WorldWideScience

Sample records for heat-resistant alloy hastelloy

  1. Cavitation erosion behavior of Hastelloy C-276 nickel-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Han, Jiesheng; Lu, Jinjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, Jianmin, E-mail: chenjm@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2015-01-15

    Highlights: • Cavitation erosion behavior of Hastelloy C-276 was studied by ultrasonic apparatus. • The cavitation-induced precipitates formed in the eroded surface for Hastelloy C-276. • The selective cavitation erosion was found in Hastelloy C-276 alloy. - Abstract: The cavitation erosion behavior of Hastelloy C-276 alloy was investigated using an ultrasonic vibratory apparatus and compared with that of 316L stainless steel. The mean depth of erosion (MDE) and erosion rate (ER) curves vs. test time were attained for Hastelloy C-276 alloy. Morphology and microstructure evolution of the eroded surface were observed by scanning electron microscopy (SEM) and field emission scanning electron microscopy (FESEM) and the predominant erosion mechanism was also discussed. The results show that the MDE is about 1/6 times lower than that of the stainless steel after 9 h of testing. The incubation period of Hastelloy C-276 alloy is about 3 times longer than that of 316L stainless steel. The cavitation-induced nanometer-scaled precipitates were found in the local zones of the eroded surface for Hastelloy C-276. The selective cavitation erosion was found in Hastelloy C-276 alloy. The formation of nanometer-scaled precipitates in the eroded surface may play a significant role in the cavitation erosion resistance of Hastelloy C-276.

  2. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  3. Evolution Law of Helium Bubbles in Hastelloy N Alloy on Post-Irradiation Annealing Conditions

    Directory of Open Access Journals (Sweden)

    Jie Gao

    2016-10-01

    Full Text Available This work reports on the evolution law of helium bubbles in Hastelloy N alloy on post-irradiation annealing conditions. After helium ion irradiation at room temperature and subsequent annealing at 600 °C (1 h, the transmission electron microscopy (TEM micrograph indicates the presence of helium bubbles with size of 2 nm in the depth range of 0–300 nm. As for the sample further annealed at 850 °C (5 h, on one hand, a “Denuded Zone” (0–38 nm with rare helium bubbles forms due to the decreased helium concentration. On the other hand, the “Ripening Zone” (38–108 nm and “Coalescence Zone” (108–350 nm with huge differences in size and separation of helium bubbles, caused by different coarsening rates, are observed. The mechanisms of “Ostwald ripening” and “migration and coalescence”, experimentally proved in this work, may explain these observations.

  4. Experimental Study on Machining Shape Hole of Ni-based Super-heat-resistant Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inconel 718 and Waspaloy, Nickel-based super-heat-resistant alloy, are high-strength, thermal-resistant and corrosion-resistant alloy that are widely used in parts of gas turbines and airplane engines. Due to their extremely tough and thermal-resistant nature, they are well known as materials that are difficult to cut. Shape holes on a disc of an aircraft engine, made of Ni-based super-heat-resistant alloy, are required with good surface integrity and geometric accuracy. This kind of shape hole is produced ...

  5. Relation of Engine Turbine-blade Life to Stress-rupture Properties of the Alloys, Stellite 21, Hastelloy B, Cast S-816, Forged S-816, X-40, Nimonic 80, Refractaloy 26, N-155, and Inconel X

    Science.gov (United States)

    Garrett, F B; Yaker, C

    1951-01-01

    An investigation was conducted to relate the engine performance of the heat-resistant alloys, Stellite 21, Hastelloy B, cast S-816, forged S-816, X-40, Nimonic 80, Refractory 26, N-155, and Iconel X to their stress-rupture properties. The engine test consisted of the repetition of a 20-minute cycle, 15 minutes at rated speed and approximately 5 minutes at idle. The results of the investigation indicated a direct correlation between stress-rupture life and blade life for the relatively low-strength alloys. The stress-rupture life and blade life for the relatively high-strength alloys did not correlate because of the effects of the vibratory stresses and the corrosive-gas atmosphere.

  6. Approximate evaluation of the density of single-crystal heat-resistant nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Petrushin, N.V.; Ignatova, I.A.; D`yachkova, L.A.

    1992-03-01

    On the basis of the generalization and analysis of the author`s and of published experimental data an analytical dependence is obtained of the density of single-crystal heat-resistant nickel alloys on their chemical composition which was characterized by the mean atomic mass of the alloy. 9 refs., 2 tabs.

  7. Research on Hot Deformation Behavior of Hastelloy G-3 Alloy%Hastelloy G-3合金热变形特性研究

    Institute of Scientific and Technical Information of China (English)

    罗坤杰; 张麦仓; 王宝顺; 董建新

    2011-01-01

    利用变形温度为1050~1200℃、应变速率为0.1~10 s-1的恒温热压缩试验系统分析了Hastelloy G-3合金的高温变形特性及变形后的组织特征.对高应变速率下的流动应力进行变形热效应修正,建立了G-3合金热变形过程中峰值应力与变形温度、应变速率关系的本构模型.结果表明:所建立的本构模型在预测G-3合金热变形峰值应力时具有良好的精确度,能够满足工程应用的要求.G-3合金热加工过程的软化机制为动态再结晶,根据热变形后的组织特征确定G-3合金合理的热变形温度为1180~1200℃,应变速率为5~10 s-1.%The hot deformation behavior and the subsequent microstructure characteristics of Hastelloy G-3 alloy were studied by isothermal compression tests at the strain rates of 0.1-10 s-1 and the temperatures of 1050-1200 ℃. The flow-stress at high strain rates were corrected considering the effect of deformation heating, and a new constitutive relationship between peak stress and deformation temperature as well as strain rate for G-3 alloy at high temperature was established. The results show that the built material model has good fitting accuracy to satisfy the engineering need. The softening mechanism of G-3 alloy is dynamic recrystalization during hot working process. According to the microstructures after deformation, for G-3 alloy the proper deformation temperature is 1180-1200 ℃ and the proper strain rate is 5-10 s-1.

  8. Peculiarities of structure-stressed state of phases in heat resisting nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Samojlov, A.I.; Ignatova, I.A.; Razumovskij, I.M.; Kozlova, V.S.; Dodonova, L.P.

    Temperature change of periods (asub(..gamma..) and asub(..gamma..') of crystal lattices of phases in the temperature range 293-1173 K in three differently alloyed heat-resisting nickel alloys is determined. The measurements are made in vacuum approximately 10/sup -4/ mm Hg. Discrepancy between crystal iattice periods ..gamma..- and ..gamma..'-phase in three industrial heat-resisting alloys of ZhS type at the temperatures 293, 973, 1173 K and interphase strains in them at room temperature are determined. The degree of intrinsic plastic strain of matrix of the above-mentioned alloys, caused by interphase strains, is determined. Correlation of the alloy properties with the level of intrinsic plastic is shown. Mechanisms of the effect of structurally-strained state of alloys on their properties are discussed.

  9. Determination of Stress-Rupture Parameters for Four Heat-Resisting Alloys

    Science.gov (United States)

    Lidman, William G.

    1947-01-01

    Stress-rupture data for four heat-resisting alloys are analyzed according to equations of the theory of rate processes. A method for determining the four parameters of structure and composition is demonstrated and the four parameters are determined for each of the alloys: forged S816, cast S816, cast S590, and cast Vitallium. It is concluded that parameters can be determined for an alloy provided sufficient reliable experimental data are available.

  10. Microstructure and properties of 2618-Ti heat resistant aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    王建华; 易丹青; 王斌

    2003-01-01

    The mechanical properties of alloy 2618 with 0.5%(mass fraction) titanium and its microstructures in different states such as as-cast and quenching-aging were investigated. Titanium was added into the alloy with Al-5%Ti master alloy that was extruded severely. Al3Ti particles in the microstructure of cast alloy 2618-Ti are very small because those of master alloy are also small. When titanium is used as an alloying element, it does not affect the morphology of Al9FeNi phase in cast alloy, but decreases the grain size of as-cast alloy remarkably. The grain size of quenching-aging alloy 2618 decreases apparently due to the existence of a great deal of dispersive Al3Ti particles. Adding 0.5%Ti has no effect on the room temperature tensile properties of alloy 2618, but apparently increases the elevated temperature instantaneous tensile properties and that of the alloy which is exposed at 250 ℃ for 100 h.

  11. Laser texturing of Hastelloy C276 alloy surface for improved hydrophobicity and friction coefficient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.

    2016-03-01

    Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of -800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.

  12. The Weldability of Heat-Resisting Alloys (N-102)

    Science.gov (United States)

    1945-12-05

    Division 18, Office of the Chairman,NDRC Copies No. 16 thru 38 - Dr. Franklin S. Cooper , eenior Liaison Officer, Liaison Office, 088D Copy No. 39 - H...Products Conpany furnioliod assistance in ir.stallirg and opcratirig tho subnorgod-nolt welding oquipnont. Tho cooperation of the personnol of th...welding roda uaod aro glv^r. in Tublo 3» D. Manual Metallic-Arc Electrodoa Electrodes, of both Type 316 and Kl|55 alloy for making the manual- arc

  13. Hastelloy C-276合金应力松弛试验及蠕变本构方程%Stress relaxation test of Hastelloy C-276 alloy and its creep constitutive equation

    Institute of Scientific and Technical Information of China (English)

    朱智; 张立文; 顾森东

    2012-01-01

    Hastelloy C-276合金分别在不同的温度(750、800、850和900℃)和相应的初始应力(250、250、250和200 MPa)条件下进行了多组应力松弛试验.利用试验测得的应力松弛曲线推导出应力松弛过程中蠕变应变速率与应力之间的关系,建立用于描述Hastelloy C-276合金应力松弛行为的蠕变本构方程,通过对蠕变应变速率一应力曲线进行拟合,得到各温度下蠕变本构方程中的材料常数.将蠕变本构方程带入有限元软件MSC.Marc对Hastelloy C-276合金的应力松弛过程进行模拟,模拟得到的应力松弛曲线与试验测得的应力松弛曲线符合得很好,验证蠕变本构方程的可靠性.%The stress relaxation tests of Hastelloy C-276 alloy were conducted at different temperatures (750, 800, 850 and 900 ℃) and corresponding initial stress levels (250, 250, 250 and 200 MPa), respectively. Based on the experimental stress relaxation curves, the relationship between creep strain rate and stress was derived. Then, a set of creep constitutive equations were built for Hastelloy C-276 alloy and the material constants of these equations were determined by fitting the creep strain rate-stress curves. The creep constitutive equations were used to simulate the stress relaxation process of Hastelloy C-276 alloy by integrating these equations into finite element software MSC.Marc. The simulated stress relaxation curves agree well with the experimental ones, which verify the reliability of the creep constitutive equations.

  14. Corrosion Behavior of Au, Hastelloy C-276 Alloy and Monel 400 Alloy in Molten Lithium Fluoride

    Institute of Scientific and Technical Information of China (English)

    WANG; Chang-shui; GUO; Jun-kang

    2013-01-01

    For searching better corrosion-resistant material in high temperature,we investigated the corrosion behavior of Au,Haynes C-276 alloy and Monel 400 alloy in molten lithium fluoride at 950℃.The corrosion products and fine structures of the corroded specimens were characterized by inductively coupled plasma mass spectrometry(ICP-MS),scanning electron microscope(SEM),energy dispersive

  15. Etude expérimentale du soudage par laser YAG de l'alliage base nickel Hastelloy X Experimental study of YAG laser welding of nickel base alloy Hastelloy X

    Directory of Open Access Journals (Sweden)

    Graneix Jérémie

    2013-11-01

    Full Text Available Le procédé de soudage laser YAG est envisagé pour remplacer le procédé de soudage TIG manuel pour la réalisation de pièces de turboréacteur en alliage nickel-chrome-molybdène Hastelloy X. Cette étude expérimentale a permis de définir un domaine de soudabilité de cet alliage répondant aux critères spécifiques du secteur aéronautique. The YAG laser welding process is contemplated to replace the manual TIG welding process for the production of parts of turbojet in Hastelloy X. This experimental study has identified the field of weldability of this alloy to meet the specific requirements of the aerospace industry.

  16. Creep-Rupture Properties and Corrosion Behaviour of 21/4 Cr-1 Mo Steel and Hastelloy X-Alloys in Simulated HTGR Environment

    DEFF Research Database (Denmark)

    Lystrup, Aage; Rittenhouse, P. L.; DiStefano, J. R.

    Hastelloy X and 2/sup 1///sub 4/ Cr-1 Mo steel are being considered as structural alloys for components of a High-Temperature Gas-Cooled Reactor (HTGR) system. Among other mechanical properties, the creep behavior of these materials in HTGR primary coolant helium must be established to form part ...

  17. Microscopic study of the structure of the Steel Ni-based Alloy: Hastelloy G35 Alloy

    Science.gov (United States)

    Sabir, F.; Ben Lenda, O.; Saissi, S.; Marbouh, K.; Tyouke, B.; Zerrouk, L.; Ibnlfassi, A.; Ouzaouit, K.; Elmadani, S.

    2017-03-01

    The study of the influence of heat treatment on changes of mechanical and structural properties of Steel Ni-based Alloy is a highly interdisciplinary topic at the interface of the physical chemistry of metallic materials, which also helps in environmental and economic protection.After heat treatment, the structural and micro-structural studies for the different transformation temperature led to identify phases formed and the morphology. This work has been carried out using different techniques: X-ray diffraction, optical microscopy and scanning electron microscopy.

  18. Hardening mechanisms in a dynamic strain aging alloy, Hastelloy X, during isothermal and thermomechanical cyclic deformation

    Science.gov (United States)

    Miner, R. V.; Castelli, M. G.

    1992-01-01

    The relative contributions of the hardening mechanisms in Hastelloy X during cyclic deformation were investigated by conducting isothermal cyclic deformation tests within a total strain range of +/-0.3 pct and at several temperatures and strain rates, and thermomechanical tests within several different temperature limits. The results of the TEM examinations and special constant structure tests showed that the precipitation on dislocations of Cr23C6 contributed to hardening, but only after sufficient time above 500 C. Solute drag alone produced very considerable cyclic hardening. Heat dislocation densities, peaking around 10 exp 11 per sq cm, were found to develop at temperatures producing the greatest cyclic hardening.

  19. Aging of a cast 35Cr-45Ni heat resistant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sustaita-Torres, Ireri A., E-mail: ireri.sustaita@gmail.com [Unidad Academica de Ingenieria, Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Haro-Rodriguez, Sergio, E-mail: haros907@hotmail.com [Unidad Academica de Ingenieria, Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Guerrero-Mata, Martha P., E-mail: martha.guerreromt@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Garza, Maribel de la, E-mail: maribeldelagarza@yahoo.com.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, 66450 San Nicolas de los Garza (Mexico); Valdes, Eduardo, E-mail: eduardo.valdes.57@gmail.com [Instituto Tecnologico de Saltillo, 25280 Saltillo (Mexico); Deschaux-Beaume, Frederic, E-mail: deschaux@iut-nimes.fr [Mechanical and Civil Engineering Laboratories, Universite de Montpellier 2, IUT Nimes, 30907 Nimes (France); and others

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer The as-cast microstructure is made of an austenitic matrix and primary carbides. Black-Right-Pointing-Pointer The carbides are of two different types: Cr- and Nb-rich. Black-Right-Pointing-Pointer The microstructure changes during aging. Black-Right-Pointing-Pointer These microstructural changes result in the degradation of mechanical properties. - Abstract: The microstructural evolution during aging and its effect on the mechanical properties of a centrifugally cast 35Cr-45Ni heat resistant alloy was studied by means of optical and electron microscopy, and by mechanical testing in samples aged in air at 750 Degree-Sign C for a period of time of up to 1000 h. The as-cast microstructure consisted of an austenitic matrix and a network of two types of primary carbides that were identified as NbC and M{sub 7}C{sub 3} by their light and dark tones when viewed in backscattered electron mode in a scanning electron microscope. Aging promoted the occurrence of different phenomena such as the transformation of primary M{sub 7}C{sub 3} to M{sub 23}C{sub 6} carbides, precipitation of secondary M{sub 23}C{sub 6} carbides and the transformation of NbC to Nb{sub 3}Ni{sub 2}Si. It was found that aging promoted an increase in Vickers microhardness of more than 50%, the increment in tensile strength of around 20% and the reduction in ductility of close to 70%.

  20. Development of heat resistant Pb-free joints by TLPS process of Ag and Sn-Bi-Ag alloy powders

    Directory of Open Access Journals (Sweden)

    Ohnuma I.

    2012-01-01

    Full Text Available TLPS (Transient Liquid Phase Sintering process is a candidate method of heat-resistant bonding, which makes use of the reaction between low-melting temperature powder of Sn-Bi base alloys and reactive powder of Ag. During heat treatment above the melting temperature of a Sn-Bi base alloy, the molten Sn-Bi reacts rapidly with solid Ag particles, which results in the formation of heat-resistant intermetallic compound (IMC. In this study, the TLPS properties between Sn-17Bi-1Ag (at.% powder with its liquidus temperature of 200°C and pure Ag powder were investigated. During differential scanning calorimetry (DSC measurement, an exothermic reaction and an endothermic reaction occurred, which correspond to the formation of the e-Ag3Sn IMC phase and the melting of the Sn-17Bi-1Ag alloy, respectively. After the overall measurement, the obtained reactant consists of the Ag3Sn-IMC and Bi-rich phases, both of which start melting above 250°C, with a small amount of the residual Sn-Bi eutectic phase. These results suggest that the TLPS process can be applied for Pb-free heatresistant bonding.

  1. Computational Thermodynamic Modeling of Hot Corrosion of Alloys Haynes 242 and HastelloyTM N for Molten Salt Service in Advanced High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    V. Glazoff, Michael; Charit, Indrajt; Sabharwall, Piyush

    2014-09-17

    An evaluation of thermodynamic aspects of hot corrosion of the superalloys Haynes 242 and HastelloyTM N in the eutectic mixtures of KF and ZrF4 is carried out for development of Advanced High Temperature Reactor (AHTR). This work models the behavior of several superalloys, potential candidates for the AHTR, using computational thermodynamics tool (ThermoCalc), leading to the development of thermodynamic description of the molten salt eutectic mixtures, and on that basis, mechanistic prediction of hot corrosion. The results from these studies indicated that the principal mechanism of hot corrosion was associated with chromium leaching for all of the superalloys described above. However, HastelloyTM N displayed the best hot corrosion performance. This was not surprising given it was developed originally to withstand the harsh conditions of molten salt environment. However, the results obtained in this study provided confidence in the employed methods of computational thermodynamics and could be further used for future alloy design efforts. Finally, several potential solutions to mitigate hot corrosion were proposed for further exploration, including coating development and controlled scaling of intermediate compounds in the KF-ZrF4 system.

  2. Effect of size discrepancy of. gamma. - and. gamma. '-phases crystal lattice parameters on heat resisting dispersion hardening nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Petrushin, N.V.; Ignatova, I.A.; Logunov, A.V.; Samojlov, A.I.; Razumovskij, I.M.

    Effect of Cr, Co, Nb and W alloying elements on crystal lattice parameters of ..gamma.. ahd ..gamma..' phases in Ni-Cr-Co-W-Al-Ti- Nb-Hf alloys and on their dimensional misfit at 293 and 1173 K is studied. Alloying at which alloys have the parameter of ..gamma..-solid solution lattice less than that of ..gamma..'-phase results in low heat-resistant properties and in considerable difference of coefficients of thermal expansion of the phases. Definite positive misfit of ..gamma..- and ..gamma..'-phase lattices and a low temperature gradient are the conditions of high heat resistance of complex-alloyed nickel alloys. Possible mechanisms of lattice misfit effect on strength and coalescence kinetics of the second phase in heterogeneous alloys at high temperatures are discussed.

  3. Heat-resistant materials

    CERN Document Server

    1997-01-01

    This handbook covers the complete spectrum of technology dealing with heat-resistant materials, including high-temperature characteristics, effects of processing and microstructure on high-temperature properties, materials selection guidelines for industrial applications, and life-assessment methods. Also included is information on comparative properties that allows the ranking of alloy performance, effects of processing and microstructure on high-temperature properties, high-temperature oxidation and corrosion-resistant coatings for superalloys, and design guidelines for applications involving creep and/or oxidation. Contents: General introduction (high-temperature materials characteristics, and mechanical and corrosion properties, and industrial applications); Properties of Ferrous Heat-Resistant Alloys (carbon, alloy, and stainless steels; alloy cast irons; and high alloy cast steels); Properties of superalloys (metallurgy and processing, mechanical and corrosion properties, degradation, and protective coa...

  4. Temperature of phase transformations in heat-resistant nickel-base alloys

    Science.gov (United States)

    Ivanov, A. D.; Ukhlinov, A. G.

    1997-11-01

    The study of phase transformations in heating and cooling of alloys is needed for choosing optimum regimes of their melting, plastic deformation, and heat treatment. In the present paper differential thermal analysis is used to determine the temperature of phase transformations in complexly alloyed nickel-base alloys. Industrial nickel alloys with intermetallic reinforcement manufactured by means of vacuum arc remelting (VAR) and hot deformation (HD) were studied. Alloy KhN56MBYuD was studied after different metallurgical processes, namely, electroslag remelting (ESR), centrifugal casting (CC), powder spraying (PS), and hot isostatic pressing (HIP). All the alloys were studied in the initial state and after heat treatment.

  5. 9-12% Cr heat resistant steels. Alloy design, TEM characterisation of microstructure evolution and creep response at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Jara, David

    2011-03-21

    This work was carried out aiming to design and characterise 9-12% Cr steels with tailormade microstructures for applications in fossil fuel fired power plants. The investigations concentrated in the design and characterisation of heat resistant steels for applications in high oxidising atmospheres (12% Cr) and 9% Cr alloys for components such as rotors (P91). ThermoCalc calculations showed to be a reliable tool for alloy development. The modeling also provided valuable information for the adjustment of the processing parameters (austenisation and tempering temperatures). Two 12% Cr heat resistant steels with a fine dispersion of nano precipitates were designed and produced supported by thermodynamic modeling (ThermoCalc). A detailed characterisation of the microstructure evolution at different creep times (100 MPa / 650 C / 8000 h) was carried out by scanning transmission electron microscopy (STEM). The results of the microstructure analysis were correlated with the mechanical properties in order to investigate the influence of different precipitates (especially M{sub 23}C{sub 6} carbides) on the creep strength of the alloys. Precipitation of Laves phase and Z-phase was observed after several hundred hours creep time. Very few Z-phase of the type Cr(V,Ta)N nucleating from existing (V,Ta)(C,N) was observed. Both alloys show growth and coarsening of Laves phase, meanwhile the MX carbonitrides present a very slow growth and coarsening rate. Alloys containing Laves phase, MX and M{sub 23}C{sub 6} precipitates show best creep properties. The influence of hot-deformation and tempering temperature on the microstructure evolution on one of the designed 12% Cr alloys was studied during short-term creep at 80-250 MPa and 650 C. Quantitative determination of dislocation density and sub-grain size in the initial microstructure and after creep was investigated by STEM combined with the high-angle annular dark-field detector (HAADF). A correlation between microstructure

  6. The Crystal Structure at Room Temperature of Six Cast Heat-Resisting Alloys

    Science.gov (United States)

    Rosenbaum, Burt M.

    1947-01-01

    The crystal structures of alloys 61, X-40,X-50, 422-19, 6059, and Vitallium, derived from x-ray diffraction, are discussed. The alloys have been, or are being considered for use in gas turbine applications. The predominant phase was a solid solution of the face centered cubic type of the principal constituent elements.The lattice parameters were found to be between 3.5525 and 3.5662.

  7. Effect of the Fine-Grained Structure on the Fatigue Properties of the Heat-Resistant Nickel-Iron Alloy Inconel 718

    Science.gov (United States)

    Mukhtarov, Sh. Kh.; Shakhov, R. V.

    2015-10-01

    It is well known that ultrafine-grained nickel alloys with average grain sizes d = 0.1-1 μm possess improved hot workability and can be used for superplastic forming or rolling. However, microstructure refinement can worsen some performance characteristics of the alloy, for example, heat-resistant or fatigue properties. In the present work, fatigue characteristics of the fine-grained alloy Inconel 718 are investigated. Ultrafine-grained alloys with average grain sizes d = 0.1-1 μm were manufactured by multiple forging with stage-by-stage deformation temperature decrease. During standard heat treatment of the alloy performed to obtain the desired properties, the γ-grain size was controlled by precipitations of δ-phase particles along the boundaries. Results of low-cycle fatigue tests of the fine-grained alloy at room and elevated temperatures are compared with the properties of the coarse-grained alloy.

  8. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide

    Directory of Open Access Journals (Sweden)

    Kieruj Piotr

    2016-12-01

    Full Text Available This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples’ temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  9. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide

    Science.gov (United States)

    Kieruj, Piotr; Przestacki, Damian; Chwalczuk, Tadeusz

    2016-12-01

    This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples' temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  10. Tungsten alloyed with rhenium as an advanced material for heat-resistant silicon ICs interconnects

    Science.gov (United States)

    Belov, A. N.; Chaplygin, Yu. A.; Golishnikov, A. A.; Kostyukov, D. A.; Putrya, M. G.; Safonov, S. O.; Shevyakov, V. I.

    2016-12-01

    This paper presents the results of comparative analysis of the electrical and mechanical characteristics of the tungsten and tungsten alloyed with rhenium films deposited on silicon, from the point of view of their use as interconnects in silicon ICs. W and W (Re-5%) alloyed with rhenium films were made by magnetron deposition. Sheet resistivity for W and W (Re- 5%) was 13 and 27 μOhm·cm respectively. Elemental composition the formed films was examined by Auger spectroscopy. To investigate the electromigration resistance of the conductors a methodology based on the accelerated electromigration testing at constant temperature was used. A comparative analysis of the mechanical stresses carried out in the W and W(Re - 5%) films. For this purpose was applied non-destructive method for optical laser scanning. At the same time, these films explored their ability of adhesion to silicon and silicon oxide. It is shown that the pull force of the W(Re - 5%) films was 1500 G/mm2, of the W films 700 G/mm2

  11. Effects of composite scale on high temperature oxidation resistance of Fe-Cr-Ni heat resistant alloy

    Directory of Open Access Journals (Sweden)

    Wang Haitao

    2009-05-01

    Full Text Available Fe-Cr-Ni heat resistant alloys with aluminum and silicon addition, alone and in combination, were melted using an intermediate frequency induction furnace with a non-oxidation method. By the oxidation weight gain method, the oxidation resistances of the test alloys were determined at 1,200 ìC for 500 hours. According to the oxidation weight gains, the oxidation kinetic curves were plotted and the functions were regressed by the least squares method. The results show that the oxidation kinetic curves follow the power function of y = axb (a>0, 0

  12. Application of Hastelloy X in Gas-Cooled Reactor Systems

    DEFF Research Database (Denmark)

    Brinkman, C. R.; Rittenhouse, P. L.; Corwin, W.R.

    1976-01-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data...

  13. Influence of the brazing parameters on microstructure and mechanical properties of brazed joints of Hastelloy B2 nickel base alloy; Influencia de los parametros de soldeo fuerte en la microestructura y propiedades mecanicas de la union de la aleacion base niquel Hastelloy B2

    Energy Technology Data Exchange (ETDEWEB)

    Sotelo, J. C.; Gonzalez, M.; Porto, E.

    2014-07-01

    A study of the high vacuum brazing process of solid solution strengthened Hastelloy B2 nickel alloy has been done. A first stage of research has focused on the selection of the most appropriate brazing filler metal to the base material and vacuum furnace brazing process. The influence of welding parameters on joint microstructure constituents, relating the microstructure of the joint to its mechanical properties, has been evaluated. Two gaps of 50 and 200 micrometers, and two dwell times at brazing temperature of 10 and 90 minutes were studied. The braze joint mainly consists of the nickel rich matrix, nickel silicide and ternary compounds. Finally, the results of this study have shown the high bond strength for small gaps and increased dwell times of 90 minutes. (Author)

  14. Structure Defects Interrelation of Heat-resistant Nickel Alloy Obtained by Selective Laser Melting Method and Strategy and Scanning Parameters

    Directory of Open Access Journals (Sweden)

    O. A. Bytsenko

    2016-01-01

    Full Text Available The objective was to conduct a study of the surface morphology and a chemical composition analysis of the powder of different fractional composition of a heat-resistant Ni-Co-Cr-AlTi-W-Mo-Nb alloy, and to define the patterns of change in the quantitative parameters of the structure of samples obtained by selective laser melting (SLM method with different parameters of power, laser speed, and a type of hatching (staggered, island diagonal, and solid diagonal.To study the surface morphology of the microstructure was used optical, laser-confocal and scanning electron microscopy. The elemental and local phase composition was performed by X-ray and miсro-X-ray spectrum analysis.The initial powder morphology study has found that the powder granules have a generally spherical shape, and the number of structural defects increases with increasing granule size. The microstructure of all granules has a dendritic structure. The superficial defects have a form of satellites, shapeless shield, round gas pores, and pores located in the inter-dendritic regions because of the shrinkage process.The study of the microstructure of the samples has been defined that dimensions of the structural components, pores, and micro-cracks depend on the parameters of the SLM process. With raising laser power within 160 - 190 W there is an increase in a fraction of pores and their average diameter. With further increase in laser power the volume fraction of pores is slightly reduced while their average size is, essentially, unchanged.It has been found that at the constant laser power and variable scanning speed the volume fraction of pores depends on the type of hatching. For staggered and solid diagonal hatching, at the constant laser power of 180 W with increasing scanning speed the volume fraction, at first, falls and then again grows, and for island diagonal hatching remains unchanged.When changing the laser power values within a range from 160 to 170 W for samples with

  15. 共混型高耐热ABS合金的研制%THE RESEARCH OF HIGH HEAT-RESISTANT ABS BLEND ALLOYS

    Institute of Scientific and Technical Information of China (English)

    田明; 李齐方; 张立群; 刘力; 乔利燕; 吕昆; 沙中瑛

    2001-01-01

    以ABS树脂为基体,加入短玻璃纤维提高了材料的耐热性,但冲击强度下降,进一步引入与ABS相容性很好的苯乙烯-马来酸酐共聚物(SMA),发现ABS与玻璃纤维间产生了强有力的界面粘合,在SMA含量7%时,显著地提高了ABS/玻纤体系的耐热性、冲击强度和拉伸强度。再进一步引入适量的刚性丙烯酸酯类聚合物,使ABS/玻纤/SMA体系的耐热性又有所提高。令人惊奇的是,在丙烯酸酯类聚合物含量为30%时,体系的冲击性能也明显增加,这归功于刚性有机填料对体系的冷拉增韧效果。最终成功研制出一种高耐热、综合性能优良的ABS/改性剂/玻纤共混合金。%The addition of short glass fiber into ABS resin can improve its heat resistance but decrease its impact strength. It is discovered that strong interphase adhesion between ABS and glass fiber can be gotten by the introduction of styrene-maleic anhydride copolymer(SMA) which is completely compatible with ABS, and heat resistance, impact strength and tensile strength of ABS/glass fiber alloy can be improved remarkably when the content of SMA is 7%. Subsequently, the introduction of 30% rigid acrylic ester polymer into above system can further improve heat resistance of ABS/glass fiber/SMA. Surprisingly, its impact strength is also enhanced, which is attributed to the hard-drawn mechanism of rigid organic filler (ROF). At last, a kind of ABS blend alloys with high heat resistance and good mechanical properties are successfully made.

  16. Kinetics of the Formation of Intermetallic Phases in HP-Type Heat-Resistant Alloys at Long-Term High-Temperature Exposure

    Science.gov (United States)

    Kondrat'ev, Sergey Yu.; Anastasiadi, Grigoriy P.; Petrov, Sergey N.; Ptashnik, Alina V.

    2017-01-01

    The kinetics of formation and morphology of the intermetallic phases in the structure of heat-resistant as-cast HP40NbTi alloys in the course of long high-temperature exposure have been studied with the help of light and electron microscopy, electron microprobe, and X-ray diffraction. During exposure of 2 to 1000 hours at 1423 K (1150 °C), intermetallic phase with conditional formula Cr7Ni5Si3N3FeNb is formed in the alloy. The analysis of the kinetics of intermetallic phase's growth for an impact assessment of certain metal substitutional elements (niobium, chromium, silicon) on the size of the formed particles was performed. Formation and growth of the intermetallic phases with high silicon content in the alloy structure on the boundaries between niobium and chromium carbides (NbC and M23C6) and matrix γ-phase provide a diffusion barrier for oxygen in oxidizing environment. This may create partial protection against oxidation of hardening carbide phases in the structure and promote increasing of the serviceability of the HP series alloys under operating conditions in the petrochemical industry.

  17. Study on microstructure evolution of deformed Mg-Gd-Y-Nd-Zr heat-resistant magnesium alloys after solid solution and ageing

    Directory of Open Access Journals (Sweden)

    Jianmin Yu

    2016-01-01

    Full Text Available The microstructure evolution of Mg-Gd-Y-Nd-Zr heat-resistant magnesium alloy after deformation and T5 or T6 treatment were studied. In thermoplastic deformation, dynamic recrystallization and dynamic precipitation has been taken place at the same time. The dynamic precipitation reduces the recrystallization nucleation driving force in the grain; it will prevent to occur dynamic recrystallization partially. Solid solution temperature was 530oC and hold 4h. Age hardening treatments were performed at 225oC and hold 16h. The alloy showed the comprehensive properties are obviously improved from T6 to T5 heat treatment. After T5 heat treatment the tensile strength of alloy increased to 359.3 MPa, increased by around 48.5%; Elongation is increasing from 5.17% to 6.5%. After peak ageing treatment, the main precipitation is β' phase, the precipitation phase have obvious pinning effect to grain boundary of the alloy, it will prevent the grain growth ageing for a long-time. At the same time, strengthening role of precipitate phase make its strength increased significantly.

  18. 脉冲激光焊接Hastelloy C-276合金的熔池流动传热特性分析%Analysis of fluid flow and heat transfer in weld pool during pulsed laser welding Hastelloy C-276 alloy

    Institute of Scientific and Technical Information of China (English)

    吴东江; 王占宏; 马广义; 杨义彬; 郭玉泉; 郭东明

    2012-01-01

    基于流体动力学方程和传热方程建立了三维瞬态模型,用于研究脉冲激光焊接0.5 mm厚Hastelloy薄板时熔池的流动行为及传热特性.应用Fluent软件,采用有限容积法(FVM)求解控制方程,用SIMPLE算法处理速度与压力的耦合.引入Pe来衡量焊接熔池中对流传热与传导传热的相对强弱,并以此分析焊接熔池的传热特性.结果表明:沿焊接方向,焊接熔池的流动速度随着离熔池中心距离的增加先增加后减小;在给定试验条件下,熔池流动速度在离熔池中心0.2 mm左右时出现最大值,且沿焊接方向前方稍大于后方,而后迅速减小为零;焊接熔池中对流的存在使得焊接熔池熔深较小而熔宽较大;最终的焊接形貌由对流传热与传导传热相互作用而成.对焊缝形貌的数值模拟结果与实验结果进行了比较,计算结果与实验结果吻合较好.此模型可为脉冲激光焊接Hastelloy C-276薄板时熔池流体流动行为的分析提供理论依据.%A 3D transient model was established based on the theories of fluid dynamics and heat transfer to analyze the fluid flow and the heat transfer characteristics in the liquid pool when a pulse laser was used to weld the Hastelloy C-276 alloy. On the basis of software Fluent, the Finite Volume Method (FVM) was employed to solve the control equations and the algorithm of SIMPLE was adopted to deal with the coupling of velocity and pressure. The Pe number was induced to evaluate the relative importance of convection and conduction then to analyze the heat transfer characteristics of welding pool. The research indicates that fluid flow velocities along the welding direction in the liquid pool increase with the increasing of the distance from the melting pool center, and then decrease. Under the given conditions, the maximum flow velocity is firstly found at the 0. 2 mm from the melting pool center, then it reduces to zero rapidly and velocities in front of the

  19. Viscous properties of new mould flux based on aluminate systemwith CeO2 for continuous casting of RE alloyed heat resistant steel

    Institute of Scientific and Technical Information of China (English)

    QI Jie; LIU Chengjun; LI Chunlong; JIANG Maofa

    2016-01-01

    The conventional mould fluxes can not be applied to the continuous casting of RE alloyed heat resistant steel, because se-vere slag-metal interface reactions occur generally in the mold. To restrain the interface reaction and improve conditions for continu-ous casting, a new mould flux based on aluminate system was devised. The viscous properties were investigated. Scanning electron microscopy and X-ray diffraction were applied to detect and characterize the crystalline phases in the continuous cooling process. The results showed that appropriate addition of CeO2 could avoid the precipitation of CaO and decrease the viscosity of the mould flux. Increasing the mass ratio of CaO/Al2O3, especially to a value exceeding 1, could worsen the stability of the mould flux. With a con-tent of less than 14 wt.%, Li2O could reduce the viscosity and breaking temperature, but its effect could be weakened for the pro-moted precipitation of LiAlO2. To obtain a mould flux with stable viscous properties, such as viscosity and breaking temperature, ap-propriate contents of CeO2 and Li2O should be controlled to around 10 wt.% and 14 wt.%, while the mass ratio of CaO/Al2O3 should not be more than 1.

  20. Influence of Hot-Working Conditions on High-Temperature Properties of a Heat-Resistant Alloy

    Science.gov (United States)

    Ewing, John F; Freeman, J W

    1957-01-01

    The relationships between conditions of hot-working and properties at high temperatures and the influence of the hot-working on response to heat treatment were investigated for an alloy containing nominally 20 percent molybdenum, 2 percent tungsten, and 1 percent columbium. Commercially produced bar stock was solution-treated at 2,200 degrees F. to minimize prior-history effects and then rolled at temperatures of 2,200 degrees, 2,100 degrees, 2,000 degrees, 1,800 degrees, and 1,600 degrees F. Working was carried out at constant temperature and with incremental decreases in temperature simulating a falling temperature during hot-working. In addition, a few special repeated cyclic conditions involving a small reduction at high temperature followed by a small reduction at a low temperature were used to study the possibility of inducing very low strengths by the extensive precipitation accompanying such properties. Most of the rolling was done in open passes with a few check tests being made with closed passes. Heat treatments at both 2,050 degrees and 2,200 degrees F. subsequent to working were used to study the influence on response to heat treatment.

  1. Investigation of residual stresses in welded joints of heat-resistant magnesium alloy ML10 after electrodynamic treatment

    Directory of Open Access Journals (Sweden)

    L.M. Lobanov

    2016-06-01

    Full Text Available In repair of aircraft structures of magnesium alloy ML10, the argon arc non-consumable electrode welding is used. In this case, the residual welding stresses occur in repair welds, being one of the causes for reducing the service characteristics of the restored products. Residual stresses arise as a result of welding. Post-weld heat treatment is used to reduce the residual stresses. The heat treatment, which occurs after welding, increases the cost of repair. This leads to the search for alternative methods to control the stressed state of welded joints, one of which is electrodynamic treatment, which reduces the level of residual stresses in repair welds, and as a consequence, the cost of the welding repair in restoring aircraft structures. It was found from the results of experiments carried out, that the electrodynamic treatment allows reduces the initial level of stresses in welded joints, reaching 120 MPa, to 30 MPa, and at definite geometric characteristics of the specimens forming the field of compressive stresses, the values of which are equal to –50 MPa. It is shown that the optimum distance between the zones of treatment, being 5 mm, provides the guaranteed covering the zones of electrodynamic effect and, as a consequence, the maximum efficiency of the electric dynamic treatment.

  2. Determination of inconsistency of crystal lattice parameters of. gamma. - and. gamma. '-phases of nickel heat resisting alloys by Fourier-analysis of x-ray diffraction reflex profiles

    Energy Technology Data Exchange (ETDEWEB)

    Samojlov, A.I.; Ignatova, I.A.; Krivko, A.I.; Kozlova, V.S.; Dodonova, L.P.

    1983-01-01

    A method is outlined that enables with the use of Fourier-analysis of summary unresolved X-ray diffraction profile of the matrix ..gamma.. and intermetallic ..gamma..' phases of nickel heat resisting alloys of the Ni-Cr-Co-Al-Ti-Nb-W-Mo-V -Hf system, to calculate the location of reflexes of each phase, that is, to determine the periods of their crystal lattices in the alloy (in monolith) directly without electrolytic separation of ..gamma..'-phase. The limits of the method applicability were determined.

  3. Application of Hastelloy X in gas-cooled reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, C.R.; Rittenhouse, P.L.; Corwin, W.R.; Strizak, J.P.; Lystrup, A.; DiStefano, J.R.

    1976-10-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data are reported. Properties of concern include tensile, creep, creep-rupture, fatigue, creep-fatigue interaction, subcritical crack growth, thermal stability, and the influence of helium environments with controlled amounts of impurities on these properties. In order to develop these properties in helium environments that are expected to be prototypic of HTGR operating conditions, it was necessary to construct special environmental test systems. Details of construction and operating parameters are described. Interim results from tests designed to determine the above properties are presented. To date a fairly extensive amount of information has been generated on this material at Oak Ridge National Laboratory and elsewhere concerning behavior in air, which is reviewed. However, only limited data are available from tests conducted in helium. Comparisons of the fatigue and subcritical growth behavior in air between Hastelloy X and a number of other structural alloys are given.

  4. Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

    CERN Document Server

    SAE Aerospace Standards. London

    2012-01-01

    Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

  5. Alloys For Flexible Hoses In A Corrosive Environment

    Science.gov (United States)

    Macdowell, Louis G., III; Ontiveros, Cordelia

    1992-01-01

    High-nickel alloy resists pitting corrosion. Report evaluates metal alloys for flexible hoses in corrosive environment. Tested to find alternatives to 304L stainless steel. Nineteen alloys selected for testing on basis of reputation for resistance to corrosion. Top five, in order of decreasing resistance to corrosion: Hastelloy(R) C-22, Inconel(R) 625, Hastelloy(R) C-276, Hastelloy(R) C-4, and Inco(R) alloy G-3. Of these, Hastelloy(R) C-22 found best for flexible-hose application.

  6. 用于镁还原罐的新型耐热合金及制作工艺%New Heat-resistant Alloy and Production Process Used for Mg Reduction Pot

    Institute of Scientific and Technical Information of China (English)

    董鹏敏; 管争荣

    2013-01-01

    Taking ZG30Cr24Ni7 scrap steel as basic raw material,then nitrogen ferrochrome (26%~28%chrome; 0.20%~ 0.40% carbon; 6% ~ 8% nickel; 1.0% ~ 2.0% silicon; 0.20% ~ 0.35% nitrogen; 0.20% ~ 1.6% manganese; 0.2% ~0.35%tombarthite) were added.A new type of heat resistant alloy can be obtained by ultrasonic treatment technique alloying in melting process.The refined magnesium reduction pot is made by the alloy,taking a new type of structure,using hot dipping aluminizing for the cylinder body and spherical bottom surface.The service life of the pot is up to more than four months,which has good economic efficiency.%以ZG30Cr24Ni7废钢为基本原料,合理加入氮化铬铁(26%~28%铬,0.20%~0.40%碳,6%~8%镍,1.0%~2.0%硅,0.20%~0.35%氮,0.20%~1.6%锰,0.2%~0.35%稀土),熔炼过程采用超声波处理,制得一种新型耐热合金.以此合金所制作的炼镁还原罐,采用新型结构,对简体和球形端底表面进行热浸渗铝,其使用寿命达到4个月以上,具有良好的经济效益.

  7. Computational Evaluation of Cyclic Strength of Carburized Gears from Heat-Resistant Steels

    Science.gov (United States)

    Semenov, M. Yu.

    2014-11-01

    An advanced model for computing the fatigue bending strength of gears fabricated from a complexly alloyed heat-resistant steel 16Kh3NVFMB-Sh (VKS-5) subjected to vacuum carburizing in acetylene is suggested. The model matches experimental data satisfactorily and has been used to develop a mode for vacuum carburizing of gears from the heat-resistant steel to provide a high fatigue resistance.

  8. Developing and Studying the Methods of Hard-Facing with Heat-Resisting High-Hardness Steels

    Science.gov (United States)

    Malushin, N. N.; Kovalev, A. P.; Valuev, D. V.; Shats, E. A.; Borovikov, I. F.

    2016-08-01

    The authors develop the methods of hard-facing of mining-metallurgic equipment parts with heat-resisting high-hardness steels on the base of plasma-jet hard-facing in the shielding-alloying nitrogen atmosphere.

  9. Larson-Miller Constant of Heat-Resistant Steel

    Science.gov (United States)

    Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-06-01

    Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.

  10. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub project 1 - Ex-serviced parent metal and virgin weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Weilin Zang

    2006-10-15

    Many existing power generating and process plants, where low alloy heat resistant CrMo(V) steels are extensively used for critical components, have exceeded their design lifetime of usually 100,000 hours. Assessment of residual lifetime and extension of economic life by weld repair have become increasingly important and attractive. This project aims at i) performing weld repair and determining the degree of mismatching, ii) evaluating the creep properties of weld repairs, iii) analysing creep behaviour of weld repair and providing necessary data for further reliable simulations of weld repair creep behaviour in long term service, and iv), simulating and assessing lifetime and creep damage evolution of weld repair. Weld repair using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables has been carried out in a service-exposed 10 CrMo 9 10 pipe. Creep specimens have been extracted from the service-exposed 10 CrMo 9 10 parent metal (PM), from the virgin 10 CrMo 9 10 weld metal (WM), from the virgin 13 CrMo 4 4 WM as well as from the virgin 15 Mo 3 WM. Iso-thermal uniaxial creep tests have been performed at 540 deg C in air. Pre- and post-metallography are carried out on the selected samples. FEM simulations using obtained creep data are executed. Pre-test metallography shows normal and acceptable weld repairs at given welding conditions. Creep tests demonstrate that the virgin 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 WMs have apparently longer creep lifetime than the service-exposed CrMo 9 10 PM at higher stresses than 110 MPa. Among the weld metals, the longest creep lifetime is found in 10 CrMo 9 10. Higher creep strength and lower creep strain rate in the weld metals indicate an overmatch weld. At 95 MPa, however, lifetime of 13 CrMo 4 4 WM is surprisingly short (factors which may shorten lifetime are discussed and one more test will start to verify creep strength at low stress) and tests are still running for other two weld metals. More results regarding low stress

  11. Experimental investigation on effective thermal conductivities of refractory alloy honeycomb cores%耐热合金蜂窝等效热导率的实验研究

    Institute of Scientific and Technical Information of China (English)

    赵剑; 谢宗蕻; 李玮; 田江

    2011-01-01

    耐热合金蜂窝夹芯结构是高超音速飞行器热防护系统外面板的理想候选方案.针对Hastelloy X耐热合金蜂窝夹芯结构开展了稳态传热实验,通过控制加热板温度,获得了一组热平衡时蜂窝夹芯结构的热、冷面温度,结合Stefan-Boltzmann定律和大空间自然对流实验关联式,采用热阻分析方法得到了Hastelloy X耐热合金蜂窝随温度变化的宏观等效热导率,并采用Swan-Pittman半经验模型预测了该蜂窝的等效热导率,与实验结果对比一致性较好.%The honeycomb sandwich structures made of heat resistant alloy are suitable for the outer panels of thermal protection system used in hypersonic applications. Static heat transfer experiment was conducted on the Hastelloy X honeycomb sandwich structure, and both the upper and lower face sheet temperatures at steady state were obtained. The macroscopic effective thermal conductivities varying with different temperatures were acquired based on the thermal resistance analytical method, in combination with Stefan-Boltzmanns law and experimental correlation formula for natural convection in infinite space. Swan-Pittman semi-empirical model was adopted to predict the effective thermal conductivities of the Hastelloy X honeycomb sandwich structure, and the comparison between experimental results and predicted results shows good conformity.

  12. Evaluation of Heat Checking and Washout of Heat Resistant Superalloys and Coatings for Die inserts

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Yulong Zhu; Edward Courtright; Harold Adkins

    2005-01-30

    This project had two main objectives: (1) To design, fabricate and run a full size test for evaluating soldering and washout in die insert materials. This test utilizes the unique capabilities of the 350 Ton Squeeze Casting machine available in the Case Meal Casting Laboratory. Apply the test to evaluate resistance of die materials and coating, including heat resistant alloys to soldering and washout damage. (2) To evaluate materials and coatings, including heat resistant superalloys, for use as inserts in die casting of aluminum alloys.

  13. Hemispherical total emissivity of Hastelloy N with different surface conditions

    Science.gov (United States)

    Gordon, Andrew J.; Walton, Kyle L.; Ghosh, Tushar K.; Loyalka, Sudarshan K.; Viswanath, Dabir S.; Tompson, Robert V.

    2012-07-01

    The hemispherical total emissivity of Hastelloy N (a candidate structural material for Next Generation Nuclear Plants (NGNPs), particularly for the molten fluoride cooled reactors) was measured using an experimental set-up that was constructed in accordance with the standard ASTM C835-06. The material surface conditions included: (i) 'as received' (original) sample from the supplier; (ii) samples with increased surface roughness through sand blasting; (iii) oxidized surface, and (iv) samples coated with graphite powder. The emissivity of the as received samples varied from around 0.22 to 0.28 in the temperature range of 473 K to 1498 K. The emissivity increased when the roughness of the surface increased compared to an as received sample. When Hastelloy N was oxidized in air at 1153 K or coated with graphite powder, its emissivity increased substantially. The sample sand blasted with 60 grit beads and sprinkled with graphite powder showed an increase of emissivity from 0.2 to 0.60 at 473 K and from 0.25 to 0.67 at 1473 K. The oxidized surface showed a similar behavior: an increase in emissivity compared to an unoxidized sample. This increase in emissivity has strong favorable safety implications in terms of decay heat removal in post-accident environments. The data were compared with another Hastelloy family member, Hastelloy X.

  14. Machinability of Hastelloy C-276 Using Hot-pressed Sintered Ti(C7N3)-based Cermet Cutting Tools

    Institute of Scientific and Technical Information of China (English)

    XU Kaitao; ZOU Bin; HUANG Chuanzhen; YAO Yang; ZHOU Huijun; LIU Zhanqiang

    2015-01-01

    C-276 nickel-based alloy is a difficult-to-cut material. In high-speed machining of Hastelloy C-276, notching is a prominent fallure mode due to high mechanical properties of work piece, which results in the short tool life and low productivity. In this paper, a newly developed Ti(C7N3)-based cermet insert manufactured by a hot-pressing method is used to machine the C-276 nickel-based alloy, and its cutting performances are studied. Based on orthogonal experiment method, the influence of cutting parameters on tool life, material removal rates and surface roughness are investigated. Experimental research results indicate that the optimal cutting condition is a cutting speed of 50 m/min, depth of cut of 0.4 mm and feed rate of 0.15 mm/r if the tool life and material removal rates are considered comprehensively. In this case, the tool life is 32 min and material removal rates are 3000 mm3/min, which is appropriate to the rough machining. If the tool life and surface roughness are considered, the better cutting condition is a cutting speed of 75 m/min, depth of cut of 0.6 mm and feed rate of 0.1 mm/r. In this case, the surface roughness is 0.59mm. Notch wear, flank wear, chipping at the tool nose, built-up edge(BUE) and micro-cracks are found when Ti(C7N3)-based cermet insert turned Hastelloy C-276. Oxidation, adhesive, abrasive and diffusion are the wear mechanisms, which can be investigated by the observations of scanning electron microscope and energy-dispersive spectroscopy. This research will help to guide studies on the evaluation of machining parameters to further advance the productivity of nickel based alloy Hastelloy C-276 machining.

  15. Identification of heat resistant Escherichia coli by qPCR for the locus of heat resistance.

    Science.gov (United States)

    Ma, Angela; Chui, Linda

    2017-02-01

    Three qPCR assays targeting the locus of heat resistance to identify heat resistant clinical Escherichia coli isolates are described. Of 613 isolates, 3 (0.5%) possessed the locus. The assays are a rapid, highly sensitive and specific alternative to screening by heat shock and can be used in food safety surveillance.

  16. Isolation, Identification of Heat Resistant Moulds in Margarine and Determination of Their Heat Resistance

    Directory of Open Access Journals (Sweden)

    A. S. Demirci

    2006-09-01

    Full Text Available In this study, moulds that cause problems in a margarine production plant which is located in Trakyaregion have been isolated and identified. In addition to, their heat resistance and lipolytic activity werestudied. For this purpose, margarine samples from various production lots and process water samples fromproduction plant were taken aseptically, transported immediately to the laboratory and analyzed. In thisresearch, two different heat resistant mould strains have been isolated from margarines and process water.After identification of this moulds, their heat resistances at different temperatures have been investigated.Mould isolates were identified as heat resistant Aspergillus fumigatus, Paecilomyces variotii based onmacroscopic and microscopic features. To this analyses results about thermal resistance, Aspergillusfumigatus and Paecilomyces variotii were ability to survive heat treatment at 95oC 10 minutes and 90oC 10minutes, respectively.

  17. Control of Heat-Resistant Steel Carburized Layer Structure. Part II

    Science.gov (United States)

    Semenov, M. Yu.

    2013-09-01

    In the first part of the article, published in the previous issue of this journal, on the basis of studying features of the process a physical and mathematical model is presented of carbide formation during heat-resistant steel vacuum carburizing based on the example of VKS-5. In the second part of this article on the basis of analyzing the calculation model physical features are presented for formation of cementite type carbide phase taking account of steel VKS-5 alloying with chromium and nickel, and also temperature. Simultaneously, features of special molybdenum, tungsten, vanadium and niobium carbide formation are considered. The expediency of increasing chromium content in a new generation of heat-resistant steels alloyed with nickel is substantiated.

  18. X-ray high temperature study of interphase strains in directionally crystallized eutectics. [Heat resisting alloys:Ni-Cr-Co-Al-Ti-Mo-W, and Co-Cr-Ni

    Energy Technology Data Exchange (ETDEWEB)

    Samojlov, A.I.; Ignatova, I.A.; Khatsinskaya, I.M.; Dodonova, L.P.; Krivko, A.I.; Kozlova, V.S.

    1981-01-01

    The technique of the determination of thermal interphase strains in the matrix and reinforced phases of directionally crystallized composits (eutectics) is developed. On the basis of previously suggested general principles of calculation tested at room temperature on the eutectics ..gamma../..gamma..'- MC the peculiarities and regularities of the formation of the strained state of phases (in Ni-Cr-Co-Al-Ti-Mo-W and Co-Cr-Ni alloys ..gamma../..gamma..' - MC and CoTaC-3) in a wide temperature range from the formation temperature to the room one are presented. On the basis of experimentally determined temperature dependence of X-ray strain of the matrix phase and adopted structural model the method of the determination of the level and sign of strains during the heating and cooling of the material in the given temperature range is presented. The existence of hysteresis of the curves of the sigmasub(i)=sigmasub(i)(T) dependences, characteristic of the given composite is established. The results of X-ray tensometry are compared with the results of dilatometric studies of the same eutectics.

  19. Weldability of the superalloys Haynes 188 and Hastelloy X by Nd:YAG

    Directory of Open Access Journals (Sweden)

    Graneix Jérémie

    2014-01-01

    Full Text Available The requirements for welded aircraft parts have become increasingly severe, especially in terms of the reproducibility of the geometry and metallurgical grade of the weld bead. Laser welding is a viable method of assembly to meet these new demands, because of automation, to replace the manual TIG welding process. The purpose of this study is to determine the weldability of Hastelloy X and Haynes 188 alloys by the butt welding process with a Nd:YAG laser. To identify the influential parameters of the welding process (laser power, feed rate, focal diameter and flow of gas while streamlining testing, an experimental design was established with the CORICO software using the graphic correlation method. The position of the focal point was fixed at 1/3 of the thickness of the sheet. The gas flow rate and the power of the beam have a major effect on the mechanical properties and geometry of the weld. The strength of the weld is comparable to that of the base metal. However, there is a significant decrease in the elongation at break of approximately 30%. The first observations of the cross section of the weld by scanning electron microscopy coupled with EBSD analysis show a molten zone presenting dendritic large grains compared to the equiaxed grains of the base metals without a heat affected zone.

  20. Heat resistance of Fe-Al intermetallics in the context of selected heat-resistant and hihg-temperature creep resistant steels

    Directory of Open Access Journals (Sweden)

    P. Baranowski

    2009-04-01

    Full Text Available Results are hereby presented of heat-resistance tests of two Fe3Al and FeAl intermetallic phase-based alloys in the context of St41k-typeboiler steel and 50H21G9N4 high-temperature creep resistant steel. It has been ascertained that heat resistance of the 50H21G9N4 steeland of the Fe3Al and FeAl intermetallic phase-based alloys significantly exceeds that of the boiler steel tested in the air atmosphere and the atmosphere of a flue gas with CO, CO2, SiO2 content alike. Improvement of these properties depends of exposure conditions. The largest differences have been observed when the tests were carried out in temperature 1023 K and in the flue gas atmosphere. The differences have been more and more noticeable as the exposition duration extended. A tendency has been also recorded of smaller mass decrements of the Fe3Al and FeAl intermetallic phase-based alloys as compared to the 50H21G9N4 steel.

  1. Development of Heat-resistant XLPE Cable and Accessories

    Science.gov (United States)

    Yamada, Hiroyuki; Nakagawa, Shinichi; Murata, Yoshinao; Kishi, Kouji; Katakai, Shoshi

    We have developed heat-resistant XLPE cable and accessories that can be operated at 105°C as the maximum permissible conductor temperature in normal operation. Through this cable system, greater transmission capacity can be achieved using existing cable ducts and without increasing the conductor size of the cable. We have developed heat-resistant XLPE insulation material which has a higher melting point than that of conventional XLPE. The breakdown strength of heat-resistant XLPE cable at 105°C is almost the same as that of conventional XLPE cable at 90°C. The heat deformation of the new cable at 105°C is almost the same as that of conventional XLPE cable at 90°C. Conventional self-pressurized rubber joints can be applied to heat-resistant cable lines with the new waterproof joint compound with low heat resistivity.

  2. OTS Selective Bibliography. High Temperature Metallurgy and Heat Resistant Alloys

    Science.gov (United States)

    1961-02-01

    electrospark machining, explosive cutting, and cent, UHS-260, Halcomb 218, A-286, 410 Stainless, electrolytic machining), by Clifford, Semones and R...OF METALS, by Fassell, Peterson cludes metals - electro- deposition ). Final report, and Chamberlain. Tech. rept. no. III, part I. by Kruh. 1957. 88p...penetration, tion to molybdenum above about 9000 C in air. The crater diameter, and volume of target material dis- .001 inch chromium deposits offer some

  3. Application of the Electricity Motor Driving Pipe End Beveling Machine in Cr-Mo Heat-resistant Alloy Steel Pipe Groove Processing%电动管端坡口机在铬钼耐热钢管坡口加工中的应用

    Institute of Scientific and Technical Information of China (English)

    何文洲

    2014-01-01

    管道在安装前都需要进行坡口加工,坡口加工质量优劣直接影响焊接质量。对常用坡口加工机具及其加工质量进行了比较分析,阐述了电动管端坡口机的结构组成和工作原理。应用效果显示:电动管端坡口机在铬钼耐热合金钢管焊接工序中加工出来的坡口平整光亮,保证了焊接质量,省时高效,避免了采用其他方式加工坡口造成的各种质量问题。而且针对钢质管道安装维修特点,提出采用直流电机和便携式锂离子电源,省时高效、经济环保。%Before pipeline installation, the pipe need bevel process, and bevel machining quality directly affects welding quality. In this article, it made a comparative analysis on the common bevel processing equipment and its processing quality, and expatiated the structure and working principle of electricity motor driving pipe end beveling machine. The application results indicated that the bevel is smooth and bright by using electricity motor driving pipe end beveling machine in Cr-Mo heat-resistant alloy steel pipe welding process. It ensures the welding quality, time-saving and efficient, avoiding various quality problems caused by other methods of processing bevel. According to the characteristics of the pipeline installation and maintenance, it put forward using DC motor and portable lithium-ion power resource, it is with time-saving and efficient, economic and environmental protection.

  4. Effect of aluminizing treatment on the oxidation properties of 12Cr heat resisting steel

    Science.gov (United States)

    Kim, Jae-Hwan; Wang, Jei-Pil; Kang, Chang-Yong

    2011-12-01

    In order to investigate the effect of aluminization on the oxidation properties of 12Cr martensitic heat resisting steel, a specimen was prepared by forging after centrifugal casting. After aluminizing treatment under various conditions, scanning electron microscopy observation, and hardness, line profile and x-ray diffraction analysis of the alloy layer were performed. The results confirmed that the thickness of the layer of Al13Fe4, with a Vickers hardness of over 880, increased with increasing aluminizing temperature and time. Moreover, it was concluded from the results of the oxidation experiment that the oxidation properties of the aluminized specimen were improved by up to approximately 30 %.

  5. HEAT-RESISTANT COMPOSITES CURED BY ELECTRON BEAM

    Institute of Scientific and Technical Information of China (English)

    Jian-wen Bao; Yang Li; Xiang-bao Chen; Feng-mei Li

    2001-01-01

    Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical analysis (DMA). The experimental results show that the mechanical properties of the composites cured by EB could meet the specifications of aeronautical engines at 250°C.

  6. Processing and microstructure characterization of SiC{sub p}/Hastelloy(Ni–Mo–Cr) composites prepared by pressureless infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Qian, E-mail: qiqian@student.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, Yan, E-mail: stony2000@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Hui [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Li, Yinsheng; Liang, Hanqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Huang, Zhengren, E-mail: zhrhuang@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-08-05

    Highlights: • The wettability of Hastelloy on the SiC substrate was analyzed. • Hastelloy matrix composites have been developed via pressureless infiltration. • Micron SiC particles were used as reinforcement. • Al{sub 2}O{sub 3} coating was adopted to restrain the interfacial reaction of SiC{sub p}/Hastelloy composite. - Abstract: SiC{sub p}/Hastelloy composites were fabricated by pressureless Ti-activated infiltration process. The wetting and infiltration behaviors of Hastelloy on the SiC substrates and the interfacial reaction between the SiC particles and Hastelloy were investigated by real-time observation system, X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy X-ray dispersive spectroscopy (EDS) system. The results demonstrated that the Hastelloy had a good wettability on SiC ceramic and could spontaneously infiltrate into the Ti-activated SiC preform. Moreover, intensive interfacial reaction similar to SiC/Ni system was found between the SiC particles and Hastelloy, which induced defects in the microstructure. In order to inhibit the interfacial reaction, Al{sub 2}O{sub 3} coating on SiC particles was adopted as a diffusion barrier, which effectively reduced the extent of the interfacial reactions.

  7. Effect of intermetallic compounds on heat resistance of hot roll bonded titanium alloy-stainless steel transition joint%金属间化合物对钛合金与不锈钢的热轧焊过渡接头耐热性的影响

    Institute of Scientific and Technical Information of China (English)

    赵东升; 闫久春; 刘玉君

    2013-01-01

      研究金属间化合物对过渡接头耐热性的影响,采用镍中间层的钛与不锈钢热轧焊接头的焊后热处理方法,研究焊后热处理引起的连接界面微观组织演变。结果表明:当热处理温度为600~800°C,热处理时间为10 min和30 min时,在不锈钢与镍的连接界面处没有发生明显的互扩散。但是,当热处理温度为700°C热处理时间为30 min时,在不锈钢与镍的连接界面出现微裂纹。热处理温度为600°C时,镍与钛合金的连接界面的金属间化合物层的厚度增大,而热处理温度为700和800°C时,界面出现微裂纹。微裂纹产生在金属间化合物层之间或者是金属间化合物层与镍层之间。过渡接头的拉伸强度随着热处理温度的升高或时间的延长而降低。%The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy−stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600−800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time.

  8. Diversity and biology of heat-resistant fungi

    NARCIS (Netherlands)

    Houbraken, J.; Dijksterhuis, J.; Samson, R.A.; Wong, Hin-Chung

    2012-01-01

    Heat-resistant fungi survive high temperatures (75°C or more for at least 30 min). For food microbiology, these fungi are of interest because of spoilage of canned and pasteurized food products, and cause damage for millions of dollars in the fruit-juice and beverage branch. Many studies have been c

  9. Radiation and Heat Resistance of Moraxella-Acinetobacter in Meats

    Science.gov (United States)

    1978-01-23

    growth 7 Vacuum packaging and impact on growth of resistant isolates .... 7 Effect of fat content of meat on radiation and heat resistance of...approximately 10 cells per ml. Storage for culture main- tenance after growth was at 3-5*C. Vacuum packaging and impact on growth of resistant isolates...sensitive to reduced oxygen occur- ring with vacuum packaging of foods (Maxcy et al., 1976). Furthermore, most of the radiation-resiscant M-A were

  10. Heat-Resistant Composite Materials Based on Polyimide Matrix

    Directory of Open Access Journals (Sweden)

    Vitaly Sergeyevich Ivanov

    2016-12-01

    Full Text Available Heat-resistant composite materials with a polyimide-based binder were obtained in this paper. Composites were prepared with different content of single-wall carbon nanotubes (SWCNT and nanostructured silicon carbide, and polyimides coated carbon fibers woven into the cloth. Composite materials showed high values of thermostability and resistance to thermo-oxidative degradation, as well as good mechanical properties.

  11. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance

    Science.gov (United States)

    Stringer, Sandra C.; Barker, Gary C.; Peck, Michael W.

    2016-01-01

    ABSTRACT Heat treatment is an important controlling factor that, in combination with other hurdles (e.g., pH, aw), is used to reduce numbers and prevent the growth of and associated neurotoxin formation by nonproteolytic C. botulinum in chilled foods. It is generally agreed that a heating process that reduces the spore concentration by a factor of 106 is an acceptable barrier in relation to this hazard. The purposes of the present study were to review the available data relating to heat resistance properties of nonproteolytic C. botulinum spores and to obtain an appropriate representation of parameter values suitable for use in quantitative microbial risk assessment. In total, 753 D values and 436 z values were extracted from the literature and reveal significant differences in spore heat resistance properties, particularly those corresponding to recovery in the presence or absence of lysozyme. A total of 503 D and 338 z values collected for heating temperatures at or below 83°C were used to obtain a probability distribution representing variability in spore heat resistance for strains recovered in media that did not contain lysozyme. IMPORTANCE In total, 753 D values and 436 z values extracted from literature sources reveal significant differences in spore heat resistance properties. On the basis of collected data, two z values have been identified, z = 7°C and z = 9°C, for spores recovered without and with lysozyme, respectively. The findings support the use of heat treatment at 90°C for 10 min to reduce the spore concentration by a factor of 106, providing that lysozyme is not present during recovery. This study indicates that greater heat treatment is required for food products containing lysozyme, and this might require consideration of alternative recommendation/guidance. In addition, the data set has been used to test hypotheses regarding the dependence of spore heat resistance on the toxin type and strain, on the heating technique used, and on the

  12. Heat-resistant bacterial phytase in broiler pelleted diets

    Directory of Open Access Journals (Sweden)

    TC de F Carlos

    2015-03-01

    Full Text Available The objective of the study was to evaluate the effects of a heat-resistant bacterial phytase added to pelleted diets on mineral digestibility, live performance, carcass traits, and bone quality of broilers. Three treatments were evaluated: Positive control; negative control, with 0.10 points reduction in calcium level and 0.15 points reduction in available phosphorus level; and negative control + phytase at 500 FTU/kg. Mineral digestibility and bone quality results demonstrated that the evaluated phytase resisted pelleting as it increased the utilization of the minerals present in the diet.

  13. Development of Fire Resistant/Heat Resistant Sewing Thread

    Science.gov (United States)

    2016-03-01

    brilliance and fluorescence. The ionic attraction  between the basic dye and the  sulphonic   acid  dye sites in acrylic fibers is strong, which yields high... properties . Modified acrylic fiber shed during processing and bi-component construction could not be dyed successfully to a solid, level Tan 499...core to sheath ratio of 70:30 will offer a high performance, low cost sewing thread with required fire resistant/heat resistant properties . 15

  14. Studying microstructure of heat resistant steel deoxidized by barium ferrosilicon

    Directory of Open Access Journals (Sweden)

    A. Z. Issagulov

    2016-07-01

    Full Text Available The paper examined the nature and distribution of non-metallic inclusions in the heat-resistant steel 12H1MF (0,12 % С, 1 % Сr, 0,5 - 0,6 Mo, 0,5 % V, ferrosilicobarim. As a reference, used by steel, deoxidized silicon. Melting was carried out in a laboratory, research-metallic inclusions, their shape and distribution, pollution index were studied according to conventional methods. Studies have shown that ferrosilicobarim deoxidation in an amount of 0,1 - 0,2 %, reduce the overall pollution index of non-metallic inclusions and change the nature of their distribution.

  15. Diffusion Barrier Coating System and Oxidation Behavior of Coated Alloys

    Institute of Scientific and Technical Information of China (English)

    T.NARITA

    2009-01-01

    @@ 1 Introduction Research into the formation of Re-based alloys is in progress in our laboratory to provide a diffusion barrier layer between heat-resistant alloys and Al reservoir layers, which assist in the formation and maintenance a protective Al2O3 scale for long periods. Coatings with a two-layered structure comprised of inner Re-based alloy layer and outer β-NiAl layer with or without Pt addition were successfully formed on various heat resistant alloys such as Ni-based singlecrystal superalloys, Ni-based heat resistant alloys, NiMo based alloy, Ni-Cr based alloy, and Fe-based alloys. The duplex layer coating proposed is generally termed a diffusion barrier coating system; DBC system.

  16. 2G HTS wires made on 30 μm thick Hastelloy substrate

    Science.gov (United States)

    Sundaram, A.; Zhang, Y.; Knoll, A. R.; Abraimov, D.; Brownsey, P.; Kasahara, M.; Carota, G. M.; Nakasaki, R.; Cameron, J. B.; Schwab, G.; Hope, L. V.; Schmidt, R. M.; Kuraseko, H.; Fukushima, T.; Hazelton, D. W.

    2016-10-01

    REBCO (RE = rare earth) based high temperature superconducting (HTS) wires are now being utilized for the development of electric and electromagnetic devices for various industrial, scientific and medical applications. In the last several years, the increasing efforts in using the so-called second generation (2G) HTS wires for some of the applications require a further increase in their engineering current density (J e). The applications are those typically related to high magnetic fields where the higher J e of a REBCO wire, in addition to its higher irreversibility fields and higher mechanical strength, is already a major advantage over other superconducting wires. An effective way to increase the J e is to decrease the total thickness of a wire, for which using a thinner substrate becomes an obvious and attractive approach. By using our IBAD-MOCVD (ion beam assisted deposition-metal organic chemical vapor deposition) technology we have successfully made 2G HTS wires using a Hastelloy® C276 substrate that is only 30 μm in thickness. By using this thinner substrate instead of the typical 50 μm thick substrate and with a same critical current (I c), the J e of a wire can be increased by 30% to 45% depending on the copper stabilizer thickness. In this paper, we report the fabrication and characterization of the 2G HTS wires made on the 30 μm thick Hastelloy® C276 substrate. It was shown that with the optimization in the processing protocol, the surface of the thinner Hastelloy® C276 substrate can be readily electropolished to the quality needed for the deposition of the buffer stack. Same in the architecture as that on the standard 50 μm thick substrate, the buffer stack made on the 30 μm thick substrate showed an in-plane texture with a Δϕ of around 6.7° in the LaMnO3 cap layer. Low-temperature in-field transport measurement results suggest that the wires on the thinner substrate had achieved equivalent superconducting performance, most importantly the I

  17. Wear-Resistant Alloy for Protection of Contact Surfaces of Working Aircraft Engine Blades from Oxidation at High Temperatures

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2014-07-01

    Full Text Available Wear-resistant and heat-resistant cast cobalt-based alloy for hardening of the contact surfaces of working blades of aircraft gas turbine engines instead of commercial alloys ХТН-61 and ВЖЛ-2 was developed. High levels of heat resistance were achieved by complex doping (modification of the alloy. Based on studies of heat resistance, wear resistance, the structure and melting point of the alloys, the optimum chemical and phase composition of the developed alloy was defined.

  18. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  19. Heat Resistance of TiN Coated HSS Tools

    Institute of Scientific and Technical Information of China (English)

    周兰英; 周焕雷; 贾庆莲

    2003-01-01

    The cutting friction, cutting deformation, producing heat, conducting heat, temperature field of TiN coated HSS tools in the cutting process are discussed profoundly. In order to make clear the heat property of TiN coated tools, from the micromechanism angle, the relationship of the heat property and the crystal structure of TiN compound is analyzed, and the regularity of TiN compound crystal structure changing with temperature rising is sought. The difference of the wear resistance and heat resistance of TiN coated tools deposited by c1 and c2 depositing techniques is proved by tests. The conclusions will offer the theoretical basis for correct design of geometrical parameters of TiN coated tools, rational selection of cutting regimes and optimization of the depositing technique.

  20. Heat Resistance of Glued Finger Joints in Spruce Wood Constructions

    Directory of Open Access Journals (Sweden)

    Martin Sviták

    2014-10-01

    Full Text Available The heat resistance of glued spruce wood was evaluated for different joint types and adhesives. Bending strength, modulus of elasticity, and also fracture evaluation were investigated on glued spruce samples made by the finger-jointed principle. Finger-jointed samples were glued with polyurethane (PUR and melamine-urea-formaldehyde (MUF adhesives. Heat loading was realized at temperatures 60, 80, and 110 °C and compared with wood with 20 °C. A static bending test with four-point flexural test was used. Elevated temperature and adhesive type had an important influence on the bending strength. On the other hand, adhesive type had a significant influence on the modulus of elasticity, but elevated temperature had no substantial influence.

  1. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    Science.gov (United States)

    Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. This study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be (in order) Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of those tested for this application.

  2. Effect of Aluminium and Silicon on High Temperature Oxidation Resistance of Fe-Cr-Ni Heat Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Haitao; ZHAO Qi; YU Huashun; ZHANG Zhenya; CUI Hongwei; MIN Guanghui

    2009-01-01

    Fe-Cr-Ni heat resistant steels with different contents of Al and Si were cast in intermediate frequency induction furnace with non-oxidation method. With oxidation weight gain method, the oxidation resistance of test alloys was examined at 1 200℃ for 500 h. The effects of Al and Si on oxidation resistance were studied through analyses of X-ray diffraction (XRD) and scanning electron microscope (SEM). It is shown that the composition of oxide scales is a decisive factor for the oxidation resistance of heat resistant steels. The compounded scale composed of Cr2O3, ar-Al2O3, SiO2 and Fe(Ni)Cr2O4, with flat and compact structure, fine and even grains, exhibits complete oxidation resistance at 1 200℃ Its oxidation weight gain rate is only 0.081 g/(m2·h). By the criterion of standard Gibbs formation free energy, a model of nucleation and growth of the compounded scale was established. The formation of the compounded scale was the result of the competition of being oxidated and reduction among Al, Si, and the matrix metal elements of Fe, Cr and Ni. The protection of the compounded scale was analyzed from the perspectives of electrical conductivity and strength properties.

  3. Application of the Taguchi technique for the optimization of surface roughness and tool life during the milling of Hastelloy C22

    Energy Technology Data Exchange (ETDEWEB)

    Kivak, Turgay; Mert, Senol [Duezce Univ. (Turkey). Dept. of Manufacturing Engineering

    2017-02-01

    In this study, the effects of machining parameters on surface roughness (Ra) and tool life (Tl) were investigated in the milling of Hastelloy C22 alloy with TiAlN-coated carbide inserts. A number of milling experiments were conducted using the L{sub 27} (3{sup 3}) Taguchi orthogonal array on a CNC milling machine under different cutting conditions (dry, compressed air and wet). The cutting condition, cutting speed and feed rate were determined as the essential machining parameters. Analysis of variance (ANOVA) and signal-to-noise (S/N) ratio were employed to evaluate the effects of the machining parameters on Ra and Tl, and prediction models were created using quadratic regression analyses. The results revealed that the feed rate and cutting condition were the most influential factors on surface roughness and flank wear. The maximum tool life was achieved under wet cutting condition using a cutting speed of 30 x min{sup -1} and a feed rate of 0.08 mm x rev{sup -1}, while the minimum surface roughness value was obtained under wet cutting condition using a cutting speed of 50 m x min{sup -1} and the same feed rate. Using the optimum cutting parameters for Tl (30 m x min{sup -1}, 0.08 mm x rev{sup -1}), increases of 234 % and 67 % in tool life were observed under wet and compressed air cutting conditions, respectively, compared to the dry cutting condition.

  4. Viability and heat resistance of murine norovirus on bread.

    Science.gov (United States)

    Takahashi, Michiko; Takahashi, Hajime; Kuda, Takashi; Kimura, Bon

    2016-01-04

    Contaminated bread was the cause of a large-scale outbreak of norovirus disease in Japan in 2014. Contamination of seafood and uncooked food products by norovirus has been reported several times in the past; however the outbreak resulting from the contamination of bread products was unusual. A few reports on the presence of norovirus on bread products are available; however there have been no studies on the viability and heat resistance of norovirus on breads, which were investigated in this study. ce:italic>/ce:italic> strain 1 (MNV-1), a surrogate for human norovirus, was inoculated directly on 3 types of bread, but the infectivity of MNV-1 on bread samples was almost unchanged after 5days at 20°C. MNV-1 was inoculated on white bread that was subsequently heated in a toaster for a maximum of 2min. The results showed that MNV-1 remained viable if the heating period was insufficient to inactivate. In addition, bread dough contaminated with MNV-1 was baked in the oven. Our results indicated that MNV-1 may remain viable on breads if the heating duration or temperature is insufficient.

  5. Studies Concerning Heat-Resisting Additives for Bitumens

    Directory of Open Access Journals (Sweden)

    Livia Groll

    2008-01-01

    Full Text Available The improvement of causeway’s bitumen adhesiveness is becoming a current practice in our country, especially when is used acid (siliceous aggregate. One of the most important properties of bitumen is its adhesiveness to aggregate, and this property determine the using of bitumen in causeways area. Usually the adhesiveness is defined as the capacity of a binder to cover an aggregate without dispersing itself when touching the water or the traffic aggressions. Therefore, the adhesiveness additives are products that improve the adhesiveness of the bitumen to a certain aggregate. The used additives – ADETEN type (A01 and A03 have a high stocking stability, a low toxicity degree toward the amine, diamine, polyamine-based additives and are liquid products perfectly compatible with all bitumens and easy to use, in comparison to the paste or solid additives, which must be made liquid to be used. But a very important condition, which must be fulfilled by these promoters is the heat-resisting condition.

  6. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  7. An investigation into crystalline phases and nano structural and mechanical properties of HH heat resistant stainless steels

    Directory of Open Access Journals (Sweden)

    M Hosseini

    2015-12-01

    Full Text Available In the present work, the effects of different casting parameters including pouring temperature and cooling rate on stainless steel structures and mechanical properties of heat resistant alloy (HH were studied. Mo nanoparticles were synthesized through sol-gel method and were coated on the stainless steel device using spin-coating method. The effect of coating layer on the device was studied by using XRD (X-Ray Diffraction and FT-IR (Fourier Transform Infra red and SEM (Scanning Electron Microscopy techniques. The obtained results indicated an enhancement of corrosion, surface abrasion protection without changing metal surface structure, and a reduction of leakage current through the stainless steel device. Furthermore, pouring temperature and cooling rate increase caused a fine grain structure to be acquired with less carbides and better distribution in the austenitic matrix.

  8. Diversity Assessment of Heat Resistance of Listeria monocytogenes Strains in a Continuous-Flow Heating System

    NARCIS (Netherlands)

    Veen, van der S.; Wagendorp, A.; Abee, T.; Wells-Bennik, M.H.J.

    2009-01-01

    Listeria monocytogenes is a foodborne pathogen that has the ability to survive relatively high temperatures compared with other nonsporulating foodborne pathogens. This study was performed to determine whether L. monocytogenes strains with relatively high heat resistances are adequately inactivated

  9. Influencia de los parámetros de soldeo fuerte en la microestructura y propiedades mecánicas de la unión de la aleación base níquel Hastelloy B2

    Directory of Open Access Journals (Sweden)

    Sotelo, José Carlos

    2014-09-01

    Full Text Available A study of the high vacuum brazing process of solid solution strengthened Hastelloy B2 nickel alloy has been done. A first stage of research has focused on the selection of the most appropriate brazing filler metal to the base material and vacuum furnace brazing process. The influence of welding parameters on joint microstructure constituents, relating the microstructure of the joint to its mechanical properties, has been evaluated. Two gaps of 50 and 200 micrometers, and two dwell times at brazing temperature of 10 and 90 minutes were studied. The braze joint mainly consists of the nickel rich matrix, nickel silicide and ternary compounds. Finally, the results of this study have shown the high bond strength for small gaps and increased dwell times of 90 minutes.Se realizó un estudio pormenorizado del proceso de soldeo fuerte en horno de alto vacío de la aleación base níquel Hastelloy B2 fortalecida por solución sólida. En una primera fase del trabajo se seleccionó el material de aporte acorde al material objeto de unión y a la fuente de calentamiento seleccionada. Posteriormente, se evaluó la influencia del gap (50 y 200 micrómetros y tiempo de permanencia a temperatura de soldeo (10 y 90 minutos sobre los microconstituyentes de la unión, relacionando la microestructura con las propiedades mecánicas de la junta. Los análisis metalográficos mostraron una unión constituida por una matriz rica en níquel, siliciuros de níquel y compuestos ternarios. Finalmente, los resultados de los ensayos mecánicos a esfuerzos cortantes mostraron una elevada resistencia para gaps de 50 micrómetros y tiempos de permanencia de 90 minutos.

  10. Microstructural Features and Properties of High-hardness and Heat-resistant Dispersion Strengthened Copper by Reaction Milling

    Institute of Scientific and Technical Information of China (English)

    YAN Peng; LIN Chenguang; CUI Shun; LU Yanjie; ZHOU Zenglin; LI Zengde

    2011-01-01

    The oxide dispersion strengthened copper alloys are attractive due to their excellent combination of thermal and electrical conductivities,high-temperature strength and microstructure stability.To date,the state-of-art to fabrication of them was the intemal oxidation (IO) process.In this paper,alumina dispersion strengthened copper (ADSC) powders of nominal composition of Cu-2.5 vo1%Al2O3 were produced by reaction milling (RM) process which was an in-situ gas-solid reaction process.The bulk ADSC alloys for electrical and mechanical properties investigation were obtained by sintering and thereafter hot extrusion.After the hot consolidation processes,the fully densified powder compacts can be obtained.The single y-Al2O3 phase and profile broaden effects are evident in accordance with the results of X-ray diffraction (XRD); the HRB hardness of the ADSC can be as high as 95; the outcomes should be attributed to the pinning effect ofnano γ-Al2O3 on dislocations and grain boundaries in the copper matrix.The electrical conductivity of the ADSC alloy is 55%IACS (International Annealing Copper Standard).The room temperature hardness of the hot consolidated material was approximately maintained after annealing for l h at 900 ℃ in hydrogen atmosphere.In terms of the above merits,the RM process to fabricating ADSC alloys is a promising method to improve heat resistance,hardness,electrical conductivity and wear resistance properties etc.

  11. Some like it hot: heat resistance of Escherichia coli in food

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-11-01

    Full Text Available Heat treatment and cooking are common interventions for reducing the numbers of vegetative cells and eliminating pathogenic microorganisms in food. Current cooking method requires the internal temperature of beef patties to reach 71 °C. However, some pathogenic Escherichia coli such as the beef isolate E. coli AW 1.7 are extremely heat resistant, questioning its inactivation by current heat interventions in beef processing. To optimize the conditions of heat treatment for effective decontaminations of pathogenic E. coli strains, sufficient estimations and explanations are necessary on mechanisms of heat resistance of target strains. The heat resistance of E. coli depends on the variability of strains and properties of food formulations including salt and water activity. Heat induces alterations of E. coli cells including membrane, cytoplasm, ribosome and DNA, particularly on proteins including protein misfolding and aggregations. Resistant systems of E. coli act against these alterations, mainly through gene regulations of heat response including EvgA, heat shock proteins, σE and σS, to re-fold of misfolded proteins, and achieve antagonism to heat stress. Heat resistance can also be increased by expression of key proteins of membrane and stabilization of membrane fluidity. In addition to the contributions of the outer membrane porin NmpC and overcome of osmotic stress from compatible solutes, the new identified genomic island locus of heat resistant performs a critical role to these highly heat resistant strains. This review aims to provide an overview of current knowledge on heat resistance of E. coli, to better understand its related mechanisms and explore more effective applications of heat interventions in food industry.

  12. Materials for Advanced Turbine Engines (MATE): Project 3: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner, volume 1

    Science.gov (United States)

    Henricks, R. J.; Sheffler, K. D.

    1984-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or = 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.

  13. Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X

    Science.gov (United States)

    Abuzaid, Wael Z.; Sangid, Michael D.; Carroll, Jay D.; Sehitoglu, Huseyin; Lambros, John

    2012-06-01

    In this study, high resolution ex situ digital image correlation (DIC) was used to measure plastic strain accumulation with sub-grain level spatial resolution in uniaxial tension of a nickel-based superalloy, Hastelloy X. In addition, the underlying microstructure was characterized with similar spatial resolution using electron backscatter diffraction (EBSD). With this combination of crystallographic orientation data and plastic strain measurements, the resolved shear strains on individual slip systems were spatially calculated across a substantial region of interest, i.e., we determined the local slip system activity in an aggregate of ˜600 grains and annealing twins. The full-field DIC measurements show a high level of heterogeneity in the plastic response with large variations in strain magnitudes within grains and across grain boundaries (GBs). We used the experimental results to study these variations in strain, focusing in particular on the role of slip transmission across GBs in the development of strain heterogeneities. For every GB in the polycrystalline aggregate, we have established the most likely dislocation reaction and used that information to calculate the residual Burgers vector and plastic strain magnitudes due to slip transmission across each interface. We have also used molecular dynamics simulations (MD) to establish the energy barriers to slip transmission for selected cases yielding different magnitudes of the residual Burgers vector. From our analysis, we show an inverse relation between the magnitudes of the residual Burgers vector and the plastic strains across GBs. Also, the MD simulations reveal a higher energy barrier for slip transmission at high magnitudes of the residual Burgers vector. We therefore emphasize the importance of considering the magnitude of the residual Burgers vector to obtain a better description of the GB resistance to slip transmission, which in turn influences the local plastic strains in the vicinity of grain

  14. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2010-07-06

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  15. Cast, heat-resistant austenitic stainless steels having reduced alloying element content

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA

    2011-08-23

    A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).

  16. Etude expérimentale du soudage par laser YAG de l'alliage base nickel Hastelloy X

    OpenAIRE

    Graneix, Jérémie; Béguin, Jean-Denis; Pardeilhan, François; Masri, Talal; Alexis, Joël

    2013-01-01

    Le procédé de soudage laser YAG est envisagé pour remplacer le procédé de soudage TIG manuel pour la réalisation de pièces de turboréacteur en alliage nickel-chrome-molybdène Hastelloy X. Cette étude expérimentale a permis de définir un domaine de soudabilité de cet alliage répondant aux critères spécifiques du secteur aéronautique.

  17. Heat resistance of an outbreak strain of Listeria monocytogenes in hot dog batter.

    Science.gov (United States)

    Mazzotta, A S; Gombas, D E

    2001-03-01

    The heat resistance of a strain of Listeria monocytogenes responsible for a listeriosis outbreak in hot dogs was not higher than the heat resistance of other L. monocytogenes strains when tested in tryptic soy broth and in laboratory-prepared hot dog batter. For the thermal death time experiments, the cells were grown to stationary phase or were starved in phosphate-buffered saline, pH 7, for 6 h at 30 degrees C. Starvation increased the heat resistance of L. monocytogenes in broth but not in hot dog batter. D-values in hot dog batter were higher than in broth. For the hot dog formulation used in this study, cooking the hot dog batter for 30 s at 71.1 degrees C (160 degrees F), or its equivalent using a z-value of 6 degrees C (11 degrees F), would inactivate 5 logs of L. monocytogenes.

  18. Measurement of Thermal Resistance of Heat-resistant Fabrics with a Guarded-hot-box

    Institute of Scientific and Technical Information of China (English)

    ZHU Fang-long; ZHANG Wei-yuan

    2006-01-01

    A novel analytical method with the guarded-hot-box (GHB) in investigating the thermal resistance of heat-resistant fabrics is described and the analytical method is also presented in this paper. The new apparatus is capable of measure thermal resistance of the fabrics in high temperature up to an average applied temperature of 250℃.The maximum measurement error of the apparatus is 6.5%and relative error is less than 2.8% between the introduced method and standard given value. In the GHB method, air layer thickness is the most important factor that influences measurement value of thermal resistance of heat-resistant fabrics. Results show that the method is more accurate and efficient than GB11048-89 one in measuring thermal resistance of heat-resistant fabrics.

  19. High-temperature gas-cooled reactor helium compatibility studies: results of 10,000-hour exposure of selected alloys in simulated reactor helium

    Energy Technology Data Exchange (ETDEWEB)

    Lechtenberg, T.A.; Stevenson, R.D.; Johnson, W.R.

    1980-05-01

    Work on the HTGR Helium Compatibility Task accomplished during the period March 31, 1977 through September 30, 1979, is documented in this report. Emphasis is on the results and analyses of creep data to 10,000 h and the detailed metallurgical evaluations performed on candidate alloy specimens tested for up to 10,000 h. Long-term creep and unstressed aging data in controlled-impurity helium and in air at 800, 900, and 1000/sup 0/C are reported for alloys included in the program in FY-76, including the wrought solid-solution-strengthened alloys, Hastelloy X, Hastelloy S, RA 333, and HD 556, and the centrifugally cast austenitic alloys, HK 40, Supertherm, Manaurite 36X, Manaurite 36XS, and Manaurite 900.

  20. Frictional and heat resistance characteristics of coconut husk particle filled automotive brake pad

    Science.gov (United States)

    Bahari, Shahril Anuar; Chik, Mohd Syahrizul; Kassim, Masitah Abu; Som Said, Che Mohamad; Misnon, Mohd Iqbal; Mohamed, Zulkifli; Othman, Eliasidi Abu

    2012-06-01

    The objective of this study was to determine the friction and heat resistance characteristics of automotive brake pad composed with different sizes and percentages of coconut husk particle. The materials used were phenolic resin (phenol formaldehyde) as binder, copper, graphite and brass as friction producer/modifiers, magnesium oxide as abrasive material, steel and barium sulfate as reinforcement while coconut husk particle as filler. To obtain particle, the coconut husk was ground and dried to 3% moisture content. Then the coconut husk particle was screened using 80 mesh (to obtain coarse dust) and 100 mesh (to obtain fine dust). Different percentages of particle, such as 10 and 30% were used in the mixture of brake pad materials. Then the mixture was hot-pressed to produce brake pad. Chase machine was used to determine the friction coefficient in friction resistance testing, while thermogravimetric analyzer (TGA) machine was used to determine the heat decomposition values in heat resistance testing. Results showed that brake pad with 100 mesh and 10% composition of coconut husk particle showed the highest friction coefficient. For heat resistance, brake pad with 100 mesh and 30% composition of coconut husk dust showed the highest decomposition temperature, due to the high percentage of coconut husk particle in the composition, thus increased the thermal stability. As a comparison, brake pad composed with coconut husk particle showed better heat resistance results than commercial brake pad.

  1. Diversity assessment of heat resistance of Listeria monocytogenes strains in a continuous-flow heating system.

    Science.gov (United States)

    van der Veen, Stijn; Wagendorp, Arjen; Abee, Tjakko; Wells-Bennik, Marjon H J

    2009-05-01

    Listeria monocytogenes is a foodborne pathogen that has the ability to survive relatively high temperatures compared with other nonsporulating foodborne pathogens. This study was performed to determine whether L. monocytogenes strains with relatively high heat resistances are adequately inactivated in a high-temperature, short-time pasteurization process (72 degrees C for 15 s). To obtain heat-resistant strains, 48 strains were exposed to 55 degrees C for up to 3 h. The energy of activation constant and inactivation constant of strains that survived best (strains 1E and NV8) were subsequently determined in a continuous-flow-through system. Strain Scott A was taken along as a reference. The 3 strains were cultured in whole milk and in brain heart infusion broth at 30 and 7 degrees C. Strains 1E and NV8 were significantly more heat resistant than was strain Scott A after growth in brain heart infusion broth at 30 degrees C and after growth in milk at 7 degrees C. From the inactivation parameters, it was calculated that exposure to high-temperature, short-time pasteurization (72 degrees C for 15 s) will result in 12.1-, 14.2-, and 87.5-log reductions for the strains 1E, NV8, and Scott A, respectively. These results demonstrate that industrial pasteurization conditions suffice to inactivate the most heat-resistant L. monocytogenes strains tested in this study.

  2. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels

    Institute of Scientific and Technical Information of China (English)

    Wei YAN; Wei WANG; Yi-Yin SHAN; Ke YANG

    2013-01-01

    The microstructural evolutions of advanced 9-12%Cr ferrite/martensite heat-resistant steels used for power generation plants are reviewed in this article. Despite of the small differences in chemical compositions, the steels share the same microstructure of the as-tempered martensite. It is the thermal stability of the initial microstructure that matters the creep behavior of these heat-resistant steels. The microstructural evolutions involved in 9-12%Cr ferrite heat-resistant steels are elabo- rated, including (1) martensitic lath widening, (2) disappearance of prior austenite grain boundary, (3) emergence of subgrains, (4) coarsening of precipitates, and (5) formation of new precipitates, such as Laves-phase and Z-phase. The former three microstructural evolutions could be retarded by properly disposing the latter two. Namely improving the stability of precipitates and optimizing their size distribution can effectively exert the beneficial influence of precipitates on microstructures. In this sense, the microstructural stability of the tempered martensite is in fact the stability of precipitates during the creep. Many attempts have been carried out to improve the microstructural stability of 9-12%Cr steels and several promising heat-resistant steels have been developed.

  3. The mean condensate heat resistance of dropwise condensation with flowing inert gases

    NARCIS (Netherlands)

    Geld, van der C.W.M.; Brouwers, H.J.H.

    1995-01-01

    The quantification of the condensate heat resistance is studied for dropwise condensation from flowing air-steam mixtures. Flows are essentially laminar and stable with gas Reynolds numbers around 900 and 2000. The condensate shaping up as hemispheres on a plastic plane wall and the presence of iner

  4. Analysis of methods of carburizing of gears from heat-resistant steels

    Science.gov (United States)

    Ryzhov, N. M.; Fakhurtdinov, R. S.; Smirnov, A. E.; Fomina, L. P.

    2010-11-01

    Four methods of carburizing are compared with respect to the most significant factor, i.e., stability of maintenance of the specified parameters of carburized layer in hardening of gears from heat-resistant steels. The process advantages of vacuum carburizing (at low pressure) are shown.

  5. Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs

    NARCIS (Netherlands)

    Samson, R.A.; Houbraken, J.; Varga, J.; Frisvad, J.C.

    2009-01-01

    Byssochlamys and related Paecilomyces strains are often heat resistant and may produce mycotoxins in contaminated pasteurised foodstuffs. A comparative study of all Byssochlamys species was carried out using a polyphasic approach to find characters that differentiate species and to establish accurat

  6. Clothing evaporative heat resistance - Proposal for improved representation in standards and models

    NARCIS (Netherlands)

    Havenith, G.; Holmér, I.; Hartog, E.A. den; Parsons, K.C.

    1999-01-01

    Clothing heat and vapour resistances are important inputs for standards and models dealing with thermal comfort, heat- and cold-stress. A vast database of static clothing heat resistance values is available, and this was recently expanded with correction equations to account for effects of movement

  7. Effects of N/C Ratio on Solidification Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels for Exhaust Components of Gasoline Engines

    Science.gov (United States)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2017-03-01

    In order to comply with more stringent environmental and fuel consumption regulations, novel Nb-bearing austenitic heat-resistant cast steels that withstand exhaust temperatures as high as 1,323 K (1,050 °C) is urgently demanded from automotive industries. In the current research, the solidification behavior of these alloys with variations of N/C ratio is investigated. Directional solidification methods were carried out to examine the microstructural development in mushy zones. Computational thermodynamic calculations under partial equilibrium conditions were performed to predict the solidification sequence of different phases. Microstructural characterization of the mushy zones indicates that N/C ratio significantly influenced the stability of γ-austenite and the precipitation temperature of NbC/Nb(C,N), thereby altering the solidification path, as well as the morphology and distribution of NbC/Nb(C,N) and γ-ferrite. The solidification sequence of different phases predicted by thermodynamic software agreed well with the experimental results, except the specific precipitation temperatures. The generated data and fundamental understanding will be helpful for the application of computational thermodynamic methods to predict the as-cast microstructure of Nb-bearing austenitic heat-resistant steels.

  8. Effects of N/C Ratio on Solidification Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels for Exhaust Components of Gasoline Engines

    Science.gov (United States)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2017-01-01

    In order to comply with more stringent environmental and fuel consumption regulations, novel Nb-bearing austenitic heat-resistant cast steels that withstand exhaust temperatures as high as 1,323 K (1,050 °C) is urgently demanded from automotive industries. In the current research, the solidification behavior of these alloys with variations of N/C ratio is investigated. Directional solidification methods were carried out to examine the microstructural development in mushy zones. Computational thermodynamic calculations under partial equilibrium conditions were performed to predict the solidification sequence of different phases. Microstructural characterization of the mushy zones indicates that N/C ratio significantly influenced the stability of γ-austenite and the precipitation temperature of NbC/Nb(C,N), thereby altering the solidification path, as well as the morphology and distribution of NbC/Nb(C,N) and γ-ferrite. The solidification sequence of different phases predicted by thermodynamic software agreed well with the experimental results, except the specific precipitation temperatures. The generated data and fundamental understanding will be helpful for the application of computational thermodynamic methods to predict the as-cast microstructure of Nb-bearing austenitic heat-resistant steels.

  9. Extreme Heat Resistance of Food Borne Pathogens Campylobacter jejuni, Escherichia coli, and Salmonella typhimurium on Chicken Breast Fillet during Cooking

    DEFF Research Database (Denmark)

    de Jong, Aarieke E I; van Asselt, Esther D; Zwietering, Marcel H;

    2012-01-01

    cooking enlarged the heat resistance of the food borne pathogens. Additionally, a high challenge temperature or fast heating rate contributed to the level of heat resistance. The data were used to assess the probability of illness (campylobacteriosis) due to consumption of chicken fillet as a function...

  10. Heat-resistance of Hamigera avellanea and Thermoascus crustaceus isolated from pasteurized acid products.

    Science.gov (United States)

    Scaramuzza, Nicoletta; Berni, Elettra

    2014-01-01

    Products containing sugar or fruit derivatives are usually subjected to a pasteurization process that can anyway be ineffective to kill ascospores from heat-resistant molds. Although the most occurring and economically relevant heat-resistant species belong to Byssochlamys, Neosartorya, Talaromyces, and Eupenicillium genera, an increasing number of uncommon heat-resistant isolates have been recently detected as spoiling microorganisms in such products. Since Hamigera spp. and Thermoascus spp. were those more frequently isolated at SSICA, heat resistance of Hamigera avellanea and Thermoascus crustaceus strains from pasteurized acid products was studied in apple juice, in blueberry and grape juice and in a buffered glucose solution. Data obtained from thermal death curves and statistical elaboration of raw data showed that D values of H. avellanea may vary between 11.11 and 66.67 min at 87°C, between 4.67 and 13.51 at 90°C, and between 0.43 and 1.52 min at 95°C. Similarly, D values of T. crustaceus may vary between 18.52 and 90.91 min at 90°C, between 2.79 and 19.23 at 93°C, and between 1.11 and 2.53 min at 95°C. For both strains studied, the z-values calculated from the decimal reduction time curves did not prove to be significantly influenced by the heating medium, that being 4.35°C, 5.39°C or 5.27°C for H. avellanea and 4.42°C, 3.69°C or 3.37°C for T. crustaceus, respectively in apple juice, in blueberry and grape juice or in the buffered glucose solution. Considering the pasteurization treatments industrially applied to fruit-based foods, the variation of thermal parameters does not seem to be a possible way to avoid product spoilage by these two species and only good practices applied to reduce the original load of heat-resistant fungi can help producers to prevent losses in contaminated finished products, as usually happens for other heat resistant molds.

  11. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    Energy Technology Data Exchange (ETDEWEB)

    Tai Asayama; Yukio Tachibana

    2007-09-30

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  12. Heat resistance of Listeria monocytogenes in vegetables: evaluation of blanching processes.

    Science.gov (United States)

    Mazzotta, A S

    2001-03-01

    The heat resistance of a Listeria monocytogenes composite (serotypes 1/2a, 1/2b, and 4b) was determined in fresh broccoli florets, sweet green peppers, onions, mushrooms, and peas using an end-point procedure in polyester pouches. The heat resistance of L. monocytogenes was higher in peas (D(60 degrees C) = 1.0 min) and mushrooms (D(60 degrees C) = 0.7 min) than in other vegetables tested (D(60 degrees C) in onions = 0.2 min) and was highest when cells were subjected to starvation before the thermal death time experiments (D(60 degrees C) of starved L. monocytogenes in mushrooms = 1.6 min). The results showed that blanching can be used as an antilisterial treatment (inactivation of 5 logs of L. monocytogenes) when the cold spot of vegetables is treated for at least 10 s at 75 degrees C or instantaneously (<1 s) at temperatures above 82 degrees C.

  13. Bacterial spore heat resistance correlated with water content, wet density, and protoplast/sporoplast volume ratio.

    Science.gov (United States)

    Beaman, T C; Greenamyre, J T; Corner, T R; Pankratz, H S; Gerhardt, P

    1982-05-01

    Five types of dormant Bacillus spores, between and within species, were selected representing a 600-fold range in moist-heat resistance determined as a D100 value. The wet and dry density and the solids and water content of the entire spore and isolated integument of each type were determined directly from gram masses of material, with correction for interstitial water. The ratio between the volume occupied by the protoplast (the structures bounded by the inner pericytoplasm membrane) and the volume occupied by the sporoplast (the structures bounded by the outer pericortex membrane) was calculated from measurements made on electron micrographs of medially thin-sectioned spores. Among the various spore types, an exponential increase in the heat resistance correlated directly with the wet density and inversely with the water content and with the protoplast/sporoplast volume ratio. Altogether with results supported a hypothesis that the extent of heat resistance is based in whole or in part on the extent of dehydration and diminution of the protoplast in the dormant spore, without implications about physiological mechanisms for attaining this state.

  14. SIGNAL MEDIATORS AT INDUCTION OF HEAT RESISTANCE OF WHEAT PLANTLETS BY SHORT-TERM HEATING.

    Science.gov (United States)

    Karpets, Yu V; Kolupaev, Yu E; Yastreb, T O

    2015-01-01

    The effects of functional interplay of calcium ions, reactive oxygen species (ROS) and nitric oxide (NO) in the cells of wheat plantlets roots (Triticum aestivum L.) at the induction of their heat resistance by a short-term influence of hyperthermia (heating at the temperature of 42 degrees C during 1 minute) have been investigated. The transitional increase of NO and H2O2 content, invoked by heating, was suppressed by the treatment of plantlets with the antagonists of calcium EGTA (chelator of exocellular calcium), lanthanum chloride (blocker of calcium channels of various types) and neomycin (inhibitor of phosphatidylinositol-dependent phospholipase C). The rise of hydrogen peroxide content, caused by hardening, was partially suppressed by the action of inhibitors of nitrate reductase (sodium wolframate) and NO-synthase (N(G)-nitro-L-arginine methyl ester--L-NAME), and the increasing of nitric oxide content was suppressed by the treatment of plants with the antioxidant ionol and with the scavenger of hydrogen peroxide (dimethylthiourea). These compounds and antagonists of calcium also partially removed the effect of the rise of plantlets' heat resistance, invoked by hardening heating. The conclusion on calcium's role in the activation of enzymatic systems, generating reactive oxygen species and nitric oxide, and on the functional interplay of these signal mediators at the induction of heat resistance of plantlets by hardening heating is made.

  15. Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired Mechanical and Corrosion Properties.

    Energy Technology Data Exchange (ETDEWEB)

    Dulikravich, George S.; Sikka, Vinod K.; Muralidharan, G.

    2006-06-01

    The goal of this project was to adapt and use an advanced semi-stochastic algorithm for constrained multiobjective optimization and combine it with experimental testing and verification to determine optimum concentrations of alloying elements in heat-resistant and corrosion-resistant H-series stainless steel alloys that will simultaneously maximize a number of alloy's mechanical and corrosion properties.

  16. Formation Mechanism of Type IV Failure in High Cr Ferritic Heat-Resistant Steel-Welded Joint

    Science.gov (United States)

    Liu, Y.; Tsukamoto, S.; Shirane, T.; Abe, F.

    2013-10-01

    The mechanism of type IV failure has been investigated by using a conventional 9Cr ferritic heat-resistant steel Gr.92. In order to clarify the main cause of type IV failure, different heat treatments were performed on the base metal in order to change the prior austenite grain (PAG) size and precipitate distribution after applying the heat-affected zone (HAZ) simulated thermal cycle at the peak temperature of around A c3 ( A c3 HAZ thermal cycle) and postweld heat treatment (PWHT). The microstructural evolution during the A c3 HAZ thermal cycle and PWHT was investigated by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), electron probe microanalysis (EPMA), and transmission electron microscope (TEM). It was found that M23C6 carbides were scarcely precipitated at the newly formed fine PAG, block, and lath boundaries in A c3 HAZ-simulated Gr.92, because the carbide forming elements such as Cr and C were segregated at the former PAG and block boundaries of the base metal. On the other hand, if all the boundaries were covered by sufficient M23C6 carbides by homogenization of the alloying elements prior to applying the HAZ thermal cycle, the creep strength was much improved even if the fine PAG was formed. From these results, it is concluded that fine-grained microstructure cannot account for the occurrence of type IV failure, and it only has a small effect during long-term creep. The most important factor is the precipitate formation behavior at various boundaries. Without sufficient boundary strengthening by precipitates, the microstructure of A c3 HAZ undergoes severe changes even during PWHT and causes premature failure during creep.

  17. Physical Simulation of Friction Stir Welding and Processing of Nickel-Base Alloys Using Hot Torsion

    Science.gov (United States)

    Rule, James R.; Lippold, John C.

    2013-08-01

    The Gleeble hot torsion test was utilized in an attempt to simulate the friction stir-processed microstructure of three Ni-base alloys: Hastelloy X, Alloy 625, and Alloy 718. The simulation temperatures were based on actual thermal cycles measured by embedded thermocouples during friction stir processing of these alloys. Peak process temperatures were determined to be approximately 1423 K (1150 °C) for Hastelloy X and Alloy 625 K and 1373 K (352 °C and 1100 °C) for Alloy 718. The peak temperature and cooling rates were programed into the Gleeble™ 3800 thermo-mechanical simulator to reproduce the stir zone and thermo-mechanically affected zone (TMAZ) microstructures. The TMAZ was successfully simulated using this technique, but the stir zone microstructure could not be accurately reproduced, with hot torsion samples exhibiting larger grain size than actual friction stir processing trials. Shear stress and strain rates as a function of temperature were determined for each material using hot torsion simulation.

  18. Electrochemical impedance spectroscopy of metal alloys in the space transportation system launch environment

    Science.gov (United States)

    Calle, Luz

    1990-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 18 alloys under conditions similar to the Space Transportation System (STS) launch environment. The alloys were: (1) zirconium 702; (2) Hastelloy C-22, C-276, C-4, and B-2; (3) Inconel 600 and 825; (4) Ferralium 255; (5) Inco Alloy G-3; (6) 20Cb-3; (7) SS 904L, 304LN, 316L, 317L, and 304L; (8) ES 2205; and (9) Monel 400. AC impedance data were gathered for each alloy at various immersion times in 3.55 percent NaCl-0.1N HCl. Polarization resistance values were obtained for the Nyguist plots at each immersion time using the EQUIVALENT CIRCUIT software package available with the 388 electrochemical impedance software. Hastelloy C-22 showed the highest overall values for polarization resistance while Monel 400 and Inconel 600 had the lowest overall values. There was good general correlation between the corrosion performance of the alloys at the beach corrosion testing site, and the expected rate of corrosion as predicted based on the polarization resistance values obtained. The data indicate that electrochemical impedance spectroscopy can be used to predict the corrosion performance of metal alloys.

  19. Heat resistance of histamine-producing bacteria in irradiated tuna loins.

    Science.gov (United States)

    Enache, Elena; Kataoka, Ai; Black, D Glenn; Weddig, Lisa; Hayman, Melinda; Bjornsdottir-Butler, Kristin

    2013-09-01

    Consumption of foods high in biogenic amines leads to an illness known as histamine, or scombrotoxin, poisoning. The illness is commonly associated with consumption of fish with high levels of histamine ( $ 500 ppm). The objective of this study was to determine and compare the heat resistance of five histamine-producing bacteria in irradiated albacore tuna loins. Heat-resistance parameters (D- and z-values) were determined for Morganella morganii, Raoultella planticola, Hafnia alvei, and Enterobacter aerogenes. D- or z-values were not determined for Photobacterium damselae, which was the most heat-sensitive organism in this study. P. damselae declined > 5.9 log CFU/g after a heat treatment of 50°C for 10 min, 54°C for 3 min, and 56°C for 0.5 min. M. morganii was the most heat-resistant histamine-producing bacteria in albacore tuna loins, followed by E. aerogenes, H. alvei, and R. planticola. M. morganii and E. aerogenes had the highest D(50°C), 49.7 ± 17.57 and 51.8 ± 17.38 min, respectively. In addition, M. morganii had the highest D-values for all other temperatures (54, 56, and 58°C) tested. D- and zvalues were also determined for M. morganii in skipjack tuna. While no significant (P > 0.05) difference was observed between D(54°C) and D(56°C) of M. morganii in either albacore or skipjack tuna, the D(58°C) (0.4 ± 0.17 min) was significantly lower (P canned-tuna processing environments.

  20. VARIATION OF SUBSTRUCTURES OF PEARLITIC HEAT RESISTANT STEEL AFTER HIGH TEMPERATURE AGING

    Institute of Scientific and Technical Information of China (English)

    R.C.Yang; K.Chen; H.X.Feng; H.Wang

    2004-01-01

    The observations of dislocations, substructures and other microstructural details were conducted mainly by means of transmission electron microscope (TEM) and scanning electron microscope (SEM) for 12Cr1Mo V pearlitic heat-resistant steel. It is shown that during the high temperature long-term aging, the disordered and jumbled phasetransformed dislocations caused by normalized cooling are recovered and rearranged into cell substructures, and then the dislocation density is reduced gradually. Finally a low density linear dislocation configuration and a stabler dislocation network are formed and ferritic grains grow considerably.

  1. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation

    Directory of Open Access Journals (Sweden)

    Wenfeng Zhang

    2015-09-01

    Full Text Available The stress relaxation curves for three different hot deformation processes in the temperature range of 750–1000 °C were studied to develop an understanding of the precipitation behavior in a nitride-strengthened martensitic heat resistant steel (Zhang et al., Mater. Sci. Eng. A, 2015 [1]. This data article provides supporting data and detailed information on how to accurately analysis the stress relaxation data. The statistical analysis of the stress peak curves, including the number of peaks, the intensity of the peaks and the integral value of the pumps, was carried out. Meanwhile, the XRD energy spectrum data was also calculated in terms of lattice distortion.

  2. Transparent Heat-Resistant PMMA Copolymers for Packing Light-Emitting Diode Materials

    Directory of Open Access Journals (Sweden)

    Shu-Ling Yeh

    2015-07-01

    Full Text Available Transparent and heat-resistant poly(methyl methacrylate copolymers were synthesized by bulk polymerizing methyl methacrylate (MMA, isobornyl methacrylate (IBMA, and methacrylamide (MAA monomers. Copolymerization was performed using a chain transfer agent to investigate the molecular weight changes of these copolymers, which exhibited advantages including a low molecular weight distribution, excellent optical properties, high transparency, high glass transition temperature, low moisture absorption, and pellets that can be readily mass produced by using extrusion or jet injection for packing light-emitting diode materials.

  3. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods

    Science.gov (United States)

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-07-01

    Knowledge of bacteria’s heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria’s heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample’s thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS’s performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria’s thermo-tolerances.

  4. Enhanced microwave absorbing properties and heat resistance of carbonyl iron by electroless plating Co

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu, E-mail: wanghongyu07010310@163.com; Zhu, Dongmei; Zhou, Wancheng; Luo, Fa

    2015-11-01

    Co coated carbonyl iron particles (Co (CI)) are fabricated through electroless plating method, and the electromagnetic microwave absorbing properties are investigated in the frequencies during 8.2–12.4 GHz. The complex permittivity of CI particles after electroless plating Co is higher than that of raw CI particles due to improvment of the polarization process. Furthermore, according to the XRD and TG results, the Co layer can enhance the heat resistance of CI particles. The bandwidth below −10 dB can reach 3.9 GHz for the Co(CI) absorbent. The results indicate that the electroless plating Co not only enhances the absorbing properties but also improves the heat resistance of CI. - Highlights: • The Co-coated carbonyl iron Co(CI) particles were prepared by electroless plating. • The electromagnetic wave absorbing properties of Co(CI) particles were studied. • The heat treatment on the absorbing property of Co(CI) particles was studied. • The Co(CI) particles have good absorbing property when compared with CI.

  5. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    Science.gov (United States)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-04-01

    Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag+ ion to Ag0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  6. Study on Curing Kinetics of Heat-resistant Flexible Polyamide Modified Epoxy Resin Adhesive

    Directory of Open Access Journals (Sweden)

    Hua Li

    2015-04-01

    Full Text Available In order to study the effects of numerous variables affecting the reaction rate of heat-resistant flexible modified epoxy resin adhesive, the curing kinetics of polyamide modified epoxy resin was studied. The heat-resistant flexible modified epoxy resin adhesive cured at room-temperature was prepared with epoxy resin, polysulfide rubber and organosilicone as adhesive component, polyamide as main curing agent and addition of different modified filler and the curing agent containing benzene ring structure. The curing kinetics of polyamide modified epoxy resin was studied by Differential Scanning Calorimetry (DSC at different heating speeds and the characteristic temperatures of the curing process were analyzed and confirmed. the kinetics parameters of activation energy was calculated using Flynn-Wall-Ozawa equation and Kissinger equation, respectively, then the kinetic model of curing reaction was built as d&alpha/dt = 4.38×107 exp (-57740/RT (1-&alpha0.93, the results show that the two-parameter model is adequate to represent the curing reaction process, the model can well describe the curing reaction process of the studied resin. The DSC curves obtained using the experimental data show a good agreement with that theoretically calculated. The research results will provide theoretical basis for the choice of manufacturing process and the optimization of processing window.

  7. Effect of Nisin and Thermal Treatments on the Heat Resistance of Clostridium sporogenes Spores.

    Science.gov (United States)

    Ros-Chumillas, Maria; Esteban, Maria-Dolores; Huertas, Juan-Pablo; Palop, Alfredo

    2015-11-01

    The aim of this research was to evaluate the effect of thermal treatments (isothermal or nonisothermal) combined with nisin, a natural antimicrobial, on the survival and recovery of Clostridium sporogenes spores. The addition of nisin to the heating medium at concentrations up to 0.1 mg liter(-1) did not reduce the heat resistance of C. sporogenes. Without a thermal treatment, nisin added at concentrations up to 0.1 mg liter(-1) did not reduce the viable counts of C. sporogenes when added to the recovery medium, but inactivation of more than 4 log cycles was achieved after only 3 s at 100°C. At 100°C, the time needed to reduce viable counts by more than 3 log cycles was nine times shorter when 0.01 mg liter(-1) nisin was added to the recovery medium than without it. The heat resistance values calculated under isothermal conditions were used to predict the survival in the nonisothermal experiments, and the predicted values accurately fit the experimental data. The combination of nisin with a thermal treatment can help control C. sporogenes.

  8. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods.

    Science.gov (United States)

    Kou, Xiao-Xi; Li, Rui; Hou, Li-Xia; Huang, Zhi; Ling, Bo; Wang, Shao-Jin

    2016-07-28

    Knowledge of bacteria's heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria's heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample's thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS's performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria's thermo-tolerances.

  9. Heat-resistant thermosetting resins and maleimido prepolymers based on a novel tetrakisaminophenoxycyclotriphosphazene

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D.; Gupta, A.D.; Khullar, M. [Univ. of Delhi (India)

    1993-12-31

    A novel monomer, 2,2,4,4-tetrakis(4`-aminophenoxy)-6,6-diphenylcyclotriphosphazene (IV), useful for producing a variety of heat- and fire-resistant polymers, has been synthesized in good yield. Its synthesis involve Friedel-Frafts reaction of hexachlorocyclotriphosphazene (I) with benzene followed by the reaction of 2,2,4,4-tetrachloro-6,6-diphenylcyclotriphosphazene (II) with potassium 4-nitrophenoxide. The reduction of the obtained 2,2,4,4-tetrakis(4`-nitrophenoxy)-6, 6-diphenylcyclotriphosphazene (III) with molecular hydrogen in presence of PtO{sub 2} gave the tetrakisamine (IV). Heat-resistant thermosetting resins (X) and (XI) were synthesized by the reaction of tetrakisamine (IV) with maleic anhydride followed by insitu cyclodehydration and polymerization of the prepolymers (VIII) and (IX) at 235{+-}5{degrees}C for 1.5 and 290{degrees}C for 0.5 h. The TGA analysis of the developed cyclotriphosphazene containing cyclomatrix resins showed their thermal-stability up to 350{degrees}C and char yield of 71% in nitrogen at 800{degrees}C and 65% in air at 700{degrees}C. The structure of the synthesized monomer and intermediates were characterized by FT-IR, {sup 1}H-NMR, {sup 31}P-NMR, mass spectroscopy, DSC and elemental analysis. These resins are potential candidates for the development of heat-resistant composites, laminates, and adhesives in space, aerospace, and electronic industry.

  10. The heat resistance of a polyurethane coating filled with modified nano-CaCO3

    Science.gov (United States)

    Li, Bin; Li, Song-Mei; Liu, Jian-Hua; Yu, Mei

    2014-10-01

    The modification of polyurethane coating by adding surface-modified CaCO3 nanoparticles (nano-CaCO3) was investigated in this paper. To improve interfacial interaction between the nano-CaCO3 and the polyurethane (PU) matrix, a silane coupling agent (KH560) was used to modify the nano-CaCO3. The grafting of KH560 on the nano-CaCO3 surfaces was characterized by the TEM, FTIR and TGA techniques. The modification of the nano-CaCO3 surfaces with KH560 was demonstrated to improve the dispersity of nano-CaCO3. FTIR, SEM and AFM were used to characterize the polyurethane coating. The FTIR spectrum indicated that the modification of nano-CaCO3 does not influence the chemical structure of the PU matrix. The roughness and gloss of the nanocomposite coatings containing various amount of nano-CaCO3 were evaluated using a roughness tester and a brightness meter. The heat resistance of the polyurethane coating containing various amounts of nano-CaCO3 was evaluated using the TGA technique. The results revealed that nano-CaCO3 treatment with KH560 improves the nanoparticle dispersion and heat-resistance of polyurethane coating.

  11. Scorpion venom heat-resistant protein decreases immunoreactivity of OX-42-positive microglia cells in MPTP-treated mice

    Institute of Scientific and Technical Information of China (English)

    Shengming Yin; Deqin Yu; Xi Gao; Yan Peng; Yanhui Feng; Jie Zhao; Yiyuan Tang; Wanqin Zhang

    2008-01-01

    BACKGROUND: Microglia function as the immune surveyors of the brain under normal physiological conditions. However, microglia become activated in response to brain injuries and immunological stimulation. OBJECTIVE: To explore the influence of scorpion venom (SV) heat-resistant protein on frontal cortex and hippocampal microglia cells in a mice model of Parkinson's disease. DESIGN, TIME AND SETTING: Randomized, controlled, cellular immunity study. The experiment was performed at the Physiology Department Laboratory in Dalian Medical University between June 2005 and July 2008. MATERIALS: Ninety-six healthy, C57BI/6 mice; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) from Sigma, USA; SV heat-resistant protein (Experimental Base Institute in Dalian Medical University). The mice were randomly divided into tour groups (n = 24): normal control, negative control, model, and SV heat-resistant protein. METHODS: Mice in the model and SV heat-resistant protein groups were subcutaneously injected with MPTP (20 mg/kg) to model Parkinson's disease, while the normal control and negative control groups were injected with physiological saline in the neck for 8 successive days. In addition, mice in the model and normal control groups were intraperitoneally injected with physiological saline 2 hours following administration, while SV heat-resistant protein and negative control groups were injected SV heat-resistant protein (0.01 mg/kg). MAIN OUTCOME MEASURES: Immunoreactivity of microglia cells in MPTP-treated mice. RESULTS: Compared with normal control mice, MPTP-treated mice displayed increased OX-42 expression in the brain. However, in the SV heat-resistant protein-treated mice, OX-42 expression was decreased, compared to the model group. In the model mouse group, the number of OX-42-positive microglia was increased in the frontal cortex, caudatum, and hippocampal hilus, compared to the normal control mice (P < 0.01). However, in the SV heat-resistant protein-treated mice

  12. Wear resistant steels and casting alloys containing niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, W.; Siebert, S.; Huth, S. [Lehrstuhl Werkstofftechnik, Ruhr-Univ. Bochum (Germany)

    2007-12-15

    Niobium, like titanium and vanadium, forms superhard MC carbides that remain relatively pure in technical alloys on account of their low solubility for other metallic alloying elements. However, because they have a greater hardness than the precipitated chromium carbides commonly used in wear-resistant alloys, they are suitable as alternative hard phases. This contribution deals with new wear-resistant steels and casting alloys containing niobium carbide. These include a secondary hardening hardfacing alloy, a composite casting alloy for wear applications at elevated temperatures, a white cast iron as well as two variants of a corrosion-resistant cold-work tool steel produced by melt metallurgy and by powder metallurgy. A heat-resistant casting alloy is also discussed. Based on equilibrium calculations the microstructures developing during production of the alloys are analysed, and the results are discussed with respect to important properties such as abrasive wear and corrosion resistance. (orig.)

  13. Corrosion behavior of nickel-containing alloys in artificial sweat.

    Science.gov (United States)

    Randin, J P

    1988-07-01

    The corrosion resistance of various nickel-containing alloys was measured in artificial sweat (perspiration) using the Tafel extrapolation method. It was found that Ni, CuNi 25 (coin alloy), NiAl (colored intermetallic compounds), WC + Ni (hard metal), white gold (jewelry alloy), FN42 and Nilo Alby K (controlled expansion alloys), and NiP (electroless nickel coating) are in an active state and dissolve readily in oxygenated artificial sweat. By contrast, austenitic stainless steels, TiC + Mo2C + Ni (hard metal), NiTi (shape-memory alloy), Hastelloy X (superalloy), Phydur (precipitation hardening alloy), PdNi and SnNi (nickel-containing coatings) are in a passive state but may pit under certain conditions. Cobalt, Cr, Ti, and some of their alloys were also investigated for the purpose of comparison. Cobalt and its alloys have poor corrosion resistance except for Stellite 20. Chromium and high-chromium ferritic stainless steels have a high pitting potential but the latter are susceptible to crevice corrosion. Ti has a pitting potential greater than 3 V. Comparison between the in vitro measurements of the corrosion rate of nickel-based alloys and the clinical observation of the occurrence of contact dermatitis is discussed.

  14. Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries

    Science.gov (United States)

    Zhang, Hong; Zhang, Yin; Xu, Tiange; John, Angelin Ebanezar; Li, Yang; Li, Weishan; Zhu, Baoku

    2016-10-01

    A microporous poly(m-phenylene isophthalamide) (PMIA) separator with high safety (high-heat resistance and self extinguishing), high porosity and excellent liquid electrolyte wettability was prepared by the traditional nonsolvent introduced phase separation process. Due to the high-heat resistance of PMIA material, the as-prepared separator exhibited a negligible thermal shrank ratio at 160 °C for 1 h. Meanwhile, benefiting from its high porosity and excellent wettability in liquid electrolyte, the liquid electrolyte uptake and the ionic conductivity of the separator were higher than that of the commercial PP-based separators. Furthermore, the cell assembled with this separator showed better cycling performance and superior rate capacity compared to those with PP-based separators. These results suggested that the PMIA separator is very attractive for high-heat resistance and high-power density lithium-ion batteries.

  15. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Ishihara, Masahiro; Souzawa, Shizuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and {gamma}-ray spectrum are reported. (author)

  16. Constitutive Equation Models of Hot-Compressed T122 Heat Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    CA0Jin-rong; LIUZheng—dong; CHENGShi—chang; YANGGang; XIEJian-xin

    2012-01-01

    Based on dislocation reaction theory and Avrami equation, a constitutive equation model was developed to describe dynamic recovery and dynamic recrystallization during hot deformation of T122 heat resistant steel, which have taken the effect of dynamic strain aging into account. Uniaxial hot compression test had been carried out over a wide range of strain rate (0.01 to 10 s-1 ) and temperature (900 to 1 200 ~C) with the help of Gleeble 3500. Obtained experimental data was applied to determine the material parameters in proposed constitutive equations of T122 steel, by using the non-linear least square regress optimization method. The calculated constitutive equations are quantita- tively in good agreement with experimentally measured curves and microstructure observation. It shows that propose constitutive equation T122 steel is able to be used to predict flow stress of T122 steel during hot deformation in aus- tenite temperature scope.

  17. Estimating the Condition of the Heat Resistant Lining in an Electrical Reduction Furnace

    Directory of Open Access Journals (Sweden)

    Jan G. Waalmann

    1988-01-01

    Full Text Available This paper presents a system for estimating the condition of the heat resistant lining in an electrical reduction furnace for ferrosilicon. The system uses temperature measured with thermocouples placed on the outside of the furnace-pot. These measurements are used together with a mathematical model of the temperature distribution in the lining in a recursive least squares algorithm to estimate the position of 'the transformation front'. The system is part of a monitoring system which is being developed in the AIP-project: 'Condition monitoring of strongly exposed process equipment in thc ferroalloy industry'. The estimator runs on-line, and results arc presented in colour-graphics on a display unit. The goal is to locate the transformation front with an accuracy of +- 5cm.

  18. Scorpion Venom Heat-Resistant Peptide Protects Transgenic Caenorhabditis elegans from β- Amyloid Toxicity

    Directory of Open Access Journals (Sweden)

    Xiao-Gang Zhang

    2016-07-01

    Full Text Available Scorpion venom heat-resistant peptide (SVHRP is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies found SVHRP could enhance neurogenesis and inhibit microglia-mediated neuroinflammation in vivo. Here, we use the transgenic CL4176, CL2006 and CL2355 strains of Caenorhabditis elegans which express the human Aβ1–42 to investigate the effects and the possible mechanisms of SVHRP mediated protection against Aβ toxicity in vivo. The results showed that SVHRP-fed worms displayed remarkably decreased paralysis, less abundant toxic Aβ oligomers, reduced Aβ plaque deposition with respect to untreated animals. SVHRP also suppressed neuronal Aβ expression-induced defects in chemotaxis behavior and attenuated levels of ROS in the transgenic C. elegans. Taken together, these results suggest SVHRP could protect against Aβ-induced toxicity in C. elegans. Further studies need to be conducted in murine models and humans to analyze the effectiveness of the peptide.

  19. Scorpion Venom Heat-Resistant Peptide Protects Transgenic Caenorhabditis elegans from β-Amyloid Toxicity

    Science.gov (United States)

    Zhang, Xiao-Gang; Wang, Xi; Zhou, Ting-Ting; Wu, Xue-Fei; Peng, Yan; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2016-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies found SVHRP could enhance neurogenesis and inhibit microglia-mediated neuroinflammation in vivo. Here, we use the transgenic CL4176, CL2006, and CL2355 strains of Caenorhabditis elegans which express the human Aβ1-42 to investigate the effects and the possible mechanisms of SVHRP mediated protection against Aβ toxicity in vivo. The results showed that SVHRP-fed worms displayed remarkably decreased paralysis, less abundant toxic Aβ oligomers, reduced Aβ plaque deposition with respect to untreated animals. SVHRP also suppressed neuronal Aβ expression-induced defects in chemotaxis behavior and attenuated levels of ROS in the transgenic C. elegans. Taken together, these results suggest SVHRP could protect against Aβ-induced toxicity in C. elegans. Further studies need to be conducted in murine models and humans to analyze the effectiveness of the peptide. PMID:27507947

  20. Liquid Inclusions in Heat-Resistant Steel Containing Rare Earth Elements

    Science.gov (United States)

    Li, Yandong; Liu, Chengjun; Zhang, Tongsheng; Jiang, Maofa; Peng, Cheng

    2016-12-01

    Abundant thermodynamic data of pure substances were incorporated in the coupled thermodynamic model of inclusion precipitation and solute micro-segregation during the solidification of heat-resistant steel containing rare earth elements. The liquid inclusions Ce2x Al2y Si1-x-y O z (0 x x and z = 1 - x - y) were first introduced to ensure the model more accurately. And the computational method for generation Gibbs free energy of liquid inclusions in molten steel was given. The accuracy of accomplished model was validated through plant trials, lab-scale experiments, and the data published in the literature. The comparisons of results calculated by FactSage with the model were also discussed. Finally, the stable area of liquid inclusions was predicted and the liquid inclusions with larger size were found in the preliminary experiments.

  1. HEAT-RESISTANT PYRIDINE-BASED POLY(ETHER-ESTER)S: SYNTHESIS,CHARACTERIZATION AND PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Shahram Mehdipour-Ataei; Ali Mahmoodi

    2013-01-01

    A pyridine-based diacid was synthesized via nucleophilic substitution reaction of 4-hydroxy benzoic acid with 2,6-dichloropyridine in the presence of potassium carbonate.The diacid was characterized using FT-IR and 1H-NMR spectroscopic methods and also with elemental analysis.Polycondensation reaction of the diacid with different diols including 1,4-dihydroxy benzene,1,5-dihydroxy naphthalene,bis-phenol A and bis-phenol-P resulted in preparation of pyridine-based poly(ether-ester)s.The polymers were characterized and their physical and thermal properties including inherent viscosity,molecular weight,solubility,thermal stability,thermal behavior and crystallinity were studied.They revealed high heat-resistance and improved solubility in polar solvents.Structure-property relations for the prepared polyester were also studied.

  2. Isolation and Identification of Alicyclobacillus with High Dipicolinic Acid and Heat Resistant Proteins from Mango Juice

    Directory of Open Access Journals (Sweden)

    Hamid Reza Akhbariyoon

    2016-10-01

    Full Text Available Background and Objectives: Microbial spoilage of juices and industries related with Alicyclobacillus are considerable international issues. This spore-forming bacterium causes changes in juices odor and taste. The isolation and identification of Alicyclobacillus contamination in juice producing and packaging industries has an essential role in the prevention and control of this type of spoilage bacterium in HACCP (Hazard analysis and critical control points manner.Materials and Methods: A thermo-acidophilic, non-pathogenic and sporeforming bacterium was isolated from mango juice. Preliminary identification of the isolates was based on morphological, biochemical and physiological properties. Identification at species level was made by PCR amplification. The influence of temperature in the range of 25-65°C in the growth of bacterium and in the range of 80-120°C in spore-resistant and heat resistant proteins was investigated and compared with other spore producing bacteria.Results and Conclusion: Phylogenetic analysis of the 16S rRNA gene sequencing indicated that the isolated strain constituted a distinct lineage in the Alicyclobacillus cluster and submitted to NCBI with access number Alicyclobacillus HRM-5 KM983424.1. The spores resisted 110°C for 3 h, and produced 28% dipicolinic acid more comparable to Bacillus licheniformis. Also they could produce 0.69 mg heat resistance protein after 1.5 h treatment in 100°C. The results showed that this strain could have biotechnological applications.Conflict of interests: The authors declare no conflict of interest.

  3. Chemistry of glass-ceramic to metal bonding for header applications. I. Effect of treatments on Inconel 718 and Hastelloy C-276 metallic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D P; Craven, S M; Schneider, R E; Moddeman, W E; Brohard, D W

    1984-02-02

    Auger electron spectroscopy and depth Auger profiling were used to study the surfaces of Inconel 718 and Hastelloy C-276. The metal surfaces were processed in the same manner as is presently being used in the manufacturing of glass-ceramic headers. At each step in the process, samples were studied with Auger spectroscopy to determine their resultant elemental surface composition and film thickness. In addition, the effect of a final plasma cleaning operation on the metal surface was examined. The results show that the type and concentration of surface species and the thickness of the surface oxides are dependent on the processing technique.

  4. Sporulation environment of emetic toxin-producing Bacillus cereus strains determines spore size, heat resistance and germination capacity

    NARCIS (Netherlands)

    Voort, van der M.; Abee, T.

    2013-01-01

    Aim Heat resistance, germination and outgrowth capacity of Bacillus cereus spores in processed foods are major factors in causing the emetic type of gastrointestinal disease. In this study, we aim to identify the impact of different sporulation conditions on spore properties of emetic toxin-producin

  5. The Feasibility Analysis of the Heat Resistance Wire and ACSR in Power Compatibilization%耐热导线与钢芯铝绞线在线路增容改造中的可行性分析

    Institute of Scientific and Technical Information of China (English)

    吴永明

    2012-01-01

      耐热铝合金导线具有耐高温运行、输送容量大、经济性能优越等特点,输送容量是同截面普通导线的2倍,能大大节约材料,是城乡电网改造工程选用的最佳材料之一。钢芯铝绞线可以通过提高运行温度增大输送容量。文章对耐热导线及钢芯铝绞线在旧线路增容改造中的可行性进行了分析,对旧线路增容改造提出了建议。%  The heat resistant aluminum alloy conductor with high temperature operation, high transmission capacity, and superior economical efficiency. The transmission capacity is twice of normal conductor with the same cross-section, and it could save lots of materials, especially to save the limited land resources, which has become one of the best material choices in the projects for upgrading urban and rural power grids. ACSR can improve operational temperature by increase the trans-mission capacity. In this paper, the feasibility of the heat-resistant wire and ACSR in power compatibilization is analyzed, compatibilization of the old electric line is recommended.

  6. Draft Genome Sequences of Two Heat-Resistant Mutant Strains (A52 and B41) of the Photosynthetic Hydrogen-Producing Bacterium Rhodobacter capsulatus

    Science.gov (United States)

    Gokce, Abdulmecit; Cakar, Zeynep Petek; Yucel, Meral; Ozcan, Orhan; Sencan, Sevde; Sertdemir, Ibrahim; Erguner, Bekir; Yuceturk, Betul; Sarac, Aydan; Yuksel, Bayram

    2016-01-01

    The draft genome sequences of two heat-resistant mutant strains, A52 and B41, derived from Rhodobacter capsulatus DSM 1710, and with different hydrogen production levels, are reported here. These sequences may help understand the molecular basis of heat resistance and hydrogen production in R. capsulatus. PMID:27284151

  7. IMPROVEMENT OF TYPE IV CRACKING RESISTANCE OF 9Cr HEAT RESISTING STEEL WELDMENT BY BORON ADDITION

    Institute of Scientific and Technical Information of China (English)

    M.Tabuchi; M.Kondo; T.Watanabe; H.Hongo; F.Yin; F.Abe

    2004-01-01

    Creep lives of high Cr ferritic heat resisting steel weldments decrease due to Type IV fracture, which occurs as a result of formation and growth of creep voids and cracks on grain boundaries in fine-grained heat affected zone (HAZ). Because boron is considered to suppress the coarsening of grain boundary precipitates and growth of creep voids, we have investigated the effect of boron addition on the creep properties of 9Cr steel weldments. Four kinds of 9Cr3W3CoVNb steels with boron content varying from 4.7×10-5 to 1.8×10-4 and with nitrogen as low as 2.0×10-5 were prepared.The steel plates were welded by gas tungsten arc welding and crept at 923K. It was found that the microstructures of HAZ were quite different from those of conventional high Cr steels such as P91 and P92, namely the fine-grained HAZ did not exist in the present steel weldments. Boron addition also has the effect to suppress coarsening of grain boundary carbides in HAZ during creep. As a result of these phenomena,the welded joints of present steels showed no Type IV fractures and much better creep lives than those of conventional steels.

  8. Ion irradiation induced disappearance of dislocations in a nickel-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.C.; Li, D.H.; Lui, R.D.; Huang, H.F.; Li, J.J.; Lei, G.H.; Huang, Q.; Bao, L.M.; Yan, L., E-mail: yanlong@sinap.ac.cn; Zhou, X.T., E-mail: zhouxingtai@sinap.ac.cn; Zhu, Z.Y.

    2016-06-15

    Under Xe ion irradiation, the microstructural evolution of a nickel based alloy, Hastelloy N (US N10003), was studied. The intrinsic dislocations are decorated with irradiation induced interstitial loops and/or clusters. Moreover, the intrinsic dislocations density reduces as the irradiation damage increases. The disappearance of the intrinsic dislocations is ascribed to the dislocations climb to the free surface by the absorption of interstitials under the ion irradiation. Moreover, the in situ annealing experiment reveals that the small interstitial loops and/or clusters induced by the ion irradiation are stable below 600 °C.

  9. Control of heat-resistant steel carburized layer structure. Part I

    Science.gov (United States)

    Semenov, M. Yu.

    2013-09-01

    A physical model of carbide formation with vacuum carburizing is developed with the aim of controlling complexly-alloyed steel diffusion layer structure, taking account of excess phase formation of both the cementite type, and special carbides. A mathematical model is developed on the basis of the physical model adopted, adequate for experimental results. Analysis of calculated results is used as a basis for demonstrating the effect on carbide formation of alloying with chromium and strong carbide-forming elements, and also production factors.

  10. Study of the influence of sporulation conditions on heat resistance of Geobacillus stearothermophilus used in the development of biological indicators for steam sterilization.

    Science.gov (United States)

    Guizelini, Belquis P; Vandenberghe, Luciana P S; Sella, Sandra Regina B R; Soccol, Carlos Ricardo

    2012-12-01

    Biological indicators are important tools in infection control via sterilization process monitoring. The use of a standardized spore crop with a well-defined heat resistance will guarantee the quality of a biological indicator. Ambient factors during sporulation can affect spore characteristics and properties, including heat resistance. The aim of this study is to evaluate the main sporulation factors responsible for heat resistance in Geobacillus stearothermophilus, a useful biological indicator for steam sterilization. A sequence of a three-step optimization of variables (initial pH, nutrient concentration, tryptone, peptone, beef extract, yeast extract, manganese sulfate, magnesium sulfate, calcium chloride and potassium phosphate) was carried out to screen those that have a significant influence on heat resistance of produced spores. The variable exerting greatest influence on G. stearothermophilus heat resistance during sporulation was found to be the initial pH. Lower nutrient concentration and alkaline pH around 8.5 tended to enhance decimal reduction time at 121 °C (D(121°C)). A central composite design enabled a fourfold enhancement in heat resistance, and the model obtained accurately describes positive pH and negative manganese sulfate concentration influence on spore heat resistance.

  11. Heat-resistant, extended-spectrum β-lactamase-producing Klebsiella pneumoniae in endoscope-mediated outbreak

    DEFF Research Database (Denmark)

    Jørgensen, S.B.; Bojer, Martin Saxtorph; Boll, E.J.;

    2016-01-01

    Background We describe an outbreak with an extended-spectrum β-lactamase-producing Klebsiella pneumoniae strain in an intensive care unit in a secondary care hospital in Norway. The outbreak source was a fibreoptic intubation endoscope in which the outbreak strain survived despite chemothermal...... disinfection in a decontaminator designated for such use. The genetic marker clpK, which increases microbial heat resistance, has previously been described in K. pneumoniae outbreak strains. Aim To investigate the role of clpK in biofilm formation and heat-shock stability in the outbreak strain. Methods...... construction and heat-shock assays. Findings Five patients and one intubation endoscope contained K. pneumoniae with the same amplified fragment length polymorphism pattern. The outbreak strain contained the clpK genetic marker, which rendered the strain its increased heat resistance. The survival rate...

  12. Corrosion Behavior of Alloys in Molten Fluoride Salts

    Science.gov (United States)

    Zheng, Guiqiu

    The molten fluoride salt-cooled high-temperature nuclear reactor (FHR) has been proposed as a candidate Generation IV nuclear reactor. This reactor combines the latest nuclear technology with the use of molten fluoride salt as coolant to significantly enhance safety and efficiency. However, an important challenge in FHR development is the corrosion of structural materials in high-temperature molten fluoride salt. The structural alloys' degradation, particularly in terms of chromium depletion, and the molten salt chemistry are key factors that impact the lifetime of nuclear reactors and the development of future FHR designs. In support of materials development for the FHR, the nickel base alloy of Hastelloy N and iron-chromium base alloy 316 stainless steel are being actively considered as critical structural alloys. Enriched 27LiF-BeF2 (named as FLiBe) is a promising coolant for the FHR because of its neutronic properties and heat transfer characteristics while operating at atmospheric pressure. In this study, the corrosion behavior of Ni-5Cr and Ni-20Cr binary model alloys, and Hastelloy N and 316 stainless steel in molten FLiBe with and without graphite were investigated through various microstructural analyses. Based on the understanding of the corrosion behavior and data of above four alloys in molten FLiBe, a long-term corrosion prediction model has been developed that is applicable specifically for these four materials in FLiBe at 700ºC. The model uses Cr concentration profile C(x, t) as a function of corrosion distance in the materials and duration fundamentally derived from the Fick's diffusion laws. This model was validated with reasonable accuracy for the four alloys by fitting the calculated profiles with experimental data and can be applied to evaluate corrosion attack depth over the long-term. The critical constant of the overall diffusion coefficient (Deff) in this model can be quickly calculated from the experimental measurement of alloys' weight

  13. Alicyclobacillus acidoterrestris in pasteurized exotic Brazilian fruit juices: isolation, genotypic characterization and heat resistance.

    Science.gov (United States)

    McKnight, I C; Eiroa, M N U; Sant'Ana, A S; Massaguer, P R

    2010-12-01

    In this study, the population of Alicyclobacillus spp. was estimated in pasteurized exotic Brazilian fruit juices using the most probable number (MPN) technique followed by biochemical tests. Pasteurized passion fruit (n = 57) and pineapple (n = 50) juices were taken directly from Brazilian manufacturers. While Alicyclobacillus spp. was isolated from passion fruit juice, the microorganism was not found in any pineapple juice samples. A higher incidence of Alicyclobacillus was observed in samples taken in June and July (dry months in Brazil) in comparison to the other months (March, April, May and August), and the highest Alicyclobacillus counts were recovered from these samples(>23 MNP/100 mL). Sixteen (n = 16) Alicyclobacillus strains were typed using the randomly amplified polymorphic DNA method (RAPD-PCR). RAPD-PCR revealed great genetic similarity between the passion fruit juice strains and Alicyclobacillus acidoterrestris DSM 2498. The heat resistance of three isolates was determined, and the mean D(95°) (1.7 min) and z (7.6 °C) values in the passion fruit juice were not significantly different (p > 0.05) from those obtained for the DSM 2498 strain (D(95°) = 1.5 min and z = 7.1 °C). This is the first report on the isolation of A. acidoterrestris from exotic fruit juices such as passion fruit juice. It is worth pointing out the importance of applying good agricultural practices in the field and applying controls for the fruit selection and washing steps, as well as controlling the time/temperature conditions for pasteurization so as to reduce the incidence and chances of A. acidoterrestris spoilage in these juices.

  14. Heat-resistant thin film photoelectric converter with diffusion blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Jun; Yamaguchi, Minori; Tawada, Yoshihisa.

    1990-06-26

    The photoelectric converter of this invention comprises a semiconductor, an electrode, and a diffusion-blocking layer provided between the semiconductor and at least one electrode. An object of this invention is to provide a thin film photoelectric converter which has good heat resistance, in order to avoid the reduction in quality owing to the diffusion of metal or metallic compound from the electrode to the semiconductor layer, on the condition that the ohmic loss in the backing electrode and the reflection loss of light at the backing electrode are not increased. The component of the diffusion-blocking layer is selected from among such materials as metal silicides, silicide-forming metals, and metals from Groups IVA and VA of the periodic table. A preferable thickness of the diffusion-blocking layer is 5 to 500 angstroms. The semiconductor can be of the p-i-n, p-n, or Schottky type, and can be 0.02 to 100 {mu}m thick. For a semiconductor which comes into contact with the diffusion-blocking layer, n-type is preferable because it offers great improvements in the characteristics of the photoelectric converter. The electrode on the light-incident side is transparent and made of a metallic compound such as In{sub 2}O{sub 3}, SnO{sub 2}, Cd{sub x}SnO{sub y} (x=0.5 to 2, y=2 to 4) or the like. The backing electrode material is selected to have a suitable conductivity and reflectivity; such materials include Ag, Au, Al or Cu. The invention also discloses a method of preparing the thick film photoelectric converter, and examples are provided to illustrate the preparation of various embodiments of the invention. 2 figs., 1 tab.

  15. Induction of Heat Resistance in Wheat Coleoptiles by 4-Hydroxybenzoic Acid: Connection with the Generation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Yastreb T.O.

    2012-08-01

    Full Text Available The effect of 4-hydroxybenzoic acid (4-HBA on resistance of coleoptiles of 4-day-old etiolated seedlings of wheat (Triticum aestivum L., cv. Elegiya to damaging heating (10 min at 43°C and possible dependence of this effect on changes in the activities of enzymes producing and scavenging reactive oxygen species (ROS were investigated. Treatment of coleoptiles with 10 μM 4-HBA resulted in enhancing of superoxide anion-radical generation and maintaining of hydrogen peroxide content there in. Increasing of the rate of ROS production was significantly suppressed by inhibitors of NADPH oxidase (α-naphthol and peroxidase (salicylhydroxamic acid. Under the influence of 4-HBA the activities of superoxide dismutase and apoplastic forms of peroxidase were increased. The activity of oxalate oxidase and catalase has not changed. Exogenous 4-HBA improved coleoptiles heat resistance and its effects were comparable with the influence of salicylic acid. Antioxidant agent BHT (butylhydroxytoluene, inhibitors of NADPH oxidase and peroxidase significantly reduced the increasing of wheat coleoptiles heat resistance, caused by 4-HBA action. It was concluded that 4-HBA influence on coleoptiles heat resistance is realized with the ROS mediation.

  16. Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, J.W. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Dai, K. [Quality Engineering and Software Technology, East Hartford, CT 06108 (United States); Villegas, J.C. [Intel Corporation, Chandler, AZ (United States); Shaw, L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT (United States)], E-mail: leon.shaw@uconn.edu; Liaw, P.K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Klarstrom, D.L. [Haynes International, Inc., Kokomo, IN (United States); Ortiz, A.L. [Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-10-15

    A surface severe plastic deformation (S{sup 2}PD) method has been applied to bulk specimens of HASTELLOY C-2000 alloy, a nickel-base alloy. The mechanical properties of the processed C-2000 alloy were determined via tensile tests and Vickers hardness measurements, whereas the microstructure was characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. The improved tensile strength was related to the nanostructure at the surface region, the residual compressive stresses, and the work-hardened surface layer, all of which resulted from the S{sup 2}PD process. To understand the contributions of these three factors, finite element modeling was performed. It was found that the improved tensile strength could be interpreted based on the contributions of nano-grains, residual stresses, and work hardening.

  17. Kinetics of chromium evaporation from heat-resisting steel under reduced pressure

    Directory of Open Access Journals (Sweden)

    C. Kolmasiak

    2012-07-01

    Full Text Available This paper describes a kinetic analysis of the process of chromium evaporation from ferrous alloys smelted under reduced pressure. The study discussed comprised determination of the liquid phase mass transfer coefficient as well as the value of the constant evaporation rate. By applying these values as well as the values of the overall mass transfer coefficient estimated based on the relevant experimental data, the fractions of resistance of the individual process stages were established.

  18. Wrought stainless steel compositions having engineered microstructures for improved heat resistance

    Science.gov (United States)

    Maziasz, Philip J [Oak Ridge, TN; Swindeman, Robert W [Oak Ridge, TN; Pint, Bruce A [Knoxville, TN; Santella, Michael L [Knoxville, TN; More, Karren L [Knoxville, TN

    2007-08-21

    A wrought stainless steel alloy composition includes 12% to 25% Cr, 8% to 25% Ni, 0.05% to 1% Nb, 0.05% to 10% Mn, 0.02% to 0.15% C, 0.02% to 0.5% N, with the balance iron, the composition having the capability of developing an engineered microstructure at a temperature above 550.degree. C. The engineered microstructure includes an austenite matrix having therein a dispersion of intragranular NbC precipitates in a concentration in the range of 10.sup.10 to 10.sup.17 precipitates per cm.sup.3.

  19. The Biodiversity of the Microbiota Producing Heat-Resistant Enzymes Responsible for Spoilage in Processed Bovine Milk and Dairy Products.

    Science.gov (United States)

    Machado, Solimar G; Baglinière, François; Marchand, Sophie; Van Coillie, Els; Vanetti, Maria C D; De Block, Jan; Heyndrickx, Marc

    2017-01-01

    Raw bovine milk is highly nutritious as well as pH-neutral, providing the ideal conditions for microbial growth. The microbiota of raw milk is diverse and originates from several sources of contamination including the external udder surface, milking equipment, air, water, feed, grass, feces, and soil. Many bacterial and fungal species can be found in raw milk. The autochthonous microbiota of raw milk immediately after milking generally comprises lactic acid bacteria such as Lactococcus, Lactobacillus, Streptococcus, and Leuconostoc species, which are technologically important for the dairy industry, although they do occasionally cause spoilage of dairy products. Differences in milking practices and storage conditions on each continent, country and region result in variable microbial population structures in raw milk. Raw milk is usually stored at cold temperatures, e.g., about 4°C before processing to reduce the growth of most bacteria. However, psychrotrophic bacteria can proliferate and contribute to spoilage of ultra-high temperature (UHT) treated and sterilized milk and other dairy products with a long shelf life due to their ability to produce extracellular heat resistant enzymes such as peptidases and lipases. Worldwide, species of Pseudomonas, with the ability to produce these spoilage enzymes, are the most common contaminants isolated from cold raw milk although other genera such as Serratia are also reported as important milk spoilers, while for others more research is needed on the heat resistance of the spoilage enzymes produced. The residual activity of extracellular enzymes after high heat treatment may lead to technological problems (off flavors, physico-chemical instability) during the shelf life of milk and dairy products. This review covers the contamination patterns of cold raw milk in several parts of the world, the growth potential of psychrotrophic bacteria, their ability to produce extracellular heat-resistant enzymes and the consequences for

  20. The Biodiversity of the Microbiota Producing Heat-Resistant Enzymes Responsible for Spoilage in Processed Bovine Milk and Dairy Products

    Science.gov (United States)

    Machado, Solimar G.; Baglinière, François; Marchand, Sophie; Van Coillie, Els; Vanetti, Maria C. D.; De Block, Jan; Heyndrickx, Marc

    2017-01-01

    Raw bovine milk is highly nutritious as well as pH-neutral, providing the ideal conditions for microbial growth. The microbiota of raw milk is diverse and originates from several sources of contamination including the external udder surface, milking equipment, air, water, feed, grass, feces, and soil. Many bacterial and fungal species can be found in raw milk. The autochthonous microbiota of raw milk immediately after milking generally comprises lactic acid bacteria such as Lactococcus, Lactobacillus, Streptococcus, and Leuconostoc species, which are technologically important for the dairy industry, although they do occasionally cause spoilage of dairy products. Differences in milking practices and storage conditions on each continent, country and region result in variable microbial population structures in raw milk. Raw milk is usually stored at cold temperatures, e.g., about 4°C before processing to reduce the growth of most bacteria. However, psychrotrophic bacteria can proliferate and contribute to spoilage of ultra-high temperature (UHT) treated and sterilized milk and other dairy products with a long shelf life due to their ability to produce extracellular heat resistant enzymes such as peptidases and lipases. Worldwide, species of Pseudomonas, with the ability to produce these spoilage enzymes, are the most common contaminants isolated from cold raw milk although other genera such as Serratia are also reported as important milk spoilers, while for others more research is needed on the heat resistance of the spoilage enzymes produced. The residual activity of extracellular enzymes after high heat treatment may lead to technological problems (off flavors, physico-chemical instability) during the shelf life of milk and dairy products. This review covers the contamination patterns of cold raw milk in several parts of the world, the growth potential of psychrotrophic bacteria, their ability to produce extracellular heat-resistant enzymes and the consequences for

  1. Pasteurization of milk and the heat resistance of Mycobacterium avium subsp. paratuberculosis: a critical review of the data.

    Science.gov (United States)

    Lund, Barbara M; Gould, Grahame W; Rampling, Anita M

    2002-07-25

    Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) causes Johne's disease in ruminants (including cattle, sheep and goats) and other animals, and may contribute to Crohn's disease in humans. This possibility, and the fact that M. paratuberculosis may be present in raw milk, make it important to ensure that the heat treatment specified for pasteurization of milk will give acceptable inactivation of this bacterium, with an adequate margin of safety. Published studies of the heat resistance of this bacterium in milk have given widely differing results. Possible reasons for these differences, and the technical problems involved in the work, are reviewed. It is concluded that there is a need (i) for the adoption of an agreed Performance Criterion for pasteurization of milk in relation to this bacterium, (ii) a need for definitive laboratory experiments to understand and determine the heat resistance of M. paratuberculosis, and (iii) a need for an assessment of whether the minimum heat treatments specified at present for pasteurization of milk (Process Criteria) will meet the Performance Criterion for M. paratuberculosis. Measures are also required to ensure that commercial processes deliver continually the specified heat treatment, and to ensure that post-pasteurization contamination is avoided.

  2. Microstructure and Fracture Morphology in the Welding Zone of T91 Heat-resisting Steel Used in Power Station

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Microstructure performance in the welding zone of T91 heat-resistant steel under the condition of TIG welding wasresearched by means of metallography, X-ray diffraction and scanning electron microscope (SEM). Experimentalresults indicated that microstructure of T91 weld metal was austenite + a little amount of δ ferrite when using TGS-9cb filler wire. Substructure inside the austenite grain was crypto-crystal lath martensite, on which some Cr23C6blocky carbides were distributed. The maximum hardness (HRC44) in the welding zone is near the fusion zone. Thereexisted no obvious softening zone in the heat-affected zone (HAZ). For T91 steel tube of φ63 mmx5 mm, whenincreasing welding heat input (E) from 4.8 kJ/cm to 12.5 kJ/cm, fracture morphology in the fusion zone and theHAZ changed from dimple fracture into quasi-cleavage fracture (QC). Controlling the welding heat input of about9.8 kJ/cm is suitable in the welding of T91 heat-resistant steel.

  3. Modelling the influence of the sporulation temperature upon the bacterial spore heat resistance, application to heating process calculation.

    Science.gov (United States)

    Leguérinel, I; Couvert, O; Mafart, P

    2007-02-28

    Environmental conditions of sporulation influence bacterial heat resistance. For different Bacillus species a linear Bigelow type relationship between the logarithm of D values determined at constant heating temperature and the temperature of sporulation was observed. The absence of interaction between sporulation and heating temperatures allows the combination of this new relationship with the classical Bigelow model. The parameters zT and zT(spo) of this global model were fitted to different sets of data regarding different Bacillus species: B. cereus, B. subtilis, B. licheniformis, B. coagulans and B. stearothermophilus. The origin of raw products or food process conditions before a heat treatment can lead to warm temperature conditions of sporulation and to a dramatic increase of the heat resistance of the generated spores. In this case, provided that the temperature of sporulation can be assessed, this model can be easily implemented to rectify F values on account of possible increase of thermal resistance of spores and to ensure the sterilisation efficacy.

  4. RTM工艺用耐高温树脂研制%Heat-Resistant Resin for RTM Process

    Institute of Scientific and Technical Information of China (English)

    郭世峰

    2001-01-01

    Heat-resistant resin for RTM process is prepared,which could be used for missile radomes.Viscosity of the resin is only obout 200 mPa· s after 8 h at 100℃,which is very suitable for RTM process.The cured resin has good heat resistance with Ts of 269℃ and weight loss of 10% at 430℃.Flexual strength of 139 MPa and modulus of 9.5 GPa at 300℃ is obtained for quartz fiber/resin composite,which could be used for a short term at this temperature.%以某飞行器透波结构件对材料的要求为背景,研制了可用于RTM成形工艺的耐高温树脂SH。SH树脂l00℃下8 h后粘度仅200 mpa·s,适于RTM工艺成形;该树脂耐热性良好,玻璃化转变温度Tg为269℃,430℃热失重仅为10%;石英纤维/SH树脂复合材料300℃时的弯曲强度σb=139 MPa,弯曲模量Eb=9.5 GPa,可在300℃以上短时使用。

  5. Material and technique of Si-Mo heat-resistant vermicular iron exhaust manifold

    Institute of Scientific and Technical Information of China (English)

    JIN Yong-xi

    2006-01-01

    Si-Mo vermicular iron is an ideal material for exhaust manifold that works in high temperature and thermal cycle conditions because its properties of thermal fatigue resistance and thermal distortion resistance are significantly better than that of gray cast iron and nodular iron.This paper explains that the vermicularity of Si-Mo vermicular iron is better to be controlled approximately to 50% for the applications of exhaust manifold castings, and generalizes the successful experience of vermicularizing technique that uses sandwich (pour over) process combining with cored-wire injection in trough process together, and uses rare earths-magnesium-silicon as vermicularizing alloy in Disa high speed molding line and automatic plug rod air pressure pouring furnace. In addition, this paper also describes the method to solve the shrinkage hole and porosity defects in the exhaust manifold production.

  6. Static recrystallization behavior of a martensitic heat-resistant stainless steel 403Nb

    Institute of Scientific and Technical Information of China (English)

    Zhouyu ZENG; Liqing CHEN; Fuxian ZHU; Xianghua LIU

    2011-01-01

    A static recrystallization behavior between the rolling passes of a martensitic heatresistant stainless steel 403Nb has been studied by OM,TEM and double-hit thermomechanical simulator to explore the effects of deformation temperature,strain rate,strain and the prior austenite grain size.The results show that increases of deformation temperature and strain rate and strain can promote the static recrystallization of 403Nb steel.Static recrystallization also proceeds faster when the prior austenite grain size is smaller.Microstructural observation indicates that the volume fraction of static recrystallization increases with prolonged interval of the rolling passes.Straininduced precipitation can lead to an appearance of a platform in the kinetic curve of static recrystallization.Different from the conventional micro-alloying steel,the strain-induced precipitates in 403Nb steel during hot rolling are carbides containing Nb and Cr.

  7. Corrosion performance of structural alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1999-07-15

    Component reliability and long-term trouble-free performance of structural materials are essential in power-generating and gasification processes that utilize coal as a feedstock. During combustion and conversion of coal, the environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional boilers to air-deficient conditions in 10W-NO{sub x} and gasification systems. Apart from the environmental aspects of the effluent from coal combustion and conversion, one concern from the systems standpoint is the aggressiveness of the gaseous/deposit environment toward structural components such as waterwall tubes, steam superheaters, syngas coolers, and hot-gas filters. The corrosion tests in the program described in this paper address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response of several ASME-coded and noncoded structural alloys that were exposed to air-deficient and excess-air environments typical of coal-combustion and gasification processes. Data in this paper address the effects of preoxidation on the subsequent corrosion performance of structural materials such as 9Cr-1Mo ferritic steel, Type 347 austenitic stainless steel, Alloys 800, 825, 625, 214, Hastelloy X, and iron aluminide when exposed at 650 C to various mixed-gas environments with and without HCI. Results are presented for scaling kinetics, microstructural characteristics of corrosion products, detailed evaluations of near-surface regions of the exposed specimens, gains in our mechanistic understanding of the roles of S and Cl in the corrosion process, and the effect of preoxidation on subsequent corrosion.

  8. A novel electroless silver depositing method for magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; CUI Jian-zhong

    2006-01-01

    Depositing silver on magnesium alloy by both electroless plating and organic coatings was studied. The organic coating was made by immersing samples in organosilicon heat-resisting varnish. In this method the organic coating acts as interlayer between the substrate and silver film. When the reaction starts, silver deposits directly on the interlayer. X-ray diffraction and SEM analysis were used to determine the composition and morphology of the interlayer and silver film. The potentiodynamic polarization curves for corrosion studies of coated magnesium alloys were performed in a corrosive environment of 3.5% NaCl(mass fraction) at neutral pH (6.9). The results indicate that compared with the substrate, the corrosion resistance of coated magnesium alloys increases greatly. Moreover, the method proposed in this work is environmentally friendly, non-toxic chemicals were used. In addition, it provides a new concept for the corrosion inhibition of magnesium alloys.

  9. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-02-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  10. Effects of room-temperature tensile fatigue on critical current and n-value of IBAD-MOCVD YBa2Cu3O7-x /Hastelloy coated conductor

    Science.gov (United States)

    Rogers, Samuel; Kan Chan, Wan; Schwartz, Justin

    2016-08-01

    REBa2Cu3O7-x (REBCO) coated conductors potentially enable a multitude of superconducting applications, over a wide range of operating temperatures and magnetic fields, including high-field magnets, energy storage devices, motors, generators, and power transmission systems (Zhang et al 2013 IEEE Trans. Appl. Supercond. 23 5700704). Many of these are AC applications and thus the fatigue properties may be limiting (Vincent et al 2013 IEEE Trans. Appl. Supercond. 23 5700805). Previous electromechanical studies have determined the performance of REBCO conductors under single cycle loads (Barth et al 2015 Supercond. Sci. Technol. 28 045011), but an understanding of the fatigue properties is lacking. Here the fatigue behavior of commercial ion beam assisted deposition-metal organic chemical vapor deposition REBCO conductors on Hastelloy substrates is reported for axial tensile strains up to 0.5% and up to 100 000 cycles. Failure mechanisms are investigated via microstructural studies. Results show that REBCO conductors retained I c(ɛ)/I c0 = 0.9 for 10 000 cycles at ɛ = 0.35% and ɛ = 0.45% strain, and ɛ = 0.5% for 100 cycles. The main cause of fatigue degradation in REBCO conductors is crack propagation that initiates at the slitting defects that result from the manufacturing process.

  11. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-03-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  12. Study on high temperature design methodology of heat-resistant materials for GEN-IV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. W.; Kim, S. H.; Kim, W. G.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Lee, H. Y.; Hing, J. H

    2005-08-15

    Analysis of the existing high temperature design and assessment codes such as US(ASME-NH,Draft Code Case for Alloy 617), France(RCC-MR), UK(R5), Japan(BDS/DDS/FDS) for Gen IV reactor structure has been carried out. In addition the scope and fields for research and development is needed in the future have been defined. For assessing the high temperature creep cracks, time dependent fracture mechanics (TDFM) parameters of the C and Ct were analyzed. The creep propagation data were obtained from the creep crack growth tests for type 316LN stainless steels, and creep crack growth testing machine for Gen-IV system up to 950 .deg. C was set up. Damage mechanism and causes for creep-fatigue were investigated. The difference between prediction creep-fatigue life and experimental life were investigated. Material properties for analysis creep-fatigue damage were recommended. The assessment procedure (Draft) on creep-fatigue crack initiation has been developed based on the technical appendix A16 of French RCC-MR code. Ultrasonic wave signal against creep ruptured specimens of type 316LN stainless steel was obtained. It was identified that creep damage can be evaluated by ultrasonic method. The NDT techniques evaluated include Barkhausen noise, magnetic hysteresis parameters, positron annihilation, X-ray diffraction and small angle neutron scattering. Experimental procedure and evaluation method of material integrity were developed through the fracture toughness test of Cr-Mo steel.

  13. Research advance of epoxy adhesives with heat resistance%耐高温环氧树脂胶粘剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    周茗萱; 潘恒; 宋子强; 管蓉

    2016-01-01

    介绍了提高环氧胶粘剂耐温性的改性方法,主要包括:加入耐高温树脂改性、引入耐高温基团或耐热材料改性、通过固化剂提高耐高温性等,并对其发展进行了展望。%The modification methods to increase the heat resistance of epoxy adhesives, including adding the resins with heat resistance, introducing the functional groups with high-temperature resistance or heat resistant materials and increasing their high-temperature resistance by using special curing agents, were reviewed in this paper. The development trend of epoxy adhesives with high—temperature resistance in the future was prospected at last.

  14. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    Science.gov (United States)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  15. Design and fabrication of highly heat-resistant Mo/Si multilayer soft X-ray mirrors with interleaved barrier layers.

    Science.gov (United States)

    Takenaka, H; Ito, H; Haga, T; Kawamura, T

    1998-05-01

    Introducing interleaved carbon barrier layers improves the heat-resistance of Mo/Si multilayers. The soft X-ray reflectivities of the multilayers were calculated, and the effects of heating on both the reflectivities and layer structures of Mo/Si multilayers with and without barrier layers were investigated using X-ray diffraction and transmission electron microscopy. The results show that, for applications using intense soft X-ray beams, Mo/Si multilayers with interleaved carbon barrier layers are better mirrors than Mo/Si multilayers because they have much better heat resistance and almost the same soft X-ray reflectivity as the Mo/Si multilayers.

  16. Short communication: Heat-resistant Escherichia coli as potential persistent reservoir of extended-spectrum β-lactamases and Shiga toxin-encoding phages in dairy.

    Science.gov (United States)

    Marti, Roger; Muniesa, Maite; Schmid, Michael; Ahrens, Christian H; Naskova, Javorka; Hummerjohann, Jörg

    2016-11-01

    Here we report the isolation of heat-resistant Escherichia coli from raw milk cheeses. Detection of the heat-resistance markers clpK and orfI by PCR was followed by phenotypical confirmation of increased heat-resistance. These strains were Shiga toxin-negative and, although several were found to be multidrug resistant, no plasmids encoding extended-spectrum β-lactamases (ESBL) were found in any of the isolates. The aim of this study was to assess the potential of these strains to acquire ESBL plasmids and a modified Shiga toxin-encoding phage. Only 4 ESBL-encoding, heat-sensitive E. coli strains were isolated from 1,251 dairy samples (2/455 raw milk and 2/796 raw milk cheese samples). One incompatibility group FII plasmid (CTX-M-14, 79.0 kb) and 3 incompatibility group I1 plasmids (CTX-M-15, 95.2, 96.1, and 97.8 kb) were fully sequenced and de novo assembled. All 4 plasmids are readily transferred to heat-resistant E. coli isolates in plate matings (9.7×10(-5) to 3.7×10(-1) exconjugants per recipient) and, to a lesser extent, in milk (up to 7.4×10(-5) exconjugants per recipient). Importantly, the plasmids are stably maintained during passaging in liquid media without antimicrobial pressure. The heat-resistant isolate FAM21805 was also shown to be capable of acting as donor of all 4 ESBL plasmids. In addition, 3 of 11 tested ESBL exconjugants of heat-resistant strains were lysogenized by the modified Shiga toxin-encoding phage 933W ∆stx::gfp::cat. The higher fraction of heat-resistant E. coli (93 of 256 isolates) compared with the estimated 2% previously predicted based on genomic prevalence of heat resistance genes seems to indicate a selection advantage in the raw milk cheese production environment. The combination of 2 factors may lead to said advantage: increased survival during thermization of raw milk (heating to subpasteurization temperatures) and increased survival rates during cheese ripening. Should these strains acquire ESBL-encoding plasmids, Shiga

  17. Preparation and characterization of Fe–Al intermetallic layer on the surface of T91 heat-resistant steel

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zimu [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230026 (China); Cao, Jianbo [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Han, Fusheng, E-mail: fshan@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-04-01

    A Fe–Al intermetallic layer was formed on the surface of T91 heat-resistant steel by a molten aluminum hot-dipping and heat diffusion treatment. It is shown that the layer was composed of Al, FeAl{sub 3} and Fe{sub 2}Al{sub 5} phases in the as-dipped state while only Fe{sub 3}Al phase retained after the heat treatment. The intermetallic layer exhibited typical columnar grain structure after the heat treatment, and the thickness of aluminizing layer was increased from 55 μm at 760 °C to around 100 μm at 1050 °C heat treatment. Such a phase composition and grain morphology are favorable for the oxidation and corrosion resistance of T91 steel.

  18. A Multiscale Approach to Deformation and Fracture of Heat-Resistant Steel Under Static and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Pavlo MARUSCHAK

    2013-03-01

    Full Text Available Regularities of static and cyclic deformation, damage and fracture of heat-resistant steel 25Kh1M1F, based on the approaches of physical mesomechanics and 3D interferometry method, are presented in this paper. The applicability of these techniques for different hierarchy levels of deformation was studied. The investigation of scanning microscope photos was conducted for several dissipative structures, fragmentation of the material, localisation of macrodeformation and subsequent failure on macro- and mesolevel. It is shown that the used modern techniques of experimental analysis are very efficient in understanding deformation and damage evolution in materials.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3821

  19. Study on synthesis of polyurethane with heat resistance%耐热型聚氨酯的合成研究

    Institute of Scientific and Technical Information of China (English)

    崔璐娟

    2011-01-01

    以自制的含硅聚醚、聚氧化丙烯二醇(N-210)和2,4-甲苯二异氰酸酯(TDI)为主要原料,以氨丙基三甲氧基硅烷(DB-550)作为封端剂,制备耐热型PU(聚氨酯).采用红外光谱(FT-IR)法、热失重分析(TGA)法对改性PU的结构和热稳定性能进行了分析,并探讨了各种因素对PU及其预聚体性能的 影响.结果表明:当R值为1.5、预聚时间为3h、预聚温度为40℃和m(自制含硅聚醚)∶m(N-210)=1∶7时,改性PU的耐热性和综合性能较好.%With self-made polyether with silicon,polyether diol(N-210) and 2,4-toluene diisocyanate(TDI) as main raw materials,aminopropyl trimethoxysilane(DB-550) as an end capping reagent,a polyurethane(PU) with heat resistance was prepared. The structure and thermal stability of modified PU were analysed by infrared spectrum(FT-IR) and thermogravimetry(TGA),and the influences of various factors on properties of PU and its prepolymer were investigated. The result showed that the modified PU had better heat resistance and combination property when R value was 1.5,prepolymerization time and temperature were 3 h and 40 t respectively,and mass ratio of m( self-made polyether with silicon):m(N-210) was 1:7.

  20. 提高环氧树脂胶黏剂耐热性能的途径%Research Progress for Heat Resistance of Epoxy Resin Adhesives

    Institute of Scientific and Technical Information of China (English)

    梁西良; 王旭; 王文博

    2015-01-01

    环氧树脂胶黏剂具有优异的黏结性能,被广泛应用,但是其耐热性能较差,需对其进行改进,以适应于高性能领域的要求。本文对近年来环氧树脂胶黏剂耐热改性方面的工作进行了综述,主要改性方法包括环氧结构改性、耐热型固化剂、耐热型树脂、无机纳米材料等,设计合成新型耐热结构环氧树脂和无机纳米材料改性环氧树脂是研究的热点。%Epoxy resin adhesive, which has excellent adhesive properties, has been widely used, but its use in the high-performance area was limited by its poor thermal resistance, it should be improved. In this paper, several major methods about the modification of epoxy resin adhesives to improve its heat-resistant were reviewed. The methods included structural adjustment, heat-resistant curing agent, heat-resistant resin, inorganic nanoparticles, etc. The novel heat resistance epoxy resin and inorganic nano-materials modified epoxy resin had been hot research point.

  1. A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane.

    Science.gov (United States)

    Ono, Takato; Hori, Yuichiro; Yoshida, Masato; Hirooka, Toshihiko; Nakazawa, Masataka; Mata, Junji; Tsukamoto, Jun

    2012-10-08

    We report a substantial increase in the heat resistance in a connector-type single-wall carbon nanotube (SWNT) saturable absorber by sealing SWNT/P3HT composite with siloxane. By applying the saturable absorber to a passively mode-locked Er fiber laser, we successfully demonstrated 280 fs, 31 mW pulse generation with a fivefold improvement in heat resistance.

  2. Effect of glass-ceramic-processing cycle on the metallurgical properties of candidate alloys for actuator housings

    Energy Technology Data Exchange (ETDEWEB)

    Weirick, L.J.

    1982-01-01

    This report summarizes the results from an investigation on the effect of a glass ceramic processing cycle on the metallurgical properties of metal candidates for actuator housings. The cycle consists of a 980/sup 0/C sealing step, a 650/sup 0/C crystallization step and a 475/sup 0/C annealing step. These temperatue excursions are within the same temperature regime as annealing and heat treating processes normally employed for metals. Therefore, the effect of the processing cycle on metallurgical properties of microstructure, strength, hardness and ductility were examined. It was found that metal candidates which are single phase or solid solution alloys (such as 21-6-9, Hastelloy C-276 and Inconel 625) were not affected whereas multiphase or precipitation hardened alloys (such as Inconel 718 and Titanium ..beta..-C) were changed by the processing cycle for the glass ceramic.

  3. Scorpion Venom Heat-Resistant Peptide Attenuates Glial Fibrillary Acidic Protein Expression via c-Jun/AP-1.

    Science.gov (United States)

    Cao, Zhen; Wu, Xue-Fei; Peng, Yan; Zhang, Rui; Li, Na; Yang, Jin-Yi; Zhang, Shu-Qin; Zhang, Wan-Qin; Zhao, Jie; Li, Shao

    2015-11-01

    Scorpion venom has been used in the Orient to treat central nervous system diseases for many years, and the protein/peptide toxins in Buthus martensii Karsch (BmK) venom are believed to be the effective components. Scorpion venom heat-resistant peptide (SVHRP) is an active component of the scorpion venom extracted from BmK. In a previous study, we found that SVHRP could inhibit the formation of a glial scar, which is characterized by enhanced glial fibrillary acidic protein (GFAP) expression, in the epileptic hippocampus. However, the cellular and molecular mechanisms underlying this process remain to be clarified. The results of the present study indicate that endogenous GFAP expression in primary rat astrocytes was attenuated by SVHRP. We further demonstrate that the suppression of GFAP was primarily mediated by inhibiting both c-Jun expression and its binding with AP-1 DNA binding site and other factors at the GFAP promoter. These results support that SVHRP contributes to reducing GFAP at least in part by decreasing the activity of the transcription factor AP-1. In conclusion, the effects of SVHRP on astrocytes with respect to the c-Jun/AP-1 signaling pathway in vitro provide a practical basis for studying astrocyte activation and inhibition and a scientific basis for further studies of traditional medicine.

  4. Reduction of Intergranular Cracking Susceptibility by Precipitation Control in 2.25Cr Heat-Resistant Steels

    Science.gov (United States)

    Sung, Hyun Je; Heo, Nam Hoe; Kim, Sung-Joon

    2017-03-01

    This research is performed to decrease reheat cracking susceptibility in the T/P23 heat-resistant steels (2.25Cr1.5WVNbTi), in other words, to reduce phosphorus and sulfur segregation concentration at the prior austenite grain boundary/carbide interfaces (GCIs) and the carbide-free prior austenite grain boundaries (carbide-free PAGBs) causing intergranular cracking. The increase of bulk vanadium content reduces the amount of M23C6 carbides consuming carbon atoms which can repulse phosphorus and sulfur from interfaces, but promotes the precipitation reaction of V-rich MX carbo-nitrides. Such a precipitation reaction results in the lower segregation concentration of phosphorus or no sulfur at the GCIs and the carbide-free PAGBs. This is because the carbon atoms remaining after precipitation reaction segregates to the interfaces and repels phosphorus and sulfur. Also, tungsten segregation can increase the cohesive grain boundary strength as one of the grain boundary strengtheners. Consequently, the lower segregation concentration of the impurities and the segregation of tungsten atoms lower the intergranular cracking susceptibility.

  5. Effects of laser heat treatment on salt spray corrosion of 1Cr5Mo heat resistant steel welding joints

    Institute of Scientific and Technical Information of China (English)

    孔德军; 郭卫

    2015-01-01

    The surface of 1Cr5Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment (LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy (FESEM) and energy disperse spectroscopy (EDS), respectively, the polarization curves were measured on a PS-268A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.

  6. Reduction of Intergranular Cracking Susceptibility by Precipitation Control in 2.25Cr Heat-Resistant Steels

    Science.gov (United States)

    Sung, Hyun Je; Heo, Nam Hoe; Kim, Sung-Joon

    2017-01-01

    This research is performed to decrease reheat cracking susceptibility in the T/P23 heat-resistant steels (2.25Cr1.5WVNbTi), in other words, to reduce phosphorus and sulfur segregation concentration at the prior austenite grain boundary/carbide interfaces (GCIs) and the carbide-free prior austenite grain boundaries (carbide-free PAGBs) causing intergranular cracking. The increase of bulk vanadium content reduces the amount of M23C6 carbides consuming carbon atoms which can repulse phosphorus and sulfur from interfaces, but promotes the precipitation reaction of V-rich MX carbo-nitrides. Such a precipitation reaction results in the lower segregation concentration of phosphorus or no sulfur at the GCIs and the carbide-free PAGBs. This is because the carbon atoms remaining after precipitation reaction segregates to the interfaces and repels phosphorus and sulfur. Also, tungsten segregation can increase the cohesive grain boundary strength as one of the grain boundary strengtheners. Consequently, the lower segregation concentration of the impurities and the segregation of tungsten atoms lower the intergranular cracking susceptibility.

  7. The effect of lime-dried sewage sludge on the heat-resistance of eco-cement.

    Science.gov (United States)

    Li, Wen-Quan; Liu, Wei; Cao, Hai-Hua; Xu, Jing-Cheng; Liu, Jia; Li, Guang-Ming; Huang, Juwen

    2016-01-01

    The treatment and disposal of sewage sludge is a growing problem for sewage treatment plants. One method of disposal is to use sewage sludge as partial replacement for raw material in cement manufacture. Although this process has been well researched, little attention has been given to the thermal properties of cement that has had sewage sludge incorporated in the manufacturing process. This study investigated the fire endurance of eco-cement to which lime-dried sludge (LDS) had been added. LDS was added in proportions of 0%, 3%, 6%, 9%, and 12% (by weight) to the raw material. The eco-cement was exposed to 200, 400, or 600 °C for 3 h. The residual strength and the microstructural properties of eco-cement were then studied. Results showed that the eco-cement samples suffered less damage than conventional cement at 600 °C. The microstructural studies showed that LDS incorporation could reduce Ca(OH)(2) content. It was concluded that LDS has the potential to improve the heat resistance of eco-cement products.

  8. Optimization and characterization of poly(phthalazinone ether ketone) (PPEK) heat-resistant porous fiberous mat by electrospinning

    Science.gov (United States)

    Shi, R.; Bin, Y. Z.; Yang, W. X.; Wang, D.; Wang, J. Y.; Jian, X. G.

    2016-08-01

    Poly(phthalazinone ether ketone) (PPEK) is noted for its outstanding heat-resistance property and mechanical strength. A one-step electrospinning method was conducted to produce PPEK micro-nano porous fibrous mat. We gave emphasis study on the spinnability, optimized conditions, fibers' morphology, surface science and fracture mechanism. The uniform electrospun fibrous mat resulted from PPEK/chloroform binary system indicated that PPEK would be a prospective material to be applied in electrospinning. Addition of a small amount of non-solvent (ethanol) turned out to be advantageous to the reduction of fiber diameter and the alleviation of choking during spinning process. Organic salt (benzyltrimethylammonium chloride) was employed to increase the conductivity of solution for the formation of thin fiber. After trials, PPEK/chloroform/ethanol system with salt and PPEK/NMP system were taken as two optimized systems. These two systems showed different pore fraction in N2 adsorption test, and displayed different mechanical behaviors in uniaxial tension test. The fibrous mat from PPEK/chloroform/ethanol system showed a feature of ductile fracture with relatively low fracture strength but long fracture deformation, while the fibrous mat from PPEK/NMP system showed a feature of brittle fracture with small deformation but quite large fracture strength of ca. 6 MPa. Finally thermogravimetric analysis indicated that the resultant PPEK fibrous mat did not decompose until the temperature reached 478 °C, which qualified the resultant fibrous mat as a promising material used under high-temperature condition.

  9. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery

    Science.gov (United States)

    Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-02-01

    A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery.

  10. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel

    Institute of Scientific and Technical Information of China (English)

    Lin-qing Xu; Dan-tian Zhang; Yong-chang Liu; Bao-qun Ning; Zhi-xia Qiao; Ze-sheng Yan; Hui-jun Li

    2014-01-01

    Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili-tates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron mi-croscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the for-mation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener’s equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro-structural evolution and hardness variation, the process of tempering can be separated into three steps.

  11. Influence of salicylic and succinic acids on antioxidant enzymes activity, heat resistance and productivity of Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Miroshnichenko N.N.

    2011-05-01

    Full Text Available The influence of treatment of millet (Panicum miliaceum L. seeds with the solutions of salicylic and succinic acids on the heat resistance of plantlets and activity of antioxidant enzymes – superoxide dismutase (SOD, catalase and peroxidase – in them have been investigated. In the micro-field experiment the influence of these acids on the millet yield was estimated. The action of salicylic (10 μM and succinic (1 mM acids caused the increase of plantlets resistance to the damaging heating that expressed in the rise of relative quantity of survived plantlets in 5 days after heating at the temperature of 47°С and in the reduced content of lipid peroxidation product malonic dialdehyde during the poststress period. The increase of activity of SOD, catalase and peroxidase took place in millet plantlets under the influence of salicylic and succinic acids. The increase of productivity of millet grain under the action of salicylic and succinic acids on 13,3-52,0 and 6,4-38,8% respectively depending on weather conditions in the field experiments was noted.

  12. MODIFICATION OF CeO2 AND ITS EFFECT ON THE HEAT-RESISTANCE OF SILICONE RUBBER

    Institute of Scientific and Technical Information of China (English)

    Teng-fei Gan; Bao-qing Shentu; Zhi-xue Weng

    2008-01-01

    By means of the wet chemical surface modification, the surface of CeO2 was modified by vinyltrimethoxysilane (VTMS). Infrared spectroscopy was used to investigate the structure of the modified CeO2 and the result showed that VTMS has been attached onto the surface of CeO2. Effect of VTMS concentration on the active index of the modified CeO2 was also studied, and the result indicated that the active index of the modified CeO2 increases with the increase of VTMS concentration and the optimal concentration of VTMS is 10 wt%. The effect of the modified CeO2 on the tear strength of silicone rubber before and after aging was studied and it was found that in comparison with the unmodified CeO2 the addition of the modified CeO2 results in the significant increase of the tear strength before ageing due to the increase of the crosslinking density of silicone rubber under the experimental conditions. The tear strength of silicone rubber filled with the modified CeO2 after ageing is higher than that with the unmodified CeO2, indicating that the modification of CeO2 can improve the heat-resistance of silicone rubber.

  13. Lightweight Heat Resistant Geopolymer-based Materials Synthesized from Red Mud and Rice Husk Ash Using Sodium Silicate Solution as Alkaline Activator

    Directory of Open Access Journals (Sweden)

    Hoc Thang Nguyen

    2017-01-01

    Full Text Available Geopolymer is an inorganic polymer composite with potentials to replace Ordinary Portland Cement (OPC-based materials in the future because of its lower energy consumption, minimal CO2 emissions and lower production cost as it utilizes industrial waste resources. Hence, geopolymerization and the process to produce geopolymers for various applications like building materials can be considered as green industry. Moreover, in our study, the raw materials we used are red mud and rice husk ash, which are are industrial and agricultural wastes that need to be managed to reduce their impact to the environment. The red mud and rice husk ash combined with sodium silicate (water glass solution were mixed to form geopolymer materials. Moreover, the geopolymer specimens were also tested for heat resistance at a temperature of 1000°C for 2 hours. Results suggest high heat resistance with an increase of compressive strength after exposed at high temperature.

  14. Microstructural analysis as the indicator for suitability of weld repairing of the heat resistant Cr - Ni steel

    Directory of Open Access Journals (Sweden)

    Odanović, Z.

    2010-08-01

    Full Text Available Metallurgical evaluation was performed on a fractured column tube of the reformer furnace in an ammonia plant. The tubes were manufactured from centrifugally cast heat resistant steel HK 40. Optical and scanning electron microscope (SEM were used for microstructural and fracture analysis. For composition determination of the microconstituents energy dispersive X ray spectroscopy (EDS was used. To evaluate mechanical properties, hardness and microhardness measurements were performed. Investigations based on the microstructural features with the idea to indicate suitability of weld repair of the column were performed in this study. It was observed that the crack initiation, caused by oxidation/corrosion and thermal stresses induced by temperature gradient, appeared in the inner side of the tube wall and propagation occurred along grain boundaries. The results clearly showed the presence of an irregular microstructure which contributed to crack propagation through the tube wall. An occurrence of precipitated needle-shaped carbides/carbonitrides and brittle σ phase was also identified in the microstructure. Results of the microstructural and fracture analysis clearly indicate that reformer furnace columns made of heat resistant steel HK 40 were unsuitable for weld repair.

    La evaluación metalúrgica se realizó en un tubo de columna con fracturas, que es parte del horno reformador en una planta de amoníaco. Estos tubos son fundidos centrífugamente y fabricados en acero resistente al calor, de tipo HK- 40. Para el análisis microestructural de la fractura se ha utilizado microscopía óptica y electrónica de barrido (SEM. La composición de los micro-constituyentes se determinó por espectrometría de rayos X de energía dispersiva (EDS. Las propiedades mecánicas se evaluaron mediante mediciones de microdureza Vickers. Las investigaciones en este estudio se han llevado a cabo con el fin de demostrar la idoneidad de reparación por

  15. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    OpenAIRE

    Junli Shi; Yonggao Xia; Zhizhang Yuan; Huasheng Hu; Xianfeng Li; Huamin Zhang; Zhaoping Liu

    2015-01-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural chara...

  16. Isothermal Cold Crystallization, Heat Resistance, and Tensile Performance of Polylactide/Thermoplastic Polyester Elastomer (PLA/TPEE) Blends: Effects of Annealing and Reactive Compatibilizer

    OpenAIRE

    Sisi Wang; Sujuan Pang; Lisha Pan; Nai Xu; Tan Li

    2016-01-01

    The combined influences of crystallinity and reactive compatibilizer—a multifunctional epoxide (ADR)—on morphology, tensile performance, and heat resistance of polylactide/thermoplastic polyester elastomer (PLA/TPEE) (80/20) blends were investigated. Annealing involved an isothermal cold crystallization of PLA matrix was performed to increase crystallinity of the samples. First, isothermal cold crystallization kinetics were investigated using differential scanning calorimetry measurement. It ...

  17. Modeling the combined effects of pH, temperature and ascorbic acid concentration on the heat resistance of Alicyclobacillus acidoterrestis.

    Science.gov (United States)

    Bahçeci, K Savaş; Acar, Jale

    2007-12-15

    In this study, thermal inactivation parameters (D- and z-values) of Alicyclobacillus acidoterrestris spores in McIlvaine buffers at different pH, apple juice and apple nectar produced with and without ascorbic acid addition were determined. The effects of pH, temperature and ascorbic acid concentration on D-values of A. acidoterrestris spores were also investigated using response surface methodology. A second order polynomial equation was used to describe the relationship between pH, temperature, ascorbic acid concentration and the D-values of A. acidoterrestris spores. Temperature was the most important factor on D-values, and its effect was three times higher than those of pH. Although the statistically significant, heat resistance of A. acidoterrestris spores was not so influenced from the ascorbic acid within the concentration studied. D-values in apple juice and apple nectars were higher than those in buffers as heating medium at similar pH. The D-values ranged from 11.1 (90 degrees C) to 0.7 min (100 degrees C) in apple juice, 14.1 (90 degrees C) to 1.0 min (100 degrees C) in apple nectar produced with ascorbic acid addition, and 14.4 (90 degrees C) to 1.2 min (100 degrees C) in apple nectar produced without ascorbic acid addition. However, no significant difference in z-values was observed among spores in the juices and buffers at different pH, and it was between 8.2 and 9.2 degrees C. The results indicated that the spores of A. acidoterrestris may survive in fruit juices and nectars after pasteurization treatment commonly applied in the food industry.

  18. Isothermal Cold Crystallization, Heat Resistance, and Tensile Performance of Polylactide/Thermoplastic Polyester Elastomer (PLA/TPEE Blends: Effects of Annealing and Reactive Compatibilizer

    Directory of Open Access Journals (Sweden)

    Sisi Wang

    2016-12-01

    Full Text Available The combined influences of crystallinity and reactive compatibilizer—a multifunctional epoxide (ADR—on morphology, tensile performance, and heat resistance of polylactide/thermoplastic polyester elastomer (PLA/TPEE (80/20 blends were investigated. Annealing involved an isothermal cold crystallization of PLA matrix was performed to increase crystallinity of the samples. First, isothermal cold crystallization kinetics were investigated using differential scanning calorimetry measurement. It was found that the addition of ADR decreased the crystallization rate of the samples. The maximum crystallinity of the annealed samples also decreased from 40% to 34% while ADR loading increased from zero to 1.0 phr. Furthermore, influence of crystallinity on mechanical performances of the PLA/TPEE sample was researched. The heat resistance of the sample showed a significant enhancement while increasing its crystallinity. Meanwhile, the tensile ductility of the crystallized PLA/TPEE sample became very poor due to the embrittlement with increased crystallinity and the incompatibility between PLA and TPEE. However, the annealed PLA/TPEE/ADR samples with high crystallinity kept a higher tensile ductility because ADR greatly improved the interfacial compatibility. Differences in tensile fracture behaviors of the quenched and annealed PLA/TPEE samples with and without ADR were discussed in detail. At last, crystallized PLA/TPEE/ADR blends with excellent heat resistance and high tensile ductility were obtained by annealing and reactive compatibilization.

  19. Megabit bubble memory process using a new type resin and TaMo alloy-Au conductor

    Science.gov (United States)

    Majima, T.; Hirano, A.; Orihara, S.

    1981-03-01

    A newly developed heat resistant resin, ladder type organosiloxane polymer, is applied to 8 μm period 1 megabit bubble memory devices. Propagation bias margin and reliability are discussed, comparing with the conventional SiO lift-off planar process. TaMo alloy-Au system is also introduced for the conductor. Interdiffusion, electromigration, and corrosion resistance of Au and refractory metals are studied.

  20. Corrosion of several metals in supercritical steam at 538/sup 0/C. [85 alloys

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, H. E.; McNabb, B.

    1977-05-01

    The corrosion of several iron- and nickel-base alloys in supercritical steam at 24.1 MPa (3500 psi) and 538/sup 0/C was measured to 7.92 x 10/sup 7/ s (22,000 h). The experiments were carried out in TVA's Bull Run Steam Plant. Corrosion was measured almost entirely by weight change and visual appearance; a few samples were evaluated by more descriptive analytical techniques. The corrosion rates of low-alloy ferritic steels containing from 1.1 to 8.7 percent Cr and 0.5 to 1.0 percent Mo differed by less than a factor of 2 in steam. Several modified compositions of Hastelloy N were evaluated and found to corrode at about equivalent rates. Of the alloys studied, the lowest weight gain in 3.6 x 10/sup 7/ sec (10,000 hr) was 0.01 mg/cm/sup 2/ for Inconel 718 and the highest 10 mg/cm/sup 2/ for the low-alloy ferritic steels. 25 figures, 3 tables.

  1. PRODUCTION, STRUCTURE AND PROPERTIES OF CHROMIUM BRONZE ALLOYED MECHANICALLY WITH THE MELTING OF NANOCRYSTALLINE MODIFYING LIGATURES

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2016-01-01

    Full Text Available The reactive mechanical alloying is an effective technology for production of nanocrystalline modifying modifiers and ligatures. During smelting chromium bronzes use of mechanically alloyed modifying ligatures allow to exclude from the technology the environmentally hazardous high-temperature process of production of cast ligatures and to reduces reduce the optimum temperature of the melt alloying process copper at 50–100 °C by reducing its duration 2, 5–3,5 times This excluded process requires expensive furnace equipment. Mechanically alloyed modifying ligatures allow the formation of dispersion-strengthened heat-resistant materials with sub -,/ microcrystalline structure type bases, which are strength, hardness, conductivity and temperature of the onset of recrystallization about 15–20% superior to the base, which increases the resistance of the welding electrodes by 1.8–2.2 times. 

  2. Development of Low Alloy Heat Resisting Welding Wire%一种低合金耐热焊丝钢盘条的研制

    Institute of Scientific and Technical Information of China (English)

    郭慧英; 张宇; 许红梅; 王银柏

    2014-01-01

    采用Gleeble-3800热模拟试验机研究了1.25Cr-0.5Mo气保焊丝钢的连续冷却相转变行为(CCT),并在沙钢高线车间进行了该焊丝钢盘条的工业试制。试验结果表明:试样在950和1000℃2种变形温度下均得到铁素体(F)和马氏体(M)两相组织,且随变形温度和冷速降低,马氏体含量降低且尺寸减小;现场试制时设定精轧温度为950℃,吐丝温度为870~890℃,冷却速率为0.3~0.5℃/s,则制得的盘条组织为F+M,强度低于830 MPa,其拉拔深加工时制丝顺畅,未发生断丝。%The continuous cooling transformation (CCT) kinetics in the designed thermo mechanical processing conditions was investigated for 1.25Cr-0.5Mo steel employing a Gleeble-3800 thermo mechanical simulator, and plant trial of the wire rod was conducted in the high speed wire rod production line. The CCT experimental results suggest that the sample under deformation temperatures of both 950 and 1 000 ℃ both produced a microstructure of ferrite (F) and martensite (M), and the fraction and size of M decreased with the deformation temperature and cooling rate. The optimization of roll-ing schedule at industrial facilities showed that a combination of finishing rolling temperature at 950℃, the spinning tem-perature at 870-890℃and the cooling rate at 0.3-0.5℃/s produced a welding wire with a microstructure of F+M and ten-sile strength below 830 MPa. Fracture of wire doesn’t occur during the drawing process which was smooth.

  3. Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same

    Energy Technology Data Exchange (ETDEWEB)

    Pankiw, Roman I; Muralidharan, Govindrarajan; Sikka, Vinod Kumar; Maziasz, Philip J

    2012-11-27

    The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M.sub.23C.sub.6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.

  4. Microstructure and Wear Behavior Of as Cast Al-25mg2si-2cu-2ni Alloy

    Directory of Open Access Journals (Sweden)

    1Geetanjali.S.Guggari ,

    2015-09-01

    Full Text Available The remarkable feature of the Aluminium is its low density and ability to withstand corrosion effect due to phenomenon of passivation. Structural components made from Aluminium and its alloys are vital to the aerospace industry and are important in other areas of transportation and structural materials. The oxides and sulphate are useful compounds of Aluminium based on its weight. In this work, an attempt has been made to utilize the combined effect of high cooling rate solidification, unique micro structural evolution mechanism of T6 heat treatment the advantages of hypereutectic Al-Si system alloyed with other elements such as Cu, Fe and Mg. In the present investigation, the binary alloys in the hypereutectic range viz. Al25Mg2Si has been selected as heat resistant Al-Si alloys. A systematic approach has been carried out to explore the micro structural features, mechanical and wear properties of as cast alloys.

  5. Three-Dimensional Metal-Organic Framework as Super Heat-Resistant Explosive: Potassium 4-(5-Amino-3-Nitro-1H-1,2,4-Triazol-1-Yl)-3,5-Dinitropyrazole.

    Science.gov (United States)

    Li, Chuan; Zhang, Man; Chen, Qishan; Li, Yingying; Gao, Huiqi; Fu, Wei; Zhou, Zhiming

    2017-01-31

    A new super heat-resistant explosive, potassium 4-(5-amino-3-nitro-1H-1,2,4-triazol-1-yl)-3,5-dinitropyrazole (KCPT, 1), featuring a three-dimensional (3D) energetic metal-organic framework (MOF) was synthesized and fully characterized. The new 3D MOF was found to be extremely heat-resistant, having a high decomposition temperature of 323 °C. In addition, KCPT exhibits the best calculated detonation performance (vD =8457 m s(-1) , p=32.5 GPa) among the reported super heat-resistant explosives or energetic potassium salts while retaining a suitable impact sensitivity of 7.5 J, which makes it one of the most promising heat-resistant explosives.

  6. Mechanical properties and microstructure of as-cast and extruded Mg-(Ce, Nd)-Zn-Zr alloys

    Institute of Scientific and Technical Information of China (English)

    YU Kun; LI Wen-xian; WANG Ri-chu

    2005-01-01

    Studies on the mechanical properties and microstructures of as-cast and extruded Mg-Ce-Zn-Zr and Mg-Nd-Zn-Zr alloys have been made before and after heat treatment. The results show that the mechanical properties of as-cast Mg-Ce and Mg-Nd alloys are as good as those of typical die cast AZ91 alloy and the heat resistant WE43 alloy. In Nd-containing alloys, the precipitated phase Mg12Nd contributes significantly to age hardening. The mechanical properties of extruded alloys are improved obviously compared with those of as-cast alloys. The ultimate strength is 257.8 MPa for extruded Mg-Ce alloy and 265.6 MPa for extruded Mg-Nd alloy. Extrusion is a useful method to improve both the strengths and elongations of the two experimental alloys at both ambient and elevated temperatures. The grain refinement and precipitation strengthening are the main strengthening mechanisms in the alloys. Tensile fracture surfaces show a dimple pattern after extruding and therefore reflect an improved elongation.

  7. 高耐热阻燃ABS材料制备及性能研究%Preparation and Properties of High Heat Resistant and Flame Retardant ABS

    Institute of Scientific and Technical Information of China (English)

    汪炉林; 焦蒨; 王林; 郑一泉; 麦堪成

    2013-01-01

    With acrylonitrile-butadiene-styrene(ABS) as substrate resins,by adding styrene-N-phenylmaleimide-maleic anhydride terpolymer (AS-MS-NB) as heat retardancy,high heat resistant ABS masterbatch was prepared with different content of heat retardancy at 240-270 ℃ in a twin-screw extruder. Meanwhile,by adding 1,2-bis(pentabromophenyl)ethane(DBDPE) to the masterbatch,high heat resistant and flame retardant ABS was fabricated by twin-screw extruder at 180-210 ℃. The results show that,the fabricated high heat resistant and flame retardant ABS material both features high heat resistance and flame retardancy, at the same time, the heat resistance and its content have a positive correlation by this two-step method. Meanwhile, with the DBDPE, the masterbatch heat distortion temperature does not decrease remarkably,bending strength,tensile strength and impact strength decrease slightly,but fluidity improves obviously. The fabricated high heat resistant and flame retardant ABS can be widely applied to the motor,blower,power box,microwave ovens,rice cookers,connectors and so on.%以丙烯腈-丁二烯-苯乙烯塑料(ABS)为基体,以苯乙烯-N-苯基马来酰亚胺-马来酸酐三元共聚物(AS-MS-NB)为耐热剂,在双螺杆挤出机中,于240~270℃制备出不同耐热剂含量的高耐热ABS母粒。以此母粒和十溴二苯乙烷(DBDPE)阻燃体系共混,于180~210℃通过双螺杆挤出机制备出高耐热阻燃ABS。结果表明,通过这种两步法制备的高耐热阻燃ABS材料兼具高耐热和阻燃特性,并且耐热剂含量和其制备的阻燃ABS材料的耐热性具有正相关性。同时加入DBDPE未使高耐热阻燃ABS的热变形温度明显降低,弯曲强度、拉伸强度及冲击强度稍有下降,而流动性明显改善,高耐热阻燃ABS可广泛应用于电机、吹风机、电源盒、微波炉、电饭煲、插排等领域。

  8. Status and Research Progress of Heat Resistant Explosives%耐热炸药的现状及研究进展

    Institute of Scientific and Technical Information of China (English)

    周杰文; 张创军; 王友兵; 张蒙蒙; 李媛

    2016-01-01

    从热性能方面提出了耐热炸药的特点及该类炸药研究的重点;叙述了目前主要耐热炸药PYX、HNS、TATB的性能、制备工艺、应用以及每种耐热炸药的优缺点,说明了应以提高能量和感度为耐热炸药研究的方向;叙述了近年来耐热炸药的主要研究进展,提出了值得重点关注的单质耐热炸药,如LLM-105、NONA、ANPyO等,并对性能、制备工艺、优缺点以及可能应用的领域进行了分析;从耐热性及起爆感度方面对今后的发展提出了建议。%It presented characteristics of heat-resistant explosives and exposed research emphasis from class thermal performance.The advantages and disadvantages,performance,preparation technology,applica-tion and each of the heat-resistant explosives of the current main heat explosive:PYX,HNS,TATB were described.It explained that we should increase energy and sense of direction for the heat explosives.Re-cent advances of the heat of explosives in research in recent years were described.And we proposed that we should focus on elemental heat explosives,such as LLM-105,NONA,ANPyO etc.And the perform-ance of the preparation process,the advantages and disadvantages as well as possible areas of application were analyzed.Initiation of heat resistance and sensitivity in terms of future development proposals were put forward.

  9. Predictive model for the reduction of heat resistance of Listeria monocytogenes in ground beef by the combined effect of sodium chloride and apple polyphenols.

    Science.gov (United States)

    Juneja, Vijay K; Altuntaş, Evrim Güneş; Ayhan, Kamuran; Hwang, Cheng-An; Sheen, Shiowshuh; Friedman, Mendel

    2013-06-03

    We investigated the combined effect of three internal temperatures (57.5, 60, and 62.5°C) and different concentrations (0 to 3.0 wt/wt.%) of sodium chloride (NaCl) and apple polyphenols (APP), individually and in combination, on the heat-resistance of a five-strain cocktail of Listeria monocytogenes in ground beef. A complete factorial design (3×4×4) was used to assess the effects and interactions of heating temperature, NaCl, and APP. All 48 combinations were tested twice, to yield 96 survival curves. Mathematical models were then used to quantitate the combined effect of these parameters on heat resistance of the pathogen. The theoretical analysis shows that compared with heat alone, the addition of NaCl enhanced and that of APP reduced the heat resistance of L. monocytogenes measured as D-values. By contrast, the protective effect of NaCl against thermal inactivation of the pathogen was reduced when both additives were present in combination, as evidenced by reduction of up to ~68% in D-values at 57.5°C; 65% at 60°C; and 25% at 62.5°C. The observed high antimicrobial activity of the combination of APP and low salt levels (e.g., 2.5% APP and 0.5% salt) suggests that commercial and home processors of meat could reduce the salt concentration by adding APP to the ground meat. The influence of the combined effect allows a reduction of the temperature of heat treatments as well as the salt content of the meat. Meat processors can use the predictive model to design processing times and temperatures that can protect against adverse effects of contaminated meat products. Additional benefits include reduced energy use in cooking, and the addition of antioxidative apple polyphenols may provide beneficial health affects to consumers.

  10. Heat Resistance Mediated by a New Plasmid Encoded Clp ATPase, ClpK, as a Possible Novel Mechanism for Nosocomial Persistence of Klebsiella pneumoniae

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Struve, Carsten; Ingmer, Hanne;

    2010-01-01

    Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. We have characterized a K. pneumoniae strain responsible for a series of critical infections in an intensive care unit over a two-year period. The strain was found to be remarkably...... resistant to lethal heat shock. Furthermore, one third of a collection of nosocomial K. pneumoniae isolates carry clpK and exhibit a heat resistant phenotype. The discovery of ClpK as a plasmid encoded factor and its profound impact on thermal stress survival sheds new light on the biological relevance...

  11. Heat resistance mediated by a new plasmid encoded Clp ATPase, ClpK, as a possible novel mechanism for nosocomial persistence of Klebsiella pneumoniae

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Struve, Carsten; Ingmer, Hanne;

    2010-01-01

    Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. We havecharacterized a K. pneumoniae strain responsible for a series of critical infections in an intensive care unit over a two-year period. The strain was found to be remarkably...... resistant to lethal heat shock. Furthermore, one third of a collection of nosocomial K. pneumoniae isolates carry clpK and exhibit a heat resistant phenotype. The discovery of ClpK as a plasmid encoded factor and its profound impact on thermal stress survival sheds new light on the biological relevance...

  12. 耐热炸药的研究现状与进展%Status and Progress of the Study on the Heat - resistance Explosive

    Institute of Scientific and Technical Information of China (English)

    杨建钢; 赵丹丹

    2012-01-01

    详细介绍了国内外数十种耐热单质炸药和混合炸药的性能。最后对于国内耐热混合炸药的研究和发展,提出建议。%Performance of several of single compound explosive and composite explosive in domestic and overseas was detailed. The advisement of the civil trend of the study and development on the heat - resistance explosive was advised.

  13. Precipitation of Icosahedral Quasicrystalline Phase, R-phase and Laves Phase in Ferritic Alloys

    Institute of Scientific and Technical Information of China (English)

    Keisuke Yamamoto; Yoshisato Kimura; Yoshinao Mishima

    2004-01-01

    Ferritic heat resistant steels involving precipitation of intermetallic phases have drawn a growing interest for the enhancement of creep strength, while the brittleness of the intermetallic phases may lower the toughness of the alloy.Therefore, it is necessary to optimize the dispersion characteristics of the intermetallics phase through microstructural control to minimize the trade-off between the strength and toughness. The effects of α-Fe matrix substructures on the precipitation sequence, morphology, dispersion characteristics, and the stability of the intermetallic phases are investigated in Fe-Cr-W-Co-Si system. The precipitates of the Si-free Fe-10Cr-1.4W-4.5Co (at%) alloy aged at 873K are the R-phase but those of the Si-added Fe-10Cr-1.4W-4.5Co-0.3Si (at%) alloy are the icosahedral quasicrystalline phase. The precipitates in both the Si-free and Si-added alloys aged at 973K are the Laves phase. Matrix of the alloys is controlled by heat treatments as to provide three types of matrix substructures; ferrite, ferrite/martensite mixture and martensite. The hardening behavior of the alloys depends on the matrix substructures and is independent of the kinds of precipitates. In the alloys with ferrite matrix, the peak of hardness during aging at 873K shifts to longer aging time in comparison with that in the alloys with lath martensite matrix which contain numbers of nucleation sites.

  14. Gallium suboxide vapor attack on chromium, cobalt, molybdenum, tungsten and their alloys at 1200 [degrees] C

    Energy Technology Data Exchange (ETDEWEB)

    Kolman, D. G. (David G.); Taylor, T. N. (Thomas N.); Park, Y. (Youngsoo); Stan, M. (Marius); Butt, D. P. (Darryl P.); Maggiore, C. J. (Carl J.); Tesmer, Joseph R.; Havrilla, G. J. (George J.)

    2004-01-01

    Our prior work elucidated the failure mechanism of furnace materi als (304 SS, 316 SS, and Hastelloy C-276) exposed to gallium suboxide (Ga{sub 2}O) and/or gallium oxide (Ga{sub 2}O{sub 3}) during plutonium - gallium compound processing. Failure was hypothesized to result from concurrent alloy oxidation/Ga compound reduction followed by Ga uptake. The aim of the current work is to screen candidate replacement materials. Alloys Haynes 25 (49 Co - 20 Cr - 15 W - 10 Ni - 3 Fe - 2 Mn - 0.4 Si, wt%), 52 Mo - 48 Re (wt%), 62 W - 38 Cu (wt%), and commercially pure Cr, Co, Mo, W, and alumina were examined. Preliminary assessments of commercially pure W and Mo - Re suggest that these materials may be suitable for furnace construction. Thermodynamics calculations indicating that materials containing Al, Cr, Mn, Si, and V would be susceptible to oxidation in the presence of Ga{sub 2}O were validated by experimental results. In contrast to that reported previously, an alternate reaction mechanism for Ga uptake, which does not require concurrent alloy oxidation, controls Ga uptake for certain materials. A correlation between Ga solubility and uptake was noted.

  15. 大肠杆菌耐热元器件的构建及其应用%Construction of heat resistance devices for Escherichia coli and their application

    Institute of Scientific and Technical Information of China (English)

    孙翔英; 刘月芹; 孙欢; 贾海洋; 戴大章; 李春

    2014-01-01

    以提高大肠杆菌耐热性为目的,基于腾冲嗜热菌(Thermoanaerobacter tengcongensis MB4)热激蛋白基因T.te-HSP20构建了诱导型耐热元器件 T7-T.te-HSP20和组成型耐热元器件 gapA-T.te-HSP20,转入大肠杆菌(Escherichia coli)获得工程菌 E. coli-TH 和 E. coli-GH。工程菌E. coli-TH在30℃和IPTG诱导下,目标蛋白呈可溶性表达,经50℃热激30 min后,存活率提高了3.2倍。高温发酵表明gapA-T.te-HSP20扩宽了工程菌E. coli-GH的最适生长温度的范围(37~43℃),较大程度提高了大肠杆菌的耐热性。抗逆性分析还发现工程菌E. coli-GH具备了耐热与耐丁醇的双重功能,并有一定的抗乙酸和乙醇能力。为工业梯度升温发酵生产生物基产品的高效制造、节省成本提供了新思路。%To improve the heat resistance of Escherichia coli, an inducible heat-resistance device T7-T.te-HSP20 and a constitutive heat-resistance device gapA-T.te-HSP20 based on T.te-HSP20 gene from Thermoanaerobacter tengcongensis MB4, and corresponding engineered strains E. coli-TH and E. coli-GH were constructed. The targeted protein was expressed in solubility after IPTG induction at 30℃ in E. coli-TH. Meanwhile, the survival rate of E. coli-TH was 3.2 times higher than the control at 50℃ for 30 min. The result of high-temperature fermentation showed that the optimum temperature range of E. coli-GH was broadened (37-43℃) under the regulation of heat resistance device gapA-T.te-HSP20. Stress resistance analysis showed that E. coli-GH not only possessed heat resistance and butanol resistance, but also had some resistance to acetic acid and ethanol. These results provide a new idea for modern microorganisms industry.

  16. Siegel FIRST EXPERIMENTAL DISCOVERY of Granular-Giant-Magnetoresistance (G-GMR) DiagnosES/ED Wigner's-Disease/.../Spinodal-Decomposition in ``Super''Alloys Generic Endemic Extant in: Nuclear-Reactors/ Petrochemical-Plants/Jet/ Missile-Engines/...

    Science.gov (United States)

    Hoffman, Ace; Wigner-Weinberg, Eugene-Alvin; Siegel, Edward Carl-Ludwig Sidney; ORNL/Wigner/Weinberg/Siegel/Hollifeld/Yu/... Collaboration; ANL/Fermi/Wigner/Arrott/Weeks/Bader/Freeman/Sinha/Palazlotti/Nichols/Petersen/Rosner/Zimmer/... Collaboration; BNL/Chudahri/Damask/Dienes/Emery/Goldberg/Bak//Bari/Lofaro/... Collaboration; LLNL-LANL/Hecker/Tatro/Meara/Isbell/Wilkins/YFreund/Yudof/Dynes/Yang/... Collaboration; WestinKLouse/EPRI/PSEG/IAEA/ABB/Rickover/Nine/Carter/Starr/Stern/Hamilton/Richards/Lawes/OGrady/Izzo Collaboration

    2013-03-01

    Siegel[APS Shock-Physics Mtg., Chicago(11)] carbides solid-state chemistry[PSS (a)11,45(72); Semis. & Insuls. 5: 39,47,62 (79)], following: Weinberg-Siegel-Loretto-Hargraves-Savage-Westwood-Seitz-Overhauser-..., FIRST EXPERIMENTAL DISCOVERY of G-GMR[JMMM 7, 312(78); Google: ``If LEAKS Could KILL Ana Mayo''] identifIED/IES GENERIC ENDEMIC EXTANT domination of old/new (so mis-called) ``super''alloys': nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe/Co-based (so mis-called) ''super''alloys (182/82; Hastelloy-X,600,304/304L-Stainless-Steels,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms!!!): THERMAL: Wigner's-disease(WD physics) [J.Appl.Phys.17,857(46)]/ Ostwald-ripening

  17. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  18. MATE (Materials for Advanced Turbine Engines) Program, Project 3. Volume 2: Design, fabrication and evaluation of an oxide dispersion strengthened sheet alloy combustor liner

    Science.gov (United States)

    Bose, S.; Sheffler, K. D.

    1988-01-01

    The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.

  19. Study on the Epoxy Resin Heat Resistance Modified by Polyamide Acid%聚酰胺酸改性环氧树脂耐热性的研究

    Institute of Scientific and Technical Information of China (English)

    周浩然; 孔德忠; 刘达

    2009-01-01

    The epoxy resin heat resistance was prepared with epoxy modified with PAA, and DDS as curing after the pre-reacting and curing. The effects of the amount of PAA, the amount of curing agent, curing condition, reaction time on the heat resistance of epoxy resin were studied. A better formula and appropriate conditions for curing were chosen. The heat resistance of modified epoxy resin was measured with TG in different proportions, pre-reaction time and different curing conditions. Then, the surface morphology and the fracture morphology of the curing epoxy modified were analyzed with SEM. The result has shown that better curing process conditions of modified epoxy resin are as follows: 120 ℃,1 h→150 ℃,1 h→170 ℃,2 h→200 ℃,2 h→250 ℃,2 h,the proportion is 3h. The decomposition temperature of modified epoxy resin is 411 ℃ after the pre-reacting and curing, which is increased by 80 ℃, compared with the decomposition temperature of non-modified epoxy resin. There is no distinct two-phase structure in EP/PAA/DDS system after the pre-reacting and curing, which indicates that the resin has a good compatibility.%用4, 4′-二氨基二苯基砜(DDS)做固化剂,采用聚酰胺酸(PAA)对环氧树脂(EP)进行改性,研究了PAA用量、固化剂用量和反应时间对环氧树脂耐热性的影响,采用TG测定不同配比、预反应时间及不同固化温度下改性EP的耐热性,利用SEM对最佳配比固化后样品的表面和断面形貌进行了分析.结果表明,改性树脂最佳固化工艺条件为:120 ℃,1 h→150 ℃,1 h→170 ℃,2 h→200 ℃,2 h→250 ℃,2 h;改性树脂配比为mEP∶mPAA∶mDDS=1∶0.75∶0.08;预反应时间3 h,改性EP的热分解温度为411 ℃,比未改姓EP提高了近80 ℃以上;EP/PAA/DDS固化后样品无明显的两相结构,树脂的相容性较好.

  20. Using Alloys of Cr-Ni-Co system as metallic bond in powder metallurgy products

    Directory of Open Access Journals (Sweden)

    A. M. Gazaliyev

    2015-10-01

    Full Text Available There is studied the possibility of using alloys of the Cr-Ni-Cо system as a metallic bond in producing ceramet. As the basic material there was used titanium carbide. There were measured such mechanical properties as bending strength, tensile strength, impact viscosity. There is considered a possibility of using ceramet with a metallic bond of the Cr-Ni-Co system as a refractory material. As a heat resistance indicator there was estimated the limit of long durability. It is established that in the studied range of temperatures the material properties are the function of the bond content.

  1. Investigation of Structure, Properties and Deformation Mechanisms of Elevated Temperature Al Alloys with High Specific Properties

    Science.gov (United States)

    2007-11-02

    stage – the porous filter from material with size pores amount 1 µm. Aluminum- oxide -coating AW, and Zirconium -coating ZR-M are used for coating of...5 we used a heat resistant aluminum alloy reinforced by quasicrystalline nanosize particles, which was elaborated in frames of Task 3 and 6, as the...formation of a composite that consists of an amorphous matrix with embedded nanosize (5-10 nm) α-Al particles and has a high hardness HV = 3.5 GPa is

  2. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  3. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery.

    Science.gov (United States)

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-02-05

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator.

  4. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery

    Science.gov (United States)

    Shi, Junli; Xia, Yonggao; Yuan, Zhizhang; Hu, Huasheng; Li, Xianfeng; Zhang, Huamin; Liu, Zhaoping

    2015-01-01

    Separators with high reliability and security are in urgent demand for the advancement of high performance lithium ion batteries. Here, we present a new and practical porous membrane with three-dimension (3D) heat-resistant skeleton and high curvature pore structure as a promising separator candidate to facilitate advances in battery safety and performances beyond those obtained from the conventional separators. The unique material properties combining with the well-developed structural characteristics enable the 3D porous skeleton to own several favorable properties, including superior thermal stability, good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection function, etc. which give rise to acceptable battery performances. Considering the simply and cost-effective preparation process, the porous membrane is deemed to be an interesting direction for the future lithium ion battery separator. PMID:25653104

  5. Effect of welding thermal cycles on the oxidation resistance of 9 wt.% Cr heat resistant steels in 550 °C lead-bismuth eutectic

    Science.gov (United States)

    Wang, Jian; Rong, Lijian; Li, Dianzhong; Lu, Shanping

    2016-12-01

    The oxidation resistance for the heat affected zone (HAZ) and base metal of 9 wt.% Cr heat resistant steel in 550 °C lead-bismuth eutectic has been investigated. The oxide film presents a three-layer structure. The outer layer is Fe3O4 while the inner layer is mainly FeCr2O4. The oxide film thickness becomes thinner and thinner in turns of the coarse grained HAZ, fine grained HAZ, inter-critical HAZ and base metal. The oxygen diffusion is the rate determining step during the oxidation process. The Cr-enriched M23C6 plays a significant role on the oxidation rate at the initial stage of oxidation. Increasing the carbon content is a useful method to improve the oxidation resistance.

  6. DETERMINATION AND APPLICATION OF LARSON-MILLER PARAMETER FOR HEAT RESISTANT STEEL 12Cr1MoV AND 15CrMo

    Institute of Scientific and Technical Information of China (English)

    R.C.Yang; K.Chen; H.X.Feng; H.Wang

    2004-01-01

    Based on the analysis and processing on relative empirical formula and data, C-values in Larson-Miller (P) expression, P = T(C + lg t), have determined for pearlitic heat resistant steel 12Cr1Mo V and 15CrMo(20.62 and 20. 30). The simulation experiments of high temperature aging, heated from 1.5 to 873 hours, have been designed and performed for its verification. And in combination with published information and the present nearly quantitative works, it has further been verified that both the degradations of microstructures and mechanical properties show a good accuracy and practicability using the Larson-Miller parameter with the present determined C-values. Finally, the effects of carbon content on C-value are analyzed by the empirical electron theory of solids and molecules (EET).

  7. Study on Curing Process of Heat-resistant Epoxy Adhesive%耐高温环氧胶固化工艺研究

    Institute of Scientific and Technical Information of China (English)

    雷佑安

    2012-01-01

    制得了耐高温固化剂TTOA,并采用凝胶时间、示差扫描热分析以及Prime外推法研究了耐高温环氧胶固化特性,得到该体系的固化工艺参数(140℃/2h+160℃/4h+180℃/8h)。%To prepare TTOA used for heat-resistant epoxy adhesive.To investigate the curing property through gel time,DSC and Prime extrapolation.The results showed the optimal curing condition was 140 ℃/2 h+160 ℃/4 h+180 ℃/8 h.

  8. Heat resistance mediated by a new plasmid encoded Clp ATPase, ClpK, as a possible novel mechanism for nosocomial persistence of Klebsiella pneumoniae

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Struve, Carsten; Ingmer, Hanne;

    2010-01-01

    Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. We have characterized a K. pneumoniae strain responsible for a series of critical infections in an intensive care unit over a two-year period. The strain was found to be remarkably...... of Clp ATPases in acquired environmental fitness and highlights the challenges of mobile genetic elements in fighting nosocomial infections....... resistant to lethal heat shock. Furthermore, one third of a collection of nosocomial K. pneumoniae isolates carry clpK and exhibit a heat resistant phenotype. The discovery of ClpK as a plasmid encoded factor and its profound impact on thermal stress survival sheds new light on the biological relevance...

  9. 耐热原子灰用不饱和树脂的研制%Study of Unsaturated Polyester Resin for Heat Resistant Putty

    Institute of Scientific and Technical Information of China (English)

    徐景峰

    2011-01-01

    以间苯二甲酸为饱和酸,工业双环戊二烯(DCPD )为改性剂,采用水解加成法合成了耐热原子灰用气干性不饱和聚酯树脂.研究了原料及用量对不饱和聚酯树脂和原子灰性能的影响,确定了不饱和聚酯树脂配方.当n(DCPD):n(间苯二甲酸):n(己二酸):n(剩余顺酐)=4:4:2:9时,树脂性能稳定.以此树脂为基材,制得的原子灰耐热温度≥180℃,原子灰综合性能如刮涂性、气干性、打磨性和柔韧性良好.%The title air dry unsaturated polyester resins for heat resistant putty was prepared using hydrolysis addition process with isophthalic acid as saturated acid and dicyclopentadiene(DCPD) as modifier.The effect variety and amount of each material on properties of resin and putty was studied.The recipe of unsaturated polyester was determined.When n(DCPD): n( isophthalic acid): n( adipic acid): n( balance maleic anhydride) =4: 4: 2: 9, the properties of unsaturated polyester resin were stable.A heat resistance of the putty based on this resin was over 180 ℃.The comprehensive properties such as scraping property, air drying, grindability and flexibility were excellent.

  10. Ferroelectric and ferromagnetic properties of epitaxial BiFeO{sub 3}-BiMnO{sub 3} films on ion-beam-assisted deposited TiN buffered flexible Hastelloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, J., E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Division of Materials Physics and Applications, Los Alamos, New Mexico 87545 (United States); Matias, V.; Jia, Q. X. [Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Division of Materials Physics and Applications, Los Alamos, New Mexico 87545 (United States); Tao, B. W.; Li, Y. R. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-05-07

    Growth of multifunctional thin films on flexible substrates is of great technological significance since such a platform is needed for flexible electronics. In this study, we report the growth of biaxially aligned (BiFeO{sub 3}){sub 0.5}:(BiMnO{sub 3}){sub 0.5} [BFO-BMO] films on polycrystalline Hastelloy by using a biaxially aligned TiN as a seed layer deposited by ion-beam-assisted deposited and a La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) as a buffer layer deposited by pulsed laser deposition. The LSMO is used not only as a buffer layer but also as the bottom electrode of the BFO-BMO films. X-ray diffraction showed that the BFO-BMO films are biaxially oriented along both in-plane and out-of-plane directions. The BFO-BMO films on flexible metal substrates showed a polarization of 22.9 μC/cm{sup 2}. The magnetization of the BFO-BMO/LSMO is 62 emu/cc at room temperature.

  11. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  12. Development and Study of Hard-Facing Materials on the Base of Heat-Resisting High-Hardness Steels for Plasma-Jet Hard- Facing in Shielding-Doping Nitrogen Atmosphere

    Science.gov (United States)

    Malushin, N. N.; Kovalev, A. P.; Valuev, D. V.; Shats, E. A.; Borovikov, I. F.

    2016-08-01

    The authors develop hard-facing materials on the base of heat-resisting highhardness steels for plasma-jet hard-facing in nitrogen atmosphere for manufacturing parts of mining and metallurgic equipment which significantly simplify the production process and effect a saving when producing bimetallic parts and tools.

  13. Vaulted trans-bis(salicylaldiminato)platinum(II) crystals: heat-resistant, chromatically sensitive platforms for solid-state phosphorescence at ambient temperature.

    Science.gov (United States)

    Komiya, Naruyoshi; Okada, Minoru; Fukumoto, Kanako; Kaneta, Kenji; Yoshida, Atsushi; Naota, Takeshi

    2013-04-08

    The synthesis, structure, and solid-state emission of vaulted trans-bis(salicylaldiminato)platinum(II) complexes are described. A series of polymethylene (1: n=8; 2: n=9; 3: n=10; 4: n=11; 5: n=12; 6: n=13) and polyoxyethylene (7: m=2; 8: m=3; 9: m=4) vaulted complexes (R=H (a), 3-MeO (b), 4-MeO (c), 5-MeO (d), 6-MeO (e), 4-CF3O (f), 5-CF3O (g)) was prepared by treating [PtCl2(CH3CN)2] with the corresponding N,N'-bis(salicylidene)-1,ω-alkanediamines. The trans coordination, vaulted structures, and the crystal packing of 1-9 have been unequivocally established from X-ray diffraction studies. Unpredictable, structure-dependent phosphorescent emission has been observed for crystals of the complexes under UV excitation at ambient temperature, whereas these complexes are entirely nonemissive in the solution state under the same conditions. The long-linked complex crystals 4-6, 8, and 9 exhibit intense emission (Φ77K =0.22-0.88) at 77 K, whereas short-linked complexes 1-3 and 7 are non- or slightly emissive at the same temperature (Φ77K solid-state emission over the range of 98 nm can be performed simply by introducing MeO groups at different positions on the aromatic rings. Orange, yellow-green, red, and yellow emissions are observed in the glass and crystalline state upon 3-, 4-, 5-, and 6-MeO substitution, respectively, whereas those with CF3 O substituents have orange emission, irrespective of the substitution position. DFT calculations (B3LYP/6-31G*, LanL2DZ) showed that such chromatic variation is ascribed to the position-specific influence of the substituents on the highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) levels of the trans-bis(salicylaldiminato)platinum(II) platform. The solid-state emission and its heat resistance have been discussed on the basis of X-ray diffraction studies. The planarity of the trans-coordination sites is strongly correlated to the solid-state emission intensities of crystals 1-9 at lower

  14. Research on High-Altitude Airship Heat-Resistance Ability%关于高空飞艇抗热能力的研究

    Institute of Scientific and Technical Information of China (English)

    江京

    2012-01-01

    The average temperature of helium in the airship is obviously affected by the solar radiation and the low temperature of the stratospheric environment during the fight of day/night alternation.The change of the differential pressure between in and out of the hull of the airship will be caused by this change of average temperature of helium,and will be the basic index for the design of the hull material and structure of the airship at the stage of general design.According to HAA heat-resistance ability simulation calculation and analysis,to fundamentally increase the ability of heat-resistance of the HAA,the premise is improving the strength of the membrane material of the hull;while enlarging the volume of hull/ballonet does not obviously help the increase ofheat-resistance ability,but will result in airship weight increase.%高空飞艇在平流层高度昼夜工作过程中,作为浮升气体的艇体内氦气受太阳能辐射以及艇外低温环境的影响,其平均温度变化范围较大。艇体内氦气平均温度的变化将导致飞艇艇体内外压差的变化,而艇体内外压差的变化是高空飞艇总体设计阶段对囊体材料选取时必须考虑的重要设计依据之一。通过高空飞艇抗热能力仿真计算与分析,指出高空飞艇的抗热能力必须在提高囊体强度的前提下才可以得到根本的提升,而加大副气囊体积对抗热能力影响不大反而将导致飞艇重量的增加。

  15. Study on modified cyanate ester adhesive with heat-resistance%改性氰酸酯类耐高温胶粘剂的研究

    Institute of Scientific and Technical Information of China (English)

    吴广磊; 寇开昌; 卓龙海; 王益群; 晁敏

    2012-01-01

    With bismaleimide(BMI),bisphenol A type cyanate ester(BADCy) and benzoxazine(BOZ) resin as matrix resin, nano-Si02 as filler, an adhesive with heat-resistance was prepared. The curing kinetics process of nano-SiO2/BOZ/BMI/BADCy copolymer was investigated by non-isothermal DSC (differential scanning calorimetry), Kissinger method and Ozawa method. The results showed that the apparent activation energy(47.82 kJ/mol) of corresponding BOZ/BMl/BADCy with nano-SiO2 adhesive was less than that without nano-SiO2 adhesive(59.17 kJ/mol), the BOZ/BMI/BADCy with nano-SiO2 adhesive had good heat-resistance when mass ratio of m(BOZ):m(BMI): m(BADCy) was l:12,mass fraction of nano-SiO2 was 3%. The bonded samples between the BOZ/BMI/BADCy with nano-SiO2 adhesive and silicon steel sheet,had still stable shear strength after aging 1 000 h at 250 ℃%以双马来酰亚胺(BMI)、双酚A型氰酸酯(BADCy)和苯并噁嗪(BOZ)树脂为基体树脂,纳米二氧化硅(nano-SiO2)为填料,制备耐高温胶粘剂.采用非等温差示扫描量热(DSC)法、Kissinger法和Ozawa法研究了nano-SiO2/BOZ/BM I/BADCy共聚物的固化动力学过程.结果表明:当m(BOZ)∶m(BMI)∶m(BADCy)=1∶1∶2、ω(nano -SiO2)=3%时,相应BOZ/BMI/BADCy胶粘剂的表观活化能(47.82 kJ/mol)低于无nano-SiO2体系(59.17 kJ/mol),并具有良好的耐高温性能;在250℃时用该胶粘剂胶接硅钢片,胶接件经250℃老化1000h后,其剪切强度仍保持稳定.

  16. Effect of Ga content and growth temperature on Cu(In,Ga)Se{sub 2} thin film deposited on heat-resistant glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Takashi; Minemoto, Takashi [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu (Japan); Usami, Noritaka [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2013-08-15

    Cu(In,Ga)Se{sub 2} (CIGS) thin films were deposited on the Mo/heat-resistant glasses (SS-8, Nippon Electric Glass) by the three-stage evaporation process. The coefficient of thermal expansion (CTE) of SS-8 is 8.4 x 10{sup -6}/K, strain point of SS-8 is 582 C. SS-8 has the CTE similar to that of SLG but higher thermal tolerance. Substrate temperature (T{sub sub}) during deposition and Ga/(In+Ga) atomic ratio of CIGS thin films were controlled to 550{proportional_to}600 C and 0{proportional_to}0.7, respectively. The effect of T{sub sub} and Ga/(In+Ga) atomic ratios of CIGS films have been characterized by electron backscatter diffraction (EBSD) measurements. Grain size and sum 3 grain boundary ratio increased at higher T{sub sub}. sum 3 grain boundary ratio was calculated from the fraction of the length of sum 3 grain boundary by the length of the total grain boundaries on EBSD image. There was the correlation among Ga contents, T{sub sub}, grain size and efficiency. It is difficult to distinguish between effect of grain size and effect of grain boundary to efficiency. However, it is found that high Ga content up to 0.7 results in both high efficiency and sum 3 grain boundary ratio. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Properties of Carbon Nanotubes/Heat -resistant Epoxy Resin Composites%碳纳米管/环氧耐热复合材料性能研究

    Institute of Scientific and Technical Information of China (English)

    雷佑安

    2012-01-01

    The conductive property, aging behavior and adhesive property of carbon nanotubes/epoxy resin composite were investigated. The results suggested that the optimal CNTs fraction of 2% would produce CNTs/ER composites with an increase in shear strength of 12.33% and a decrease in resistivity of 9 -10 orders of magnitude. The aging trace of nanocomposite presented a weight loss of 10% for 200 h, indicating an excellent heat - resistant property.%研究了碳纳米管/环氧树脂复合材料电性能、热氧老化性能和粘接性能。研究结果表明:添加量为2%时,复合材料的综合性能最优,表面电阻率和体积电阻率分别下降了9—10个数量级,剪切强度提高了12.33%,当老化时间达到200h,复合材料重量保持率仍有90%。制得的复合材料能够用于耐热胶粘剂和防静电材料。

  18. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain.

    Science.gov (United States)

    Brul, Stanley; van Beilen, Johan; Caspers, Martien; O'Brien, Andrea; de Koster, Chris; Oomes, Suus; Smelt, Jan; Kort, Remco; Ter Beek, Alex

    2011-04-01

    Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and possible intoxication. Similar issues though more pending toward spore toxigenicity are observed for the anaerobic Clostridia. The paper indicates the nature of stress resistance and highlights contemporary molecular approaches to analyze the mechanistic basis of it in Bacilli. A molecular comparison between a laboratory strain and a food borne isolate, very similar at the genomic level to the laboratory strain but generating extremely heat resistant spores, is discussed. The approaches cover genome-wide genotyping, proteomics and genome-wide expression analyses studies. The analyses aim at gathering sufficient molecular information to be able to put together an initial framework for dynamic modelling of spore germination and outgrowth behaviour. Such emerging models should be developed both at the population and at the single spore level. Tools and challenges in achieving the latter are succinctly discussed.

  19. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus.

    Science.gov (United States)

    Esnoz, A; Periago, P M; Conesa, R; Palop, A

    2006-02-01

    A model for prediction of bacterial spore inactivation was developed. The influence of temperature, pH and NaCl on the heat resistance of Bacillus stearothermophilus spores was described using low-complexity, black box models based on artificial neural networks. Literature data were used to build and train the neural network, and new experimental data were used to evaluate it. The neural network models gave better predictions than the classical quadratic response surface model in all the experiments tried. When the neural networks were evaluated using new experimental data, also good predictions were obtained, providing fail-safe predictions of D values in all cases. The weights and biases values of neurons of the neural network that gave the best results are presented, so the reader can use the model for their own purposes. The use of this non-linear modelling technique makes it possible to describe more accurately interacting effects of environmental factors when compared with classical predictive microbial models.

  20. Heat resistant reduced activation 12% Cr steel of 16Cr12W2VTaB type-advanced structural material for fusion and fast breeder power reactors

    Science.gov (United States)

    Ioltukhovskiy, A. G.; Leonteva-Smirnova, M. V.; Solonin, M. I.; Chernov, V. M.; Golovanov, V. N.; Shamardin, V. K.; Bulanova, T. M.; Povstyanko, A. V.; Fedoseev, A. E.

    2002-12-01

    Heat resistant 12% Cr steels of the 16Cr12W2VTaB type (12Cr-2W-V-Ta-B-0.16C) provide a reduced activation material that can be used as a structural material for fusion and fast breeder reactors. The composition under study meets scientific and engineering requirements and has an optimal base element composition to provide a δ-ferrite content of no more than 20%. It also has a minimum quantity of low melting impurity elements and non-metallic inclusions. Short-term tensile properties for the steel tested to 700 °C are provided after the standard heat treatment (normalization, temper). Rupture strength and creep properties for the steel depending on the initial heat treatment conditions are also given. The microstructural stability of the 16Cr12W2VTaB type steel at temperatures up to 650 °C is predicted to be good, and the properties of the steel after irradiation in BOR-60 are demonstrated.

  1. Heat resistant reduced activation 12% Cr steel of 16Cr12W2VTaB type-advanced structural material for fusion and fast breeder power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ioltukhovskiy, A.G. E-mail: iral@bochvar.ru; Leonteva-Smirnova, M.V.; Solonin, M.I.; Chernov, V.M.; Golovanov, V.N.; Shamardin, V.K.; Bulanova, T.M.; Povstyanko, A.V.; Fedoseev, A.E

    2002-12-01

    Heat resistant 12% Cr steels of the 16Cr12W2VTaB type (12Cr-2W-V-Ta-B-0.16C) provide a reduced activation material that can be used as a structural material for fusion and fast breeder reactors. The composition under study meets scientific and engineering requirements and has an optimal base element composition to provide a {delta}-ferrite content of no more than 20%. It also has a minimum quantity of low melting impurity elements and non-metallic inclusions. Short-term tensile properties for the steel tested to 700 deg. C are provided after the standard heat treatment (normalization, temper). Rupture strength and creep properties for the steel depending on the initial heat treatment conditions are also given. The microstructural stability of the 16Cr12W2VTaB type steel at temperatures up to 650 deg. C is predicted to be good, and the properties of the steel after irradiation in BOR-60 are demonstrated.

  2. An irradiation test of heat-resistant ceramic composite materials. Interim report on post-irradiation examinations of the first preliminary irradiation test: 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Takahashi, Tsuneo; Ishihara, Masahiro; Hayashi, Kimio; Sozawa, Shizuo; Saito, Takashi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Suzuki, Yoshio [Nuclear Engineering, Co. Ltd., Osaka (Japan); Saito, Tamotsu; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The Japan Atomic Energy Research Institute (JAERI) has been carrying out the research on radiation damage mechanism of heat-resistant ceramic composite materials, as one of the subjects of the innovative basic research on high temperature engineering using the High Temperature Engineering Test Reactor (HTTR). A series of preliminary irradiation tests is being made using the Japan Materials Testing Reactor (JMTR). The present report describes results of post-irradiation examinations (PIE) so far on specimens irradiated in the first capsule, designated 97M-13A, to fast neutron fluences of 1.2-1.8x10{sup 24} m{sup -2} (E>1 MeV) at temperatures of 573, 673 and 843 K. In the PIE, measurements were made on (1) dimensional changes, (2) thermal expansions, (3) X-ray parameters and (4) {gamma}-ray spectra. The results for the carbon/carbon and SiC/SiC composites were similar to those in existing literatures. The temperature monitor effect was observed both for SiC fiber- and particle-reinforced SiC composites as in the case of monolithic SiC. Namely, the curve of the coefficient of thermal expansion (CTE) of these specimens showed a rapid drop above a temperature around the irradiation temperature +100 K in the first ramp (ramp rate: 10 K/min), while in the second ramp the CTE curves were almost the same as those of un-irradiated SiC specimens. (author)

  3. Prevalence of Clostridium botulinum and thermophilic heat-resistant spores in raw carrots and green beans used in French canning industry.

    Science.gov (United States)

    Sevenier, V; Delannoy, S; André, S; Fach, P; Remize, F

    2012-04-16

    Two categories of vegetables (carrots and green beans) that are widely used in the manufacture of canned food were surveyed for their spore contamination. Samples were recovered from 10 manufactures spread over all producing areas in France. Two samples over 316 raw vegetables collected were found positive for botulinum neurotoxin producing Clostridia spores as tested by PCR-based GeneDisc assay. Both positive samplestested positive for the type B neurotoxin gene (bont/B). In parallel, heat-resistant spores of thermophilic bacteria that are likely to be associated with canned food spoilage after prolonged incubation at 55 °C were surveyed after specific enrichment. Prevalence varied between 1.6% for Moorella thermoacetica/thermoautotrophica in green bean samples and 8.6% for either Geobacillus stearothermophilus or Thermoanaerobacterium spp. in carrot samples. Vegetable preparation, e.g. washing and edge cutting, considerably reduced spore contamination levels. These data constitute the first wide examination of vegetables specifically cultivated for industrialpurposes for their contamination by spores of thermophilic bacterial species.

  4. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Directory of Open Access Journals (Sweden)

    Jacek Panek

    Full Text Available Spoilage of heat processed food and beverage by heat resistant fungi (HRF is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700, the other from thermal processed strawberry product in 2012 (KC179765, used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.

  5. Creep strength and microstructural evolution of 9-12% Cr heat resistant steels during creep exposure at 600 C and 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Martin, Francisca [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Panait, Clara Gabriela [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; V et M France CEV, Aulnoye-Aymeries (France); Bendick, Walter [Salzgitter Mannesmann Forschung GmbH (SZMF), Duisburg (DE)] (and others)

    2010-07-01

    9-12% Cr heat resistant steels are used for applications at high temperatures and pressures in steam power plants. 12% Cr steels show higher creep strength and higher corrosion resistance compared to 9% Cr steels for short term creep exposure. However, the higher creep strength of 12 %Cr steels drops increasingly after 10,000-20,000 h of creep. This is probably due to a microstructural instability such as the precipitation of new phases (e.g. Laves phases and Z-phases), the growth of the precipitates and the recovery of the matrix. 9% Cr and 12% Cr tempered martensitic steels that have been creep tested for times up to 50,000 h at 600 C and 650 C were investigated using Transmission Electron Microscopy (TEM) on extractive replicas and thin foils together with Backscatter Scanning Electron Microscopy (BSE-SEM) to better understand the different creep behaviour of the two different steels. A significant precipitation of Laves phase and low amounts of Z-phase was observed in the 9% Cr steels after long-term creep exposure. The size distribution of Laves phases was measured by image analysis of SEM-BSE images. In the 12% Cr steel two new phases were identified, Laves phase and Z-phase after almost 30,000 h of creep test. The quantification of the different precipitated phases was studied. (orig.)

  6. Numerical Simulation on Interfacial Creep Failure of Dissimilar Metal Welded Joint between HR3C and T91 Heat-Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianqiang; TANG Yi; ZHANG Guodong; ZHAO Xuan; GUO Jialin; LUO Chuanhong

    2016-01-01

    The maximum principal stress, von Mises equivalent stress, equivalent creep strain, stress triaxiality in dissimilar metal welded joints between austenitic (HR3C) and martensitic heat-resistant steel (T91) are simulated by FEM at 873 K and under inner pressure of 42.26 MPa. The results show that the maximum principal stress and von Mises equivalent stress are quite high in the vicinity of weld/T91 interface, creep cavities are easy to form and expand in the weld/T91 interface. There are two peaks of equivalent creep strains in welded joint, and the maximum equivalent creep strain is in the place 27-32 mm away from the weld/T91 interface, and there exists creep constrain region in the vicinity of weld/T91 interface. The high stress triaxiality peak is located exactly at the weld/T91 interface. Accordingly, the weld/T91 interface is the weakest site of welded joint. Therefore, using stress triaxiality to describe creep cavity nucleation and expansion and crack development is reasonable for the dissimilar metal welded joint between austenitic and martensitic steel.

  7. Heat resistance mediated by a new plasmid encoded Clp ATPase, ClpK, as a possible novel mechanism for nosocomial persistence of Klebsiella pneumoniae

    DEFF Research Database (Denmark)

    Bojer, Martin Saxtorph; Struve, Carsten; Ingmer, Hanne;

    2010-01-01

    Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. We have characterized a K. pneumoniae strain responsible for a series of critical infections in an intensive care unit over a two-year period. The strain was found to be remarkably thermoto......Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. We have characterized a K. pneumoniae strain responsible for a series of critical infections in an intensive care unit over a two-year period. The strain was found to be remarkably...... resistant to lethal heat shock. Furthermore, one third of a collection of nosocomial K. pneumoniae isolates carry clpK and exhibit a heat resistant phenotype. The discovery of ClpK as a plasmid encoded factor and its profound impact on thermal stress survival sheds new light on the biological relevance...... of Clp ATPases in acquired environmental fitness and highlights the challenges of mobile genetic elements in fighting nosocomial infections....

  8. XRD and TEM analysis of microstructure in the welding zone of 9Cr–1Mo–V–Nb heat-resisting steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Zhou Bing; Feng Tao

    2002-06-01

    Under the condition of tungsten inert gas shielded welding (TIG) + shielded metal arc welding (SMAW) technology, the microstructure in the welding zone of 9Cr–1Mo–V–Nb (P91) heat-resisting steel is studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The test results indicate that when the weld heat input () of TIG is 8.5 ∼ 11.7 kJ/cm and the weld heat input of SMAW is 13.3 ∼ 21.0 kJ/cm, the microstructure in the weld metal is composed of austenite and a little amount of ferrite. The substructure of austenite is crypto–crystal martensite, which included angle. There are some spot precipitates in the martensite base. TEM analysis indicates that the fine structure in the heat-affected zone is lath martensite. There are some carbides (lattice constant, 1.064 nm) at the boundary of grain as well as inside the grain, most of which are Cr23C6 and a little amount of (Fe, Me)23C6.

  9. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  10. Modifying structure and properties of nickel alloys by nanostructured composite powders

    Science.gov (United States)

    Cherepanov, A. N.; Ovcharenko, V. E.; Liu, G.; Cao, L.

    2015-01-01

    The article presents the results of an experimental study of the influence of powder nanomodifiers of refractory compounds on the mechanical properties, macro- and microstructure of heat-resistant alloys ZhS-6K and Inconel 718. It is shown that the introduction of nanomodifiers into the melt leads to the refinement of the alloy structure: the average grain size decreases 1.5-2 times, and their morphology becomes similar to equiaxial at significant reduction of the particle size in the carbide phase. The service life of ZhS-6K alloy under cyclic loading at 600°C increases 2.7 times, and at 975 °C by 40 %, and relative elongation increases more than twice. The mechanical properties of Inconel 718 significantly increase: long-term strength at 650 °C increases 1.5-2 times, and the number of cycles before the collapse at 482 °C grows more than three times. It has been found out that addition of nanomodifiers to the melt, in alloys, forms clusters of particles of refractory compounds at borders and joints of the formed grain structure that may help slowing down the processes of recrystallization (prevents the increase in the size of the contacting grains by their associations) and stabilizes the strength properties of the alloys at higher temperatures.

  11. Assessment of Embrittlement of VHTR Structural Alloys in Impure Helium Environments

    Energy Technology Data Exchange (ETDEWEB)

    Crone, Wendy; Cao, Guoping; Sridhara, Kumar

    2013-05-31

    The helium coolant in high-temperature reactors inevitably contains low levels of impurities during steady-state operation, primarily consisting of small amounts of H{sub 2}, H{sub 2}O, CH{sub 4}, CO, CO{sub 2}, and N{sub 2} from a variety of sources in the reactor circuit. These impurities are problematic because they can cause significant long-term corrosion in the structural alloys used in the heat exchangers at elevated temperatures. Currently, the primary candidate materials for intermediate heat exchangers are Alloy 617, Haynes 230, Alloy 800H, and Hastelloy X. This project will evaluate the role of impurities in helium coolant on the stress-assisted grain boundary oxidation and creep crack growth in candidate alloys at elevated temperatures. The project team will: • Evaluate stress-assisted grain boundary oxidation and creep crack initiation and crack growth in the temperature range of 500-850°C in a prototypical helium environment. • Evaluate the effects of oxygen partial pressure on stress-assisted grain boundary oxidation and creep crack growth in impure helium at 500°C, 700°C, and 850°C respectively. • Characterize the microstructure of candidate alloys after long-term exposure to an impure helium environment in order to understand the correlation between stress-assisted grain boundary oxidation, creep crack growth, material composition, and impurities in the helium coolant. • Evaluate grain boundary engineering as a method to mitigate stress-assisted grain boundary oxidation and creep crack growth of candidate alloys in impure helium. The maximum primary helium coolant temperature in the high-temperature reactor is expected to be 850-1,000°C.Corrosion may involve oxidation, carburization, or decarburization mechanisms depending on the temperature, oxygen partial pressure, carbon activity, and alloy composition. These corrosion reactions can substantially affect long-term mechanical properties such as crack- growth rate and fracture

  12. Milk powder in enterobacteriaceae zanretsuken came through heat resistant research%乳粉中阪崎肠杆菌耐热性的研究

    Institute of Scientific and Technical Information of China (English)

    曾维扬

    2011-01-01

    For a long time,in the edible food by heat treatment before has long been considered a lower risk of food pathogenic microbes in food one of the important means,but at present domestic to enterobacteriaceae proposal came through the research of this aspect is still less.This thesis mainly from came through the training of listed enterbacteriaceae and purification,heat resistance to the key research proposal came through the heat tolerance enterobacteriaceae,for in edible can effectively before heat treatment to reduce the risk of infection was laid a good foundation,and the test can bring great social and economic benefits.%长期以来,在食用食品前进行热处理一直被认为是降低食品中食源性致病菌风险的一个重要手段,但是目前国内对阪崎肠杆菌方面的研究还较少。文中主要从阪崎肠杆菌的培养、分离纯化、耐热性方面着手,重点研究阪崎肠杆菌的热耐受情况,为在食用前能有效地进行热处理以降低该菌的感染风险奠定良好的试验基础,并能够带来极大的社会与经济效益。

  13. Strengthening effect of Cu-rich phase precipitation in 18Cr9Ni3CuNbN austenitic heat-resisting steel

    Institute of Scientific and Technical Information of China (English)

    Chengyu CHI; Hongyao YU; Jianxin DONG; Xishan XIE; Zhengqiang CUI; Xiaofang CHEN; Fusheng LIN

    2011-01-01

    The Cu-containing austenitic heat-resistant steel 18Cr9Ni3CuNbN, which is being used as superheater and reheater tube material for modern ultra-super-critical (USC) power plants all over the world, has been investigated at 650 ℃ long time aging till 10 000 h. SEM, TEM and 3DAP (three dimensional atom probe) have been used to follow microstructural changes with mechanical property variations. Experimental results show that Cu-rich phase and MX precipitate in the grains as well as M23C6 precipitates at grain boundaries are the main precipitation strengthening phases in this steel. Among them Cu-rich phase is the most important strengthening phase. Homogeneous distribution of very fine nano-size Cu-rich phase has been formed at very early stage of 650℃ aging (less than 1 h). Cu atoms gradually concentrate to Cu-rich particles and the other elements (such as Fe, Cr, Ni etc) diffuse away from Curich particles to γ-matrix with the increasing of aging time at 650 ℃. The growth rate of Cu-rich phase at 650 ℃ long time aging is very slow and the average diameters of Cu-rich phase have been determined by TEM method. Cu-rich phase keeps in about 30 nm till 650℃ aging for 10 000 h. It shows that nano-size Cu-rich phase precipitation strengthening can be kept for long time aging at 650 ℃ because of its excellent stability at high temperatures. According to structure stability study and mechanical properties determination results the Cu-rich phase precipitation sequence and its strengthening mechanism model have been suggested and discussed.

  14. Scorpion venom heat-resistant peptide (SVHRP enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Scorpion venom heat-resistant peptide (SVHRP is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM-positive immature neurons in the subventricular zone (SVZ and subgranular zone (SGZ of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF but not nerve growth factor (NGF or glial cell line-derived neurotrophic factor (GDNF was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values

  15. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    Science.gov (United States)

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.

  16. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.

    Science.gov (United States)

    Ravanfar, Seyed Ali; Aziz, Maheran Abdul; Saud, Halimi Mohd; Abdullah, Janna Ong

    2015-11-01

    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.

  17. Microstructures and High-Temperature Mechanical Properties of a Martensitic Heat-Resistant Stainless Steel 403Nb Processed by Thermo-Mechanical Treatment

    Science.gov (United States)

    Chen, Liqing; Zeng, Zhouyu; Zhao, Yang; Zhu, Fuxian; Liu, Xianghua

    2013-11-01

    Thermo-mechanical treatments (TMT) at different rolling deformation temperatures were utilized to process a martensitic heat-resistant stainless steel 403Nb containing 12 wt pct Cr and small additions of Nb and V. Microstructures and mechanical properties at room and elevated temperatures were characterized by scanning electron microscopy, transmission electron microscopy, and hardness, tensile, and creep tests. The results showed that high-temperature mechanical behavior after TMT can be greatly improved and microstructures with refined martensitic lath and finely dispersed nanosized MX carbides could be produced. The particle sizes of M23C6 and MX carbides in 403Nb steel after conventional normalizing and tempering (NT) treatments are about 50 to 160 and 10 to 20 nm, respectively, while those after TMT at 1123 K (850 °C) and subsequent tempering at 923 K (650 °C) for 2 hours reach about 25 to 85 and 5 to 10 nm, respectively. Under the condition of 260 MPa and 873 K (600 °C), the tensile creep rupture life of 403Nb steel after TMT at 1123 K (850 °C) is 455 hours, more than 3 times that after conventional NT processes. The mechanisms for improving mechanical properties at elevated temperature were analyzed in association with the existence of finely dispersed nanosized MX particles within martensitic lath. It is the nanosized MX particles having the higher stability at elevated temperature that assist both dislocation hardening and sub-grain hardening for longer duration by pinning the movement of dislocations and sub-grain boundary migration.

  18. Screening Heat-resistant Strains of Lactic Acid Bacteria in Fermented Goat Milk%发酵羊奶中乳酸菌耐热菌株的筛选

    Institute of Scientific and Technical Information of China (English)

    乌素; 张富新; 乔星; 苏彤

    2012-01-01

    The heat-resistance of 11 Lactobacillus bulgaricus strains and 11 Streptococcus thermophilus strains from the commercial starter cultures was studied in fermented goat milk. The results showed that Lactobacillus bulgaricus L. b-346 strain and L. b-124 strain, Streptococcus thermophilus S. t-883 strain and S. t-124 strain had better heat-resist- ance. When L. b-346 strain and S. t-124 strain were mixed in 1:2 ratio, improved heat resistance was obtained.%对从商业乳酸菌发酵剂分离纯化的11株保加利亚乳杆菌和11株嗜热链球菌在发酵羊奶中的耐热性进行了研究。结果表明,保加利亚乳杆菌Lb-346和L.b-124菌株、嗜热链球菌S.t-883菌株和Js.t-124菌株的耐热性较好;当Lb-346菌株、Lb-124菌株与S.t-883菌株、S.t-124菌株按杆菌和球菌以不同比例配合时,L.b-346菌株与S.£-124菌株以1:2比例配合,可获得较高的耐热性。

  19. 用于架空输电线的不同耐热导线的比较分析%Comparative Analysis on Different Heat-Resistant Conductors Used for Overhead Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    刘俊勇; 罗文

    2011-01-01

    简述了国内外耐热导线在架空输电工程中的应用、技术发展水平和目前国内的需求状况,介绍了耐热导线的种类、结构和性能特点,对比分析了不同耐热导线在金具使用、工程造价和线损等方面的差异,为耐热导线设计选型提供参考.%This paper overviewed the application of the heat -resistant conductor used in overhead transmission lines both at home and ahroad, the latest development of the technology, and the present domestic demand for the type of conductors. It also introduced the types, structures and performance characteristics of the conductor, compared and analyzed differences among heat -resistant conductors of different types in terms of the use of fittings, project cost, and the line loss. The paper can provide some useful references for the selection and deign of heat-resistant conductors.

  20. Isolamento e seleção de fungos filamentosos termorresistentes em etapas do processo produtivo de néctar de maçã Isolation and selection of heat resistant molds in the production process of apple nectar

    Directory of Open Access Journals (Sweden)

    Beatriz de Cássia Martins Salomão

    2008-03-01

    Full Text Available Os fungos filamentosos termorresistentes são capazes de sobreviver aos processos de pasteurização aplicados aos produtos de frutas. Este estudo visou isolar e identificar fungos termorresistentes durante o processamento de néctar de maçã (pH 3,4 e 11,6 °Brix, de forma a selecionar o bolor mais termorresistente. O isolamento foi obtido após choque térmico de 70 °C/2 horas e incubação a 30 °C em PDA (3% de ágar acrescido de rosa de bengala. A identificação foi baseada na morfologia e nas estruturas micro e macroscópicas observadas após incubação das cepas em três diferentes meios (G25N, CYA e MEA e temperaturas. O fungo mais termorresistente foi selecionado pela aplicação de choques térmicos (de 80 °C/20 minutos até 97 °C/15 minutos. Foram detectadas 11 linhagens de bolores, sendo 5 termorresistentes. Dentre estas, três cepas, isoladas da matéria-prima e do concentrado de maçã, foram identificadas como Neosartorya fischeri; uma cepa isolada da matéria-prima foi identificada como Byssochlamys fulva, e uma cepa isolada do produto após a primeira pasteurização foi identificada como Eupenicillium sp. As cepas mais resistentes foram as de N. fischeri e B. fulva, que sobreviveram ao tratamento de 95 °C/20 minutos. Dentre as seis cepas restantes, uma foi identificada como Aspergillus sp., entretanto, nenhuma destas apresentou termorresistência.Heat resistant molds are able to survive the pasteurization process applied to apple products. This study aimed at detecting and identifying heat resistant molds during the processing of apple nectar (pH 3.4; 11.6 °Brix in order to select the most heat resistant mold. The isolation was carried out after heat shock at 70 °C, during 2 hours, and incubation at 30 °C, in PDA (3% agar, where rose bengal was added. The identification of macro and microscopic structures was carried out after incubation in three different media (G25N, CYA, MEA and temperatures. Different heat shocks

  1. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    . Traditionally, theorem provers are used to prove that specifications are correct but this process is highly dependent on expert users. Alternatively, model finding has proved to be useful for validation of specifications. The Alloy Analyzer is an automated model finder for checking and visualising Alloy...... specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  2. Research and Development of Heat-Resistant Materials for Advanced USC Power Plants with Steam Temperatures of 700 °C and Above

    Directory of Open Access Journals (Sweden)

    Fujio Abe

    2015-06-01

    Full Text Available Materials-development projects for advanced ultra-supercritical (A-USC power plants with steam temperatures of 700 °C and above have been performed in order to achieve high efficiency and low CO2 emissions in Europe, the US, Japan, and recently in China and India as well. These projects involve the replacement of martensitic 9%−12% Cr steels with nickel (Ni-base alloys for the highest temperature boiler and turbine components in order to provide sufficient creep strength at 700°C and above. To minimize the requirement for expensive Ni-base alloys, martensitic 9%−12% Cr steels can be applied to the next highest temperature components of an A-USC power plant, up to a maximum of 650°C. This paper comprehensively describes the research and development of Ni-base alloys and martensitic 9%−12% Cr steels for thick section boiler and turbine components of A-USC power plants, mainly focusing on the long-term creep-rupture strength of base metal and welded joints, strength loss in welded joints, creep-fatigue properties, and microstructure evolution during exposure at elevated temperatures.

  3. Solid-liquid state pressure bonding of Si3N4 ceramics with aluminum based alloys and its mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Solid-liquid state pressure bonding of Si3N4 ceramics with aluminum based alloys, which contain a small amount of intermetallic compounds Al3Ti or Al3Zr, was investigated. With this new method, the heat resistant properties of the bonding zone metal are improved, and the joints' strengths at high temperature is increased. The joints' shear strength at room temperature and at 600  ℃ reach 126~133  MPa and 32~34  MPa, respectively, with suitable bonding pressure. The reaction between aluminum and Si3N4 ceramics, which produces Al-Si-N-O type compounds is the dominant interfacial reaction, while the reactions between the second active element Ti or Zr in the aluminum based alloys and Si3N4 ceramics also occur to some extend.

  4. Nitrogen hardening of creep-resistant G-NiCr28W alloy

    Directory of Open Access Journals (Sweden)

    Z. Pirowski

    2010-07-01

    Full Text Available In the group of creep-resistant materials, most important are heat-resistant nickel-based alloys. The G-NiCr28W alloy subject to detailed examinations was observed to have two different austenite-like phases. In the interdendritic spaces of alloy matrix, the presence of another phase, also characterised by paramagnetic properties, was detected. Inside this interdendritic phase, local areas of a lamellar structure, composed of both of the above mentioned phases, were present. Nitrogen treatment was observed to raise the microhardness of both these phases.The presence of nitrogen made the regions of a lamellar structure disappear completely. Their place was occupied by precipitates dispersed in the matrix, and occasionally forming large clusters.It has been observed that cold work can harden the G-NiCr28W alloy to a very small degree only, in spite of the fact that hardness isincreasing systematically with the increasing degree of cold work. The said alloy, when enriched with nitrogen added as an alloyingelement, is characterised by hardness higher than the hardness of its nitrogen-free counterpart. The value of hardness is increasing evenmore under the effect of low-degree cold work, although increasing further the degree of cold work seems to have no effect on hardnessincrease. The problem faced in nickel-based materials is the possibility of making defect-free castings from alloys with high nitrogen content. Alloys investigated in the present study were remelted, cast and subject to solidification under high nitrogen pressure in the furnace chamber. However, melting carried out under these conditions could not prevent the occurrence of non-metallic inclusions which, while being unable to pass to a riser, formed local clusters or even thin films, resulting in numerous microcracks or discontinuities encompassing large regions of the casting. This problem seems to be of major concern and is the first one to require prompt solution in the currently

  5. Effect of coating and surface modification on the corrosion resistance of selected alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Zheng, W. [CANMET, Materials Technology Lab., Hamilton, Ontario (Canada); Cook, W. [Univ. of New Brunswick, Fredericton, New Brunswick (Canada); Toivonen, A.; Penttila, S. [VTT Technical Research Center of Finland, Espoo (Finland); Guzonas, D.; Woo, O.T. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Liu, P.; Bibby, D. [CANMET, Materials Technology Lab., Hamilton, Ontario (Canada)

    2011-07-01

    Materials selection is one of the key tasks in Gen-IV reactor development. There is no known material that can meet the expected core outlet conditions of the Canadian SCWR concept (625{sup o}C core outlet temperature). High-Cr steels with excellent corrosion resistance are often susceptible to embrittlement due to the precipitation of sigma and other phases in the microstructure. Low-Cr steels such as P91 and oxide dispersion strengthened (ODS) steels exhibit good high-temperature mechanical properties, but the lack of sufficient Cr content makes this group alloy corrode too fast. Improvement in this alloy is needed in order for it to be considered as a piping construction material. In this report, the development of a metallic coating on a P91 substrate is discussed. Recent effort on selection of in-core cladding alloys has focused on heat-resistant 3xx series stainless steels. These alloys have higher strength at high-temperature ranges, but corrosion and stress-corrosion cracking resistance are a concern. Metallic coating and surface modification are considered as possible solutions to overcome this challenge. The effects of surface modification on the corrosion rate of austenitic steels were also reported in this paper. As-machined surface showed much better corrosion resistance than polished surface and advanced surface analyses showed distinct differences in the nature and the morphology of the surface layer metal. Possible mechanisms for improved corrosion performance are discussed. (author)

  6. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  7. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  8. PLUTONIUM-THORIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  9. Field screening and comprehensive evaluation of heat-resistance rose varieties in Shanghai%上海耐热月季品种的田间筛选及其综合评价

    Institute of Scientific and Technical Information of China (English)

    高洁; 姜灵敏; 曾艳; 陈志涛; 张冬梅; 鲁琳

    2012-01-01

    Based on the natural climate conditions of Shanghai, and taking flowering period, maximum flower opening rate, relative conductivity, proline content, and light utilization efficiency as the indices of rose heat-resistance, the heat-resistance of 13 rose varieties in the field was evaluated by the methods of subordinative function analysis, principal component analysis, and hierarchical cluster analysis. Among the 13 varieties, Rosa cv. 'Abhisarika' , Rosa cv. 'Black Lady' , and Rosa cv. 'Red Hat' had most stronger heat-resistance, Rosa cv. 'Bright Smile' and Rosa cv. 'Lawinia' had stronger heat-resistance, Rosa cv. 'Golden Marie' , Rosa cv. ' Berrrcrd Buffet' , Rosa cv. ' Shocking Blue' , Rosa cv. ' My choice' , and Rosa cv. ' ANITA PEREIRE' had mid-level heat-resistance, and Rosa cv. ' Orange Wave' , Rosa cv. ' Angela' , and Rosa cv. ' MY KONOS' had low level heat-resistance. Rosa cv. ' Abhisarika' and Rosa cv. ' Bright Smile' were recommended to be popularized in the gardens and parks in Shanghai and Jiang-Huai basins.%以上海自然气候条件为背景,选取群体花期、最大开放率、相对电导率、脯氨酸含量和光能利用率等5个与月季耐热性强弱密切相关的性状为指标,应用隶属函数分析、主成分分析和聚类分析对13个月季品种进行耐热性评价.结果表明:13个月季品种中阿比沙林卡(Rosa cv.‘Abhisarika’)、矮仙女(Rosa cv.‘Black Lady’)和红帽子(Rosa cv.‘Red Hat’)属强耐热品种;欢笑(Rosa cv.‘Bright Smile’)和拉维尼亚(Rosa cv.‘Lawinia’)耐热性较强;金玛利(Rosa cv.‘Golden Marie’)、Rosa cv.‘Berrrcrd Buffet’(法)、Rosa cv.‘Shocking Blue’(德)、我的选择(Rosa ev.‘My choice’)和Rosa cv.‘ANITA PEREIRE’(法)为中等耐热品种;橘红潮(Rosa cv.‘Orange Wave’)、安吉拉(Rosa cv.‘Angela’)和Rosa cv.‘MY KONOS’(法)耐热性较弱.建议在上海地区及江淮流域选择阿比沙林卡和欢笑进行推广应用.

  10. HRTEM studies of aging precipitate phases in the Mg-10Gd-3Y-0.4Zr alloy

    Institute of Scientific and Technical Information of China (English)

    王冬舒; 李德江; 谢艳才; 曾小勤

    2016-01-01

    Rare-earth (RE) element addition can remarkably improve the mechanical properties of magnesium alloys through pre-cipitation hardening. The morphology, distribution and crystal structure of precipitates are regarded as major strengthening mecha-nisms in the Mg-RE alloys. In order to understand the formation of precipitates during aging at 225 ºC in a Mg-10Gd-3Y-0.4Zr alloy (GW103K) with high strength and heat resistance, a high-resolution transmission electron microscopy (HRTEM) was employed to characterize the microstructural evolution. It was found that three types of precipitates were observed in the alloy at the early stage, named as: single layer D019 structure, one single layer D019 structure and one layer of Mg, two parallel single layers (containing RE) and Mg layer in between, which was regarded as ordered segregation of RE, precursors to formβ′ andβ′ phase, respectively. Both ofβ′ andβ′ phase were transformed from the precursors. It was also found that large size ofβ′ phase and the small size ofβ′ phase were constantly existent in the whole aging process.β′ phase played a major role in the strengthening of the GW103K alloys and the de-crease of the hardness was caused by the coarsening ofβ′ phase.

  11. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  12. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  13. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  14. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  15. High frequency fatigue test of IN 718 alloy – microstructure and fractography evaluation

    Directory of Open Access Journals (Sweden)

    J. Belan

    2015-01-01

    Full Text Available INCONEL alloy 718 is a high-strength, corrosion-resistant nickel chromium material used at -253 °C to 705 °C for production of heat resistant parts of aero jet engine mostly. The fatigue test provided on this kind materials were done via low frequency loading up to this time. Nowadays, needs of results at higher volume of loading cycles leads to high frequency loading with aim to shorten testing time. Fatigue test of experimental material was carried out at frequency 20 kHz with stress ration R = - 1 (push – pull at room temperature. It was found that this superalloy can still fracture after exceeding 108 cycles. Besides fatigue test were microstructural characterisation and scanning electron microscopy (SEM fractography evaluation done.

  16. Development of Radiation Crosslinked,Heat Resistant and Flame Resistant Polyolefin Heat Shrinkable Material%辐射交联150℃阻燃聚烯烃热收缩材料的研制

    Institute of Scientific and Technical Information of China (English)

    张聪

    2001-01-01

    The composition,preparing technology and properties of radiation crosslinked,heat resistant and flame resistant polyolefin heat shrinkable material were studied,and the polyolefin heat shrinkable material with heat resistance up to 150℃,the OI of which was 30,was prepared.The prepared material could be used at 150℃ for a long time,and was characterized by high temperature resistance,good mechanical and elecrical properties and flame resistance,and could be widely applied to aircrafts,architecture,atuomobiles,military wehicle and cable insulation.%本文介绍了一种辐射交联150℃阻燃聚烯烃热收缩材料的配方研究,制备工艺及性能,通过确定聚烯烃热收缩材料制备工艺,挤出温度、辐照剂量等,制备出耐温达150℃,氧指数达30的热收缩材料,此材料可在150℃温度下长期使用,具有耐高温、机械、电性能优异、阻燃性能好,可广泛使用在航天、航空、汽车、军工等线缆的绝缘保护。

  17. FRAUD/SABOTAGE Killing Nuclear-Reactors Need Modeling!!!: ``Super'' alloys GENERIC ENDEMIC Wigner's-Disease/.../IN-stability: Ethics? SHMETHICS!!!

    Science.gov (United States)

    O'Grady, Joseph; Bument, Arlden; Siegel, Edward

    2011-03-01

    Carbides solid-state chemistry domination of old/new nuclear-reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines is austenitic/FCC Ni/Fe-based (so miscalled)"super"alloys(182/82;Hastelloy-X,600,304/304L-SSs,...690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-disease(WD) [J.Appl.Phys.17,857 (46)]/Ostwald-ripening/spinodal-decomposition/overageing-embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google: fLeaksCouldKill > ; - Siegel [ J . Mag . Mag . Mtls . 7 , 312 (78) = atflickr . comsearchonGiant - Magnotoresistance [Fert" [PRL(1988)]-"Gruenberg"[PRL(1989)] 2007-Nobel]necessitating NRC inspections on 40+25=65 Westin"KL"ouse PWRs(12/2006)]-Lai [Met.Trans.AIME, 9A,827(78)]-Sabol-Stickler[Phys.Stat.Sol.(70)]-Ashpahani[ Intl.Conf. Hydrogen in Metals, Paris(1977]-Russell [Prog.Mtls.Sci.(1983)]-Pollard [last UCS rept.(9/1995)]-Lofaro [BNL/DOE/NRC Repts.]-Pringle [ Nuclear-Power:From Physics to Politics(1979)]-Hoffman [animatedsoftware.com], what DOE/NRC MISlabels as "butt-welds" "stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrittlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n"u"tional-la"v"atories sabotage!!!

  18. FRAUD/SABOTAGE Killing Nuclear-Reactors!!! ``Super"alloys GENERIC ENDEMIC Wigner's-Disease IN-stability!!!

    Science.gov (United States)

    Asphahani, Aziz; Siegel, Sidney; Siegel, Edward

    2010-03-01

    Siegel [[J.Mag.Mag.Mtls.7,312(78); PSS(a)11,45(72); Semis.& Insuls.5(79)] (at: ORNL, ANS, Westin``KL"ouse, PSEG, IAEA, ABB) warning of old/new nuclear-reactors/spent-fuel-casks/refineries/ jet/missile/rocket-engines austenitic/FCC Ni/Fe-based (so MIS- called)``super"alloys(182/82;Hastelloy-X; 600;304/304L-SSs; 690 !!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's- diseas(WD)[J.Appl.Phys.17,857(46)]; Ostwald-ripening; spinodal- decomposition; overageing-embrittlement; thermomechanical- INstability: Mayo[Google: ``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: [Siegel<<<``Fert"(88) 2007-Nobel/Wolf/Japan-prizes]necessitating NRC inspections on 40+25=65 Westin``KL"ouse PWRs(12/06)]; Lai[Met.Trans.AIME,9A,827 (78)]-Sabol-Stickler[PSS(70)]; Ashpahani[Intl.Conf. H in Metals (77)]; Russell[Prog. Mtls.Sci.(83)]; Pollard[last UCS rept. (9/95)]; Lofaro[BNL/DOE/NRC Repts.]; Pringle[Nuclear-Power:From Physics to Politics(79)]; Hoffman[animatedsoftware.com],...what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrit- tlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n``u''tional-la``v''atories sabotage!!!

  19. 烧结热矿破碎机齿辊耐磨层的堆焊%Bulit-Up Welding the Wear/heat Resisting Alloy on Spike Roller of Hot Crusher

    Institute of Scientific and Technical Information of China (English)

    王亮; 刘欣; 周海川; 豆会生

    2001-01-01

    邯钢在消化吸收引进技术的基础上,对热矿破碎机齿辊及耐热篦板的耐热耐磨层堆焊工艺进行了研究和改进,使其在齿辊无通水冷却的情况下,使用寿命可达1年以上,远高于国内同类堆焊齿辊的寿命.

  20. 高硬度镍基高温合金Incone1 718的切削加工%Cutting process of high hardness nickel-base heat resisting alloy Inconel 718

    Institute of Scientific and Technical Information of China (English)

    宋志伟

    2000-01-01

    @@ 1 可加工性分析 Inconel 718材料属高硬度、高强度、耐腐蚀、耐高温镍基合金,主要用于制造飞机发动机涡轮盘、飞机机匣等高强度零件,此类零件在705℃以下具有耐高蠕变和抗应力断裂性能,在980℃以下具有良好的抗氧化性能(如涡轮转子、后机匣组件等).

  1. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  2. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  3. NICKEL-BASE ALLOY

    Science.gov (United States)

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  4. 耐热钢HP40Nb的中温粉末法渗铝及其抗渗碳特性%Pack aluminizing at moderate temperature on HP40Nb heat-resistant steel and its anti-carburization behaviour

    Institute of Scientific and Technical Information of China (English)

    潘建伟; 谢飞; 孙力; 焦世辉; 翟建祥

    2012-01-01

    Pack aluminizing at temperature of 800-900 ℃ was investigated on HP40Nb heat-resistant steel with a media composed of master alloy of Fe-Al powder as Al supplier,NH4Cl as activator and SiC as filler.The anti-carburizing behaviour of the treated specimen was studied by employing an intensified pack carburization test.The results show that the aluminizing case has high surface quality and adheres very well with the substrate.The case is mainly composed of a deposition zone and a following transition zone.The thickness of the case is thinner than that by higher temperature aluminizing.Direct current field has few influence on the types of phase structure of the aluminized cases,while it can enhance the aluminizing rate at 800 ℃ by nearly 7 times.The aluminized cases studied show excellent anti-carburization ability in the intensified carburization test at 1000 ℃.%以铝铁为供铝剂、氯化氨为活化剂、碳化硅为填充剂,研究了耐热钢HP40Nb在800~900℃间的粉末法渗铝特性,采用固体强化渗碳方式来研究不同状态试样的抗渗碳能力。研究表明:渗层表面质量很高,渗层与基体结合良好,渗层主要由沉积区和过渡区两部分组成,较之高温渗铝,渗层厚度较薄;采用直流电场增强法对HP40Nb粉末法渗铝渗层相组成种类影响不大,但能使其800℃时的渗铝速度提高近7倍。所试验渗铝层在1000℃强化渗碳条件下表现出优良的抗渗碳特性。

  5. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  6. 稀土耐热钢凝固过程中夹杂物析出的热力学分析%Thermodynamic Analysis of Inclusions Precipitation in Heat Resistant Steel with Rare Earth during Solidification

    Institute of Scientific and Technical Information of China (English)

    于哲; 李言栋; 刘承军; 姜茂发

    2014-01-01

    Based on Gibbs free energy minimization principle, the thermodynamic software FactSage was chosen to calculate and analyze the precipitation behavior of inclusions in heat resistant steel with different cerium content and cleanliness. The results show that, SiO2 and MnS inclusions are replaced by Ce2O3, Ce2O2S when cerium is added to heat resistant steel. Under the conditions of certain cleanliness of molten steel, the content of cerium when SiO2 and MnS cannot precipitate are 0.02%and 0.03%respectively; the inclusions precipitated in heat resistant steel transform from Ce2O2S, CeN, CeS to SiO2, Ce2O3 with the content of oxygen increasing. SiO2 can precipitate in steel when the content of oxygen is greater than 0.006%. The inclusions precipitated in the heat resistant steel transform from Ce 2O2S, CeN, CeS, Ce2O3 to Ce2O2S, MnS, Ce2S3 with the content of sulfur increasing. MnS can precipitate in steel when the content of sulfur is greater than 0.005%.%基于FactSage热力学软件的最小吉布斯自由能原理,系统研究了不同铈含量及钢液洁净度条件下耐热钢凝固过程中夹杂物的析出行为。结果表明:耐热钢中添加铈后,高熔点的Ce2O2S、 Ce2O3等夹杂取代了SiO2与MnS夹杂;在一定洁净度条件下, SiO2与MnS无法析出的铈含量分别为0.02%与0.03%;随着氧含量的增加,耐热钢中的夹杂物类型由Ce2O2S、 CeN、 CeS向SiO2、 Ce2O3转变,当氧含量大于0.006%时,钢中开始析出SiO2夹杂;随着硫含量的增加,耐热钢中的夹杂物类型由Ce2O2S、 CeN、 CeS、 Ce2O3向Ce2O2S、 MnS、 Ce2S3转变,当硫含量大于0.005%时, MnS夹杂开始析出。

  7. PVC/ABS合金的生产及应用研究进展%Research Progress in Production and Application of the PVC/ABS Alloy

    Institute of Scientific and Technical Information of China (English)

    肖娜; 张国锋

    2012-01-01

    PVC/ABS alloy was a class of blends which was made of two kinds ot resm Dy - ABS alloy had PVC unique flame self- extinguishing properties, chemical resistance, and had ABS heat -resistant, im- pact resistance and easy processing performance. The research status of the PVC/ABS alloy at home and abroad was intro- duced. In addition, the processing application of the PVC/ABS alloy was summarized. Furthermore, the production process route of the PVC/ABS alloy synthesized by blending copolymerization method was analyzed.%PVC/ABS合金是两种树脂通过共混技术制成的一类共混物。PVC/ABS合金一方面具有PVC独特的难燃自熄性、耐化学药品性,另一方面又具有ABS的耐热、耐冲击和容易加工的性能。介绍了PVC/ABS合金国内外研究现状,阐述了PVC/ABS合金的加工应用情况,并分析了PVC/ABS合金共混的生产工艺路线。

  8. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  9. Mg based alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, S. [Univ. de Santiago de Chile (Chile). Fac. de Ingenieria; Garcia, G.; Serafini, D.; San Martin, A.

    1999-07-01

    In the present work, we studied the production of magnesium alloys, of stoichiometry 2Mg + Ni, by mechanical alloying (MA) and the behavior of the alloys under hydrogen in a Sievert`s type apparatus. The elemental powders were milled under argon atmosphere in a Spex 8000 high energy ball mill. The milled materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Only minimum amounts of the Mg{sub 2}Ni intermetallic compound was obtained after 22 h of milling time. Most of the material was sticked to the inner surface of the container as well as to the milling balls. Powders milled only for 12 hours transforms to the intermetallic at around 433 K. Effects of the MA on the hydrogen absorption kinetics were also studied. (orig.) 10 refs.

  10. Giant-Magnetoresistance(GMR) Siegel KEY FIRST Experimental Discovery Decade-Earlier PRE-``Fert"-``Gruenberg" in Nuc"el"ar ``Super"alloys: Science?;``SEANCE!!!; Ethics?; SHMETHICS!!!

    Science.gov (United States)

    Hoffman, R.; Siegel, E.

    2010-03-01

    (So MIScalled) ``Fert"-``Grunberg"[PRL(1988;1989)] GMR 2007 physics Nobel/Wolf/Japan-Prizes VS. decade-earlier(1973-1977) KEY FIRST Siegel at:Westin"kl"ouse/PSEG/IAEA/ABB[google:``Martin Ebner"(94-04) in financial media]/Vattenfall/Wallenbergs/nuc"el"ar-DoE Labs[at flickr.com, search on ``Giant- Magnotoresistance''; find: Intl.Conf.Mag.Alloys & Oxides(ICMAO), Haifa(Aug./1977); J.Mag.Mag.Mtls,(JMMM)7,312(1978)``unavailable: not yet scanned''/modified(last R(H) GMR Figs(7;8) deleted!!!) on JMMM/Reed-Elsevier website until 7/29/08 conveniently one- half-year after last (Nobel)award(12/2007); conveniently effectively deleted!!!; google: ``If Leaks Could Kill''; many APS/MRS Mtgs(1970s)experimental discovery in (so MIScalled) ``super''alloys [182/82, Hastelloy-X, 600, 690(!!!), Stainless-Steels: ANY/ALL!!!] generic endemic Wigner's[JAP,17,857(1946)]- disease/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/ thermo-mechanical-INstability!

  11. Study on the Effects of Chinese Veterinary Medicine Summer-expelling and Heat-resisting Powder on Heat Stress of Pregnant Sows%中兽药解暑抗热散抗妊娠母猪热应激效果的研究

    Institute of Scientific and Technical Information of China (English)

    黄忠强; 赵红梅; 纪美静

    2014-01-01

    为了解中兽药解暑抗热散对妊娠母猪热应激的缓解效果,选取14头怀孕1月龄的2~3胎次的母猪,按窝体质量及胎次相近的原则随机分成2组,即解暑抗热散组(每800 kg基础日粮中添加解暑抗热散1 kg)和对照组(基础日粮),每组7头,分别测定其热应激相关指标,试验期8 d。结果显示:解暑抗热散组母猪的呼吸频率比对照组降低3.57次/min,体温比对照组降低0.99℃,2组间呼吸频率差异不显著(P>0.05),但平均体温显著低于对照组(P<0.05);母猪产健仔猪数比对照组提高10.52%,发病数比对照组降低5.49%。试验结果表明,解暑抗热散在高温条件下能够显著降低妊娠母猪体温,提高产健仔猪数,降低猪只的发病数,具有良好的抗应激作用。%In order to understand the relief effects of Chinese veterinary medicine summer-expelling and heat-resisting powder on heat stress of pregnancy sow, 14 one-month-old pregnant sows with 2nd-3rd fetal times were selected and randomly divided into control group (basic diet) and summer-expelling and heat-resisting powder group (supplementing 1 kg summer-expelling and heat-resisting powder per 800 kg feed) according to the principle of similar litter weight and fetal times. There were seven sows in each group. The related indices of heat stress were determined. And the test lasted for 8 days. The results showed that the respiratory frequency of sows in summer-expelling and heat-resisting powder group decreased 3.57 times/min than that in control group. And the body temperature in summer-expelling and heat-resisting powder group decreased 0.99 ℃than that in control group. There was no significant difference of respiratory frequency between summer-expelling and heat-resisting powder group and control group(P>0.05). The average body temperature in summer-expelling and heat-resisting powder group is significantly lower than that in control

  12. TUNGSTEN BASE ALLOYS

    Science.gov (United States)

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  13. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  14. FRAUD/SABOTAGE Killing Nuclear-Reactors Need Modeling!!!: "Super"alloys GENERIC ENDEMIC Wigner's-Disease/.../IN-stability: Ethics? SHMETHICS!!!

    Science.gov (United States)

    Asphahani, Aziz; Siegel, Sidney; Siegel, Edward

    2010-03-01

    Carbides solid-state chemistry domination of old/new nuclear- reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe-based(so miscalled)``super"alloys(182/82; Hastelloy-X,600,304/304L-SSs,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-diseas(WD)[J.Appl.Phys.17,857 (1946)]/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google:``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: Siegel[J.Mag.Mag.Mtls.7,312 (1978)]<<<``Fert"-"Gruenberg"(1988/89)2007-physics Nobel/Wolf/ Japan-prizes]necessitating NRC-inspections of 40+25 = 65 Westin- ``KLouse PWRs(12/2006)]-Lai[Met.Trans.AIME,9A,827(1978)]-Sabol- Stickler[Phys.Stat.Sol.(1970)]-Ashpahani[Intl.Conf. H in Metals, Paris(1977]-Russell[Prog.Mtls.Sci.(1983)]-Pollard[last UCS rept. (9/1995)]-Lofaro[BNL/DOE/NRC Repts.]-Pringle[Nuclear-Power:From Physics to Politics(1979)]-Hoffman[animatedsoftware.com], what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embritt- lement caused brittle-fracture cracking from early/ongoing AEC/ DOE-n"u"tional-la"v"atories sabotage!!!

  15. Strength of Hard Alloys,

    Science.gov (United States)

    Partial replacement of titanium carbide by tantalum carbide in three-phase WC-TiC-Co alloys tends to have a favorable effect on mechanical properties such as fatigue strength under bending and impact durability.

  16. Alloy Selection System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  17. First Everlasting Alloy

    Institute of Scientific and Technical Information of China (English)

    杨仲言

    1994-01-01

    There′s new alloy that apparently just won′t give up. When a pin was scraped along it the equivalent of one million times, the alloy-made of zirconium, palladium, and ruthenium—displayed no net loss of surface material. When astonished researchers at the National Institute of Standards and Technology(NIST) persevered with a five-million-cycle wear test, they got the same result.

  18. Machining of titanium alloys

    CERN Document Server

    2014-01-01

    This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

  19. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan;

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  20. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  1. Selective dissolution in binary alloys

    Science.gov (United States)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  2. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  3. Sustainable and Superior Heat-Resistant Alginate Nonwoven Separator of LiNi0.5Mn1.5O4/Li Batteries Operated at 55 °C.

    Science.gov (United States)

    Wen, Huijie; Zhang, Jianjun; Chai, Jingchao; Ma, Jun; Yue, Liping; Dong, Tiantian; Zang, Xiao; Liu, Zhihong; Zhang, Botao; Cui, Guanglei

    2017-02-01

    High-voltage lithium-ion batteries have become a major research focus. As a major part of lithium batteries, the separator plays a critical role in the development of high-voltage lithium batteries. Herein, we demonstrated a sustainable and superior heat-resistant alginate nonwoven separator for high-voltage (5 V) lithium batteries. It was demonstrated that the resultant alginate nonwoven separator exhibited better mechanical property (37 MPa), superior thermal stability (up to 150 °C), and higher ionic conductivity (1.4 × 10(-3) S/cm) as compared to commercially available polyolefin (PP) separator. More impressively, the 5 V class LiNi0.5Mn1.5O4 (LNMO)/Li cell with this alginate nonwoven separator delivered much better cycling stability (maintaining 79.6% of its initial discharge capacity) than that (69.3%) of PP separator after 200 cycles at an elevated temperature of 55 °C. In addition, the LiFePO4/Li cell assembled with such alginate nonwoven separator could still charge and discharge normally even at an elevated temperature of 150 °C. The above-mentioned fascinating characteristics of alginate separator provide great probability for its application for high-voltage (5 V) lithium batteries at elevated temperatures.

  4. 用二苯基丙烷结构提高聚酯电磁线漆耐热性能的研究%Study of Diphenyl Propane Structure in Improving Heat Resistance of Polyester Magnet Wire Paint

    Institute of Scientific and Technical Information of China (English)

    倪平

    2012-01-01

    研究了在改性聚酯树脂中引入二苯基丙烷结构来提高其耐热性能,制成的耐热聚酯电磁线漆作底漆与聚酰胺酰亚胺电磁线漆配合使用,涂制的QZY/XY-200级复合漆包线热软化温度可以达到380℃,热冲击性能在漆包线拉伸10%、240℃、30min条件下1d不开裂,提高了特种电机的耐高温工作能力。%This paper mainly studies the polyester resin with the diphenyl propane structure to improve its heat resistance. The softening temperature of so obtained QZY/XY-level 200 composite enameled wire can be achieved above 380 ℃, thermal shock performance is uncrazed in 1 D under the conditions of 240℃, with enameled wire drawing 10% during 30 min. The high temperature resistant ability of the special motor can be improved.

  5. Study on curing agents for room temperature curable epoxy resins with heat resistance%室温固化耐热型环氧树脂固化剂的研制

    Institute of Scientific and Technical Information of China (English)

    赵祖培; 韩胜利

    2015-01-01

    采用曼尼希反应对芳香胺、脂环胺进行改性,以改善其固化性能。应用两步法合成得到的改性脂环胺,固化速度快、耐热性能好、综合性能优异。其中改性邻二胺甲基环戊烷与E51完全固化后在150℃的剪切强度达到8.11 MPa。讨论了不同胺类对反应产物的胺值、初固时间和E51固化物剪切强度的影响。%In this work, the aromatic amine and alicyclic amine were modified by the Mannich reaction to improve their curing performance. The modified alicyclic amine prepared by two-step method have excellent overall performance, including fast curing and good heat resistance. The completely cured E51 epoxy resin with the modified ortho-diamino methylcyclo pemtane(TDC) had the shear strength of up to 8.11 MPa at 150 ℃.The influence of different amines on the amine value,preliminary cueing time and shear strength of cured E51 resin was discussed.

  6. 应用Schaal耐热试验法预测软包装风味鱼的货架期%Application of Schaal heat-resistant method in predicting the shelf life of flexible package flavor fish

    Institute of Scientific and Technical Information of China (English)

    刘晶晶; 周如如; 王雪锋; 韩曜平; 戴阳军

    2012-01-01

    The shelf life of flavor fish was determined with heat-resistant test method. 50℃ , 60 ℃ was selected to accelerate the experiments. Acid value, peroxide value and microorganism activities of the flavor fish were determined at the expermiental temperature. With the combination of organoleptic evaluation, the shelf life was predicted according to the relations between temperature and shelf-life coefficient of fat. The results show that the shelf life of products without preservatives was 80 days or so, the shelf life of products adding 0.0075% potassium sorbet was 160 days or so.%采用高温"Schaal耐热试验法"预测风味鱼的货架期。选取40、60℃2个温度进行加速实验,以加速贮藏过程中产品酸价、过氧化值及微生物的变化为指标,结合产品感官评定,依据温度与油脂货架寿命系数的关系,预测产品货架期。结果表明不添加防腐剂的产品货架期为80d,添加0.0075%山梨酸钾的产品货架期为160d。

  7. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  8. Neutron absorbing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masayuki

    1998-12-04

    The neutron absorbing alloy of the present invention comprises Ti or an alloy thereof as a mother material, to which from 2 to 40% by weight of Hf and Gd within a range of from 4 to 50% by weight in total are added respectively. Ti is excellent in specific strength, corrosion resistance and workability, and produces no noxious intermetallic compound with Hf and Gd. In addition, since the alloy can incorporate a great quantity of Hf and Gd, a neutron absorbing material having excellent neutron absorbing performance than usual and excellent in specific strength, corrosion resistance and workability can be manufactured conveniently and economically not by a special manufacturing method. (T.M.)

  9. Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Deexith Reddy

    2016-07-01

    Full Text Available Shape memory alloys (SMAs are metals that "remember" their original shapes. SMAs are useful for such things as actuators which are materials that "change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields" The potential uses for SMAs especially as actuators have broadened the spectrum of many scientific fields. The study of the history and development of SMAs can provide an insight into a material involved in cutting-edge technology. The diverse applications for these metals have made them increasingly important and visible to the world. This paper presents the working of shape memory alloys , the phenomenon of super-elasticity and applications of these alloys.

  10. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping-ze; XU Zhong; HE Zhi-yong; ZHANG Gao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6Al-4V and Ti-6.5Al-0.3Mo-l.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%.Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  11. Double Glow Plasma Surface Alloyed Burn-resistant Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANGPing-ze; XUZhong; HEZhi-yong; ZHANGGao-hui

    2004-01-01

    Conventional titanium alloy may be ignited and burnt under high temperature, high pressure and high gas flow velocity condition. In order to avoid this problem, we have developed a new kind of burn-resistant titanium alloy-double glow plasma surface alloying burn-resistant titanium alloy. Alloying element Cr, Mo, Cu are induced into the Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si substrates according to double glow discharge phenomenon, Ti-Cr ,Ti-Mo, Ti-Cu binary burn-resistant alloy layers are formed on the surface of Ti-6A1-4V and Ti-6.5Al-0.3Mo-1.5Zr-0.25Si alloys. The depth of the surface burn-resistant alloy layer can reach to above 200 microns and alloying element concentration can reach 90%. Burn-resistant property experiments reveal that if Cr concentration reach to 14%, Cu concentration reach to 12%, Mo concentration reach to 10% in the alloying layers, ignition and burn of titanium alloy can be effectively avoided.

  12. Strip Casting of High Performance Structural Alloys

    Institute of Scientific and Technical Information of China (English)

    S S Park; J G Lee; Nack J Kim

    2004-01-01

    There exists a great need for the development of high performance alloys due to increasing demands for energy conservation and environmental protection. Application of strip casting shows a strong potential for the improvement of properties of existing alloys and also for the development of novel alloy systems with superior properties. The present paper reviews our Center's activities in the development of high performance alloys by strip casting. Examples include (1) Al alloys, (2) wrought Mg alloys, and (3) bulk metallic glass (BMG) alloys.

  13. Pemilihan Bahan Alloy Untuk Konstruksi Gigitiruan

    OpenAIRE

    Medila Dahlan

    2008-01-01

    Pada kedokteran gigi bahan alloy sangat banyak digunakan dalam segala bidang. Dalam pembuatan konstruksi gigitiman biasanya digunakan alloy emas, alloy kobalt kromium, alloy nikei kromium dan alloy stainless steel sebagai komponen gigitiman kerangka logam serta pembuatan mahkota dan jembatan. Pemilihan bahan alloy dapat dilakukan berdasarkan sifat yang dimiiiki oleh masing-masing bahan alloy sehingga akan didapat hasil konstmksi gigitiruan yang memuaskan. Pada pemakaiannya didaiam mulut...

  14. Tungsten Alloy Outgassing Measurements

    CERN Document Server

    Rutherfoord, John P; Shaver, L

    1999-01-01

    Tungsten alloys have not seen extensive use in liquid argon calorimeters so far. Because the manufacturing process for tungsten is different from the more common metals used in liquid argon there is concern that tungsten could poison the argon thereby creating difficulties for precision calorimetry. In this paper we report measurements of outgassing from the tungsten alloy slugs proposed for use in the ATLAS FCal module and estimate limits on potential poisoning with reasonable assumptions. This estimate gives an upper limit poisoning rate of

  15. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  16. Shape Memory Alloy Actuator

    Science.gov (United States)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  17. Pareto-optimal alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Johannesson, Gisli Holmar; Ruban, Andrei;

    2003-01-01

    and the cost. In this letter we present a database consisting of the lattice parameters, bulk moduli, and heats of formation for over 64 000 ordered metallic alloys, which has been established by direct first-principles density-functional-theory calculations. Furthermore, we use a concept from economic theory...

  18. Effect of alloying elements on the composition of carbide phases and mechanical properties of the matrix of high-carbon chromium-vanadium steel

    Science.gov (United States)

    Titov, V. I.; Tarasenko, L. V.; Utkina, A. N.

    2017-01-01

    Based on the results of phase physicochemical analysis of high-carbon chromium-vanadium steel, the predominant type of carbide that provides high wear resistance has been established, and its amount and amount of carbon in martensite have been determined. Data on the composition and the amount of carbide phase and on the chemical composition of the martensite of high-carbon steel have been obtained, which allows determination of the alloying-element concentration limits. The mechanical testing of heats of a chosen chemical composition has been carried out after quenching and low-temperature tempering. The tests have demonstrated benefits of new steel in wear resistance and bending strength with the fatigue strength being retained, compared to steels subjected to cementation. The mechanism of secondary strengthening of the steel upon high-temperature tempering has been revealed. High-temperature tempering can be applied to articles that are required to possess both high wear resistance and heat resistance.

  19. Grey Decision and Cluster Analysis on Heat Resistance of Different Cabbage Genotypes%不同基因型甘蓝耐热性的灰色决策与聚类分析

    Institute of Scientific and Technical Information of China (English)

    邵贵荣; 方淑桂; 钟开勤; 黄建都; 陈文辉

    2011-01-01

    对高温胁迫下12份不同基因型结球甘蓝幼苗的7个生理生化指标和4个相关农艺性状进行灰色决策和聚类分析,结果表明,10个性状与壮苗指数的关联度值从大到小依次为:GSH含量、SOD活性、POD活性、单株重、地上干重/地下干重、MDA含量、Vc含量、相对膜透性、Pro含量和地上鲜重/地下鲜重.强夏-1-2的综合效果测度值是1.465 1,综合表现最好,其次是抗热50-1,综合效果测度值为1.436 4,77-2综合效果测度值是1.217 3,综合表现最差.系统聚类将12份甘蓝亲本材料的耐热性划分为3类:第Ⅰ类为耐热材料,包括强夏-1-2、抗热50-1、中甘17-2和118-1;第Ⅱ类为中等耐热材料,包括早恒株×秋绿、秋绿-1、97-4和早恒株×97-4;第Ⅲ类为不耐热材料,包括135-4-1、中甘16-3、106-H和77-2.%A total of 11 traits, including 4 agronomical traits and 7 physi-biochemical traits that measured in 12 cabbage genotypes under high temperature stress, were analyzed using gray decision and cluster analysis method. The results of gray correlative analysis showed that the index were ranked according to their gray correlation degree to seedling index as follows: GSH content, SOD activity, POD actitvity, plant weight, dry weight of above-ground/dry weight of under-ground, MDA content, Vc content, relative membrane permeability, Pro content and fresh weight of above-ground / fresh weight of under-ground. The comprehensive measure values of Qiangxia-1-2 was 1.465 1, has greatest integrated performance, followed by Kangre50-l. The comprehensive measure value of 77-2 was 1. 217 3, has the poorest performance. Cluster analysis showed that 12 situ accessions were classified into 3 categories. The first category was the most heat resistance situ accessions including Qiangxia-1-2, Kangre50-l , Zhongganl7-2 and 118-1, the second category was the intermediate heat resistance situ accessions including Zaohengzhu × Qiulv, Qiulv-1, 97-4 and

  20. Heat Resistance and Mechanical Properties of Modified Epoxy Resin by Dodecanedioic Acid%十二烷二酸改性环氧树脂的耐热性和力学性能

    Institute of Scientific and Technical Information of China (English)

    夏海; 孟军虎; 王宏刚

    2016-01-01

    用十二烷二酸对双酚A环氧树脂进行改性,研究了十二烷二酸加入量对环氧树脂黏度以及耐热性能和力学性能的影响.结果表明:环氧树脂的玻璃化转变温度随着十二烷二酸加入量的增加而升高,最高能达到112℃;改性后环氧树脂损耗因子峰值最大能提高13%;十二烷二酸的加入量为0.3%时,环氧树脂的力学性能最好;经过十二烷二酸改性后的环氧树脂有一定的高温阻尼性能;最后,探讨了十二烷二酸改性环氧树脂的机理.%Diglycidyl ether of bisphenol A epoxy resin was modified by dodecanedioic acid.The effect of the content of dodecanedioic acid on the viscosity,heat resistance and mechanical properties of modified epoxy resin was studied.The glass transition temperature of epoxy resin increased with increasing the content of dodecanedioic acid,it reached 112 ℃.The damping capacity of modified epoxy resin was enhanced compared with the pristine epoxy resin,peak height of loss tangent increased as much as 13%.When the amount of dodecanedioic acid was 0.3%,tensile performance of the modified resin was the best.The modification mechanism was proposed and the phenomena related to the performance enhancement was explained.

  1. Effect of solution treatment temperature on microstructure and mechanical properties of S31042 heat resistant steel%固溶温度对S31042耐热钢微观组织和力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    王敬忠; 刘正东; 程世长; 包汉生; 王斌

    2011-01-01

    研究了固溶温度对S31042耐热钢力学性能及微观组织的影响.结果表明,随着固溶温度升高,钢的硬度和高温强度降低,硬度在1100~1200℃出现了平台;微观组织由静态回复、部分再结晶逐渐过渡到完全静态再结晶,直至晶粒长大,位错密度逐渐降低.随着温度升高Nb的固溶度增大,含Nb析出相颗粒的尺寸减小和数量减少.固溶态钢中只含有Nb(C,N)和NbCrN相.在1180~1250℃×5 min进行固溶处理能满足工业生产要求.%Effects of solution treatment temperature on the mechanical properties and microstructure of S31042 heat resistant steel were investigated. The results show that with the solution temperature increasing the hardness and elevated temperature strength of S31042 steel decrease,a platform appear on the hardness curve in the solution temperature range from 1100 ℃ to 1200 ℃ ,the microstructure of the test steel transforms from static recovery, partial recrystallization to full recrystallization and grain growth, the dislocation density reduces gradually,the solid solubility of niobium increases with the temperature increasing,but the size of precipitation particles containing niobium and its amount are decreased. There are only two phases of Nb(C,N) and NbCrN in S31042 steel steer solution treatment. Solution treatment at 1180 - 1250 ℃ holding for 5 min can meet requirement of the tested steel.

  2. Comparison of Heat Resistance of Eight Kinds Of Roof Greening Woody Plant%8种屋顶绿化木本植物的耐热性比较

    Institute of Scientific and Technical Information of China (English)

    徐静平; 徐振华; 杜克久

    2011-01-01

    Screening woody plants to adapt to the roof special circumstances has important practical significance for riching the kinds of the greening plants and making it play the functions of roof greening and beautification.The high tempreture is the limited factor for plant growing.In order to expore the heat resistance of roof greening plants and study the adaptability of the plant to high temperature environments, Ulmus pumila L, Salix matsudana Koidz, Broussonetia papyrifera, Periploca sepium Bung., Populus simonii Carr., Lonicera maackii (Rupr.) Maxim.planted on the roof and Ulmus pumila cv.jinye, Sorbaria kirilowii (Reqel) Maxim.suitable for roof greening were as the test materials in the experiment.The relative conductivity of leaves of above plants were tested at different heat treatment conditions, and with Forstst 2.1 the heat resistance of the eight kinds of woody plants were studied.The results showed that: the temperature and cell injury rate of leaves treated with different high temperature were 'S' shaped curve.The semi-lethal temperature of different plants from high to low was Periploca sepium Bung., Periploca sepium Bung., Populus simonii Carr., Salix matsudana Koidz., Ulmus pumila L., Sorbaria kirilowii (Reqel) Maxim., Broussonetia papyrifera, Ulmus pumila cv.jinye, and which were 65.30℃, 63.80℃, 57.85℃, 56.84℃, 55.87℃, 49.94℃, 44.81℃, 43.98℃ respectively.The heat resistance of Periploca sepium Bung.and Lonicera maackii (Rupr.) Maxim.was best, that of Salix matsudana Koidz., Ulmus pumila L., Populus simonii Carr.was better, and that of Sorbaria kirilowii (Reqel) Maxim., Broussonetia papyrifera and Ulmus pumila cv.jinye were worst.%筛选适应屋顶特殊环境的木本植物,对于丰富屋顶绿化植物种类、发挥屋顶绿化的生态和美化功能具有重要的现实意义.高温胁迫是植物正常生长发育的限制因子,为了探索屋顶绿化木本植物的耐热性,研究其在屋顶高温环境下的适应能力,笔

  3. 适量木炭粉改善环氧树脂复合材料热/力学性能%Suitable charcoal loadings improving heat-resistance and mechanical properties of epoxy resins composites

    Institute of Scientific and Technical Information of China (English)

    宋剑斌; 黄彪; 袁全平; 刘学莘; 杨文斌

    2015-01-01

    为了充分利用木材炭化物,扩大其在复合材料等方面的应用范围,该文采用炭化后的木粉(木炭粉)和环氧树脂,通过模压工艺制备了木炭/环氧树脂复合材料.借助扫描电镜、万能材料试验机、动态热机械分析仪和维卡软化点测量仪等研究木炭粉质量分数对木炭/环氧树脂复合材料弯曲性能、冲击强度、动态力学性能以及耐热性的影响.在环氧树脂中,环氧树脂、反应性稀释剂和固化剂质量比为 3:2:5;在木炭/环氧树脂复合材料中,木炭粉质量分数分别为 0, 5%,10%,20%,30%和40%.复合材料固化温度和时间分别设定为100℃和3 h.结果表明,添加木炭粉能有效增强环氧树脂力学性能:与纯环氧树脂相比,弯曲强度和冲击强度最高增加了278%和135%.动态力学性能结果证实随着木炭粉质量分数的增加,复合材料的储能模量和玻璃化转变温度(Tg)也逐渐增加.此外当木炭粉质量分数从0增加到40%时,复合材料的耐热性逐渐提高;维卡软化点从81.2℃提高到274℃.研究结果为,当木炭粉质量分数在10%时,环氧树脂/木炭复合材料具有较佳的力学性能和较好的耐热性能,为木炭在复合材料领域中的应用提供有益的借鉴.%Wood-plastics composite (WPC) is a new kind of composite material, booming at home and abroad in recent years. It includes 2 types: one is the composite produced directly using extrusion and injection methods based on biomass materials such as wood powder, bamboo powder and hemp fiber; the other is based on carbonized biomass materials, which is fabricated by carbonizing biomass materials at high temperature and then compounding with polymer. The former has been studied in detail, but the latter is scarce. So in this paper, we prepared the charcoal/epoxy composites using compressing method. The effects of charcoal content on the mechanical properties and the heat resistance of charcoal/epoxy composites were

  4. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  5. Failure Analysis and Protection of Hastelioy Alloy C- 276 Heat Exchange Tube%C-276哈氏合金换热管失效分析与预防

    Institute of Scientific and Technical Information of China (English)

    孙海生; 陈吉; 关凯书; 王志文

    2012-01-01

    C -276 Hastelloy alloy heat exchange welding tube happened corrosion failure in service,there is a obvious thinning phenomenon in bead area and a hole in local area of the bead. The reason for failed C -276 welded tube was researched through metallography,scanning electric mirror,energy spectrum etc. The results indicate that only cold working on bead, improper welding procedure and subsequent incomplete solution treatment are the root causes of low corrosive resistance in bead. Finally,the relevant preventive measures have been put forward.%C-276哈氏合金焊接换热管在服役中发生了腐蚀失效,焊缝区域明显减薄,焊缝局部有小孔.通过金相、扫描电镜、能谱分析等分析手段对失效的C-276焊接管进行了分析.分析结果表明,仅对焊缝做了冷拉处理、不当的焊接工艺以及随后的不完善固溶处理是导致焊缝区域耐腐蚀性能降低的主要原因.最后提出了相应的预防措施.

  6. Tungsten carbide laser alloying of a low alloyed steel

    Science.gov (United States)

    Cojocaru, Mihai; Taca, Mihaela

    1996-10-01

    Laser alloying is a way to change the composition of metal surfaces in order to improve their corrosion-resistance, high-temperature strength and hardness. The results of a structural and phase analysis of a tungsten carbide based surface layer prepared by laser alloying of a low carbon steel substrate are presented. Structure, phase composition and microhardness of surface alloyed layers have been investigated. The surface of the samples exhibited a thin layer with a different chemical and phase composition. An increase in alloyed surface hardness and wear-resistance was observed.

  7. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  8. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  9. Materials data handbook, Inconel alloy 718

    Science.gov (United States)

    Sessler, J.; Weiss, V.

    1967-01-01

    Materials data handbook on Inconel alloy 718 includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent engineering information required for the design and fabrication of components and equipment utilizing this alloy.

  10. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  11. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  12. 高铬镍合金钢焊接设备的选择%Selection of Welding Equipment for Alloy with High Cr-Ni Content

    Institute of Scientific and Technical Information of China (English)

    周永安; 王万民; 史静

    2001-01-01

    结合武汉石化制氢装置改造工程中高铬镍合金钢的焊接施工,分析高铬镍耐热合金的焊接特点、工艺要求,以及对相匹配焊材的选用、对焊接设备的使用要求。通过焊机的性能比较,选择了具有高频自动引弧功能的YC-300WP4VTA型焊机,确保了该工程中高铬镍合金钢的焊接质量。%Based on welding construction of alloy with high Cr-Ni content inthe reconstructive project of Wu Han petrochemical hydrogen production unit, the article analyzes welding characteristic of heat- resistance alloy with high Cr-Ni content, technology requirement, the selection of matching welding material and operation instruction of welding equipment. By comparing performance, YC- 300WP4VTA welding machine is selected in the reconstructive project, which has high frequency and function of automatically striking the arc, and it ensures the welding quality of alloy with high Cr-Ni content in the project.

  13. Multicomponent and High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Brian Cantor

    2014-08-01

    Full Text Available This paper describes some underlying principles of multicomponent and high entropy alloys, and gives some examples of these materials. Different types of multicomponent alloy and different methods of accessing multicomponent phase space are discussed. The alloys were manufactured by conventional and high speed solidification techniques, and their macroscopic, microscopic and nanoscale structures were studied by optical, X-ray and electron microscope methods. They exhibit a variety of amorphous, quasicrystalline, dendritic and eutectic structures.

  14. Porosity of porous Al alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two porosity models of porous Al alloys with different pore types (ball and polygon shape) were established. The experimental results coincide well with theoretical computations. The porosity of Al alloys (Prc) consists of three parts, porosity caused by preform particles (Prp), additional porosity (Pra), and porosity caused by solidification shrinkage (Prs). Prp is the main part of Prc while Pra is the key for fabricating porous Al alloys successfully in spite of its little contribution to Prc.

  15. Duct and cladding alloy

    Science.gov (United States)

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  16. Analysis of laser alloyed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D.C.; Augustyniak, W.M.; Buene, L.; Draper, C.W.; Poate, J.M.

    1981-04-01

    Surface alloys of precious metals have many advantages over bulk alloys, the most obvious of which is cost reduction due to the reduced consumption of precious metal. There are several techniques for producing surface alloys. In this paper the laser irradiation technique is presented. The following lasers: CW CO/sub 2/, Q-switched Nd-YAG, frequency double Q-switched Nd-YAG, and pulsed ruby were used to irradiate and melt thin solid films of precious metals on metal substrates. This causes the surfaces to melt to a depth of approximately 10,000A. Alloying then takes place in the liquid phase where most metals are miscible. The high quench rates obtainable by this method of melting can result in the forming of metastable alloys. This melting and regrowth process is well understood and has been discussed in the literature over the last few years. This paper deals with two binary alloy systems, Au-Ni and Pd-Ti. Surface alloys of Au-Ni with a wide range of concentrations have been produced by laser irradiation of thin Au films on Ni. These films have been analyzed using Rutherford backscattering (RBS) and channeling. Many thin film metals other than Au have also been successfully alloyed using these methods. An example of a potential application is the laser surface alloying of Pd to Ti for corrosion passivation.

  17. Oligocrystalline shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ueland, Stian M.; Chen, Ying; Schuh, Christopher A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-05-23

    Copper-based shape memory alloys (SMAs) exhibit excellent shape memory properties in single crystalline form. However, when they are polycrystalline, their shape memory properties are severely compromised by brittle fracture arising from transformation strain incompatibility at grain boundaries and triple junctions. Oligocrystalline shape memory alloys (oSMAs) are microstructurally designed SMA structures in which the total surface area exceeds the total grain boundary area, and triple junctions can even be completely absent. Here it is shown how an oligocrystalline structure provides a means of achieving single crystal-like SMA properties without being limited by constraints of single crystal processing. Additionally, the formation of oSMAs typically involves the reduction of the size scale of specimens, and sample size effects begin to emerge. Recent findings on a size effect on the martensitic transformation in oSMAs are compared and a new regime of heat transfer associated with the transformation heat evolution in these alloys is discussed. New results on unassisted two-way shape memory and the effect of loading rate in oSMAs are also reported. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Aluminum alloy impact sparkling

    Directory of Open Access Journals (Sweden)

    M. Dudyk

    2008-08-01

    Full Text Available The cast machine parts are widely used in many branches of industry. A very important issue is gaining the appropriate knowledge relating to the application of castings in places of explosion risks including but not limited to mining, chemical industry and rescue works. A possibility of explosion risks occurrence following the impact sparkling of the cast metal parts is still not solved problem in scientific research. In relation to this issue, in this article, the results of the study are presented, and relating to the tendency to impact sparkling of the aluminium alloys used in machine building. On the grounds of the results obtained, it was demonstrated that the registered impact sparkles bunches of feathers from the analyzed alloys: AlSi7Mg, (AK7; AlSi9Mg, (AK9; AlSi6Cu4, (AK64 and AlSi11, (AK11 show significant differences between each other. The quantitative analysis of the temperature distribution and nuclei surface area performed on the example of the alloy AK9 (subjected to defined period of corrosion allows for the statement that they are dangerous in conditions of explosion risk. Following this fact, designers and users of machine parts made from these materials should not use them in conditions where the explosive mixtures occur.

  19. 改性硅炔树脂及其复合材料的耐热性能%Modification and Heat-Resistance of Hybrid Composite Containing Silicon and Acetylene Resin

    Institute of Scientific and Technical Information of China (English)

    王娜; 周权; 倪礼忠

    2012-01-01

    通过格氏试剂反应制得了改性硅炔杂化树脂(GMD)。采用DSC、TGA等分析方法研究了GMD的固化反应及耐热性能。结果表明:GMD固化物在氮气气氛下质量损失5%时的温度(Td。)为631℃,1000℃时的质量残留率为59%。所制备的玻璃纤维增强复合材料在常温下的弯曲强度为320MPa,在240℃的弯曲强度保留率高达90%,空气条件下经500℃处理7rain后,质量保留率仍达到99.7%。该复合材料的玻璃化温度大于400℃,具有优异的耐热性能、力学性能及介电性能。%The silicon-containing poly(arylaeetylene) resin (GMD) was synthesized by condensation reac- tion. The curing mechanism and heat resistance were studied with DSC and TGA. Results showed that the temperature of 5% mass loss (Tds) of the cured GMD was 631℃ in nitrogen. The residual of mass was 59% based on the initial mass at 1 000 ℃. The flexural strength at room temperature of the composite was 324 MPa and the retention rate of flexural strength was 90% at 240 ℃. After heat treated for 7 rain at 500℃ in air, the retain ratio of the composite was 99.7%. The composite of which Tg was more than 400 ℃ possessed excellent high temperature-resistance properties, excellent mechanical and dielectric properties.

  20. Breeding a New Cauliflower Variety Dashu with High Quality Early-Maturing and Heat-Resistant%优质早熟耐热花椰菜新品种大暑的选育

    Institute of Scientific and Technical Information of China (English)

    朱伯华; 朱德雄; 汪坤乾; 喻朝霞

    2014-01-01

    Dashu is a new early-maturing and heat-resistant cauliflower (Brassica oleracea L. var. botrytis L.) hybrid F1, crossed self incompatible line 04D-676-5-5-3-2 with inbred line 05E-12-1. The plant graw vigorously with about 65 cm high and the dark green leaves were covered by more wax powder. Its inner leaves protected the ball by long and erect growth. The cauliflower curd was very white and tight and did not come loose flowers. The cauliflower was a semicircle, weighed 1.3 kg and the mature period was 65 days. It is resistant to black rot,downy mildew, soft rot, strong heat,etc. It has been extended in Hubei,Yunnan,Anhui,Hunan,Gansu,Shandong,Jiangsu,Zhejiang,Henan,Hebei,Liaoning,Heilongjiang,etc.%大暑是由自交不亲和系04D-676-5-5-3-2和自交系05E-12-1配制而成的优质早熟耐热花椰菜(Brassica oleracea L. var. botrytis L.)一代杂交种。植株生长势强,株高一般为65 cm左右;叶片较深绿色,蜡粉多;中内叶较长,直立生长,保护花球;花球洁白且非常紧实,不散花、呈半圆状,成熟期一般为65 d,单球重1.3 kg左右;较抗黑腐病,抗霜霉病、软腐病等,耐热性强。目前大暑已在湖北、云南、安徽、湖南、甘肃、山东、江苏、浙江、河南、河北、辽宁、黑龙江等地大面积示范推广。

  1. 抗220℃高温钻井液体系的室内研究%Interior Reseaxch of Resistance to High 220 Degrees Heat Resistance Drilling Fluid System

    Institute of Scientific and Technical Information of China (English)

    赵芙蕾; 孙玉学

    2011-01-01

    Focusing on high temperature rheological stability and filtration control of high temperature resistant drilling fluid system, a further research is made of on mud formula and the formula of high temperature resistant drilling fluid system is optimized, Finally, a kind of organosilicon drilling system with high 220 degrees heat resistance and good performances is developed, and moreover evaluate the overall performance of the drilling system. In virtue of using high temperature stabilizing agent, the system provides excellent shale inhibition, lubrication and tough hole stabilization. The filtrate value is low, the mud cake is thin and tough, which are good for bit bailing prevention; the cuttings transportation is strong, the theological property is easy to control. At high salinity, the fluid works well at 6% NaCl or 0.5% CaCl2 presenting in water phase. The materials used in this fluid are non-toxicity, non-fluorescence, which is fitful for deep drilling.%以抗高温钻井液体系高温流变稳定性和滤失量控制为重点,进一步确定体系配方并对抗高温钻井液体系配方进行优化.最终研制出一种能抗220℃高温,性能优良的有机硅钻井液抗高温体系;并对该体系性能进行了评价.该有机硅抗高温钻井液具有好的页岩抑制性、润滑性和井眼稳定性;滤失量小,滤饼薄且致密,可有效防止钻头泥包;携砂能力强,流变性容易控制;在高矿化度下,钻井液性能稳定,能抗6%NaCl和0.5%CaC12的污染,而且体系所用材料无毒、无荧光,适用于深井钻探.

  2. Radiation Effects in Refractory Alloys

    Science.gov (United States)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  3. Properties of laser alloyed surface layers on magnesium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Galun, R.; Weisheit, A.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Werkstoffkunde und Werkstofftechnik)

    1998-01-01

    The investigations have shown that laser surface alloying is a promising process to improve the wear and corrosion properties of magnesium base alloys without affecting the initial bulk properties like the low density. With an alloying element combination of aluminium and nickel the wear rate in the scratch test was reduced by 90% compared to untreated pure magnesium. Additionally the corrosion resistance was improved by laser alloying with this element combination. Because of distortion or crack formation in the case of large area treatments, the laser alloying should be limited to the treatment of smaller areas. In the near future this process could be an interesting alternative to surface coating or to a partially reinforcement with ceramic fibres or particles. (orig.)

  4. Microstructure and abrasion wear behavior of Ni-based laser cladding alloy layer at high temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; LIU Su-qin; WANG Shun-xing

    2005-01-01

    Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.

  5. Electron Theory in Alloy Design

    CERN Document Server

    Pettifor, DG

    1992-01-01

    Presents recent developments in electron theory which have impacted upon the search for novel alloys with improved mechanical or magnetic properties. The ten chapters outline the ability of electron theory to make quantitative predictions (such as heats of formation, planar fault energies, shear moduli and magnetic anisotropy), and to provide simplifying concepts for understanding trends in alloy behaviour.

  6. Shape memory alloy thaw sensors

    Science.gov (United States)

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  7. Mo-Si alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Heatherly, L.; Wright, J.L. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  8. Wedlable nickel aluminide alloy

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  9. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  10. [Prosthetic dental alloys. 1].

    Science.gov (United States)

    Quintero Engelmbright, M A

    1990-11-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements.

  11. [Prosthetic dental alloys (2)].

    Science.gov (United States)

    Quintero Englembright, M A

    1990-12-01

    A wide variety of restoration materials for prosthetic odontology is now available to the dental surgeon, either of the covalent type (acrylic resins), metallic (alloys), ionic (porcelains), or a combination of them, as in the so-called composites, such as the composite resins, or as ceramics-metals mixtures. An example of the latter is a product called Miracle-Mix, a glass ionomere cement reinforced with an amalgam alloy. In those cases where the blend is done by a synterization process, the material is called Cermet. The above-listed alternatives clearly evidence day-to-day advances in odontology, with researchers and manufacturers engaged the world over in improving existing products or developing new ones to enrich the dentist's armamentarium. As a side effect of this constant renewal, those dentists who have failed to update their knowledge fall behind in their practice as they persist in using products they have known for years, and may be deceived by advertisements of too-often unreliable products. It is, therefore, important to be aware of available products and their latest improvements.

  12. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  13. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements...

  14. 含芳环脂肪胺在室温固化耐高温环氧胶中的应用研究%On application of aliphatic amines containing aromatic ring in RT curable and heat-resistant epoxy adhesive

    Institute of Scientific and Technical Information of China (English)

    栾猛; 张培影; 欧涛; 刘龙江

    2016-01-01

    研究了2种间二甲苯二胺(MXDA)缩聚物(缩胺105和G-328)在室温固化耐高温环氧胶中的应用,测试了其贮存性、固化速度、耐高温性、刚性和韧性等性能。结果表明,缩胺105反应速度较慢,G-328反应速度较快,2种缩胺均可在室温下24 h完全固化。其中缩胺105刚性较强、韧性较差,因此耐高温性能优异,适合用于提升体系的耐高温性能;G-328韧性较好、刚性较弱,在保证一定耐高温强度情况下,可提升体系的柔韧性。%The application of two MXDA condensates(Condensed-amine 105 and G-328) in the RT curable and heat-resistant epoxy adhesive was investigated. The storage stability and curing rate of the curing agents, the heat resistance, rigidity and toughness of the cured were measured. The results show that the curing rate of Condensed-amine 105 is slower, the curing rate of G-328 is fast, and both the curing agents can be cured completely at RT for 24 h. For the products cured with Condensed-amine 105, the rigidity is better and the toughness is poor, the heat resistance is excellent, this curing agent is suitable for increasing the heat resistance of the system; for the G-328 system, the toughness is better and the rigidity is poor, so this curing agent is suitable for increasing the system flexibility in the condition of ensuring the definite high-temperature strength.

  15. BMI用量对改性苯并噁嗪树脂性能的影响%Modification Bismaleimide-benzoxazine Resin Curing and Heat Resistance of Cured Resin

    Institute of Scientific and Technical Information of China (English)

    李玲; 陈剑楠

    2011-01-01

    A blend of benzoxazine (Bz) and a bismaleimide (BMI), was thermally polymerised in varying proportions and their cure property and heat resistance of cured resin characteristics were investigated. The differential scanning calorimetric analysis, confirmed a lowering of the cure temperature of the modified benzoxazine resins. In the modified benzoxazine resins systems, the T; got reduce and the Tp was shifted to a lower temperature 232℃ in comparison to those of BMI (255°C) and Bz (262℃). It implied the processing of the modified benzoxazine resins were improved and preferred to process a thermosetting polymer at lower temperatures to avoid void formation. The thermogravimetric analysis indicated that the initialization decomposition temperature has been improvement of the cured modified benzoxazine resins compare with benzoxazine resin. The char yield of cured modified benzoxazine resins with 10% BMI content at 800℃ is higher than cured benzoxazine resin and both cured modified benzoxazine resins with 30 % BMI content and cured benzoxazine resin has the same char yield at 800°C. The char yield of cured modified benzoxazine resins excess 30% BMI content was lower cured benzoxazine resins, however the initialization decomposition temperature cured modified benzoxazine resins was higher cured benzoxazine resins.%采用BMI树脂对苯并噁嗪进行改性,采用DSC法研究了BMI树脂用量对苯并噁嗪体系反应特性的影响,制备了改性苯并噁嗪树脂固化物,对其耐热性进行了表征.结果表明,改性苯并噁嗪树脂体系,只有一个反应的放热峰,峰顶温度为232℃,且放热峰的峰顶温度与BMI的用量无关.改性苯并噁嗪体系的热稳定性与苯并噁嗪体系相比较为复杂,BMI能有效提高改性苯并噁嗪体系起始热分解温度,当BMI用量为10%时改性体系的热稳定性优于未改性的苯并噁嗪体系,当BMI用量为30%时改性体系的热稳定性与未改性的苯并噁

  16. 猪瘟耐热保护剂活疫苗(兔源)免疫效果监测%Surveillance of the Immune Effect of Live Classical Swine Fever Vaccine(Rabbit-Origin)with Heat-resistant Protectants

    Institute of Scientific and Technical Information of China (English)

    栗新

    2014-01-01

    In order to know the compulsory immunization effects of swine fever vaccine with heat-resistant protectants in natural conditions,2140 piglet serum samples were collected from 50 intensive pig farms and 380 free-ranging pig holders after concentrated immunizations in spring and autumn for immune-surveillance. Results showed that the positive rate of classical swine fever antibody was 67.3%after spring immunization,with 79.8%in intensive farms and 56.3%in free-ranging holders;the positive rate of swine fever antibody was 69.1%after autumn immunization,with 70.1%by vaccine B(81.6%in intensive farms and 61.3%in free-ranging holders),and 65.8%by vaccine C(78.5%in inten-sive farms and 51.2%in free-ranging holders). The antibody dispersion of spring immunization was 37.5%in average, with 25.5%in intensive farms and 48.2%in free-ranging holders;the antibody dispersion of autumn immunization with vaccine B was 31.4%,with 28.4%in intensive farms and 35.6%in free-ranging holders;and the antibody dispersion of autumn immunization with vaccine C was 41.5%,with 42.1%in intensive farms and 41.2%in free-ranging holders.%为了解掌握猪瘟耐热保护剂活疫苗在自然状态下的强制免疫效果,在春秋二季集中免疫之后,跟踪监测了50个规模猪场和380个散养户仔猪血样2140份。监测结果发现:春防猪瘟样品抗体监测阳性率为67.3%,其中规模场79.8%,散户56.3%;秋防猪瘟样品抗体监测阳性率为69.1%,其中,免疫B苗的抗体阳性率为70.1%(规模场81.6%,散户61.3%),C苗的抗体阳性率为65.8%(规模场78.5%,散户51.2%)。春防抗体离散度平均37.5%,其中规模场25.5%,散户48.2%;秋防B苗接种的抗体离散度31.4%,其中规模场28.4%,散户35.6%;秋防C苗接种的抗体离散度41.5%,其中规模场42.1%,散户41.2%。

  17. Mechanically Alloyed High Entropy Composite

    Science.gov (United States)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  18. Modeling dissolution in aluminum alloys

    Science.gov (United States)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  19. Alloying and Casting Furnace for Shape Memory Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept in the proposed project is to create a melting, alloying and casting furnace for the processing titanium based SMA using cold crucible techniques. The...

  20. Alloy design for intrinsically ductile refractory high-entropy alloys

    Science.gov (United States)

    Sheikh, Saad; Shafeie, Samrand; Hu, Qiang; Ahlström, Johan; Persson, Christer; Veselý, Jaroslav; Zýka, Jiří; Klement, Uta; Guo, Sheng

    2016-10-01

    Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries.

  1. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  2. EVALUATION OF THE ROCKWELL ’C’ 70 HIGH SPEED STEEL CUTTING TOOLS.

    Science.gov (United States)

    TOOL STEEL, CUTTING TOOLS , HARDNESS, CHROMIUM ALLOYS, MOLYBDENUM ALLOYS, VANADIUM ALLOYS, HOT WORKING, PERFORMANCE(ENGINEERING), MACHINING, LIFE EXPECTANCY(SERVICE LIFE), WEAR RESISTANCE, HEAT RESISTANT ALLOYS, COBALT ALLOYS.

  3. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde

    2011-11-01

    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  4. Metallic alloy stability studies

    Science.gov (United States)

    Firth, G. C.

    1983-01-01

    The dimensional stability of candidate cryogenic wind tunnel model materials was investigated. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

  5. Emissivity measurements on aeronautical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Campo, L. del, E-mail: leire.del-campo@cnrs-orleans.f [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.e [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain); Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Esquisabel, X.; Fernandez, I. [Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Gonzalez-Martin, P. [Industria de Turbo Propulsores, S.A., Parque empresarial San Fernando, Avda. Castilla 2, 28830 San Fernando de Henares, Madrid (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2010-01-21

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 {mu}m), sample temperature (200-650 {sup o}C) and emission angle (0-85{sup o}) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  6. 高温高压用耐热钢弹性蠕变损伤本构模型研究%Research on Constitutive Model of Elastic Creep Damage of Heat Resistant Steel under the condition of High temperature and High Pressure

    Institute of Scientific and Technical Information of China (English)

    马兆纬

    2001-01-01

    In the light of the fact that elastic creep damage happens to heat resistant steel used as pressure elements like steam pipeline and steam pockets in heat-engine plants at high temperature and under high pressure,this article gives a complete constitutive description of the damage,building up the theory of phenomenology about creep damage.It dwells here upon the constitutive model of tlastic creep damage of heat resistant steel,establishing a corresponding variation principle and finite element discretization form,thus introducing complete numerical variational methods.%针对火电厂中蒸汽管道与汽包类承压部件用的耐热钢,在承受高温高压时发生弹性蠕变损伤问题,给出完整的损伤本构描述,建立起唯象学蠕变损伤理论。主要提出耐热钢的弹性蠕变损伤本构模型,建立起相应的数值变分原理以及有限元离散化形式,从而形成完整的数值变分方法。

  7. Kinetics of aluminum lithium alloys

    Science.gov (United States)

    Pletcher, Ben A.

    2009-12-01

    Aluminum lithium alloys are increasingly used in aerospace for their high strength-to-weight ratio. Additions of lithium, up to 4.2 wt% decrease the alloy density while increasing the modulus and yield strength. The metastable, second phase Al3Li or delta' is intriguing, as it remains spherical and coherent with the matrix phase, alpha, well into the overaged condition. Small interfacial strain energy allows these precipitates to remain spherical for volume fractions (VV ) of delta' less than 0.3, making this alloy system ideal for investigation of late-stage coarsening phenomena. Experimental characterization of three binary Al-Li alloys are presented as a critical test of diffusion screening theory and multi-particle diffusion simulations. Quantitative transmission electron microscopy is used to image the precipitates directly using the centered dark-field technique. Images are analyzed autonomously within a novel Matlab function that determines the center and size of each precipitate. Particle size distribution, particle growth kinetics, and maximum particle size are used to track the precipitate growth and correlate with the predictions of screening theory and multi-particle diffusion simulations. This project is the first extensive study of Al-Li alloys, in over 25 years, applying modern transmission electron microscopy and image analysis techniques. Previous studies sampled but a single alloy composition, and measured far fewer precipitates. This study investigates 3 alloys with volume fractions of the delta precipitates, VV =0.1-0.27, aged at 225C for 1 to 10 days. More than 1000 precipitates were sampled per aging time, creating more statistically significant data. Experimental results are used to test the predictions based on diffusion screening theory and multi-particle aging simulations. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  8. Alloys developed for high temperature applications

    Science.gov (United States)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  9. Effects of various Mg-Sr master alloys on microstructural refinement of ZK60 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of various Mg-Sr master alloys (conventional as-cast, rapidly-solidified, rolled and solutionized) on microstructural refinement of ZK60 magnesium alloy were investigated. The results indicate that the refinement efficiency of various Mg-Sr master alloys in ZK60 alloy is different. The rolled Mg-Sr master alloy is found to have relatively higher refinement efficiency than the conventional as-cast, solutionized and rapidly-solidified Mg-Sr master alloys. After being treated with the rolled Mg-Sr master alloy, the ZK60 alloy obtains the minimum average grain size of 33 μm. The difference of various Mg-Sr master alloys in refinement efficiency might be related to the initial microstructure change of various Mg-Sr master alloys.

  10. Laser cladding of titanium alloy coating on titanium aluminide alloy substrate

    Institute of Scientific and Technical Information of China (English)

    徐子文; 黄正; 阮中健

    2003-01-01

    A new diffusion bonding technique combined with laser cladding process was developed to join TiAl alloy to itself and Ti-alloys. In order to enhance the weldability of TiAl alloys, Ti-alloy coatings were fabricated by laser cladding on the TiAl alloy. Ti powder and shaped Ti-alloy were respectively used as laser cladding materials. The materials characterization was carried out by OM, SEM, EDS and XRD analysis. The results show that the laser cladding process with shaped Ti-alloy remedy the problems present in the conventional process with powder, such as impurities, cracks and pores. The diffusion bonding of TiAl alloy with Ti-alloy coating to itself and Ti-alloy was carried out with a Gleeble 1500 thermal simulator. The sound bonds of TiAl/TiAl, TiAl/Ti were obtained at a lower temperature and with shorter time.

  11. Shape memory alloys. Ultralow-fatigue shape memory alloy films.

    Science.gov (United States)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-29

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle.

  12. Shape memory alloy flexures

    Energy Technology Data Exchange (ETDEWEB)

    Bellouard, Yves; Clavel, Reymond

    2003-07-25

    Flexures are used in precision engineering where highly accurate, wear-free, smooth and repeatable motion is desired. Flexures are based on deformation of material to achieve a motion between elastically joined parts. They are used in a variety of precision mechanisms such as high-resolution balances or high accuracy optical positioning stages. Shape memory alloys (SMA) are an attractive option in designing flexures. Superelastic flexures can withstand larger deformations for the same weight as a conventional flexure. In addition, the damping properties of SMA, controllable through the phase transformation, offer new design opportunities for adaptive compliant mechanisms. The martensitic phase transformation can also be used to shift the natural frequency of flexures adding useful functionalities such as vibration rejection. This paper presents design principles of SMA flexures based on non-linear beam theory. Results show a good agreement between measured and predicted data. In addition, experimental results on phase transformation effects on damping behavior are also presented. Both, natural-frequency shift and increased damping were observed in bulk-micro machined flexures using the R-phase transformation. These results demonstrate the feasibility of natural-frequency-tunable flexures.

  13. Thermomechanical behavior of comercial yellow gold alloy

    Directory of Open Access Journals (Sweden)

    Miloš G. Djordjević

    2016-03-01

    Full Text Available With the development of science and technology, in the late 19th century, began the research and application of new alloys for making jewelry. By adding different amounts of Cu and Ag alloy of Au, as well as adding some new elements (Zn, alloys were obtained with different color spectrum (from red to yellow and different technological and metallurgical characteristics. This paper aims to show thermomechanical behavior of commercial yellow Au alloys for making jewelry.

  14. Oxidation of low cobalt alloys

    Science.gov (United States)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  15. Improved thermal treatment of aluminum alloy 7075

    Science.gov (United States)

    Cocks, F. H.

    1968-01-01

    Newly developed tempering treatment considerably increases the corrosion resistance of 7075-T6 alloy and concomitantly preserves its yield strength. The results of tests on samples of the alloy subjected to the above treatments show that when the overaging period is 12 hours /at 325 degrees F/, the alloy exhibits a yield strength of 73,000 psi.

  16. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and...

  17. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion...

  18. Preparation of Epoxy/Montmorillonite Nanocomposite Coating and Investigation on Heat Resistance and Anticorrosion Properties in Oil- Gas Environment with H2S/CO2%环氧/蒙脱土复合涂层的制备及在H2S/CO2环境中的耐热防腐性能研究

    Institute of Scientific and Technical Information of China (English)

    胡银春; 马丽琴; 董玉华; 王献昉; 周琼

    2011-01-01

    The title anti -corrosive and heat resistant coating, which coud be used in oil -gas environment with H2S/CO2, has been developed by optimizing the curing process, clay content and resin component to improve heat - resistance and corrosion resistance of epoxy coating. The heat - resistant and anti - corrosive properties of the coating in oil - gas environment with H2S/CO2 was investigated with autoclave test.The results showed that heat pre treatment could significantly increase the Tg of the binder, and epoxy resin could be intercalated into the organic montmorillonite layers with mechanical stirring at 80 ℃. OMMT could be well dispersed in the binder when its content was 3% (m/m), and the nanocomposite showed an intercalation/stripping hybrid characteristic, which could ensure both the thermo -mechanical and barrier properties. When the Tg of the varnish coating was 153.7 ℃, its anti - corrosive property was good in oil - gas environment with H2S/CO2 at 150. 0 ℃, which meant the Tg could be used as the upper marging temperature for anti -corrosive coating.%通过优化固化工艺、有机蒙脱土含量及树脂组分改善环氧涂层的耐热性,制备应用于高温H2S/CO2腐蚀环境中的环氧耐热防腐涂层,采用高温高压釜试验测试了涂层的耐热防腐效果.结果表明:适当的高温处理能显著提高基体树脂的玻璃化转变温度;环氧树脂在80℃机械搅拌条件下插入有机蒙脱土的层间,质量分数为3%的有机蒙脱土在基体中分散均一,为插层/剥离混合型复合结构,兼顾材料的热机械性能和阻隔性能;清漆涂层的玻璃化转变温度为153.7℃,其防腐涂层在150℃以下含H2S/CO2的油气环境中的防腐效果良好,说明玻璃化转变温度作为防腐涂层的使用上限温度是可行的.

  19. Current research situation of titanium alloys in China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Titanium and its alloys possess excellent comprehensive properties, and they are widely used in many fields. China pays great attentions to the research on new titanium alloys. This paper mainly reviews the research on new Ti alloys in China, for example, high strength and high toughness Ti alloys, burn resistant Tialloys, high temperature Ti alloys, low cost Ti alloys and so on.New basic theories on Ti alloys developed in China in recent years are also reviewed.

  20. Alloy 718 for Oilfield Applications

    Science.gov (United States)

    deBarbadillo, John J.; Mannan, Sarwan K.

    2012-02-01

    Alloy 718 (UNS N07718) was developed for use in aircraft gas turbine engines, but its unique combination of room-temperature strength and aqueous corrosion resistance made it a candidate for oilfield fasteners, valves, drill tools, and completion equipment. As well environments became more severe, stress corrosion and hydrogen embrittlement failures in production equipment drove the evolution of the composition and microstructure that distinguish today's oilfield-grade 718 from aerospace grades. This paper reviews the development of the grade and its applications and describes some of its unique characteristics, testing, and manufacturing methods as well as newer alloys designed for high-pressure high-temperature (HPHT) conditions.

  1. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  2. High strength, tough alloy steel

    Science.gov (United States)

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  3. Bulk nano-crystalline alloys

    OpenAIRE

    T.-S. Chin; Lin, C. Y.; Lee, M.C.; R.T. Huang; S. M. Huang

    2009-01-01

    Bulk metallic glasses (BMGs) Fe–B–Y–Nb–Cu, 2 mm in diameter, were successfully annealed to become bulk nano-crystalline alloys (BNCAs) with α-Fe crystallite 11–13 nm in size. A ‘crystallization-and-stop’ model was proposed to explain this behavior. Following this model, alloy-design criteria were elucidated and confirmed successful on another Fe-based BMG Fe–B–Si–Nb–Cu, 1 mm in diameter, with crystallite sizes 10–40 nm. It was concluded that BNCAs can be designed in general by the proposed cr...

  4. Surface Tension Calculation of Undercooled Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.

  5. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  6. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  7. Alloy softening in binary iron solid solutions

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  8. 30万吨/年合成氨气化炉耐热Cr-Mo钢焊接材料的研制%The Development of Heat-resistance Cr-Mo Steel Welding Material for the Gasifier Used for 300,000 Ton/Year Ammonia Project

    Institute of Scientific and Technical Information of China (English)

    陈建俊; 郑见明; 黄有仁; 郑秀芹; 孙业宏

    2000-01-01

    This article briefly describes the development process of th e heat resistance Cr-Mo steel welding material for the gasifier used for 300,000 Ton/Year ammonia project,which includes the technical specification,the formulat ion selection and all test results.The successful development of this welding ma terial with excellent high temperature properity as well as low temperature toug hness (AKV>54J,at-20℃),not only satisfies the design and fabrication req uirements of the gasifier,but also changes the situation that the welding materi al can only depend on import in ths past,which saves the country plenty of forei gn exchanges.

  9. Microstructure and property characterization of a modified zinc-base alloy and comparison with bearing alloys

    Science.gov (United States)

    Prasad, B. K.; Patwardhan, A. K.; Yegneswaran, A. H.

    1998-02-01

    The microstructure and physical, mechanical, and tribological properties of a modified zinc-base alloy have been characterized. In order to assess its utility as a bearing alloy, its properties have also been compared with those of a similarly processed conventional zinc-base alloy and a leaded-tin bronze (conforming to ZA27 and SAE 660 specifications, respectively) used for bearing applications. The modified zinc-base alloy shows promise in terms of better elevated-temperature strength and wear response at higher sliding speeds relative to the conventional zinc-base alloy. Interestingly, the wear behavior (especially the seizure pressure) of the modified alloy was also comparable to that of the bronze specimens at the maximum sliding speed, and was superior at the minimum sliding speed. The modified alloy also attained lower density and better hardness. Alloy behavior has been linked to the nature and type of the alloy microconstituents.

  10. High Damping Alloys and Their Application

    Institute of Scientific and Technical Information of China (English)

    Fuxing Yin

    2000-01-01

    Damping alloys show prospective applications in the elimination of unwanted vibrations and acoustic noise. The basic definitions and characterization methods of damping capacity are reviewed in this paper. Several physical mechanisms controlled by the alloy microstructure are responsible for the damping behavior in the damping alloys. Composite, dislocation, ferromagnetic and planar defect types are commonly classified for the alloys, which show the different damping behavior against temperature, frequency of vibration,amplitude of vibration and damping modes. Development of practically applicable damping alloys requires the higher mechanical properties and adequate workability, besides the high damping capacity. A new Mn-Cu damping alloy, named as M2052 alloy, is recently developed with possible industrial applications.

  11. Paracrystalline property of high-entropy alloys

    Directory of Open Access Journals (Sweden)

    Shaoqing Wang

    2013-10-01

    Full Text Available Atomic structure models of six-component high-entropy alloys with body-centered cubic structure are successfully built according to the principle of maximum entropy for the first time. The lattice distortion parameters g of seven typical high-entropy alloys are calculated. From the optimized lattice configuration of high-entropy alloys, we show that these alloys are ideal three-dimensional paracrystals. The formation mechanism, structural feature, mechanical property, and application prospect of high-entropy alloys are discussed in comparison with the traditional alloys. The novel properties of body-centered cubic high-entropy alloys are attributed to the failure of dislocation deformation mechanism and the difficulty of directed particle diffusion.

  12. Passive Corrosion Behavior of Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  13. Applications of shape memory alloys in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Asai, M.; Suzuki, Y. [Furukawa Electric Co., Ltd., Yokohama, Kanagawa (Japan). R and D Labs.

    2000-07-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and otherfield today. (orig.)

  14. Atlas of Formability: Ultimet

    Science.gov (United States)

    1993-03-24

    Codes Avail and/or Dist Speocial Hi Ultimet Introduction Ultimet alloy possesses both the wear- resistant characteristics of cobalt-based Stellite ...alloys and the corrosion - resistant properties of nickel-based Hastelloy alloys. The alloy also has good forming and welding characteristics, but work

  15. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  16. Gold color in dental alloys.

    Science.gov (United States)

    Cameron, T

    1997-01-01

    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed.

  17. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  18. Superb nanocrystalline alloys for plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ With high rigidity and antiwear performance,nanocrystalline metals and their alloys can find wide applications in surface protection.However, the existence of grain boundaries often leads to erosive micro-batteries which accelerate the process of corrosion.Therefore, it has already become a key issue for surface engineering researchers to find nano materials with higher lubricating, anticorrosion and antiwear capacities.

  19. Microstructure and thermal stability of mechanically alloyed Al3Ti/Al alloy

    Institute of Scientific and Technical Information of China (English)

    林建国; 魏浩岩; 黄正

    2001-01-01

    The microstructure stability of Al3Ti/Al alloy prepared by mechanical alloying (MA) was investigated in the simulating environment in which they may be used. The results show that the MA alloy possesses fine microstructure (the grain size is about 0.5  μm). After cycling loaded followed by heat exposure at 350  ℃ for 24  h, no microstructure coarsening of the alloy occurred, which means that the Al3Ti/Al alloy behaves good microstructure stability at high temperature. The compression yield strength of the alloy reaches up to 247  MPa at 350  ℃.

  20. PERSPECTIVES OF MOLIBDENUM CONTAINING MATERIALS APPLICATION FOR ALLOYING OF IRONCARBON ALLOYS DURING MANUFACTURING OF CRITICAL CASTINGS

    Directory of Open Access Journals (Sweden)

    A. G. Slutsky

    2015-01-01

    Full Text Available Motor is one of most important part of automobile determine its economical effectiveness of usage. On the other hand, sleeves, pistons and rings are crucible parts as they determine the service life of a motor. These parts are producing in big scale – dozens of millions pieces. Increase of cylinder sleeves physical-mechanical properties results in prolongation of motor service life and improvement of motor’s characteristics. Nowadays low alloyed cast irons with perlite structure are used to manufacture motor’s sleeves. For alloying purposes such traditional elements as Cr, Ni, Cu, and V are applied. But it is interesting to use molybdenum for cast iron alloying. It is known that alloying of alloys allows considerable increasing of consumption properties of castings. But in spite of advantages of alloys alloying the increase of molybdenum containing iron-carbon alloys production is restricted by economical reasons – high cost of alloying additions. Expenditures on alloying additions can be reduced by the application cheap secondary alloys in the charge. So, the present paper is devoted to investigation of alloying peculiarities during the treatment of ferrous alloys with molybdenum applying different initial materials.

  1. Method of producing superplastic alloys and superplastic alloys produced by the method

    Science.gov (United States)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  2. Alloy substantially free of dendrites and method of forming the same

    Science.gov (United States)

    de Figueredo, Anacleto M.; Apelian, Diran; Findon, Matt M.; Saddock, Nicholas

    2009-04-07

    Described herein are alloys substantially free of dendrites. A method includes forming an alloy substantially free of dendrites. A superheated alloy is cooled to form a nucleated alloy. The temperature of the nucleated alloy is controlled to prevent the nuclei from melting. The nucleated alloy is mixed to distribute the nuclei throughout the alloy. The nucleated alloy is cooled with nuclei distributed throughout.

  3. Micro-Structures of Hard Coatings Deposited on Titanium Alloys by Laser Alloying Technique

    Science.gov (United States)

    Li, Wei; Yu, Huijun; Chen, Chuanzhong; Wang, Diangang; Weng, Fei

    2013-01-01

    This work is based on micro-structural performance of the Ti-B4C-C laser alloying coatings on Ti-6Al-4V titanium alloy. The test results indicated that laser alloying of the Ti-B4C-C pre-placed powders on the Ti-6Al-4V alloy substrate can form the ceramics reinforced hard alloying coatings, which increased the micro-hardness and wear resistance of substrate. The test result also indicated that the TiB phase was produced in alloying coating, which corresponded to its (101) crystal plane. In addition, yttria has a refining effect on micro-structures of the laser alloying coating, and its refinement mechanism was analyzed. This research provided essential experimental and theoretical basis to promote the applications of the laser alloying technique in manufacturing and repairing of the aerospace parts.

  4. Status of Testing and Characterization of CMS Alloy 617 and Alloy 230

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Santella, Michael L [ORNL; Battiste, Rick [ORNL; Terry, Totemeier [Idaho National Laboratory (INL); Denis, Clark [Idaho National Laboratory (INL)

    2006-08-01

    Status and progress in testing and characterizing CMS Alloy 617 and Alloy 230 tasks in FY06 at ORNL and INL are described. ORNL research has focused on CMS Alloy 617 development and creep and tensile properties of both alloys. In addition to refurbishing facilities to conduct tests, a significant amount of creep and tensile data on Alloy 230, worth several years of research funds and time, has been located and collected from private enterprise. INL research has focused on the creep-fatigue behavior of standard chemistry Alloy 617 base metal and fusion weldments. Creep-fatigue tests have been performed in air, vacuum, and purified Ar environments at 800 and 1000 C. Initial characterization and high-temperature joining work has also been performed on Alloy 230 and CCA Alloy 617 in preparation for creep-fatigue testing.

  5. Grain refinement of AZ31 magnesium alloy by Al-Ti-C-Y master alloy

    Institute of Scientific and Technical Information of China (English)

    XU Chunxiang; LU Binfeng; L(U) Zhengling; LIANG Wei

    2008-01-01

    Al-Ti-C-Y master alloy was prepared by combining SHS technique and melting-casting method. The microstructure of master alloy and its grain-refining effect on AZ31 alloy were investigated by means of OM, XRD, SEM and EDS. Experimental results indicated that the prepared master alloy consisted of α-Al, TiAl3, TiC and Al3Y phases, and exhibited good grain-refining performance of AZ31 alloy. Morphology of α-Mg changed from coarse dendritic to fine equiaxed and the average grain size of α-Mg matrix reduced from the original 580 to 170 μm after adding 1.0 wt.% master alloy. The grain refining efficiency of Al-Ti-C-Y master alloy on AZ31 alloy was mainly attributed to heterogeneous nucleation of TiC particles and grain growth restriction of Al-Y compound or TiC at grain boundaries.

  6. New Dental Alloys with Special Consumer Properties

    Institute of Scientific and Technical Information of China (English)

    TYKOCHINSKIY D. S.; VASEKIN V. V.

    2012-01-01

    The purpose of the investigation was to create a new gold alloy of yellow for casting the frames of metal-ceramic dentures.The yellow color corresponds to the consumer and aesthetic needs of some patients,because it is a sign of the metal,which is noble and innocuous.The main alloying elements of the majority of gold alloys for metal-ceramics are platinum and palladium,which increase the strength characteristics.Copper,tin,and other precious metals and base metals are also introduced in these alloys.At the same time,it is necessary to ensure the correspondence of the properties of the alloy with those of the ceramics applied onto the metal frame.For this purpose,the thermal expansion coefficient of the alloy (TEC) should be in a range of 13.5~14.5 × 10-6 K-1 when heated from 20 to 600 ℃.The two-component alloys,alloying of gold with platinum and palladium results in a decrease in the TEC,and the introduction of copper,silver,and tin,increases it.Multidirectional influence of the alloying elements is a factor in achieving compliance of the TEC with the given values of the alloy.In multicomponent systems,however,the mutual influence of individual components on the properties of the alloy is unpredictable.This also applies to the color characteristics of the alloys,which vary in the direction of reducing the yellowness with increasing concentration of platinum and palladium,while other elements may have the opposite effect on the results.Yellowness index (YI),calculated according to the results of spectrophotometric studies,has been chosen as an objective indicator of color.In this study,the requirement for YI was given not less than 25; the color of such alloys can be called light yellow.All the alloys investigated contained 85% (by weight)of gold.Therefore,higher corrosion resistance and biological inertness of a finished dental products were ensured.Among the alloys that met the yellowness/TEC requirements,two alloys have been selected that were "most yellow

  7. First principles theory of disordered alloys and alloy phase stability

    Energy Technology Data Exchange (ETDEWEB)

    Stocks, G.M.; Nicholson, D.M.C.; Shelton, W.A. [and others

    1993-06-05

    These lecture notes review the LDA-KKR-CPA method for treating the electronic structure and energetics of random alloys and the MF-CF and GPM theories of ordering and phase stability built on the LDA- KKR-CPA description of the disordered phase. Section 2 lays out the basic LDA-KKR-CPA theory of random alloys and some applications. Section 3 reviews the progress made in understanding specific ordering phenomena in binary solid solutions base on the MF-CF and GPM theories of ordering and phase stability. Examples are Fermi surface nesting, band filling, off diagonal randomness, charge transfer, size difference or local strain fluctuations, magnetic effects; in each case, an attempt is made to link the ordering and the underlying electronic structure of the disordered phase. Section 4 reviews calculations of electronic structure of {beta}-phase Ni{sub c}Al{sub 1-c} alloys using a version of the LDA-KKR-CPA codes generalized to complex lattices.

  8. New Heat-resistant Steel T23's Performance Characteristics and Early Failure%新型耐热钢T23的特性与早期失效分析

    Institute of Scientific and Technical Information of China (English)

    赵慧传; 凌荣华; 贾建民; 赵建仓

    2011-01-01

    T23钢是T22钢经降C和强化而开发的新型锅炉用钢,与我国开发的钢102(12Cr2MoWVTiB)有近似的合金系统和含量,其常温力学性能和高温蠕变断裂强度明显优于T22钢,冷裂纹敏感性比T22钢低,再热裂纹敏感性远高于T22钢,抗蒸汽氧化性能与T22钢相当。但T23钢在超临界锅炉应用中先后出现了过热器管内壁氧化皮剥落导致爆管事件,在超超临界锅炉中又出现了水冷壁焊缝裂纹、泄漏等早期失效问题。基于T23钢的力学性能、蒸汽氧化性能和焊接性能分析及故障件的表面剥落物、爆口或断口的金相分析,找出故障原因,提出改进建议,对未来的超(超)临界锅炉设计和焊接工艺改进均有参考价值。%The T23 steel is based on the T22 steel developed a new type of boiler steel by reducing C and strengthening, it the steel which develops with our country 102 (12Cr2MoWVTiB) has the approximate alloy system and the content, its normal temperature mechanical properties and the high temperature creep fracture intensity surpasses the T22 steel obviously, the cold crack sensitivity is lower than the T22 steel, the heat crack sensitivity is higher than the T22 steel far again, anti-steam oxidation susceptibility and T22 steel quite.But the T23 steel in the application of supercritical boiler superheater tube appears oxide spalling events led to burst pipes, in the application of ultra-supercritical boiler water cooling wall appeared the welding cracks, leaks and so on early failure problems. Based on the T23 steel's mechanical properties, the steam oxidation susceptibility and the welding performance analysis and the breakdown surface scaling, exploded mouth or the fracture metallography analysis, the cause of the malfunction was found out, the improvement suggestion was proposed that, the future ultra (ultra) supercritical boiler design and welding process improvement have reference value.

  9. The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B

    Science.gov (United States)

    2013-11-01

    alloys are based on a rather small group of alloying elements, there are often limited differences between them in properties (strength, corrosion ...Research Laboratory (ARL). Initially, the discussions focused on ways to improve the corrosion resistance of magnesium ( Mg ) alloys to increase the...elements display little tendency to alter precipitates or otherwise adversely influence the corrosion performance of the base alloy . Based on these

  10. Bonding theory for metals and alloys

    CERN Document Server

    Wang, Frederick E

    2005-01-01

    Bonding Theory for Metals and Alloys exhorts the potential existence of covalent bonding in metals and alloys. Through the recognition of the covalent bond in coexistence with the 'free' electron band, the book describes and demonstrates how the many experimental observations on metals and alloys can all be reconciled. Subsequently, it shows how the individual view of metals and alloys by physicists, chemists and metallurgists can be unified. The physical phenomena of metals and alloys covered in this book are: Miscibility Gap between two liquid metals; Phase Equilibrium Diagrams; Phenomenon of Melting. Superconductivity; Nitinol; A Metal-Alloy with Memory; Mechanical Properties; Liquid Metal Embrittlement; Superplasticity; Corrosion; The author introduces a new theory based on 'Covalon' conduction, which forms the basis for a new approach to the theory of superconductivity. This new approach not only explains the many observations made on the phenomenon of superconductivity but also makes predictions that ha...

  11. Wetting behavior of alternative solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    1993-07-01

    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  12. A lightweight shape-memory magnesium alloy.

    Science.gov (United States)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-22

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  13. Magnetic Characteristics of Two Metglas Alloys

    Science.gov (United States)

    Blatnik, Marie; SNS nEDM Collaboration

    2016-09-01

    Magnetic shielding is gaining greater significance as precision experiments become more sensitive, such as for the Spallation Neutron Source nEDM [neutron electric dipole moment] measurement. Targeting a sensitivity of 10-28 e-cm, the SNS nEDM collaboration minimizes magnetic shield gradients and magnetic noise with a superconducting lead shield and several shield layers that include using a Metglas layer as a primary component. Metglas is a thin ribbon of proprietary engineered alloy that comes in many varieties. One alloy with high (as cast) permeability is Metglas alloy 2705M, which is primarily composed of Cobalt. However, this alloy will activate under neutron radiation and is therefore unsuitable. However, another high-performance Metglas alloy, 2826 MB, contains only trace amounts of Cobalt. A study of the shielding characteristics of the two alloys was performed, paying close attention to field oscillation frequency and magnitude.

  14. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...

  15. Biocorrosion study of titanium-nickel alloys.

    Science.gov (United States)

    Chern Lin, J H; Lo, S J; Ju, C P

    1996-02-01

    The present study provides results of the corrosion behaviour in Hank's physiological solution and some other properties of three Ti-Ni alloys with 18, 25 and 28.4 wt% Ni, respectively. Results indicate that alpha-titanium and Ti2Ni were the two major phases in all three Ti-Ni alloys. The relative amount of the Ti2Ni phase increased with additional Ni content. Hardness of the Ti-Ni alloys also increased with added nickel content, ranging from 310 to 390 VHN, similar to the hardness of enamel. Melting temperatures of the Ti-Ni alloys were all lower than that of pure titanium by least 600 degrees C. The three Ti-Ni alloys behaved almost identically when potentiodynamically polarized in Hank's solution at 37 degrees C. The critical anodic current densities of the alloys were nearly 30 microA/cm2 and the breakdown potentials were all above 1100 mV (SCE).

  16. Gas-turbine HTGR materials screening test program. Quarterly progress report, July 1, 1976--September 30, 1976. [IN 100; IN 713; MM004; M21; IN 738; RENE 100; MoTZM; Hastelloy X; Inconel 617; MA 753; IN 519, Inconel 706; Inconel 718; A286; 316 SS; Incoloy 800

    Energy Technology Data Exchange (ETDEWEB)

    Rosenwasser, S.N.; Johnson, W.R.

    1976-09-30

    The duration of controlled-impurity creep-screening tests and unstressed aging tests has reached 10,000 hr. Creep and weight change data from testing up to 9,000 hr and results from post-test metallurgical evaluations of several recently returned 3,000-hr specimens, including alloys IN519 and MoTZM, are presented. Preliminary materials requirements for key GT-HTGR 850/sup 0/C (1562/sup 0/F) reactor outlet temperature reference design components are documented.

  17. Spark alloying of VK8 and T15K6 hard alloys

    Science.gov (United States)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.; Pleshchev, V. P.

    2015-08-01

    A method is developed to restore the service properties of VK hard alloy plates using preliminary carburizing followed by spark alloying with a VT1-0 alloy. The phase composition is studied as a function of the spark treatment time.

  18. Kinetics and Structure of Refractory Compounds and AlloysObtained by Mechanical Alloying

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Refractory compounds are material with interesting properties for structural applications. However, the processing of such material is a great challenge because of their high melting temperature and limited ductility. Mechanical alloying is a novel technique of producing refractory compounds with specific properties. Kinetical and structural peculiarities of refractory compounds and alloys obtained by mechanical alloying are discussed.

  19. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    Science.gov (United States)

    2006-01-01

    effect from alloying additions of Nb, Mo, V, Cr and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the...that transition metal Nb achieves the best strengthening effect in Fe-Ga alloys. The solid solution strengthening follows a trend from larger to

  20. Aspects of precipitation in alloy Inconel 718

    OpenAIRE

    Azadian, Saied

    2004-01-01

    A study was made of the microstructure of the Ni-base alloy Inconel 718 with emphasis on the precipitation and stability of intermetallic phases as affected by heat treatments. In addition the effect of the precipitation on selected mechanical properties namely hardness, creep notch sensitivity and hot ductlity were investigated. The materials studied were a spray-formed version and three wrought versions of the alloy. The spray-formed version of the alloy was of interest since it exhibited a...

  1. Advanced powder metallurgy aluminum alloys and composites

    Science.gov (United States)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  2. Cobalt-Base Alloy Gun Barrel Study

    Science.gov (United States)

    2014-07-01

    are presented in Section 5. 2. Materials and methods The composition of the cobalt -base alloy (CBA) is presented in Table 1. The production of this... Cobalt -Base Alloy Gun Barrel Study by William S. de Rosset and Jonathan S. Montgomery ARL-RP-0491 July 2014 A reprint...21005-5069 ARL-RP-0491 July 2014 Cobalt -Base Alloy Gun Barrel Study William S. de Rosset and Jonathan S. Montgomery Weapons and Materials

  3. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M.; Powers, Dana A.; Zhang, Zhenyuan

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  4. High toughness-high strength iron alloy

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  5. The oxidation and corrosion of ODS alloys

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1990-01-01

    The oxidation and hot corrosion of high temperature oxide dispersion strengthened (ODS) alloys are reviewed. The environmental resistance of such alloys are classified by oxide growth rate, oxide volatility, oxide spalling, and hot corrosion limitations. Also discussed are environmentally resistant coatings for ODS materials. It is concluded that ODS NiCrAl and FeCrAl alloys are highly oxidation and corrosion resistant and can probably be used uncoated.

  6. Oxidation And Hot Corrosion Of ODS Alloy

    Science.gov (United States)

    Lowell, Carl E.; Barrett, Charles A.

    1993-01-01

    Report reviews oxidation and hot corrosion of oxide-dispersion-strengthened (ODS) alloys, intended for use at high temperatures. Classifies environmental resistances of such alloys by rates of growth of oxides, volatilities of oxides, spalling of oxides, and limitations imposed by hot corrosion. Also discusses environmentally resistant coatings for ODS materials. Concludes ODS NICrAl and FeCrAl alloys highly resistant to oxidation and corrosion and can be used uncoated.

  7. The Fatigue of Powder Metallurgy Alloys.

    Science.gov (United States)

    2014-09-26

    v1o -2- MATERIALS AND TESTS Table 1 provides a complete listing of the alloys studied in this program together with their chemical compositions ...use can minimize material waste and minimize machining costs. In addition there is the potential for the development of more fine-grained and...out under fully reversed loading conditions in the high cycle range with smooth specimens. X7090 and X7091 are P/M alloys, 7075 is an ingot alloy

  8. Deformation Driven Alloying and Transformation

    Science.gov (United States)

    2015-03-03

    Rolling, Acta Materiala (08 2014) Zhe Wang , John H Perepezko, David Larson, David Reinhard. Mixing Behaviors in Cu/Ni and Ni/V Multilayers Induced...by Cold Rolling, Journal of Alloys and Compounds (07 2014) Zhe Wang , John H. Perepezko. Deformation-Induced Nanoscale Mixing Reactions in Cu/Ni...FTE Equivalent: Total Number: Discipline Zhe Wang 0.50 0.50 1 Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students

  9. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  10. Casting Characteristics of Aluminum Die Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  11. New aluminium alloys with high lithium content

    Energy Technology Data Exchange (ETDEWEB)

    Schemme, K.; Velten, B.

    1989-06-01

    Since the early 80's there have been made great efforts to replace the high strength aluminium alloys for the aircraft and space industry by a new generation of aluminium-lithium alloys. The attractivity of this kind of alloys could be increased by a further reduction of their density, caused by an increasing lithium content (/ge/ 5 wt.% Li). Therefore binary high-lithium containing alloys with low density are produced and metallografically investigated. A survey of their strength and wear behavior is given by using tensile tests and pin abrasing tests. (orig.).

  12. Design, Selection and Application of High Efficient Complex Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The design, selection and application principles of complex alloys according to the requirements of making low-alloy steels are di scussed. The designed complex alloys containing calcium, barium, magne sium, strontium, rare earth elements, etc. should not only be able to deoxidize, desulphurize and refine liquid steel, but also alloy it. Th e application principles of alloys are as follows: using Si-Mn or Si-M n-Al alloys for pre-deoxidizing, Si-Al-Ba or Si-Al-Ca-Ba alloys for fi nal deoxidizing and Si-Ca-Ba-Mg(Sr) alloys for refining.

  13. Electrodeposition of engineering alloy coatings

    DEFF Research Database (Denmark)

    Christoffersen, Lasse

    Nickel based electrodeposited alloys were investigated with respect to their deposition process, heat treatment, hardness, corrosion resistance and combined wear-corrosion resistance. The investigated alloys were Ni-B, Ni-P and Ni-W, which are not fully developed for industrial utilisation...... for substitution focussed on were increased deposition rates as well as improved corrosion and wear resistance.Some systems exhibited interesting deposition rates. Examples are 178 µm per hour of Ni-P(6), 85 µm per hour of Ni-P(15), 142 µm per hour of Ni-W(44) and 62 µm per hour of Ni-B(0.8) (weight percentages...... are written in brackets). Temperature and especially pH influenced the cathodic efficiency of the electrodeposition processes for Ni-W and Ni-P. Mass balance problems of the development alloy processes are identified.Heat treatment for one hour at approx. 350°C, 400°C and 600°C of electrodeposited Ni-B, Ni...

  14. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  15. Nanodispersed boriding of titanium alloy

    Directory of Open Access Journals (Sweden)

    Kateryna O. Kostyk

    2015-12-01

    Full Text Available The problem of improving the operational reliability of machines is becoming increasingly important due to the increased mechanical, thermal and other loads on the details. There are many surface hardening methods for machines parts which breakdown begins with surface corruption. The most promising methods are chemo-thermal treatment. Aim: The aim of this work is to study the impact of boriding on the structure and properties of titanium alloy. Materials and Methods: The material of this study is VT3-1 titanium alloy. The boriding were conducted using nanodispersed powder blend based on boric substances. Results: It is established that boriding of paste compounds allows obtaining the surface hardness within 30...29 GPa and with declining to 27...26 GPa in layer to the transition zone (with total thickness up to 110 μm owing to changes of the layer phase composition where Ti2B, TiB, TiB2 titanium borides are formed. The increasing of chemical-thermal treatment time from 15 minutes to 2 hours leads to thickening of the borated layer (30...110 µm and transition zone (30...190 µm. Conclusions: Due to usage of nanodispersed boric powder, the boriding duration is decreasing in 2...3 times. This allows saving time and electric energy. The developed optimal mode of boriding the VT3-1 titanium alloy allows obtaining the required operational characteristics and to combine the saturation of the surface layer with atomic boron and hardening.

  16. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub-project 2 - Ex-serviced 2.25Cr1M0 weld metal and cross weld repairs

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Feilitzen, Carl von

    2007-12-15

    Weld repair has been carried out in an ex-serviced 10 CrMo 9 10 pipe by using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables. Application of current welding procedure and consumables results in an over matched weld repair. This is verified by both creep tests and the creep simulations at even lower stresses than tested. Creep specimens have been extracted from ex-serviced 10 CrMo 9 10 parent metal (PM) and weld metal (WM), from virgin 10 CrMo 9 10 WM, from virgin 13 CrMo 4 4 WM, and from virgin 15 Mo 3 WM. In addition, cross weld specimens including weld metal, heat affected zone (HAZ) and parent metal have been taken from the ex-serviced 10 CrMo 9 10 weld joint, and from three weld repairs. In total, there are nine test series. The sequence of creep lifetime at 540 deg C at given stresses is; virgin 10 CrMo 9 10 weld metal > virgin 15 Mo 3 weld metal approx virgin 13 CrMo 4 4 weld metal approx ex-serviced 10 CrMo 9 10 weld metal >> ex-serviced 10 CrMo 9 10 parent metal > ex-serviced 10 CrMo 9 10 cross weld approx 10 CrMo 9 10 cross weld repair approx 13 CrMo 4 4 cross weld repair approx and 15 Mo 3 cross weld repair. All the series show good creep ductility. The ex-serviced 10 CrMo 9 10 parent metal shows a creep lifetime about one order of magnitude shorter than that for both the virgin parent metal and the ex-serviced 10 CrMo 9 10 weld metal, independent of stresses. Differences in creep lifetime among the ex-serviced 10 CrMo 9 10 cross weld and other cross weld repairs are negligible, simply because rupture always occurred in the ex-serviced 10 CrMo 9 10 parent metal, approximately 10 mm from HAZ, for all the cross welds. Necking is frequently observed in the ex-serviced 10 CrMo 9 10 parent metal at the opposite side of the fracture. Creep damage to a large and a small extend is found adjacent to the fracture and at the necking area, respectively. Other parts of the weld joint like weld metal and HAZ are damage-free, independent of stress, weld metal and material condition. Norton's law, Monkman-Grant relation and phi- and OMEGA-models (strain-strain rate) are valid for all the tested series. These models can be utilised for lifetime assessment. Using phi- and OMEGA-models, for instance, creep strain with respect to time can be successfully reproduced and reproduced creep curves aggress well with the experiments. Finite element simulations based on dimension of weld repaired pipe and weld repair geometry have been performed using obtained creep results and have been extrapolated down to 60 MPa. It shows that severe creep damage and rupture occur in HAZ for 13 CrMo 4 4 and 15 Mo 3 cross weld repairs. This is also true for 10 CrMo 9 10 cross weld repair with axial stress. Extra axial load reduces the creep life of 13 CrMo 4 4 and 15 Mo 3 weld repairs. However, the extra axial load prolongs somewhat the creep life for the 10 CrMo 9 10 repair, as a result of an extended area of stress enhancement and consequently a reduction of the highest stress The simulations exhibit that creep damage may initiate and develop deep inside the wall of cross weld repairs. This gives rise to a warning that application of methods for detection of surface creep damage may be insufficient in the case of repaired welds

  17. Determination of Copper Magnesium and Silver in New Heat Resistant Al - Cu - Mg - Ag Alloy by ICP - AES%ICP-AES法测定Al-Cu-Mg-Ag系新型耐热铝合金中的铜、镁和银

    Institute of Scientific and Technical Information of China (English)

    石晓丽; 杨春晟; 庞晓辉

    2008-01-01

    介绍了采用ICP-AES测定Al-Cu-Mg-Ag系新型耐热铝合金中铜、镁和银的方法.对样品溶解、共存元素干扰等进行了研究,选择Cu324.752nm、Mg285.213 nm和Ag328.068 nm的无光谱干扰的谱线为分析线,选择钇为内标元素,内标线Y371.03nm.并运用铝基体工作曲线来消除铝基的影响,以提高分析的准确度.优化了测量时溶液的提升量,在优化工作曲线下测定,方法的回收率为97.5%~101.3%,相对标准偏差小于0.98%.用本法测定银的结果与火焰原子吸收光谱法分析银的结果吻合.该法用于国家标准物质的测定,其结果与标准物质认定值一致.

  18. Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles

    Directory of Open Access Journals (Sweden)

    Bi-Cheng Zhou

    2015-12-01

    Full Text Available Diffusion coefficients of alloying elements in Mg are critical for the development of new Mg alloys for lightweight applications. Here we present the data set of the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp Mg calculated from first-principles calculations based on density functional theory (DFT by combining transition state theory and an 8-frequency model. Benchmark for the DFT calculations and systematic comparison with experimental diffusion data are also presented. The data set refers to “Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study” by Zhou et al. [1].

  19. Influence of alloy ingredients on mechanical properties of ternary boride hard alloy clad materials

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-tian; SONG Shi-xue; YANG Jun-ru; HUANG Wei-ling; HUANG Chuan-zhen; CHENG Xin; LI Zhao-qian

    2004-01-01

    Using Mo, B-Fe alloy and Fe powders as raw materials, and adding C, Cr and Ni ingredients, respectively, or C, Cr and Ni mixed powders, ternary boride hard alloy clad materials was prepared on Q235 steel substrate by means of in-situ reaction and vacuum liquid phase sintering technology. The influence of alloy ingredients on the mechanical properties of ternary boride hard alloy clad materials was investigated. The results indicate that a mixture of 0.8% C, 5% Cr and 2% Ni ingredients gives a ternary boride hard alloy clad material with optimal mechanical properties, such as high transverse rupture strength, high hardness and good wear resistance.

  20. STUDY ON MECHANICAL AND HEAT RESISTANCE PROPERTIES OF NOVEL KIND OF BISMALEIMIDE RESIN (JM) AND PBO/JM COMPOSITES%新型改性双马来酰亚胺树脂(JM)及PBO/JM复合材料力学性能、耐热性能研究

    Institute of Scientific and Technical Information of China (English)

    张承双; 王百亚; 刘锋; 王斌

    2012-01-01

    The mechanical and heat resistance properties of a novel kind of bismaleimide resin (JM) and PBO/ JM composites were studied in this paper. The viscosity of JM resin was analyzed by rotary viscometer. Mechanical properties of JM resin and PBO/JM composite were tested by a universal testing machine. The glass transition temperature and decomposition temperature of the resin and composites were characterized by DMA and TGA analysis respectively. The results indicated that JM resin exhibits excellent manufacturability, the resin can be used for composites preparation by filament winding technology both in impregnating and wet-winding process. Although with high strength and modulus, JM resin casting body was brittle, mechanical properties of the resin should be improved. The glass transition temperature and the 5% weight loss temperature of JM resin were 366.6 and 410.4℃ respectively. Heat resistance property of PBO/JM composite was higher than PBO/epoxy composite.%本文研究了新型改性双马来酰亚胺树脂(JM)及PBO/JM复合材料的力学性能和耐热性能.分别采用旋转粘度计对JM树脂的粘度进行了测试,采用材料万能试验机对树脂浇铸体及PBO/JM复合材料的力学性能进行了测试,采用DMA和TGA对树脂及其复合材料的玻璃化转变温度和热分解温度进行了分析.结果表明,JM树脂具有较好的成型工艺性,能够满足复合材料干法、湿法缠绕成型工艺的要求;JM树脂具有较高的强度和模量,但固化物脆性较大,其力学性能有待进一步改善;JM树脂的玻璃化转变温度和5%热失重温度分别达到366.6和410.4℃;PBO/JM复合材料的耐热性能远高于PBO/环氧复合材料.

  1. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  2. Design optimization of shape memory alloy structures

    NARCIS (Netherlands)

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory

  3. Zirconium alloys produced by recycling zircaloy tunings

    Energy Technology Data Exchange (ETDEWEB)

    Gamba, N.S. [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL–CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Carbajal-Ramos, I.A. [Centro Atómico Bariloche, CNEA e Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina); Ulla, M.A.; Pierini, B.T. [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL–CONICET), Santiago del Estero 2829, 3000 Santa Fe (Argentina); Gennari, F.C., E-mail: gennari@cab.cnea.gov.ar [Centro Atómico Bariloche, CNEA e Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2013-11-25

    Highlights: •Zr–Ti alloys were successfully produced by two-step procedure. •Zircaloy tunings were used as a valuable source of Zr. •Zircaloy tunings and Ti powders was milled under hydrogen to produce hydride powders. •Hydride powders were decomposed by heating at 900 °C to synthesize the Zr-based alloy. •The procedure could be extended to the production of other Zr-based alloys. -- Abstract: Zircaloy chips were recycled to successfully produce Zr–Ti alloys with bcc structure and different compositions. The procedure developed involves two steps. First, the reactive mechanical alloying (RMA) of the zircaloy tunings and Ti powders was performed to produce metal hydride powders, with a high refinement of the microstructure and a Zr–Ti homogeneous composition. Second, the metal hydride powders were thermally decomposed by heating up to 900 °C to synthesize the Zr-based alloy with a selected composition. The change in the nature of the powders from ductile to brittle during milling avoids both cold working phenomena between the metals and the use of a control agent. A minimum milling time is necessary to produce the solid solution with the selected composition. The microstructure and structure of the final alloys obtained was studied. The present procedure could be extended to the production of Zr-based alloys with the addition of other metals different from Ti.

  4. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  5. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  6. Electroplating Zn-Al Alloy Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of controlling separating anode and separating power source was used to perform orthogonal optimization for the parameters in electroplating Zn-Al alloy.The electroplating Zn-Al alloy technology was decided, in which the content of Al is about 12%-15%.

  7. Trends of Chinese RE Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Ⅰ . Status of Chinese RE Hydrogen Storage Alloys 1. R εt D of RE Hydrogen Storage Alloys in China AB5 hydrogen storage materials, taking rare earth mischmetals as raw materials, developed rapidly in China in recent years. Today, different countries attach importance to the development and application of the new environmental protection reproducible power sources.

  8. METHOD AND ALLOY FOR BONDING TO ZIRCONIUM

    Science.gov (United States)

    McCuaig, F.D.; Misch, R.D.

    1960-04-19

    A brazing alloy can be used for bonding zirconium and its alloys to other metals, ceramics, and cermets, and consists of 6 to 9 wt.% Ni, 6 to 9 wn~.% Cr, Mo, or W, 0 to 7.5 wt.% Fe, and the balance Zr.

  9. STRUCTURE OF LIQUID CESIUM LEAD ALLOYS

    NARCIS (Netherlands)

    PRICE, DL; SABOUNGI, ML; DEWIJS, GA; VANDERLUGT, W

    1993-01-01

    Neutron diffraction measurements have been made on liquid Cs-Pb alloys at the Intense Pulsed Neutron Source. Equiatomic CsPb has been shown in previous work to be a Zintl alloy with well-defined Cs4Pb4 structural units, explaining the anomalously high electrical resistivity and specific heat observe

  10. Measurement of oxide adherence to PFM alloys.

    Science.gov (United States)

    Mackert, J R; Parry, E E; Hashinger, D T; Fairhurst, C W

    1984-11-01

    A method has been reported for evaluating adherence of an oxide to its substrate metal to a maximum value of about 40 MPa. Oxidized alloy plates were cemented between two aluminum cylinders with a high-strength cyanoacrylate cement and loaded in tension until failure occurred either at the oxide/metal interface, within the oxide layer, or in the cement itself. Significant differences were found among the oxide adherence values obtained from different PFM alloys. The oxides formed on five of the alloys exhibited adherence strengths in excess of the published value for cohesive strength of dental opaque porcelain, indicating that they possess sufficient adherence to act as the transition zone between the porcelain and the alloy. In addition, a correspondence was found between the quality of porcelain bond for a given alloy and its oxide adherence strength. These results remove the principal objection to the oxide-layer theory of porcelain bonding in dental alloy systems and emphasize the importance of oxide adherence in the establishment of a bond. It is therefore suggested that future work devoted to porcelain-metal bonding should seek to elucidate the mechanism of oxide adherence to PFM alloys and explore the development of new alloys which form adherent oxides.

  11. Progress in High-Entropy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  12. 连续ECAE 动态时效成形制备Al-Zr-B 合金的组织与性能%Microstructures and Properties of Al-Zr-B Alloy Wires Prepared by Continuous Dynamic Aging ECAE Forming

    Institute of Scientific and Technical Information of China (English)

    周天国; 张安; 石舟; 张哲; 张方方

    2016-01-01

    为制备高性能铝锆耐热合金导体,首次采用 ECAE 动态时效成形工艺制备了 Al-Zr-B 合金导体.借助光学显微镜、材料拉伸试验机和双臂直流电桥等测试手段,研究了连续 ECAE动态时效成形 Al-Zr-B合金显微组织、力学性能和导电性能.结果表明:随着 ECAE 成形道次的增加,合金线材的组织逐渐趋于均匀;时效热处理可有效改善 Al-Zr-B合金导线的力学性能和导电性能.随着时效时间的延长,合金的抗拉强度先升高,出现峰值强度,再延长时效时间,强度降低;伸长率随着时间延长一直降低,等效导电率则不断升高.当时效温度180℃、时效时间12 h时,Al-0.3Zr-0.06B合金的拉伸强度为265.32 MPa、伸长率为6.7%、等效导电率为59.54%IACS,Al-Zr耐热合金导线的综合性能较好.%In order to prepare high performance aluminum zirconium heat-resistant conductor,Al-Zr-B alloy conductor was prepared by continuous dynamic aging ECAE (Equal Channel Angular Extrusion) process.By means of OM,electronic tensile machine and double arm direct current bridge,the microstructure, mechanical properties and electrical properties of Al-Zr-B alloy prepared by continuous dynamic aging ECAE process were studied.The result shows that the microstructure of the alloy wires become homogeneous gradually with the increase of the ECAE forming passes;the mechanical and electrical properties of Al-Zr-B alloy wire can be effectively improved by using artificial aging treatment.The tensile strength of the alloy increases with the aging time prolonged firstly, when rises to the peak strength,after that the strength decreases with the aging time further prolong;the elongation of the alloy decreases all the time;however,the equivalent conductivity increases. When the alloys soaked 180 ℃ for 12 h,the Al-Zr-B heat-resistant alloy wire has better complicated property,its tensile strength,elongation and the equivalent conductivity of the alloy is 265

  13. Concepts in surface alloying of metals

    Directory of Open Access Journals (Sweden)

    Santosh S. Hosmani

    2013-03-01

    Full Text Available Surface alloying is widely used method in industries to improve the surface properties of metals/alloys. Significance of the various surface engineering techniques to improve the properties of engineering components in various applications, for example, automobile industries, has grown substantially over the many years. The current paper is focused on the fundamental scientific aspects of the surface alloying of metals. Widely used surface alloying elements involved are interstitial elements such as nitrogen, carbon, and substitutional element, chromium. This topic is interdisciplinary in nature and various science and engineering streams can work together for the further development in this topic. This paper has attempted to cover the essential concepts of surface alloying along with some of the interesting results in this research area.

  14. Long - range foundry Al composite alloys

    Directory of Open Access Journals (Sweden)

    A. D. Mekhtiev

    2014-10-01

    Full Text Available The technology of obtaining nanostructural composite aluminum alloys consists in the plasma injection of refractory nanometric particles with simultaneous two-plane magnetic dynamic mixing of the melt. Particularly important in obtaining composite aluminum matrix alloys is the provision of the introduced particles wettability with the matrix melt for forming stable adhesive bonds. Nanostructured powder components can be considered not only to be a starting product for producing nanostructural composite aluminum alloys but as an independent commerce product. Nanostructural composite metal matrix alloys make one of the most prospective structural materials of the future, and liquid-phase technologies of their obtaining are the most competitive in producing products of nanostructural composite aluminum alloys in the industrial scale.

  15. Corrosion resistance improvement of titanium base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Popa, Mihai V.; Vasilescu, Ecaterina; Drob, Paula; Vasilescu, Cora; Drob, Silviu I., E-mail: ec_vasilescu@yahoo.co [Institute of Physical Chemistry ' Ilie Murgulescu' , Bucharest (Romania); Mareci, Daniel [Technical University ' Gh. Asachi' , Iasi (Romania); Rosca, Julia C. Mirza [Las Palmas de Gran Canaria University, Tafira (Spain). Mechanical Engineering Dept.

    2010-07-01

    The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy. (author)

  16. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  17. Mechanical behaviour of aluminium-lithium alloys

    Indian Academy of Sciences (India)

    N Eswara Prasad; A A Gokhale; P Rama Rao

    2003-02-01

    Aluminium-lithium alloys hold promise of providing a breakthrough response to the crying need for lightweight alloys for use as structurals in aerospace applications. Considerable worldwide research has gone into developing a range of these alloys over the last three decades. As a result, substantial understanding has been developed of the microstructure-based micromechanisms of strengthening, of fatigue and fracture as well as of anisotropy in mechanical properties. However, these alloys have not yet greatly displaced the conventionally used denser Al alloys on account of their poorer ductility, fracture toughness and low cycle fatigue resistance. This review aims to summarise the work pertaining to study of structure and mechanical properties with a view to indicate the directions that have been and can be pursued to overcome property limitations.

  18. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  19. [Use of titanium alloys for medical instruments].

    Science.gov (United States)

    Feofilov, R N; Chirkov, V K; Levin, M V

    1977-01-01

    On the ground of an analysis into properties of titanium and its alloys the fields of their possible utilization for making various medical instruments are proposed. Because of their insufficient hardness and wear-resistance the titanium alloys cannot be recommended for making medical instruments with thin cutting edges. For the reasons of their insufficient strength, low wear-resistance and substandard modulus of elasticity, it is inexpedient to use titanium alloys in making many types of clamping medical instruments. Nor is it advisable to employ titanium alloys in handles of the instruments, for this may lead to a contact corrosion of their working parts. The use of titanium alloys is recommended for making bone-joining members, retracting medical instruments, of the spatula and speculum types, some kinds of non-magnetic pincers and ultrasonic medical instruments.

  20. Superior hydrogen storage in high entropy alloys

    Science.gov (United States)

    Sahlberg, Martin; Karlsson, Dennis; Zlotea, Claudia; Jansson, Ulf

    2016-11-01

    Metal hydrides (MHx) provide a promising solution for the requirement to store large amounts of hydrogen in a future hydrogen-based energy system. This requires the design of alloys which allow for a very high H/M ratio. Transition metal hydrides typically have a maximum H/M ratio of 2 and higher ratios can only be obtained in alloys based on rare-earth elements. In this study we demonstrate, for the first time to the best of our knowledge, that a high entropy alloy of TiVZrNbHf can absorb much higher amounts of hydrogen than its constituents and reach an H/M ratio of 2.5. We propose that the large hydrogen-storage capacity is due to the lattice strain in the alloy that makes it favourable to absorb hydrogen in both tetrahedral and octahedral interstitial sites. This observation suggests that high entropy alloys have future potential for use as hydrogen storage materials.

  1. Superconductivity in Metals and Alloys

    Science.gov (United States)

    1963-02-01

    sintered material (Reed, Gatos , LaFleur, and Roddy, 1962). It has great importance for any materials work, since generalizations based only on stoichio...1961),Phys. Rev. Letters 6, 597. Goodman, B. B., (1962) IBM J. Research and Development 6, 63. Gor’kov, L. P., (1960), Soy . Phys. JETP 10, 998...34Superconductivity in Metals and Alloys-Technical Documentary Report No. ASD-TDR-62-269, Contract No. AF 33(616)-640 5. Reed, T. B., Gatos , H. C., LaFleur, W. j

  2. 聚(异氰脲酸酯-噁唑烷酮)改性硬质聚氨酯泡沫的反应机理及其耐热性能研究%Mechanism of formation and heat-resistant properties of poly (isocyanurate-oxazolidone) modified rigid polyurethane foams

    Institute of Scientific and Technical Information of China (English)

    郭亚明; 袁洪福; 王海侨; 何立凡; 李效玉

    2012-01-01

    Isocyanurate - oxazolidone modified rigid polyurethane foams, based on polyurethane and epoxy resin, have been prepared by a simultaneous polymerization technique. The changes in the chemical structure were investigated by Fourier transform infrared (FT-IR) spectroscopy, and the thermal properties of the foams were evaluated by dynamic mechanical analysis ( DMA) and thermogravimetric analysis ( TGA) . FT-IR spectroscopy showed that urethane and isocyanurate (IS) structures were formed initially, and were then transformed into oxazolidone ( OX) by reaction with the epoxy resin. The introduction of IS and OX raises the glass transition temperature Tg and significantly improves the heat-resistant properties of the foams.%用一步法制备出聚异氰脲酸酯-噁唑烷酮改性硬质聚氨酯泡沫(PISOX-RPUF),使用FT-IR对反应历程进行定性与半定量研究,并运用DMA、TG表征了PISOX-RPUF的耐高温性能.结果表明,在一定的条件下,体系首先生成氨基甲酸酯与异氰脲酸酯六元环(IS)结构,然后它们再分别与环氧树脂反应生成不唑烷酮(OX)结构;泡沫中IS环与OX环结构的引入,显著提高了PISOX-RPUF的玻璃化转变温度和热稳定性.

  3. REVIEW ON RESEARCH AND DEVELOPMENT OF MAGNESIUM ALLOYS

    Institute of Scientific and Technical Information of China (English)

    Z.Yaug; J.P.Li; J.X.Zhang; G.W.Lorimer; J.Robson

    2008-01-01

    The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study arc listed in the final section.

  4. Process Simulation and Modeling for Advanced Intermetallic Alloys.

    Science.gov (United States)

    1994-06-01

    34Microstructure-Property Correlation in TiAl-Base Alloys", in Microstructure/ Proverty Relationships in Titanium Aluminides and Alloys eds. Y-W. Kim and...Gamma Titanium Aluminide Alloy", in Microstructure/ Proverty Relationships in Titanium Aluminides and Alloys eds. Y-W. Kim and R.R. Boyer, The

  5. Nucleation promotion of Sn-Ag-Cu lead-free solder alloys via micro alloying

    Science.gov (United States)

    Mao, Jie

    Sn-Ag-Cu (SAC) alloy system is widely accepted as a viable Pb-free alternative to Sn-Pb alloys for microelectronics packaging applications. Compared with its Pb-containing predecessor SAC alloys tend to have coarse grain structure, which is believed to be caused by high undercooling prior to nucleation. This work explores the possibility of modifying the nucleation process and reducing the undercooling of SAC alloys via introducing minor alloying elements. The mechanisms through which effective alloying elements influenced the nucleation process of SAC alloys are investigated with microstructural and chemical analyses. Minor alloying elements (Mn and Zn) are found promoting beta-Sn nucleation and reducing the undercooling of SAC. Manganese promotes beta-Sn primary phase nucleation through the formation of MnSn2 intermetallic compound. Experimental results in this work support the claim by previous researchers that zinc promotes beta-Sn primary phase nucleation through the formation of zinc oxide. In addition to nucleation, this work also assesses the microstructural impact of minor elements on Sn-Ag-Cu based alloys. Methods have been developed to quantify and compare microstructural impacts of minor elements and efficiently study their partitioning behaviors. LA-ICPMS was introduced to SAC alloy application to efficiently study partitioning behaviors of minor elements.

  6. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration.

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    Determination of the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. A modified microhardness test unit permitted hardness determinations at homologous temperatures ranging from 0.02 to 0.15, where alloy softening normally occurs in bcc alloys. Results showed that alloy softening was produced by those elements having an excess of s + d electrons compared to Mo while those elements having an equal number or fewer s + d electrons than Mo failed to produce alloy softening. The magnitude of the softening and the amount of solute element at the hardness minimum diminished rapidly with increasing test temperature. At solute concentrations where alloy softening was observed, the temperature sensitivity of hardness was lowered. For solute elements having an excess of s + d electrons or fewer s + d electrons than Mo, alloy softening and alloy hardening can be correlated with the difference in number of s + d electrons of the solute element and Mo.

  7. CHEMICAL COMPOUNDS FOR METAL SHAPING

    Science.gov (United States)

    ALLOYS, *CHEMICAL MILLING, *METALS, *REFRACTORY MATERIALS, AIRCRAFT, ALUMINUM ALLOYS, CARBOXYMETHYLCELLULOSE , CHEMICALS, CHROMIUM ALLOYS, GELS, HEAT...RESISTANT ALLOYS, MATERIALS, MOLYBDENUM ALLOYS, NICKEL ALLOYS, NIOBIUM, POROUS MATERIALS, PROCESSING, PRODUCTION , SOLIDS, SOLUTIONS(MIXTURES), STAINLESS STEEL, STEEL, STRUCTURES, TANTALUM, TITANIUM ALLOYS, VANADIUM ALLOYS.

  8. NiAl alloys for structural uses

    Science.gov (United States)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  9. Photonic crystal digital alloys and their band structure properties.

    Science.gov (United States)

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  10. An Alternate to Cobalt-Base Hardfacing Alloys

    Science.gov (United States)

    Hickl, Anthony J.

    1980-03-01

    The price of cobalt has risen dramatically in the last few years, and supply has often been uncertain. The most popular hardfacing alloys contain substantial amounts of cobalt, and have thus been especially affected by these factors. The present study has developed a new hardfacing alloy, HAYNES Alloy No. 716, with lower cobalt content, to replace the most popular alloy, HAYNES STELLITE Alloy No. 6 which is cobalt based. The alloy design which led to the development of the new alloy is discussed, and properties are compared with Alloy No. 6. Hardness at room temperature and elevated temperatures, weldability, and corrosion and abrasion resistance of the new alloy compare favorably with Alloy No. 6.

  11. Environmentally Assisted Cracking of Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  12. Indium Helps Strengthen Al/Cu/Li Alloy

    Science.gov (United States)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  13. Density and Structure Analysis of Molten Ni-W Alloys

    Institute of Scientific and Technical Information of China (English)

    Feng XIAO; Liang FANG

    2004-01-01

    Density of molten Ni and Ni-W alloys was measured in the temperature range of 1773~1873 K with a sessile drop method.The density of molten Ni and Ni-W alloys trends to decrease with increasing temperature. The density and molar volume of the alloys trend to increase with increasing W concentration in the alloys. The calculation result shows an ideal mixing of Ni-W alloys.

  14. Preparation of casting alloy ZL101 with coarse aluminum-silicon alloy

    Institute of Scientific and Technical Information of China (English)

    YOU Jing; WANG Yao-wu; FENG Nai-xiang; YANG Ming-sheng

    2008-01-01

    The coarse Al-Si alloy produced by carbothermal reduction of aluminous ore contains 55% Al, 25% Si and some impurities. The main impurities are slag and iron. The process of manufacturing casting Al-Si alloy ZL101 with the coarse Al-Si alloy was studied. The phase constitution and microstructure of the coarse Al-Si alloy, slag and ZL101 were examined by X-ray diffractometry and scanning electron microscopy. The results show that the content of silicon and iron in the casting alloy reduces with the increase of the dosage of purificant and manganese, but increases with the rise of filtering temperature. It is found that casting Al-Si alloy conforming to industrial standard can be produced after refining by using purificant, and removing iron by using manganese and added magnesium.

  15. Fabrication of high strength conductivity submicroncrystalline Cu-5 % Cr alloy by mechanical alloying

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cu-5%Cr alloy bulk material with submicron grains were fabricated by mechanical alloying and subsequanthot hydrostatic extruaion. The micrestructure, mechanical properties and electrical conductivity of the alloy were experimentally investigated, and the influence of the extrusion temperature on its microstructure and properties was made clear.Also, the strengthening mechanism of the alloy was diacussed. It was revealed that the microstructure of the alloy is veryfine, with an average grain size being about 100 ~ 120nm, and thus possesses significant fine-grain strengthening effect,leading to very high mechanical strength of 800 ~ 1 000 MPa. Meanwhile, the alloy also possesses quite good electricalconductivity and moderate tensile elongation, with the former in the range of 55% ~ 70%(IACS) and the latter about5 % respectively.

  16. Development of environmentally friendly cast alloys and composites. High zinc Al-base cast alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2010-01-01

    Full Text Available This work is devoted to grain refinement of the foundry Al-20 wt% Zn (AlZn20 alloy, aiming at improving ductility of the sand-cast alloy The melted alloy was inoculated using traditional AlTi5B1 (TiBAl and AlTi3C0.15 (TiCAl master alloys and newly introduced (Zn,Al-Ti3 one. The performed structural examinations showed out significant increasing of the grain population of the inoculated alloy and plas-ticity increase represented by elongation. The high damping properties of the initial alloy, measured using an ultrasonic Olympus Epoch XT device, are basicly preserved after inoculation. Also tensile strength preserves its good values, while elongation shows an increase – which are beneficials of the employed grain-refining process.

  17. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatiana, E-mail: kobzarevatanya@mail.ru; Budovskikh, Evgeniy, E-mail: budovskih-ea@physics.sibsiu.ru; Baschenko, Lyudmila, E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, 42, Kirov Str., Novokuznetsk, 654007 (Russian Federation); Ivanov, Yuryi, E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, 4, Akademicheskii Av. Tomsk, 634055 (Russian Federation); National Research Tomsk State University, 30, Lenina Av. Tomsk, 634034 (Russian Federation)

    2016-01-15

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  18. Surface modification of Ti alloy by electro-explosive alloying and electron-beam treatment

    Science.gov (United States)

    Gromov, Victor; Kobzareva, Tatiana; Ivanov, Yuryi; Budovskikh, Evgeniy; Baschenko, Lyudmila

    2016-01-01

    By methods of modern physical metallurgy the analysis of structure phase states of titanium alloy VT6 is carried out after electric explosion alloying with boron carbide and subsequent irradiation by pulsed electron beam. The formation of an electro-explosive alloying zone of a thickness up to 50 µm, having a gradient structure, characterized by decrease in the concentration of carbon and boron with increasing distance to the treatable surface has been revealed. Subsequent electron-beam treatment of alloying zone leads to smoothing of the alloying area surface and is accompanied by the multilayer structure formation at the depth of 30 µm with alternating layers with different alloying degrees having the structure of submicro - and nanoscale level.

  19. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    Science.gov (United States)

    Yu, Ang-Yang; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-01

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO2interface. We calculate the segregation energy of the doped Ti/TiO2 interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO2 interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO2 interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO2 interfaces. Alloying effects on the Curie temperature of the Ti/TiO2 interface have been elaborated.

  20. Effects of alloying side B on Ti-based AB2 hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    王家淳; 于荣海; 刘庆

    2004-01-01

    Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickelmetal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2 -type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS) , and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.

  1. Electroplated solder alloys for flip chip interconnections

    Science.gov (United States)

    Annala, P.; Kaitila, J.; Salonen, J.

    1997-01-01

    Flip chip mounting of bare dice is gaining widespread use in microelectronics packaging. The main drivers for this technology are high packaging density, improved performance at high frequency, low parasitic effects and potentially high reliability and low cost. Many companies have made significant efforts to develop a technology for bump processing, bare die testing and underfill encapsulation to gain the benefit of all potential advantages. We have focussed on low cost bumping of fully processed silicon wafers to develop a flexible scheme for various reflow requirements. The bumping process is based on galvanic plating from an alloy solution or, alternatively, from several elemental plating baths. Sputtered Mo/Cu or Cr/Cu is used as a wettable base for electroplating. Excess base metal is removed by using the bumps as an etching mask. Variation of the alloy composition or the layer structure, allows the adjustment of the bump reflow temperature for the specific requirements of the assembly. Using binary tin-lead and ternary tin-lead-bismuth alloys, reflow temperatures from 100 °C (bismuth rich alloys) to above 300 °C (lead rich alloys) can be covered. The influence of the plating current density on the final alloy composition has been established by ion beam analysis of the plated layers and a series of reflow experiments. To control the plating uniformity and the alloy composition, a new cup plating system has been built with a random flow pattern and continuous adjustment of the current density. A well-controlled reflow of the bumps has been achieved in hot glycerol up to the eutectic point of tin-lead alloys. For high temperature alloys, high molecular weight organic liquids have been used. A tensile pull strength of 20 g per bump and resistance of 5 mΩ per bump have been measured for typical eutectic tin-lead bumps of 100 μm in diameter.

  2. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    Directory of Open Access Journals (Sweden)

    J. Kozana

    2010-01-01

    Full Text Available Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation will be the subject of further examinations.

  3. Corrosion behavior of magnesium and magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    I.M.Baghni; WU Yin-shun(吴荫顺); LI Jiu-qing(李久青); ZHANG Wei(张巍)

    2004-01-01

    The automotive industry has crossed the threshold from using magnesium alloys in interior applications such as instrument panels and steering wheels to unprotected environment such as oil pan, cylinder head and wheels. The expanding territory of magnesium leads to new challenges: mainly environmental degradation of the alloys used and how they can be protected. The present critical review is aimed at understanding the corrosion behavior of magnesium and magnesium alloys in industrial and marine environments, and the effect of microstructure, additive elements and inhibitors on the corrosion mechanism.

  4. Magnetization curve modelling of soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, I, E-mail: meszaros@eik.bme.hu [Department of Materials Science and Engineering, Budapest University of Technology and Economics, Bertalan L. street 7., Budapest, H-1111 (Hungary)

    2011-01-01

    In this paper we present an application of the so called hyperbolic model of magnetization. The model was modified and it was applied for nine different soft magnetic alloys. The tested samples were electro-technical steels (FeSi alloys) and a permalloy (FeNi alloy) with strongly different magnetic properties. Among them there are top, medium and definitely poor quality soft magnetic materials as well. Their minor hysteresis loops and normal magnetization curves were measured by alternating current measurement. The hyperbolic model of magnetization was applied for the experimental normal magnetization curves. It was proved that the applied model is excellent for describing mathematically the experimental magnetization curves.

  5. Current assisted superplastic forming of titanium alloy

    Directory of Open Access Journals (Sweden)

    Wang Guofeng

    2015-01-01

    Full Text Available Current assisted superplastic forming combines electric heating technology and superplastic forming technology, and can overcome some shortcomings of traditional superplastic forming effectively, such as slow heating rate, large energy loss, low production efficiency, etc. Since formability of titanium alloy at room temperature is poor, current assisted superplastic forming is suitable for titanium alloy. This paper mainly introduces the application of current assisted superplastic forming in the field of titanium alloy, including forming technology of double-hemisphere structure and bellows.

  6. Combustion synthesis of bulk nanocrystalline iron alloys

    OpenAIRE

    Licai Fu; Jun Yang; Weimin Liu

    2016-01-01

    The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on...

  7. Thermodynamics and Structure of Plutonium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  8. New alloys to conserve critical elements

    Science.gov (United States)

    Stephens, J. R.

    1978-01-01

    Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.

  9. Electrochemical behaviour of passive zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Patrito, E.M.; Torresi, R.M.; Leiva, E.P.M.; Macagno, V.A. (Universidad Nacional de Cordoba (Argentina). Inst. de Investigaciones en Fisicoquimica de Cordoba)

    1991-02-01

    The potentiodynamic oxidation of zirconium, zircaloy-2 (Zry-2) and zircaloy-4 (Zry-4) was studied in the O V{<=}V{<=}8 V potential range. Side reactions take place during the oxidation of Zry-2 and Zry-4 in phosphate electrolytes. With Zry-2, oxygen evolution occurs at high anodic potentials. The oxidation of the alloys in nitric acid shows dissolution of their minor alloying elements but no oxygen evolution at high potentials. The role played by the alloying elements in connection with the appearance of side reactions is discussed. The oxide film were characterized by impedance measurements, X-ray photoelectron spectroscopy and Auger spectroscopy. (author).

  10. Graded coatings for metallic implant alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Fujino, Shigeru; Gomez-Vega, Jose M.

    2002-08-01

    Graded glass and glass-hydroxyapatite coatings on Ti-based and Co-Cr alloys have been prepared using a simple enameling technique. The composition of the glasses has been tailored to match the thermal expansion of the alloys. By controlling the firing time, and temperature, it has been possible to control the reactivity between the glass and the alloy and to fabricate coatings (25 to 150 mu m thick) with excellent adhesion to the substrate, resistant to corrosion and able to precipitate hydroxyapatite during in vitro tests in simulated body fluid.

  11. Stress corrosion cracking of titanium alloys

    Science.gov (United States)

    Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.

    1974-01-01

    The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.

  12. HAYNES 244 alloy – a new 760 ∘C capable low thermal expansion alloy

    Directory of Open Access Journals (Sweden)

    Fahrmann Michael G.

    2014-01-01

    Full Text Available HAYNES® 244TM alloy is a new 760∘C capable, high strength low thermal expansion (CTE alloy. Its nominal chemical composition in weight percent is Ni – 8 Cr – 22.5 Mo – 6 W. Recently, a first mill-scale heat of 244 alloy was melted by Haynes International, and processed to various product forms such as re-forge billet, plate, and sheet. This paper presents key attributes of this new alloy (CTE, strength, low-cycle fatigue performance, oxidation resistance, thermal stability as they pertain to the intended use in rings and seals of advanced gas turbines.

  13. Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617), Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), and Ni-Cr-Fe-Si Alloy (UNS N06045) Pipe

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617), Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), and Ni-Cr-Fe-Si Alloy (UNS N06045) Pipe

  14. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    S V Sharma; M M Nayak; N S Dinesh

    2008-10-01

    Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150 mm square, 20 mm thick and uses SMA wire of 0·4 mm diameter and 125 mm of length in each phase.

  15. Rapid solidification of immiscible alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bosco, Enrica; Rizzi, Paola; Baricco, Marcello E-mail: marcello.baricco@unito.it

    2003-05-01

    Immiscible alloys have been rapidly solidified for the preparation of granular materials with giant magnetoresistance properties. Au-based (Au-Co and Au-Fe) and Cu-based (Cu-Co and Cu-Fe) systems have been investigated. Single supersaturated solid solution has been obtained for Au-Fe, whereas three FCC solid solutions with different Co content have been found for Au-Co. For Cu-Co and Cu-Fe a limit of solubility in Cu has been observed. Ni additions to Cu-Fe strongly enhance solid solubility. A thermodynamic analysis has been used to describe the competition between partition-less solidification and phase separation in undercooled liquid.

  16. Simulation of nuclei morphologies for binary alloy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We study the critical nuclei morphologies of a binary alloy by the string method. The dynamic equation of the string, connecting the metastable phase (liquid) and stable phase (solid), is governed by Helmholtz free energy for the binary alloy system at a given temperature. The stationary string through the critical nucleus (saddle point) is obtained if the relaxation time of the string is su?ciently large. The critical nucleus radius and energy barrier to nucleation of a pure alloy with isotropic interface energy in two and three dimensions are calculated, which are consistent with the classical nucleation theory. The critical nuclei morphologies are sensitive to the anisotropy strength of interface energy and interface thickness of alloy in two and three dimensions. The critical nucleus and energy barrier to nucleation become smaller if the anisotropy strength of the interface energy is increased, which means that it is much easier to form a stable nucleus if the anisotropy of the interface energy is considered.

  17. Printability of alloys for additive manufacturing.

    Science.gov (United States)

    Mukherjee, T; Zuback, J S; De, A; DebRoy, T

    2016-01-22

    Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.

  18. Modeling wear of cast Ti alloys.

    Science.gov (United States)

    Chan, Kwai S; Koike, Marie; Okabe, Toru

    2007-05-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic-plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an alpha, alpha+beta or beta microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability.

  19. Combustion synthesis of bulk nanocrystalline iron alloys

    Directory of Open Access Journals (Sweden)

    Licai Fu

    2016-02-01

    Full Text Available The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on the synthesis of nanocrystalline metals and alloys prepared by combustion synthesis technique are reviewed. Then, the mechanical and tribological properties of these materials with microstructure control are discussed.

  20. Combustion synthesis of bulk nanocrystalline iron alloys

    Institute of Scientific and Technical Information of China (English)

    Licai Fu; Jun Yang; Weimin Liu

    2016-01-01

    The controlled synthesis of large-scale nanocrystalline metals and alloys with predefined architecture is in general a big challenge, and making full use of these materials in applications still requires greatly effort. The combustion synthesis technique has been successfully extended to prepare large-scale nanocrystalline metals and alloys, especially iron alloy, such as FeC, FeNi, FeCu, FeSi, FeB, FeAl, FeSiAl, FeSiB, and the microstructure can be designed. In this issue, recent progress on the synthesis of nanocrystalline metals and alloys prepared by combustion synthesis technique are reviewed. Then, the mechanical and tribological properties of these materials with microstructure control are discussed.