions, etc. The mechanism(s) of thermoresistance are not clear; probably some very stable compound(s) critical to germination and outgrowth are present in the heat-resistant ascospores. Besides spoilage, the heat-resistant molds produce a number of toxic secondary metabolites, such as byssotoxin A; byssochlamic acid; the carcinogen, patulin, the tremorgenic substances, fumitremorgin A and C, and verruculogen; fischerin, which caused fatal peritonitis in mice; and eupenifeldin, a compound possessing cytotoxicity as well as in vivo antitumor activity. Growth of heat-resistant fungi can be controlled by lowering the water activity, adding sulfur dioxide, sorbate, or benzoate; washing of fruits in hypochlorite solution before heat treatment reduces the number of ascospores and makes the heat destruction more successful. More research is needed to elucidate the mechanism(s) of thermoresistance and develop new methods for the complete inactivation of resistant ascospores.

  8. New progress in the theory and practice of heat-resisting concretes

    Nekrasov, K.D.

    1975-01-01

    The main properties of heat-resistant cellular, light and heavy concretes based on high-alumina-, alumina- and Portland cements, liquid glass, alumo-phosphate binder and other binding materials containing different fine-ground additives and fillers are considered. The data of foreign and national investigations are presented concerning the effect of heating and mineral composition of cements and fine-ground mineral additions on the phase composition and structure of the cement stone and tensile properties of concretes. The foreign and national experience in the utilization of heat-resistant concretes when constructing thermal units in various branches of industry is described, as well as the economic effectiveness obtained herewith

  9. Processing of light and heat-resistant alloys. Obrabotka legkikh i zharoprochnykh splavov

    Belova, A F

    1976-01-01

    Results are given on the latest studies undertaken by Academician A.F. Belov. An examination is made of general problems in the processing (pressure, welding, thermal treatment, and others) of light and heat-resistant metals, problems in the technology and metal science studies of aluminum alloys, and problems of metallurgy and the processing of titanium and heat-resistant alloys. The publication is designed for researchers, designers, metallurgists, metal science specialists, machine building specialists, and students at corresponding institutions of higher learning.

  10. Wettability and interface considerations in advanced heat-resistant Ni-base composites

    Asthana, R.; Mileiko, S.T.; Sobczak, N.

    2006-01-01

    Oxide fiber-reinforced Ni-base composites have long been considered as attractive heat-resistant materials. After several decades of active research, however, interest in these materials began to decline around mid-1990's due chiefly to 1) a lack of manufacturing technology to grow inexpensive single-crystal oxide fibers to be used in structural composites, and 2) fiber strength loss during processing due to chemical interactions with reactive solutes in the matrix. The cost disadvantage has been mitigated to a large extent by the development of innovative fiber fabrication processes such as the Internal Crystallization Method (ICM) that produces monocrystalline oxide fibers in a cost-effective manner. Fiber strength loss has been an equally restrictive issue but recent work has shown that it may be possible to design creep-resistant composites even when fiber surface reconstruction from chemical interactions has degraded the strength of extracted fibers tested outside the matrix. The key issue is the optimization of the composite- and interface structure. Reaction-formed defects may be healed by the matrix (or a suitable coating material) so that the fiber residing in the matrix may exhibit diminished sensitivity to flaws as compared to fibers extracted from the matrix and tested in isolation of the matrix. Generally, the Ni-base/Al 2 O 3 composites exhibit acceptable levels of wettability and interface strength (further improved with the aid of reactive solutes), which are required for elevated-temperature creep-resistance. In order to harness the full potential of these composites, the quality of the interface as manifested in the fiber/matrix wettability, interface composition, interphase morphology, and interface strength must be designed. We identify key issues related to the measurement of contact angle, interface strength, and chemical and structural properties at the fiber/matrix interface in the Ni/alumina composites, and present the current state-of the

  11. Heat-resisting alloys for hard surfacing and sealing pad welding

    R.O. Wielgosz

    2010-07-01

    Full Text Available The paper deals with heat-resisting alloys used to harden surfaces of elements operating in increased temperatures. It also deals with alloysused to seal cooperating surfaces of elements operating in the conditions of increased temperatures and aggressive utilities. Application methods and properties of thus obtained layers have been presented and adhesion of layers with matrix material has been assessed.

  12. Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    Tack, Jesse; Barkley, Andrew; Rife, Trevor W; Poland, Jesse A; Nalley, Lawton Lanier

    2016-08-01

    The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy involves the development of heat resistant varieties by breeders, combined with alternative variety selection by producers. However, the impact of heat on specific wheat varieties remains relatively unstudied due to limited data and the complex genetic basis of heat tolerance. Here, we provide a novel econometric approach that combines field-trial data with a genetic cluster mapping to group wheat varieties and estimate a separate extreme heat impact (temperatures over 34 °C) across 24 clusters spanning 197 varieties. We find a wide range of heterogeneous heat resistance and a trade-off between average yield and resistance. Results suggest that recently released varieties are less heat resistant than older varieties, a pattern that also holds for on-farm varieties. Currently released - but not yet adopted - varieties do not offer improved resistance relative to varieties currently grown on farm. Our findings suggest that warming impacts could be significantly reduced through advances in wheat breeding and/or adoption decisions by producers. However, current adaptation-through-adoption potential is limited under a 1 °C warming scenario as increased heat resistance cannot be achieved without a reduction in average yields. © 2015 John Wiley & Sons Ltd.

  13. Extreme Heat Resistance of Food Borne Pathogens Campylobacter jejuni, Escherichia coli, and Salmonella typhimurium on Chicken Breast Fillet during Cooking

    de Jong, Aarieke E I; van Asselt, Esther D; Zwietering, Marcel H

    2012-01-01

    cooking enlarged the heat resistance of the food borne pathogens. Additionally, a high challenge temperature or fast heating rate contributed to the level of heat resistance. The data were used to assess the probability of illness (campylobacteriosis) due to consumption of chicken fillet as a function...

  14. Biofilm Formation Potential of Heat-Resistant Escherichia coli Dairy Isolates and the Complete Genome of Multidrug-Resistant, Heat-Resistant Strain FAM21845.

    Marti, Roger; Schmid, Michael; Kulli, Sandra; Schneeberger, Kerstin; Naskova, Javorka; Knøchel, Susanne; Ahrens, Christian H; Hummerjohann, Jörg

    2017-08-01

    We tested the biofilm formation potential of 30 heat-resistant and 6 heat-sensitive Escherichia coli dairy isolates. Production of curli and cellulose, static biofilm formation on polystyrene (PS) and stainless steel surfaces, biofilm formation under dynamic conditions (Bioflux), and initial adhesion rates (IAR) were evaluated. Biofilm formation varied greatly between strains, media, and assays. Our results highlight the importance of the experimental setup in determining biofilm formation under conditions of interest, as correlation between different assays was often not a given. The heat-resistant, multidrug-resistant (MDR) strain FAM21845 showed the strongest biofilm formation on PS and the highest IAR and was the only strain that formed significant biofilms on stainless steel under conditions relevant to the dairy industry, and it was therefore fully sequenced. Its chromosome is 4.9 Mb long, and it harbors a total of five plasmids (147.2, 54.2, 5.8, 2.5, and 1.9 kb). The strain carries a broad range of genes relevant to antimicrobial resistance and biofilm formation, including some on its two large conjugative plasmids, as demonstrated in plate mating assays. IMPORTANCE In biofilms, cells are embedded in an extracellular matrix that protects them from stresses, such as UV radiation, osmotic shock, desiccation, antibiotics, and predation. Biofilm formation is a major bacterial persistence factor of great concern in the clinic and the food industry. Many tested strains formed strong biofilms, and especially strains such as the heat-resistant, MDR strain FAM21845 may pose a serious issue for food production. Strong biofilm formation combined with diverse resistances (some encoded on conjugative plasmids) may allow for increased persistence, coselection, and possible transfer of these resistance factors. Horizontal gene transfer may conceivably occur in the food production setting or the gastrointestinal tract after consumption. Copyright © 2017 Marti et al.

  15. Characterization of plasma sprayed NiCrAlY-Yttria stabilized zirconia coatings

    Bhave, V.S.; Rakhasia, R.H.; Tripathy, P.K.; Hubli, R.C.; Sengupta, P.; Bhanumurthy; Satpute, R.U.; Sreekumar, K.P.; Thiyagarajan, T.K.; Padmanabhan, P.V.A.

    2004-01-01

    Plasma sprayed coatings of yttria stabilized zirconia are used in many advanced technologies for thermal and chemical barrier applications. Development and characterization of NiCrAlY-yttria stabilized zirconia duplex coatings on Inconel substrates is reported in this paper. Plasma spraying was carried out using the 40 kW atmospheric plasma spray facility at the Laser and Plasma Technology Division, BARC. A bond coat of NiCrAlY was deposited on Inconel substrates and yttria stabilized zirconia (YSZ) was deposited over the bond coat. The coatings have been characterized by x-ray diffraction and EPMA. It is observed that the coating characteristics are affected by the input power to the torch. (author)

  16. Heat resistance of Fe-Al intermetallics in the context of selected heat-resistant and hihg-temperature creep resistant steels

    P. Baranowski

    2009-04-01

    Full Text Available Results are hereby presented of heat-resistance tests of two Fe3Al and FeAl intermetallic phase-based alloys in the context of St41k-typeboiler steel and 50H21G9N4 high-temperature creep resistant steel. It has been ascertained that heat resistance of the 50H21G9N4 steeland of the Fe3Al and FeAl intermetallic phase-based alloys significantly exceeds that of the boiler steel tested in the air atmosphere and the atmosphere of a flue gas with CO, CO2, SiO2 content alike. Improvement of these properties depends of exposure conditions. The largest differences have been observed when the tests were carried out in temperature 1023 K and in the flue gas atmosphere. The differences have been more and more noticeable as the exposition duration extended. A tendency has been also recorded of smaller mass decrements of the Fe3Al and FeAl intermetallic phase-based alloys as compared to the 50H21G9N4 steel.

  17. Freestanding, heat resistant microporous film for use in energy storage devices

    Pekala, Richard W.; Cherukupalli, Srinivas; Waterhouse, Robert R.

    2018-02-20

    Preferred embodiments of a freestanding, heat resistant microporous polymer film (10) constructed for use in an energy storage device (70, 100) implements one or more of the following approaches to exhibit excellent high temperature mechanical and dimensional stability: incorporation into a porous polyolefin film of sufficiently high loading levels of inorganic or ceramic filler material (16) to maintain porosity (18) and achieve low thermal shrinkage; use of crosslinkable polyethylene to contribute to crosslinking the polymer matrix (14) in a highly inorganic material-filled polyolefin film; and heat treating or annealing of biaxially oriented, highly inorganic material-filled polyolefin film above the melting point temperature of the polymer matrix to reduce residual stress while maintaining high porosity. The freestanding, heat resistant microporous polymer film embodiments exhibit extremely low resistance, as evidenced by MacMullin numbers of less than 4.5.

  18. Optimum schedules of difficult-to-form heat-resistant alloys forging

    Majzengel'ter, V.A.; Shuvalov, A.A.; Perevozov, A.S.

    2000-01-01

    The process of manufacturing half finished discs for hydroturbine engines from heat resistant difficulty deformed nickel, iron-nickel and cobalt alloys (EI435, EI868, VZh145-ID, EK79-ID, EK152-ID, EI826, EP648-VI) is described. The recommendations on the modes of forging the single-phase nonaging and double phase aging alloys are developed. The conclusion is made, that the first compressions of ingots shoved be accomplished by small press runs. The subsequent compressions should constituted not less than 8% during one run. The total compression of the ingot during one heating should be within the concrete alloy properties. With the purpose of obtaining uniform fine-grain structure the ingot heating during the last manufacturing cycle should be accomplished within the range of 1100-1130 deg C for the majority of heat resistant alloys [ru

  19. Influenced prior loading on the creep fatigue damage accumulation of heat resistant steels

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1990-01-01

    On two heat resistant power plant steels the influence of prior strain cycling on the creep rupture behaviour and the influence of prior creep loading on the strain cycling behaviour is investigated. These influences concern the number of cycles to failure and the rupture time being the reference values of the generalized damage accumulation rule and they are used for a creep fatigue analysis of the results of long term service-type strain cycling tests. (orig.) [de

  20. Heat resistance of Escherichia coli O157:H7 in apple juice.

    Splittstoesser, D F; McLellan, M R; Churey, J J

    1996-03-01

    The objective was to determine the effect of cider composition on the heat resistance of Escherichia coli O157:H7. The average D52 value in a model Empire apple juice was 18 min with a z value of 4.8 degrees C. Increasing the Brix from 11.8 to 16.5 degrees had no effect on thermal resistance, while increasing L-malic acid from 0.2 to 0.8%, or reducing the pH from 4.4 to 3.6 sensitized the cells to heat. The greatest effect on heat resistance was afforded by the preservatives benzoic and sorbic acids: D50 values in ciders containing 1,000 mg/l were 5.2 min in the presence of sorbic acid and only 0.64 min in the presence of benzoic acid. Commercial apple juice concentrates yielded lower numbers of survivors than single-strength juices even though their higher sugar concentrations of about 46 degrees Brix increased heat resistance.

  1. Signal mediators at induction of heat resistance of wheat plantlets by short-term heating

    Yu. V. Karpets

    2015-12-01

    Full Text Available The effects of functional interplay of calcium ions, reactive oxygen species (ROS and nitric oxide (NO in the cells of wheat plantlets roots (Triticum aestivum L. at the induction of their heat resistance by a short-term influence of hyperthermia (heating at the temperature of 42 °С during 1 minute have been investigated. The transitional increase of NO and H2O2 content, invoked by heating, was suppressed by the treatment of plantlets with the antagonists of calcium EGTA (chelator of exocellular calcium, lanthanum chloride (blocker of calcium channels of various types and neomycin (inhibitor of phosphatidylinositol-dependent phospholipase C. The rise of hydrogen peroxide content, caused by hardening, was partially suppressed by the action of inhibitors of nitrate reductase (sodium wolframate and NO-synthase (NG-nitro-L-arginine methyl ester – L-NAME, and the increasing of nitric oxide content was suppressed by the treatment of plants with the antioxidant ionol and with the scavenger of hydrogen peroxide (dimethylthiourea. These compounds and antagonists of calcium also partially removed the effect of the rise of plantlets’ heat resistance, invoked by hardening heating. The conclusion on calcium’s role in the activation of enzymatic systems, generating reactive oxygen species and nitric oxide, and on the functional interplay of these signal mediators at the induction of heat resistance of plantlets by hardening heating is made.

  2. KTA 625 alloy tube with excellent corrosion resistance and heat resistance

    Fujiwara, Kazuo; Kadonaga, Toshiki; Kikuma, Seiji.

    1982-01-01

    The problems when seamless tubes are produced by using nickel base 625 alloy (61Ni-22Cr-9Mo-Cb) which is known as a corrosion resistant and heat resistant alloyF were examined, and the confirmation experiment was carried out on its corrosion resistance and heat resistance. Various difficulties have been experienced in the tube making owing to the characteristics due to the chemical composition, but they were able to be solved by the repeated experiments. As for the characteristics of the product, the corrosion resistance was excellent particularly in the environment containing high temperature, high concentration chloride, and also the heat resistance was excellent in the wide temperature range from normal temperature to 1000 deg C. From these facts, the wide fields of application are expected for these alloy tubes, including the evaporation and concentration equipment for radioactive wastes in atomic energy field. Expecting the increase of demand hereafter, Kobe Steel Ltd. examined the problems when seamless tubes are produced from the 625 alloy by Ugine Sejournet process. The aptitude for tube production such as the chemical composition, production process and the product characteristics, the corrosion resistance against chloride, hydrogen sulfide, polythionic and other acids,F the high temperature strength and oxidation resistance are reported. (Kako, I.)

  3. Significant effect of Ca2+ on improving the heat resistance of lactic acid bacteria.

    Huang, Song; Chen, Xiao Dong

    2013-07-01

    The heat resistance of lactic acid bacteria (LAB) has been extensively investigated due to its highly practical significance. Reconstituted skim milk (RSM) has been found to be one of the most effective protectant wall materials for microencapsulating microorganisms during convective drying, such as spray drying. In addition to proteins and carbohydrate, RSM is rich in calcium. It is not clear which component is critical in the RSM protection mechanism. This study investigated the independent effect of calcium. Ca(2+) was added to lactose solution to examine its influence on the heat resistance of Lactobacillus rhamnosus ZY, Lactobacillus casei Zhang, Lactobacillus plantarum P8 and Streptococcus thermophilus ND03. The results showed that certain Ca(2+) concentrations enhanced the heat resistance of the LAB strains to different extents, that is produced higher survival and shorter regrowth lag times of the bacterial cells. In some cases, the improvements were dramatic. More scientifically insightful and more intensive instrumental study of the Ca(2+) behavior around and in the cells should be carried out in the near future. In the meantime, this work may lead to the development of more cost-effective wall materials with Ca(2+) added as a prime factor. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Role of Ca ions in the induction of heat-resistance of wheat coleoptiles by brassinosteroids

    Yu. E. Kolupaev

    2015-02-01

    Full Text Available The involvement of Ca2+ into the signal transduction of exogenous brassinosteroids (BS (24-epibrassinolide – 24-EBL and 24-epicastasterone – 24 ECS causing the increase of heat resistance of the cells of wheat (Triticum aestivum L. coleoptiles was investigated using calcium chelator EGTA and inhibitor of phosphatidylinositol-specific phospholipase C – neomycin. Twenty-four-hour treatment of coleoptile segments with 10 nM solutions of 24-EBL and 24-ECS led to a transient increase in the generation of superoxide anion radical by cell surface and the subsequent activation of superoxide dismutase and catalase. Pretreatment of coleoptiles with EGTA and neomycin depressed to a considerable extent these effects and leveled the increase in heat resistance of wheat coleoptiles that were caused by BS. Possible mechanisms of involvement of calcium signaling into the formation of reactive oxygen species in plant cells and induction of heat resistance of plant cells by the action of exogenous BS have been discussed.

  5. Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties.

    Berendsen, Erwin M; Zwietering, Marcel H; Kuipers, Oscar P; Wells-Bennik, Marjon H J

    2015-02-01

    The survival of bacterial spores after heat treatment and the subsequent germination and outgrowth in a food product can lead to spoilage of the food product and economical losses. Prediction of time-temperature conditions that lead to sufficient inactivation requires access to detailed spore thermal inactivation kinetics of relevant model strains. In this study, the thermal inactivation kinetics of spores of fourteen strains belonging to the Bacillus subtilis group were determined in detail, using both batch heating in capillary tubes and continuous flow heating in a micro heater. The inactivation data were fitted using a log linear model. Based on the spore heat resistance data, two distinct groups (p subtilis group could be identified. One group of strains had spores with an average D120 °C of 0.33 s, while the spores of the other group displayed significantly higher heat resistances, with an average D120 °C of 45.7 s. When comparing spore inactivation data obtained using batch- and continuous flow heating, the z-values were significantly different, hence extrapolation from one system to the other was not justified. This study clearly shows that heat resistances of spores from different strains in the B. subtilis group can vary greatly. Strains can be separated into two groups, to which different spore heat inactivation kinetics apply. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH.

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; Leguérinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-05-01

    Although sporulation environmental factors are known to impact on Bacillus spore heat resistance, they are not integrated into predictive models used to calculate the efficiency of heating processes. This work reports the influence of temperature and pH encountered during sporulation on heat resistance of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 spores. A decrease in heat resistance (δ) was observed for spores produced either at low temperature, at high temperature or at acidic pH. Sporulation temperature and pH maximizing the spore heat resistance were identified. Heat sensitivity (z) was not modified whatever the sporulation environmental factors were. A resistance secondary model inspired by the Rosso model was proposed. Sporulation temperatures and pHs minimizing or maximizing the spore heat resistance (T(min(R)), T(opt(R)), T(max(R)), pH(min(R)) and pH(opt(R))) were estimated. The goodness of the model fit was assessed for both studied strains and literature data. The estimation of the sporulation temperature and pH maximizing the spore heat resistance is of great interest to produce spores assessing the spore inactivation in the heating processes applied by the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Advanced materials and protective coatings in aero-engines application

    M. Hetmańczyk; L. Swadźba; B. Mendala

    2007-01-01

    Purpose: The following article demonstrates the characteristics of the materials applied as parts of aircraft engine turbines and the stationary gas turbines. The principal technologies for manufacturing the heat resistant coatings and the erosion and corrosion resistant coatings were characterized. Sample applications for the aforementioned coatings are presented: on turbine blades, compressor blades and on parts of combustion chambers of aircraft engines.Design/methodology/approach: The nic...

  8. Changes In Mechanical Properties Of Heat Resisting Alloy For A Satellite Propulsion System After A Nitriding Process

    Kagawa, Hideshi; Fujii, Go; Kajiwara, Kenichi; Kuroda, Daisuke; Suzuki, Takuya; Yamabe-Mitarai, Yoko; Murakami, Hideyuki; Ono, Yoshinori

    2012-07-01

    Haynes25 (L-605) is a common heat resistant alloy used in mono-propellant structures and screen materials for catalyst beds. The lifetime requirements for thrusters have expanded dramatically after studies conducted in the 1970s on mono-propellant materials used to extend the service life. The material design had long remained unchanged, and the L-605 was still used as thruster material due to its good heritage. However, some important incidents involving degradation were found during the test-unit break-up inspection following the thruster life tests. The Japanese research team focused on the L-605 degradations found on the catalyst bed screen mesh used for mono-propellant thruster and analysed the surface of the wire material and the cross- section of the wire screen mesh used in the life tests. The investigation showed that the degradation was caused by nitriding L-605 component elements. The team suggested that the brittle fracture was attributable to tungsten (W) carbides, which formed primarily in the grain boundaries, and chromium (Cr) nitride, which formed mainly in the parts in contact with the hot firing gas. The team also suggested the installation of a platinum coating on the material surface as a countermeasure L-605 nitric degradation. Inconel 625 is now selected as a mono-propellant structure material due to its marginal raw material characters and cost. The team believes that Inconel 625 does not form W carbides since it contains no tungsten component, but does contain Cr and Fe, which form nitrides easily. Therefore, the team agreed that for the Inconel 625, there was a need to evaluate changes in the microstructure and mechanical properties following exposure to hot nitrogen gases. This paper will describe these changes of Inconel 625.

  9. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-01-01

    Graphical abstract: - Highlights: • In situ adsorption behaviors of TES on PA6 surface were clarified by QCM. • Highest adsorption of TES on PA6 was obtained in pH 3 and 0.1 M solution. • Molecular layers of TES with uniform structures were prepared on PA6 surface. • TES layer improved PA6 local heat resistance from 150 °C to 230 °C. • TES molecular layer successfully reduced Ag ion to Ag"0. - Abstract: Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag"+ ion to Ag"0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  10. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    Sang, Jing [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kudo, Takahiro [Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2016-04-15

    Graphical abstract: - Highlights: • In situ adsorption behaviors of TES on PA6 surface were clarified by QCM. • Highest adsorption of TES on PA6 was obtained in pH 3 and 0.1 M solution. • Molecular layers of TES with uniform structures were prepared on PA6 surface. • TES layer improved PA6 local heat resistance from 150 °C to 230 °C. • TES molecular layer successfully reduced Ag ion to Ag{sup 0}. - Abstract: Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag{sup +} ion to Ag{sup 0}. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  11. Fracture properties and heat resistance of ceramics consisting of microspheres of stabilized zirconium dioxide

    Krasulin, Yu.L.; Barinov, S.M.; Ivanov, A.B.; Timofeev, V.N.; Grevtsev, S.N.; Ivanov, D.A.

    1980-01-01

    Determined were effective specific fracture work, critical coefficient of stress intensity in the upper point of the fracture, strength and heat resistance during heat changes (20-1300 deg C) of the material produced by sintering stabilized zirconium dioxide microspheres. Dependence of these characteristics on granulometric composition of microspheres was determined. It was ascertained that the additional introduction of large microspheres into the bulk of small microspheres increased the metal fracture work. Specific work of material fracture progress exceeded specific work of fracture motion initiation. High value of fracture work together with high strength permits to use the material formed of microspheres as structural ceramics

  12. Estimation of work capacity of welded mounting joints of pipelines of heat resisting steel

    Gorynin, I.V.; Ignatov, V.A.; Timofeev, B.T.; Blyumin, A.A.

    1982-01-01

    The analysis of a work capacity of circular welds made for the Dsub(y)850 pipeline connection with high pressure vessels of heat resisting steel of the 15Kh1NMFA type has been carried out on the base of test results with small samples and real units. Welds were performed using the manual electric arc welding without the following heat treatment. It has been shown that residual stresses in such welds do not produce an essential effect on the resistance of weld metal and heat affected zone on the formation and developments of cracks

  13. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation

    Wenfeng Zhang

    2015-09-01

    Full Text Available The stress relaxation curves for three different hot deformation processes in the temperature range of 750–1000 °C were studied to develop an understanding of the precipitation behavior in a nitride-strengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015 [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion.

  14. REM effect on nonmetallic inclusion composition and heat resistance in an austenitic steel

    Farafonov, V.K.; Shtejnberg, M.M.; Kikhtin, M.V.; Cheremnykh, V.P.; Vojnov, V.V.

    1979-01-01

    Studies were made to elucidate the effect of rare earths (lanthanum, neodymium, praseodymium, cerium) on the composition of non-metallic inclusions and heat resistance of an austenitic chromium-nickel steel. Common sulfide and oxide inclusions are shown to be substituted by rare earth sulfide and oxide inclusions at RE metal content in the steel up to 0.1%. Further increase of RE metal content results in increasing non-metallic inclusions containing RE metals, phosphorus and non-ferrous impurities. Creep rate changes insignificantly at RE metal content up to 0.1%, and then it sharply grows with the quantity of non-metallic inclusions in the steel

  15. Microstructural evolution during creep deformation of an 11CrMoVNb ferritic heat resistant steel

    Lee, Kyu-Ho; Park, Dae-Bum [Korea Institute of Science and Technology, Seoul (Korea, Republic of). Materials and Devices Div.; Korea Univ., Seoul (Korea, Republic of). Dept. of Materials Science; Kwun, S.I. [Korea Univ., Seoul (Korea, Republic of). Dept. of Materials Science; Suh, Jin-Yoo; Jung, Woo-Sang [Korea Institute of Science and Technology, Seoul (Korea, Republic of). Materials and Devices Div.

    2010-07-01

    The effect of creep deformation on the microstructural development of an 11CrMoVNb ferritic heat resistant steel during high temperature creep test is investigated. Coarsening behavior of the precipitates, M{sub 23}C{sub 6} and MX, and growth behavior of martensite laths of crept specimens are carefully observed from both gage and grip parts of the specimens in order to discuss the effect of deformation. Particle coarsening and martensite lath widening are pronounced in the gage part due to the creep deformation. (orig.)

  16. Studies on neutron irradiation effects of iron alloys and nickel-base heat resistant alloys

    Watanabe, Katsutoshi

    1987-09-01

    The present paper describes the results of neutron irradiation effects on iron alloys and nickel-base heat resistant alloys. As for the iron alloys, irradiation hardening and embrittlement were investigated using internal friction measurement, electron microscopy and tensile testings. The role of alloying elements was also investigated to understand the irradiation behavior of iron alloys. The essential factors affecting irradiation hardening and embrittlement were thus clarified. On the other hand, postirradiation tensile and creep properties were measured of Hastelloy X alloy. Irradiation behavior at elevated temperatures is discussed. (author)

  17. Resistance to corrosion fatigue fracture in heat resistant steels and their welded joints

    Timofeev, B.T.; Fedorova, V.A.; Zvezdin, Yu.I.; Vajner, L.A.; Filatov, V.M.

    1987-01-01

    Experimental data on cyclic crack resistance of heat-resistant steels and their welded joints employed for production of the reactor bodies are for the first time generalized and systematized. The formula is suggested accounting for surface and inner defects to calculate the fatigue crack growth in the process of operation. This formula for surface defects regards also the effect of the corrosion factor. Mechanisms of the reactor water effect on the fatigue crack growth rate are considered as well as a combined effect of radiation and corrosive medium on this characteristic

  18. VARIATION OF SUBSTRUCTURES OF PEARLITIC HEAT RESISTANT STEEL AFTER HIGH TEMPERATURE AGING

    R.C.Yang; K.Chen; H.X.Feng; H.Wang

    2004-01-01

    The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12Cr1Mo V pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phasetransformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably.

  19. Transparent Heat-Resistant PMMA Copolymers for Packing Light-Emitting Diode Materials

    Shu-Ling Yeh

    2015-07-01

    Full Text Available Transparent and heat-resistant poly(methyl methacrylate copolymers were synthesized by bulk polymerizing methyl methacrylate (MMA, isobornyl methacrylate (IBMA, and methacrylamide (MAA monomers. Copolymerization was performed using a chain transfer agent to investigate the molecular weight changes of these copolymers, which exhibited advantages including a low molecular weight distribution, excellent optical properties, high transparency, high glass transition temperature, low moisture absorption, and pellets that can be readily mass produced by using extrusion or jet injection for packing light-emitting diode materials.

  20. Study on creep behavior of Grade 91 heat-resistant steel using theta projection method

    Ren, Facai; Tang, Xiaoying

    2017-10-01

    Creep behavior of Grade 91 heat-resistant steel used for steam cooler was characterized using the theta projection method. Creep tests were conducted at the temperature of 923K under the stress ranging from 100-150MPa. Based on the creep curve results, four theta parameters were established using a nonlinear least square fitting method. Four theta parameters showed a good linearity as a function of stress. The predicted curves coincided well with the experimental data and creep curves were also modeled to the low stress level of 60MPa.

  1. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  2. Long-term behaviour of heat-resistant steels and high-temperature materials

    1987-01-01

    This book contains 10 lectures with the following subjects: On the effect of thermal pretreatment on the structure and creep behaviour of the alloy 800 H (V. Guttmann, J. Timm); Material properties of heat resistant ferritic and austenitic steels after cold forming (W. Bendick, H. Weber); Investigations for judging the working behaviour of components made of alloy 800 and alloy 617 under creep stress (H.J. Penkalla, F. Schubert); Creep behaviour of gas turbine materials in hot gas (K.H. Kloos et al.); Effect of small cold forming on the creep beahviour of gas turbine blades made of Nimonic 90 (K.H. Keienburg et al.); Investigations on creep fatigue alternating load strength of nickel alloys (G. Raule); Change of structure, creep fatigue behaviour and life of X20 Cr Mo V 12 1 (by G. Eggeler et al.); Investigations on thermal fatigue behaviour (K.H. Mayer et al.); Creep behaviour of similar welds of the steels 13 Cr Mo 4 4, 14 MoV 6 3, 10 Cr Mo 910 and GS-17 Cr Mo V 5 11 (K. Niel et al.); Determining the creep crack behaviour of heat resistant steels with samples of different geometry (K. Maile, R. Tscheuschner). (orig.,/MM) [de

  3. Does enhanced heat resistance of irradiated insects represent greater ability to adapt

    Ducoff, H.S.; MacDuff, R.A.

    1985-01-01

    Previous work from this lab demonstrated that irradiated flour beetles (Tribolium) develop resistance to oxygen with similar kinetics: greater sensitivity for about 1 week, increasing resistance over the next week, and resistance persisting for 3-6 months. This is in contrast to the rapid development of heat resistance in yeast exposed to UV or ionizing radiation and to rapid induction of heat-stress proteins in E. coli exposed to UV or nalidixic acid. The authors' early work did not distinguish between intrinsic heat resistance and enhanced ability to adapt. They tried to resolve this problem by comparing response of irradiated and of control beetles to challenge at 45 0 C with or without brief exposure to 41 0 C just prior to challenge. Mean lethal exposure time at 45 0 C was increased to about the same extent in both populations after 15 min at 41 0 C, suggesting that irradiation increases insectors' intrinsic resistance to stress rather than their ability to adapt

  4. Development of heat resistant geopolymer-based materials from red mud and rice husk ash

    Thang, Nguyen Hoc; Nhung, Le Thuy; Quyen, Pham Vo Thi Ha; Phong, Dang Thanh; Khe, Dao Thanh; Van Phuc, Nguyen

    2018-04-01

    Geopolymer is an inorganic polymer composite developed by Joseph Davidovits in 1970s. Such material has potentials to replace Ordinary Portland Cement (OPC)-based materials in the future because of its lower energy consumption, minimal CO2 emissions and lower production cost as it utilizes industrial waste resources. Hence, geopolymerization and the process to produce geopolymers for various applications like building materials can be considered as green industry. Moreover, in this study, red mud and rice husk ash were used as raw materials for geopolymeric production, which are aluminum industrial and agricultural wastes that need to be managed to reduce their negative impact to the environment. The red mud and rice husk ash were mixed with sodium silicate (water glass) solution to form geopolymer paste. The geopolymer paste was filled into 5-cm cube molds according to ASTM C109/C109M 99, and then cured at room temperature for 28 days. These products were then tested for compressive strength and volumetric weight. Results indicated that the material can be considered lightweight with a compressive strength at 28 days that are in the range of 6.8 to 15.5 MPa. Moreover, the geopolymer specimens were also tested for heat resistance at a temperature of 1000oC for 2 hours. Results suggest high heat resistance with an increase of compressive strength from 262% to 417% after exposed at high temperature.

  5. Prediction of long-term precipitate evolution in austenitic heat-resistant steels

    Shim, Jae-Hyeok; Jung, Woo-Sang; Cho, Young Whan [Korea Institute of Science and Technology, Seoul (Korea, Republic of). Materials/Devices Div.; Kozeschnik, Ernst [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology

    2010-07-01

    Numerical prediction of the long-term precipitate evolution in five different austenitic heat-resistant stainless steels, NF709, Super304H, Sanicro25, CF8C-PLUS and HTUPS has been carried out. MX and M{sub 23}C{sub 6} are predicted to remain as major precipitates during long-term aging in these steels. The addition of 3 wt% Cu produces very fine Cu-rich precipitates during aging in Super304H and Sanicro25. It is found that the amount of Z phase start to increase remarkably between 1,000 and 10,000 hours of aging at the expense of MX precipitates in the steels containing a high nitrogen content. However, the growth rate of Z phase is relatively slow and its average size reaches at most a few tens of nanometers after 100,000 hours of aging at 700 C, compared with 9-12% Cr ferritic/martensitic heat-resistant steels. The predicted precipitation sequence and precipitate size during aging are in general agreement with experimental observations. (orig.)

  6. Effect of pH on Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery.

    Mtimet, Narjes; Guégan, Stéphanie; Durand, Lucile; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-05-01

    Thermophilic spore-forming bacteria are potential contaminants in several industrial sectors involving high temperatures (40-65 °C) in the manufacturing process. Among those thermophilic spore-forming bacteria, Thermoanaerobacterium thermosaccharolyticum, called "the swelling canned food spoiler", has generated interest over the last decade in the food sector. The aim of this study was to investigate and to model pH effect on growth, heat resistance and recovery abilities after a heat-treatment of T. thermosaccharolyticum DSM 571. Growth and sporulation were conducted on reinforced clostridium media and liver broth respectively. The highest spore heat resistances and the greatest recovery ability after a heat-treatment were obtained at pH condition allowing maximal growth rate. Growth and sporulation boundaries were estimated, then models using growth limits as main parameters were extended to describe and quantify the effect of pH on recovery of injured spores after a heat-treatment. So, cardinal values were used as a single set of parameters to describe growth, sporulation and recovery abilities. Besides, this work suggests that T. thermosaccharolyticum preserve its ability for germination and outgrowth after a heat-treatment at a low pH where other high resistant spore-forming bacteria like Geobacillus stearothermophilus are unable to grow. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Natural Diversity in Heat Resistance of Bacteria and Bacterial Spores: Impact on Food Safety and Quality.

    den Besten, Heidy M W; Wells-Bennik, Marjon H J; Zwietering, Marcel H

    2018-03-25

    Heat treatments are widely used in food processing often with the aim of reducing or eliminating spoilage microorganisms and pathogens in food products. The efficacy of applying heat to control microorganisms is challenged by the natural diversity of microorganisms with respect to their heat robustness. This review gives an overview of the variations in heat resistances of various species and strains, describes modeling approaches to quantify heat robustness, and addresses the relevance and impact of the natural diversity of microorganisms when assessing heat inactivation. This comparison of heat resistances of microorganisms facilitates the evaluation of which (groups of) organisms might be troublesome in a production process in which heat treatment is critical to reducing the microbial contaminants, and also allows fine-tuning of the process parameters. Various sources of microbiological variability are discussed and compared for a range of species, including spore-forming and non-spore-forming pathogens and spoilage organisms. This benchmarking of variability factors gives crucial information about the most important factors that should be included in risk assessments to realistically predict heat inactivation of bacteria and spores as part of the measures for controlling shelf life and safety of food products.

  8. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    Kou, Xiao-xi; Li, Rui; Hou, Li-xia; Huang, Zhi; Ling, Bo; Wang, Shao-jin

    2016-01-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances. PMID:27465120

  9. Effect that radiation exerts to insulation breakdown of heat resistant polymer materials

    Fujita, Shigetaka; Baba, Makoto; Noto, Fumitoshi; Ruike, Mitsuo.

    1990-01-01

    Artificial satellites are always exposed to cosmic rays which contain the radiations which do not reach the ground, therefore, the radiation resistance of the polymer insulators for cables and others used in such environment becomes a problem. Also the polymer insulator materials used for nuclear facilities require excellent radiation resistance. It is important to examine the effect that radiation exerts to electric insulation characteristics from the viewpoint of material development. In this paper, the insulation breakdown characteristics of heat resistant polymer films and the mini-cables made for trial of heat resistant polymer materials in the case without irradiation and in the case of gamma ray irradiation, and the results of the structural analysis are reported. The specimens tested, the experimental method and the results are described. The insulation breakdown strength of PFA and FEP films lowered from 0.15-0.2 MGy, but that of PEEK film did not change up to 5 MGy. It was found that fluorine group resins were apt to deteriorate by oxidation as dose increased. (K.I.)

  10. Heat-resistant, extended-spectrum β-lactamase-producing Klebsiella pneumoniae in endoscope-mediated outbreak

    Jørgensen, S.B.; Bojer, Martin Saxtorph; Boll, E.J.

    2016-01-01

    disinfection in a decontaminator designated for such use. The genetic marker clpK, which increases microbial heat resistance, has previously been described in K. pneumoniae outbreak strains. Aim To investigate the role of clpK in biofilm formation and heat-shock stability in the outbreak strain. Methods...... construction and heat-shock assays. Findings Five patients and one intubation endoscope contained K. pneumoniae with the same amplified fragment length polymorphism pattern. The outbreak strain contained the clpK genetic marker, which rendered the strain its increased heat resistance. The survival rate....... Heat resistance of certain K. pneumoniae strains may facilitate survival in biofilms on medical equipment and hence increase the potential of those strains to persist and disperse in the hospital environment....

  11. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    Kany, A.M.I.; El-Gohary, M.I.; Kamal, S.M.

    1994-01-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barriers of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure. (Author)

  12. Adriamycin resistance, heat resistance and radiation response in Chinese hamster fibroblasts

    Wallner, K.; Li, G.

    1985-01-01

    Previous investigators have demonstrated synergistic interaction between hyperthermia and radiation or Adriamycin (ADR), using cell lines that are sensitive to heat or ADR alone. The authors investigated the effect of heat, radiation or ADR on Chinese hamster fibroblasts (HA-1), their heat resistant variants and their ADR resistant variants. Heat for ADR resistance did not confer cross resistance to radiation. Cells resistant to heat did show cross resistance to ADR. While cells selected for ADR resistance were not cross resistant to heat, they did not exhibit drug potentiation by hyperthermia, characteristic of ADR sensitive cells. Cytofluorometric measurement showed decreased ADR uptake in both heat and ADR resistant cells. The possibility of cross resistance between heat and ADR should be considered when designing combined modality trials

  13. Applicability of creep damage rules to a nickel-base heat-resistant alloy Hastelloy XR

    Tsuji, Hirokazu; Nakajima, Najime; Tanabe, Tatsuhiko; Nakasone, Yuji

    1992-01-01

    A series of constant load and temperature creep rupture tests and varying load and/or temperature creep rupture tests was carried out on a nickel-base heat-resistant alloy Hastelloy XR, which was developed for applications in the High-Temperature Engineering Test Reactor, at temperatures ranging from 850 to 1000deg C in order to examine the applicability of the conventional creep damage rules, i.e., the life fraction, the strain fraction and their mixed rules. The life fraction rule showed the best applicability of these three criteria. The good applicability of the rule was considered to result from the fact that the creep strength of Hastelloy XR was not strongly affected by the change of the chemical composition and/or the microstructure during exposure to the high-temperature simulated HTGR helium environment. In conclusion the life fraction rule is applicable in engineering design of high-temperature components made of Hastelloy XR. (orig.)

  14. Estimating the Condition of the Heat Resistant Lining in an Electrical Reduction Furnace

    Jan G. Waalmann

    1988-01-01

    Full Text Available This paper presents a system for estimating the condition of the heat resistant lining in an electrical reduction furnace for ferrosilicon. The system uses temperature measured with thermocouples placed on the outside of the furnace-pot. These measurements are used together with a mathematical model of the temperature distribution in the lining in a recursive least squares algorithm to estimate the position of 'the transformation front'. The system is part of a monitoring system which is being developed in the AIP-project: 'Condition monitoring of strongly exposed process equipment in thc ferroalloy industry'. The estimator runs on-line, and results arc presented in colour-graphics on a display unit. The goal is to locate the transformation front with an accuracy of +- 5cm.

  15. Preparation of flexible and heat-resisting conductive transparent film by the pyrosol process

    Usami, Hisanao; Nakasa, Akihiko; Adachi, Mami; Suzuki, Eiji; Fujimatsu, Hitoshi; Ohashi, Tatsuya; Yamada, Shigeo; Tsugita, Kouhei; Taniguchi, Yoshio

    2006-01-01

    A pyrosol process was successfully applied for the preparation of a flexible, conductive, and transparent inorganic film, a tin-doped indium oxide (ITO) film lined with a thin mica layer. This flexible heat-resistant ITO-mica film exhibited high conductivity and transparency, comparable to ITO deposited on glass substrate. The minimum radius of bending for the film, without any recognizable change in the conductivity and appearance, was 8 mm. The ITO deposited on mica showed a large (222) diffraction peak with a smaller (400) peak, in contrast to ITO deposited with (400) orientation on an ordinary glass substrate. Using the ITO-mica film, a prototype model of a flexible organic light emitting diode was fabricated

  16. Development of halogen-free, heat-resistant, low-voltage wire for automotive use

    Ueno, Keiji; Suzuki, Sizuo; Takahagi, Masatoshi; Uda, Ikujiro

    1995-01-01

    The environmental load of our motorized society is of major concern, and includes considerations of recycling of automotive parts as the industrial wastes. The total average length of AV, AVX (electrical wire insulated with PVC, cross-linked PVC), and AEX (electrical wire insulated with cross-linked polyolefin) wires required for the harnesses in modern automobiles is approximately 2,000-3,000 meters per unit. However these electrical wires contain a large amount of halogen, which can generate the smoke and corrosive gas. In response to this problem the authors have developed the electron beam irradiated halogen-free, heat-resistant, low-voltage electrical wire which does not contain any halogen based polymer or flame retardants. The developed wire features the reliability equivalent to AEX wire with minimum environmental load. (Author)

  17. Effect of method for plastic working procedure on deformability of heat resisting alloys

    Nikiforov, B.A.

    1979-01-01

    Presented are the results of investigation of deformability of the heat resisting KhN56BMTYUR, KhN67BMTYU alloys at the wire drawing and rolling. The deformability has been evaluated by the results of macro- and micro-analyses, by the change of metal density and mechanical properties in the process of deformation. It is found that by the rolling it is possible to obtain 3-6 mm diameter wire with high surface quality avoiding intermediate heat treatments, cleaning and grinding the wire surface. The production of the wire of the same diameter by drawing is connected with intermediate heat treatments and with the presence of surface and internal defects in the form of longitudinal and transverse cracks, tears, laminations

  18. Evaluating the effectiveness of heat-resistant cast steel filtration from the results of structure examinations

    Asłanowicz M.

    2007-01-01

    Full Text Available Filtration guarantees castings characterised by high quality and free from any non-metallic inclusions, which are formed at the stage of melting and pouring of liquid metal. This article discusses the problem of the effectiveness of filtration process taking as an example heat-resistant cast steel poured into ceramic moulds. In investigations, foamed zircon filters made by FerroTerm Sp. z o.o. The effectiveness of filtration was described and examined using the results of metallographic examinations, including macro- and micro-structure examinations of metal and of cast metal/ceramic filter interface, and measurements of the content of non-metallic inclusions. The methods of investigations were presented, the obtained results were described, and relevant conclusions were drawn, all of them unmistakably indicating a very beneficial effect that filtration has on molten metal quality. Łódź, Poland, were used.

  19. TEM characterization of microstructure evolution of 12%Cr heat resistant steels

    Rojas, D.; Prat, O.; Sauthoff, G. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Garcia, J. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Kaysser-Pyzalla, A.R. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Bochum Univ. (Germany)

    2010-07-01

    A detailed characterization of the microstructure evolution of 12%Cr heat resistant steels at different creep times (100 MPa / 650 C / 8000 h) were carried out by scanning transmission electron microscopy (STEM). The results of the microstructure analysis are correlated with the mechanical properties in order to investigate the influence of different precipitates (especially M{sub 23}C{sub 6}) on the creep strength of the alloys. Precipitation of Laves phase and Z-phase was observed after several hours creep time. Very few Z-phase of the type Cr(V,Ta)N nucleating from existing (V,Ta)(C,N) was observed. Both alloys show growth and coarsening of Laves phase, meanwhile the MX carbonitrides present a very slow growth and coarsening rate. Alloys containing Laves phase, MX and M{sub 23}C{sub 6} precipitates show best creep properties. (orig.)

  20. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    Baba, Shin-ichi; Ishihara, Masahiro; Souzawa, Shizuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and {gamma}-ray spectrum are reported. (author)

  1. Developmental acclimation to low or high humidity conditions affect starvation and heat resistance of Drosophila melanogaster.

    Parkash, Ravi; Ranga, Poonam; Aggarwal, Dau Dayal

    2014-09-01

    Several Drosophila species originating from tropical humid localities are more resistant to starvation and heat stress than populations from high latitudes but mechanistic bases of such physiological changes are largely unknown. In order to test whether humidity levels affect starvation and heat resistance, we investigated developmental acclimation effects of low to high humidity conditions on the storage and utilization of energy resources, body mass, starvation survival, heat knockdown and heat survival of D. melanogaster. Isofemale lines reared under higher humidity (85% RH) stored significantly higher level of lipids and showed greater starvation survival hours but smaller in body size. In contrast, lines reared at low humidity evidenced reduced levels of body lipids and starvation resistance. Starvation resistance and lipid storage level were higher in females than males. However, the rate of utilization of lipids under starvation stress was lower for lines reared under higher humidity. Adult flies of lines reared at 65% RH and acclimated under high or low humidity condition for 200 hours also showed changes in resistance to starvation and heat but such effects were significantly lower as compared with developmental acclimation. Isofemale lines reared under higher humidity showed greater heat knockdown time and heat-shock survival. These laboratory observations on developmental and adult acclimation effects of low versus high humidity conditions have helped in explaining seasonal changes in resistance to starvation and heat of the wild-caught flies of D. melanogaster. Thus, we may suggest that wet versus drier conditions significantly affect starvation and heat resistance of D. melanogaster. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Physiological quality and gene expression related to heat-resistant proteins at different stages of development of maize seeds.

    Andrade, T; Von Pinho, E V R; Von Pinho, R G; Oliveira, G E; Andrade, V; Fernandes, J S

    2013-09-13

    We quantified and characterized the expression of heat-resistant proteins during seed development of maize lines with distinct levels of tolerance to high drying temperature. A corn field was planted for multiplication of seeds of different lines, two tolerant and two non-tolerant to high drying temperatures. Harvest of the seeds was carried out at various stages of development and they were then subjected to tests of moisture content, germination, first count of germination, accelerated aging, and cold test. The seeds were stored in a freezer for later analysis of expression of heat-resistant proteins by means of real-time PCR, electrophoresis, and spectrophotometry. We observed that heat-resistant proteins are expressed in a differential manner in seeds from different lines and at different stages of development. The expression of heat-resistant proteins was earlier in lines tolerant to high drying temperatures. Greater germination and vigor values was found for seeds collected at the last stage of development.

  3. Sporulation environment of emetic toxin-producing Bacillus cereus strains determines spore size, heat resistance and germination capacity

    Voort, van der M.; Abee, T.

    2013-01-01

    Aim Heat resistance, germination and outgrowth capacity of Bacillus cereus spores in processed foods are major factors in causing the emetic type of gastrointestinal disease. In this study, we aim to identify the impact of different sporulation conditions on spore properties of emetic

  4. Influence of lactic acid and post-treatment recovery time on the heat resistance of Listeria monocytogenes.

    Omori, Yasuo; Miake, Kiyotaka; Nakamura, Hiromi; Kage-Nakadai, Eriko; Nishikawa, Yoshikazu

    2017-09-18

    The aim of this study was to evaluate the effect of lactic acid (LA) with and without organic material at various post-treatment recovery times on the heat resistance of Listeria monocytogenes (Lm). LA decreased Lm numbers; however, the effect was remarkably attenuated by the presence of organic matter. Five strains of Lm were treated with LA and the listericidal effects were compared. The effect of LA varied depending on the strain, with ≥3.0% (w/w) LA required to kill the Lm strains in a short time. The heat resistance of Lm treated with LA was examined with respect to the time interval between the acid treatment and the subsequent manufacturing step. The heat resistance of Lm was shown to significantly increase during the post-treatment period. Heat tolerance (D value) increased up to 3.4-fold compared with the non-treated control bacteria. RNA sequencing and RT-PCR analyses suggested that several stress chaperones, proteins controlled by RecA and associated with high-temperature survival, were involved in the mechanism of enhanced heat resistance. These results are applicable to manufacturers when LA and heat treatment methods are utilized for the effective control of Lm in foods. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Laws of alloyed cementite particles nucleation during heat-resistant steels carburizing

    M. Yu. Semenov

    2014-01-01

    Full Text Available The article considers a problem analyzing a nucleation of cementite type carbides in carburized heat-resistant steels for the turbofan engines gear wheels.The verification of previously hypothesized mechanism of dislocation nucleation particles chromium-alloyed cementite during process of carburizing was accepted as an objective of the work.As a methodological basis of this paper were accepted the numerical experiments based on the kinetic theory of nucleation, as well as on the known results of experimental studies.According to the kinetic theory of nucleation, a new phase in the solid solutions take place in the defects of the crystal structure of the metal such as inter-grain boundaries and dislocations clusters. A principle feature of the inter-grain boundary mechanism of nucleation is formation of carbide lattice. It is of great practical interest because the cementite lattice drops mechanical properties of hardened parts.According to the experimental studies, the average chromium concentration in the alloyed cementite twice exceeds its Cr content in the heat-resistant steels. Furthermore, the areas of abnormally high (more than ten times in comparison with the average content chromium concentration in cementite have been experimentally revealed.Numerical experiments have revealed that the nucleation of cementite particles alloyed with chromium (chromium concentration of 3% or more occurs, mainly, by the dislocation mechanism on the concentration fluctuations of the alloying element. According to calculations, an obligatory prerequisite to start an active nucleation process of new phase in the solid solution is a local increase of the chromium concentration up to 40%.Despite the lack of physical prerequisites for the formation of chromium precipitates, this phenomenon is explained by a strong chemical affinity of chromium and carbon, causing diffusion of chromium atoms in the region of the carbon atoms clusters. The formation of carbon

  6. The Heat Resistance of Microbial Cells Represented by D Values Can be Estimated by the Transition Temperature and the Coefficient of Linear Expansion.

    Nakanishi, Koichi; Kogure, Akinori; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu; Ito, Kiyoshi

    2015-01-01

    We previously developed a method for evaluating the heat resistance of microorganisms by measuring the transition temperature at which the coefficient of linear expansion of a cell changes. Here, we performed heat resistance measurements using a scanning probe microscope with a nano thermal analysis system. The microorganisms studied included six strains of the genus Bacillus or related genera, one strain each of the thermophilic obligate anaerobic bacterial genera Thermoanaerobacter and Moorella, two strains of heat-resistant mold, two strains of non-sporulating bacteria, and one strain of yeast. Both vegetative cells and spores were evaluated. The transition temperature at which the coefficient of linear expansion due to heating changed from a positive value to a negative value correlated strongly with the heat resistance of the microorganism as estimated from the D value. The microorganisms with greater heat resistance exhibited higher transition temperatures. There was also a strong negative correlation between the coefficient of linear expansion and heat resistance in bacteria and yeast, such that microorganisms with greater heat resistance showed lower coefficients of linear expansion. These findings suggest that our method could be useful for evaluating the heat resistance of microorganisms.

  7. Manufacture of a heat-resistant alloy with modified specifications for HTGR structural applications

    Sahira, K.; Kondo, T.; Takeiri, T.

    1984-01-01

    A method of manufacturing a nuclear grade nickel-base heat-resistant alloy in application to heliumcooled reactor primary circuit components has been developed. The Hastelloy-XR alloy, a version of Hastelloy-X, was made available by combining the basic studies of the oxidation behavior of Hastelloy-X and the improvement of manufacturing techniques. In the primary and remelting steps, the choice of appropriate processes was made by performing numerical analyses of the statistical deviation of both chemical composition and the products' mechanical properties. The feasibility of making larger electroslag remelting ingots with reasonable control of macrosegregation was examined by the calculation of a molten metal pool shape during melting. The hot workability of Hastelloy-XR was confirmed to be equivalent to that of Hastelloy-X and the importance of controlling the thermal and mechanical processes more closely was stressed in obtaining a higher level of quality assurance for the nuclear applications. The possibility of enhancing the high-temperature mechanical performance of Hastelloy-XR was suggested based on the preliminary test results with the heats manufactured with controlled boron content

  8. Spatial fluxes and energy distributions of reactor fast neutrons in two types of heat resistant concretes

    Akki, T.S.; Benayad, S.A.; Megahid, R.M.

    1992-01-01

    Measurements have been carried out to study the spatial fluxes and energy distributions of reactor fast neutrons transmitted through two types of heat resistant concretes, serpentine concrete and magnetic lemonite concrete. The physical, chemical and mechanical properties of these concretes were checked by well known techniques. In addition, the effect of heating at temperatures up to 500deg C on the crystaline water content was checked by the method of differential thermal analysis. Measurements were performed using a collimated beam of reactor neutrons emitted from a 10 MW research reactor. The neutron spectra transmitted through concrete barriers of different thickness were measured by a scintillation spectrometer with NE-213 liquid organic scintillator. Discrimination against undesired pulses due to gamma-rays was achieved by a method based on pulse shape discrimination technique. The operating principle of this technique is based on the comparison of two weighted time integrals of the detector signal. The measured pulse amplitude distribution was converted to neutron energy distribution by a computational code based on double differentiation technique. The spectrometer workability and the accuracy of the unfolding technique were checked by measuring the neutron spectra of neutrons from Pu-α-Be and 252 Cf neutron sources. The obtained neutron spectra for the two concretes were used to derive the total cross sections for neutrons of different energies. (orig.)

  9. Characterization and radiation response of a heat-resistant variant of V79 cells

    Campbell, S.D.; Kruuv, J.; Lepock, J.R.

    1983-01-01

    A thermoresistant variant of the established cell line V79-S171-W1 was isolated after treatment with nitrosoguanidine and repeated heat treatments at 42.6 to 43 degrees C, and showed an enhanced ability to survive at 42.6, 43.5, and 44.5 degrees C. The rates of inactivation of the normal and heat-resistant lines differed by approximately a factor of 2 over this temperature range. This level of thermoresistance was stable for the first 80 doublings, but was lost by 120 doublings. This may have been due to a reversion to the normal V79 line since there was no continuous selection pressure and the thermoresistant variant, which was designated at HR7, had a longer average doubling time. Transient thermotolerance was induced in both the V79 and HR7 cells by a 10-min exposure to 44.5 degrees C. After 3 hr incubation at 37 degrees C, both cell lines had an identical sensitivity to further exposure to 44.5 degrees C. Thus the long-term thermoresistance of the HR7 cells may be due to a permanent induction of a low level of thermotolerance. The (ionizing) radiation survival curves and the ability to repair sublethal radiation damage were identical for the thermoresistant variant and the parent cell line

  10. The role of heat resistance in thermorestoration of hydrated bacterial spores

    Friedman, Y.S.; Grecz, N.

    1973-01-01

    This study for the first time presents evidence of the distinct role played in thermorestoration by cellular determinants such as the resistance to heat and radiation, and the ionic state of spores. In the past only radiochemical determinants associated with radical annealment have been studied in hydrated systems. The basic heat resistance of spores plays a significant role in the precipitous drop in spore survival due to 0.45 Mrad radiation plus heat above 65-75 0 C for B.cereus and 75-95 0 C for B.stearothermophilus. The effect of the spores radiation resistance was not distinct except in the frozen state and at the saturation plateau of thermorestoration where the radiation resistant B.cereus showed ca. 1 log cycle higher survival than the radiation sensitive B.stearothermophilus. When spores are chemically converted into their H + and Ca ++ ionic forms, the H + spores are distinctly more responsive than Ca ++ spores to processes of radical annealment responsible for thermorestoration in hydrated spore systems. At temperatures of extensive thermorestoration of water radicals, H + spores showed higher survival than Ca ++ spores. (F.J.)

  11. Rational thermomechanical parameters of pressing granulated heat resistant alloy-EhP741

    Garibov, G.S.; Frolov, A.A.; Ermanok, M.Z.; Kurakin, E.K.; Galkin, A.M.

    1976-01-01

    The paper deals with the development of thermomechanical parameters for the compacting of a granulated, heat-resistant, nickel-base alloy EP 741. With the flow-sheet of the technological process for the production of semi-manufactured products from granules being used as a starting point it was necessary, after compaction, to obtain a bar having optimum plastic properties and to know under what conditions these properties are to be found. On the basis of these assumptions the authors took as the optimized parameter the maximum value of the plasticity characteristic (e.g. relative to elongation of sigma) and measured it on samples cut out from a bar after compacting. The samples of granulated alloy EP 741 which were prepared from bars compacted in accordance with the plan for industrial-scale experiments were tested in factor space tsub(exp)-vsub(exp) (tsub(exp) - sample testing temperature, vsub(exp) - sample testing velocity). Using regressive analysis the authors obtained an equation describing variation of the maximum plasticity of the alloy as a function of temperature and reduction ratio. There were two repetitions of the experimental plan, at vsub(compaction) = 20 and 40mm/sec. A qualitative trend was observed in the influence of compaction velocity on the properties of the bars. The results of the final tests on extension and settling of samples cut from a compact billet showed a maximum for plastic properties at 1170-1180degC

  12. Investigating thermomechanical parameters of the EhP693VD heat resisting alloys deformation

    Garibov, G.S.; Galkin, A.M.; Ermanok, M.Z.; Trepilets, A.E.

    1975-01-01

    The purpose of the present publication consists in complex research of the deformation resistance and plastic characteristics of heat-resistant hard-to-form alloy EhP693VD at the temperatures and deformation rates peculiar for the pressing process. The test conditions are: temperature 1000 to 1200 deg C; rate of deformation 0.5, 5.0 and 25 s -1 . The curves of deformation hardening of alloy EhP693VD show that the alloy is characterized by very high values of forming resistance index Ssub(f). With the increase of the rates of deformation, the maximum of curves Ssub(f) /antiepsilon/ is shifted towards greater degrees of deformation. The increase of the temperature results in the lower deformation hardening of the alloy. The intensity of the growth of the deformation resistance with the decrease of temperature becomes higher at lower degrees of deformation. Variation of plasticity at temperatures of up to 1150 deg C correlates with the curves showing variation of the deformation resistance. At a temperature of 1200 deg C, the drop of the deformation resistance is accompanied by the intensive drop of the plastic characteristics. The planning matrices, test results and complete disperse analysis tables are given. The analysis of the obtained equations makes it possible to draw a conclusion that the rise of the test temperature and drop of the rates of deformation entail the increase of the plastic characteristics

  13. THE INFLUENCE OF THE FILLER GRAIN COMPOSITION ON THE PROPERTIES OF THE HEAT-RESISTANT BASALTIC CONCRETE

    A. M. Gadzhiev

    2017-01-01

    Full Text Available Objectives. The optimal granulometric composition of filler compound ensures the production of concrete having improved  physical and mechanical characteristics, as well as minimal binder  consumption. The properties of heat-resistant concrete largely  depend on the type and the ratio of its components. Taking this into  account, the aim of the study is to determine the optimal grain composition of heat-resistant concrete.Methods. Methods for optimising the properties of heatresistant basaltic concrete with a composite binder and  mechanochemical activation of the filler grains were used during the  course of the research.A simplex-centroid experiment design is  applied for this purpose. The composite binder was subjected to  mechanochemical activation. Samples were made by vibration-pressing from a concrete mix with a cone draught of 2 cm.Results. The grain composition of heat-resistant concrete is proved  to be the most important variable factor, regulating which the  properties of concrete can be varied. The compositions of heat- resistant basaltic concrete with activated composite binder having a  maximum application temperature of 700 ºС are developed. The  influence of the grain composition of the basaltic filler on the  properties of basaltic concrete using mathematical experiment planning methods is determined. The regression equations for the ultimate tensile strength and bending stress of basaltic concrete are  obtained for heating temperature of 700ºC.Conclusion. The granulometric composition of heat-resistant basaltic concrete based on the activated binder is optimised for basic physical and technical properties. The optimal granulometric  design of the composition of heat-resistant concrete indicates that as the coarse fraction (particles greater than 0.63 mm in the filler  composition increases, the ultimate tensile strength and bending  stress of heatresistant basaltic concrete is increased

  14. Arc-Sprayed Fe-Based Coatings from Cored Wires for Wear and Corrosion Protection in Power Engineering

    Korobov Yury

    2018-02-01

    Full Text Available High wear and corrosion of parts lead to an increase in operating costs at thermal power plants. The present paper shows a possible solution to this problem through the arc spraying of protective coatings. Cored wires of the base alloying system Fe-Cr-C were used as a feedstock. Rise of wear- and heat-resistance of the coatings was achieved by additional alloying with Al, B, Ti, and Y. The wear and heat resistance of the coatings were tested via a two-body wear test accompanied by microhardness measurement and the gravimetric method, respectively. A high-temperature corrosion test was performed at 550 °C under KCl salt deposition. The porosity and adhesion strengths of the coatings were also evaluated. The microstructure was investigated with a scanning electron microscope (SEM unit equipped with an energy dispersive X-ray (EDX microanalyzer, and the phase composition was assessed by X-ray diffractometry. The test results showed the positive influence of additional alloying with Y on the coating properties. A comparison with commercial boiler materials showed that the coatings have the same level of heat resistance as austenite steels and are an order of magnitude higher than that of pearlite and martensite-ferrite steels. The coatings can be applied to wear- and heat-resistant applications at 20–700 °C.

  15. Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718

    Choi, Hong Seok; Ko, Dae Chul; Kim, Byung Min

    2007-01-01

    Metal forming is the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading process of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked product. Die material is SKD61 and initial temperature is 300 .deg. C. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out using DEFORM software before marking the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is know that forming load was decreased according to decreasing punch velocity

  16. Extreme Heat Resistance of Food Borne Pathogens Campylobacter jejuni, Escherichia coli, and Salmonella typhimurium on Chicken Breast Fillet during Cooking

    Aarieke E.I. de Jong

    2012-01-01

    The surface temperature reached 70∘C within 30 sec and 85∘C within one minute. Extremely high decimal reduction times of 1.90, 1.97, and 2.20 min were obtained for C. jejuni, E. coli, and S. typhimurium, respectively. Chicken meat and refrigerated storage before cooking enlarged the heat resistance of the food borne pathogens. Additionally, a high challenge temperature or fast heating rate contributed to the level of heat resistance. The data were used to assess the probability of illness (campylobacteriosis due to consumption of chicken fillet as a function of cooking time. The data revealed that cooking time may be far more critical than previously assumed.

  17. Effect of oxide film of heat resistant alloy on coke formation during naphtha pyrolysis

    Shiratori, Nobuo; Hosoya, Keizo

    2002-01-01

    The coking of cracking furnace tubes has been an important subject of ethylene plants. The coke formations rate on the heat resistant alloys of 20Cr-4.5Al-0.5Y 2 O 3 covered with Al 2 O 3 oxide film and 25Cr-35Ni covered with Cr 2 O 3 oxide film during the thermal cracking of naphtha was quantitatively evaluated at temperatures ranging from 810 to 930 .deg. C. The experimental results showed that the coke formation rate on 20Cr-4.5Al-0.5Y 2 O 3 was lower than that on 25Cr-35Ni because of the difference of a catalytic activity to coke formation, especially in the case of a pre-carburized condition. Namely, the Al 2 O 3 formed on 20Cr-4.5Al-0.5Y 2 O 3 was stable even after carburization treatment and inert for catalytic coke formation, while coke formation on 25Cr-35Ni was under the control of catalytic coke formation, and carburization of 25Cr-35Ni accelerated catalytic coke formation. The stability of Al 2 O 3 and Cr 2 O 3 in a hydrocarbon with steam environment was thermodynamically calculated in 0.1mol of steam, 0.2mol of ethylene and 0.1mol of methane at 1,100 .deg. C. The simulation result shows that Al 2 O 3 is exceedingly stable while Cr 2 O 3 could be decomposed partially into chromium carbide. Therefore, it is concluded that Al 2 O 3 on 20Cr-4.5Al-0.5Y 2 O 3 is more stable than Cr 2 O 3 on 25Cr-35Ni, and 20Cr-4.5Al-0.5Y 2 O 3 is more resistant to coke formation and carburization than 25Cr-35Ni in a hydrocarbon with steam environment at high temperature

  18. Fundamental studies on electron beam welding on heat-resistant superalloys for nuclear plants, 2

    Arata, Yoshiaki; Terai, Kiyohide; Nagai, Hiroyoshi; Shimizu, Shigeki; Aota, Toshiichi.

    1978-01-01

    In this report, the correlation was discussed between the susceptibility to weld cracking in electron beam welding of heat-resistant superalloys for nuclear plants and its characteristics of hot ductility. Trans-Varestraint and Varestraint tests. Obtained conclusions may be summarized as follows, using technical symbols which are given meanings in this report. 1) Such criteria obtained in the hot ductility test are herein employed to evaluate the susceptibility to microcracking as sub(ND) T sub(H), sub(ND) T sub(C), ΔT sub(H.C) (= sub(ND) T sub(H) - sub(ND) T sub(C)) and sub(B) T sub(R) (= T sub(L) - sub(ND) T sub(C)). Both with the decrease of sub(ND) T sub(H) and sub(ND) T sub(C) and with the increase of ΔT sub(H.C) and sub(B) T sub(R), superalloys are considered to become more susceptible to microcracking. Of these criteria, ΔT sub(H.C.) and sub(B) T sub(R) correlate best with q sub(CR) which is one of the effective criteria to evaluate the susceptibility to microcracking in the electron beam welding. 2) It is recognized that ΔT sub(H.C) and sub(B) T sub(R) in hot ductility test correlate well with sub(TV) T sub(R.5%) in Trans-Varestraint test and sub(V) C sub(m.1%) in the Varestraint test. 3) sub(TV) T sub(R.5%) in the Trans-Varestraint test and sub(V) C sub(m.1%) in the Varestraint test are respectively effective to evaluate the susceptibility to microcracking. Moreover, these criteria clearly correlate with q sub(CR). (auth.)

  19. Aging of a cast 35Cr-45Ni heat resistant alloy

    Sustaita-Torres, Ireri A., E-mail: ireri.sustaita@gmail.com [Unidad Academica de Ingenieria, Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Haro-Rodriguez, Sergio, E-mail: haros907@hotmail.com [Unidad Academica de Ingenieria, Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Guerrero-Mata, Martha P., E-mail: martha.guerreromt@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Garza, Maribel de la, E-mail: maribeldelagarza@yahoo.com.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Valdes, Eduardo, E-mail: eduardo.valdes.57@gmail.com [Instituto Tecnologico de Saltillo, 25280 Saltillo (Mexico); Deschaux-Beaume, Frederic, E-mail: deschaux@iut-nimes.fr [Mechanical and Civil Engineering Laboratories, Universite de Montpellier 2, IUT Nimes, 30907 Nimes (France); and others

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer The as-cast microstructure is made of an austenitic matrix and primary carbides. Black-Right-Pointing-Pointer The carbides are of two different types: Cr- and Nb-rich. Black-Right-Pointing-Pointer The microstructure changes during aging. Black-Right-Pointing-Pointer These microstructural changes result in the degradation of mechanical properties. - Abstract: The microstructural evolution during aging and its effect on the mechanical properties of a centrifugally cast 35Cr-45Ni heat resistant alloy was studied by means of optical and electron microscopy, and by mechanical testing in samples aged in air at 750 Degree-Sign C for a period of time of up to 1000 h. The as-cast microstructure consisted of an austenitic matrix and a network of two types of primary carbides that were identified as NbC and M{sub 7}C{sub 3} by their light and dark tones when viewed in backscattered electron mode in a scanning electron microscope. Aging promoted the occurrence of different phenomena such as the transformation of primary M{sub 7}C{sub 3} to M{sub 23}C{sub 6} carbides, precipitation of secondary M{sub 23}C{sub 6} carbides and the transformation of NbC to Nb{sub 3}Ni{sub 2}Si. It was found that aging promoted an increase in Vickers microhardness of more than 50%, the increment in tensile strength of around 20% and the reduction in ductility of close to 70%.

  20. RESEARCH OF HEAT-RESISTANT CONCRETE ON THE BASIS OF BASALT FILLER FOR CONCRETING OF METAL DESIGNS

    R. M. Curbanov

    2013-01-01

    Full Text Available Expediency of use of heat-resistant concrete locates in article on the basis of a basalt filler. It is thin a ground additive promotes increase in power of internal friction between material particles. With increase in power of internal friction between particles viscosity knitting increases and as a result ryazmyagcheniye temperature under loading increases and fire resistance of a material increases

  1. Formulation of stable Bacillus subtilis AH18 against temperature fluctuation with highly heat-resistant endospores and micropore inorganic carriers.

    Chung, Soohee; Lim, Hyung Mi; Kim, Sang-Dal

    2007-08-01

    To survive the commercial market and to achieve the desired effect of beneficial organisms, the strains in microbial products must be cost-effectively formulated to remain dormant and hence survive through high and low temperatures of the environment during transportation and storage. Dormancy and stability of Bacillus subtilis AH18 was achieved by producing endospores with enhanced heat resistance and using inorganic carriers. Heat stability assays, at 90 degrees C for 1 h, showed that spores produced under a sublethal temperature of 57 degrees C was 100 times more heat-resistant than the ones produced by food depletion at the growing temperature of 37 degrees C. When these highly heat-resistant endospores were formulated with inorganic carriers of natural and synthetic zeolite or kaolin clay minerals having substantial amount of micropores, the dormancy of the endospores was maintained for 6 months at 15-25 degrees C. Meanwhile, macroporous perlite carriers with average pore diameter larger than 3.7 microm stimulated the germination of the spores and rapid proliferation of the bacteria. These results indicated that a B. subtilis AH18 product that can remain dormant and survive through environmental temperature fluctuation can be formulated by producing heat-stressed endospores and incorporating inorganic carriers with micropores in the formulation step.

  2. Determination of tungsten in high-alloy steels and heat resisting alloys by isotope dilution-spark source mass spectrometry

    Saito, Morimasa; Yamada, Kei; Okochi, Haruno; Hirose, Fumio

    1983-01-01

    Tungsten in high-alloy steels and heat-resisting alloys was determined by isotope dilution method combined with spark source mass spectrometry by using 183 W enriched tungsten. The spike solution was prepared by fusing tungsten trioxide in sodium carbonate. A high-alloy steel sample was dissolved in the mixture of sulfuric acid and phosphoric acid together with the spike solution; a sample of heat resisting alloy was similarly dissolved in the mixture of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid. The solution was evaporated to give dense white fumes. Tungsten was separated from the residue by a conventional cinchonine salt-precipitation method. The salt was ignited, and the residue was mixed with graphite powder and pressed into electrodes. The isotope 183 W and 184 W were measured. The method was applied to the determination of tungsten in JSS and NBS standard high-alloy steels and JAERI standard nickel- and NBS standard cobalt-base heat resisting alloys containing more than 0.05% tungsten. The results were obtained with satisfactory precision and accuracy. However, the results obtained for JSS standard high- speed steels containing molybdenum tended to be significantly lower than the certified values. (author)

  3. Glow discharge mass spectrometric analysis of nickel-based heat-resisting alloys

    Itoh, Shinji; Yamaguchi, Hitoshi; Kobayashi, Takeshi; Hasegawa, Ryosuke

    1996-01-01

    GD-MS analysis of nickel-based heat-resisting alloys has been performed using a VG 9000 glow discharge (GD) mass spectrometer. Concentrations of not only alloying elements (Al, Si, Ti, V, Cr, Mn, Fe, Co, Cu, Y, Nb, Mo and W) but also trace elements (B, C, Mg, P, S, Zn, Ga, As, Zr, Cd, Sn, Sb, Te, Pb and Bi) were successfully determined in disk shaped samples. The examination of spectral interference confirmed the following. The influence of manganese argide ( 55 Mn 40 Ar + ) on the ion beam intensity of 95 Mo + was negligible because manganese content of the alloys is usually less than 1 mass%. Mass spectra of 31 P + and 32 S + may be affected by the spectral interference of 62 Ni 2+ and 64 Ni 2+ , respectively, due to the matrix element. However, these ion species were sufficiently separated at the mass resolution 5000 (m/Δm, at 5% peak height) used in this study. Relative sensitivity factors (RSFs) were determined by analyzing standard reference materials: JAERI CRMs, a NIST SRM, a BS CRM, BCS CRMs and the alloys prepared in our Institute. The average RSF-values obtained for Ni=1 were 0.436 for Al, 0.826 for Si, 0.281 for Ti, 0.375 for V, 1.480 for Cr, 1.122 for Mn, 0.754 for Fe, 0.653 for Co, 3.321 for Cu, 0.303 for Y, 0.436 for Nb, 0.862 for Mo, 0.935 for Ta and 1.052 for W. The analytical accuracy (σ d ) obtained was comparable to that of FP-XRF analysis, except for chromium and iron determinations. Relative standard deviations (RSDs) of five replicate measurements were within about 2.5%, except for phosphorus (P; 0.003 mass%, RSD; 3.31%) and sulfur (S; 0.005 mass%, RSD; 3.08%). GD-MS analytical values for ODS MA6000 alloy were obtained using a RSF correction program, and the values were in good agreement with those obtained by FP-XRF and by chemical analysis (author)

  4. Design of a Nickel-Based Bond-Coat Alloy for Thermal Barrier Coatings on Copper Substrates

    Torben Fiedler

    2014-11-01

    Full Text Available To increase the lifetime of rocket combustion chambers, thermal barrier coatings (TBC may be applied on the copper chamber wall. Since standard TBC systems used in gas turbines are not suitable for rocket-engine application and fail at the interface between the substrate and bond coat, a new bond-coat material has to be designed. This bond-coat material has to be chemically compatible to the copper substrate to improve the adhesion and needs a coefficient of thermal expansion close to that of copper to reduce thermal stresses. One approach to achieve this is to modify the standard NiCrAlY alloy used in gas turbines by adding copper. In this work, the influence of copper on the microstructure of NiCrAlY-alloys is investigated with thermodynamical calculations, optical microscopy, SEM, EDX and calorimetry. Adding copper leads to the formation of a significant amount of \\(\\beta\\ and \\(\\alpha\\ Reducing the aluminum and chromium content leads furthermore to a two-phase fcc microstructure.

  5. Ion-plasma diffusion aluminide coatings for gas turbine blades (structure and properties)

    Muboyadzhyan, S.A.; Budinovskij, S.A.; Terekhova, V.V.

    2003-01-01

    A consideration is given to the ion-plasma method of heart resisting alloy diffusion coating with alloyed aluminides offering some advantages over routine techniques. Specific features of ion-plasma diffusion coatings production at the surface of heart resisting alloys using one- and multistage techniques are studied. The process of formation of coatings (Al-Si-Y, Al-Si-Ni-B, Al-Si-Cr-Y) along with coating effects on long-term heat resistance of nickel base alloys (ZhS6U, VZhL12U, ZhS26VNK) is investigated. The advantages of the new method of diffusion aluminide coatings are reported [ru

  6. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  7. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    Patond, S. B.; Chaple, S. A.; Shrirao, P. N.; Shaikh, P. I.

    2013-06-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3·2SiO2 (mullite) (Al2O3 = 60%, SiO2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  8. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    Patond, S B; Chaple, S A; Shrirao, P N; Shaikh, P I

    2013-01-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al 2 O 3 ·2SiO 2 (mullite) (Al 2 O 3 = 60%, SiO 2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  9. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Sang, Jing; Sato, Riku [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2017-08-01

    Highlights: • We modify PA6 surface using silane coupling agent layer of APTMS to link HNBR. • APTMS greatly improved heat resistance of PA6 from 153 °C up to 325 °C. • A PA6/HNBR joined body was obtained, and it exhibits high adhesion strength with cohesive failure. • Chemical structures of the adhesion interfaces of PA6/HNBR were confirmed by Nano-IR. - Abstract: A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  10. Effect of melting technique on grain size and heat resistance of the 12Kh1MF steel

    Lanskaya, K.A.; Kulikova, L.V.; Butneva, N.I.

    1978-01-01

    Investigated are the 12Kh1MF steel melted in open-hearth and arc furnaces (deoxidation by aluminium in 1.0 kg/t quantity) and then subjected to electroslag melting. The size of an austenitic grain depends on the residual contents of nitrogen and aluminium in steel. The open-hearth metal subjected to electroslag melting and containing a small quantity of nitrogen (0.006%) and aluminium (0.013%) has coarse austenitic grains and higher heat resistance compared to the steel melted in an arc furnace and also sub ected to electroslag melting. The nitride analysis of steel is carried out

  11. Thermodiffusion Mo-B-Si coating on VN-3 niobium alloy

    Kozlov, A.T.; Lazarev, Eh.M.; Monakhova, L.A.; Shestova, V.F.; Romanovich, I.V.

    1985-01-01

    Protective properties of complex Mo-B-Si-coating on niobium alloy VN-3 (4.7 mass.% Mo, 1.1 mass.% Zr, 0.1 mass.% C) have been studied. It is established, that the complex Mo-B-Si-coating ensures protection from oxidation of niobium alloys in the temperature range of 800-1200 degC for 1000-1500 hr, at 1600 degC - for 10 hr. High heat resistance of Mo-B-Si - coating at 800-1200 degC is determined by the presence of amorphous film of SiOΛ2 over the layer MoSiΛ2 and barrier boride layer on the boundary with the metal protected; decrease in the coating heat resistance at 1600 degC is related to the destruction of boride layer, decomposition of MoSiΛ2 for lower cilicides and loosening of SiOΛ2 film

  12. The influence of sporulation conditions on the spore coat protein composition of Bacillus subtilis spores.

    Wishwas R. Abhyankar; Wishwas R. Abhyankar; Kiki Kamphorst; Bhagyashree N. Swarge; Bhagyashree N. Swarge; Henk van Veen; Nicole N. van der Wel; Stanley Brul; Chris G. de Koster; Leo J. de Koning

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for t...

  13. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores

    Abhyankar, Wishwas R.; Kamphorst, Kiki; Swarge, Bhagyashree N.; van Veen, Henk; van der Wel, Nicole N.; Brul, Stanley; de Koster, Chris G.; de Koning, Leo J.

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for t...

  14. High-Level Heat Resistance of Spores of Bacillus amyloliquefaciens and Bacillus licheniformis Results from the Presence of a spoVA Operon in a Tn1546 Transposon

    Berendsen, Erwin M.; Koning, Rosella A.; Boekhorst, Jos; de Jong, Anne; Kuipers, Oscar P.; Wells-Bennik, Marjon H. J.

    2016-01-01

    Bacterial endospore formers can produce spores that are resistant to many food processing conditions, including heat. Some spores may survive heating processes aimed at production of commercially sterile foods. Recently, it was shown that a spoVA operon, designated spoVA2mob, present on a Tn1546 transposon in Bacillus subtilis, leads to profoundly increased wet heat resistance of B. subtilis spores. Such Tn1546 transposon elements including the spoVA2mob operon were also found in several strains of Bacillus amyloliquefaciens and Bacillus licheniformis, and these strains were shown to produce spores with significantly higher resistances to wet heat than their counterparts lacking this transposon. In this study, the locations and compositions of Tn1546 transposons encompassing the spoVA2mob operons in B. amyloliquefaciens and B. licheniformis were analyzed. Introduction of these spoVA2mob operons into B. subtilis 168 (producing spores that are not highly heat resistant) rendered mutant 168 strains that produced high-level heat resistant spores, demonstrating that these elements in B. amyloliquefaciens and B. licheniformis are responsible for high level heat resistance of spores. Assessment of growth of the nine strains of each species between 5.2°C and 57.7°C showed some differences between strains, especially at lower temperatures, but all strains were able to grow at 57.7°C. Strains of B. amyloliquefaciens and B. licheniformis that contain the Tn1546 elements (and produce high-level heat resistant spores) grew at temperatures similar to those of their Tn1546-negative counterparts that produce low-level heat resistant spores. The findings presented in this study allow for detection of B. amyloliquefaciens and B. licheniformis strains that produce highly heat resistant spores in the food chain. PMID:27994575

  15. Mathematical simulation and optimization of cutting mode in turning of workpieces made of nickel-based heat-resistant alloy

    Bogoljubova, M. N.; Afonasov, A. I.; Kozlov, B. N.; Shavdurov, D. E.

    2018-05-01

    A predictive simulation technique of optimal cutting modes in the turning of workpieces made of nickel-based heat-resistant alloys, different from the well-known ones, is proposed. The impact of various factors on the cutting process with the purpose of determining optimal parameters of machining in concordance with certain effectiveness criteria is analyzed in the paper. A mathematical model of optimization, algorithms and computer programmes, visual graphical forms reflecting dependences of the effectiveness criteria – productivity, net cost, and tool life on parameters of the technological process - have been worked out. A nonlinear model for multidimensional functions, “solution of the equation with multiple unknowns”, “a coordinate descent method” and heuristic algorithms are accepted to solve the problem of optimization of cutting mode parameters. Research shows that in machining of workpieces made from heat-resistant alloy AISI N07263, the highest possible productivity will be achieved with the following parameters: cutting speed v = 22.1 m/min., feed rate s=0.26 mm/rev; tool life T = 18 min.; net cost – 2.45 per hour.

  16. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Sang, Jing; Sato, Riku; Aisawa, Sumio; Hirahara, Hidetoshi; Mori, Kunio

    2017-08-01

    A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  17. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  18. Increased heat resistance in mycelia from wood fungi prevalent in forests characterized by fire: a possible adaptation to forest fire.

    Carlsson, Fredrik; Edman, Mattias; Holm, Svante; Eriksson, Anna-Maria; Jonsson, Bengt Gunnar

    2012-10-01

    Forest fires have been the major stand-replacing/modifying disturbance in boreal forests. To adapt to fire disturbance, different strategies have evolved. This study focuses on wood fungi, and a specific adaptation to forest fire: increased heat resistance in their mycelia. Fifteen species of wood fungi were selected and a priori sorted in two groups according to their prevalence in fire-affected environments. The fungi were cultivated on fresh wood and exposed to 100, 140, 180, 220 °C for 5, 10, 15, 20 and 25 min. under laboratory conditions. A clear difference was found among the two groups. Species prevalent in fire-affected habitats had a much higher survival rate over all combinations of time and temperature compared to species associated with other environments. Thus, the results indicate that fire adaptation in terms of increased heat resistance in mycelia occurs in some species of wood fungi. Such adaptation will influence the ecology and population dynamics of wood fungi, as well as having implications for best practices during restoration fires. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Resistencia a la corrosión a alta temperatura de recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por APS

    José Luis Tristancho-Reyes

    2014-12-01

    Full Text Available La corrosión a alta temperatura de las tuberías utilizadas en equipos generadores de vapor (calderas ha sido reconocida como un grave problema que trae consigo el adelgazamiento de éstas y, por consiguiente, la falla de los equipos. En la última década se han incrementado las investigaciones que involucran recubrimientos protectores que ayudan de alguna manera a prolongar la vida útil de estos equipos. Esta investigación determinó el comportamiento de los recubrimientos NiCrAlY y NiCrFeNbMoTiAl depositados por proyección térmica asistida por plasma (APS sobre la aleación SA213 – T22 (2¼Cr – 1Mo, en un ambiente corrosivo de 80%V2O5–20%K2SO4 a 800°C. Los valores de la cinética de corrosión fueron determinados mediante resistencia a la polarización lineal (RPL y espectroscopia de impedancia electroquímica (EIE. Los resultados obtenidos muestran una menor cinética de corrosión en el recubrimiento NiCrFeNbMoTiAl que la presentada por el recubrimiento NiCrAlY, corroborado por Microscopia Electrónica de Barrido (MEB.

  20. Low temperature oxidation of niobium alloy with silicon-aluminium coating

    Lazarev, Eh.M.; Sapozhnikova, L.V.; Shabanova, M.E.; Pod'yachev, V.N.; Kornilova, Z.I.

    1987-01-01

    Using the gravimetry methods heat resistance of niobium-titanium-aluminium alloy in the air and at 700 deg C in the initial state and when it is protected by silicide-aluminium coatings (with variable content of aluminium) is investigated. Using X-ray diffraction and micro X-ray diffraction analyses, mechanisms of the alloy oxidation and the coating protective effect are studied. The role of aluminium in the formation of coatings is analyzed and according to bend tests the plasticity of the coatings is evaluated

  1. Forming of protective nanostructure coatings on metals and glasses and their properties investigation

    Deshkovskaya, A.; Lynkov, L.; Nagibarov, A.; Glybin, V.; Richter, E.; Pham, M.

    2013-01-01

    Transparent heat-resistant coatings of 10-30 nm thickness described by (ZrO 2 ) x •(Y 2 O 3 ) y composition are formed on the surface of metals and glasses by thermolysis technique. Produced coatings possess high adhesive strength, high corrosive and abrasive resistance. Nanocrystalline formations are revealed on samples surface, with quantity of these formations depending on basic solution concentration, formed layers number and thermal treatment mode. Ion-beam modification of obtained coatings under mixing mode enables said properties enhancing owing to zirconium oxiboride formation at substrate-coating interface as a result of ion-beam synthesis. (authors)

  2. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  3. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  4. Occurrence, distribution and contamination levels of heat-resistant moulds throughout the processing of pasteurized high-acid fruit products.

    Santos, Juliana Lane Paixão Dos; Samapundo, Simbarashe; Biyikli, Ayse; Van Impe, Jan; Akkermans, Simen; Höfte, Monica; Abatih, Emmanuel Nji; Sant'Ana, Anderson S; Devlieghere, Frank

    2018-05-19

    Heat-resistant moulds (HRMs) are well known for their ability to survive pasteurization and spoil high-acid food products, which is of great concern for processors of fruit-based products worldwide. Whilst the majority of the studies on HRMs over the last decades have addressed their inactivation, few data are currently available regarding their contamination levels in fruit and fruit-based products. Thus, this study aimed to quantify and identify heat-resistant fungal ascospores from samples collected throughout the processing of pasteurized high-acid fruit products. In addition, an assessment on the effect of processing on the contamination levels of HRMs in these products was carried out. A total of 332 samples from 111 batches were analyzed from three processing plants (=three processing lines): strawberry puree (n = 88, Belgium), concentrated orange juice (n = 90, Brazil) and apple puree (n = 154, the Netherlands). HRMs were detected in 96.4% (107/111) of the batches and 59.3% (197/332) of the analyzed samples. HRMs were present in 90.9% of the samples from the strawberry puree processing line (1-215 ascospores/100 g), 46.7% of the samples from the orange juice processing line (1-200 ascospores/100 g) and 48.7% of samples from the apple puree processing line (1-84 ascospores/100 g). Despite the high occurrence, the majority (76.8%, 255/332) of the samples were either not contaminated or presented low levels of HRMs (processing had no statistically significant effect on the levels of HRMs (p > 0.05). On the contrary, a significant reduction (p levels was observed during the processing of apple puree. Twelve species were identified belonging to four genera - Byssochlamys, Aspergillus with Neosartorya-type ascospores, Talaromyces and Rasamsonia. N. fumigata (23.6%), N. fischeri (19.1%) and B. nivea (5.5%) were the predominant species in pasteurized products. The quantitative data (contamination levels of HRMs) were fitted to exponential

  5. Measurement of residual stress in plasma-sprayed composite coatings with graded and uniform compositions

    Kesler, O.; Suresh, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Matejicek, J.; Sampath, S.

    1999-10-01

    Residual stresses in plasma sprayed composite coatings were studied experimentally by both curvature and neutron diffraction measurements. Graded and uniform composite coatings, consisting of nickel + alumina and NiCrAlY + yttria-stabilized zirconia, were investigated. This paper briefly summarizes our recent work dealing with the effects of coating thickness, composition, and material properties on the evolution of residual stresses in coatings. Analysis of the results allowed in some cases the separation of the quenching stress and thermal stress contributions to the final residual stress, as well as the determination of the through-thickness stress profile from measurements of different thickness specimens. In the ceramic-metal composites, it was found that the thermal mismatch stress plays a dominant role in the ceramic phase, whereas the stress in the metallic phase is mostly dominated by quenching stress. The residual stress measurement methods employed here were found to be complementary, in that each can provide unique information about the stress state. Through-thickness stress profiles in graded coatings were determined with high spatial resolution by the curvature method, and determination of the stress in each separate phase of a composite was made by neutron diffraction. (orig.) 14 refs.

  6. Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy

    Wang, Wei; Zhang, Jinghuai; Li, Guoqiang; Feng, Yan; Su, Minliang; Wu, Ruizhi; Zhang, Zhongwu [Harbin Engineering Univ. (China). Key Laboratory of Superlight Material and Surface Technology; Jiao, Yufeng [Jiamusi Univ. (China). College of Materials Science and Engineering

    2017-05-15

    The thermal stability of Al-RE (rare earth) intermetallic phases with individual RE for heat-resistant high-pressure die-casting Mg-Al-RE alloys is investigated. The results of this study show that the main strengthening phase of Mg-4Al-4Ce alloy is Al{sub 11}Ce{sub 3}, whose content is about 5 wt.% according to quantitative X-ray diffraction phase analysis. The Al{sub 11}Ce{sub 3} phase appears to have high thermal stability at 200 C and 300 C, while phase morphology change with no phase structure transition could occur for Al{sub 11}Ce{sub 3} when the temperature reaches 400 C. Furthermore, besides the kinds of rare earths and temperature, stress is also an influencing factor in the microstructural stability of Mg-4Al-4Ce alloy.

  7. Effect of yttrium on the oxide scale adherence of pre-oxidized silicon-containing heat-resistant alloy

    Yan Jingbo; Gao Yimin; Shen Yudi; Yang Fang; Yi Dawei; Ye Zhaozhong; Liang Long; Du Yingqian

    2011-01-01

    Highlights: → AE experiment shows yttrium has a beneficial effect on the pre-oxidized HP40 alloy. → Yttrium facilitates the formation of internal oxide after 10 h of oxidation. → Internal oxide changes the rupture behaviour of the oxide scale. → Twins form in the internal oxide and improve the binding strength of the scale. - Abstract: This paper investigates the effect of the rare earth element yttrium on the rupture behaviour of the oxide scale on the silicon-containing heat-resistant alloy during cooling. After 10 h of oxidation, yttrium is found to facilitate the formation of internal oxides (silica) at the scale-matrix interface. Due to the twinning observed by scanning transmission electron microscopy (STEM) in silica, the critical strain value for the scale failure can be dramatically improved, and the formation of cracks at the scale-matrix interface is inhibited.

  8. High temperature crevice corrosion of heat-resistant Ni-base alloy in the simulated HTR helium

    Kiuchi, Kiyoshi; Kondo, Tatsuo

    1980-03-01

    Interaction between a Ni-base heat-resistant alloy and the simulated HTR primary coolant environment was examined with emphasis on the reactions inside narrow crevice gaps. A new method using Mo crevice cells was developed to obtain reproducible quantitative results. The test environment was characterized by the low oxidizing species as trace gaseous impurities. Series of sequential phenomena were observed: i.e. the preferential consumptions of oxidizing species in the outer part of the crevice, followed by the lack of oxide film and the resultant extensive carburization further inside the crevice. A model on the possible phenomena occurring at tips of the cracks formed during creep or fatigue tests and low flow rate portions in the reactor primary circuit as well. The feasibility of the interpretation was checked referring to the existing numerical formula and using the experimental results obtained parameters. Calculations reproduced penetration curves of the Cr- oxidation with reasonable accuracy. (author)

  9. Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores.

    Esteban, Maria-Dolores; Conesa, Raquel; Huertas, Juan-Pablo; Palop, Alfredo

    2015-06-01

    Members of the genus Bacillus include important food-borne pathogen and spoilage microorganisms for food industry. Essential oils are natural products extracted from herbs and spices, which can be used as natural preservatives in many foods because of their antibacterial, antifungal, antioxidant and anti-carcinogenic properties. The aim of this research was to explore the effect of the addition of different concentrations of thymol to the heating and recovery media on the thermal resistance of spores of Bacillus cereus, Bacillus licheniformis and Bacillus subtilis at different temperatures. While the heat resistance was hardly reduced when thymol was present in the heating medium, the effect in the recovery medium was greater, reducing the D100 °C values down to one third for B. subtilis and B. cereus when 0.5 mM thymol was added. This effect was dose dependent and was also observed at other heating temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. First results of saturation curve measurements of heat-resistant steel using GEANT4 and MCNP5 codes

    Hoang, Duc-Tam; Tran, Thien-Thanh; Le, Bao-Tran; Vo, Hoang-Nguyen; Chau, Van-Tao; Tran, Kim-Tuyet; Huynh, Dinh-Chuong

    2015-01-01

    A gamma backscattering technique is applied to calculate the saturation curve and the effective mass attenuation coefficient of material. A NaI(Tl) detector collimated by collimator of large diameter is modeled by Monte Carlo technique using both MCNP5 and GEANT4 codes. The result shows a good agreement in response function of the scattering spectra for the two codes. Based on such spectra, the saturation curve of heat-resistant steel is determined. The results represent a strong confirmation that it is appropriate to use the detector collimator of large diameter to obtain the scattering spectra and this work is also the basis of experimental set-up for determining the thickness of material. (author)

  11. Heat resistance and local structure of FeCl2-absorbed crosslinked poly(γ-glutamic acid)

    Nishida, T.; Kamezawa, H.; Hara, T.; Matsumoto, Y.

    2001-01-01

    Fiber of Japanese food natto (Bacillus subtilis) is known to be superabsorbent poly(γ-glutamic acid) (PGA). NaCl particles precipitate in FeCl 2 -absorbed crosslinked PGA when heated at crystallization temperature of 320 deg C for 10 to 60 min. After heat treatment the Moessbauer spectrum of FeCl 2 -crosslinked PGA consists of a quadrupole doublet due to FeCl 2 x 2H 2 O. The Moessbauer spectrum of anhydrous FeCl 2 reagent heated under the same condition shows an intense sextet due to α-Fe 2 O 3 . These results prove that the superabsorbent polymer, crosslinked PGA, has higher heat resistance. (author)

  12. Microstructural characterization of thermal barrier coating on Inconel 617 after high temperature oxidation

    Mohammadreza Daroonparvar

    2013-06-01

    Full Text Available A turbine blade was protected against high temperature corrosion and oxidation by thermal barrier coatings (TBCsusing atmospheric plasma spraying technique (APS on a Ni-based superalloy (Inconel 617. The coatings (NiCr6AlY/ YSZ and NiCr10AlY/YSZ consist of laminar structure with substantial interconnected porosity transferred oxygen from Yittria stabilized Zirconia (YSZ layer toward the bond coat (NiCrAlY. Hence, a thermally grown oxide layer (TGO was formed on the metallic bond coat and internal oxidation of the bond coat occurred during oxidation. The TBC systems were oxidized in a normal electrically heated furnace at 1150 °C for 18, 22, 26, 32 and 40h.Microstructural characterization of coatings demonstrated that the growth of the TGO layer on the nickel alloy with 6wt. % Al is more rapid than TGO with 10wt. % Al. In addition, many micro-cracks were observed at the interface of NiCr6AlY/YSZ. X-ray diffraction analysis (XRD showed the existence of detrimental oxides such as NiCr2O4, NiCrO3 and NiCrO4 in the bond coat containing 6wt. % Al, accompanied by rapid volume expansion causing the destruction of TBC. In contrast, in the bond coat with 10wt. % Al, NiO, Al2O3and Cr2O3 oxides were formed while very low volume expansion occurred. The oxygen could not penetrate into the TGO layer of bond coat with 10 wt. % Al during high temperature oxidation and the detrimental oxides were not extensively formed within the bond coat as more oxygen was needed. The YSZ with higher Al content showed higher oxidation resistance.

  13. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors

    Shi, Long [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xin, Li, E-mail: xli@imr.ac.cn [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Xinyue; Wang, Xiaolan; Wei, Hua; Zhu, Shenglong; Wang, Fuhui [Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-11-15

    Oxidation and interdiffusion behaviors of Ni-based single crystal superalloy DD98M with nominal compositions Ni–5.0Co–6.0Cr–6.3Al–6.0W–2.0Mo–6.0Ta–1.0Ti (in wt.%) and two types of MCrAlY coatings at 1000 °C and 1050 °C were investigated. Complex oxides formed on the surface of DD98M alloy when oxidized at 1000 °C and 1050 °C, which stratified, cracked and spalled. The faceted-like AlN and the particle-like and strip-like TiN formed in the alloy. The application of the NiCrAlY and NiCoCrAlYHfSi coatings greatly improved the oxidation resistance of DD98M alloy. After 500 h oxidation, α-Al{sub 2}O{sub 3} was still the dominate phase in the oxide scales formed on the coated specimens. The adhesion of the oxide scale on the NiCoCrAlYHfSi coating was much better than that on the NiCrAlY coating. Interdiffusion occurred between the coatings and the substrate, which led to the formation of the IDZ and SRZ. The IDZ of the NiCrAlY coated specimen was composed of γ phase and Al- and Ta-rich γ′ phase. The γ′ phase in the IDZ accommodated most of the inward diffusing aluminum, so the SRZ formation was suppressed when oxidized at 1050 °C. However the formation of SRZ with μ-TCP still occurred when oxidized at 1000 °C probably due to the low solubility and slow diffusion rate of the alloying elements at lower temperature. The IDZ of the NiCoCrAlYHfSi coated specimen was a single γ phase. A large amount of μ-TCP precipitated in the SRZ of the NiCoCrAlYHfSi coated specimen when oxidized at 1000 °C and 1050 °C. It can be concluded coating composition has a significant effect on the development of the IDZ and SRZ. Thermal exposure temperature also has influences on the formation of the SRZ. The mechanism of SRZ formation and TCP precipitation are discussed. - Graphical abstract: The TEM micrograph of the IDZ and SRZ of the NiCoCrAlYHfSi-coated specimen oxidized at 1050 °C for 100 h and the respective diffraction patterns of the needle-like and the

  14. A low dose pre-irradiation induces radio- and heat-resistance via HDM2 and NO radicals, and is associated with p53 functioning

    Takahashi, A.; Ohnishi, T.

    2009-04-01

    The aim of this work was to clarify the effect of low dose pre-irradiation on radio- and heat-sensitivity. Wild-type (wt) p53 and mutated (m) p53 cells derived from the human lung cancer H1299 cell line were used. The parental H1299 cell line is p53-null. Cellular sensitivities were determined with a colony-forming assay. When wtp53 cells were exposed to a low dose X-irradiation, induction of radio- and heat-resistance was observed only in the absence of RITA (an inhibitor of p53-HDM2 interactions), aminoguanidine (an iNOS inhibitor) and c-PTIO (an NO radical scavenger). In contrast, the induced radio- and heat-resistance was not observed under similar conditions in mp53 cells. Moreover, heat-resistance as well as radio-resistance developed when wtp53 cells were treated with ISDN (an NO generating agent) alone. These findings suggest that NO radicals are an initiator of radio- and heat-resistance, and function through the activation of HDM2 and the depression of p53 accumulation.

  15. TECHNOLOGICAL PECULIARITIES OF THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE

    V. V. Okovity

    2016-01-01

    Full Text Available A technology for formation of thermal barrier coatings (TBC based on zirconium dioxide has been developed in the paper. The paper investigates structures of phase composition and thermal stability of such developed coatings. Investigation results pertaining to formation of an oxide system ZrO2 – Y2O3, while using plasma spraying and subsequent high-energy processing, which allows to increase resistance of a thermal barrier coating to thermal cycling heat resistance of the coating at temperature of 1100 °C. This leads to longer protection of bottom layer against high-temperature exposure. The methodology is based on complex metallographic, X-ray diffraction and electron microscopy investigations of structural elements in composite plasma coatings of the ZrO2 – Y2O system. Resistance of plasma coatings (Мe – Cr – Al – Y/ZrO2 – Y2O3-type, used as TBC to protect gas turbine engine blades under conditions of frequent thermal cyclings is limited by cleavage of an outer ceramic layer. Structural and electron microprobe investigations have shown that as a result of thermal cycling an outer atmosphere due to porous structure of the ceramic coating layer, migrates to the surface of lower metal coating, causing its oxidation. As a result, the metal-ceramic Al2O3 layer is formed at a metal-ceramic interface and it changes a stress state of the coating that causes a reduction of protective properties. Thus, a high heat resistance of thermal barrier coatings depends on processes occurring at the interface between metal and ceramic coating layers. A laser impact on samples with TBC leads to changes in the structure of the oxide layer of ZrO2 – Y2O3. In this case its initial surface characterized by considerable relief is significantly flattened due to processing and the coating is fractured and it is separated in fragments. As the oxide coating has low thermal conductivity, and the time of laser exposure is about 10–3 sec, a heat flux

  16. Study of the structure and development of the set of reference materials of composition and structure of heat resisting nickel and intermetallic alloys

    E. B. Chabina

    2016-01-01

    Full Text Available Relevance of research: There are two sizes (several microns and nanodimensional of strengthening j'-phase in single-crystal heat resisting nickel and intermetallic alloys, used for making blades of modern gas turbine engines (GTD. For in-depth study of structural and phase condition of such alloys not only qualitative description of created structure is necessary, but quantitative analysis of alloy components geometrical characteristics. Purpose of the work: Development of reference material sets of heat resisting nickel and intermetallic alloy composition and structure. Research methods: To address the measurement problem of control of structural and geometrical characteristics of single-crystal heat resisting and intermetallic alloys by analytical microscopy and X-ray diffraction analysis the research was carried out using certified measurement techniques on facilities, entered in the Register of Measurement Means of the Russian Federation. The research was carried out on microsections, foils and plates, cut in the plane {100}. Results: It is established that key parameters, defining the properties of these alloys are particle size of strengthening j' -phase, the layer thickness of j-phase between them and parameters of phases lattice. Metrological requirements for reference materials of composition and structure of heat resisting nickel and intermetallic alloys are formulated. The necessary and sufficient reference material set providing the possibility to determine the composition and structure parameters of single-crystal heat resisting nickel and intermetallic alloys is defined. The developed RM sets are certified as in-plant reference materials. Conclusion: The reference materials can be used for graduation of spectral equipment when conducting element analysis of specified class alloys; for calibration of means of measuring alloy structure parameters; for measurement of alloys phases lattice parameters; for structure reference pictures

  17. Hot corrosion behavior of nanostructured Gd2O3 doped YSZ thermal barrier coating in presence of Na2SO4 + V2O5 molten salts

    Yixiong Wang

    2017-08-01

    Full Text Available Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd2O3−4.5 mol% Y2O3-ZrO2 (2GdYSZ topcoat using air plasma spraying (APS. Hot corrosion behavior of the as-sprayed thermal barrier coatings (TBCs were investigated in the presence of 50 wt% Na2SO4 + 50 wt% V2O5 as the corrosive molten salt at 900 °C for 100 h. The analysis results indicate that Gd doped YVO4 and m-ZrO2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers (Y2O3, Gd2O3 of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.

  18. Evaluation of several corrosion protective coating systems on aluminum

    Higgins, R. H.

    1981-01-01

    A study of several protective coating systems for use on aluminum in seawater/seacoast environments was conducted to review the developments made on protective coatings since early in the Space Shuttle program and to perform comparative studies on these coatings to determine their effectiveness for providing corrosion protection during exposure to seawater/seacoast environments. Panels of 2219-T87 aluminum were coated with 21 different systems and exposed to a 5 percent salt spray for 4000 hr. Application properties, adhesion measurements, heat resistance and corrosion protection were evaluated. For comparative studies, the presently specified Bostik epoxy system used on the SRB structures was included. Results of these tests indicate four systems with outstanding performance and four additional systems with protection almost as good. These systems are based on a chromated pretreatment, a chromate epoxy primer, and a polyurethane topcoat. Consideration for one of these systems should be included for those applications where superior corrosion protection for aluminum surfaces is required.

  19. Fabrication of samarium strontium aluminate ceramic and deposition of thermal barrier coatings by air plasma spray process

    Baskaran T

    2018-01-01

    Full Text Available Thermal barrier coatings (TBC with the metallic NiCrAlY bond coat are often used in many aircraft engines to protect superalloy components from high-temperature corrosion thereby to improve the life of gas turbine components. The search for new TBC material has been intensified in recent years due to lack of thermo-physical properties of conventionally used Yttria stabilized Zirconia (YSZ TBCs. Recently, the rare earth containing Samarium Strontium Aluminate (SSA based ceramic was proposed as a new TBC material due to its matching thermo-physical properties with the substrate. The present work focused on the synthesis of SSA ceramics for TBCs application and its coatings development on Ni-based superalloy Inconel 718 substrate by air plasma spray process. The X-ray photoelectron spectroscopy (XPS result confirmed the formation of single phase SSA ceramic after synthesis. The surface morphology of SSA TBCs is mainly composed of melted splats, semi and un-melted particles. The cross-sectional SEM micrographs did not show any spallation at the interface which indicated good mechanical interlocking between the bond coat and ceramic top coat. The Young’s modulus and hardness of SSA TBCs were found to be 80 and 6.1 GPa, respectively. The load-depth curve of SSA TBC showed good elastic recovery about 47 %.

  20. Study of temperature effect on the physical properties of ilmenite-serpentine heat resistant concrete radiation shields

    Kany, A.M.I.; EL-Fouly, M.M.; EL-Gohary, M.I.; Makatious, A.S.; Kamal, S.M.

    1990-01-01

    A series of experimental studies have been carried out to determine the change in unit weigh, compressive strength, water content and neutron macroscopic cross section of a new type of concrete shields made from egyptian ilmenite and serpentine ores when heated for long period at temperatures up to 600 degree C. Results show that the unit weight of the cure concrete has a value of 2.98 Ton/M 3 and decreases with increasing temperature, while the compressive strength reaches a maximum value of 19 Ton/M 2 at 100 degree C. The differential thermal analysis (D.T.A.) of this concrete shows three endothermic peaks at 100 degree C, 48 degree C and 740 degree C. Also, the thermogravimetry analysis (T.G.A.) shows that the cure concrete retains about 11% water content of the total sample weigh and still retains 4.5% of its initial value when heated for long period at 600 degree C. Results also show that the neutron macroscopic cross section (for neutrons of energies < 1 MeV) of the ilmenite-serpentine heat resistant concrete decreases to 18.6% of its initial value after heating to 600 degree C

  1. Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L.

    Miroshnichenko N.N.

    2011-05-01

    Full Text Available The influence of treatment of millet (Panicum miliaceum L. seeds with the solutions of salicylic and succinic acids on the heat resistance of plantlets and activity of antioxidant enzymes – superoxide dismutase (SOD, catalase and peroxidase – in them have been investigated. In the micro-field experiment the influence of these acids on the millet yield was estimated. The action of salicylic (10 μM and succinic (1 mM acids caused the increase of plantlets resistance to the damaging heating that expressed in the rise of relative quantity of survived plantlets in 5 days after heating at the temperature of 47°С and in the reduced content of lipid peroxidation product malonic dialdehyde during the poststress period. The increase of activity of SOD, catalase and peroxidase took place in millet plantlets under the influence of salicylic and succinic acids. The increase of productivity of millet grain under the action of salicylic and succinic acids on 13,3-52,0 and 6,4-38,8% respectively depending on weather conditions in the field experiments was noted.

  2. Influence of cerium, zirconium and boron on the oxidation resistance of heat-resistant steels in air

    Gala, A.; Schendler, W.

    1981-01-01

    Isothermal and cyclic oxidation experiments were carried out in air to investigate the influence of the minor elements such as Cerium, Zirkonium and Boron on the oxidation resistance of heat resistant ferritic and austenitic steels like X10Cr18, X10CrAl18 and X15CrNiSi2012. In the case of cyclicexperiments samples were exposed at constant temperatures for 100 h and then cooled to R.T. This cycle was repeated 10 times. The corrosion was determined as weight change and was continuously measured by a thermo-balance. The distribution of the alloying elements on the phase boundary scale/steel was examined by Scanning-Electron-Microscope. Addition of small amounts of Ce (0.3 wt-% max.) could reduce the oxidation rate in the case of isothermal and cyclic conditions. Zirkonium concentrations below 0.1 wt-% could have a beneficial effect, but at higher concentrations the oxidation rate increases with increasing amounts of Zr. Small Boron concentrations of 0.02 wt-% lead to catastrophic oxidation at temperatures above 1000 0 C. (orig.) [de

  3. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel

    Xu, Lin-qing; Zhang, Dan-tian; Liu, Yong-chang; Ning, Bao-qun; Qiao, Zhi-xia; Yan, Ze-sheng; Li, Hui-jun

    2014-05-01

    Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facilitates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the formation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro-structural evolution and hardness variation, the process of tempering can be separated into three steps.

  4. Corrosion of nickel-base heat resistant alloys in simulated VHTR coolant helium at very high temperatures

    Shindo, Masami; Kondo, Tatsuo

    1976-01-01

    A comparative evaluation was made on three commercial nickel-base heat resistant alloys exposed to helium-base atmosphere at 1000 0 C, which contained several impurities in simulating the helium cooled very high temperature nuclear reactor (VHTR) environment. The choice of alloys was made so that the effect of elements commonly found in commercial alloys were typically examined. The corrosion in helium at 1000 0 C was characterized by the sharp selection of thermodynamically unstable elements in the oxidizing process and the resultant intergranular penetration and internal oxidation. Ni-Cr-Mo-W type solution hardened alloy such as Hastelloy-X showed comparatively good resistance. The alloy containing Al and Ti such as Inconel-617 suffered adverse effect in contrast to its good resistance to air oxidation. The alloy nominally composed only of noble elements, Ni, Fe and Mo, such as Hastelloy-B showed least apparent corrosion, while suffered internal oxidation due to small amount of active impurities commonly existing in commercial heats. The results were discussed in terms of selection and improvement of alloys for uses in VHTR and the similar systems. (auth.)

  5. Low-cycle fatigue of heat-resistant alloys in high-temperature gas-cooled reactor helium

    Tsuji, H.; Kondo, T.

    1984-01-01

    Strain controlled low-cycle fatigue tests were conducted on four nickel-base heat-resistant alloys at 900 0 C in simulated high-temperature gas-cooled reactor (HTGR) environments and high vacuums of about 10 -6 Pa. The observed behaviors of the materials were different and divided into two groups when tests were made in simulated HTGR helium, while all materials behaved similarly in vacuums. The materials that have relatively high ductility and compatibility with impure helium at test temperature showed considerable resistance to the fatigue damage in impure helium. On the other hand, the alloys qualified with their high creep strength were seen to suffer from the adverse effects of impure helium and the trend of intergranular cracking as well. The results were analyzed in terms of their susceptibility to the environmentenhanced fatigue damage by examining the ratios of the performance in impure helium to in vacuum. The materials that showed rather unsatisfactory resistance were considered to be characterized by their limited ductility partly due to their coarse grain structure and susceptibility to intergranular oxidation. Moderate carburization was commonly noted in all materials, particularly at the cracked portions, indicating that carbon intrusion had occurred during the crack growth stage

  6. Effect of test temperature on tensile and fatigue properties of nickel-base heat-resistant alloys

    Tsuji, Hirokazu; Nakajima, Hajime

    1987-01-01

    A series of tensile and strain controlled low-cycle fatigue tests were conducted at temperatures ranging from RT to 900 0 C on a nickel-base heat-resistant alloy, Hastelloy XR-II, which is one of the candidate alloys for applications in the process heating high-temperature gas-cooled reactor (HTGR). Fatigue tests at room temperature and all tensile tests were conducted in air, while fatigue tests at and above 400 0 C were conducted in the simulated HTGR helium environment. In those tests the effect of test temperature on tensile and fatigue properties was investigated. The ductility minimum point was observed near 600 0 C, while tensile and fatigue strengths decreased with increasing test temperature. The fatigue lives estimated with the method proposed by Manson were compatible with the experimental results under the given conditions. For the specimens fatigued at and above 700 0 C, the percentage of the intergranular fracture mode gradually increased with increasing test temperature. (orig.)

  7. Magnetic evaluation of the external surface in cast heat-resistant steel tubes with different aging states

    Arenas, Mónica P.; Silveira, Rosa M.; Pacheco, Clara J.; Bruno, Antonio C.; Araujo, Jefferson F. D. F.; Eckstein, Carlos B.; Nogueira, Laudemiro; de Almeida, Luiz H.; Rebello, João M. A.; Pereira, Gabriela R.

    2018-06-01

    Heat-resistant austenitic stainless steels have become the principal alloys for use in steam reformer tubes in the petrochemical industry due to its mechanical properties. These tubes are typically exposed to severe operational conditions leading to microstructural transformations such as the aging phenomenon. The combination of high temperatures and moderate stresses causes creep damages, being necessary to monitor its structural condition by non-destructive techniques. The tube external wall is also subjected to oxidizing atmospheres, favoring the formation of an external surface, composed by an oxide scale and a chromium depleted zone. This external surface is usually not taken into account in the tube evaluation, which can lead to erroneous estimations of the service life of these components. In order to observe the magnetic influence of this layer, two samples, exposed to different operational temperatures, were characterized by non-destructive eddy current testing (ECT), scanning DC-susceptometer and magnetic force microscopy (MFM). It was found that the external surface thickness influences directly in the magnetic response of the samples.

  8. Glucono-delta-lactone and citric acid as acidulants for lowering the heat resistance of Clostridium sporogenes PA 3679 in HTST working conditions.

    Silla Santos, M H; Torres Zarzo, J

    1995-04-01

    The heat resistance of Clostridium sporogenes PA 3679 spores has been studied to establish the influence of acidification with glucono-delta-lactone (GDL) and citric acid on the thermal resistance parameters (DT and z) of this microorganism and to compare their effect with phosphate buffer and natural asparagus as reference substrates. A reduction in DT values was observed in asparagus purée as the acidification level increased with both acidulants although this effect was more evident at the lower treatment temperatures studied (121-127 degrees C). Citric acid was more effective for reducing the heat resistance of spores than GDL at all of the temperatures. The reduction in pH diminished the value of the z parameter, although it was necessary to lower the pH to 4.5 to obtain a significant reduction.

  9. Improvement of the Heat Resistance of Prussian Blue Nanoparticles in a Clay Film Composed of Smectite Clay and ε-Caprolactam.

    Ono, Kenta; Nakamura, Takashi; Ebina, Takeo; Ishizaki, Manabu; Kurihara, Masato

    2018-06-04

    Prussian blue (PB) is limited in its application by its breakdown at elevated temperatures. To improve the heat resistance of PB, we prepared a composite film comprising PB nanoparticles (NPs), smectite clay, and an organic compound. The composite film had a microstructure in which PB NPs were intercalated between smectite/organic compound layers. The predominant oxidation temperature of the PB NPs in the composite film was around 500 °C in air, higher than the oxidation temperature of bulk PB in air (250 °C). This improvement in the oxidation temperature may be due to the composite film acting as a barrier to oxygen gas. These results indicate the effectiveness of clay materials for the improvement of heat resistance for low-temperature decomposition compounds, not only PB but also other porous coordination polymers.

  10. Lightweight Heat Resistant Geopolymer-based Materials Synthesized from Red Mud and Rice Husk Ash Using Sodium Silicate Solution as Alkaline Activator

    Hoc Thang Nguyen

    2017-01-01

    Full Text Available Geopolymer is an inorganic polymer composite with potentials to replace Ordinary Portland Cement (OPC-based materials in the future because of its lower energy consumption, minimal CO2 emissions and lower production cost as it utilizes industrial waste resources. Hence, geopolymerization and the process to produce geopolymers for various applications like building materials can be considered as green industry. Moreover, in our study, the raw materials we used are red mud and rice husk ash, which are are industrial and agricultural wastes that need to be managed to reduce their impact to the environment. The red mud and rice husk ash combined with sodium silicate (water glass solution were mixed to form geopolymer materials. Moreover, the geopolymer specimens were also tested for heat resistance at a temperature of 1000°C for 2 hours. Results suggest high heat resistance with an increase of compressive strength after exposed at high temperature.

  11. 9-12% Cr heat resistant steels. Alloy design, TEM characterisation of microstructure evolution and creep response at 650 C

    Rojas Jara, David

    2011-03-21

    This work was carried out aiming to design and characterise 9-12% Cr steels with tailormade microstructures for applications in fossil fuel fired power plants. The investigations concentrated in the design and characterisation of heat resistant steels for applications in high oxidising atmospheres (12% Cr) and 9% Cr alloys for components such as rotors (P91). ThermoCalc calculations showed to be a reliable tool for alloy development. The modeling also provided valuable information for the adjustment of the processing parameters (austenisation and tempering temperatures). Two 12% Cr heat resistant steels with a fine dispersion of nano precipitates were designed and produced supported by thermodynamic modeling (ThermoCalc). A detailed characterisation of the microstructure evolution at different creep times (100 MPa / 650 C / 8000 h) was carried out by scanning transmission electron microscopy (STEM). The results of the microstructure analysis were correlated with the mechanical properties in order to investigate the influence of different precipitates (especially M{sub 23}C{sub 6} carbides) on the creep strength of the alloys. Precipitation of Laves phase and Z-phase was observed after several hundred hours creep time. Very few Z-phase of the type Cr(V,Ta)N nucleating from existing (V,Ta)(C,N) was observed. Both alloys show growth and coarsening of Laves phase, meanwhile the MX carbonitrides present a very slow growth and coarsening rate. Alloys containing Laves phase, MX and M{sub 23}C{sub 6} precipitates show best creep properties. The influence of hot-deformation and tempering temperature on the microstructure evolution on one of the designed 12% Cr alloys was studied during short-term creep at 80-250 MPa and 650 C. Quantitative determination of dislocation density and sub-grain size in the initial microstructure and after creep was investigated by STEM combined with the high-angle annular dark-field detector (HAADF). A correlation between microstructure

  12. 9-12% Cr heat resistant steels. Alloy design, TEM characterisation of microstructure evolution and creep response at 650 C

    Rojas Jara, David

    2011-01-01

    This work was carried out aiming to design and characterise 9-12% Cr steels with tailormade microstructures for applications in fossil fuel fired power plants. The investigations concentrated in the design and characterisation of heat resistant steels for applications in high oxidising atmospheres (12% Cr) and 9% Cr alloys for components such as rotors (P91). ThermoCalc calculations showed to be a reliable tool for alloy development. The modeling also provided valuable information for the adjustment of the processing parameters (austenisation and tempering temperatures). Two 12% Cr heat resistant steels with a fine dispersion of nano precipitates were designed and produced supported by thermodynamic modeling (ThermoCalc). A detailed characterisation of the microstructure evolution at different creep times (100 MPa / 650 C / 8000 h) was carried out by scanning transmission electron microscopy (STEM). The results of the microstructure analysis were correlated with the mechanical properties in order to investigate the influence of different precipitates (especially M 23 C 6 carbides) on the creep strength of the alloys. Precipitation of Laves phase and Z-phase was observed after several hundred hours creep time. Very few Z-phase of the type Cr(V,Ta)N nucleating from existing (V,Ta)(C,N) was observed. Both alloys show growth and coarsening of Laves phase, meanwhile the MX carbonitrides present a very slow growth and coarsening rate. Alloys containing Laves phase, MX and M 23 C 6 precipitates show best creep properties. The influence of hot-deformation and tempering temperature on the microstructure evolution on one of the designed 12% Cr alloys was studied during short-term creep at 80-250 MPa and 650 C. Quantitative determination of dislocation density and sub-grain size in the initial microstructure and after creep was investigated by STEM combined with the high-angle annular dark-field detector (HAADF). A correlation between microstructure evolution and creep

  13. The effect of ethylenediaminetetraacetic acid on heat resistance and recovery of Clostridium sporogenes PA 3679 spores treated in HTST conditions.

    Silla Santos, M H; Torres Zarzo, J

    1997-03-03

    The effect of ethylenediaminetetraacetic acid (EDTA) on the heat resistance of Clostridium sporogenes PA 3679 spores was studied. EDTA was added to heating substrates and recovery media in order to establish which stage of the heat treatment registered the greatest EDTA activity. The heating substrates assayed were phosphate buffer (pH 7.0) and white asparagus purée, at natural pH (5.8) and acidified with citric acid and glucono-delta-lactone (GDL) to pH 5.5, 5.0 and 4.5. Recovery of survivors was carried out in MPA3679A medium in various conditions of acidification with citric and GDL (250 and 500 ppm), at pH 7.5 6.5 and 6.0. The results show greater activity of EDTA on spores when it was applied in recovery of heat injured spores, than during heating. The strongest influence of EDTA during heating was found in phosphate buffer (pH 7.0), with the effect being most evident at 121 and 126 degrees C, and in asparagus purée, at 121 degrees C and pH 5.8 rather than acidified. In recovery, the inhibiting activity of EDTA was more evident in spores subjected to more severe heat treatment, either by increasing the exposure time or by raising the temperature to 130 or 135 degrees C. The pH level of the recovery medium also affected the antimicrobial activity of EDTA, which had a greater inhibiting effect at pH 7.5 than at lower pH levels (6.5, 6.0).

  14. pH and Heat Resistance of the Major Celery Allergen Api g 1.

    Rib-Schmidt, Carina; Riedl, Philipp; Meisinger, Veronika; Schwaben, Luisa; Schulenborg, Thomas; Reuter, Andreas; Schiller, Dirk; Seutter von Loetzen, Christian; Rösch, Paul

    2018-05-25

    The major celery allergen Api g 1 is a member of the pathogenesis-related 10 class protein family. Here we aimed to investigate the impact of heat and pH on the native protein conformation required for Immunoglobulin E (IgE) recognition. Spectroscopic methods, MS and IgE binding analyses were used to study the effects of pH and thermal treatment on Api g 1.0101. Heat processing results in a loss of the native protein fold via denaturation, oligomerisation and precipitation along with a subsequent reduction of IgE recognition. The induced effects and timescales are strongly pH depended. While Api g 1 refolds partially into an IgE-binding conformation at physiological pH, acidic pH treatment leads to the formation of structurally heat resistant, IgE-reactive oligomers. Thermal processing in the presence of a celery matrix or at pH conditions close to the isoelectric point (pI = 4.63) of Api g 1.0101 results in almost instant precipitation. Our data demonstrate that Api g 1.0101 is not intrinsically susceptible to heat treatment in vitro. However, the pH and the celery matrix strongly influence the stability of Api g 1.0101 and might be the main reasons for the observed temperature lability of this important food allergen. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Development of heat resistant concrete and its application to concrete casks. Improvement of neutron shielding performance of concrete in high temperature environment

    Owaki, Eiji; Hata, Akihito; Sugihara, Yutaka; Shimojo, Jun; Taniuchi, Hiroaki; Mantani, Kenichi

    2003-01-01

    Heat resistant concrete with hydrogen, which is able to shield neutron at more than 100degC, was developed. Using this new type concrete, a safety concrete cask having the same concept of metal casks was designed and produced. The new type cask omitted the inhalation and exhaust vent of the conventional type concrete casks. The new concrete consists of Portland cement added calcium hydroxide, iron powder and iron fiber. It showed 2.17 g/cm 3 density, 10.8 mass% water content, 1.4 W/(m·K) thermal conductivity at 150degC. Increasing of heat resistance made possible to produce the perfect sealing type structure, which had high shielding performance of radiation no consideration for streaming of radiation. Moreover, a monitor of sealing can be set. General view of concrete casks, outer view of 1/3 scaled model, cask storage system in the world, properties of new developed heat resistant concrete, results of shielding calculation are contained. (S.Y.)

  16. Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores.

    Esteban, María-Dolores; Huertas, Juan-Pablo; Fernández, Pablo S; Palop, Alfredo

    2013-05-01

    In recent years, highly thermo-resistant mesophilic spore-forming bacteria belonging to the species Bacillus sporothermodurans have caused non-sterility problems in industrial sterilization processes. The aim of this research was to evaluate the effect of the heating medium characteristics (pH and buffer/food) on the thermal inactivation of B. sporothermodurans spores when exposed to isothermal and non-isothermal heating and cooling treatments and the suitability of non-linear Weibull and Geeraaerd models to predict the survivors of these thermal treatments. Thermal treatments were carried out in pH 3, 5 and 7 McIlvaine buffer and in a courgette soup. Isothermal survival curves showed shoulders that were accurately characterized by means of both models. A clear effect of the pH of the heating medium was observed, decreasing the D120 value from pH 7 to pH 3 buffer down to one third. Differences in heat resistance were similar, regardless of the model used and were kept at all temperatures tested. The heat resistance in courgette soup was similar to that shown in pH 7 buffer. When the heat resistance values obtained under isothermal conditions were used to predict the survival in the non-isothermical experiments, the predictions estimated the experimental data quite accurately, both with Weibull and Geeraerd models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. High-Temperature Oxidation-Resistant and Low Coefficient of Thermal Expansion NiAl-Base Bond Coat Developed for a Turbine Blade Application

    2003-01-01

    Many critical gas turbine engine components are currently made from Ni-base superalloys that are coated with a thermal barrier coating (TBC). The TBC consists of a ZrO2-based top coat and a bond coat that is used to enhance the bonding between the superalloy substrate and the top coat. MCrAlY alloys (CoCrAlY and NiCrAlY) are currently used as bond coats and are chosen for their very good oxidation resistance. TBC life is frequently limited by the oxidation resistance of the bond coat, along with a thermal expansion mismatch between the metallic bond coat and the ceramic top coat. The aim of this investigation at the NASA Glenn Research Center was to develop a new longer life, higher temperature bond coat by improving both the oxidation resistance and the thermal expansion characteristics of the bond coat. Nickel aluminide (NiAl) has excellent high-temperature oxidation resistance and can sustain a protective Al2O3 scale to longer times and higher temperatures in comparison to MCrAlY alloys. Cryomilling of NiAl results in aluminum nitride (AlN) formation that reduces the coefficient of thermal expansion (CTE) of the alloy and enhances creep strength. Thus, additions of cryomilled NiAl-AlN to CoCrAlY were examined as a potential bond coat. In this work, the composite alloy was investigated as a stand-alone substrate to demonstrate its feasibility prior to actual use as a coating. About 85 percent of prealloyed NiAl and 15 percent of standard commercial CoCrAlY alloys were mixed and cryomilled in an attritor with stainless steel balls used as grinding media. The milling was carried out in the presence of liquid nitrogen. The milled powder was consolidated by hot extrusion or by hot isostatic pressing. From the consolidated material, oxidation coupons, four-point bend, CTE, and tensile specimens were machined. The CTE measurements were made between room temperature and 1000 C in an argon atmosphere. It is shown that the CTE of the NiAl-AlN-CoCrAlY composite bond coat

  18. Corrosion behavior of Nb-based and Mo-based super heat-resisting alloys in liquid Li

    Saito, J.; Kano, S.; Morinaga, M.

    1998-07-01

    Research on structural materials which will be utilized even in the severe environment of high-temperature liquid alkali metals has been promoted in order to develop the frontiers of materials techniques. The super-heat resisting alloys which are based on refractory metals, Nb and Mo, are aimed as promising materials used in such an environment. The corrosion resistance in liquid Li and the mechanical properties such as creep and tensile strengths at high temperatures are important for these structural materials. On the basis of many experiments and analyses of these properties at 1473 K, the material design of Nb-based and Mo-based alloys has been carried out successfully. In this report, all the previous experimental results of corrosion tests in liquid Li were summarized systematically for Nb-based and Mo-based alloys. The corrosion mechanism was proposed on the basis of a series of analyses, in particular, focussing on the deposition mechanism of corrosion products on the surface and also on the initiation and growth mechanism of cracks on the corroded surface of Nb-based alloys. The principal results are as follows. (1) For the deposition mechanism, a reaction took place first between dissolved metallic elements and nitrogen which existed as an impurity in liquid Li and then corrosion products (nitrides) precipitated on the metal surface. Subsequently, another reaction took place between dissolved metallic elements in liquid Li, and corrosion products (intermetallic compounds) precipitated on the metal surface. The composition of deposited corrosion products could be predicted on the basis of the deposition mechanism. (2) For the crack initiation mechanism, the chemical potential diagrams were utilized in order to understand the formation of Li-M-O ternary oxides which caused cracks to be formed on the corroded surface. Consequently, it was evident that not only the concentration of the dissolved oxygen in the alloy but also the concentration of Li which

  19. Study of nucleation, growth and coarsening of precipitates in a novel 9%Cr heat resistant steel: Experimental and modeling

    Prat, O.; García, J.; Rojas, D.; Sanhueza, J.P.; Camurri, C.

    2014-01-01

    Nucleation, growth and coarsening of three different precipitates (NbC, M 23 C 6 and V(C,N)) in a novel 9%Cr heat resistant steel designed by the authors were investigated. The microstructure evolution after tempering (780 °C/2 h) and after creep (650 °C/100 MPa) was characterized using transmission electron microscopy in the scanning mode (STEM). Thermodynamic and kinetic modeling was carried out using the softwares Thermo-Calc, DICTRA and TC-PRISMA. The Thermo-Calc software predicted formation of NbC, V(C,N) and M 23 C 6 carbides at the tempering temperature of 780 °C. STEM investigations revealed that M 23 C 6 precipitated on prior austenite grain boundaries and lath or block boundaries whereas NbC and V(C,N) were located within sub-grains. Simulations by TC-PRISMA showed that M 23 C 6 , NbC and V(C,N) particles nucleation begins as soon as the tempering treatment starts and it is completed in a very short time, reaching the equilibrium volume fraction after 40 s for M 23 C 6 , 100 s for NbC and 80 s for V(C,N). Best agreement between simulations and experimental investigations was found for low interfacial energy values of 0.1 J m −2 . Both STEM measurements as well as DICTRA simulations indicate very low coarsening rate for both kind of precipitates. Creep tests up to 4000–5000 h suggest that this special combination of NbC, V(C,N) and M 23 C 6 may provide increased pinning of dislocations reducing boundary migration therefore enhancing creep strength. - Highlights: • Nucleation, growth and coarsening of NbC and M 23 C 6 precipitates were investigated. • The microstructure was characterized using transmission electron microscopy (STEM). • Modeling was carried out using the softwares Thermo-Calc, DICTRA and TC-PRISMA. • M 23 C 6 and NbC nucleation begins as soon as the solution treatmentinitiates. • Best agreement modeling/experiments was found for low interfacial energy values of 0.1 J m −2

  20. Influence of heating rate on corrosion behavior of Ni-base heat resistant alloys in simulated VHTR helium environment

    Kurata, Yuji; Kondo, Tatsuo

    1985-04-01

    The influence of heating rate on corrosion and carbon transfer was studied for Ni-base heat resistant alloys exposed to simulated VHTR(very high temperature reactor) coolant environment. Special attention was focused to relationship between oxidation and carburization at early stage of exposure. Tests were conducted on two heats of Hastelloy XR with different boron(B) content and the developmental alloys, 113MA and KSN. Two kinds of heating rates, i.e. 80 0 C/min and 2 0 C/min, were employed. Corrosion tests were carried out at 900 0 C up to 500 h in JAERI Type B helium, one of the simulated VHTR primary coolant specifications. Under higher heating rate, oxidation resistance of both heats of Hastelloy XR(2.8 ppmB and 40 ppmB) were equivalent and among the best, then KSN and 113MA followed in the order. Under lower heating rate only alloy, i.e. Hastelloy XR with 2.8 ppmB, showed some deteriorated oxidation resistance while all others being unaffected by the heating rate. On the other hand the carbon transfer behavior showed strong dependence on the heating rate. In case of higher heating rate, significant carburization occured at early stage of exposure and thereafter the progress of carburization was slow in all the alloys. On the other hand only slow carburization was the case throughout the exposure in case of lower heating rate. The carburization in VHTR helium environment was interpreted as to be affected by oxide film formation in the early stage of exposure. The carbon pick-up was largest in Hastelloy XR with 40 ppmB and it was followed by Hastelloy XR with 2.8 ppmB. 113MA and KSN were carburized only slightly. The observed difference of carbon pick-up among the alloys tested was interpreted to be attributed mainly to the difference of the carbon activity, the carbide precipitation characteristics among the alloys tested. (author)

  1. Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation.

    Abhyankar, Wishwas; Pandey, Rachna; Ter Beek, Alexander; Brul, Stanley; de Koning, Leo J; de Koster, Chris G

    2015-02-01

    Resistance characteristics of bacterial endospores towards various environmental stresses such as chemicals and heat are in part attributed to their coat proteins. Heat resistance is developed in a late stage of sporulation and during maturation of released spores. Using our gel-free proteomic approach and LC-FT-ICR-MS/MS analysis we have monitored the efficiency of the tryptic digestion of proteins in the coat during spore maturation over a period of eight days, using metabolically (15)N labeled mature spores as reference. The results showed that during spore maturation the loss of digestion efficiency of outer coat and crust proteins synchronized with the increase in heat resistance. This implicates that spore maturation involves chemical cross-linking of outer coat and crust layer proteins leaving the inner coat layer proteins unmodified. It appears that digestion efficiencies of spore surface proteins can be linked to their location within the coat and crust layers. We also attempted to study a possible link between spore maturation and the observed heterogeneity in spore germination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus.

    Lu, Yunliang; Wu, Zhihao; Song, Zongcheng; Xiao, Peng; Liu, Ying; Zhang, Peijun; You, Feng

    2016-11-01

    High temperature has direct confinement on fish survival and growth, especially under the background of global warming. Selection of fish line with heat resistance is an important means to address this problem. In the present study, we analyzed the difference in heat resistance between families of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus, two flatfish species occupying slightly different thermal niches. Then the chosen families were tested to determine their differential response to heat stress (ΔT = +8 °C and +12 °C) in blood, including anaerobic metabolism (lactate), oxidative stress (lipid peroxidation and protein carbonylation) and antioxidant enzymes. Results showed a difference in heat resistance between families of the two species. Among the chosen parameters, growth traits had a significant effect on contents of lactate and malondialdehyd (MDA), and activities of catalase (CAT) and glutathione S-transferase in flounder (P heat-sensitive family of each species, levels of all studied parameters were lower and more stable in heat-resistant families after heat stress. What's more, heat resistance of fish significantly influenced contents of lactate and MDA and activity of CAT in flounder (P heat-resistance, being potentially valuable in fish breeding. However, these markers should be applied with more caution when there is a growth discrepancy between fish families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Using AlN-Coated Heat Sink to Improve the Heat Dissipation of LED Packages

    Jean Ming-Der

    2016-01-01

    Full Text Available This study optimizes aluminum nitride (AlN ceramics, in order to enhance the thermal performance of light-emitting diode (LED packages. AlN coatings are grown on copper/ aluminum substrates as a heat interface material, using an electrostatic spraying process. The effect of the deposition parameters on the coatings is determined. The thermal performance of AlN coated Cu/Al substrates is evaluated in terms of the heat dissipated and compared by measuring the LED case temperature. The structure and properties of the coating are also examined a scanning electron microscopy (SEM. In sum, the thermal performance of the LED is increased and good heat resistance characteristics are obtained. The results show that using AlN ceramic coating on a copper/aluminum substrate increases the thermal performance.

  4. About properties of ZrO2 thermal protective coatings obtained from spherical powder mixtures

    Berdnik, O. B.; Tsareva, I. N.; Tarasenko, Yu P.

    2017-05-01

    It is developed the technology of high-energy plasma spraying of the zirconium dioxide (ZrO2) thermal protective coating on the basis of ZrO2 tetragonal and cubic phases with the spheroidal grain shape and the columnar substructure, with the total porosity P = 4 %, the hardness HV = 12 GPa, the roughness parameter R a ˜ 6 μm, the thickness 0.3-3 mm. As a sublayer it is used the heat-resistant coating of “Ni-Co-Cr-Al-Y” system with an intermetallic phase composition and the layered microstructure of the grains.

  5. Microstructure and properties of the heat-resistant chromium steel P91; Gefuege und Eigenschaften des warmfesten Chromstahls P91

    Kohlar, Stefanie

    2017-07-01

    The heat-resistant chromium steel X10CrMoVNb9-1 specified as P91 is based on its good properties at high temperatures and high mechanical Stresses as a potential material for use as reactor pressure vessel material in fourth generation nuclear reactors. Subject of this work was the characterization of the microstructure and mechanical properties of this material. For this purpose it was metallographically examined and technically important characteristic values were determined. Different etching methods and imaging techniques were used, with the method of oxalic acid etching newly applied to this material providing meaningful results. Tensile tests, hardness tests and notched bar impact tests provided mechanical-technological characteristics. The fracture mechanical behavior was determined by means of fracture mechanics tests on bending and compact tensile tests. The main focus was on the investigation of the applicability of the evaluation methods described in standards ASTM 1921 and ASTM 1820 for low alloy steels. The investigations showed that the P91 is expected to have a homogeneous martensitic structure consisting of annealed martensite with embedded carbides and carbonitrides. The location and size of the found carbides could be represented by the process of oxalic acid etching newly applied to this material. The mechanical-technological tests showed a good strength and toughness behavior typical for tempered steel. The application of the linear-elastic fracture mechanics and the yielding fracture mechanics made it possible to determine a reference temperature according to ASTM 1921-08a, but also showed that the evaluation methods and geometries described for this high-alloy steel in ASTM 1820-08 do not lead to valid material characteristics. In order to determine the suitability of this material for nuclear applications, the irradiation and creep behavior of the P91 should be characterized more precisely in further investigations. [German] Der als P91

  6. Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating

    Zheng Yansheng; He Yi; Qing Yongquan; Zhuo Zhihao; Mo Qian

    2012-01-01

    Highlights: ► The coating showed the water contact angle of 165° and the water sliding angle of 6°. ► The hierarchical structure with the low surface energy leads to surface superhydrophobicity. ► We demonstrated a simple yet efficient approach to preparing superhydrophobic surface. - Abstract: Superhydrophobic coating has been fabricated on the glass substrates with modified SiO 2 sol and polytetrafluoroethylene emulsion through a sol–gel process. SiO 2 sol was modified with γ-glycidoxypropyl trimethoxysilane. The coatings were characterized by water contact angle measurement, Scanning electron microscope, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy and thermal synthetic analysis. The experimental results show that coatings exhibited superhydrophobic and heat-resistant property with a water average contact angle of 156° and sliding angle of 6°, coating has a rough surface with both micro- and nanoscale structures, γ-glycidoxypropyl trimethoxysilane enhanced the hydrophobicity of the coatings. Low surface energy of polymer and special structure of the coatings were responsible for the hydrophobic of the surfaces.

  7. Hot Corrosion of Yttrium Stabilized Zirconia Coatings Deposited by Air Plasma Spray on a Nickel-Based Superalloy

    Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.

    In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.

  8. Creep and long-term strength of heat-resistant steels with different structures with the account taken of the type of stress deviator

    Giginyak, F.F.; Dragunov, Yu.G.; Mozharovskaya, T.N.; Titov, V.F.

    1993-01-01

    The results of the experimental investigations into creep and long-term strength of heat-resistant steels 15Kh2MFA and 15Kh2NMFA in the initial state and after heat-treatment simulating the metal irradiation embrittlement at the end of the product service date under static loading at the complex stress state and at high temperatures are presented. The experimentally substantiated equations of state describing creep and long-term stability of materials taking into account the type of the stress state are derived. (author)

  9. Effects of microstructures and creep conditions on the fractal dimension of grain boundary fracture in high-temperature creep of heat-resistant alloys

    Tanaka, Manabu

    1993-01-01

    The effects of microstructural aspects, such as grain size and grain boundary configuration, and creep conditions on the fractal dimension of the grain boundary fracture were examined using several heat-resistant alloys, principally in an analysis scale range between one grain boundary length and specimen size. Grain boundary fracture surface profiles in the heat-resistant alloys exhibited a fractal nature in the scale range between one grain boundary length and specimen size as well as in the scale range below one grain boundary length. The fractal dimension of the grain boundary fracture slightly increased with decreasing grain size and was generally a little larger in the specimens with serrated grain boundaries than in those with straight grain boundaries. The fractal dimension of the grain boundary and the number of grain boundary microcracks which affected the grain boundary fracture patterns were a little larger in the specimen with the smaller grain size, and were also larger in the specimen with serrated grain boundaries. The fractal dimension of the grain boundary fracture increased with decreasing creep stress in the temperature range from 973 to 1422 K in these alloys, since more grain boundary microcracks existed in the specimens ruptured under the lower stresses at the higher temperatures. (orig.) [de

  10. Tough-coated hard powders for hardmetals of novel properties

    Toth, R.E.; Smid, I.; Kladler, G.; Korb, G.; Sherman, A.; Ettmayer, P.

    2001-01-01

    The properties and performance of conventional materials and composites are constrained by solubility limits, diffusion coefficients, and compatibility of physical and chemical constituent properties in their phase equilibria. To escape these limits, ingenious ways of combining strength, toughness, and wear resistance by way of various coatings and laminations have been devised. These coated tools are systematically discarded after only about 10 % of their wear tolerance has been used. Tough-coated hard powders (TCHP), patented by EnDurAloy (USA), are hard refractory particles CVD coated with nanolayers of WC and Co. Consolidation of TCHP creates an engineered homogeneous cellular structure whose interconnected tough WC-Co 'shells' each contain a wear-resistant core (e.g., TiN). In TCHP's, the coating is throughout the tool, not only on the surface, combining the strength, heat resistance, and toughness of cemented carbides with the chemical and abrasion wear resistance of harder materials. As wear progresses, new wear-resistant material continuously replaces the working surfaces and edges of the tool until its geometry reaches its maximum limits. TCHP tools are then reusable many times. Specific coating and consolidation processes, characterization of compacts, and test comparisons with conventional materials are discussed. (author)

  11. Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.

    Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P

    2015-08-19

    Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant.

  12. The High-Temperature Resistance Properties of Polysiloxane/Al Coatings with Low Infrared Emissivity

    Jun Zhao

    2018-03-01

    Full Text Available High-temperature-resistant coatings with low infrared emissivity were prepared using polysiloxane resin and flake aluminum as the adhesive and pigment, respectively. The heat resistance mechanisms of the polysiloxane/Al coating were systematically investigated. The composition, surface morphology, infrared reflectance spectra, and thermal expansion dimension (ΔL of the coatings were characterized by X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectroscopy, and thermal mechanical analysis (TMA, respectively. The results show that thermal decomposition of the resin and mismatch of ΔL between the coating and the substrate facilitate the high temperature failure of the coating. A suitable amount of flake aluminum pigments could restrain the thermal decomposition of the resin and could increase the match degree of ΔL between the coating and substrate, leading to an enhanced thermal resistance of the coating. Our results find that a coating with a pigment to binder ratio (P/B ratio of 1.0 could maintain integrity until 600 °C, and the infrared emissivity was as low as 0.27. Hence, a coating with high-temperature resistance and low emissivity was obtained. Such coatings can be used for infrared stealth technology or energy savings in high-temperature equipment.

  13. Progressive damage during thermal shock cycling of D-gun sprayed thermal barrier coatings with hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3}

    Ke, P.L. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China) and School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom)]. E-mail: csun@imr.ac.cn; Wang, Q.M. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Gong, J. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sun, C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhou, Y.C. [State Key Lab for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2006-11-05

    Thermal shock cycling behaviors of D-gun sprayed TBCs with a hollow spherical ZrO{sub 2}-8Y{sub 2}O{sub 3} (HSP-YSZ) top coat and NiCrAlY bond coat on directionally solidified Ni-base superalloys DZ125 were investigated at high temperature (1100 deg. C) {r_reversible} room temperature (RT) repeatedly by water quenching. Scanning electron microscopy (SEM) was used to characterize the coating microstructure and failure morphology. The results showed that failure of the D-gun sprayed TBC starts with crack initiation along the splats boundary in the ceramic top coat and the non-alumina oxides. The cracks propagate and coalesce with the increasing thermal cycling. The extensive cracking of the rapidly formed non-alumina oxides, resulting from the depletion of aluminum in the bond coat, aids to delamination of the outer ceramic layer. The stress distributions in TGO layer at different thermal shock cycles was measured by luminescence spectroscopy to investigate the failure mechanism of TBC system.

  14. Design of a species-specific PCR method for the detection of the heat-resistant fungi Talaromyces macrosporus and Talaromyces trachyspermus.

    Yamashita, S; Nakagawa, H; Sakaguchi, T; Arima, T-H; Kikoku, Y

    2018-01-01

    Heat-resistant fungi occur sporadically and are a continuing problem for the food and beverage industry. The genus Talaromyces, as a typical fungus, is capable of producing the heat-resistant ascospores responsible for the spoilage of processed food products. Isocitrate lyase, a signature enzyme of the glyoxylate cycle, is required for the metabolism of non-fermentable carbon compounds, like acetate and ethanol. Here, species-specific primer sets for detection and identification of DNA derived from Talaromyces macrosporus and Talaromyces trachyspermus were designed based on the nucleotide sequences of their isocitrate lyase genes. Polymerase chain reaction (PCR) using a species-specific primer set amplified products specific to T. macrosporus and T. trachyspermus. Other fungal species, such as Byssochlamys fulva and Hamigera striata, which cause food spoilage, were not detected using the Talaromyces-specific primer sets. The detection limit for each species-specific primer set was determined as being 50 pg of template DNA, without using a nested PCR method. The specificity of each species-specific primer set was maintained in the presence of 1,000-fold amounts of genomic DNA from other fungi. The method also detected fungal DNA extracted from blueberry inoculated with T. macrosporus. This PCR method provides a quick, simple, powerful and reliable way to detect T. macrosporus and T. trachyspermus. Polymerase chain reaction (PCR)-based detection is rapid, convenient and sensitive compared with traditional methods of detecting heat-resistant fungi. In this study, a PCR-based method was developed for the detection and identification of amplification products from Talaromyces macrosporus and Talaromyces trachyspermus using primer sets that target the isocitrate lyase gene. This method could be used for the on-site detection of T. macrosporus and T. trachyspermus in the near future, and will be helpful in the safety control of raw materials and in food and beverage

  15. Cooked meat products made of coarsely ground pork: the main bacterial strains of bacterial flora, their heat resistance and effect on spoilage

    Esko Petäjä

    1993-09-01

    Full Text Available This study was conducted to investigate the bacterial flora of the surface layer and the core of meat products made of coarsely ground pork at the moment of spoilage when stored at 7°C or 4°C. The dominating strains were isolated, their heat resistance was studied in APT-broth, on APT-agar and in coarsely ground cured pork, and their growth after heating and effect on spoilage were followed in coarsely ground cured pork. The first signs of spoilage appeared in the surface layer of the products. The strains were coccoid lactic acid bacteria with counts ranging from 3,5 to 7.8 log cfu (colony forming units/g. They survived only accidentally after heating for 15 minutes at 72°C in APT-broth. The core of the products contained only coccoid lactic acid bacteria or only pseudomonads or both as the main bacterial strains. The counts ranged from 2.6 to 6.0 log cfu/g. Most of the strains isolated from the core survived after heating for 30 minutes at 72°C in APT-broth in at least three tests out of six. The most noticeable result of the study was the occurence of heat-resistant pseudomonads in the core. It must be pointed out that all pseudomonads found survived after heating for 60 minutes at 72°C in APT-broth, and often after heating for 15 minutes at 72°C in coarsely ground cured pork (core 72°C. The cfu number of the two most heat-resistant streptococcus strains decreased only 1 log unit over 15 minutes at 72°C in coarsely ground cured pork. The numbers of inoculated pseudomonads decreased but those of streptococci rose by a maximum of 1 log unit when the experimental porks were kept at 4°C after heating. This indicates that streptococci and pseudomonads probably do not constitute a serious spoilage factor in cooked meat products, but spoilage is generally effected by bacteria which have contaminated the surface layer of the products after heat treatment.

  16. Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications

    Korobov, Yu. S.; Nevezhin, S. V.; Filiрpov, M. A.; Makarov, A. V.; Malygina, I. Yu.; Fantozzi, D.; Milanti, A.; Koivuluoto, H.; Vuoristo, P.

    2017-12-01

    Equipment of a thermal power plant is subjected to high temperature oxidation and wear. This raises operating costs through frequent repair of worn parts and high metal consumption. The paper proposes a possible solution to this problem through arc spraying of protective coatings. Cored wires of the Fe-Cr-C basic alloying system are used as a feedstock. Additional alloying by Al, B, Si, Ti and Y allows one to create wear- and heat-resistant coatings, which are an attractive substitute of more expensive Co- and Ni-based materials.

  17. Standard Reference Line Combined with One-Point Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) to Quantitatively Analyze Stainless and Heat Resistant Steel.

    Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong

    2018-01-01

    Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.

  18. Additional materials for welding of the EP99 heat resisting alloy with the EI868 alloy and 12Kh18N9T steel

    Sorokin, L.I.; Filippova, S.P.; Petrova, L.A.

    1978-01-01

    Presented are the results of the studies aimed at selecting an additive material for argon-arc welding process involving heat-resistant nickel EP99 alloy to be welded to the EI868 alloy and 12Kh18N9T steel. As the additive material use was made of wire made of nickel-chromium alloys and covered electrodes made of the EP367 alloy with additions of tungsten. It has been established that in order to improve the resistance of metal to hot-crack formation during argon arc welding of the EP99 alloy with the EI868 alloy, it is advisable to use an additive material of the EP533 alloy, and while welding the same alloy with the 12Kh18N9T steel, filler wire of the EP367 alloy is recommended

  19. Effect of sporulation medium on wet-heat resistance and structure of Alicyclobacillus acidoterrestris DSM 3922-type strain spores and modeling of the inactivation kinetics in apple juice.

    Molva, Celenk; Baysal, Ayse Handan

    2014-10-17

    Alicyclobacillus acidoterrestris is a spoilage bacterium in fruit juices leading to high economic losses. The present study evaluated the effect of sporulation medium on the thermal inactivation kinetics of A. acidoterrestris DSM 3922 spores in apple juice (pH3.82±0.01; 11.3±0.1 °Brix). Bacillus acidocaldarius agar (BAA), Bacillus acidoterrestris agar (BATA), malt extract agar (MEA), potato dextrose agar (PDA) and B. acidoterrestris broth (BATB) were used for sporulation. Inactivation kinetic parameters at 85, 87.5 and 90°C were obtained using the log-linear model. The decimal reduction times at 85°C (D85°C) were 41.7, 57.6, 76.8, 76.8 and 67.2min; D87.5°C-values were 22.4, 26.7, 32.9, 31.5, and 32.9min; and D90°C-values were 11.6, 9.9, 14.7, 11.9 and 14.1min for spores produced on PDA, MEA, BATA, BAA and BATB, respectively. The estimated z-values were 9.05, 6.60, 6.96, 6.15, and 7.46, respectively. The present study suggests that the sporulation medium affects the wet-heat resistance of A. acidoterrestris DSM 3922 spores. Also, the dipicolinic acid content (DPA) was found highest in heat resistant spores formed on mineral containing media. After wet-heat treatment, loss of internal volume due to the release of DPA from spore core was observed by scanning electron microscopy. Since, there is no standardized media for the sporulation of A. acidoterrestris, the results obtained from this study might be useful to determine and compare the thermal resistance characteristics of A. acidoterrestris spores in fruit juices. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel

    Chen, Lei; Ma, Xiaocong; Wang, Longmei; Ye, Xiaoning

    2011-01-01

    Research highlights: → Applications of Y in 21Cr-11Ni austenitic heat-resistant stainless steel. → Sensible characteristics of microstructure and properties have been observed. → Y has been found be effective in improving hot ductility of 21Cr-11Ni steel. → Inhibitory effect of Y on S segregation to the grain boundary has been observed. -- Abstract: In this comparative study, the microstructure and the mechanical properties of a 21Cr-11Ni austenitic heat-resistant stainless steel with and without addition of rare earth (RE) element yttrium have been investigated. The results show that a number of fine spherical yttrium-rich oxide particles are not uniformly distributed in the matrix of steel with yttrium; instead, they are aligned along the rolling direction. The grains surrounding the alignment are nearly one order of magnitude smaller than those farther away from the alignment. The approximate calculation results indirectly show that the grain refinement may be mainly attributed to the stimulation for nucleation of recrystallization rather than to pinning by particles. Furthermore, the alignment has resulted in significant loss in transverse impact toughness and tensile elongation at room temperature. There is a trough in the hot ductility-temperature curve, which is located between 973 and 1173 K. The ductility trough of steel with yttrium becomes shallow within a certain temperature range, especially around 1073 K, indicating that improvement on hot ductility is achieved by yttrium addition. The results may be attributed to the increase of grain boundary cohesion indicated by the effective improvement on intergranular failure tendency, and the inhibitory effect of yttrium on sulfur segregation to grain boundaries is believed to be an important cause.

  1. An Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications

    Zhang, Ying [Tennessee Technological Univ., Cookeville, TN (United States)

    2015-09-11

    The objective of this project was to develop and optimize MCrAlY bond coats for syngas/hydrogen turbine applications using a low-cost electrolytic codeposition process. Prealloyed CrAlY-based powders were codeposited into a metal matrix of Ni, Co or Ni-Co during the electroplating process, and a subsequent post-deposition heat treatment converted it to the MCrAlY coating. Our research efforts focused on: (1) investigation of the effects of electro-codeposition configuration and parameters on the CrAlY particle incorporation in the NiCo-CrAlY composite coatings; (2) development of the post-deposition heat treating procedure; (3) characterization of coating properties and evaluation of coating oxidation performance; (4) exploration of a sulfurfree electroplating solution; (5) cost analysis of the present electrolytic codeposition process. Different electro-codeposition configurations were investigated, and the rotating barrel system demonstrated the capability of depositing NiCo-CrAlY composite coatings uniformly on the entire specimen surface, with the CrAlY particle incorporation in the range 37-42 vol.%. Post-deposition heat treatment at 1000-1200 °C promoted interdiffusion between the CrAlY particles and the Ni-Co metal matrix, resulting in β/γ’/γ or β/γ’ phases in the heat-treated coatings. The results also indicate that the post-deposition heat treatment should be conducted at temperatures ≤1100 °C to minimize Cr evaporation and outward diffusion of Ti. The electro-codeposited NiCrAlY coatings in general showed lower hardness and surface roughness than thermal spray MCrAlY coatings. Coating oxidation performance was evaluated at 1000-1100 °C in dry and wet air environments. The initial electro-codeposited NiCoCrAlY coatings containing relatively high sulfur did not show good oxidation resistance. After modifications of the coating process, the cleaner NiCoCrAlY coating exhibited good oxidation performance at 1000 °C during the 2,000 1-h cyclic

  2. Hard coatings

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  3. Protective Coatings

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  4. Interaction of Cr-Ti-Si coating on VN-3 niobium alloy with air environment

    Lazarev, Eh.M.; Kozlov, A.T.; Monakhova, L.A.

    1985-01-01

    Investigation of heat-resistance, microstructure and phase composition of Cr-Ti-Si coating on VN-3 niobium alloy with air oxidation in the temperature interval of 1200-1600 deg C is conducted. Thermogravimetry, metallography, X-ray diffraction and microprobe analysis methods are used. It is ascertained that the coating is a dense niobium disilicide layer, luriched on the surface with chromium and titanium disilicides and separated and from the protected alloy by a narrow zone of the lowest niobium silicide Nb 5 Si 3 . The coating protective junctions are provided by a selective chromium and titanium disilicides oxidation as well as niobium disilicide oxidation at the temperature of 1600 deg C, and by the rates of niobium and silicon diffusion through Nb 5 SI 3 and NbSi 2 and oxygen diffusion through the amorphous SiO 2

  5. Kinetics of the process of formation and high-temperature oxidation of electrospark coatings on steel

    Verkhoturov, A.D.; Chiplik, V.N.; Egorov, F.F.; Lavrenko, V.A.; Podchernyaeva, I.A.; Shemet, V.Z.

    1986-01-01

    This work is a study of the kinetics of formation and of the heat resistance of electrospark coatings based on the composite TiB 2 -Mo with varying molybdenum content. In the process of electrospark alloying they measured the specific erosion of the anode and the increase in weight of the cathode with an accuracy not worse than 5%. Electrospark coatings of TiB 2 -Mo on steel 45 are marked by improved scaling resistance at temperatures above 900 C. Their scaling resistance and also the effectiveness of the process of electrospark alloying increase with increasing content of the phase B-MoB in the coating because molybdenum borate forms during its high-temperature oxidation. Illustrations and table are included

  6. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores.

    Abhyankar, Wishwas R; Kamphorst, Kiki; Swarge, Bhagyashree N; van Veen, Henk; van der Wel, Nicole N; Brul, Stanley; de Koster, Chris G; de Koning, Leo J

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14 N spores prepared on solid Schaeffer's-glucose (SG) agar plates and 15 N metabolically labeled spores prepared in shake flasks containing 3-( N -morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14 N: 15 N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  7. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores

    Abhyankar, Wishwas R.; Kamphorst, Kiki; Swarge, Bhagyashree N.; van Veen, Henk; van der Wel, Nicole N.; Brul, Stanley; de Koster, Chris G.; de Koning, Leo J.

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid Schaeffer’s-glucose (SG) agar plates and 15N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N:15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  8. The influence of sporulation conditions on the spore coat protein composition of Bacillus subtilis spores.

    Wishwas R. Abhyankar

    2016-10-01

    Full Text Available Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid SG agar plates and 15N metabolically labelled spores prepared in shake flasks containing MOPS buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N: 15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the differences in the coat protein composition and

  9. Prevalence of Clostridium botulinum and thermophilic heat-resistant spores in raw carrots and green beans used in French canning industry.

    Sevenier, V; Delannoy, S; André, S; Fach, P; Remize, F

    2012-04-16

    Two categories of vegetables (carrots and green beans) that are widely used in the manufacture of canned food were surveyed for their spore contamination. Samples were recovered from 10 manufactures spread over all producing areas in France. Two samples over 316 raw vegetables collected were found positive for botulinum neurotoxin producing Clostridia spores as tested by PCR-based GeneDisc assay. Both positive samplestested positive for the type B neurotoxin gene (bont/B). In parallel, heat-resistant spores of thermophilic bacteria that are likely to be associated with canned food spoilage after prolonged incubation at 55 °C were surveyed after specific enrichment. Prevalence varied between 1.6% for Moorella thermoacetica/thermoautotrophica in green bean samples and 8.6% for either Geobacillus stearothermophilus or Thermoanaerobacterium spp. in carrot samples. Vegetable preparation, e.g. washing and edge cutting, considerably reduced spore contamination levels. These data constitute the first wide examination of vegetables specifically cultivated for industrialpurposes for their contamination by spores of thermophilic bacterial species. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Optimization of the composition and structure of heat-resistant casting aluminium alloys with additions of cerium, iron, nickel and zirconium

    Belov, N.A.; Lavrishchev, Yu.V.

    2000-01-01

    A study is made of the effect of composition and structure on mechanical properties of cast alloys of the Al-Ce-Ni-Fe-Zr system in which binary and ternary eutectics with participation of low alloyed aluminium solid solution and Al 4 Ce, Al 3 Ni and Al 9 FeNi phases are crystallized. It is found that microhardness of eutectics is heavily dependent on the volume fraction of aluminides and their dispersivity. It was shown that essential hardening of aluminium matrix can be achieved at the cost of zirconium additive in quantity of 0.6 % when using two-stage manufacturing operation. Experimental compositions of Al-10 % Ce-5% Ni-0.6 % Zr and Al-1.5 % Fe-1.5 % Ni-0.6 % Zr on the basis of ternary and binary eutectics respectively as billets essentially exceed industrial heat-resistant cast aluminium alloys AK12MMgN and AM5 as to a set of room and high-temperature mechanical properties and hot brittleness index [ru

  11. Creep strength and microstructural evolution of 9-12% Cr heat resistant steels during creep exposure at 600 C and 650 C

    Mendez Martin, Francisca [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Panait, Clara Gabriela [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; V et M France CEV, Aulnoye-Aymeries (France); Bendick, Walter [Salzgitter Mannesmann Forschung GmbH (SZMF), Duisburg (DE)] (and others)

    2010-07-01

    9-12% Cr heat resistant steels are used for applications at high temperatures and pressures in steam power plants. 12% Cr steels show higher creep strength and higher corrosion resistance compared to 9% Cr steels for short term creep exposure. However, the higher creep strength of 12 %Cr steels drops increasingly after 10,000-20,000 h of creep. This is probably due to a microstructural instability such as the precipitation of new phases (e.g. Laves phases and Z-phases), the growth of the precipitates and the recovery of the matrix. 9% Cr and 12% Cr tempered martensitic steels that have been creep tested for times up to 50,000 h at 600 C and 650 C were investigated using Transmission Electron Microscopy (TEM) on extractive replicas and thin foils together with Backscatter Scanning Electron Microscopy (BSE-SEM) to better understand the different creep behaviour of the two different steels. A significant precipitation of Laves phase and low amounts of Z-phase was observed in the 9% Cr steels after long-term creep exposure. The size distribution of Laves phases was measured by image analysis of SEM-BSE images. In the 12% Cr steel two new phases were identified, Laves phase and Z-phase after almost 30,000 h of creep test. The quantification of the different precipitated phases was studied. (orig.)

  12. Fat and fibre interfere with the dramatic effect that nanoemulsified d-limonene has on the heat resistance of Listeria monocytogenes.

    Maté, Javier; Periago, Paula M; Ros-Chumillas, María; Grullón, Coralin; Huertas, Juan Pablo; Palop, Alfredo

    2017-04-01

    The application of d-limonene in form of nanoemulsion has been proved to reduce dramatically the thermal resistance of Listeria monocytogenes in culture media. The present research shows very promising results on the application in food products. The thermal resistance of L. monocytogenes was reduced 90 times when 0.5 mM nanoemulsified d-limonene was added to apple juice. This is the biggest reduction in the heat resistance of a microorganism caused by an antimicrobial described ever. However, no effect was found in carrot juice. A carrot juice system was prepared in an attempt to unravel which juice constituents were responsible for the lack of effect. When fat and fibre were not included in the carrot juice system formulation, the thermal resistance of L. monocytogenes was, again, dramatically reduced in presence of nanoemulsified d-limonene, so these components were shown to interfere with the effect. Once this interaction with food constituents becomes solved, the addition of nanoemulsified antimicrobials would allow to reduce greatly the intensity of the thermal treatments currently applied in the food processing industry. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Microstructural evolution in austenitic heat-resistant cast steel 35Cr25Ni12NNbRE during long-term service

    Liu Jiangwen; Jiao Dongling; Luo Chengping

    2010-01-01

    The microstructural evolution of austenitic heat-resistant cast steel 35Cr25Ni12NNbRE during aging and long-term service was investigated using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructure of the as cast steel consists of the dendritic austenite, the block-like eutectic carbide M 7 C 3 spreaded among austenitic dendrite, and a small quantity of M 23 C 6 carbide. The microstructure of the steel aged at 600 deg. C consists of eutectic carbide M 23 C 6 transformed from eutectic carbide M 7 C 3 and dendritic austenite in which fine secondary carbide particles M 23 C 6 precipitated. The precipitated carbide M 23 C 6 kept a cubic-cubic orientation relationship (OR) with austenite matrix. There existed a carbide precipitation free zone (PFZ) around the eutectic carbide. For the long-term serviced samples, the secondary carbide precipitated in the austenite strikingly increased and the PFZ disappeared. Part of the M 23 C 6 transformed into M 6 C, which always kept a twin OR, [114] M 6 C //[110] A //[110] M 23 C 6 , with the austenite and the M 23 C 6 secondary carbide. In addition, a small quantity of σ phase FeCr and ε-Cr 2 N were also identified. The effects of alloy composition and service condition on the microstructural evolution of the steel were discussed.

  14. Effect of carburizing helium environment on creep behavior of Ni-base heat-resistant alloys for high-temperature gas-cooled reactors

    Kurata, Yuji; Ogawa, Yutaka; Nakajima, Hajime

    1988-01-01

    Creep tests were conducted on Ni-base heat-resistant alloys Hastelloy XR and XR-II, i.e. versions of Hastelloy X modified for nuclear applications, at 950degC using four types of helium environment with different impurity compositions, and mainly the effect of carburization was examined. For all the materials tested, the values of creep rupture time obtained under the carburizing conditions were similar to or longer than those in the commonly used, standard test environment (JAERI Type B helium). The difference among the results was interpreted by the counterbalancing effects of the strengthening due to carburization and possible weakening caused under very low oxidizing potential. In the corrosion monitoring specimens pronounced carbon pick-up was observed in the environment with high carbon activity and very low oxidizing potential. Based on the results obtained in the present and the previous works, it is suggested that a moderate control of the impurity chemistry is important rather than simple purification of the coolant in protecting the material from the environment-enhanced degradation. Either condition with high or low extremes in the oxidizing and carburizing potentials may cause enhanced degradation and thus are desirable to be avoided at the elevated temperatures. (author)

  15. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Jacek Panek

    Full Text Available Spoilage of heat processed food and beverage by heat resistant fungi (HRF is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700, the other from thermal processed strawberry product in 2012 (KC179765, used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.

  16. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey.

    André, S; Zuber, F; Remize, F

    2013-07-15

    Thermal processing of Low Acid Canned Foods (LACF), which are safe and shelf-stable at ambient temperature for several years, results in heat inactivation of all vegetative microorganisms and the partial or total inactivation of spores. Good Manufacturing Hygienic Practices include stability tests for managing the pathogen risk related to surviving mesophilic bacterial spores. LACF are also often submitted to additional incubation conditions, typically 55 °C for 7 days, to monitor spoilage by thermophiles. In this study we identified the bacterial species responsible for non-stability after prolonged at 55 °C of incubation of LACF from 455 samples collected from 122 French canneries over 10 years. Bacteria were identified by microsequencing or a recent developed tool for group-specific PCR detection (SporeTraQ™). A single species was identified for 93% of examined samples. Three genera were responsible for more than 80% of all non-stability cases: mostly Moorella (36%) and Geobacillus (35%), and less frequently Thermoanaerobacterium (10%). The other most frequent bacterial genera identified were Bacillus, Thermoanaerobacter, Caldanaerobius, Anoxybacillus, Paenibacillus and Clostridium. Species frequency was dependent on food category, i.e. vegetables, ready-made meals containing meat, seafood or other recipes, products containing fatty duck, and related to the intensity of the thermal treatment applied in these food categories. The spore heat resistance parameters (D or δ and z values) from 36 strains isolated in this study were determined. Taken together, our results single out the species most suitable for use as indicators for thermal process settings. This extensively-documented survey of the species that cause non-stability at 55 °C in LACF will help canneries to improve the management of microbial contamination. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.

    Ravanfar, Seyed Ali; Aziz, Maheran Abdul; Saud, Halimi Mohd; Abdullah, Janna Ong

    2015-11-01

    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.

  18. FY 1997 report on the study on solidification process of high-temperature melt of heat resistant metals; 1997 nendo chosa hokokusho (tainetsu kinzoku koon yueki no gyoko katei no kenkyu)

    NONE

    1998-03-01

    Study was made on a solidification process of metal melt under micro-gravity condition in an underground non-gravity experiment center, considering that improvement of the heat resistance of turbine blades for jet engines and power generation gas turbines contributes to prevention of global warming through improvement of thermal engine efficiencies and consumption reduction of precious fossil fuel. Study was made on a simulation program and precise measurement of thermal properties for precision casting of heat-resistant alloy members. Study was also made on Al and Zn alloys and their welding for production and evaluation technologies of new metal textures by supercooling solidification. Some issues for strongly desired improvement of a simulation program for precision casting were clarified. In addition, since thermal property data of practical heat-resistant polyalloy members are poor, data and measurement method for precision casting were clarified. It was also suggested that basic elucidation of the solidification process under micro- gravity condition is possible. 34 refs., 41 figs., 5 tabs.

  19. Coating materials

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition having properties as good as thermosetting acrylic or amino alkid resins is provided by employing active energy irradiation, particularly electron beams, using a radically polymerizable low molecular compound (A) (hereafter called an oligomer) containing at least two vinyl radicals in one molecule. This oligomer is produced by reacting an epoxy-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The composition (I) contains 10% - 100% of this oligomer. In embodiments, an oligomer having a fiberous trivinyl construction is produced by reacting 180 parts by weight of glycidyl methacrylate ester with 130 parts of itaconic acid in the presence of a polymerization-inhibitor and an addition reaction catalyst at 90 0 C for 6 hours. In practice, the coating material compositions (1), consist of the whole oligomer [I-1]; (2), consist of 10-90% of (A) component and 90%-10% of vinyl monomers containing at least 30% (meth) acrylic monomer [I-2]; (3), 10%-90% of component (A) and 90%-10% of other monomers containing at least two vinyl radicals [I-3]; (4), a mixture of (I-2) and (I-3), [I-4]; and (5), consist of 50% or less unsaturated polyester of 500-5,000 molecular weight range or drying oil, or alkyd resin of 500-5,000 molecular weight range modified by drying oil, [I-5]. As a catalyst a tertiary amino vinyl compound is preferred. Five examples are given. (Iwakiri, K.)

  20. Development of Ion-Plasma Coatings for Protecting Intermetallic Refractory Alloys VKNA-1V and VKNA-25 in the Temperature Range of 1200 - 1250°C

    Budinovskii, S. A.; Matveev, P. V.; Smirnov, A. A.

    2017-05-01

    Multilayer heat-resistant ion-plasma coatings for protecting the parts of the hot duct of gas-turbine engines produced from refractory nickel alloys based on VKNA intermetallics from high-temperature oxidation are considered. Coatings of the Ni - Cr - Al (Ta, Re, Hf, Y) + Al - Ni - Y systems are tested for high-temperature strength at 1200 and 1250°C. Metallographic and microscopic x-ray spectrum analyses of the structure and composition of the coatings in the initial condition and after the testing are performed. The effect of protective coatings of the Ni - Cr - Al - Hf + Al - Ni - Y systems on the long-term strength of alloys VKNA-1V and VKNA-25 at 1200°C is studied.

  1. Coatings and Corrosion Laboratory

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  2. The effect of aging treatment on the high temperature fatigue strength and fatigue fracture behaviour of friction welded domestic heat resisting steels (SUH3-SUS303)

    Lee, K.Y.; Oh, S.K.; Kim, H.J.

    1981-01-01

    In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of 700 0 C high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10 hr., 100 hr. aging heat treated at 700 0 C after solution treatment 1 hr. at 1060 0 C for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviours as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and microstructural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8 kg/mm 2 , upsetting pressure 22 kg/mm 2 , the amount of total upset 7 mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH3, SUS303 and SUH3-SUS303, have the highest inclination gradiant on S-N curve due to the high temperature fatigue testing for long time at 700 0 C. 3) The optimum aging time of friction welded SUH3-SUS303, has been recognized near the 10 hr. at 700 0 C after the solution treatment of 1 hr. at 1060 0 C. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10 hr. aging, fatigue limits were increased by SUH3 75.4%, SUS303 28.5%, friction welded joints SUH3-SUS303 44.2% and 100 hr. aging the rate were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base metal SUS303 of the friction welded joints SUH3-SUS303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS303, SUH3-SUS303 is intergranular in any case, but SUH3 is fractured by transgranular cracking. (author)

  3. Graphene Coatings

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... graphene can effectively protect Ni in harsh environments, even after long term exposure. This is made possible by the presence of a high number of graphene layers, which can efficiently mask the cracks and domain boundaries defects found in individual layers of graphene. Our findings thus show...

  4. Coating materials

    Ozeki, Takao; Kimura, Tadashi; Kobayashi, Juichi; Maeda, Yutaka; Nakamoto, Hideo.

    1969-01-01

    A non-solvent type coating material composition is provided which can be hardened by irradiation with active energy, particularly electron beams, using a composition which contains 10%-100% of a radically polymerizable low molecular compound (A), (hereafter called an oligomer), having at least two vinyl radicals in one molecule. These compositions have a high degree of polymerization and characteristics equivalent to thermosetting acrylic or amino alkyd resin. The oligomer (A) is produced by reacting an epoxy-containing vinyl monomer with saturated polycarboxylic acids or anhydrides. In one embodiment, 146 parts by weight of adipic acid and 280 parts of glycidyl methacrylate ester undergo addition reaction in the presence of a polymerization-inhibitor and a catalyst at 90 0 C for 6 hours to produce an oligomer having a fiberous divinyl construction. The coating composition utilizes this oligomer in the forms of (I-1), a whole oligomer; (I-2), 0%-90% of this oligomer and 90%-10% of a vinyl monomer containing at least 30% of (meth) acrylic monomer; (I-3), 10%-90% of such oligomer and 90%-10% of other monomers containing at least two vinyl radicals in one molecule; (I-4), a mixture of (I-2) and (I-3) in proportion of 1/9 to 9/1, and (I-5), above four compositions each containing 50% or less unsaturated polyester or drying oil having 500-5,000 molecules or a drying oil-modified alkyd resin having 500-5,000 molecules. Four examples are given. (Iwakiri, K.)

  5. Electrocurtain coating process for coating solar mirrors

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  6. Low Temperature Powder Coating

    2011-02-09

    of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) • Legacy primers contain hexavalent chrome • Conventional powder coatings...coatings both in laboratory and field service evaluations • LTCPC allows environmental cost reductions through VOC/HAP elimination and hexavalent ... chrome reduction. • The LTCPC process greatly shortens the coating operation (LTCPC cures much more rapidly then conventional wet coatings) resulting in

  7. Flow coating apparatus and method of coating

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  8. Structure evolution of multilayer materials of heat-resistant intermetallic compounds under the influence of temperature in the process of diffusion welding under pressure and their mechanical properties

    Korzhov, Valeriy P.; Karpov, Michael I.; Prokhorov, Dmitriy V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation)

    2013-07-01

    Multilayer materials of high-resistant intermetallic compounds of some transition metals with aluminum and silicon were obtained by diffusion welding of packages, collected from a large number of the respective foils, such as niobium and aluminum. Materials of intermetallics with silicon were obtained by the welding of packages built from metal foils with Si-coating. The change in the structure according to the temperature of the welding was studied, and the high-temperature bending strength was determined. Key words: multilayer composite, high-resistant material, intermetallic compound, diffusion welding, package rolling, layered structure, bending strength.

  9. Artificial Neural Network-Based Three-dimensional Continuous Response Relationship Construction of 3Cr20Ni10W2 Heat-Resisting Alloy and Its Application in Finite Element Simulation

    Li, Le; Wang, Li-yong

    2018-04-01

    The application of accurate constitutive relationship in finite element simulation would significantly contribute to accurate simulation results, which plays a critical role in process design and optimization. In this investigation, the true stress-strain data of 3Cr20Ni10W2 heat-resisting alloy were obtained from a series of isothermal compression tests conducted in a wide temperature range of 1203-1403 K and strain rate range of 0.01-10 s-1 on a Gleeble 1500 testing machine. Then the constitutive relationship was modeled by an optimally constructed and well-trained back-propagation artificial neural network (BP-ANN). The evaluation of the BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of 3Cr20Ni10W2 heat-resisting alloy. Meanwhile, a comparison between improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions and construct the three-dimensional continuous response relationship for temperature, strain rate, strain, and stress. Finally, the three-dimensional continuous response relationship was applied to the numerical simulation of isothermal compression tests. The results show that such constitutive relationship can significantly promote the accuracy improvement of numerical simulation for hot forming processes.

  10. European coatings conference - Marine coatings. Proceedings

    NONE

    2008-07-01

    This volume contains 13 lectures (manuscripts or powerpoint foils) with the following topics: 1. Impact of containerization on polyurethane and polyurea in marine and protective coatings (Malte Homann); 2. The application of combinatorial/high-throughput methods to the development of marine coatings (Bret Chisholm); 3. Progress and perspectives in the AMBIO (advanced nanostructured surfaces for the control of biofouling) Project (James Callow); 4. Release behaviour due to shear and pull-off of silicone coatings with a thickness gradient (James G. Kohl); 5. New liquid rheology additives for high build marine coatings (Andreas Freytag); 6. Effective corrosion protection with polyaniline, polpyrrole and polythiophene as anticorrosice additives for marine paints (Carlos Aleman); 7. Potential applications of sol gel technology for marine applications (Robert Akid); 8: Performance of biocide-free Antifouling Coatings for leisure boats (Bernd Daehne); 9. Novel biocidefree nanostructured antifouling coatings - can nano do the job? (Corne Rentrop); 10. One component high solids, VOC compliant high durability finish technology (Adrian Andrews); 11. High solid coatings - the hybrid solution (Luca Prezzi); 12. Unique organofunctional silicone resins for environmentally friendly high-performance coatings (Dieter Heldmann); 13. Silicone-alkyd paints for marine applications: from battleship-grey to green (Thomas Easton).

  11. PIT Coating Requirements Analysis

    MINTEER, D.J.

    2000-01-01

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products

  12. PIT Coating Requirements Analysis

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  13. Coatings for laser fusion

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  14. Fuel particle coating data

    Hollabaugh, C.M.; Wagner, P.; Wahman, L.A.; White, R.W.

    1977-01-01

    Development of coating on nuclear fuel particles for the High-Temperature Fuels Technology program at the Los Alamos Scientific Laboratory included process studies for low-density porous and high-density isotropic carbon coats, and for ZrC and ''alloy'' C/ZrC coats. This report documents the data generated by these studies

  15. ATHENA optimized coating design

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed...... in order to review the current coating baseline. The performance of several material combinations, considering a simple bi-layer, simple multilayer and linear graded multilayer coatings are tested and simulation of the mirror performance considering both the optimized coating design and the coating...

  16. Metallic coating of microspheres

    Meyer, S.F.

    1980-01-01

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  17. Antibacterial polymer coatings.

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  18. Coated Aerogel Beads

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  19. Anticorrosive coatings: a review

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers...... of their suitability for use. An important aspect in the development of new VOC-compliant, high-performance anticorrosive coating systems is a thorough knowledge of the components in anticorrosive coatings, their interactions, their advantages and limitations, as well as a detailed knowledge on the failure modes......, and inhibitive coatings are outlined. In the past decades, several alternatives to organic solvent-borne coatings have reached the commercial market. This review also presents some of these technologies and discusses some of their advantages and limitations. Finally, some of the mechanisms leading to degradation...

  20. Pixelated coatings and advanced IR coatings

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  1. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  2. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    Jin, Chung Keun; Lim, Sung Hyung

    2015-01-01

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU

  3. Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

    Jin, Chung Keun; Lim, Sung Hyung [Buhmwoo Institute of Technology Research, Hwaseong (Korea, Republic of)

    2015-10-15

    The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

  4. Resistance of various coatings to high temperature corrosion in HCl and SO{sub 2} containing environments

    Cizner, Josef; Mlnarik, Jakub; Hruska, Jan [SVUM a.s., Prague (Czech Republic). Lab. of High Temperature Corrosion

    2010-07-01

    For high efficiency of the steam turbines it is necessary to produce steam of temperature at least 400 C, which in conjunction with specific composition of combustion gases causes fireside corrosion problems. The combustion gases contain aggressive compounds ike HCl and SO{sub 2} and some other elements which can form deposits on heat exchanging surfaces e.g. calcium, potassium salts etc. Using of high-alloy steels or nickel-based alloys is very costly and also these materials could have lower thermal conductivity. A cheaper solution is to produce a coating on low (medium)-alloy steel. Common heat-resistant steels show very short lifetime under these conditions. The solution is then to use the appropriate coatings. Some types of coatings can be applied even inside older boilers. In this work we tested many coatings composition (nickel-based, aluminium-based etc. As well as with different processing method - arc sprayed coating, weld deposits, HVOF, etc.) on 16Mo3 steel. In particular their high temperature corrosion behaviour in model atmosphere containing SO{sub 2} and HCl and also under deposit of fly ash was studied. (orig.)

  5. Preliminary coating design and coating developments for ATHENA

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used...... for these designs and present test results from coatings....

  6. Plasma sprayed thermoregulating coatings

    Kudinov, V.V.; Puzanov, A.A.; Zambrzhitskij, A.P.; Soboleva, V.V.

    1979-01-01

    Shown is the possibility of plasma spraying application for thermoregulating coating formation. Given are test results of service properties of BeO, Al 2 O 2 plasma coatings on the substrates of the MA2-1 magnesium alloy. Described is a device for studying durability of coating optical parameters under ultraviolet irradiation in deep vacuum. Dynamics of absorption coefficient, growth caused by an increase in absorption centers amount under such irradiation is investigated

  7. Zinc phosphate conversion coatings

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  8. Silica coatings on clarithromycin.

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  9. Preparation, characterization and in vitro response of bioactive coatings on polyether ether ketone.

    Durham, John W; Allen, Matthew J; Rabiei, Afsaneh

    2017-04-01

    Polyether ether ketone (PEEK) is a highly heat-resistant thermoplastic with excellent strength and elastic modulus similar to human bone, making it an attractive material for orthopedic implants. However, the hydrophobic surface of PEEK implants induces fibrous encapsulation which is unfavorable for stable implant anchorage. In this study, PEEK was coated via ion-beam-assisted deposition (IBAD) using a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to improve osseointegration. Microstructural analysis of the coatings showed a dense, uniform columnar grain structure in the YSZ layer and no delamination from the substrate. The HA layer was found to be amorphous and free of porosities in its as-deposited state. Subsequent heat treatment via microwave energy followed by autoclaving crystallized the HA layer, confirmed by SEM and XRD analysis. An in vitro study using MC3T3 preosteoblast cells showed improved bioactivity in heat-treated sample groups. Cell proliferation, differentiation, and mineralization were analyzed by MTT assay and DNA content, osteocalcin expression, and Alizarin Red S (AR-S) content, respectively. Initial cell growth was increased, and osteogenic maturation and mineralization were accelerated most on coatings that underwent a combined microwave and autoclave heat treatment process as compared to uncoated PEEK and amorphous HA surfaces. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 560-567, 2017. © 2015 Wiley Periodicals, Inc.

  10. Measurement of the thickness of the sprayed nickel coatings on large-sized cast iron products

    В. А. Сясько

    2016-11-01

    Full Text Available Modern industries increasingly use automatic spraying of heat-resistant Nickel  coating with a thickness  of      T = 1-3 mm for large-size parts made of cast iron with nodular graphite. The process of coating application is characterized by time-dependent behavior of its relative magnetic permeability, μс , that is a function of relaxation time, which can be as long as 24 hours, and by μс deviation from point to point on the surface. Aspects of eddy-current phase method for measuring the T value are considered. The structure of four- winding eddy current transformer transducers is described and results of calculation and optimization of their parameters are presented. The influence of controlled and interfering parameters is considered. Based  on the above results, a two-channel combined transducer is developed  providing measurement  error  of ΔТ ≤ ±(0.03T + 0.02 mm  in the shop environment in the process of coating application and in the final product check. Results of tests on reference specimens and of application in production processes are presented.

  11. Superhydrophobic silica coating by dip coating method

    Mahadik, Satish A.; Parale, Vinayak; Vhatkara, Rajiv S.; Mahadik, Dinesh B.; Kavale, Mahendra S.; Wagh, Pratap B.; Gupta, Satish; Gurav, Jyoti

    2013-01-01

    Herein, we report a simple and low cost method for the fabrication of superhydrophobic coating surface on quartz substrates via sol-gel dip coating method at room temperature. Desired surface chemistry and texture growth for superhydrophobicity developed under double step sol–gel process at room temperature. The resultant superhydrophobic surfaces were characterized by Field-emission scanning electron microscopy (FE-SEM), Atomic force microscopy (AFM), water contact angle (WCA) measurement, differential thermal gravimetric analysis-differential thermal analysis (TGA-DTA) calorimetry and optical spectrometer. Coating shows the ultra high water contact angle about 168 ± 2° and water sliding angle 3 ± 1° and superoleophilic with petroleum oils. This approach allows a simple strategy for the fabrication process of superhydrophilic–superhydrophobic on same surfaces with high thermal stability of superhydrophobicity up to 560 °C. Thus, durability, special wettability and thermal stability of superhydrophobicity expand their application fields.

  12. Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

    SAE Aerospace Standards. London

    2012-01-01

    Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

  13. Coated electroactive materials

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  14. Rock-hard coatings

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  15. Metallurgical coating system

    Daniels, L.C.; Whittaker, G.S.

    1984-01-01

    The present invention relates to a novel metallurgical coating system which provides corrosion resistance and non-stick properties to metallic components which are subjected to unusually severe operating conditions. The coating system comprises a first layer comprising tantalum which is deposited upon a substrate and a second layer comprising molybdenum disilicide which is deposited upon the first layer

  16. Rock-hard coatings

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  17. Unobtrusive graphene coatings

    Mugele, Friedrich Gunther

    2012-01-01

    The contact angle of water drops on substrates for which the wettability is dominated by van der Waals forces remains unchanged when the substrates are coated with a monolayer of graphene. Such 'wetting transparency' could lead to superior conducting and hydrophobic graphene-coated surfaces with

  18. Coating thickness measurement

    1976-12-01

    The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements

  19. Duplex aluminized coatings

    Gedwill, M. A.; Grisaffe, S. J. (Inventor)

    1975-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  20. Coated ceramic breeder materials

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  1. Radiation curable coating compositions

    Jenkinson, R.D.; Carder, C.H.

    1979-01-01

    The present invention provides a low-toxicity diluent component for radiation curable coating compositions that contain an acrylyl or methacryly oligomer or resin component such as an acrylyl urethane oligomer. The low-toxicity diluent component of this invention is chosen from the group consisting of tetraethlorthosilicate and tetraethoxyethylorthosilicate. When the diluent component is used as described, benefits in addition to viscosity reduction, may be realized. Application characteristics of the uncured coatings composition, such as flowability, leveling, and smoothness are notably improved. Upon curing by exposure to actinic radiation, the coating composition forms a solid, non-tacky surface free of pits, fissures or other irregularities. While there is no readily apparent reactive mechanism by which the orthosilicate becomes chemically bonded to the cured coating, the presence of silicon in the cured coating has been confirmed by scanning electron microscopy. 12 drawing

  2. Charged-particle coating

    Johnson, W.L.; Crane, J.K.; Hendricks, C.D.

    1980-01-01

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  3. Coating thickness measuring device

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  4. Effect of Al{sub 2}Gd on microstructure and properties of laser clad Mg–Al–Gd coatings

    Chen, Hong; Zhang, Ke; Yao, Chengwu [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Dong, Jie [National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Emmelmann, Claus [Institute of Laser and System Technologies, Hamburg University of Technology, Hamburg, 21073 (Germany)

    2015-03-01

    Highlights: • Mg–Al–Gd coatings with different Gd contents were fabricated by fiber laser cladding. • Chemical compositions and crystal structures of the second phases were characterized. • Dispersion of Al{sub 2}Gd led to further grain refining and elevated mechanical properties. • Al{sub 2}Gd improved high-temperature performances by preventing tiny liquation. - Abstract: In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg–7.5Al–xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al{sub 2}Gd phase as well as suppressed the precipitation of eutectic Mg{sub 17}Al{sub 12} phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al{sub 2}Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation.

  5. Effect of Al2Gd on microstructure and properties of laser clad Mg–Al–Gd coatings

    Chen, Hong; Zhang, Ke; Yao, Chengwu; Dong, Jie; Li, Zhuguo; Emmelmann, Claus

    2015-01-01

    Highlights: • Mg–Al–Gd coatings with different Gd contents were fabricated by fiber laser cladding. • Chemical compositions and crystal structures of the second phases were characterized. • Dispersion of Al 2 Gd led to further grain refining and elevated mechanical properties. • Al 2 Gd improved high-temperature performances by preventing tiny liquation. - Abstract: In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg–7.5Al–xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al 2 Gd phase as well as suppressed the precipitation of eutectic Mg 17 Al 12 phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al 2 Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation

  6. Fluorine Based Superhydrophobic Coatings

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  7. Coatings to prevent frost

    Lusada, Ricardo; Holberg, Stefan; Bennedsen, Jeanette Marianne Dalgaard

    2016-01-01

    The ability of hydrophobic, organic–inorganic hybrid coatings to decelerate frost propagation was investigated. Compared to a bare aluminum surface, the coatings do not significantly reduce the freezing probability of supercooled water drops. On both surfaces, the probability for ice nucleation...... at temperatures just below 0°C, for example at −4°C, is low. Freezing of a single drop on aluminum leads, however, to instant freezing of the complete surface. On hydrophobic coatings, such a freezing drop is isolated; the frozen area grows slowly. At −4°C surface temperature in a +12°C/90% relative humidity...

  8. Self-powered heat-resistant polymeric 1D nanowires and 3D micro/nanowire assemblies in a pressure-crystallized size-distributed graphene oxide/poly (vinylidene fluoride) composite

    Tian, Pengfei; Lyu, Jun; Huang, Rui; Zhang, Chaoliang

    2017-12-01

    Piezoelectric one- (1D) and three-dimensional (3D) hybrid micro/nanostructured materials have received intense research interest because of their ability in capturing trace amounts of energy and transforming it into electrical energy. In this work, a size-distributed graphene oxide (GO) was utilized for the concurrent growth of both the 1D nanowires and 3D micro/nanowire architectures of poly (vinylidene fluoride) (PVDF) with piezoelectricity. The in situ formation of the polymeric micro/nanostructures, with crystalline beta phase, was achieved by the high-pressure crystallization of a well dispersed GO/PVDF composite, fabricated by an environmentally friendly physical approach. Particularly, by controlling the crystallization conditions of the binary composite at high pressure, the melting point of the polymeric micro/nanowires, which further constructed the 3D micro/nanoarchitectures, was nearly 30°C higher than that of the original PVDF. The large scale simultaneous formation of the 1D and 3D micro/nanostructures was attributed to a size-dependent catalysis of the GOs in the pressure-treated composite system. The as-fabricated heat-resistant hybrid micro/nanoarchitectures, consisting of GOs and piezoelectric PVDF micro/nanowires, may permit niche applications in self-powered micro/nanodevices for energy scavenging from their working environments.

  9. Formation of Al15Mn3Si2 Phase During Solidification of a Novel Al-12%Si-4%Cu-1.2%Mn Heat-Resistant Alloy and Its Thermal Stability

    Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel

    2018-02-01

    The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.

  10. Thermally joining and/or coating or thermally separating the workpieces having heat-sensitive coating, comprises restoring coating by thermally coating the coating material after thermally joining and/or coating or thermally separating

    Riedel, Frank; Winkelmann, Ralf; Puschmann, Markus

    2011-01-01

    The method for thermally joining and/or coating or thermally separating the workpieces (1), which have a heat-sensitive coating (2), comprises restoring the coating by thermally coating a coating material (3) after thermally joining and/or coating or thermally separating the workpieces. A part of the thermal energy introduced in the workpiece for joining and/or coating or separating or in the workpieces is used for thermally coating the coating material. Two workpieces are welded or soldered ...

  11. POWDER COAT APPLICATIONS

    The report discusses an investigation of critical factors that affect the use of powder coatings on the environment, cost, quality, and production. The investigation involved a small business representative working with the National Defense Center for Environmental Excellence (ND...

  12. Inorganic Coatings Laboratory

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  13. Robust Fiber Coatings

    Goettler, Richard

    2002-01-01

    The highly desired ceramic matrix composite is the one in which the high strength and strain-to-failure is achieved through judicious selection of a fiber coating that can survive the high-temperature...

  14. Coating of substrates

    Cairns, J.A.; Nelson, R.L.; Woodhead, J.L.

    1979-01-01

    The process is concerned with providing substrates with coatings obtainable from sols, for example to protect the substrate (such as in nuclear reactors or hydrocarbon cracking plant) or to provide a carrier for catalytically active material. Hitherto, coatings obtained from sols have had a high porosity and high surface area so that they have not been entirely satisfactory for the above applications. In the process described, dense, low-porosity coatings are provided by contacting the substrate with a sol of refractory material (e.g. CeO 2 or SiO 2 ) convertible to a gel of density at least 40% of the theoretical density of the refractory material, and converting the sol to the gel. Optionally, the gel may be converted to a ceramic coating by firing. (author)

  15. Friction surfaced Stellite6 coatings

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  16. Radiation hardening coating material

    McDonald, W.H.; Prucnal, P.J.; DeMajistre, Robert.

    1977-01-01

    This invention concerns a radiation hardening coating material. First a resin is prepared by reaction of bisphenol diglycidylic ether with acrylic or methacrylic acids. Then the reactive solvent is prepared by reaction of acrylic or methacrylic acids with epichlorhydrine or epibromhydrine. Then a solution consisting of the resin dissolved in the reactive solvent is prepared. A substrate (wood, paper, polyesters, polyamines etc.) is coated with this composition and exposed to ionizing radiations (electron beams) or ultraviolet radiations [fr

  17. Hydroxyapatite coatings for biomedical applications

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  18. Biocompatibility of Niobium Coatings

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  19. Coated particle waste form development

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes

  20. Design and fabrication of heat resistant multilayers

    Thorne, J.M.; Knight, L.V.; Peterson, B.G.; Perkins, R.T.; Gray, K.J.

    1986-01-01

    Many promising applications of multilayer x-ray optical elements subject them to intense radiation. This paper discusses the selection of optimal pairs of materials to resist heat damage and presents simulations of multilayer performance under extreme heat loadings

  1. METHOD OF PROTECTIVELY COATING URANIUM

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  2. Zirconium nitride hard coatings

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  3. Nanophase hardfaced coatings

    Reisgen, U.; Stein, L.; Balashov, B.; Geffers, C. [RWTH Aachen University (Germany). ISF - Welding and Joining Institute

    2009-08-15

    This paper demonstrates the possibility of producing iron or chromium-based nanophase hardfaced coatings by means of common arc welding methods (TIG, PTA). The appropriate composition of the alloys to be deposited allows to control the structural properties and thus also the coating properties of the weld metal. Specific variations of the alloying elements allow also the realisation of a nanostructured solidification of the carbides and borides with cooling rates that are common for arc surfacing processes. The hardfaced coatings, which had been thus produced, showed phase dimensions of approximately 100-300 nm. Based on the results it is established that the influence of the surfacing parameters and of the coating thickness and thus the influence of the heat control on the nanostructuring process is, compared with the influence of the alloy composition, of secondary importance. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. Potential applications for these types of hardfaced coatings lie, in particular, in the field of cutting tools that are exposed to corrosion and wear. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Diese Arbeit demonstriert die Moeglichkeit zur Herstellung Eisen- und Chrom-basierter nanophasiger Hartauftragschweissschichten mithilfe ueblicher Lichtbogenschweissverfahren (WIG-, Plasma-Pulver-Auftragschweissen - PPA). Eine geeignete Zusammensetzung der aufzutragenden Legierungen ermoeglicht es, die Gefuegeeigenschaften und damit die Schichteigenschaften des Schweissgutes zu kontrollieren. Gezielte Variationen der Legierungselemente erlauben die Realisierung einer nanostrukturierten Erstarrung der Karbide und Boride bei fuer Lichtbogen-Auftragschweissprozessen ueblichen Abkuehlgeschwindigkeiten. In den so erzeugten Hartschichten werden Phasengroessen von ca. 100-300 nm erreicht. Auf Basis der gewonnenen Ergebnisse kann

  4. Tribology and coatings

    NONE

    1995-06-01

    The future use of fuel-efficient, low-emission, advanced transportation systems (for example, those using low-heat-rejection diesel engines or advanced gas turbines) presents new challenges to tribologists and materials scientists. High service temperatures, corrosive environments, and extreme contact pressures are among the concerns that make necessary new tribological designs, novel materials, and effective lubrication concepts. Argonne is working on methods to reduce friction, wear and corrosion, such as soft metal coatings on ceramics, layered compounds, diamond coatings, and hard surfaces.

  5. Active Packaging Coatings

    Luis J. Bastarrachea

    2015-11-01

    Full Text Available Active food packaging involves the packaging of foods with materials that provide an enhanced functionality, such as antimicrobial, antioxidant or biocatalytic functions. This can be achieved through the incorporation of active compounds into the matrix of the commonly used packaging materials, or by the application of coatings with the corresponding functionality through surface modification. The latter option offers the advantage of preserving the packaging materials’ bulk properties nearly intact. Herein, different coating technologies like embedding for controlled release, immobilization, layer-by-layer deposition, and photografting are explained and their potential application for active food packaging is explored and discussed.

  6. Mechanically Invisible Polymer Coatings

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically......The present invention relates to a composition comprising encapsulated particles in a polymeric material. The composition comprises a continuous phase and a discontinuous phase incorporated therein, wherein the continuous phase comprises a first polymeric material and wherein the discontinuous...... invisible polymer coatings....

  7. Methods and means for coating paper by film coating

    van der Maarel, Marc; Ter Veer, Arend Berend Cornelis; Vrieling-Smit, Annet; Delnoye, Pierre

    2015-01-01

    This invention relates to the field of paper coating, more in particular to means and methods for providing paper with at least one layer of pigment using film coating to obtain a well printable surface. Provided is a method for preparing coated paper comprising the steps of: a) providing a

  8. AntiReflection Coating D

    AIKEN, DANIEL J.

    1999-01-01

    Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J(sub sc)) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design be used to provide an additional degree of freedom for current matching multi-junction devices

  9. UV Coatings, Polarization, and Coronagraphy

    Bolcar, Matthew R.; Quijada, Manuel; West, Garrett; Balasubramanian, Bala; Krist, John; Martin, Stefan; Sabatke, Derek

    2016-01-01

    Presenation for the Large UltraViolet Optical Infrared (LUVOIR) and Habitable Exoplanet Imager (HabEx) Science and Technology Definition Teams (STDT) on technical considerations regarding ultraviolet coatings, polarization, and coronagraphy. The presentations review the state-of-the-art in ultraviolet coatings, how those coatings generate polarization aberrations, and recent study results from both the LUVOIR and HabEx teams.

  10. Coatings for transport industry

    Krzysztof LUKASZKOWICZ

    2014-09-01

    Full Text Available The investigations concerned structural analysis, as well as mechanical properties and wear resistant of MeN/DLC double-layer coating deposited by hybrid PVD/PACVD method. In sliding dry friction conditions, after the break-in time, the friction coefficient for the investigated elements is set in the range between 0.03-0.06.

  11. Ion Deposited Carbon Coatings.

    1983-07-01

    PAGE ("’hen Dita t,,I,, efl TABLE OF CONTENTS Section No. Title Page No. 1.0 OBJECTIVE 1 2.0 SCOPE 2 3.0 BACKGROUND 3 4.0 COATINGS DEPOSITION 4 4.1...scientific, ards of measure. The Committee, and Confer- technical, practical, and teaching purposes.ence voting members, are leading professional On the

  12. Polydopamine-coated capsules

    White, Scott R.; Sottos, Nancy R.; Kang, Sen; Baginska, Marta B.

    2018-04-17

    One aspect of the invention is a polymer material comprising a capsule coated with PDA. In certain embodiments, the capsule encapsulates a functional agent. The encapsulated functional agent may be an indicating agent, healing agent, protecting agent, pharmaceutical drug, food additive, or a combination thereof.

  13. Active coatings technologies for tailorable military coating systems

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  14. New temperable solar coatings: Tempsol

    Demiryont, Hulya

    2001-11-01

    This paper deals with the large area deposition and coating properties of the thermo-stable (temperable/bendable) solar coating material, CuO, and some new optical coating systems comprising CuO films for architectural and automotive/transportation applications. The CuO solar coating is combined with other coating layers, for example, an anti-reflection film, a reflection film, a coloration coating layer, etc., which are also thermo-stable. The film systems are developed at the research laboratory by D.C. Magnetron reactive sputtering process. The new developed technologies then transferred to the production line. Product performances are compared before and after heat treatment of the coating systems. Performance tables and other physical properties, including optical parameters, mechanical and environmental stability, storage properties, etc., are also presented for this new product series.

  15. Flow accelerated organic coating degradation

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  16. Coating of metals

    Smith, F.

    1978-01-01

    A method is described for coating the surface of an article of Ti, Zr or Ta, or an alloy thereof, with a tinning metal or alloy, the article having a shape other than that of a sheet. The method comprises contacting the surface of the article at an elevated temperature with the molten tinning metal and moving an ultrasonically excited probe over the surface to be coated, the probe being in contact with the surface of the article and with the tinning metal. The tinning metal may be Sn or Zn or a binary alloy of Sn with Zn, Cd or Bi at a temperature of 300 0 to 450 0 C. The head of the probe may be shaped to conform with the surface of the article. The method may be used to form composite articles, and may be applied to a pre-tinned steel article. (U.K.)

  17. Coat of Arms.

    Smith, Bryan

    1998-01-01

    Describes an activity, the "coat of arms," that can serve as an ice-breaker or warm-up for the first day of an English-as-a-Second/Foreign-Language class, as a motivating start to the week, or act as an innovative segue between skill lessons. The technique can be adapted for students ranging from elementary school to adult language learners of all…

  18. Scientific coats of arms.

    Fara, Patricia

    2005-09-01

    With their mythical creatures and arcane symbolism, coats of arms seem to have little connection with modern science. Yet despite its chivalric origins, the ancient language of heraldry has long fascinated famous scientists. Although this idiosyncratic tradition was parodied by Victorian geologists, who laughingly replaced unicorns and griffins with images of dinosaurs that they had recently discovered, it has been perpetuated since by Ernest Rutherford, who liked to present himself as a new alchemist.

  19. Anti-Corrosion Coating

    1986-01-01

    SuperSpan RM 8000 is an anti-corrosion coating which effectively counteracts acid degradation, abrasive wear, and cracking in power industry facilities. It was developed by RM Industrial Products Company, Inc. with NERAC assistance. It had previously been necessary to shut down plants to repair or replace corroded duct-work in coal burning utilities. NASA-developed technology was especially useful in areas relating to thermoconductivity of carbon steel and the bonding characteristics of polymers. The product has sold well.

  20. for zeolite coating

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  1. Coating and curing apparatus and methods

    Brophy, Brenor L; Maghsoodi, Sina; Neyman, Patrick J; Gonsalves, Peter R; Hirsch, Jeffrey G; Yang, Yu S

    2015-02-24

    Disclosed are coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly systems and methods for skin curing sol-gel coatings deposited onto the surface of glass substrates using a high temperature air-knife are disclosed.

  2. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  3. Composition superconductive plumbous coatings

    Volodin, V.N.; Tuleushev, A.Zh.; Tuleushev, Yu.Zh.; Lisizin, V.N.

    2002-01-01

    Independent dispersion of two or more targets, precipitation of pulverized material on substrate and possibility of composition change in wide range of component concentrations made possible ion-plasma forming of film composition materials from materials with different chemical and physical qualities, particularly in lead-aluminum, lead-beryllium and lead-graphite systems. Named systems are characterized in wide sphere of immiscibility in solid and liquid state and absence of intermediate compounds. It is impossible to receive materials from them in traditional method in conditions of gravitational field. In lead-aluminum system there was received a number of film coatings with aluminum content up to 95 at. % at coating thickness up to 2 μm. Owing to X-ray investigations it is fixed that lead and aluminum have been performed by separate phases. Lead in sprayed layer represents well-crystallized phase with grain size more than 100 nm; texturing is not found. Study of physical qualities has shown that materials with lead base 21.6 at. % Al) have enough high crystalline current in comparison with compact lead, which reaches (2.5-3.0)·10 5 A)·cm 2 , while materials with aluminum base (21.6 at. % Al) loose this effect and critical temperature of transition is reduced from 7.1 to 5.8 K. It was impossible to carry out X-rayed analysis for lead-beryllium film because of weak intensity of beryllium lines against a background of lead owing to a quite large difference of atomic balance. Cryogen tests have shown the increase of critical current strength up to (3.1-3.6)·10 4 A)·cm 2 or composition coating of lead-beryllium (56.99 at. % or 5,45 mas. % Be), at that the critical temperature of transition does not differ from lead temperature. Samples of lead edge of state diagram have been received in the lead-graphite system. X-ray investigation subjected coating contained 6.81 at. % (55.82 mas. %) of lead. Choice of the composition is conditioned on possibilities of

  4. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  5. Modeling of Thermal Barrier Coatings

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  6. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Article Including Environmental Barrier Coating System

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  8. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub project 1 - Ex-serviced parent metal and virgin weld metals

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Weilin Zang

    2006-10-15

    Many existing power generating and process plants, where low alloy heat resistant CrMo(V) steels are extensively used for critical components, have exceeded their design lifetime of usually 100,000 hours. Assessment of residual lifetime and extension of economic life by weld repair have become increasingly important and attractive. This project aims at i) performing weld repair and determining the degree of mismatching, ii) evaluating the creep properties of weld repairs, iii) analysing creep behaviour of weld repair and providing necessary data for further reliable simulations of weld repair creep behaviour in long term service, and iv), simulating and assessing lifetime and creep damage evolution of weld repair. Weld repair using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables has been carried out in a service-exposed 10 CrMo 9 10 pipe. Creep specimens have been extracted from the service-exposed 10 CrMo 9 10 parent metal (PM), from the virgin 10 CrMo 9 10 weld metal (WM), from the virgin 13 CrMo 4 4 WM as well as from the virgin 15 Mo 3 WM. Iso-thermal uniaxial creep tests have been performed at 540 deg C in air. Pre- and post-metallography are carried out on the selected samples. FEM simulations using obtained creep data are executed. Pre-test metallography shows normal and acceptable weld repairs at given welding conditions. Creep tests demonstrate that the virgin 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 WMs have apparently longer creep lifetime than the service-exposed CrMo 9 10 PM at higher stresses than 110 MPa. Among the weld metals, the longest creep lifetime is found in 10 CrMo 9 10. Higher creep strength and lower creep strain rate in the weld metals indicate an overmatch weld. At 95 MPa, however, lifetime of 13 CrMo 4 4 WM is surprisingly short (factors which may shorten lifetime are discussed and one more test will start to verify creep strength at low stress) and tests are still running for other two weld metals. More results regarding low stress

  9. Coatings for fusion reactor environments

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  10. Properties of radiation cured coatings

    Larson, E.G.; Spencer, D.S.; Boettcher, T.E.; Melbauer, M.A.; Skarjune, R.P.

    1987-01-01

    Coatings were prepared from acrylate or methacrylate functionalized resins to study the effect of end group functionality on the physical properties of u.v. and electron beam cured coatings. Cure response was measured by solid state NMR and gel extraction, as expected, methacrylate resins cured much slower. Thermal Gravimetric Analysis (TGA) revealed acrylate coatings have greater thermal stability. Properties such as tensile strength and hardness showed little effect of end group functionality or curing method. The O 2 and H 2 O permeabilities of the coating were correlated with the processing conditions. (author)

  11. Decontamination and coating of lead

    Rankin, W.N.; Bush, S.P.; Lyon, C.E.; Walker, V.

    1988-01-01

    Technology is being developed to decontaminate lead used in shielding applications in contaminated environments for recycle as shieldings. Technology is also being developed to coat either decontaminated lead or new lead before it is used in contaminated environments. The surface of the coating is expected to be much easier to decontaminate than the original lead surface. If contamination becomes severely embedded in the coating and cannot be removed, it can be easily cut with a knife and removed from the lead. The used coating can be disposed of as radioactive (hot hazardous) waste. The lead can then be recoated for further use as a shielding material

  12. Coatings Technology Integration Office (CTIO)

    Federal Laboratory Consortium — CTIO serves as the Air Force's central resource for aircraft coating systems and their applications. CTIO's primary objectives are pollution prevention and improved...

  13. Coating material composition

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Maeda, Yutaka.

    1969-01-01

    A coating material composition is provided which can easily be cross-linked by irradiation with active energy, particularly electron beams and ultraviolet light, using a mixture of a prepolymer (a) with an addition reaction product (b). Such compositions have coating properties as good as thermosetting acrylic or amino alkyd resins. The prepolymer (a) is produced by primarily reacting at least 0.1 mol of saturated cyclocarboxylic acid anhydrides and/or alpha-, beta-ethylene unsaturated carboxylic acid anhydrides by addition reaction with one mol of hydroxyl radicals of a basic polymer having a molecular weight of 1,000 to 100,000, the basic polymer being obtained from 1%-40% of a hydroxyl radical containing vinyl monomer and at least 30% of (meth)acrylate monomer. One mol of the sum of hydroxyl radicals and carboxyl radicals of the primary reaction product undergoes a secondary addition reaction with at least 0.1 mol of an epoxy radical-containing vinyl monomer to form the prepolymer(a). The addition reaction product(b) is produced by reacting an epoxy radical-containing vinyl monomer with alpha-, beta-ethylene unsaturated carboxylic acids or their anhydrides. The coating material composition contains a majority of a mixture consisting of 10%-90% of (a) and 90%-10% of (b) above by weight. Four examples of the production of basic polymers, seven examples of the production of prepolymers, seven examples of the production of oligomers, and five examples of applications are given. (Iwakiri, K.)

  14. Microplasma sprayed hydroxyapatite coatings

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  15. SPS: scrubbing or coating ?

    Jimenez, J M

    2012-01-01

    The operation of the SPS with high intensity bunched beams is limited by the electron cloud building-up in both the arcs and long straight sections. Two consolidation options have been considered: mitigation of the electron cloud using coatings or relying, as before, on the scrubbing runs. A status report on both options will be given with a particular emphasis on measurements plans for 2012 and pending issues. The testing needs, corresponding beam parameters and MD time in 2012 will be addressed. The criteria for the decision making and the corresponding schedule will be discussed.

  16. SPS: scrubbing or coating?

    Jimenez, J.M.

    2012-01-01

    The operation of the SPS with high intensity bunched beams is limited by the electron cloud building-up in both the arcs and long straight sections. Two consolidation options have been considered: suppression of the electron cloud build-up using coatings or relying, as before, on the scrubbing mitigation. A status report on both options will be given with a particular emphasis on measurements plans for 2012 and pending issues. The testing needs, corresponding beam parameters and MD time in 2012 will be addressed. The criteria for the decision making and the corresponding schedule will be discussed. (author)

  17. Radiation hardenable coating mixture

    Howard, D.D.

    1977-01-01

    This invention relates to coatings that harden under radiation and to their compositions. Specifically, this invention concerns unsaturated urethane resins polymerisable by addition and to compositions, hardening under the effect of radiation, containing these resins. These resins feature the presence of at least one unsaturated ethylenic terminal group of structure CH 2 =C and containing the product of the reaction of an organic isocyanate compound with at least two isocyanate groups and one polyester polyol with at least two hydroxyl groups, and one unsaturated monomer compound polymerisable by addition having a single active hydrogen group reacting with the isocyanate [fr

  18. An investigation on the performance characteristics of solar flat plate collector with different selective surface coatings

    Madhukeshwara, N. [Department of Mechanical Engineering, B.I.E.T, Davanagere, Karnataka (India); Prakash, E.S. [Department of Studies in Mechanical Engineering, U.B.D.T.C.E, Davanagere, Karnataka (India)

    2012-07-01

    In the present work, investigations are made to study performance characteristics of solar flat plate collector with different selective surface coatings. Flat plate collector is one of the important solar energy trapping device which uses air or water as working fluid. Of the many solar collector concepts presently being developed, the relative simple flat plate solar collector has found the widest application so far. Its characteristics are known, and compared with other collector types, it is the easiest and least expensive to fabricate, install, and maintain. Moreover, it is capable of using both the diffuse and the direct beam solar radiation. For residential and commercial use, flat plate collectors can produce heat at sufficiently high temperatures to heat swimming pools, domestic hot water, and buildings; they also can operate a cooling unit, particularly if the incident sunlight is increased by the use of reflector. Temperatures up to 70 C are easily attained by flat plate collectors. With very careful engineering using special surfaces, reflectors to increase the incident radiation and heat resistant materials, higher operating temperatures are feasible.

  19. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  20. Federal Highway Administration 100-year coating study.

    2012-11-01

    The Federal Highway Administration 100-Year Coating Study was initiated in August 2009 to search for durable : coating systems at a reasonable cost. The objective of the study was to identify and evaluate coating materials that can : provide 100 year...

  1. Decoding white coat hypertension

    Bloomfield, Dennis A; Park, Alex

    2017-01-01

    There is arguably no less understood or more intriguing problem in hypertension that the “white coat” condition, the standard concept of which is significantly blood pressure reading obtained by medical personnel of authoritative standing than that obtained by more junior and less authoritative personnel and by the patients themselves. Using hospital-initiated ambulatory blood pressure monitoring, the while effect manifests as initial and ending pressure elevations, and, in treated patients, a low daytime profile. The effect is essentially systolic. Pure diastolic white coat hypertension appears to be exceedingly rare. On the basis of the studies, we believe that the white coat phenomenon is a common, periodic, neuro-endocrine reflex conditioned by anticipation of having the blood pressure taken and the fear of what this measurement may indicate concerning future illness. It does not change with time, or with prolonged association with the physician, particularly with advancing years, it may be superimposed upon essential hypertension, and in patients receiving hypertensive medication, blunting of the nighttime dip, which occurs in about half the patients, may be a compensatory mechanisms, rather than an indication of cardiovascular risk. Rather than the blunted dip, the morning surge or the widened pulse pressure, cardiovascular risk appears to be related to elevation of the average night time pressure. PMID:28352632

  2. Ceramic protective coating

    Harbach, F.; Nicoll, A.

    1987-01-01

    The basic material of the above-mentioned layer consists of pure aluminium oxide or essentially aluminium oxide. To improve this protective layer metal oxides from the groups IIA, IIIA, IIIB, VB, VIB, VIIB or VIII of the periodic system are added to its basic material before the said protective coating is applied. In this way a corundum structure is formed in the case of aluminium oxide. Gallium oxide, vanadium oxide, chromium oxide or iron oxide are particularly suited for the correlation of such a corundum structure. The formation of the corundum structure increases the resistance of the protective coating to the corrosive effects of vanadium pentoxide and sodium sulfate. By the addition of a specific quantity of magnesium oxide it is possible not only to stimulate the formation of corundum but also to reduce the increase in grain size in the case of the aluminium oxide. The other metallic oxides are especially favorable to the formation of the corundum structure, so that preferably magnesium oxide is to be added to these metallic oxides in order to reduce the increase in grain size. (author)

  3. Rapidly curable electrically conductive clear coatings

    Bowman, Mark P.; Anderson, Lawrence G.; Post, Gordon L.

    2018-01-16

    Rapidly curable electrically conductive clear coatings are applied to substrates. The electrically conductive clear coating includes to clear layer having a resinous binder with ultrafine non-stoichiometric tungsten oxide particles dispersed therein. The clear coating may be rapidly cured by subjecting the coating to infrared radiation that heats the tungsten oxide particles and surrounding resinous binder. Localized heating increases the temperature of the coating to thereby thermally cure the coating, while avoiding unwanted heating of the underlying substrate.

  4. White coat hypertension in pediatrics.

    Jurko, Alexander; Minarik, Milan; Jurko, Tomas; Tonhajzerova, Ingrid

    2016-01-15

    The article summarizes current information on blood pressure changes in children during clinic visit. White coat as a general dressing of physicians and health care personnel has been widely accepted at the end of the 19th century. Two problems can be associated with the use of white coat: white coat phenomenon and white coat hypertension. Children often attribute pain and other unpleasant experience to the white coat and refuse afterwards cooperation with examinations. Definition of white coat hypertension in the literature is not uniform. It has been defined as elevated blood pressure in the hospital or clinic with normal blood pressure at home measured during the day by ambulatory blood pressure monitoring system. White coat effect is defined as temporary increase in blood pressure before and during visit in the clinic, regardless what the average daily ambulatory blood pressure values are. Clinical importance of white coat hypertension is mainly because of higher risk for cardiovascular accidents that are dependent on end organ damage (heart, vessels, kidney). Current data do not allow any clear recommendations for the treatment. Pharmacological therapy is usually started in the presence of hypertrophic left ventricle, changes in intimal/medial wall thickness of carotic arteries, microalbuminuria and other cardiovascular risk factors. Nonpharmacological therapy is less controversial and certainly more appropriate. Patients have to change their life style, need to eliminate as much cardiovascular risk factors as possible and sustain a regular blood pressure monitoring.

  5. External coating of colonic anastomoses

    Pommergaard, Hans-Christian; Achiam, Michael Patrick; Rosenberg, Jacob

    2012-01-01

    Colon anastomotic leakage remains both a frequent and serious complication in gastrointestinal surgery. External coating of colonic anastomoses has been proposed as a means to lower the rate of this complication. The aim of this review was to evaluate existing studies on external coating of colonic...

  6. Moisture transport in coated wood

    Meel, P.A. van; Erich, S.J.F.; Huinink, H.P.; Kopinga, K.; Jong, J. DE; Adan, O.C.G.

    2011-01-01

    Moisture accumulation inside wood causes favorable conditions for decay. Application of a coating alters the moisture sorption of wood and prevents accumulation of moisture. This paper presents the results of a nuclear magnetic resonance (NMR) study on the influence of a coating on the moisture

  7. Electroless alloy/composite coatings

    The market for these coatings is expanding fast as the potential applications are on the rise. In the present article, an attempt has been made to review different electroless alloy/composite coatings with respect to bath types and their composition, properties and applications. Different characterisation studies have been ...

  8. Lignin based controlled release coatings

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating

  9. Foundry Coating Technology: A Review

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2011-01-01

    is important. In this review, a detailed description of these topics and examples are provided where necessary. A potential area of research in foundry coating development, using sol-gel process is suggested. The application of sol-gel technology in the development of foundry coatings is a novel approach....

  10. Intumescent coatings under fast heating

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2012-01-01

    Intumescent coatings are widely used to delay or minimise the destructive effects of fire. They are usually tested under conditions that simulate the relatively slow build-up of heat in a normal fire. Here, the effects of damage during a fire causing sudden heating of the coating were studied....

  11. Steam initiated hydrotalcite conversion coatings

    Zhou, Lingli; Friis, Henrik; Roefzaad, Melanie

    2018-01-01

    A facile process of exploiting high-temperature steam to deposit nvironmentally friendly hydrotalcite (HT) coatings on Al alloy 6060 was developed in a spray system. Scanning electron microscopy showed the formationf a continuous and conformal coating comprised of a compact mass of crystallites. ...

  12. Evanescent wave assisted nanomaterial coating.

    Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir

    2013-08-01

    In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness optical fiber probes and other plasmonic circuits.

  13. Functional Plasma-Deposited Coatings

    Mykhaylo Pashechko

    2017-12-01

    Full Text Available The paper focuses on the problem of low adhesion of plasma sprayed coatings to the substrate. The subsequent laser treatment modes and their influence on the coating-substrate interface were studied. This allows to decrease the level of metstability of the coating, thus decreasing its hardness down to 11-12 GPa on the surface and to about 9 GPa on depth of 400 µm. The redistribution of alloying elements through solid and liquid diffusion improves mechanical properties and rises the adhesion up to 450 MPa after remelting and up to 90-110 MPa after laser-aided thermal cycling. At he same time, remelting of coating helps to decrease its porosity down to 1%. Obtained complex of properties also allows to improve wear resistance of coatings and to decrease friction factor.

  14. Self-Healing anticorrosive coatings

    Nesterova, Tatyana

    %. The number is lower than anticipated and needs to be confirmed. Finally, a 3-D model, based on Monte-Carlo simulations, has been developed for prediction of healing efficiency of a microcapsule-based anticorrosive coating. Two kinds of cracks were considered: cracks accommodated within the bulk coating...... associated with development and testing of this type of coating. A laboratory investigation, to identify the most suitable method for production of mechanically stable (filled with industrially relevant core materials) and forming a free-flowing powder upon drying microcapsules, has been performed. Four...... reduces the intensity of crack formation (both in number and length) compared to filler-containing coatings and prevents the coating from flaking upon damage. Based on specular gloss measurements, a preliminary critical pigment (microcapsule) concentration (CPVC) value was estimated to about 30 vol...

  15. Understanding particulate coating microstructure development

    Roberts, Christine Cardinal

    How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.

  16. Optical coating preparation

    Belleville, P.; Sabary, F.; Marcel, C.

    2003-01-01

    In order to optimize the properties of optical components, thin film deposition with controlled thickness and refractive index is often needed. Two different deposition techniques are proposed in this article and illustrated with examples: physical vapor deposition (PVD) and liquid sol-gel process (LSG). PVD and LSG techniques are equivalent as far as the following topics are concerned: elaboration of oxide or composite coated material, optical performance, mechanical performance, and laser performance. PVD is better for the elaboration of metallic films, the design of multi-layers or complex pile-up of layers. LSG is better for the treatment of large surfaces, for substrates with complicated shapes and for its low cost. PVD technique has been widely used so it benefited from an industrial maturity and a clean technology concerning wastes and effluents. On the contrary LSG is a new technique not yet widely used in industrial processes but that looks promising. (A.C.)

  17. Novel coating compositions

    Kimura, Tadashi; Kobayashi, Juichi; Nakamoto, Hideo.

    1969-01-01

    An acrylic coating composition rapidly hardenable by irradiating with ionizing radiations or light beams is given using hydroxyl group-containing vinyl monomers, polycarboxylic acid anhydrides, epoxy group-containing vinyl monomers and an organic solvent having a boiling point of at least 120 0 C. The process comprises the steps of first and second reactions. The first reaction takes place between one mol of a hydroxyl group of a basic polymer and at least 0.1 mol of polycarboxylic acid anhydride, wherein the basic polymer has a molecular weight ranging from 5,000 to 100,000 and consists of 1-40% by weight of vinyl monomer containing hydroxyl group, at least 30% of (meth)acrylic monomer and other vinyl monomers if required. The second reaction takes place between one mol of hydroxyl plus a carboxyl group of the thus obtained basic polymer and at least 0.1 mol of an epoxy group-containing vinyl monomer to produce a prepolymer. The prepolymer is mixed with a solvent such as ethyl benzene to produce the coating material. The electron beam accelerator energy level may be 0.1-2.0 MeV. In light beam polymerization, benzoin is particularly utilized as an intensifying substance. In one example, a basic polymer is produced by reacting 39 parts of styrene, 37 parts of ethyl acrylate, 24 parts of 2-hydroxyl ethyl acrylate, 4 parts of dimethyl amino ethyl methacrylate and others. A prepolymer is produced by reacting this basic polymer with 30 parts of glycidyl acrylate and others. (Iwakiri, K.)

  18. How PE tape performs under concrete coating

    Dritt, H.J.

    1984-01-01

    The program objectives were to evaluate the performance of polyethylene tape plant coating and fusion bonded epoxy powder systems with particular respect to the following: 1. Concrete coating application procedures; 2. The shear resistance during laying and retrieving operations of the coating at the various interfaces (a) Pipe and anti-corrosion coating; (b) Anti-corrosion coating and outerwrap; (c) Overlap areas of the anti-corrosion and outerwrap layers; (d) Between concrete and the various corrosion coatings during laying and retrieving operations. 3. Resistance to damage of the coating as a consequence of cracking or slippage of the concrete weight coating. 4. Ability of various coatings to withstand the damage during concrete application by both impact and compression methods; 5. Evaluation of tape and shrink sleeve joint coatings at the cut-back area as well as performance of tape under hot asphalt coating

  19. Preparation of high critical temperature YBa{sub 2}Cu{sub 3}O{sub 7} superconducting coatings by thermal spray; Elaboration par projection a chaud de revetements supraconducteurs a haute temperature critique de type YBa{sub 2}Cu{sub 3}O{sub 7}

    Lacombe, Jacques

    1991-09-20

    The objective of this research thesis is the elaboration of YBa{sub 2}Cu{sub 3}O{sub 7} superconducting coatings by thermal spray. These coatings must have a high adherence, a high cohesion, and the best possible electrical characteristics. The author first briefly presents physical-chemical characteristics of this ceramic, and proposes a bibliographical synthesis on thick coatings prepared by thermal spray. In the next parts, he studies and describes conditions of elaboration of poly-granular coatings of YBa{sub 2}Cu{sub 3}O{sub 7}, and their structural and electric characteristics [French] Des revetements epais de YBa{sub 2}Cu{sub 3}O{sub 7} ont ete elabores par projection a chaud sur des substrats d'acier inoxydable revetus d'une sous-couche de Ni-Cr-Al-Y. Les principales etapes du processus de fabrication sont les suivantes: - preparation de la poudre par voie humide selon un procede mis au point au C.E.R.E.M., - realisation des revetements epais par projection a chaud de cette poudre selon trois differentes techniques: projection plasma atmospherique, projection plasma sous pression reduite, projection flamme oxyacetylenique. - traitement thermique en deux etapes des revetements pour recristalliser la phase YBa{sub 2}Cu{sub 3}O{sub 7} et la reoxygener (traitement thermique dans un four sous oxygene). Les depots elabores selon cette voie sont adherents et homogenes a la fois en composition et en morphologie. La phase supraconductrice YBa{sub 2}Cu{sub 3}O{sub 7} determinee par diffraction de rayons X est bien cristallisee; elle se presente sous forme de plaquettes d'environ 10 μm de long et 1 μm d'epaisseur sans orientation preferentielle. Les revetements realises par projection plasma atmospherique presentent les meilleures caracteristiques electriques: Tc(R=0) = 90.5K; ΔTc = 1K; ρ (300 K) = 0.7 - 0.8 mΩ.cm; Jc(77 K,0 T) = 1000 A/cm{sup 2}. Les proprietes d'ecrantage magnetique ont ete comparees a celles de materiaux utilises pour le blindage magnetique

  20. Avian Egg and Egg Coat.

    Okumura, Hiroki

    2017-01-01

    An ovulated egg of vertebrates is surrounded by unique extracellular matrix, the egg coat or zona pellucida, playing important roles in fertilization and early development. The vertebrate egg coat is composed of two to six zona pellucida (ZP) glycoproteins that are characterized by the evolutionarily conserved ZP-domain module and classified into six subfamilies based on phylogenetic analyses. Interestingly, investigations of biochemical and functional features of the ZP glycoproteins show that the roles of each ZP-glycoprotein family member in the egg-coat formation and the egg-sperm interactions seemingly vary across vertebrates. This might be one reason why comprehensive understandings of the molecular basis of either architecture or physiological functions of egg coat still remain elusive despite more than 3 decades of intensive investigations. In this chapter, an overview of avian egg focusing on the oogenesis are provided in the first section, and unique features of avian egg coat, i.e., perivitelline layer, including the morphology, biogenesis pathway, and physiological functions are discussed mainly on chicken and quail in terms of the characteristics of ZP glycoproteins in the following sections. In addition, these features of avian egg coat are compared to mammalian zona pellucida, from the viewpoint that the structural and functional varieties of ZP glycoproteins might be associated with the evolutionary adaptation to their reproductive strategies. By comparing the egg coat of birds and mammals whose reproductive strategies are largely different, new insights into the molecular mechanisms of vertebrate egg-sperm interactions might be provided.

  1. Intumescent Coatings as Fire Retardants

    Parker, J. A.; Fohlen, G. M.; Sawko, P. M.; Fish, R. H.

    1970-01-01

    The development of fire-retardant coatings to protect surfaces which may be exposed to fire or extreme heat is a subject of intense interest to many industries. A fire-retardant paint has been developed which represents a new chemical approach for preparing intumescent coatings, and potentially, is very important to fire-prevention authorities. The requirements for a superior coating include ease of application, suitability to a wide variety of surfaces and finishes, and stability over an extended period of time within a broad range of ambient temperature and humidity conditions. These innovative coatings, when activated by the heat of a fire, react to form a thick, low-density, polymeric coating or char layer. Water vapor and sulphur dioxide are released during the intumescent reaction. Two fire-protection mechanisms thus become available: (1) the char layer retards the flow of heat, due to the extremely low thermal conductivity; and (2) water vapor and sulfur dioxide are released, providing fire quenching properties. Still another mechanism functions in cases where the char, by virtue of its high oxidation resistance and low thermal conductivity, reaches a sufficiently high temperature to re-radiate much of the incident heat load. The coatings consist of dispersions of selective salts of a nitro-amino-arornatic compound. Specifically, para-nitroaniline bisulfate and the ammonium salt of para-nitroaniline-ortho sulphuric acid (2-amino-5-nitrobenzenesulphuric acid) are used. Suitable vehicles are cellulose nitrate of lacquer grade, a nitrite-phenolic modified rubber, or epoxy-polysulfide copolymer. Three separate formulations have been developed. A solvent is usually employed, such as methylethyl ketone, butyl acetate, or toluene, which renders the coatings suitably thin and which evaporates after the coatings are applied. Generally, the intumescent material is treated as insoluble in the vehicle, and is ground and dispersed in the vehicle and solvent like an

  2. Integrated Glass Coating Manufacturing Line

    Brophy, Brenor [Enki Technology Inc., San Jose, CA (United States)

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs and a detailed deployment plan for the equipment.

  3. Laser-based coatings removal

    Freiwald, J.G.; Freiwald, D.A.

    1995-01-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D ampersand D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings

  4. Hydrogen permeation resistant phosphate coatings

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal wherein the metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface thereof. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 0 7 . (author)

  5. Hydrogen permeation resistant phosphate coatings

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal is described. The metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 O 7 . (author)

  6. Laser-based coatings removal

    Freiwald, J.G.; Freiwald, D.A. [F2 Associates, Inc., Albuquerque, NM (United States)

    1995-10-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D&D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings.

  7. Experimental evaluation of coating delamination in vinyl coated metal forming

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min; Lee, Jung Min; Byoen, Sang Doek; Lee, Soen Bong

    2012-01-01

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications

  8. Experimental evaluation of coating delamination in vinyl coated metal forming

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min [Pusan National Univ., Busan (Korea, Republic of); Lee, Jung Min [Korea Institute of Industrial Technology, Busan (Korea, Republic of); Byoen, Sang Doek [HA Digital Engineering Gr., Seongsan Gu (Korea, Republic of); Lee, Soen Bong [Keimyung Univ., Daegu (Korea, Republic of)

    2012-10-15

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications.

  9. Water permeability of pigmented waterborne coatings

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.

    2013-01-01

    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible

  10. Radiation cured coatings for fiber optics

    Ketley, A.D.; Morgan, C.R.

    1978-01-01

    A continuous protective coating is formed on a fiber optic by coating the fiber optic in a bath of a liquid radiation curable composition at a temperature up to 90 0 C and exposing the coated conductor to ultraviolet or high energy ionizing radiation to cure the coating

  11. Hex Chrome Free Coatings for Electronics Overview

    Kessel, Kurt

    2013-01-01

    The overall objective of the Hex Chrome Free Coatings for Electronics project is to evaluate and test pretreatment coating systems not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders.

  12. Comparison of additive amount used in spin-coated and roll-coated organic solar cells

    Cheng, Pei; Lin, Yuze; Zawacka, Natalia Klaudia

    2014-01-01

    All-polymer and polymer/fullerene inverted solar cells were fabricated by spin-coating and roll-coating processes. The spin-coated small-area (0.04 cm(2)) devices were fabricated on indium tin oxide (ITO) coated glass substrates in nitrogen. The roll-coated large-area (1.0 cm(2)) devices were...

  13. Overlay metallic-cermet alloy coating systems

    Gedwill, M.A.; Glasgow, T.K.; Levine, S.R.

    1982-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures

  14. Overlay metallic-cermet alloy coating systems

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  15. Seal coat binder performance specifications.

    2013-11-01

    Need to improve seal coat binder specs: replace empirical tests (penetration, ductility) with : performance-related tests applicable to both : unmodified and modified binders; consider temperatures that cover entire in service : range that are tied t...

  16. Protective coatings for commercial particulates

    Kindl, B.; Teng, Y.H.; Liu, Y.L.

    1994-01-01

    SiC/Al composites are in large-scale production with Al-Si alloy matrices. The same composites with pure Al or low Si matrices need diffusion barriers on the SiC reinforcement to control the interfacial reaction. The present paper describes various approaches taken to obtain protective coatings...... of alumina and zirconia on SiC particulates by sol-gel techniques. Aqueous and organic precursors have been used. The extent of the reaction, i.e., the Si and Al4C3 content in the matrix, was determined by differential thermal analysis and X-ray diffraction. The reaction rates of some coated particulates...... in liquid Al are decreased by as much as one order of magnitude during the first 15 min of immersion. Pretreatments of the SiC surface, the composition and thickness of the coating interphase and heat treatments of the coated materials have been studied, and are discussed in relation to their effect...

  17. Cementless Hydroxyapatite Coated Hip Prostheses

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848

  18. Black Sprayable Molecular Adsorber Coating

    National Aeronautics and Space Administration — The main objective of this technology project is to develop, optimize, and flight qualify a black version of the molecular adsorber coating and a conductive version...

  19. Self-stratifying antimicrobial coatings

    Yagci, M.B.

    2012-01-01

    Today, antimicrobial polymers/coatings are widely used in various areas, such as biomedical devices, pharmaceuticals, hospital buildings, textiles, food processing, and contact lenses, where sanitation is needed. Such wide application facilities have made antimicrobial materials very attractive for

  20. Smart Coatings for Corrosion Protection

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  1. Dielectric coatings on metal substrates

    Glaros, S.S.; Baker, P.; Milam, D.

    1976-01-01

    Large aperture, beryllium substrate-based mirrors have been used to focus high intensity pulsed laser beams. Finished surfaces have high reflectivity, low wavefront distortion, and high laser damage thresholds. This paper describes the development of a series of metallic coatings, surface finishing techniques, and dielectric overcoatings to meet specified performance requirements. Beryllium substrates were coated with copper, diamond-machined to within 5 micro-inches to final contour, nickel plated, and abrasively figured to final contour. Bond strengths for several bonding processes are presented. Dielectric overcoatings were deposited on finished multimetallic substrates to increase both reflectivity and the damage thresholds. Coatings were deposited using both high and low temperature processes which induce varying stresses in the finished coating substrate system. Data are presented to show the evolution of wavefront distortion, reflectivity, and damage thresholds throughout the many steps involved in fabrication

  2. Cementless Hydroxyapatite Coated Hip Prostheses

    Antonio Herrera

    2015-01-01

    Full Text Available More than twenty years ago, hydroxyapatite (HA, calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  3. Electrically conductive polymer concrete coatings

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  4. Nanocrystalline diamond coatings for machining

    Frank, M.; Breidt, D.; Cremer, R. [CemeCon AG, Wuerselen (Germany)

    2007-07-01

    This history of CVD diamond synthesis goes back to the fifties of the last century. However, the scientific and economical potential was only gradually recognized. In the eighties, intensive worldwide research on CVD diamond synthesis and applications was launched. Industrial products, especially diamond-coated cutting tools, were introduced to the market in the middle of the nineties. This article shows the latest developments in this area, which comprises nanocrystalline diamond coating structures. (orig.)

  5. Dry and coating of powders

    Alonso, M.; Alguacil, F. J.

    1999-01-01

    This paper presents a review on the mixing and coating of powders by dry processes. The reviews surveys fundamental works on mixture characterization (mixing index definitions and sampling techniques), mixing mechanisms and models, segregation with especial emphasis on free-surface segregation, mixing of cohesive powders and interparticle forces, ordered mixing (dry coating) including mechanism, model and applications and mixing equipment selection. (Author) 180 refs

  6. Silicone nanocomposite coatings for fabrics

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  7. Coating of silicon pore optics

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...

  8. Damage-resistant brittle coatings

    Lawn, B.R.; Lee, K.S. [National Inst. of Stand. and Technol., Gaithersburg, MD (United States). Mater. Sci. and Eng. Lab.; Chai, H. [Tel Aviv Univ. (Israel). Faculty of Engineering; Pajares, A. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica; Kim, D.K. [Korea Advanced Inst. of Science and Technolgy, Taejon (Korea). Dept. of Materials Science and Engineering; Wuttiphan, S. [National Metal and Materials Technology Center, Bangkok (Thailand); Peterson, I.M. [Corning Inc., NY (United States); Hu Xiaozhi [Western Australia Univ., Nedlands, WA (Australia). Dept. of Mechanical and Materials Engineering

    2000-11-01

    Laminate structures consisting of hard, brittle coatings and soft, tough substrates are important in a wide variety of engineering applications, biological structures, and traditional pottery. In this study the authors introduce a new approach to the design of damage-resistant brittle coatings, based on a combination of new and existing relations for crack initiation in well-defined contact-induced stress fields. (orig.)

  9. Corrosion resistant neutron absorbing coatings

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. Material Science Smart Coatings

    Rubinstein, A. I. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Sabirianov, R. F. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materials (εC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  11. Silane based coating of aluminium mold

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  12. Switchable antifouling coatings and uses thereof

    Denton, Michele L. Baca; Dirk, Shawn M.; Johnson, Ross Stefan

    2017-02-28

    The present invention relates to antifouling coatings capable of being switched by using heat or ultraviolet light. Prior to switching, the coating includes an onium cation component having antimicrobial and antibacterial properties. Upon switching, the coating is converted to a conjugated polymer state, and the cationic component is released with any adsorbed biofilm layer. Thus, the coatings herein have switchable and releasable properties. Methods of making and using such coatings are also described.

  13. Graphene: corrosion-inhibiting coating.

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  14. Polymeric Coatings for Combating Biocorrosion

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  15. Electron beam-cured coating

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  16. Coatings and Tints of Spectacle Lenses

    H. Zeki Büyükyıldız

    2012-10-01

    Full Text Available Spectacle lenses are made of mineral or organic (plastic materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1 Anti-reflection coatings, 2 Hard coatings, 3 Clean coat, 4 Mirror coatings, 5 Color tint coating (one of coloring processes, 6 Photochromic coating (one of photochromic processes, and 7 Anti-fog coatings. Anti-reflection coatings reduce unwanted reflections from the lens surfaces and increase light transmission. Hard coatings are applied for preventing the plastic lens surface from scratches and abrasion. Hard coatings are not required for the mineral lenses due to their hardness. Clean coat makes the lens surface smooth and hydrophobic. Thus, it prevents the adherence of dust, tarnish, and dirt particles on the lens surface. Mirror coatings are applied onto the sunglasses for cosmetic purpose. Color tinted and photochromic lenses are used for sun protection and absorption of the harmful UV radiations. Anti-fog coatings make the lens surface hydrophilic and prevent the coalescence of tiny water droplets on the lens surface that reduces light transmission. (Turk J Ophthalmol 2012; 42: 359-69

  17. Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

    Kyoungjin Kim

    2011-01-01

    Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while ...

  18. Pin Wire Coating Trip Report

    Spellman, G P

    2004-01-01

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there

  19. Advanced Marine Coatings for Naval Vessels - Phase 1. Antifouling and Fouling Release Coatings

    McCarthy, Gregory

    2003-01-01

    ... in combinatorial materials chemistry high-throughput discovery and evaluation methodology. The protective coatings application being addressed is environmentally compliant antifouling and fouling release coating for Navy ships...

  20. Process for preparing coating materials

    Ryoke, Hideyasu; Kobayashi, Juichi; Kobayashi, Kei.

    1972-01-01

    A coating material curable with ionizing radiations or ultraviolet radiation can be prepared by reacting a compound (A) having one OH group and at least one α,β-ethylenic or allyl group with a polyisocyanate. (A) is a diester of a dicarboxylic acid. One of the ester groups may have a terminal α,β-ethylenic or allyl group and the other contains one OH and one α,β-ethylenic or allyl group. (A) is reacted with a polyisocyanate to yield an urethane. The latter may be diluted with a vinyl monomer. When exposed to a radiation, the coating material cures to give a film excellent in adhesion, impact strength and resistances to pollution, water and solvents. Dose of the ionizing radiation (α-, β-, γ-rays, electron beams) is 0.2-20 Mrad. In one example, 116 parts of 2-hydroxyethyl acrylate was reacted with 148 parts of phthalic anhydride and 142 parts of glycidyl methacrylate to give (A). (A) was reacted with 87 parts of tolylenediisocyanate. A metallic panel was coated with the coating material and cured with electron beams (5 Mrad). Pencil hardness was H, and gel fraction measured in acetone was above 97%. The coating was excellent in resistances to solvent and chemicals, impact strength and adhesion. (Kaichi, S.)

  1. Chromate conversion coatings and their current application

    P. Pokorny

    2016-04-01

    Full Text Available This paper describes formation, composition and possible production technologies of application chromate coatings. Summation of common examples of applications of these coatings in corrosion protection of metals and alloys is provided. Individual chromate coatings are divided by their dominant anions either with CrVI or CrIII. Restrictions of chromate coatings with dominantly CrVI and related toxicity of hexavalent chromium is discussed in detail. In conclusion, examples of both chromium and other, alternative coatings are summed up. Application of these coatings as a protection for concrete hot-dip galvanized reinforcement is also reviewed.

  2. Radiation curable compositions useful as transfer coatings

    McCarty, W.H.; Nagy, F.A.; Guarino, J.P.

    1983-01-01

    The invention is on a method for applying a coating to a thin porous substrate and reducing absorption of the coating into the substrate by applying a radiation-curable composition to a carrying web; the radiation-curable coating composition having a crosslink density of 0.02 to about 1.0 determined by calculation of the gram moles of branch points per 100 grams of uncured coating, and a glass transition temperature of the radiation cured coating within the approximate range of -80 degrees to +100 degrees C. The carrying web being of a nature such that the coating composition, when cured, will not adhere to its surface

  3. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Destri, Giovanni Li; Marletta, Giovanni; Rezwan, Kurosch

    2015-01-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic

  4. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Pardun, Karoline [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Treccani, Laura, E-mail: treccani@uni-bremen.de [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Volkmann, Eike [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Streckbein, Philipp [University Hospital, Justus-Liebig-University Giessen, Department of Cranio-Maxillo-Facial Surgery, Klinikstrasse 33, 35385 Giessen (Germany); Heiss, Christian [University Hospital of Giessen-Marburg, Department of Trauma Surgery, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany, (Germany); Laboratory of Experimental Surgery, Kerkraderstrasse 9, 35392 Giessen (Germany); Destri, Giovanni Li; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany)

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic.

  5. Optical characterization of antirelaxation coatings

    Tsvetkov, S.; Gateva, S.; Cartaleva, S.; Mariotti, E.; Nasyrov, K.

    2018-03-01

    Antirelaxation coatings (ARC) are used in optical cells containing alkali metal vapor to reduce the depolarization of alkali atoms after collisions with the cell walls. The long-lived ground state polarization is a basis for development of atomic clocks, magnetometers, quantum memory, slow light experiments, precision measurements of fundamental symmetries etc. In this work, a simple method for measuring the number of collisions of the alkali atoms with the cell walls without atomic spin randomization (Nasyrov et al., Proc. SPIE (2015)) was applied to characterize the AR properties of two PDMS coatings prepared from different solutions in ether (PDMS 2% and PDMS 5%). We observed influence of the light-induced atomic desorption (LIAD) on the AR properties of coatings.

  6. Radiation-curable coating composition

    Mibae, Jiro; Kawamura, Hiroshi; Takahashi, Masao.

    1970-01-01

    A radiation-curable coating composition, suitable for metal precoating, is provided. The composition is prepared by mixing 50 to 90 parts of a long chain fatty acid ester (A) with 10 to 50 parts of monomer (B) which is copolymerizable with (A). (A) is prepared by reacting a dimer acid (particularly the dimer of linolenic acid) with hydroxyalkyl methacrylate or glycidyl methacrylate. Upon irradiation with electron beams (0.1 to 3 MeV) the composition cures to yield a coating of high adhesion, impact resistance and bending resistance. In one example, 100 g of dimer acid (Versadime 216, manufactured by General Mills) was esterified with 50 g of 2-hydroxyethyl methacrylate. A zinc plated iron plate was coated with the product and irradiated with electron beams (2 Mrad). Pencil hardness was F; adhesion 0: impact resistance (Du Pont) 1 kg x 30 cm; bending resistance 2T. (Kaichi, S.)

  7. Evaluation of End Mill Coatings

    L. J. Lazarus; R. L. Hester,

    2005-08-01

    Milling tests were run on families of High Speed Steel (HSS) end mills to determine their lives while machining 304 Stainless Steel. The end mills tested were made from M7, M42 and T15-CPM High Speed Steels. The end mills were also evaluated with no coatings as well as with Titanium Nitride (TiN) and Titanium Carbo-Nitride (TiCN) coatings to determine which combination of HSS and coating provided the highest increase in end mill life while increasing the cost of the tool the least. We found end mill made from M42 gave us the largest increase in tool life with the least increase in cost. The results of this study will be used by Cutting Tool Engineering in determining which end mill descriptions will be dropped from our tool catalog.

  8. Studies on soft centered coated snacks.

    Pavithra, A S; Chetana, Ramakrishna; Babylatha, R; Archana, S N; Bhat, K K

    2013-04-01

    Roasted groundnut seeds, amaranth and dates pulp formed the center filling which was coated with sugar, breadings, desiccated coconut and roasted Bengalgram flour (BGF) to get 4 coated snacks. Physicochemical characteristics, microbiological profile, sorption behaviour and sensory quality of 4 coated snacks were determined. Centre filling to coating ratio of the products were in the range of 3:2-7:1, the product having BGF coating had the thinnest coating. Center filling had soft texture and the moisture content was 10.2-16.2% coating had lower moisture content (4.4-8.6%) except for Bengal gram coating, which had 11.1% moisture. Sugar coated snack has lowest fat (11.6%) and protein (7.2%) contents. Desiccated coconut coated snack has highest fat (25.4%) and Bengal gram flour coated snack had highest protein content (15.4%). Sorption studies showed that the coated snack had critical moisture content of 11.2-13.5%. The products were moisture sensitive and hence require packaging in films having higher moisture barrier property. In freshly prepared snacks coliforms, yeast and mold were absent. Mesophillic aerobes count did not show significant change during 90 days of storage at 27 °C and 37 °C. Sensory analysis showed that products had a unique texture due to combined effect of fairly hard coating and soft center. Flavour and overall quality of all the products were rated as very good.

  9. Nano-Ceramic Coated Plastics

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  10. On niobium sputter coated cavities

    Arnolds-Mayer, G.; Kaufmann, U.; Downar, H.

    1988-01-01

    To coat copper cavities with a thin film of niobium, facilities for electropolishing and sputter deposition have been installed at Dornier. Experiments have been performed on samples to optimize electropolishing and deposition parameters. In this paper, characteristics concerning surface properties, adhesion of the niobium film to the copper substrate, and film properties were studied on planar samples. A 1.5 GHz single cell cavity made from oxygen free high conductivity (OFHC) copper was sputter coated twice. First rf measurements were performed in the temperature range from 300 K to 2 K

  11. Corrosion-resistant coating development

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  12. Coated carbon nanotube array electrodes

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  13. Laser-based coatings removal

    Freiwald, J.G.; Freiwald, D.

    1995-01-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D ampersand D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building

  14. Aesthetic coatings for concrete bridge components

    Kriha, Brent R.

    This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application. A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to coating manufacturers, bridge contractors, and various DOT offices to identify high performing coating systems and best practices for surface preparation and application. These efforts supplemented a literature review investigating recent publications related to formulation, selection, surface preparation, application, and performance evaluation of coating materials.

  15. Coated foams, preparation, uses and articles

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  16. Friction- and wear-reducing coating

    Zhu, Dong [Farmington Hills, MI; Milner, Robert [Warren, MI; Elmoursi, Alaa AbdelAzim [Troy, MI

    2011-10-18

    A coating includes a first layer of a ceramic alloy and a second layer disposed on the first layer and including carbon. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12. A method of coating a substrate includes cleaning the substrate, forming the first layer on the substrate, and depositing the second layer onto the first layer to thereby coat the substrate.

  17. Functional coatings: the sol-gel approach

    Belleville, Ph.

    2010-01-01

    CEA's sol-gel laboratory is specialized in the development of innovative sol-gel optical coatings and has extended its application field to membrane materials and coatings for energy conversion, to electric coatings for microelectronics devices and to thin films for gas sensing. This article describes, by way of examples, the laboratory's research on sol-gel functional coatings, including nano-material synthesis, organic-inorganic hybrid-based solution preparation as well as deposition process development and prototyping. (author)

  18. Sputter coating of microspherical substrates by levitation

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  19. Laser reflector with an interference coating

    Vol'pyan, O D; Semenov, A A; Yakovlev, P P

    1998-01-01

    An analysis was made of the reflectivity of interference coatings intended for the use in optical pumping of solid-state lasers. Ruby and Nd 3+ :YAG lasers were used as models in comparative pumping efficiency measurements, carried out employing reflectors with interference and silver coatings. Estimates of the service life of reflectors with interference coatings were obtained. The power of a thermo-optical lens was reduced by the use of such coatings in cw lasers. (laser system components)

  20. Absorptive coating for aluminum solar panels

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  1. Multispectral Image Analysis for Astaxanthin Coating Classification

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2012-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. The pellets were divided into two groups: one with pellets coated using synthetic astaxanthin in fish oil and the other with pellets coated...

  2. ETV Program Report: Coatings for Wastewater Collection ...

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the University of Houston. Testing was conducted over a period of six months to evaluate the coating’s (1) chemical resistance and (2) bonding strength for infrastructure applications. For chemical resistance, coated concrete and clay bricks with holidays (holes created in the coating) were used to evaluate the chemical resistance of the coating/substrate bond under a corrosive environment. Twenty coated concrete (dry and wet) and 20 coated clay brick (dry and wet) specimens were exposed to DI water and sulfuric acid solution (pH=1), and the specimens were visually inspected and weight changes measured. Evaluation of the coating-to-substrate bonding strength was determined using two modified ASTM test methods – one to determine bond strength of the coating with two specimens sandwiched together using the coating, and the second to determine the bond strength by applying a tensile load to the coating applied to specimens of each substrate. Forty-eight bonding tests were performed over the six month evaluation. The tests resulted in the following conclusions about Standard Cement’s SEC 4553 coating: • After the six-month chemi

  3. Study on nano-coating on uranium

    Zhang Yongbin; Xian Xiaobin; Lu Xuechao; Lang Dingmu; Li Kexue; Tang Kai

    2002-01-01

    The SiO 2 , TiO 2 coatings on uranium have been prepared by sol-gel method under different processes. By evaluating the coating quality with SEM, the optimal process parameters have been determined. Corrosion test shows that the coatings have anticorrosion property

  4. Latest Developments in PVD Coatings for Tooling

    Gabriela Strnad

    2010-06-01

    Full Text Available The paper presents the recent developments in the field of PVD coating for manufacturing tools. A review of monoblock, multilayer, nanocomposite, DLC and oxinitride coatings is discussed, with the emphasis on coatings which enables the manufacturers to implement high productivity processes such as high speed cutting and dry speed machining.

  5. Method for coating substrates and mask holder

    Bijkerk, Frederik; Yakshin, Andrey; Louis, Eric; Kessels, M.J.H.; Maas, Edward Lambertus Gerardus; Bruineman, Caspar

    2004-01-01

    When coating substrates it is frequently desired that the layer thickness should be a certain function of the position on the substrate to be coated. To control the layer thickness a mask is conventionally arranged between the coating particle source and the substrate. This leads to undesirable

  6. Sonochemical coating of magnetite nanoparticles with silica.

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  7. Amphiphilic copolymers for fouling-release coatings

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    of the coatings [9,10,11]. This work shows the effect of an amphiphilic copolymer that induces hydrophilicity on the surface of the silicone-based fouling release coatings. The behaviour of these copolymers within the coating upon immersion and the interaction of these surface-active additives with other...

  8. Modifications of optical properties with ceramic coatings

    Besmann, T.M.; Abdel-Latif, A.I.

    1990-01-01

    Coatings of ceramic materials that exhibited high thermal absorptivities and emissivities were chemical vapor deposited on graphite and refractory metals. In this paper the coatings prepared were SiC and B 4 C, and the substrates used were graphite, molybdenum, titanium, and Nb-1Zr. The coatings are characterized with regard to adherence, optical properties, and response to potential harsh environments

  9. Coat Hangers across the Curriculum

    Kibble, Bob

    2012-01-01

    There are many ways in which wire coat hangers can be used other than for suspending clothes. The author has been making use of them in his teaching for many years--copying ideas from colleagues and creating some for himself. In this article, he shares five examples that can enrich learning about science. (Contains 6 figures.)

  10. Electron curing of surface coatings

    Nablo, S.V.

    1974-01-01

    The technical development of electron curing of surface coatings has received great impetus since 1970 from dramatic changes in the economics of the conventional thermal process. The most important of these changes are reviewed, including: the Clear Air Act, increasing cost and restrictive allocation of energy, decreased availability and increased costs of solvents, competitive pressure for higher line productivity. The principles of free-radical initiated curing as they pertain to industrial coatings are reviewed. Although such electron initiated processes have been under active development for at least two decades, high volume production applications on an industrial scale have only recently appeared. These installations are surveyed with emphasis on the developments in machinery and coatings which have made this possible. The most significant economic advantages of electron curing are presented. In particular, the ability of electron curing to eliminate substrate damage and to eliminate the curing station (oven) as the pacing element for most industrial surface coating curing applications is discussed. Examples of several new processes of particular interest in the textile industry are reviewed, including the curing of transfer cast urethane films, flock adhesives, and graftable surface finishes

  11. Polymer-coated quantum dots

    Tomczak, N.; Liu, Rongrong; Vancso, Gyula J.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of

  12. Industrial Coatings at Extreme Conditions

    Subramanian, Srinath; Pérez Hornero, Clara; Pedersen, Lars Thorslund

    With the gradual depletion of oil wells operable at relatively lower temperatures and pressures, the upstream oil industry relies on High Pressure High Temperature (HPHT) wells to source crude oil and gas. HPHT well extraction and processing require anticorrosive coatings applied on substrates...

  13. Water transport in multilayer coatings

    Baukh, V.

    2012-01-01

    Coatings form the interface between structures and the environment in many application domains. They play a crucial role in providing protection, e.g. against corrosion, they form a barrier against an aggressive environment and they create the aesthetic appearance. To fulfill such functionalities,

  14. UNDERWATER COATINGS FOR CONTAMINATION CONTROL

    Julia L. Tripp; Kip Archibald; Ann Marie Phillips; Joseph Campbell

    2004-01-01

    The Idaho National Laboratory (INL) deactivated several aging nuclear fuel storage basins. Planners for this effort were greatly concerned that radioactive contamination present on the basin walls could become airborne as the sides of the basins became exposed during deactivation and allowed to dry after water removal. One way to control this airborne contamination was to fix the contamination in place while the pool walls were still submerged. There are many underwater coatings available on the market for marine, naval and other applications. A series of tests were run to determine whether the candidate underwater fixatives were easily applied and adhered well to the substrates (pool wall materials) found in INL fuel pools. Lab-scale experiments were conducted by applying fourteen different commercial underwater coatings to four substrate materials representative of the storage basin construction materials, and evaluating their performance. The coupons included bare concrete, epoxy painted concrete, epoxy painted carbon steel, and stainless steel. The evaluation criteria included ease of application, adherence to the four surfaces of interest, no change on water clarity or chemistry, non-hazardous in final applied form and be proven in underwater applications. A proprietary two-part, underwater epoxy owned by S. G. Pinney and Associates was selected from the underwater coatings tested for application to all four pools. Divers scrubbed loose contamination off the basin walls and floors using a ship hull scrubber and vacuumed up the sludge. The divers then applied the coating using a special powered roller with two separate heated hoses that allowed the epoxy to mix at the roller surface was used to eliminate pot time concerns. The walls were successfully coated and water was removed from the pools with no detectable airborne contamination releases

  15. Atomically Bonded Transparent Superhydrophobic Coatings

    Aytug, Tolga [ORNL

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  16. Ultrasonic tests on materials with protective coatings

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  17. Preparation of sustained release capsules by electrostatic dry powder coating, using traditional dip coating as reference.

    Yang, Yan; Shen, Lian; Yuan, Feng; Fu, Hui; Shan, Weiguang

    2018-05-30

    Lately, a great deal of attention is being paid to capsule coating, since the coat protects active pharmaceutical ingredients (APIs) from damage, as is in the case of tablet and pellet. However, moisture and heat sensitivity of gelatin shells make it challenging to coat capsules using the conventional aqueous coating techniques. In an effort to overcome this challenge, the present study aims to coat capsules using two different coating techniques: electrostatic dry powder coating (EDPC) and dip coating (DC). Both capsule coatings and free films were prepared by these two coating techniques, and the effects of coating formulations and processing conditions on the film quality were investigated. The corresponding drug in vitro release and mechanisms were characterized and compared. The results of dissolution tests demonstrated that the drug release behavior of both EDPC and DC coated capsules could be optimized to a sustained release of 24 h, following the Fick's diffusion law. The results of this study suggest that EDPC method is better than DC method for coating capsules, with respect to the higher production efficiency and better stability, indicating that this dry coating technology has promised in gelatin capsule coating applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Levitation, coating, and transport of particulate materials

    Hendricks, C.D.

    1981-01-01

    Several processes in various fields require uniformly thick coatings and layers on small particles. The particles may be used as carriers of catalytic materials (platinum or other coatings), as laser fusion targets (various polymer or metallic coatings), or for biological or other tracer or interactive processes. We have devised both molecular beam and electro-dynamic techniques for levitation of the particles during coating and electrodynamic methods of controlling and transporting the particles between coating steps and to final use locations. Both molecular beam and electrodynamic techniques are described and several advantages and limitations of each will be discussed. A short movie of an operating electrodynamic levitation and transport apparatus will be shown

  19. Coatings for fast breeder reactor components

    Johnson, R.N.

    1984-04-01

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  20. Transparent nanocrystalline diamond coatings and devices

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  1. Evaluation of irradiated coating material specimens

    Lee, Yong Jin; Nam, Seok Woo; Cho, Lee Moon

    2007-12-01

    Evaluation result of irradiated coating material specimens - Coating material specimens radiated Gamma Energy(Co 60) in air condition. - Evaluation conditions was above 1 X 10 4 Gy/hr, and radiated TID 2.0 X 10 6 Gy. - The radiated coating material specimens, No Checking, Cracking, Flaking, Delamination, Peeling and Blistering. - Coating system at the Kori no. 1 and APR 1400 Nuclear power plant, evaluation of irradiated coating materials is in accordance with owner's requirement(2.0 X 10 6 Gy)

  2. Statistical experimental design for refractory coatings

    McKinnon, J.A.; Standard, O.C.

    2000-01-01

    The production of refractory coatings on metal casting moulds is critically dependent on the development of suitable rheological characteristics, such as viscosity and thixotropy, in the initial coating slurry. In this paper, the basic concepts of mixture design and analysis are applied to the formulation of a refractory coating, with illustration by a worked example. Experimental data of coating viscosity versus composition are fitted to a statistical model to obtain a reliable method of predicting the optimal formulation of the coating. Copyright (2000) The Australian Ceramic Society

  3. A Multifunctional Coating for Autonomous Corrosion Control

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  4. Black molecular adsorber coatings for spaceflight applications

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  5. Solar Absorptance of Cermet Coatings Evaluated

    Jaworske, Donald A.

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of solar Stirling convertors. In this application, the key role of the cermet coating is to absorb as much of the incident solar energy as possible. To achieve this objective, the cermet coating has a high solar absorptance value. Cermet coatings are manufactured utilizing sputter deposition, and many different metal and ceramic combinations can be created. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition, and hence, the optical properties of these coatings. The NASA Glenn Research Center has prepared and characterized a wide variety of cermet coatings utilizing different metals deposited in an aluminum oxide ceramic matrix. In addition, the atomic oxygen durability of these coatings has been evaluated.

  6. Armor systems including coated core materials

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  7. Electrical contact arrangement for a coating process

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  8. Electrostatic coating technologies for food processing.

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  9. Nanocomposite Coatings: Preparation, Characterization, Properties, and Applications

    Phuong Nguyen-Tri

    2018-01-01

    Full Text Available Incorporation of nanofillers into the organic coatings might enhance their barrier performance, by decreasing the porosity and zigzagging the diffusion path for deleterious species. Thus, the coatings containing nanofillers are expected to have significant barrier properties for corrosion protection and reduce the trend for the coating to blister or delaminate. On the other hand, high hardness could be obtained for metallic coatings by producing the hard nanocrystalline phases within a metallic matrix. This article presents a review on recent development of nanocomposite coatings, providing an overview of nanocomposite coatings in various aspects dealing with the classification, preparative method, the nanocomposite coating properties, and characterization methods. It covers potential applications in areas such as the anticorrosion, antiwear, superhydrophobic area, self-cleaning, antifouling/antibacterial area, and electronics. Finally, conclusion and future trends will be also reported.

  10. Nanostructured thin films and coatings mechanical properties

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  11. ANTIREFLECTION MULTILAYER COATINGS WITH THIN METAL LAYERS

    L. A. Gubanova

    2016-03-01

    Full Text Available The design of anti-reflective coatings for metal surfaces of Al, Ti, N,i Cr is proposed. The coatings have the form of alternating layers of dielectric/metal/dielectric with the number of cells up to15. The method of calculation of such coatings is proposed. We have calculated the coatings of the type [HfO2/Cr/HfO2]15, [ZrO2/Ti/Al2O3]15, [ZrO2/Cr/ZrO2]15. It is shown that the proposed interference coatings provide reduction of the residual reflectance of the metal several times (from 3.5 to 6.0 in a wide spectral range (300-1000 nm. The proposed coatings can be recommended as anti-reflective coatings for energy saving solar systems and batteries, and photovoltaic cells.

  12. Wear performance of laser processed tantalum coatings

    Dittrick, Stanley; Balla, Vamsi Krishna; Bose, Susmita; Bandyopadhyay, Amit, E-mail: amitband@wsu.edu

    2011-12-01

    This first generation investigation evaluates the in vitro tribological performance of laser-processed Ta coatings on Ti for load-bearing implant applications. Linear reciprocating wear tests in simulated body fluid showed one order of magnitude less wear rate, of the order of 10{sup -4} mm{sup 3}(N.m){sup -1}, for Ta coatings compared to Ti. Our results demonstrate that Ta coatings can potentially minimize the early-stage bone-implant interface micro-motion induced wear debris generation due to their excellent bioactivity comparable to that of hydroxyapatite (HA), high wear resistance and toughness compared to popular HA coatings. Highlights: {yields} In vitro wear performance of laser processed Ta coatings on Ti was evaluated. {yields} Wear tests in SBF showed one order of magnitude less wear for Ta coatings than Ti. {yields} Ta coatings can minimize early-stage micro-motion induced wear debris generation.

  13. High efficiency turbine blade coatings

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  14. Wrinkling of solidifying polymeric coatings

    Basu, Soumendra Kumar

    2005-07-01

    In coatings, wrinkles are viewed as defects or as desired features for low gloss, and texture. In either case, discovering the origin of wrinkles and the conditions that lead to their formation is important. This research examines what wrinkling requires and proposes a mechanism to explain the observations. All curing wrinkling coatings contain multi-functional reactants. Upon curing, all develop a depth-wise gradient in solidification that result in a cross-linked elastic skin atop a viscous bottom layer. It is hypothesized that compressive stress develops in the skin when liquid below diffuses up into the skin. High enough compressive stress buckles the skin to produce wrinkles. The hypothesis is substantiated by experimental and theoretical evidences. Effects of various application and compositional parameters on wrinkle size in a liquid-applied acrylic coating and a powder-applied epoxy coating were examined. All three components, namely resin, cross-linker and catalyst blocked with at least equimolar volatile blocker, proved to be required for wrinkling. The wrinkling phenomenon was modeled with a theory that accounts for gradient generation, cross-linking reaction and skinning; predictions compared well with observations. Two-layer non-curing coatings that have a stiff elastic layer atop a complaint elastic bottom layer wrinkled when the top layer is compressed. The top layer was compressed by either moisture absorption or differential thermal expansion. Experimental observations compared well with predictions from a theory based on force balance in multilayer systems subjected to differential contraction or expansion. A model based on the Flory-Rehner free energy of a constrained cross-linked gel was constructed that predicts the compressive stress generated in a coating when it absorbs solvent. Linear stability analysis predicts that when a compressed elastic layer is attached atop a viscous layer, it is always unstable to buckles whose wavelength exceeds a

  15. Development and electrochemical characterization of Ni‐P coated tungsten incorporated electroless nickel coatings

    Shibli, S.M.A., E-mail: smashibli@yahoo.com; Chinchu, K.S.

    2016-08-01

    Ni‐P-W alloy and composite coatings were prepared by incorporation of sodium tungstate/tungsten and Ni‐P coated tungsten into electroless nickel bath respectively. Good inter-particle interactions among the depositing elements i.e. Ni and P with the incorporating tungsten particles were achieved by means of pre-coated tungsten particle by electroless nickel covering prior to its addition into the electroless bath. The pre-coated tungsten particles got incorporated uniformly into the Ni-P matrix of the coating. The particles and the coatings were characterized at different stages by different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The electroless Ni-P coating incorporated with pre-coated tungsten exhibited considerably high hardness, thickness and deposition rate. The performance and corrosion resistance characteristics of the composite coating incorporated with the nickel coated tungsten were found to be superior over other conventional Ni-P-W ternary alloy coatings currently reported. - Highlights: • An amorphous Ni-P coating was effectively formed on tungsten particles. • Electroless ternary Ni-P-W composite coatings were successfully prepared. • Enhancement in the inter-particle interaction in the Ni-P composite matrix was achieved. • Efficient and uniform incorporation of the composite in the internal layer was evident. • The tungsten incorporated coating possessed effective barrier protection.

  16. Multiphase-Multifunctional Ceramic Coatings

    2013-06-30

    systems for high temperatura applications” “ Estudios de Ferroelasticidad en Sistemas Cerámicos Multifásicos para Aplicaciones en Alta Temperatura ...Ceramic Coatings Performing Organization names: Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional – Unidad Queretaro...materials, Cinvestav. Thesis: “Ferroelasticity studies in multiphase ceramic systems for high temperatura applications”. Her work mainly focused in the

  17. Beryllium coating on Inconel tiles

    Bailescu, V.; Burcea, G.; Lungu, C.P.; Mustata, I.; Lungu, A.M.; Rubel, M.; Coad, J.P.; Matthews, G.; Pedrick, L.; Handley, R.

    2007-01-01

    Full text of publication follows: The Joint European Torus (JET) is a large experimental nuclear fusion device. Its aim is to confine and study the behaviour of plasma in conditions and dimensions approaching those required for a fusion reactor. The plasma is created in the toroidal shaped vacuum vessel of the machine in which it is confined by magnetic fields. In preparation for ITER a new ITER-like Wall (ILW) will be installed on Joint European Torus (JET), a wall not having any carbon facing the plasma [1]. In places Inconel tiles are to be installed, these tiles shall be coated with Beryllium. MEdC represented by the National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest and in direct cooperation with Nuclear Fuel Plant Pitesti started to coat Inconel tiles with 8 μm of Beryllium in accordance with the requirements of technical specification and fit for installation in the JET machine. This contribution provides an overview of the principles of manufacturing processes using thermal evaporation method in vacuum and the properties of the prepared coatings. The optimization of the manufacturing process (layer thickness, structure and purity) has been carried out on Inconel substrates (polished and sand blasted) The results of the optimization process and analysis (SEM, TEM, XRD, Auger, RBS, AFM) of the coatings will be presented. Reference [1] Takeshi Hirai, H. Maier, M. Rubel, Ph. Mertens, R. Neu, O. Neubauer, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G. F. Matthews, R. Mitteau, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, R and D on full tungsten divertor and beryllium wall for JET TIER-like Wall Project, 24. Symposium on Fusion Technology - 11-15 September 2006 -Warsaw, Poland. (authors)

  18. Chrome - Free Aluminum Coating System

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  19. High temperature solar selective coatings

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  20. Chemical Processing of Nanostructured Coatings

    2000-01-01

    in the literature ranging from IR imaging to anti-scratch to smart windows and waveguides. Uhlmann and Towee have taken a survey of the sol-gel...Proteins and enzymes can be encapsulated in silica glass (12), while still retaining their activity. Sol-gel coatings (13,14) of hydroxyapatite should also...Technology, 13, 261-65. 14. Lolpatin, C. M. Pizziloni, V., Alford, T. L., and Lawsaon, T (1998) Hydroxyapatite powders ad thin films prepared by sol

  1. Diamond coating in accelerator structure

    Lin, X.E.

    1998-08-01

    The future accelerators with 1 GeV/m gradient will give rise to hundreds of degrees instantaneous temperature rise on the copper surface. Due to its extraordinary thermal and electric properties, diamond coating on the surface is suggested to remedy this problem. Multi-layer structure, with the promise of even more temperature reduction, is also discussed, and a proof of principle experiment is being carried out

  2. Wear mechanisms of coated hardmetals

    Richter, V.

    2001-01-01

    In the paper several aspects of the wear mechanisms of coated hardmetals, ceramics and super-hard materials (CBN) in machining cast iron are discussed, with particular attention being given to high-speed machining of different cast iron grades. The influence of machining parameters, microstructure, composition and mechanical and chemical properties of the cutting tool and the work-piece material on wear are considered. (author)

  3. Coated Conductors under Tensile Stress

    Antonevici, Anca; Villaume, Alain; Villard, Catherine; Sulpice, Andre; Maron, Pierre Brosse; Bourgault, Daniel; Porcar, Laureline

    2006-01-01

    Critical current dependence versus strain is obtained for in-situ axial stress experiments on ISD YBCO and DyBCO coated conductors. The drop of critical current due to the apparition of first cracks in the superconducting ceramics is related to the passage in the plastic region of the substrate for a strain of about 0.3% and a stress higher then 500MPa. The superconductivity is preserved between the cracks

  4. Electron beam curing of coating

    Fujioka, S.; Fujikawa, Z.

    1974-01-01

    Electron beam curing (EBC) method, by which hardened coating film is obtained by polymerizing and cross-linking paint with electron beam, has finally reached industrialized stage. While about seven items such as short curing time, high efficiency of energy consumption, and homogeneous curing are enumerated as the advantages of EBC method, it has limitations of the isolation requirement from air needing the injection of inert gas, and considerable amount of initial investment. In the electron accelerators employed in EBC method, the accelerating voltage is 250 to 750 kV, and the tube current is several tens of mA to 200 mA. As an example of EBC applications, EBC ''Erio'' steel sheet was developed by the cooperative research of Nippon Steel Corp., Dai-Nippon Printing Co. and Toray Industries, Inc. It is a high-class pre-coated metal product made from galvanized steel sheets, and the flat sheets with cured coating are sold, and final products are fabricated by being worked in various shapes in users. It seems necessary to develop the paint which enables to raise added value by adopting the EBC method. (Wakatsuki, Y.)

  5. High Critical Current Coated Conductors

    Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  6. ALARA trademark 1146 strippable coating

    Fricke, V.

    1999-01-01

    Strippable or temporary coatings are innovative technologies for decontamination that effectively reduce loose contamination at low cost. These coatings have become a viable option during the deactivation and decommissioning of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. The ALARA trademark 1146 strippable coating was demonstrated as part of the Savannah River Site LSDDP and successfully removed transferable (surface) contamination from multiple surfaces (metal and concrete) with an average decontamination factor for alpha contamination of 6.68 and an average percentage of alpha contamination removed of 85.0%. Beta contamination removed was an average DF of 5.55 and an average percentage removed of 82.0%. This paper is an Innovative Technology Summary Report designed to provide potential users with the information they need to quickly determine if a technology would apply to a particular environmental management problem. They also are designed for readers who may recommend that a technology be considered by prospective users. This Innovative Technology offers a 35% cost savings over the Baseline Technology

  7. Oxidation study of Ta–Zr coatings

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Chen, Sin-Min

    2013-02-01

    Refractory metal alloy coatings, such as Mo–Ru and Ta–Ru coatings, have been developed to protect glass molding dies. Forming intermetallic compounds in the coatings inhibits grain growth in high temperature environments when mass producing optical components. After annealing in oxygen containing atmospheres, a surface roughening of the Mo–Ru coatings and a soft oxide layer on the Ta–Ru coatings have been observed in our previous works. Oxidation resistance becomes critical in high-temperature applications. In this study, Ta–Zr coatings were deposited with a Ti interlayer on silicon wafers using direct current magnetron sputtering at 400 °C. The as-deposited Ta–Zr coatings possessed nanocrystallite or amorphous states, depending on the chemical compositions. The annealing treatments were conducted at 600 °C under atmospheres of 50 ppm O{sub 2}–N{sub 2} or 1% O{sub 2}–Ar, respectively. After the annealing treatment, this study investigated variations in crystalline structure, hardness, surface roughness, and chemical composition profiles. Preferential oxidation of Zr in the Ta–Zr coatings was verified using X-ray photoelectron spectroscopy, and the microstructure was observed using transmission electron microscopy. - Highlights: ►The as-deposited Ta-rich Ta–Zr coatings revealed an amorphous structure. ►The Zr-rich coatings presented a crystalline β-Zr phase and an amorphous matrix. ►Zr oxidized preferentially as Ta–Zr coatings annealed at 600 °C. ►The hardness of coatings revealed a parabolic relationship with the oxygen content. ►A protective oxide scale formed on the surface of the crystallized Zr-rich coatings.

  8. Electron beam treatments of electrophoretic ceramic coatings

    De Riccardis, M.F.; Carbone, D.; Piscopiello, E.; Antisari, M. Vittori

    2008-01-01

    In this work a method to densify ceramic coating obtained by electrophoresis and to improve its adhesion to the substrate is proposed. It consists in irradiating the coating surface by electron beam (EB). Alumina and alumina-zirconia coatings were deposited on stainless steel substrates and treated by low power EB. SEM, XRD and TEM characterizations demonstrated that the sintering occurred. Moreover, it is shown that on alumina-zirconia coating the EB irradiation produced a composite material consisting principally of tetragonal zirconia particles immersed in an amorphous alumina matrix. The adhesion stress of EB treated coating was estimated by stud pull test and it was found to be comparable to that of plasma-sprayed coatings

  9. Laser cladding of bioactive glass coatings.

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Crystallization of DNA-coated colloids

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  11. Thin low Z coatings for plasma devices

    Norem, J.; Bowers, D.A.

    1978-05-01

    Coating the walls of the vacuum chamber with beryllium or some other low Z material has been proposed as a possible means of solving the problems of high Z influx into plasmas. We attempt to demonstrate that very thin, low Z coatings are compatible with the operation of plasma devices and beneficial to plasma performance. We determine that the thickness of coating material required is only about 10 monolayers. In a radiation environment, radiation-induced solute segregation should help to maintain the integrity of such thin coatings against diffusion and other processes. We discuss the properties of these thin coatings and possible means of in situ application and maintenance. Since deposition of plasma impurities on the walls will occur anyway, we discuss injection of solid pellets into the plasma as a direct way of introducing impurities which would ultimately serve as coating material

  12. Tungsten thick coatings for plasma facing components

    Riccardi, B.; Pizzuto, A.; Orsini, A.; Libera, S.; Visca, E.; Bertamini, L.; Casadei, F.; Severini, E.; Montanari, R.; Litunovsky, N.

    1998-01-01

    The aim of the R and D activity was to realize thick W coatings on CuCrZr hollow bars and to test the mock ups with respect to thermal fatigue. Eight mock ups provided of 4 mm thick W coating were finally manufactured. The bonding integrity between coating and substrate was checked by means of an Ultrasonic apparatus. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. Macroscopic residual strain measurements were performed by means of 'hole drilling' technique. The activities performed demonstrated the feasibility of thick Tungsten coatings on geometries with more complex residual strain distribution. These coatings are reliable armour of medium heat flux plasma facing component. (author)

  13. Simulation to coating weight control for galvanizing

    Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei

    2013-05-01

    Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.

  14. Cermet coatings for solar Stirling space power

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of a solar Stirling space power convertor. The role of the cermet coating is to absorb as much of the incident solar energy as possible. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition and the solar absorptance of these coatings. Several candidate cermet coatings were created and their solar absorptance was characterized as-manufactured and after exposure to elevated temperatures. Coating composition was purposely varied through the thickness of the coating. As a consequence of changing composition, islands of metal are thought to form in the ceramic matrix. Computer modeling indicated that diffusion of the metal atoms played an important role in island formation while the ceramic was important in locking the islands in place. Much of the solar spectrum is absorbed as it passes through this labyrinth

  15. Microneedle Coating Techniques for Transdermal Drug Delivery

    Rita Haj-Ahmad

    2015-11-01

    Full Text Available Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.

  16. The application of epoxy resin coating in grounding grid

    Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.

    2018-01-01

    Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.

  17. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  18. Cermet Coatings for Solar Stirling Space Power

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic are being considered for the heat inlet surface of a solar Stirling space power converter. This paper will discuss the solar absorption characteristics of as-deposited cermet coatings as well as the solar absorption characteristics of the coatings after heating. The role of diffusion and island formation, during the deposition process and during heating will also be discussed.

  19. Biomarkers in white-coat hypertension

    Martin, Catherine Ann

    2017-01-01

    The introduction of ambulatory blood pressure monitoring in the 1960s provided new insights into the nature of high blood pressure disorders. Blood pressure is now categorised into four quadrants:normotension, masked hypertension, hypertension and white-coat hypertension. In white-coat hypertension blood pressure is elevated when taken at the doctor’s office but normal if taken outside the doctor’s office. Several controversies are associated with white-coat hypertension, which are discuss...

  20. Method to produce catalytically active nanocomposite coatings

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  1. Study of chromate coatings by radioisotope tracing

    Drozda, T.; Maleczki, E.; Farkas, G.

    1984-01-01

    New radioactive tracer methods were developed to determine chromium(III) and total chromium [chromium(III)+chromium(VI)] content simultaneously. They are capable of investigating solutions and the conversion coating itself in the solid phase, respectively. The increase of chromium(III) concentration in the yellow chromate coating, and the chromium(III) to total chromium ratio in the conversion coating were determined as a function of the treating period. (author)

  2. New PVD Technologies for New Ordnance Coatings

    2012-04-01

    characteristics using a Tantalum and a Chrome target; 4) Deposition of Ta coatings and reactive deposition of CrN; 5) Deposition parameters affecting film...Vapor Deposition (PVD); High Power Impulse Magnetron Sputtering (HIPIMS); Modulated Pulsed Power (MPP); Tantalum; Chrome ; Ta coatings; CrN; coating...The pre-production chemicals and acids are hazardous and hexavalent Cr is a known carcinogen. Significant annual expenditures are necessary to

  3. Testing of coatings for the nuclear industry

    Goldberg, G.

    1977-01-01

    Commercial scale nuclear power generating plant coatings must be able to withstand simultaneous exposure both to high humidity, and to cumulative radiation dosage, at elevated temperatures, for the design life of the plant. The coatings must be decontaminable by means other than by stripping, that is, actual physical removal, and must be of sufficient durability to withstand projected conditions of a loss of coolant accident. Tests to show that coatings are expected to do more than retard corrosion and erosion are described

  4. Surface coatings deposited by CVD and PVD

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  5. Method to produce catalytically active nanocomposite coatings

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2017-12-19

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  6. Cold-Sprayed AZ91D Coating and SiC/AZ91D Composite Coatings

    Yingying Wang

    2018-03-01

    Full Text Available As an emerging coating building technique, cold spraying has many advantages to elaborate Mg alloy workpieces. In this study, AZ91D coatings and AZ91D-based composite coatings were deposited using cold spraying. Coatings were prepared using different gas temperatures to obtain the available main gas temperature. Compressed air was used as the accelerating gas, and although magnesium alloy is oxidation-sensitive, AZ91D coatings with good performance were obtained. The results show that dense coatings can be fabricated until the gas temperature is higher than 500 °C. The deposition efficiency increases greatly with the gas temperature, but it is lower than 10% for all coating specimens. To analyze the effects of compressed air on AZ91D powder particles and the effects of gas temperature on coatings, the phase composition, porosity, cross-sectional microstructure, and microhardness of coatings were characterized. X-ray diffraction and oxygen content analysis clarified that no phase transformation or oxidation occurred on AZ91D powder particles during cold spraying processes with compressed air. The porosity of AZ91D coatings remained between 3.6% and 3.9%. Impact melting was found on deformed AZ91D particles when the gas temperature increased to 550 °C. As-sprayed coatings exhibit much higher microhardness than as-casted bulk magnesium, demonstrating the dense structure of cold-sprayed coatings. To study the effects of ceramic particles on cold-sprayed AZ91D coatings, 15 vol % SiC powder particles were added into the feedstock powder. Lower SiC content in the coating than in the feedstock powder means that the deposition efficiency of the SiC powder particles is lower than the deposition efficiency of AZ91D particles. The addition of SiC particles reduces the porosity and increases the microhardness of cold-sprayed AZ91D coatings. The corrosion behavior of AZ91D coating and SiC reinforced AZ91D composite coating were examined. The Si

  7. ANALISIS STRUKTUR MIKRO LAPISAN BOND COAT NIAL THERMAL BARRIER COATING (TBC PADA PADUAN LOGAM BERBASIS CO

    Toto Sudiro

    2012-11-01

    Full Text Available Kehandalan dan umur pakai sistem Thermal Barrier Coating (TBC ditentukan oleh kestabilan lapisan bond coat dan thermal grown oxide (TGO. Sehingga sangatlah penting untuk memahami mekanisme pembentukan dan degradasi lapisan ini. Pada makalah ini akan dibahas analisis struktur mikro lapisan bond coat NiAl yang dideposisikan pada substrat CoCrNi dengan menggunakan gabungan metoda electroplating dan pack-cementation. Pada makalah ini juga dibahas mekanisme pembentukan void disepanjang interface bond coat¬-substrat setelah tes oksidasi.

  8. Comparison of TiC coating and TD coating in actual application

    Kim, S.K.; Yoo, J.K.

    1995-01-01

    Large blocks of SKD-11 were treated by CVD-TiC coating process, TD coating process, TD coating process after vacuum heat treating, and vacuum heat treating. Amount of deformation was measured and compared to find the process which gives the least deformation. Wear tests were carried out for specimens treated by each process. Application of CVD-TiC and TD coating to the automotive press mold was studied

  9. Coatings for the NuSTAR mission

    Christensen, Finn Erland; Jakobsen, Anders Clemen; Brejnholt, Nicolai

    2011-01-01

    The NuSTAR mission will be the first mission to carry a hard X-ray(5-80 keV) focusing telescope to orbit. The optics are based on the use of multilayer coated thin slumped glass. Two different material combinations were used for the flight optics, namely W/Si and Pt/C. In this paper we describe...... the entire coating effort including the final coating design that was used for the two flight optics. We also present data on the performance verification of the coatings both on Si witness samples as well as on individual flight mirrors....

  10. Localized plasmons in graphene-coated nanospheres

    Christensen, Thomas; Jauho, Antti-Pekka; Wubs, Martijn

    2015-01-01

    We present an analytical derivation of the electromagnetic response of a spherical object coated by a conductive film, here exemplified by a graphene coating. Applying the framework of Mie-Lorenz theory augmented to account for a conductive boundary condition, we derive the multipole scattering...... for the localized plasmons. We consider graphene coatings of both dielectric and conducting spheres, where the graphene coating in the former case introduces the plasmons and in the latter case modifies in interesting ways the existing ones. Finally, we discuss our analytical results in the context of extinction...

  11. Induction surface hardening of hard coated steels

    Pantleon, Karen; Kessler, Olaf; Hoffmann, Franz

    1999-01-01

    The deposition of hard coatings with CVD-processes is commonly used to improve the wear resistance e.g. of tool steels in forming. The advantages of CVD are undisputed (high deposition rates with simple equipment, excellent coating properties). Nevertheless, the disadvantage of the CVD-process is......The deposition of hard coatings with CVD-processes is commonly used to improve the wear resistance e.g. of tool steels in forming. The advantages of CVD are undisputed (high deposition rates with simple equipment, excellent coating properties). Nevertheless, the disadvantage of the CVD...

  12. High speed PVD thermal barrier coatings

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  13. Inorganic precursor peroxides for antifouling coatings

    Olsen, S.M.; Pedersen, L.T.; Hermann, M.H.

    2009-01-01

    Modern antifouling coatings are generally based on cuprous oxide (Cu2O) and organic biocides as active ingredients. Cu2O is prone to bioaccumulation, and should therefore be replaced by more environmentally benign compounds when technically possible. However, cuprous oxide does not only provide...... antifouling properties, it is also a vital ingredient for the antifouling coating to obtain its polishing and leaching mechanism. In this paper, peroxides of strontium, calcium, magnesium, and zinc are tested as pigments in antifouling coatings. The peroxides react with seawater to create hydrogen peroxide...... matrix provides antifouling properties exceeding those of a similar coating based entirely on zinc oxide....

  14. Silica-Coated Liposomes for Insulin Delivery

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  15. Coated particles for lithium battery cathodes

    Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton; Mullin, Scott Allen; Wang, Xiao-Liang

    2017-07-18

    Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.

  16. Cermet coatings for magnetic fusion reactors

    Smith, M.F.; Whitley, J.B.; McDonald, J.M.

    1984-01-01

    Cermet coatings consisting of SiC particles in an aluminum matrix were produced by a low pressure chamber plasma spray process. Properties of these coatings are being investigated to evaluate their suitability for use in the next generation of magnetic confinement fusion reactors. Although this preliminary study has focused primarily upon SiC-Al cermets, the deposition process can be adapted to other ceramic-metal combinations. Potential applications for cermet coatings in magnetic fusion devices are presented along with experimental results from thermal tests of candidate coatings. (Auth.)

  17. Biomedical coatings on magnesium alloys - a review.

    Hornberger, H; Virtanen, S; Boccaccini, A R

    2012-07-01

    This review comprehensively covers research carried out in the field of degradable coatings on Mg and Mg alloys for biomedical applications. Several coating methods are discussed, which can be divided, based on the specific processing techniques used, into conversion and deposition coatings. The literature review revealed that in most cases coatings increase the corrosion resistance of Mg and Mg alloys. The critical factors determining coating performance, such as corrosion rate, surface chemistry, adhesion and coating morphology, are identified and discussed. The analysis of the literature showed that many studies have focused on calcium phosphate coatings produced either using conversion or deposition methods which were developed for orthopaedic applications. However, the control of phases and the formation of cracks still appear unsatisfactory. More research and development is needed in the case of biodegradable organic based coatings to generate reproducible and relevant data. In addition to biocompatibility, the mechanical properties of the coatings are also relevant, and the development of appropriate methods to study the corrosion process in detail and in the long term remains an important area of research. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Optical coatings for laser fusion applications

    Lowdermilk, W.H.; Milam, D.; Rainer, F.

    1980-01-01

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting, antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation

  19. Adhesion of Zinc Hot-dip Coatings

    Michal Černý

    2014-01-01

    Full Text Available The work is focused on verification of quality adhesion of zinc coating. It describes elements which affect quality and adhesive solidity within the coating. For assessment itself it will be neccessary to get know the basic elements which can affect adhesion of hot-dip coating which will be essential for choosing suitable samples for verification itself. These elements characterise acoustic responses during delamination coating. They affect elements influencing progress of signal. In research there is also a summary of existing methods for testing adhesion of coatings. As a result a new proposal of a new method comes out for purpose of quality testing of adhesion zinc hot-dip coating. The results of verification of this method are put to scientific analysis and findings lead to assessment of proposed method and its application in technical practise.The goal of this contribution is also include to proposed methodology testing adhesion zinc coating by nondestructive diagnostic method of acoustic emission (AE, which would monitor characterise progress of coating delamination of hot-dip zinc from basic material in way to adhesion tests would be practicable in situ. It can be enabled by analysis and assessment of results acquired by method AE and its application within verification of new method of adhesion anti-corrosive zinc coating.

  20. Development of High Temperature Solid Lubricant Coatings

    Bhattacharya, Rabi

    1999-01-01

    ... environment. To test this approach, UES and Cleveland State University have conducted experiments to form cesium oxythiotungstate, a high temperature lubricant, on Inconel 718 surface from composite coatings...