WorldWideScience

Sample records for heat waves heat

  1. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  2. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.

    Science.gov (United States)

    Anderson, G Brooke; Bell, Michelle L

    2011-02-01

    Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. We analyzed mortality risk for heat waves in 43 U.S. cities (1987-2005) and investigated how effects relate to heat waves' intensity, duration, or timing in season. Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29-5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06-7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14-4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.

  3. Urban Heat Wave Hazard Assessment

    Science.gov (United States)

    Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.

    2016-12-01

    Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban

  4. Climate Change Effects on Heat Waves and Future Heat Wave-Associated IHD Mortality in Germany

    Directory of Open Access Journals (Sweden)

    Stefan Zacharias

    2014-12-01

    Full Text Available The influence of future climate change on the occurrence of heat waves and its implications for heat wave-related mortality due to ischemic heart diseases (IHD in Germany is studied. Simulations of 19 regional climate models with a spatial resolution of 0.25° × 0.25° forced by the moderate climate change scenario A1B are analyzed. Three model time periods of 30 years are evaluated, representing present climate (1971–2000, near future climate (2021–2050, and remote future climate (2069–2098. Heat waves are defined as periods of at least three consecutive days with daily mean air temperature above the 97.5th percentile of the all-season temperature distribution. Based on the model simulations, future heat waves in Germany will be significantly more frequent, longer lasting and more intense. By the end of the 21st century, the number of heat waves will be tripled compared to present climate. Additionally, the average duration of heat waves will increase by 25%, accompanied by an increase of the average temperature during heat waves by about 1 K. Regional analyses show that stronger than average climate change effects are observed particularly in the southern regions of Germany. Furthermore, we investigated climate change impacts on IHD mortality in Germany applying temperature projections from 19 regional climate models to heat wave mortality relationships identified in a previous study. Future IHD excess deaths were calculated both in the absence and presence of some acclimatization (i.e., that people are able to physiologically acclimatize to enhanced temperature levels in the future time periods by 0% and 50%, respectively. In addition to changes in heat wave frequency, we incorporated also changes in heat wave intensity and duration into the future mortality evaluations. The results indicate that by the end of the 21st century the annual number of IHD excess deaths in Germany attributable to heat waves is expected to rise by factor 2

  5. Unidirectional spin-wave heat conveyer.

    Science.gov (United States)

    An, T; Vasyuchka, V I; Uchida, K; Chumak, A V; Yamaguchi, K; Harii, K; Ohe, J; Jungfleisch, M B; Kajiwara, Y; Adachi, H; Hillebrands, B; Maekawa, S; Saitoh, E

    2013-06-01

    When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.

  6. Urban Heat Wave Hazard Assessment

    Science.gov (United States)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul J.; LaFontaine, Frank J.; Crane, Dakota L.

    2016-01-01

    Heat waves are the largest cause of environment-related deaths globally. On average, over 6,000 people in the United States alone are hospitalized each summer due to excessive heat. Key elements leading to these disasters are elevated humidity and the urban heat island effect, which act together to increase apparent temperature and amplify the effects of a heat wave. Urban demographics and socioeconomic factors also play a role in determining individual risk. Currently, advisories of impending heat waves are often too generalized, with limited or no spatial variability over urban regions. This frequently contributes to a lack of specific response on behalf of the population. A goal of this project is to develop a product that has the potential to provide more specific heat wave guidance invoking greater awareness and action.

  7. Future heat waves and surface ozone

    Science.gov (United States)

    Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica

    2018-06-01

    A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).

  8. Defining and Predicting Heat Waves in Bangladesh

    NARCIS (Netherlands)

    Nissan, H.; Burkart, K.; Coughlan, E.R.; van Aalst, M.; Mason, S.

    2017-01-01

    This paper proposes a heat-wave definition for Bangladesh that could be used to trigger preparedness measures in a heat early warning system (HEWS) and explores the climate mechanisms associated with heat waves. A HEWSrequires a definition of heat waves that is both related to human health outcomes

  9. Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality

    International Nuclear Information System (INIS)

    Rey, Gregoire; Fouillet, Anne; Bessemoulin, Pierre; Frayssinet, Philippe; Dufour, Anne; Jougla, Eric; Hemon, Denis

    2009-01-01

    Heat waves may become a serious threat to the health and safety of people who currently live in temperate climates. It was therefore of interest to investigate whether more deprived populations are more vulnerable to heat waves. In order to address the question on a fine geographical scale, the spatial heterogeneity of the excess mortality in France associated with the European heat wave of August 2003 was analysed. A deprivation index and a heat exposure index were used jointly to describe the heterogeneity on the Canton scale (3,706 spatial units). During the heat wave period, the heat exposure index explained 68% of the extra-Poisson spatial variability of the heat wave mortality ratios. The heat exposure index was greater in the most urbanized areas. For the three upper quintiles of heat exposure in the densely populated Paris area, excess mortality rates were twofold higher in the most deprived Cantons (about 20 excess deaths/100,000 people/day) than in the least deprived Cantons (about 10 excess deaths/100,000 people/day). No such interaction was observed for the rest of France, which was less exposed to heat and less heterogeneous in terms of deprivation. Although a marked increase in mortality was associated with heat wave exposure for all degrees of deprivation, deprivation appears to be a vulnerability factor with respect to heat-wave-associated mortality.

  10. Wave heating of the solar atmosphere

    Science.gov (United States)

    Arregui, Iñigo

    2015-04-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  11. Humid Heat Waves at different warming levels

    Science.gov (United States)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  12. Ion Bernstein wave heating research

    International Nuclear Information System (INIS)

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity (ω/k perpendicular ∼ V Ti much-lt V α ) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α-particles. In addition, the property of IBW's that k perpendicular ρ i ∼ 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research

  13. Heat wave vulnerability classification of residential buildings

    NARCIS (Netherlands)

    Heijden, van der M.G.M.; Blocken, B.J.E.; Hensen, J.L.M.

    2012-01-01

    General circulation models of climate change predict that the intensity and frequency of heat waves will increase, which are a significant threat to public health (Luber and McGeehin 2008). The effect of heat waves on the public health became apparent during the 2003 heat wave in France, where

  14. Alfven wave heating

    International Nuclear Information System (INIS)

    Stix, H.

    1981-01-01

    The physics of Alfven-wave heating is particularly sensitive to the character of the linear mode conversion which occurs at the Alfven resonance layer. Parameter changes can profoundly affect both the location within the plasma and the mechanism for the power absorption. Under optimal conditions the heating power may be absorbed by electron Landau damping and by electron transit-time magnetic pumping in the plasma interior, or by the same processes acting near the resonance layer on the mode-converted kinetic Alfven wave. The method is outlined for computing the coefficients for reflection, transmission and absorption at the resonance layer and some representative results are offered

  15. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

    International Nuclear Information System (INIS)

    Chernodub, M.N.

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

  16. Cold and heat waves in the United States.

    Science.gov (United States)

    Barnett, A G; Hajat, S; Gasparrini, A; Rocklöv, J

    2012-01-01

    Extreme cold and heat waves, characterized by a number of cold or hot days in succession, place a strain on people's cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987-2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a wave's timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the 95-99 percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for extreme temperatures. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. More Intense Mega Heat Waves in the Warmer World

    Science.gov (United States)

    Choi, G.; Robinson, D. A.

    2017-12-01

    In this study, changes in the occurrences of heat waves on the globe since the mid- 20th century and the synoptic characteristics of mega heat waves at regional scales in the warmer climate are examined. The NCEP-NCAR reanalysis surface data show that there have been no obvious linear changes in the heat wave frequencies at the continental scales since the mid-20th century, but amplified interdecadal variations led to unprecedented intense heat waves in the recent decades at the regional scales. Such mega heat waves have been more frequently observed in the poleward subtropical climate belts as well as in the interior region of continents. According to the analyses of upper tropospheric data, the occurrences of more intense mega heat waves since the late 20th century may be associated with the expansion of subtropical high pressures. These results suggest that populous cities near the subtropical climate zones should provide proactive mega heat wave warning systems for residents due to their vulnerability to the sudden attack of human lives harvest by mega heat waves in the warmer 21st century.

  18. Heat conduction analysis of multi-layered FGMs considering the finite heat wave speed

    International Nuclear Information System (INIS)

    Rahideh, H.; Malekzadeh, P.; Golbahar Haghighi, M.R.

    2012-01-01

    Highlights: ► Using a layerwise-incremental differential quadrature for heat transfer of FGMs. ► Superior accuracy with fewer degrees of freedom of the method with respect to FEM. ► Considering multi-layered functionally graded materials. ► Hyperbolic heat transfer analysis of thermal system with heat generation. ► Showing the effect of heat wave speed on thermal characteristic of the system. - Abstract: In this work, the heat conduction with finite wave heat speed of multi-layered domain made of functionally graded materials (FGMs) subjected to heat generation is simulated. For this purpose, the domain is divided into a set of mathematical layers, the number of which can be equal or greater than those of the physical layers. Then, in each mathematical layer, the non-Fourier heat transfer equations are employed. Since, the governing equations have variable coefficients due to FGM properties, as an efficient and accurate method the differential quadrature method (DQM) is adopted to discretize both spatial and temporal domains in each layer. This results in superior accuracy with fewer degrees of freedom than conventional finite element method (FEM). To verify this advantages through some comparison studies, a finite element solution are also obtained. After demonstrating the convergence and accuracy of the method, the effects of heat wave speed for two different set of boundary conditions on the temperature distribution and heat flux of the domain are studied.

  19. Heat Wave Changes in the Eastern Mediterranean since 1960

    Science.gov (United States)

    Kuglitsch, Franz G.; Toreti, Andrea; Xoplaki, Elena; Della-Marta, Paul M.; Zerefos, Christos S.; Türkes, Murat; Luterbacher, Jürg

    2010-05-01

    Heat waves have discernible impacts on mortality and morbidity, infrastructure, agricultural resources, the retail industry, ecosystem and tourism and consequently affect human societies. A new definition of socially relevant heat waves is presented and applied to new data sets of high-quality homogenized daily maximum and minimum summer air temperature series from 246 stations in the eastern Mediterranean region (including Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Cyprus, Greece, Israel, Romania, Serbia, Slovenia, Turkey). Changes in heat wave number, length and intensity between 1960 and 2006 are quantified. Daily temperature homogeneity analysis suggest that many instrumental measurements in the 1960s are warm-biased, correcting for these biases regionally averaged heat wave trends are up to 8% higher. We find significant changes across the western Balkans, southwestern and western Turkey, and along the southern Black Sea coastline. Since the 1960s, the mean heat wave intensity, heat wave length and heat wave number across the eastern Mediterranean region have increased by a factor 7.6 ±1.3, 7.5 ±1.3 and 6.2 ±1.1, respectively. These findings suggest that the heat wave increase in this region is higher than previously reported.

  20. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    Science.gov (United States)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day

  1. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project.

    Science.gov (United States)

    D'Ippoliti, Daniela; Michelozzi, Paola; Marino, Claudia; de'Donato, Francesca; Menne, Bettina; Katsouyanni, Klea; Kirchmayer, Ursula; Analitis, Antonis; Medina-Ramón, Mercedes; Paldy, Anna; Atkinson, Richard; Kovats, Sari; Bisanti, Luigi; Schneider, Alexandra; Lefranc, Agnès; Iñiguez, Carmen; Perucci, Carlo A

    2010-07-16

    The present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity. Heat waves were defined considering both maximum apparent temperature and minimum temperature and classified by intensity, duration and timing during summer. The effect was estimated as percent increase in daily mortality during heat wave days compared to non heat wave days in people over 65 years. City specific and pooled estimates by gender, age and cause of death were calculated. The effect of heat waves showed great geographical heterogeneity among cities. Considering all years, except 2003, the increase in mortality during heat wave days ranged from + 7.6% in Munich to + 33.6% in Milan. The increase was up to 3-times greater during episodes of long duration and high intensity. Pooled results showed a greater impact in Mediterranean (+ 21.8% for total mortality) than in North Continental (+ 12.4%) cities. The highest effect was observed for respiratory diseases and among women aged 75-84 years. In 2003 the highest impact was observed in cities where heat wave episode was characterized by unusual meteorological conditions. Climate change scenarios indicate that extreme events are expected to increase in the future even in regions where heat waves are not frequent. Considering our results prevention programs should specifically target the elderly, women and those suffering from chronic respiratory disorders, thus reducing the impact on mortality.

  2. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project

    Directory of Open Access Journals (Sweden)

    Bisanti Luigi

    2010-07-01

    Full Text Available Abstract Background The present study aimed at developing a standardized heat wave definition to estimate and compare the impact on mortality by gender, age and death causes in Europe during summers 1990-2004 and 2003, separately, accounting for heat wave duration and intensity. Methods Heat waves were defined considering both maximum apparent temperature and minimum temperature and classified by intensity, duration and timing during summer. The effect was estimated as percent increase in daily mortality during heat wave days compared to non heat wave days in people over 65 years. City specific and pooled estimates by gender, age and cause of death were calculated. Results The effect of heat waves showed great geographical heterogeneity among cities. Considering all years, except 2003, the increase in mortality during heat wave days ranged from + 7.6% in Munich to + 33.6% in Milan. The increase was up to 3-times greater during episodes of long duration and high intensity. Pooled results showed a greater impact in Mediterranean (+ 21.8% for total mortality than in North Continental (+ 12.4% cities. The highest effect was observed for respiratory diseases and among women aged 75-84 years. In 2003 the highest impact was observed in cities where heat wave episode was characterized by unusual meteorological conditions. Conclusions Climate change scenarios indicate that extreme events are expected to increase in the future even in regions where heat waves are not frequent. Considering our results prevention programs should specifically target the elderly, women and those suffering from chronic respiratory disorders, thus reducing the impact on mortality.

  3. The impact of heat waves on children's health: a systematic review

    Science.gov (United States)

    Xu, Zhiwei; Sheffield, Perry E.; Su, Hong; Wang, Xiaoyu; Bi, Yan; Tong, Shilu

    2014-03-01

    Young children are thought to be particularly sensitive to heat waves, but relatively less research attention has been paid to this field to date. A systematic review was conducted to elucidate the relationship between heat waves and children's health. Literature published up to August 2012 were identified using the following MeSH terms and keywords: "heatwave", "heat wave", "child health", "morbidity", "hospital admission", "emergency department visit", "family practice", "primary health care", "death" and "mortality". Of the 628 publications identified, 12 met the selection criteria. The existing literature does not consistently suggest that mortality among children increases significantly during heat waves, even though infants were associated with more heat-related deaths. Exposure to heat waves in the perinatal period may pose a threat to children's health. Pediatric diseases or conditions associated with heat waves include renal disease, respiratory disease, electrolyte imbalance and fever. Future research should focus on how to develop a consistent definition of a heat wave from a children's health perspective, identifying the best measure of children's exposure to heat waves, exploring sensitive outcome measures to quantify the impact of heat waves on children, evaluating the possible impacts of heat waves on children's birth outcomes, and understanding the differences in vulnerability to heat waves among children of different ages and from different income countries. Projection of the children's disease burden caused by heat waves under climate change scenarios, and development of effective heat wave mitigation and adaptation strategies that incorporate other child protective health measures, are also strongly recommended.

  4. Accounting for adaptation and intensity in projecting heat wave-related mortality.

    Science.gov (United States)

    Wang, Yan; Nordio, Francesco; Nairn, John; Zanobetti, Antonella; Schwartz, Joel D

    2018-02-01

    How adaptation and intensity of heat waves affect heat wave-related mortality is unclear, making health projections difficult. We estimated the effect of heat waves, the effect of the intensity of heat waves, and adaptation on mortality in 209 U.S. cities with 168 million people during 1962-2006. We improved the standard time-series models by incorporating the intensity of heat waves using excess heat factor (EHF) and estimating adaptation empirically using interactions with yearly mean summer temperature (MST). We combined the epidemiological estimates for heat wave, intensity, and adaptation with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset to project heat wave-related mortality by 2050. The effect of heat waves increased with its intensity. Adaptation to heat waves occurred, which was shown by the decreasing effect of heat waves with MST. However, adaptation was lessened as MST increased. Ignoring adaptation in projections would result in a substantial overestimate of the projected heat wave-related mortality (by 277-747% in 2050). Incorporating the empirically estimated adaptation into projections would result in little change in the projected heat wave-related mortality between 2006 and 2050. This differs regionally, however, with increasing mortality over time for cities in the southern and western U.S. but decreasing mortality over time for the north. Accounting for adaptation is important to reduce bias in the projections of heat wave-related mortality. The finding that the southern and western U.S. are the areas that face increasing heat-related deaths is novel, and indicates that more regional adaptation strategies are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010?2012

    OpenAIRE

    Bishop-Williams, Katherine E.; Berke, Olaf; Pearl, David L.; Hand, Karen; Kelton, David F.

    2015-01-01

    Background Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 ?C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat st...

  6. Impacts of the 2015 heat waves on mortality in the Czech Republic-a comparison with previous heat waves

    Czech Academy of Sciences Publication Activity Database

    Urban, A.; Hanzlíková, Hana; Kyselý, J.; Plavcová, E.

    2017-01-01

    Roč. 14, č. 12 (2017), č. článku 1562. ISSN 1660-4601 Institutional support: RVO:67985530 Keywords : heat-related mortality * heat-wave * excess heat factor * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.101, year: 2016

  7. Heat waves over Central Europe in regional climate model simulations

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan

    2014-05-01

    Regional climate models (RCMs) have become a powerful tool for exploring impacts of global climate change on a regional scale. The aim of the study is to evaluate the capability of RCMs to reproduce characteristics of major heat waves over Central Europe in their simulations of the recent climate (1961-2000), with a focus on the most severe and longest Central European heat wave that occurred in 1994. We analyzed 7 RCM simulations with a high resolution (0.22°) from the ENSEMBLES project, driven by the ERA-40 reanalysis. In observed data (the E-OBS 9.0 dataset), heat waves were defined on the basis of deviations of daily maximum temperature (Tmax) from the 95% quantile of summer Tmax distribution in grid points over Central Europe. The same methodology was applied in the RCM simulations; we used corresponding 95% quantiles (calculated for each RCM and grid point) in order to remove the bias of modelled Tmax. While climatological characteristics of heat waves are reproduced reasonably well in the RCM ensemble, we found major deficiencies in simulating heat waves in individual years. For example, METNOHIRHAM simulated very severe heat waves in 1996, when no heat wave was observed. Focusing on the major 1994 heat wave, considerable differences in simulated temperature patterns were found among the RCMs. The differences in the temperature patterns were clearly linked to the simulated amount of precipitation during this event. The 1994 heat wave was almost absent in all RCMs that did not capture the observed precipitation deficit, while it was by far most pronounced in KNMI-RACMO that simulated virtually no precipitation over Central Europe during the 15-day period of the heat wave. By contrast to precipitation, values of evaporative fraction in the RCMs were not linked to severity of the simulated 1994 heat wave. This suggests a possible major contribution of other factors such as cloud cover and associated downward shortwave radiation. Therefore, a more detailed

  8. A spatial analysis of heat stress related emergency room visits in rural Southern Ontario during heat waves.

    Science.gov (United States)

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F

    2015-08-06

    In Southern Ontario, climate change may have given rise to an increasing occurrence of heat waves since the year 2000, which can cause heat stress to the general public, and potentially have detrimental health consequences. Heat waves are defined as three consecutive days with temperatures of 32 °C and above. Heat stress is the level of discomfort. A variety of heat stress indices have been proposed to measure heat stress (e.g., the heat stress index (HSI)), and has been shown to predict increases in morbidity and/or mortality rates in humans and other species. Maps visualizing the distribution of heat stress can provide information about related health risks and insight for control strategies. Information to inform heat wave preparedness models in Ontario was previously only available for major metropolitan areas. Hospitals in communities of fewer than 100,000 individuals were recruited for a pilot study by telephone. The number of people visiting the emergency room or 24-hour urgent care service was collected for a total of 27 days, covering three heat waves and six 3-day control periods from 2010-2012. The heat stress index was spatially predicted using data from 37 weather stations across Southern Ontario by geostatistical kriging. Poisson regression modeling was applied to determine the rate of increased number of emergency room visits in rural hospitals with respect to the HSI. During a heat wave, the average rate of emergency room visits was 1.11 times higher than during a control period (IRR = 1.11, CI95% (IRR) = (1.07,1.15), p ≤ 0.001). In a univariable model, HSI was not a significant predictor of emergency room visits, but when accounting for the confounding effect of a spatial trend polynomial in the hospital location coordinates, a one unit increase in HSI predicted an increase in daily emergency rooms visits by 0.4% (IRR = 1.004, CI95%(IRR) = (1.0005,1.007), p = 0.024) across the region. One high-risk cluster and no low risk

  9. Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves

    Czech Academy of Sciences Publication Activity Database

    Urban, A.; Hanzlíková, H.; Kyselý, Jan; Plavcová, E.

    2017-01-01

    Roč. 14, č. 12 (2017), č. článku 1452. ISSN 1660-4601 Institutional support: RVO:86652079 Keywords : heat-related mortality * heat-wave * excess heat factor * Central Europe Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.101, year: 2016

  10. Effects of Simulated Heat Waves on Cardiovascular Functions in Senile Mice

    Directory of Open Access Journals (Sweden)

    Xiakun Zhang

    2014-08-01

    Full Text Available The mechanism of the effects of simulated heat waves on cardiovascular disease in senile mice was investigated. Heat waves were simulated in a TEM1880 meteorological environment simulation chamber, according to a heat wave that occurred in July 2001 in Nanjing, China. Eighteen senile mice were divided into control, heat wave, and heat wave BH4 groups, respectively. Mice in the heat wave and heat wave BH4 groups were exposed to simulated heat waves in the simulation chamber. The levels of ET-1, NO, HSP60, SOD, TNF, sICAM-1, and HIF-1α in each group of mice were measured after heat wave simulation. Results show that heat waves decreased SOD activity in the myocardial tissue of senile mice, increased NO, HSP60, TNF, sICAM-1, and HIF-1α levels, and slightly decreased ET-1 levels, BH4 can relieve the effects of heat waves on various biological indicators. After a comprehensive analysis of the experiments above, we draw the followings conclusions regarding the influence of heat waves on senile mice: excess HSP60 activated immune cells, and induced endothelial cells and macrophages to secrete large amounts of ICAM-1, TNF-α, and other inflammatory cytokines, it also activated the inflammation response in the body and damaged the coronary endothelial cell structure, which increased the permeability of blood vessel intima and decreased SOD activity in cardiac tissues. The oxidation of lipoproteins in the blood increased, and large amounts of cholesterol were generated. Cholesterol penetrated the intima and deposited on the blood vessel wall, forming atherosclerosis and leading to the occurrence of cardiovascular disease in senile mice. These results maybe are useful for studying the effects of heat waves on elderly humans, which we discussed in the discussion chapter.

  11. Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern

    Science.gov (United States)

    Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.

    2013-01-01

    Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.

  12. Impact of wave phase jumps on stochastic heating

    International Nuclear Information System (INIS)

    Zasenko, V.I.; Zagorodny, A.G.; Cherniak, O.M.

    2016-01-01

    Interaction of charged particles with fields of random waves brings about known effects of stochastic acceleration and heating. Jumps of wave phases can increase the intensity of these processes substantially. Numerical simulation of particle heating and acceleration by waves with regular phases, waves with jumping phase and stochastic electric field impulses is performed. Comparison of the results shows that to some extent an impact of phase jumps is similar to the action of separate field impulses. Jumps of phase not only increase the intensity of resonant particle heating but involves in this process non-resonant particles from a wide range of initial velocities

  13. Added effect of heat wave on mortality in Seoul, Korea.

    Science.gov (United States)

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  14. Temporal Compounding of Heat Waves in the Present and Projected Future

    Science.gov (United States)

    Baldwin, J. W.; Dessy, J.; Vecchi, G. A.; Oppenheimer, M.

    2017-12-01

    The hazard of heat waves is projected to increase significantly with global warming, motivating much recent research characterizing various aspects of these extreme events. One less examined aspect of heat waves is their temporal structure. Here we first modify existing heat wave duration definitions to flexibly account for a variety of possible heat wave temporal structures (sequences of hot and cooler days). We then examine past heat waves associated with high mortality using observational reanalysis data, and note that many past heat waves might be better described as series of hot days compounded together with short breaks of cooler days in between. We employ Geophysical Fluid Dynamics Laboratory (GFDL) global climate model (GCM) simulations to compare the frequency of these compound heat waves in the present and projected future with higher levels of atmospheric carbon dioxide. Our results indicate that temporally compound heatwaves will constitute a greater proportion of heat wave risk with global warming. Via examining synthetic autoregressive model data, we propose that this phenomenon is expected when shifting the mean of a time series with some memory and noise. Notably, an increased proportion of compound events implies that vulnerability from prior hot days will play an increasingly large role in heat wave risk, with possible implications for both heat wave-related policy and preparedness.

  15. Wave propagation model of heat conduction and group speed

    Science.gov (United States)

    Zhang, Long; Zhang, Xiaomin; Peng, Song

    2018-03-01

    In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.

  16. The urban heat island and its impact on heat waves and human health in Shanghai.

    Science.gov (United States)

    Tan, Jianguo; Zheng, Youfei; Tang, Xu; Guo, Changyi; Li, Liping; Song, Guixiang; Zhen, Xinrong; Yuan, Dong; Kalkstein, Adam J; Li, Furong

    2010-01-01

    With global warming forecast to continue into the foreseeable future, heat waves are very likely to increase in both frequency and intensity. In urban regions, these future heat waves will be exacerbated by the urban heat island effect, and will have the potential to negatively influence the health and welfare of urban residents. In order to investigate the health effects of the urban heat island (UHI) in Shanghai, China, 30 years of meteorological records (1975-2004) were examined for 11 first- and second-order weather stations in and around Shanghai. Additionally, automatic weather observation data recorded in recent years as well as daily all-cause summer mortality counts in 11 urban, suburban, and exurban regions (1998-2004) in Shanghai have been used. The results show that different sites (city center or surroundings) have experienced different degrees of warming as a result of increasing urbanization. In turn, this has resulted in a more extensive urban heat island effect, causing additional hot days and heat waves in urban regions compared to rural locales. An examination of summer mortality rates in and around Shanghai yields heightened heat-related mortality in urban regions, and we conclude that the UHI is directly responsible, acting to worsen the adverse health effects from exposure to extreme thermal conditions.

  17. Public crowdsensing of heat waves by social media data

    Science.gov (United States)

    Grasso, Valentina; Crisci, Alfonso; Morabito, Marco; Nesi, Paolo; Pantaleo, Gianni

    2017-07-01

    Investigating on society-related heat wave hazards is a global issue concerning the people health. In the last two decades, Europe experienced several severe heat wave episodes with catastrophic effects in term of human mortality (2003, 2010 and 2015). Recent climate investigations confirm that this threat will represent a key issue for the resiliency of urban communities in next decades. Several important mitigation actions (Heat-Health Action Plans) against heat hazards have been already implemented in some WHO (World Health Organization) European region member states to encourage preparedness and response to extreme heat events. Nowadays, social media (SM) offer new opportunities to indirectly measure the impact of heat waves on society. Using the crowdsensing concept, a micro-blogging platform like Twitter may be used as a distributed network of mobile sensors that react to external events by exchanging messages (tweets). This work presents a preliminary analysis of tweets related to heat waves that occurred in Italy in summer 2015. Using TwitterVigilance dashboard, developed by the University of Florence, a sample of tweets related to heat conditions was retrieved, stored and analyzed for main features. Significant associations between the daily increase in tweets and extreme temperatures were presented. The daily volume of Twitter users and messages revealed to be a valuable indicator of heat wave impact at the local level, in urban areas. Furthermore, with the help of Generalized Additive Model (GAM), the volume of tweets in certain locations has been used to estimate thresholds of local discomfort conditions. These city-specific thresholds are the result of dissimilar climatic conditions and risk cultures.

  18. Heat waves and warm periods in Slovakia

    Science.gov (United States)

    Faško, Pavel; Bochníček, Oliver; Markovič, Ladislav; Švec, Marek

    2016-04-01

    The scenarios of climate change caused by human activity show that frequency of occurrence and extent of heat waves in the interior of Europe is increasing. Among the most exposed regions in this regard should the area of southeastern and eastern Austria and south-western Slovakia. The relatively faster increase in the number of heat waves in this area is related also to potential desertification in this region just east of the Alps, since during summer, weather fronts advancing from the west are consequently losing their original features and moderating influence. Summer weather patterns for this area should in the future more closely remind climate typical for some inland areas of southwestern, southern and southeastern Europe. A certain shift of climate zones from south to north should thus modify future climate and Slovakia. Despite the complex natural conditions the existing trends derived from results of meteorological measurements and observations are clear and they confirm warming of climate in this region. Observations and measurements in the recent years of the 21st century confirm, that heat waves are no longer rare phenomenon during summer, but are systematically appearing even in colder regions of northern Slovakia. What is very remarkable and will be necessary to pay more attention to, is the fact that these heat waves are expanding into previously unaffected areas, associated with the lack of rainfall and drought, on larger regional scale. In this study heat wave periods and individual heat events and days are statistically identified in the time series characteristics of air temperature at selected meteorological stations for the period from the mid-20th century until 2015, in case of available historical data even for longer period.

  19. Contrasting Heat Budget Dynamics During Two La Niña Marine Heat Wave Events Along Northwestern Australia

    Science.gov (United States)

    Xu, Jiangtao; Lowe, Ryan J.; Ivey, Gregory N.; Jones, Nicole L.; Zhang, Zhenling

    2018-02-01

    Two marine heat wave events along Western Australia (WA) during the alternate austral summer periods of 2010/2011 and 2012/2013, both linked to La Niña conditions, severely impacted marine ecosystems over more than 12° of latitude, which included the unprecedented bleaching of many coral reefs. Although these two heat waves were forced by similar large-scale climate drivers, the warming patterns differed substantially between events. The central coast of WA (south of 22°S) experienced greater warming in 2010/2011, whereas the northwestern coast of WA experienced greater warming in 2012/2013. To investigate how oceanic and atmospheric heat exchange processes drove these different spatial patterns, an analysis of the ocean heat budget was conducted by integrating remote sensing observations, in situ mooring data, and a high-resolution (˜1 km) ocean circulation model (Regional Ocean Modeling System). The results revealed substantial spatial differences in the relative contributions made by heat advection and air-sea heat exchange between the two heat wave events. During 2010/2011, anomalous warming driven by heat advection was present throughout the region but was much stronger south of 22°S where the poleward-flowing Leeuwin Current strengthens. During 2012/2013, air-sea heat exchange had a much more positive (warming) influence on sea surface temperatures (especially in the northwest), and when combined with a more positive contribution of heat advection in the north, this can explain the regional differences in warming between these two La Niña-associated marine heat wave events.

  20. Public crowdsensing of heat waves by social media data

    Directory of Open Access Journals (Sweden)

    V. Grasso

    2017-07-01

    Full Text Available Investigating on society-related heat wave hazards is a global issue concerning the people health. In the last two decades, Europe experienced several severe heat wave episodes with catastrophic effects in term of human mortality (2003, 2010 and 2015. Recent climate investigations confirm that this threat will represent a key issue for the resiliency of urban communities in next decades. Several important mitigation actions (Heat-Health Action Plans against heat hazards have been already implemented in some WHO (World Health Organization European region member states to encourage preparedness and response to extreme heat events. Nowadays, social media (SM offer new opportunities to indirectly measure the impact of heat waves on society. Using the crowdsensing concept, a micro-blogging platform like Twitter may be used as a distributed network of mobile sensors that react to external events by exchanging messages (tweets. This work presents a preliminary analysis of tweets related to heat waves that occurred in Italy in summer 2015. Using TwitterVigilance dashboard, developed by the University of Florence, a sample of tweets related to heat conditions was retrieved, stored and analyzed for main features. Significant associations between the daily increase in tweets and extreme temperatures were presented. The daily volume of Twitter users and messages revealed to be a valuable indicator of heat wave impact at the local level, in urban areas. Furthermore, with the help of Generalized Additive Model (GAM, the volume of tweets in certain locations has been used to estimate thresholds of local discomfort conditions. These city-specific thresholds are the result of dissimilar climatic conditions and risk cultures.

  1. Heat stress related dairy cow mortality during heat waves and control periods in rural Southern Ontario from 2010-2012.

    Science.gov (United States)

    Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Hand, Karen; Kelton, David F

    2015-11-27

    Heat stress is a physiological response to extreme environmental heat such as heat waves. Heat stress can result in mortality in dairy cows when extreme heat is both rapidly changing and has a long duration. As a result of climate change, heat waves, which are defined as 3 days of temperatures of 32 °C or above, are an increasingly frequent extreme weather phenomenon in Southern Ontario. Heat waves are increasing the risk for on-farm dairy cow mortality in Southern Ontario. Heat stress indices (HSIs) are generally based on temperature and humidity and provide a relative measure of discomfort which can be used to predict increased risk of on-farm dairy cow mortality. In what follows, the heat stress distribution was described over space and presented with maps. Similarly, on-farm mortality was described and mapped. The goal of this study was to demonstrate that heat waves and related HSI increases during 2010-2012 were associated with increased on-farm dairy cow mortality in Southern Ontario. Mortality records and farm locations for all farms registered in the CanWest Dairy Herd Improvement Program in Southern Ontario were retrieved for 3 heat waves and 6 three-day control periods from 2010 to 2012. A random sample of controls (2:1) was taken from the data set to create a risk-based hybrid design. On-farm heat stress was estimated using data from 37 weather stations and subsequently interpolated across Southern Ontario by geostatistical kriging. A Poisson regression model was applied to assess the on-farm mortality in relation to varying levels of the HSI. For every one unit increase in HSI the on-farm mortality rate across Southern Ontario increases by 1.03 times (CI95% (IRR) = (1.025,1.035); p = ≤ 0.001). With a typical 8.6 unit increase in HSI from a control period to a heat wave, mortality rates are predicted to increase by 1.27 times. Southern Ontario was affected by heat waves, as demonstrated by high levels of heat stress and increased on-farm mortality

  2. The Role Of Torsional Alfvén Waves in Coronal Heating

    Science.gov (United States)

    Antolin, P.; Shibata, K.

    2010-03-01

    In the context of coronal heating, among the zoo of magnetohydrodynamic (MHD) waves that exist in the solar atmosphere, Alfvén waves receive special attention. Indeed, these waves constitute an attractive heating agent due to their ability to carry over the many different layers of the solar atmosphere sufficient energy to heat and maintain a corona. However, due to their incompressible nature these waves need a mechanism such as mode conversion (leading to shock heating), phase mixing, resonant absorption, or turbulent cascade in order to heat the plasma. Furthermore, their incompressibility makes their detection in the solar atmosphere very difficult. New observations with polarimetric, spectroscopic, and imaging instruments such as those on board the Japanese satellite Hinode, or the Crisp spectropolarimeter of the Swedish Solar Telescope or the Coronal Multi-channel Polarimeter, are bringing strong evidence for the existence of energetic Alfvén waves in the solar corona. In order to assess the role of Alfvén waves in coronal heating, in this work we model a magnetic flux tube being subject to Alfvén wave heating through the mode conversion mechanism. Using a 1.5 dimensional MHD code, we carry out a parameter survey varying the magnetic flux tube geometry (length and expansion), the photospheric magnetic field, the photospheric velocity amplitudes, and the nature of the waves (monochromatic or white-noise spectrum). The regimes under which Alfvén wave heating produces hot and stable coronae are found to be rather narrow. Independently of the photospheric wave amplitude and magnetic field, a corona can be produced and maintained only for long (>80 Mm) and thick (area ratio between the photosphere and corona >500) loops. Above a critical value of the photospheric velocity amplitude (generally a few km s-1) the corona can no longer be maintained over extended periods of time and collapses due to the large momentum of the waves. These results establish several

  3. Alfven wave heating in a tokamak reactor

    International Nuclear Information System (INIS)

    Borg, G.G.; Appert, K.; Knight, A.J.; Lister, J.B.; Vaclavik, J.

    1990-01-01

    A number of features of Alfven wave heating make it potentially attractive for use in large tokamak reactors. Among them are the availability and relativity low cost of the power supplies, the potential ability to act selectively on the current profile, and the probable absence of operational limits in size, fields or density. The physics of Alfven wave heating in a large tokamak is assessed. Present theoretical understanding of mode coupling and antenna loading is extrapolated to a large machine. The problem of a recessed antenna is analysed. Calculations of loading and discussion of various heating scenarios for the particular case of NET are also presented. (author). 23 refs, 18 figs, 4 tabs

  4. The urban heat island dynamics during heat waves: a study of cities in the United States

    Science.gov (United States)

    Hu, Leiqiu

    2016-04-01

    The urban heat island (UHI) is a common phenomenon describing that metropolitan areas are usually warmer than their rural surroundings. This effect is compounded by extreme heat events, which are a leading cause of weather-related human mortality in many countries worldwide. However, the spatial and diurnal variability of temperature and humidity in urban and adjacent rural areas during extreme heat events is not well measured and therefore not well understood. The recently developed dataset of near-surface air and dew temperature from MODIS atmospheric profiles and the new method for the UHI quantification--urban heat island curve are used to quantify the urban climatic changes during heat waves in cities of the United States. The enhanced and weakened UHIs are observed in various cities. The causes of UHI changes during heat waves are discussed, including climate region, vegetation type and amount, city geolocation, etc.

  5. The influence of multiple ion species on Alfven wave dispersion and Alfven wave plasma heating

    International Nuclear Information System (INIS)

    Elfimov, A.G.; Tataronis, J.A.; Hershkowitz, N.

    1994-01-01

    In this paper, the effects of light impurities, such as deuterium, helium, or carbon, on Alfven wave dispersion characteristics are explored. It is shown that a small population of light impurities in a hydrogen plasma modify the dispersion of the global Alfven waves and the Alfven continuum in such a way that the wave frequency depends weakly on the toroidal wave number. It is also shown that the global Alfven wave enters into the Alfven continuum. Under these conditions, it is possible to heat plasma efficiently by employing an antenna with a broad toroidal wavelength spectrum. The relationship between impurity concentration and the efficiency of Alfven wave heating is explored. Under appropriate conditions, the results indicate that in the presence of impurities, Alfven waves can heat electrons predominantly in the central part of the plasma. This effect is explored via a series of numerical calculations of the heating specifically for the Phaedrus-T Alfven wave heating experiment [Phys. Fluids B 5, 2506 (1993)

  6. The impact of heat waves on mortality in seven major cities in Korea.

    Science.gov (United States)

    Son, Ji-Young; Lee, Jong-Tae; Anderson, G Brooke; Bell, Michelle L

    2012-04-01

    Understanding the health impacts of heat waves is important, especially given anticipated increases in the frequency, duration, and intensity of heat waves due to climate change. We examined mortality from heat waves in seven major Korean cities for 2000 through 2007 and investigated effect modification by individual characteristics and heat wave characteristics (intensity, duration, and timing in season). Heat waves were defined as ≥ 2 consecutive days with daily mean temperature at or above the 98th percentile for the warm season in each city. We compared mortality during heat-wave days and non-heat-wave days using city-specific generalized linear models. We used Bayesian hierarchical models to estimate overall effects within and across all cities. In addition, we estimated effects of heat wave characteristics and effects according to cause of death and examined effect modification by individual characteristics for Seoul. Overall, total mortality increased 4.1% [95% confidence interval (CI): -6.1%, 15.4%] during heat waves compared with non-heat-wave days, with an 8.4% increase (95% CI: 0.1%, 17.3%) estimated for Seoul. Estimated mortality was higher for heat waves that were more intense, longer, or earlier in summer, although effects were not statistically significant. Estimated risks were higher for women versus men, older versus younger residents, those with no education versus some education, and deaths that occurred out of hospitals in Seoul, although differences among strata of individual characteristics were not statistically significant. Our findings support evidence of mortality impacts from heat waves and have implications for efforts to reduce the public health burden of heat waves.

  7. Testing the time-scale dependence of delayed interactions: A heat wave during the egg stage shapes how a pesticide interacts with a successive heat wave in the larval stage.

    Science.gov (United States)

    Janssens, Lizanne; Tüzün, Nedim; Stoks, Robby

    2017-11-01

    Under global change organisms are exposed to multiple, potentially interacting stressors. Especially interactions between successive stressors are poorly understood and recently suggested to depend on their timing of exposure. We particularly need studies assessing the impact of exposure to relevant stressors at various life stages and how these interact. We investigated the single and combined impacts of a heat wave (mild [25 °C] and extreme [30 °C]) during the egg stage, followed by successive exposure to esfenvalerate (ESF) and a heat wave during the larval stage in damselflies. Each stressor caused mortality. The egg heat wave and larval ESF exposure had delayed effects on survival, growth and lipid peroxidation (MDA). This resulted in deviations from the prediction that stressors separated by a long time interval would not interact: the egg heat wave modulated the interaction between the stressors in the larval stage. Firstly, ESF caused delayed mortality only in larvae that had been exposed to the extreme egg heat wave and this strongly depended upon the larval heat wave treatment. Secondly, ESF only increased MDA in larvae not exposed to the egg heat wave. We found little support for the prediction that when there is limited time between stressors, synergistic interactions should occur. The intermediate ESF concentration only caused delayed mortality when combined with the larval heat wave, and the lowest ESF concentrations only increased oxidative damage when followed by the mild larval heat wave. Survival selection mitigated the interaction patterns between successive stressors that are individually lethal, and therefore should be included in a predictive framework for the time-scale dependence of the outcome of multistressor studies with pollutants. The egg heat wave shaping the interaction pattern between successive pesticide exposure and a larval heat wave highlights the connectivity between the concepts of 'heat-induced pesticide sensitivity' and

  8. Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave.

    Directory of Open Access Journals (Sweden)

    Gulrez Shah Azhar

    Full Text Available In the recent past, spells of extreme heat associated with appreciable mortality have been documented in developed countries, including North America and Europe. However, far fewer research reports are available from developing countries or specific cities in South Asia. In May 2010, Ahmedabad, India, faced a heat wave where the temperatures reached a high of 46.8 °C with an apparent increase in mortality. The purpose of this study is to characterize the heat wave impact and assess the associated excess mortality.We conducted an analysis of all-cause mortality associated with a May 2010 heat wave in Ahmedabad, Gujarat, India, to determine whether extreme heat leads to excess mortality. Counts of all-cause deaths from May 1-31, 2010 were compared with the mean of counts from temporally matched periods in May 2009 and 2011 to calculate excess mortality. Other analyses included a 7-day moving average, mortality rate ratio analysis, and relationship between daily maximum temperature and daily all-cause death counts over the entire year of 2010, using month-wise correlations.The May 2010 heat wave was associated with significant excess all-cause mortality. 4,462 all-cause deaths occurred, comprising an excess of 1,344 all-cause deaths, an estimated 43.1% increase when compared to the reference period (3,118 deaths. In monthly pair-wise comparisons for 2010, we found high correlations between mortality and daily maximum temperature during the locally hottest "summer" months of April (r = 0.69, p<0.001, May (r = 0.77, p<0.001, and June (r = 0.39, p<0.05. During a period of more intense heat (May 19-25, 2010, mortality rate ratios were 1.76 [95% CI 1.67-1.83, p<0.001] and 2.12 [95% CI 2.03-2.21] applying reference periods (May 12-18, 2010 from various years.The May 2010 heat wave in Ahmedabad, Gujarat, India had a substantial effect on all-cause excess mortality, even in this city where hot temperatures prevail through much of April-June.

  9. Projected Heat Wave Characteristics over the Korean Peninsula During the Twenty-First Century

    Science.gov (United States)

    Shin, Jongsoo; Olson, Roman; An, Soon-Il

    2018-02-01

    Climate change is expected to increase temperatures globally, and consequently more frequent, longer, and hotter heat waves are likely to occur. Ambiguity in defining heat waves appropriately makes it difficult to compare changes in heat wave events over time. This study provides a quantitative definition of a heat wave and makes probabilistic heat wave projections for the Korean Peninsula under two global warming scenarios. Changes to heat waves under global warming are investigated using the representative concentration pathway 4.5 (RCP4.5) and 8.5 (RCP8.5) experiments from 30 coupled models participating in phase five of the Coupled Model Inter-comparison Project. Probabilistic climate projections from multi-model ensembles have been constructed using both simple and weighted averaging. Results from both methods are similar and show that heat waves will be more intense, frequent, and longer lasting. These trends are more apparent under the RCP8.5 scenario as compared to the RCP4.5 scenario. Under the RCP8.5 scenario, typical heat waves are projected to become stronger than any heat wave experienced in the recent measurement record. Furthermore, under this scenario, it cannot be ruled out that Korea will experience heat wave conditions spanning almost an entire summer before the end of the 21st century.

  10. Ionospheric heating with oblique high-frequency waves

    International Nuclear Information System (INIS)

    Field, E.C. Jr.; Bloom, R.M.; Kossey, P.A.

    1990-01-01

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions

  11. Climate change scenarios of heat waves in Central Europe and their uncertainties

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan; Farda, Aleš

    2018-02-01

    The study examines climate change scenarios of Central European heat waves with a focus on related uncertainties in a large ensemble of regional climate model (RCM) simulations from the EURO-CORDEX and ENSEMBLES projects. Historical runs (1970-1999) driven by global climate models (GCMs) are evaluated against the E-OBS gridded data set in the first step. Although the RCMs are found to reproduce the frequency of heat waves quite well, those RCMs with the coarser grid (25 and 50 km) considerably overestimate the frequency of severe heat waves. This deficiency is improved in higher-resolution (12.5 km) EURO-CORDEX RCMs. In the near future (2020-2049), heat waves are projected to be nearly twice as frequent in comparison to the modelled historical period, and the increase is even larger for severe heat waves. Uncertainty originates mainly from the selection of RCMs and GCMs because the increase is similar for all concentration scenarios. For the late twenty-first century (2070-2099), a substantial increase in heat wave frequencies is projected, the magnitude of which depends mainly upon concentration scenario. Three to four heat waves per summer are projected in this period (compared to less than one in the recent climate), and severe heat waves are likely to become a regular phenomenon. This increment is primarily driven by a positive shift of temperature distribution, but changes in its scale and enhanced temporal autocorrelation of temperature also contribute to the projected increase in heat wave frequencies.

  12. Low-Frequency Waves in HF Heating of the Ionosphere

    Science.gov (United States)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  13. Should electric fans be used during a heat wave?

    Science.gov (United States)

    Jay, Ollie; Cramer, Matthew N; Ravanelli, Nicholas M; Hodder, Simon G

    2015-01-01

    Heat waves continue to claim lives, with the elderly and poor at greatest risk. A simple and cost-effective intervention is an electric fan, but public health agencies warn against their use despite no evidence refuting their efficacy in heat waves. A conceptual human heat balance model can be used to estimate the evaporative requirement for heat balance, the potential for evaporative heat loss from the skin, and the predicted sweat rate, with and without an electrical fan during heat wave conditions. Using criteria defined by the literature, it is clear that fans increase the predicted critical environmental limits for both the physiological compensation of endogenous/exogenous heat, and the onset of cardiovascular strain by an air temperature of ∼3-4 °C, irrespective of relative humidity (RH) for the young and elderly. Even above these critical limits, fans would apparently still provide marginal benefits at air temperatures as high as 51.1 °C at 10%RH for young adults and 48.1 °C at 10%RH for the elderly. Previous concerns that dehydration would be exacerbated with fan use do not seem likely, except under very hot (>40 °C) and dry (fans by a minor amount (∼20-30 mL/h). Relative to the peak outdoor environmental conditions reported during ten of the most severe heat waves in recent history, fan use would be advisable in all of these situations, even when reducing the predicted maximum sweat output for the elderly. The protective benefit of fans appears to be underestimated by current guidelines. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Warm vegetarians? Heat waves and diet shifts in tadpoles.

    Science.gov (United States)

    Carreira, B M; Segurado, P; Orizaola, G; Gonçalves, N; Pinto, V; Laurila, A; Rebelo, R

    2016-11-01

    Temperature can play an important role in determining the feeding preferences of ectotherms. In light of the warmer temperatures arising with the current climatic changes, omnivorous ectotherms may perform diet shifts toward higher herbivory to optimize energetic intake. Such diet shifts may also occur during heat waves, which are projected to become more frequent, intense, and longer lasting in the future. Here, we investigated how heat waves of different duration affect feeding preferences in omnivorous anuran tadpoles and how these choices affect larval life history. In laboratory experiments, we fed tadpoles of three species on animal, plant, or mixed diet and exposed them to short heat waves (similar to the heat waves these species experience currently) or long heat waves (predicted to increase under climate change). We estimated the dietary choices of tadpoles fed on the mixed diet using stable isotopes and recorded tadpole survival and growth, larval period, and mass at metamorphosis. Tadpole feeding preferences were associated with their thermal background, with herbivory increasing with breeding temperature in nature. Patterns in survival, growth, and development generally support decreased efficiency of carnivorous diets and increased efficiency or higher relative quality of herbivorous diets at higher temperatures. All three species increased herbivory in at least one of the heat wave treatments, but the responses varied among species. Diet shifts toward higher herbivory were maladaptive in one species, but beneficial in the other two. Higher herbivory in omnivorous ectotherms under warmer temperatures may impact species differently and further contribute to changes in the structure and function of freshwater environments. © 2016 by the Ecological Society of America.

  15. Projection of Heat Waves over China under Different Global Warming Targets

    Science.gov (United States)

    Guo, Xiaojun; Luo, Yong; Huang, Jianbin; Zhao, Zongci

    2015-04-01

    Global warming targets, which are determined in terms of global mean temperature increases relative to pre-industrial temperature levels, have been one of the heated issues recently. And the climate change (especially climate extremes) and its impacts under different targets have been paid extensive concerns. In this study, evaluation and projection of heat waves in China were carried out by five CMIP5 global climate models (GCMs) with a 0.5°×0.5° horizontal resolution which were derived from EU WATCH project. A new daily observed gridded dataset CN05.1 (0.5°×0.5°) was also used to evaluate the GCMs. And four indices (heat waves frequency, longest heat waves duration, heat waves days and high temperature days) were adopted to analyze the heat waves. Compared with the observations, the five GCMs and its Multi-Model Ensemble (MME) have a remarkable capacity of reproducing the spatial and temporal characteristic of heat waves. The time correlation coefficients between MME and the observation results can all reach 0.05 significant levels. Based on the projection data of five GCMs, both the median year of crossing 1.5°C, 2°C, 2.5°, 3°C, 3.5°C, 4°C, 4.5°C and 5°C global warming targets and the corresponding climate change over China were analyzed under RCP 4.5 and RCP 8.5 scenarios, respectively. The results show that when the global mean surface air temperature rise to different targets with respect to the pre-industrial times (1861-1880), the frequency and intensity of heat waves will increase dramatically. To take the high emission scenario RCP8.5 as an example, under the RCP8.5 scenario, the warming rate over China is stronger than that over the globe, the temperature rise(median year) over China projected by MME are 1.77°C(2025), 2.63°C(2039), 3.39°C(2050), 3.97°C(2060), 4.82°C(2070), 5.47°C(2079) and 6.2°C(2089) under 1.5°C, 2°C, 2.5°C, 3°C, 3.5°C, 4°C and 4.5°C global warming targets, respectively. With the increase of the global

  16. Review of lower hybrid wave heating and current drive

    International Nuclear Information System (INIS)

    Gormezano, C.

    1986-01-01

    Interaction of Lower Hybrid waves and plasmas is a very versatile method which has proven to be effective in a large range of applications: bulk ion heating, bulk electron heating, non inductive current drive. If the ratio between the mean velocity of HF induced fast particles and the thermal velocity of the bulk population is relatively small, effective bulk ion heating or bulk electron heating can occur via collisional transfer. If the above ratio is too large, fast ions, which have mainly a perpendicular energy, are poorly confined. Moreover they can be harmful for the discharge (impurities, etc...) since they are lost on the walls. In contrast, HF induced fast electrons gain essentially a parallel momentum from the wave. If unidirectional waves are launched, the dissymetry in electron distribution result in the obtention of an effective non inductive current

  17. Atmospheric aerosol variability above the Paris Area during the 2015 heat wave - Comparison with the 2003 and 2006 heat waves

    Science.gov (United States)

    Chazette, Patrick; Totems, Julien; Shang, Xiaoxia

    2017-12-01

    The aerosol layers during the heat wave of July 2015 over Paris Area have been studied using a N2-Raman lidar with co- and cross-polarized channels. The lidar observations are examined to allow the identification of main aerosol types and their origins, in synergy with measurements of the AERONET sunphotometer network and back trajectory studies from the HYSPLIT model. The results are compatible with spaceborne observations of MODIS and CALIOP. As for previous heat waves of August 2003 and July 2006 occurring in France, the aerosol optical thickness is very large, up to 0.8 at the lidar wavelength of 355 nm (between 0.5 and 0.7 at 550 nm). However, air mass trajectories highlight that the observed aerosol layers may have multiple and diverse origins during the 2015 heat wave (North America, Northwest Africa, Southern and Northern Europe). Biomass burning, pollution and desert dust aerosols have been identified, using linear particle depolarization ratio, lidar ratio and analysis of back trajectories initiated at the altitudes and arrival times of the plumes. These layers are elevated and are shown to have little impact on surface aerosol concentrations (PM10 < 40 μg m-3 or PM2.5 < 25 μg m-3) and therefore no influence on the local air quality during the 2015 heat wave, unlike in 2003 and 2006. However, they significantly modify the radiative budget by trapping part of the solar ingoing/outgoing fluxes, which leads to a mean aerosol radiative forcing close to +50 ± 17 Wm-2 per aerosol optical thickness unit at 550 nm (AOT550) for solar zenith angles between 55 and 75°, which are available from sunphotometer measurements. This value is smaller than those of the 2003 and 2006 heat waves, which are assessed to be +95 ± 13 and +70 ± 18 Wm-2/AOT550, respectively. The differences between the heat wave of 2015 and the others are mainly due to both the nature and the diversity of aerosols, as indicated by the dispersion of the single scattering albedo distributions at

  18. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach.

    Science.gov (United States)

    Pansch, Christian; Scotti, Marco; Barboza, Francisco R; Al-Janabi, Balsam; Brakel, Janina; Briski, Elizabeta; Bucholz, Björn; Franz, Markus; Ito, Maysa; Paiva, Filipa; Saha, Mahasweta; Sawall, Yvonne; Weinberger, Florian; Wahl, Martin

    2018-04-23

    Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.

  19. The Summers 2003 and 2015 in South-West Germany: Heat Waves and Heat-Related Mortality in the Context of Climate Change

    Directory of Open Access Journals (Sweden)

    Stefan Muthers

    2017-11-01

    Full Text Available After 2003, another hot summer took place in Western and Central Europe in 2015. In this study, we compare the characteristics of the two major heat waves of these two summers and their effect on the heat related mortality. The analysis is performed with focus on South-West Germany (Baden–Württemberg. With an additional mean summer mortality of +7.9% (2003 and +5.8% (2015 both years mark the top-two records of the summer mortality in the period 1968–2015. In each summer, one major heat wave contributed strongly to the excess summer mortality: In August 2003, daily mortality reached anomalies of +70% and in July 2015 maximum deviations of +56% were observed. The August 2003 heat wave was very long-lasting and characterized by exceptional high maximum and minimum temperatures. In July 2015, temperatures were slightly lower than in 2003, however, the high air humidity during the day and night, lead to comparable heat loads. Furthermore, the heat wave occurred earlier during the summer, when the population was less acclimated to heat stress. Using regional climate models we project an increasing probability for future 2003- and 2015-like heat waves already in the near future (2021–2050, with a 2015-like event occurring about every second summer. In the far future (2070–2099 pronounced increases with more than two 2015-like heat waves per summer are possible.

  20. Heat-Related Mortality in India: Excess All-Cause Mortality Associated with the 2010 Ahmedabad Heat Wave

    Science.gov (United States)

    Azhar, Gulrez Shah; Mavalankar, Dileep; Nori-Sarma, Amruta; Rajiva, Ajit; Dutta, Priya; Jaiswal, Anjali; Sheffield, Perry; Knowlton, Kim; Hess, Jeremy J.; Azhar, Gulrez Shah; Deol, Bhaskar; Bhaskar, Priya Shekhar; Hess, Jeremy; Jaiswal, Anjali; Khosla, Radhika; Knowlton, Kim; Mavalankar, Mavalankar; Rajiva, Ajit; Sarma, Amruta; Sheffield, Perry

    2014-01-01

    Introduction In the recent past, spells of extreme heat associated with appreciable mortality have been documented in developed countries, including North America and Europe. However, far fewer research reports are available from developing countries or specific cities in South Asia. In May 2010, Ahmedabad, India, faced a heat wave where the temperatures reached a high of 46.8°C with an apparent increase in mortality. The purpose of this study is to characterize the heat wave impact and assess the associated excess mortality. Methods We conducted an analysis of all-cause mortality associated with a May 2010 heat wave in Ahmedabad, Gujarat, India, to determine whether extreme heat leads to excess mortality. Counts of all-cause deaths from May 1–31, 2010 were compared with the mean of counts from temporally matched periods in May 2009 and 2011 to calculate excess mortality. Other analyses included a 7-day moving average, mortality rate ratio analysis, and relationship between daily maximum temperature and daily all-cause death counts over the entire year of 2010, using month-wise correlations. Results The May 2010 heat wave was associated with significant excess all-cause mortality. 4,462 all-cause deaths occurred, comprising an excess of 1,344 all-cause deaths, an estimated 43.1% increase when compared to the reference period (3,118 deaths). In monthly pair-wise comparisons for 2010, we found high correlations between mortality and daily maximum temperature during the locally hottest “summer” months of April (r = 0.69, pheat (May 19–25, 2010), mortality rate ratios were 1.76 [95% CI 1.67–1.83, pheat wave in Ahmedabad, Gujarat, India had a substantial effect on all-cause excess mortality, even in this city where hot temperatures prevail through much of April-June. PMID:24633076

  1. Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan

    Science.gov (United States)

    Nasim, Wajid; Amin, Asad; Fahad, Shah; Awais, Muhammad; Khan, Naeem; Mubeen, Muhammad; Wahid, Abdul; Turan, Veysel; Rehman, Muhammad Habibur; Ihsan, Muhammad Zahid; Ahmad, Shakeel; Hussain, Sajjad; Mian, Ishaq Ahmad; Khan, Bushra; Jamal, Yousaf

    2018-06-01

    Climate change has adverse effects at global, regional and local level. Heat wave events have serious contribution for global warming and natural hazards in Pakistan. Historical (1997-2015) heat wave were analyzed over different provinces (Punjab, Sindh and Baluchistan) of Pakistan to identify the maximum temperature trend. Heat accumulation in Pakistan were simulated by the General Circulation Model (GCM) combined with 3 GHG (Green House Gases) Representative Concentration Pathways (RCPs) (RCP-4.5, 6.0, and 8.5) by using SimCLIM model (statistical downscaling model for future trend projections). Heat accumulation was projected for year 2030, 2060, and 2090 for seasonal and annual analysis in Pakistan. Heat accumulation were projected to increase by the baseline year (1995) was represented in percentage change. Projection shows that Sindh and southern Punjab was mostly affected by heat accumulation. This study identified the rising trend of heat wave over the period (1997-2015) for Punjab, Sindh and Baluchistan (provinces of Pakistan), which identified that most of the meteorological stations in Punjab and Sindh are highly prone to heat waves. According to model projection; future trend of annual heat accumulation, in 2030 was increased 17%, 26%, and 32% but for 2060 the trends were reported by 54%, 49%, and 86% for 2090 showed highest upto 62%, 75%, and 140% for RCP-4.5, RCP-6.0, and RCP-8.5, respectively. While seasonal trends of heat accumulation were projected to maximum values for monsoon and followed by pre-monsoon and post monsoon. Heat accumulation in monsoon may affect the agricultural activities in the region under study.

  2. Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves

    Czech Academy of Sciences Publication Activity Database

    Urban, Aleš; Hanzlíková, Hana; Kyselý, Jan; Plavcová, Eva

    2017-01-01

    Roč. 14, č. 12 (2017), č. článku 1562. ISSN 1660-4601 R&D Projects: GA ČR(CZ) GA16-22000S Grant - others:AV ČR(CZ) MSM100421604 Program:Program na podporu mezinárodní spolupráce začínajících výzkumných pracovníků Institutional support: RVO:68378289 Keywords : heat-related mortality * heat-wave * excess heat factor * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Climatic research Impact factor: 2.101, year: 2016 http://www.mdpi.com/1660-4601/14/12/1562

  3. The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City

    Directory of Open Access Journals (Sweden)

    Jeffrey B. Basara

    2010-01-01

    Full Text Available During late July and early August 2008, an intense heat wave occurred in Oklahoma City. To quantify the impact of the urban heat island (UHI in Oklahoma City on observed and apparent temperature conditions during the heat wave event, this study used observations from 46 locations in and around Oklahoma City. The methodology utilized composite values of atmospheric conditions for three primary categories defined by population and general land use: rural, suburban, and urban. The results of the analyses demonstrated that a consistent UHI existed during the study period whereby the composite temperature values within the urban core were approximately 0.5∘C warmer during the day than the rural areas and over 2∘C warmer at night. Further, when the warmer temperatures were combined with ambient humidity conditions, the composite values consistently revealed even warmer heat-related variables within the urban environment as compared with the rural zone.

  4. Heat waves according to warm spell duration index in Slovakia during 1901-2016

    Science.gov (United States)

    Bochníček, Oliver; Faško, Pavel; Markovič, Ladislav

    2017-04-01

    A heat wave is a prolonged period of extremely high temperatures for a particular region. However, there exist no universal definitions for a heat wave as it is relative to a specific area and to a certain time of year. In fact, average temperatures in one region may be considered heat wave conditions in another. For instance, an average day in the Mediterranean would be regarded as heat wave conditions in Northern Europe. We have known that World Meteorological Organization definition of a heatwave which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5 °C, the normal period being 1961-1990". This rule has been accepted in contribution Heat waves and warm periods in Slovakia (Oliver Bochníček - Pavol Fa\\vsko - Ladislav Markovič) published (presented) in EGU 2016. To move on we have tried another criterion for heat waves evaluation (according to warm spell duration index, WSDI) and period since 1901 (1951) to 2016. Important for many sectors (hydrology, agriculture, transportation and tourism) is, that heat waves have been expected during the whole year and period, that is why it can have various impacts. Heat waves occurrence gave us interesting results especially after the 1990.

  5. Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events

    Science.gov (United States)

    Ballard, T.; Diffenbaugh, N. S.

    2016-12-01

    Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.

  6. CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A [Predictive Science Incorporated, 9990 Mesa Rim Rd. Suite 170, San Diego, CA 92121 (United States); Velli, Marco, E-mail: cdowns@predsci.com [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.

  7. Future Heat Waves In Asia

    Science.gov (United States)

    Eltahir, E. A. B.

    2017-12-01

    I will review recent work from my group on the impact of climate change on the intensity and frequency of heat waves in Asia. Our studies covered Southwest Asia, South Asia, East China, and the Maritime continent. In any of these regions, the risk associated with climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that the wet-bulb temperature is a useful variable to consider in describing the natural hazard from heat waves since it can be easily compared to the natural threshold that defines the upper limit on human survivability. Based on an ensemble of high resolution climate change simulations, we project extremes of wet-bulb temperature conditions in each of these four regions of Asia. We consider the business-as-usual scenario of future greenhouse gas emissions, as well as a moderate mitigation scenario. The results from these regions will be compared and lessons learned summarized.

  8. Influence of Gas-Liquid Interface on Temperature Wave of Pulsating Heat Pipe

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available The influence of the interface on the amplitude and phase of the temperature wave and the relationship between the attenuation of the temperature wave and the gas-liquid two-phase physical parameters are studied during the operation of the pulsating heat pipe. The numerical simulation shows that the existence of the phase interface changes the direction of the temperature gradient during the propagation of the temperature wave, which increases the additional “thermal resistance.” The relative size of the gas-liquid two-phase thermal conductivity affects the propagation direction of heat flow at phase interface directly. The blockage of the gas plug causes hysteresis in the phase of the temperature wave, the relative size of the gas-liquid two-phase temperature coefficient will gradually increase the phase of the temperature wave, and the time when the heat flow reaches the peak value is also advanced. The attenuation of the temperature wave is almost irrelevant to the absolute value of the density, heat capacity, and thermal conductivity of the gas-liquid two phases, and the ratio of the thermal conductivity of the gas-liquid two phases is related. When the temperature of the heat pipe was changed, the difference of heat storage ability between gas and liquid will lead to the phenomenon of heat reflux and becomes more pronounced with the increases of the temperature wave.

  9. Interactions between urban heat islands and heat waves

    Science.gov (United States)

    Zhao, Lei; Oppenheimer, Michael; Zhu, Qing; Baldwin, Jane W.; Ebi, Kristie L.; Bou-Zeid, Elie; Guan, Kaiyu; Liu, Xu

    2018-03-01

    Heat waves (HWs) are among the most damaging climate extremes to human society. Climate models consistently project that HW frequency, severity, and duration will increase markedly over this century. For urban residents, the urban heat island (UHI) effect further exacerbates the heat stress resulting from HWs. Here we use a climate model to investigate the interactions between the UHI and HWs in 50 cities in the United States under current climate and future warming scenarios. We examine UHI2m (defined as urban-rural difference in 2m-height air temperature) and UHIs (defined as urban-rural difference in radiative surface temperature). Our results show significant sensitivity of the interaction between UHI and HWs to local background climate and warming scenarios. Sensitivity also differs between daytime and nighttime. During daytime, cities in the temperate climate region show significant synergistic effects between UHI and HWs in current climate, with an average of 0.4 K higher UHI2m or 2.8 K higher UHIs during HWs than during normal days. These synergistic effects, however, diminish in future warmer climates. In contrast, the daytime synergistic effects for cities in dry regions are insignificant in the current climate, but emerge in future climates. At night, the synergistic effects are similar across climate regions in the current climate, and are stronger in future climate scenarios. We use a biophysical factorization method to disentangle the mechanisms behind the interactions between UHI and HWs that explain the spatial-temporal patterns of the interactions. Results show that the difference in the increase of urban versus rural evaporation and enhanced anthropogenic heat emissions (air conditioning energy use) during HWs are key contributors to the synergistic effects during daytime. The contrast in water availability between urban and rural land plays an important role in determining the contribution of evaporation. At night, the enhanced release of stored

  10. The 2006 California heat wave: impacts on hospitalizations and emergency department visits.

    Science.gov (United States)

    Knowlton, Kim; Rotkin-Ellman, Miriam; King, Galatea; Margolis, Helene G; Smith, Daniel; Solomon, Gina; Trent, Roger; English, Paul

    2009-01-01

    Climate models project that heat waves will increase in frequency and severity. Despite many studies of mortality from heat waves, few studies have examined morbidity. In this study we investigated whether any age or race/ethnicity groups experienced increased hospitalizations and emergency department (ED) visits overall or for selected illnesses during the 2006 California heat wave. We aggregated county-level hospitalizations and ED visits for all causes and for 10 cause groups into six geographic regions of California. We calculated excess morbidity and rate ratios (RRs) during the heat wave (15 July to 1 August 2006) and compared these data with those of a reference period (8-14 July and 12-22 August 2006). During the heat wave, 16,166 excess ED visits and 1,182 excess hospitalizations occurred statewide. ED visits for heat-related causes increased across the state [RR = 6.30; 95% confidence interval (CI), 5.67-7.01], especially in the Central Coast region, which includes San Francisco. Children (0-4 years of age) and the elderly (> or = 65 years of age) were at greatest risk. ED visits also showed significant increases for acute renal failure, cardiovascular diseases, diabetes, electrolyte imbalance, and nephritis. We observed significantly elevated RRs for hospitalizations for heat-related illnesses (RR = 10.15; 95% CI, 7.79-13.43), acute renal failure, electrolyte imbalance, and nephritis. The 2006 California heat wave had a substantial effect on morbidity, including regions with relatively modest temperatures. This suggests that population acclimatization and adaptive capacity influenced risk. By better understanding these impacts and population vulnerabilities, local communities can improve heat wave preparedness to cope with a globally warming future.

  11. Projections of Heat Waves Events in the Intra-Americas Region Using Multimodel Ensemble

    Directory of Open Access Journals (Sweden)

    Moises Angeles-Malaspina

    2018-01-01

    Full Text Available Significant accelerated warming of the Sea Surface Temperature of 0.15°C per decade (1982–2012 was recently detected, which motivated the research for the present consequences and future projections on the heat index and heat waves in the intra-Americas region. Present records every six hours are retrieved from NCEP reanalysis (1948–2015 to calculate heat waves changes. Heat index intensification has been detected in the region since 1998 and driven by surface pressure changes, sinking air enhancement, and warm/weaker cold advection. This regional warmer atmosphere leads to heat waves intensification with changes in both frequency and maximum amplitude distribution. Future projections using a multimodel ensemble mean for five global circulation models were used to project heat waves in the future under two scenarios: RCP4.5 and RCP8.5. Massive heat waves events were projected at the end of the 21st century, particularly in the RCP8.5 scenario. Consequently, the regional climate change in the current time and in the future will require special attention to mitigate the more intense and frequent heat waves impacts on human health, countries’ economies, and energy demands in the IAR.

  12. Health impacts of the July 2010 heat wave in Québec, Canada.

    Science.gov (United States)

    Bustinza, Ray; Lebel, Germain; Gosselin, Pierre; Bélanger, Diane; Chebana, Fateh

    2013-01-21

    One of the consequences of climate change is the increased frequency and intensity of heat waves which can cause serious health impacts. In Québec, July 2010 was marked by an unprecedented heat wave in recent history. The purpose of this study is to estimate certain health impacts of this heat wave. The crude daily death and emergency department admission rates during the heat wave were analyzed in relation to comparison periods using 95% confidence intervals. During the heat wave, the crude daily rates showed a significant increase of 33% for deaths and 4% for emergency department admissions in relation to comparison periods. No displacement of mortality was observed over a 60-day horizon. The all-cause death indicator seems to be sufficiently sensitive and specific for surveillance of exceedences of critical temperature thresholds, which makes it useful for a heat health-watch system. Many public health actions combined with the increased use of air conditioning in recent decades have contributed to a marked reduction in mortality during heat waves. However, an important residual risk remains, which needs to be more vigorously addressed by public health authorities in light of the expected increase in the frequency and severity of heat waves and the aging of the population.

  13. Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves

    International Nuclear Information System (INIS)

    Li, Dan; Sun, Ting; Liu, Maofeng; Yang, Long; Wang, Linlin; Gao, Zhiqiu

    2015-01-01

    Heat waves (HWs) are projected to become more frequent and last longer over most land areas in the late 21st century, which raises serious public health concerns. Urban residents face higher health risks due to synergies between HWs and urban heat islands (UHIs) (i.e., UHIs are higher under HW conditions). However, the responses of urban and rural surface energy budgets to HWs are still largely unknown. This study analyzes observations from two flux towers in Beijing, China and reveals significant differences between the responses of urban and rural (cropland) ecosystems to HWs. It is found that UHIs increase significantly during HWs, especially during the nighttime, implying synergies between HWs and UHIs. Results indicate that the urban site receives more incoming shortwave radiation and longwave radiation due to HWs as compared to the rural site, resulting in a larger radiative energy input into the urban surface energy budget. Changes in turbulent heat fluxes also diverge strongly for the urban site and the rural site: latent heat fluxes increase more significantly at the rural site due to abundant available water, while sensible heat fluxes and possibly heat storage increase more at the urban site. These comparisons suggest that the contrasting responses of urban and rural surface energy budgets to HWs are responsible for the synergies between HWs and UHIs. As a result, urban mitigation and adaption strategies such as the use of green roofs and white roofs are needed in order to mitigate the impact of these synergies. (letter)

  14. Thermal responses in a coronal loop maintained by wave heating mechanisms

    Science.gov (United States)

    Matsumoto, Takuma

    2018-05-01

    A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.

  15. Enhancement of ionic conductivity in stabilized zirconia ceramics under millimeter-wave irradiation heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Hayashi, Hidetaka

    2011-01-01

    Ionic conductivity in yttria-stabilized zirconia ceramics under millimeter-wave irradiation heating was compared with that obtained using conventional heating. The former was found to result in higher conductivity than the latter. Enhancement of the ionic conductivity and the reduction in activation energy seemed to depend on self-heating resulting from the millimeter-wave irradiation. Millimeter-wave irradiation heating restricted the degradation in conductivity accompanying over-substitution, suggesting the optimum structure that provided the maximum conductivity could be different between the two heating methods.

  16. Wave Heating of the Solar Chromosphere Wolfgang Kalkofen

    Indian Academy of Sciences (India)

    Abstract. The nonmagnetic interior of supergranulation cells has been thought since the 1940s to be heated by the dissipation of acoustic waves. But all attempts to measure the acoustic flux have failed to show suffi- cient energy for chromospheric heating. Recent space observations with. TRACE, for example, have found ...

  17. Spectral Effects on Fast Wave Core Heating and Current Drive

    International Nuclear Information System (INIS)

    Phillips, C.K.; Bell, R.E.; Berry, L.A.; Bonoli, P.T.; Harvey, R.W.; Hosea, J.C.; Jaeger, E.F.; LeBlanc, B.P.; Ryan, P.M.; Taylor, G.; Valeo, E.J.; Wilson, J.R.; Wright, J.C.; Yuh, H. and the NSTX Team

    2009-01-01

    Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations

  18. Health impacts of the July 2010 heat wave in Québec, Canada

    Directory of Open Access Journals (Sweden)

    Bustinza Ray

    2013-01-01

    Full Text Available Abstract Background One of the consequences of climate change is the increased frequency and intensity of heat waves which can cause serious health impacts. In Québec, July 2010 was marked by an unprecedented heat wave in recent history. The purpose of this study is to estimate certain health impacts of this heat wave. Methods The crude daily death and emergency department admission rates during the heat wave were analyzed in relation to comparison periods using 95% confidence intervals. Results During the heat wave, the crude daily rates showed a significant increase of 33% for deaths and 4% for emergency department admissions in relation to comparison periods. No displacement of mortality was observed over a 60-day horizon. Conclusions The all-cause death indicator seems to be sufficiently sensitive and specific for surveillance of exceedences of critical temperature thresholds, which makes it useful for a heat health-watch system. Many public health actions combined with the increased use of air conditioning in recent decades have contributed to a marked reduction in mortality during heat waves. However, an important residual risk remains, which needs to be more vigorously addressed by public health authorities in light of the expected increase in the frequency and severity of heat waves and the aging of the population.

  19. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil

    Science.gov (United States)

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A.; de Freitas, Clarice Umbelino; Bell, Michelle L.

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1 % (95 % confidence interval 4.7, 7.6 %) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6 % (6.2, 11.1 %) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.

  20. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil.

    Science.gov (United States)

    Son, Ji-Young; Gouveia, Nelson; Bravo, Mercedes A; de Freitas, Clarice Umbelino; Bell, Michelle L

    2016-01-01

    Understanding how weather impacts health is critical, especially under a changing climate; however, relatively few studies have investigated subtropical regions. We examined how mortality in São Paulo, Brazil, is affected by cold, heat, and heat waves over 14.5 years (1996-2010). We used over-dispersed generalized linear modeling to estimate heat- and cold-related mortality, and Bayesian hierarchical modeling to estimate overall effects and modification by heat wave characteristics (intensity, duration, and timing in season). Stratified analyses were performed by cause of death and individual characteristics (sex, age, education, marital status, and place of death). Cold effects on mortality appeared higher than heat effects in this subtropical city with moderate climatic conditions. Heat was associated with respiratory mortality and cold with cardiovascular mortality. Risk of total mortality was 6.1% (95% confidence interval 4.7, 7.6%) higher at the 99th percentile of temperature than the 90th percentile (heat effect) and 8.6% (6.2, 11.1%) higher at the 1st compared to the 10th percentile (cold effect). Risks were higher for females and those with no education for heat effect, and males for cold effect. Older persons, widows, and non-hospital deaths had higher mortality risks for heat and cold. Mortality during heat waves was higher than on non-heat wave days for total, cardiovascular, and respiratory mortality. Our findings indicate that mortality in São Paulo is associated with both cold and heat and that some subpopulations are more vulnerable.

  1. Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode

    Directory of Open Access Journals (Sweden)

    A. Parvazian

    2008-03-01

    Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.

  2. US Drought-Heat Wave Relationships in Past Versus Current Climates

    Science.gov (United States)

    Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.

    2017-12-01

    This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.

  3. Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India

    Science.gov (United States)

    Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.

    2016-05-01

    Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.

  4. The impact of heat waves on electricity spot markets

    International Nuclear Information System (INIS)

    Pechan, Anna; Eisenack, Klaus

    2014-01-01

    Thermoelectric power plants depend on cooling water drawn from water bodies. Low river run-off and/or high water temperatures limit a plant's production capacity. This problem may intensify with climate change. Our study quantifies the impact of forced capacity reductions on market prices, production costs, consumer and producer surplus, as well as emissions by means of a bottom-up power generation system model. First, we simulate the German electricity spot market during the heat wave of 2006. Then we conduct a sensitivity study that accounts for future climatic and technological conditions. We find an average price increase of 11% during the heat wave 2006, which is even more pronounced during times of peak demand. Production costs accumulate to an additional but moderate 16 m. Due to the price increase, producers gain from the heat wave, whereas consumers disproportionately bear the costs. Carbon emissions in the German electricity sector increase during the heat wave. The price and cost effects are more pronounced and increase significantly if assumptions on heat-sensitive demand, hydropower capacity, net exports, and capacity reductions are tightened. These are potential additional effects of climate change. Hence, if mitigation fails or is postponed globally, the impacts on the current energy system are very likely to rise. Increases in feed-in from renewable resources and demand-side management can counter the effects to a considerable degree. Countries with a shift toward a renewable energy supply can be expected to be much less susceptible to cooling water scarcity than those with a high share of nuclear and coal-fired power plants. - Highlights: • We quantify the impact of thermal capacity reductions on the electricity market. • German heat wave 2006 caused moderate rise in production costs. • Capacity reductions have substantial impact on prices and raise producer surplus. • Impacts on prices, production cost and surplus amplify under climate

  5. Hamiltonian study of the response of a tokamak plasma to the ion cyclotron heating wave: minor heating and current generation by the fast wave

    International Nuclear Information System (INIS)

    Becoulet, A.

    1990-06-01

    The role of additional Heatings, such as the Ion Cyclotron Heating, is to raise magnetic fusion plasmas to higher temperatures, to satisfy the ignition condition. The understanding of the wave absorption mechanisms by the plasma first requires a precise description of the particle individual trajectories. The Hamiltonian mechanics, through action-angle variables, allows this description, and makes the computation of the wave-particle interaction easier. We then derive a quantitative evaluation of the intrinsic stochasticity for ionic trajectories perturbated by the fast wave. This stochasticity, combinated to the collisional effects, gives the validity domain for a quasilinear approximation of the evolution equation. This equation is then written under a variational formulation, and solved semi-analytically. Results conclude to the importance of the Hamiltonian chaos in the formation of the deeply anisotropic distribution tails, encountered in minority heating scenarios. Direct interaction of the electrons and the fast wave is similarly analysed. The influence of the various parameters (wave spectrum, magnetic configuration, frequency,...) is then examined in order to optimize this scenario of fast wave current drive in tokamaks [fr

  6. The effect of heat waves on dairy cow mortality.

    Science.gov (United States)

    Vitali, A; Felici, A; Esposito, S; Bernabucci, U; Bertocchi, L; Maresca, C; Nardone, A; Lacetera, N

    2015-07-01

    This study investigated the mortality of dairy cows during heat waves. Mortality data (46,610 cases) referred to dairy cows older than 24mo that died on a farm from all causes from May 1 to September 30 during a 6-yr period (2002-2007). Weather data were obtained from 12 weather stations located in different areas of Italy. Heat waves were defined for each weather station as a period of at least 3 consecutive days, from May 1 to September 30 (2002-2007), when the daily maximum temperature exceeded the 90th percentile of the reference distribution (1971-2000). Summer days were classified as days in heat wave (HW) or not in heat wave (nHW). Days in HW were numbered to evaluate the relationship between mortality and length of the wave. Finally, the first 3 nHW days after the end of a heat wave were also considered to account for potential prolonged effects. The mortality risk was evaluated using a case-crossover design. A conditional logistic regression model was used to calculate odds ratio and 95% confidence interval for mortality recorded in HW compared with that recorded in nHW days pooled and stratified by duration of exposure, age of cows, and month of occurrence. Dairy cows mortality was greater during HW compared with nHW days. Furthermore, compared with nHW days, the risk of mortality continued to be higher during the 3 d after the end of HW. Mortality increased with the length of the HW. Considering deaths stratified by age, cows up to 28mo were not affected by HW, whereas all the other age categories of older cows (29-60, 61-96, and >96mo) showed a greater mortality when exposed to HW. The risk of death during HW was higher in early summer months. In particular, the highest risk of mortality was observed during June HW. Present results strongly support the implementation of adaptation strategies which may limit heat stress-related impairment of animal welfare and economic losses in dairy cow farm during HW. Copyright © 2015 American Dairy Science

  7. Heat-flow equation motivated by the ideal-gas shock wave.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  8. Heat driven thermoacoustic cooler based on traveling-standing wave

    International Nuclear Information System (INIS)

    Kang Huifang; Zhou Gang; Li Qing

    2010-01-01

    This paper presents a heat driven thermoacoustic cooler system without any moving part. It consists of a thermoacoustic engine and a thermoacoustic cooler, and the former is the driving source of the latter. Both the engine and the cooler are located in one loop tube coupled with a resonator tube, and the acoustic power produced by the engine is used to drive the cooler directly. Both regenerators of the engine and the cooler are located in the near region of the pressure antinode, and operate in traveling-standing wave phase region. In the engine's regenerator, both components of the standing wave and the traveling wave realize the conversion from heat to acoustic energy. This improves the efficiency of the engine. In the cooler's regenerator, both components of the traveling wave and the standing wave pump heat from the cold end. This improves the efficiency of the cooler. At the operating point with a mean pressure of 22 bar, helium as working gas, a frequency of 234 Hz, and a heating power of 300 W, the experimental cooler provides a no-load temperature of -30 deg. C and a cooling power of 40 W at the cooling temperature of 0 deg. C. The total length of this cooler system is less than 1 m, which shows a good prospect for the domestic cooler system in room-temperature cooling such as food refrigeration and air-conditioning.

  9. Evaluation of major heat waves' mechanisms in EURO-CORDEX RCMs over Central Europe

    Science.gov (United States)

    Lhotka, Ondřej; Kyselý, Jan; Plavcová, Eva

    2018-06-01

    The main aim of the study is to evaluate the capability of EURO-CORDEX regional climate models (RCMs) to simulate major heat waves in Central Europe and their associated meteorological factors. Three reference major heat waves (1994, 2006, and 2015) were identified in the E-OBS gridded data set, based on their temperature characteristics, length and spatial extent. Atmospheric circulation, precipitation, net shortwave radiation, and evaporative fraction anomalies during these events were assessed using the ERA-Interim reanalysis. The analogous major heat waves and their links to the aforementioned factors were analysed in an ensemble of EURO-CORDEX RCMs driven by various global climate models in the 1970-2016 period. All three reference major heat waves were associated with favourable circulation conditions, precipitation deficit, reduced evaporative fraction and increased net shortwave radiation. This joint contribution of large-scale circulation and land-atmosphere interactions is simulated with difficulties in majority of the RCMs, which affects the magnitude of modelled major heat waves. In some cases, the seemingly good reproduction of major heat waves' magnitude is erroneously achieved through extremely favourable circulation conditions compensated by a substantial surplus of soil moisture or vice versa. These findings point to different driving mechanisms of major heat waves in some RCMs compared to observations, which should be taken into account when analysing and interpreting future projections of these events.

  10. Quantification of the heat wave effect on mortality in nine French cities during summer 2006.

    Science.gov (United States)

    Pascal, Mathilde; Le Tertre, Alain; Saoudi, Abdessattar

    2012-02-23

    July 2006 was the first major heat wave in France after the creation of a heat prevention plan. Understanding its impacts on health will help improving the efficiency of this plan. We assessed the mortality impact of the heat wave, and investigated the influence of the heat prevention plan. The study focused on nine French cities. A Poisson regression model was used to analyze the correlation between temperature, air quality and mortality. An additional spline of time was introduced to capture an additional heat wave effect. Heat-action days defined by the prevention plan were introduced as a dummy variable. 411 extra deaths were observed in the nine cities during the 2006 heat wave. Unlike the 2003 heat wave, no additional heat wave effect was observed in 2006. The maximum daily relative risk of mortality varied from 1.45 in Strasbourg (IC 95% [1.01-2.08]) to 1.04 in Lille (IC 95% [0.92-1.18]). The impact on mortality of the implementation of heat-action days was non-significant and highly variable depending on the cities, with a combined excess of relative risk of -3.3% (IC 95% [-10.3%; 4.4%]). Although no specific heat wave effect was observed, warm temperatures and air pollution were still responsible for a significant excess mortality in France. The absence of a specific heat wave effect may be partly explained by the prevention plan. It may also indicate that higher temperatures are required to observe a mortality outburst.

  11. Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak

    International Nuclear Information System (INIS)

    Okamoto, M.; Ono, M.

    1985-11-01

    Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced

  12. Numerical investigation of heat transfer effects in small wave rotor

    International Nuclear Information System (INIS)

    Deng, Shi; Okamoto, Koji; Teramoto, Susumu

    2015-01-01

    Although a wave rotor is expected to enhance the performance of the ultra-micro gas turbine, the device itself may be affected by downsizing. Apart from the immediate effect of viscosity on flow dynamics when downscaled, the effects of heat transfer on flow field increase at such small scales. To gain an insight into the effects of heat transfer on the internal flow dynamics, numerical investigations were carried out with adiabatic, isothermal and conjugate heat transfer boundary treatments at the wall, and the results compared and discussed in the present study. With the light shed by the discussion of adiabatic and conjugate heat transfer boundary treatments, this work presents investigations of the heat flux distributions, as well as the effects of heat transfer on the internal flow dynamics and the consequent charging and discharging processes for various sizes. When heat transfer is taken into account, states of fluid in the cell before compression process varies, shock waves in compression process are found to be weaker, and changes in the charging and discharging processes are observed. Heat transfer differences between conjugate heat transfer boundary treatment and isothermal boundary treatment are addressed through comparisons of local wall temperature and heat flux. As a result, the difference in discharging temperature of high pressure fluid is noticeable in all sizes investigated, and the rapid increase of differences between results of isothermal and conjugate heat transfer boundary treatment in small size reveals that for certain small sizes (length of cell < 23 mm) the thermal boundary treatment should be taken care of.

  13. Attributing anthropogenic impact on regional heat wave events using CAM5 model large ensemble simulations

    Science.gov (United States)

    Lo, S. H.; Chen, C. T.

    2017-12-01

    Extreme heat waves have serious impacts on society. It was argued that the anthropogenic forcing might substantially increase the risk of extreme heat wave events (e.g. over western Europe in 2003 and over Russia in 2010). However, the regional dependence of such anthropogenic impact and the sensitivity of the attributed risk to the definition of heat wave still require further studies. In our research framework, the change in the frequency and severity of a heat wave event under current conditions is calculated and compared with the probability and magnitude of the event if the effects of particular external forcing, such as due to human influence, had been absent. In our research, we use the CAM5 large ensemble simulation from the CLIVAR C20C+ Detection and Attribution project (http://portal.nersc.gov/c20c/main.html, Folland et al. 2014) to detect the heat wave events occurred in both historical all forcing run and natural forcing only run. The heat wave events are identified by partial duration series method (Huth et al., 2000). We test the sensitivity of heat wave thresholds from daily maximum temperature (Tmax) in warm season (from May to September) between 1959 and 2013. We consider the anthropogenic effect on the later period (2000-2013) when the warming due to human impact is more evident. Using Taiwan and surrounding area as our preliminary research target, We found the anthropogenic effect will increase the heat wave day per year from 30 days to 75 days and make the mean starting(ending) day for heat waves events about 15-30 days earlier(later). Using the Fraction of Attribution Risk analysis to estimate the risk of frequency of heat wave day, our results show the anthropogenic forcing very likely increase the heat wave days over Taiwan by more than 50%. Further regional differences and sensitivity of the attributed risk to the definition of heat wave will be compared and discussed.

  14. Efficient heat generation in large-area graphene films by electromagnetic wave absorption

    Science.gov (United States)

    Kang, Sangmin; Choi, Haehyun; Lee, Soo Bin; Park, Seong Chae; Park, Jong Bo; Lee, Sangkyu; Kim, Youngsoo; Hong, Byung Hee

    2017-06-01

    Graphene has been intensively studied due to its outstanding electrical and thermal properties. Recently, it was found that the heat generation by Joule heating of graphene is limited by the conductivity of graphene. Here we suggest an alternative method to generate heat on a large-area graphene film more efficiently by utilizing the unique electromagnetic (EM) wave absorption property of graphene. The EM wave induces an oscillating magnetic moment generated by the orbital motion of moving electrons, which efficiently absorbs the EM energy and dissipate it as a thermal energy. In this case, the mobility of electron is more important than the conductivity, because the EM-induced diamagnetic moment is directly proportional to the speed of electron in an orbital motion. To control the charge carrier mobility of graphene we functionalized substrates with self-assembled monolayers (SAM). As the result, we find that the graphene showing the Dirac voltage close to zero can be more efficiently heated by EM waves. In addition, the temperature gradient also depends on the number of graphene. We expect that the efficient and fast heating of graphene films by EM waves can be utilized for smart heating windows and defogging windshields.

  15. The great 2006 heat wave over California and Nevada: Signal of an increasing trend

    Science.gov (United States)

    Gershunov, A.; Cayan, D.R.; Iacobellis, S.F.

    2009-01-01

    Most of the great California-Nevada heat waves can be classified into primarily daytime or nighttime events depending on whether atmospheric conditions are dry or humid. A rash of nighttime-accentuated events in the last decade was punctuated by an unusually intense case in July 2006, which was the largest heat wave on record (1948-2006). Generally, there is a positive trend in heat wave activity over the entire region that is expressed most strongly and clearly in nighttime rather than daytime temperature extremes. This trend in nighttime heat wave activity has intensified markedly since the 1980s and especially since 2000. The two most recent nighttime heat waves were also strongly expressed in extreme daytime temperatures. Circulations associated with great regional heat waves advect hot air into the region. This air can be dry or moist, depending on whether a moisture source is available, causing heat waves to be expressed preferentially during day or night. A remote moisture source centered within a marine region west of Baja California has been increasing in prominence because of gradual sea surface warming and a related increase in atmospheric humidity. Adding to the very strong synoptic dynamics during the 2006 heat wave were a prolonged stream of moisture from this southwestern source and, despite the heightened humidity, an environment in which afternoon convection was suppressed, keeping cloudiness low and daytime temperatures high. The relative contributions of these factors and possible relations to global warming are discussed. ?? 2009 American Meteorological Society.

  16. Impact of the 2011 heat wave on mortality and emergency department visits in Houston, Texas.

    Science.gov (United States)

    Zhang, Kai; Chen, Tsun-Hsuan; Begley, Charles E

    2015-01-27

    Heat waves have been linked to increased risk of mortality and morbidity, and are projected to increase in frequency and intensity in a changing climate. Houston and other areas in Texas experienced an exceptional heat wave in the summer of 2011 producing the hottest August on record. This study aims to assess the health-related impact of this heat wave. Distributed lag models were used to estimate associations between the 2011 heat wave and all-cause mortality and emergency department (ED) visits from May 1 through September 30 for the five-year period 2007-2011. The 2011 heat wave is defined as a continuous period from August 2 through 30, 2011 according to the heat advisories issued by the local National Weather Service office, and is included in the models as a dummy variable. We compared the estimated excess risk among the models with and without adjustment of continuous temperature and ozone. The 2011 heat wave in Houston was associated with a 3.6% excess risk in ED visits (95% CI: 0.6%, 6.6%) and 0.6% increase in mortality risk (95% CI: -5.5%, 7.1%). The elderly over 65 years of age were at the greatest risk in ED visits. These patterns are consistent across different heat-wave definitions, and results are similar when adjusting for continuous temperature and ozone. The 2011 heat wave in Houston had a substantial impact on ED visits and no significant impact on mortality. Our findings provide insights into local heat-wave and health preparations and interventions.

  17. Mapping heat wave risk in the UK: Proactive planning for the 2050s

    Science.gov (United States)

    Oven, Katie; Reaney, Sim; Ohlemüller, Ralf; Nodwell, Sarah; Curtis, Sarah; Riva, Mylène; Dunn, Christine; Val, Dimitri; Burkhard, Roland

    2010-05-01

    Climate change projections suggest an increased frequency of heat waves in the UK over the coming decades. Such extreme events pose a serious threat to human health and are likely to impact upon health and social care systems and the infrastructures supporting them. This stress will result from both increased demands upon healthcare services and the ability of the infrastructure to cope, such as sufficient climate control in hospitals. Certain sectors of the population, such as older people, have an increased susceptibility to heat waves and hence are the focus of this research. There is no universal definition of a heat wave, reflecting the acclimatisation of a population. Based on a review of the literature, this research therefore sets out a series of working definitions of a heat wave in the UK context from a human health perspective. Drawing on these definitions, the UK heat wave hazard was mapped for the 2050s (2040-2069) using daily minimum and maximum temperature data derived from the UKCP09 Weather Generator at 50 km resolution. The analysis was undertaken for the three different greenhouse gas emissions scenarios within UKCP09 (low, medium and high). Hot spots of increased heat wave risk were identified and comparisons made between the various model outputs. These data were then combined with demographic forecasts for the 2050s enabling the identification of areas with an ageing population. Results are presented showing the scale of the projected change in heat wave risk across the UK and the location of older people. These results will be used in proactive planning to help policymakers and practitioners respond more appropriately to the needs of vulnerable populations in the coming decades. Key words: climate change; heat wave; risk mapping; vulnerability; risk reduction.

  18. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany

    International Nuclear Information System (INIS)

    Gabriel, Katharina M.A.; Endlicher, Wilfried R.

    2011-01-01

    In large cities such as Berlin, human mortality rates increase during intense heat waves. Analysis of relevant data from north-eastern Germany revealed that, during the heat waves that occurred between 1990 and 2006, health risks were higher for older people in both rural and urban areas, but that, during the two main heat waves within that 17-year period of time, the highest mortality rates were from the city of Berlin, and in particular from its most densely built-up districts. Adaptation measures will need to be developed, particularly within urban areas, in order to cope with the expected future intensification of heat waves due to global climate change. - Highlights: → Periods of heat stress enhance mortality rates in Berlin and Brandenburg. → Heat-related mortality is an urban as well as a rural problem. → During extreme events highest mortality rates can be found in the city centre. → Mortality rates correlate well with the distribution of sealed surfaces. → Health risks are higher for older than for younger people. - During periods of severe heat stress the pattern of mortality rates in Berlin and Brandenburg was found to correlate well with the distribution of sealed surfaces.

  19. Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia

    Science.gov (United States)

    Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas

    2016-01-01

    Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.

  20. The Ion Cyclotron, Lower Hybrid, and Alfven Wave Heating Methods

    International Nuclear Information System (INIS)

    Koch, R.

    2004-01-01

    This lecture covers the practical features and experimental results of the three heating methods. The emphasis is on ion cyclotron heating. First, we briefly come back to the main non-collisional heating mechanisms and to the particular features of the quasilinear coefficient in the ion cyclotron range of frequencies (ICRF). The specific case of the ion-ion hybrid resonance is treated, as well as the polarisation issue and minority heating scheme. The various ICRF scenarios are reviewed. The experimental applications of ion cyclotron resonance heating (ICRH) systems are outlined. Then, the lower hybrid and Alfven wave heating and current drive experimental results are covered more briefly. Where applicable, the prospects for ITER are commented

  1. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models

    Science.gov (United States)

    Guo, Xiaojun; Huang, Jianbin; Luo, Yong; Zhao, Zongci; Xu, Ying

    2017-05-01

    Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961-2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.

  2. A comparative analysis of heat waves and associated mortality in St. Louis, Missouri--1980 and 1995.

    Science.gov (United States)

    Smoyer, K E

    1998-08-01

    This research investigates heat-related mortality during the 1980 and 1995 heat waves in St. Louis, Missouri. St. Louis has a long history of extreme summer weather, and heat-related mortality is a public health concern. Heat waves are defined as days with apparent temperatures exceeding 40.6 degrees C (105 degrees F). The study uses a multivariate analysis to investigate the relationship between mortality and heat wave intensity, duration, and timing within the summer season. The heat wave of 1980 was more severe and had higher associated mortality than that of 1995. To learn if changing population characteristics, in addition to weather conditions, contributed to this difference, changes in population vulnerability between 1980 and 1995 are evaluated under simulated heat wave conditions. The findings show that St. Louis remains at risk of heat wave mortality. In addition, there is evidence that vulnerability has increased despite increased air-conditioning penetration and public health interventions.

  3. Factors contributing to record-breaking heat waves over the Great Plains during the 1930s Dust Bowl

    Science.gov (United States)

    Cowan, T.; Hegerl, G. C.

    2016-12-01

    Record-breaking summer heat waves that plagued contiguous United States in the 1930s emerged during the decade-long "Dust Bowl" drought. Using high-quality daily temperature observations, the Dust Bowl heat wave characteristics for the Great Plains are assessed using metrics that describe variations in heat wave activity and intensity. We also quantify record-breaking heat waves over the pre-industrial period for 22 CMIP5 model multi-century realisations. The most extreme Great Plains heat wave summers in the Dust Bowl decade (e.g. 1931, 1934, 1936) were pre-conditioned by anomalously dry springs, as measured by proxy drought indices. In general, summer heat waves over the Great Plains develop 15-20 days earlier after anomalously dry springs, and are also significantly longer and hotter, indicative of the importance of land surface feedbacks in heat wave intensification. The majority of pre-industrial climate model experiments capture regionally clustered summer heat waves across North America, although the North Pacific and Atlantic sea surface temperature patterns associated with the heat waves vary considerably between models. Sea surface temperature patterns may be more important for influencing winter and spring precipitation, thus amplifying summer heat waves during drought periods. The synoptic pattern that commonly appeared during the exceptional Dust Bowl heat waves featured an anomalous broad surface pressure ridge straddling an upper level blocking anticyclone over the western United States. This forced significant subsidence and adiabatic warming over the Great Plains, and triggered anomalous southward warm advection over southern regions, prolonging and amplifying the heat waves over central United States. Importantly, the results show that despite the sparsity of stations in the 1930s, homogeneous observations are crucial in accurately quantifying the Dust Bowl decade heat waves, as opposed to solely relying on atmospheric reanalysis.

  4. Heat wave experiments on the W7-AS stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Erckmann, V.; Gasparino, U.; Giannone, L.; Maassberg, H.; Tutter, M.

    1993-01-01

    Power modulation with well localized ECRH power deposition at both 70 and 140 GHz, has been used to generate temperature perturbations which propagate away from the deposition region. Radiometry of the ECE is used to diagnose the generated temperature perturbation as a function of distance to the deposition zone. The decay of the amplitude and the delay of the wave provide the information to determine the electron thermal diffusivity. This value is then compared with the one derived from a global power balance. It is found that both values agree with the error bars. The technique has also been applied in recent experiments during L-H-mode transitions in W7-AS demonstrating a significant reduction in the effective heat diffusivity in the plasma core during the H-phase. The modulated ECRH causes a modulation of the Shafranov shift. Interference of the prompt shift with the heat wave results in an apparent asymmetry of the decay length of the heat wave with respect to the plasma centre. (orig.)

  5. Role of soil moisture vs. recent climate change for heat waves in western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, Rene; Seneviratne, Sonia

    2015-04-01

    Using the framework of event attribution, anthropogenic climate change was found to have a discernible influence on the occurence-probability of heat waves, such as the one in Russia in 2010. Soil moisture, on the other hand, is an important physical driver for heat waves as its availability has a large influence on the partitioning of the available surface net radiation into latent and sensible heat flux. The presented study investigates the relative importance of both controls, soil moisture and increasing greenhouse gas concentrations, on heat waves in the region of the 2010 Russian heat wave. This is done with a large number of ensemble members from climate simulations with and without interactive soil moisture for both, the 2000s and the 1960s. The simualtions allow to determine the occurence-probability of heat waves with and without the soil moisture-temperature feedback and to compare it to the change caused by climate change. Thereby, we expect to see the largest effect on daytime maximum temperatures (TXx) and a smaller influence of soil moisture on the mean temperatures and cold extremes.

  6. Impacts of urban growth and heat waves events on the urban heat island in Bucharest city

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Dida, Adrian I.

    2016-10-01

    This study investigated the influences of urban growth and heat waves events on Urban Heat Island in relationship with several biophysical variables in Bucharest metropolitan area of Romania through satellite and in-situ monitoring data. Remote sensing data from Landsat TM/ETM+ and time series MODIS Terra/Aqua sensors have been used to assess urban land cover- temperature interactions over period between 2000 and 2016 years. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters (surface albedo, precipitations, wind intensity and direction) have been analyzed. Results show that in the metropolitan area ratio of impervious surface in Bucharest increased significantly during investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  7. Electron thermal conductivity from heat wave propagation in Wendelstein 7-AS

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Erckmann, V; Gasparino, U; Hartfuss, H J; Kuehner, G; Maassberg, H; Stroth, U; Tutter, M [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); W7-AS Team; ECRH Group IPF Stuttgart; Gyrotron Group KFK Karlsruhe

    1992-11-01

    Heat wave propagation experiments have been carried out on the Wendelstein 7-AS stellarator. The deposition of electron cyclotron resonance heating power is highly localized in the plasma centre, so that power modulation produces heat waves which propagate away from the deposition volume. Radiometry of the electron cyclotron emission is used to measure the generated temperature perturbation. The propagation time delay of the temperature perturbation as a function of distance to the power deposition region is used to determine the electron thermal conductivity [chi][sub e]. This value is then compared with the value determined by global power balance. In contrast to sawtooth propagation experiments in tokamaks, it is found that the value of [chi][sub e] from heat wave propagation is comparable to that calculated by power balance. In addition, inward propagating waves were produced by choosing a power deposition region away from the plasma centre. Experiments were carried out at 70 GHz in the ordinary mode and at 140 GHz in the extraordinary mode. Variations of the modulation power amplitude have demonstrated that the inferred value of [chi][sub e] is independent of the amplitude of the induced temperature perturbations. (author). 29 refs, 11 figs, 5 tabs.

  8. Ambient temperature and added heat wave effects on hospitalizations in California from 1999 to 2009.

    Science.gov (United States)

    Sherbakov, Toki; Malig, Brian; Guirguis, Kristen; Gershunov, Alexander; Basu, Rupa

    2018-01-01

    Investigators have examined how heat waves or incremental changes in temperature affect health outcomes, but few have examined both simultaneously. We utilized distributed lag nonlinear models (DLNM) to explore temperature associations and evaluate possible added heat wave effects on hospitalizations in 16 climate zones throughout California from May through October 1999-2009. We define heat waves as a period when daily mean temperatures were above the zone- and month-specific 95th percentile for at least two consecutive days. DLNMs were used to estimate climate zone-specific non-linear temperature and heat wave effects, which were then combined using random effects meta-analysis to produce an overall estimate for each. With higher temperatures, admissions for acute renal failure, appendicitis, dehydration, ischemic stroke, mental health, non-infectious enteritis, and primary diabetes were significantly increased, with added effects from heat waves observed for acute renal failure and dehydration. Higher temperatures also predicted statistically significant decreases in hypertension admissions, respiratory admissions, and respiratory diseases with secondary diagnoses of diabetes, though heat waves independently predicted an added increase in risk for both respiratory types. Our findings provide evidence that both heat wave and temperature exposures can exert effects independently. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mortality during heat waves in South Korea, 1991 to 2005: How exceptional was the 1994 heat wave?

    Czech Academy of Sciences Publication Activity Database

    Kyselý, Jan; Kim, J.

    2009-01-01

    Roč. 38, č. 2 (2009), s. 105-116 ISSN 0936-577X R&D Projects: GA ČR GC205/07/J044 Institutional research plan: CEZ:AV0Z30420517 Keywords : heat wave * human mortality * East Asia * extreme events * climate change Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.250, year: 2009

  10. Thermal Conditions in the City of Poznań (Poland during Selected Heat Waves

    Directory of Open Access Journals (Sweden)

    Marek Półrolniczak

    2018-01-01

    Full Text Available The aim of the study was to characterise the occurrence of hot days and heat waves in Poznań in the 1966–2015 period, as well as to describe the thermal conditions in the city during selected heat waves between 2008 and 2015. The basis of the study was the daily maximum and minimum air temperature values for Poznań–Ławica station from 1966–2015 and the daily values of air temperature from eight measuring points located in the city in various land types from 2008 to 2015. A hot day was defined as a day with Tmax above the 95th annual percentile (from 1966 to 2015, while a heat wave was assumed to be at least five consecutive hot days. The research study conducted shows the increase of Tmax, number of hot days and frequency of heat waves in Poznań over the last 50 years. Across the area of the city (differentiation of urban area types according to Urban Atlas 2012, there was a great diversity of thermal conditions during the heat waves analysed.

  11. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Gates, D.; Hosea, J.; Le Blanc, B.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Rosenberg, A.; Bonoli, P.; Mau, T.K.; Pinsker, R.I.; Raman, R.; Ryan, P.; Swain, D.; Wilgen, J.

    2003-01-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge

  12. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T.K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C.K.; Pinsker, R.I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-01-01

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge

  13. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation. [ECRH (Electron Cyclotron Resonance Heating)

    Energy Technology Data Exchange (ETDEWEB)

    Erckmann, V; Gasparino, U; Giannone, L. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)) (and others)

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a[<=]18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T[sub e] modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs.

  14. Test of a new heat-flow equation for dense-fluid shock waves.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  15. Ion Bernstein wave heating in a multi-component plasma

    International Nuclear Information System (INIS)

    Puri, S.

    1980-10-01

    Conditions for the coupling and absorption of Gross-Bernstein ion-cyclotron waves in a multi-component plasma are examined. Two cases are distinguished depending upon whether, the antenna initially launches, (i) the quasi-torsional slow electromagnetic wave with azimuthal magnetic field (TM) polarization, or (ii) the quasi-compressional fast wave with the electric field oriented azimuthally (TE). Analytic expressions for the plasma surface impedance are derived taking into account the pertinent warm plasma modifications near the vacuum-plasma interface. Antenna configurations capable of efficient coupling of the radio frequency energy to these modes are studied. A method for simulating waveguide like launching using transmission lines is pointed out. It is found that impurity concentrations exceeding a few parts in a thousand are capable of competing with the bulk ions in the energy absorption processes; this could lead to energy deposition near the plasma edge. Measures for avoiding edge heating problems by a careful choice of parameters e.g. restricting the heating frequency to the fundamental ion gyrofrequency are outlined. Equal care is to be exercised in limiting the nsub(z) spectrum to low discrete values in order to avoid the potentially dangerous problem of runaway electron heating. (orig.)

  16. Analysis of a Community-based Intervention to Reduce Heat-related Illness during Heat Waves in Licheng, China: a Quasi-experimental Study.

    Science.gov (United States)

    Li, Jing; Xu, Xin; Wang, Jun; Zhao, Yun; Song, Xiu Ping; Liu, Zhi Dong; Cao, Li Na; Jiang, Bao Fa; Liu, Qi Yong

    2016-11-01

    To reduce health-related threats of heat waves, interventions have been implemented in many parts of the world. However, there is a lack of higher-level evidence concerning the intervention efficacy. This study aimed to determine the efficacy of an intervention to reduce the number of heat-related illnesses. A quasi-experimental design was employed by two cross-sectional surveys in the year 2014 and 2015, including 2,240 participants and 2,356 participants, respectively. Each survey was designed to include one control group and one intervention group, which conducted in Licheng, China. A representative sample was selected using a multistage sampling method. Data, collected from questionnaires about heat waves in 2014 and 2015, were analyzed using a difference-in-difference analysis and cost effectiveness analysis. Outcomes included changes in the prevalence of heat-related illnesses and cost-effectiveness variables. Relative to the control participants, the prevalence of heat-related illness in the intervention participants decreased to a greater extent in rural areas than in urban areas (OR=0.495 vs. OR=1.281). Moreover, the cost-effectiveness ratio in the intervention group was less than that in the control group (US$15.06 vs. US$15.69 per participant). Furthermore, to avoid one additional patient, the incremental cost-effectiveness ratio showed that an additional US$14.47 would be needed for the intervention compared to when no intervention was applied. The intervention program may be considered a worthwhile investment for rural areas that are more likely to experience heat waves. Meanwhile, corresponding improving measures should be presented towards urban areas. Future research should examine whether the intervention strategies could be spread out in other domestic or international regions where heat waves are usually experienced. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Predictability and Spatial Characteristics of New-York-City-Area Heat Waves

    Science.gov (United States)

    Raymond, C.; Horton, R. M.

    2016-12-01

    The origins, characteristics, and predictability of extreme heat waves in the Northeast U.S. are simultaneously examined at multiple scales, using hourly observational data from 1948-2014 and focusing in particular on the region surrounding New York City. A novel definition of heat waves - incorporating both temperature and moisture at hourly resolution - is used to identify 3-to-5-day heat waves whose dynamics are then analyzed from 3 weeks prior to 3 weeks subsequent to the event. Inter-event differences in dynamics such as the strength and position of geopotential-height anomalies; the strength, persistence, and orientation of sea breezes; and the dominant 850-hPa wind azimuth, all of which are filtered via local terrain and land-use to create differences in conditions between events at specific locations. In particular, using composite maps and back trajectories, they are found to play an important role in creating mesoscale differences in low-level moisture content, from one side of the metropolitan area to the other. Evidence is presented supporting the influence of coastline orientation in explaining the differences in the relationships between wind azimuth and temperature & moisture advection between New York City proper and northern New Jersey. Self-organizing maps are employed to classify heat waves based on the small-scale differences in temperature and moisture between events, and the results of this classification are then used in correlations with synoptic- and hemispheric-scale geopotential-height anomalies. Considerable predictability of event type on the small-scale (as well as occurrence of a heat wave of any kind) is found, originating primarily from central Pacific and western Atlantic SSTs.

  18. Tokamak wave coupling and heating in the ICRF

    International Nuclear Information System (INIS)

    Romero, H.; Scharer, J.; Sund, R.

    1983-01-01

    The authors consider wave propagation in the vicinity of the Ion Cyclotron Range of Frequencies (ICRF) in general tokamak geometries. The problem of wave coupling by means of waveguides is addressed. In particular, the reflection coefficient for a simple TE 10 waveguide is obtained by taking into account both the z and y spectrum of the launcher. In order to take into account spatial gradients in the plasma medium, they use a one-dimensional slab model of the plasma. Good coupling and heating results are obtained for the first few harmonics for sufficiently weak edge density gradient and > about 1 keV core temperatures. To analyze the heating of the plasma interior in the presence of ICRF, a 2-D differential equation is being developed which takes into account spatial gradients and mode coupling

  19. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    Science.gov (United States)

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  20. Improved heat transfer modeling of the eye for electromagnetic wave exposures.

    Science.gov (United States)

    Hirata, Akimasa

    2007-05-01

    This study proposed an improved heat transfer model of the eye for exposure to electromagnetic (EM) waves. Particular attention was paid to the difference from the simplified heat transfer model commonly used in this field. From our computational results, the temperature elevation in the eye calculated with the simplified heat transfer model was largely influenced by the EM absorption outside the eyeball, but not when we used our improved model.

  1. Dynamical effects of vegetation on the 2003 summer heat waves

    Science.gov (United States)

    Stéfanon, M.

    2012-04-01

    Dynamical effects of vegetation on the 2003 summer heat waves Marc Stéfanon(1), Philippe Drobinski(1), Fabio D'Andrea(1), Nathalie de Noblet(2) (1) IPSL/LMD, France; (2) IPSL/LSCE, France The land surface model (LSM) in regional climate models (RCMs) plays a key role in energy and water exchanges between land and atmosphere. The vegetation can affect these exchanges through physical, biophysical and bio-geophysical mechanisms. It participates to evapo-transpiration process which determines the partitioning of net radiation between sensible and latent heat flux, through water evaporation from soil throughout the entire root system. For seasonal timescale leaf cover change induced leaf-area index (LAI) and albedo changes, impacting the Earth's radiative balance. In addition, atmospheric chemistry and carbon concentration has a direct effect on plant stomatal structure, the main exchange interface with the atmosphere. Therefore the surface energy balance is intimately linked to the carbon cycle and vegetation conditions and an accurate representation of the Earth's surface is required to improve the performance of RCMs. It is even more crucial for extreme events as heat waves and droughts which display highly nonlinear behaviour. If triggering of heat waves is determined by the large scale, local coupled processes over land can amplify or inhibit heat trough several feedback mechanism. One set of two simulation has been conducted with WRF, using different LSMs. They aim to study drought and vegetation effect on the dynamical and hydrological processes controlling the occurrence and life cycle of heat waves In the MORCE plateform, the dynamical global vegetation model (DGVM) ORCHIDEE is implemented in the atmospheric module WRF. ORCHIDEE is based on three different modules. The first module, called SECHIBA, describes the fast processes such as exchanges of energy and water between the atmosphere and the biosphere, and the soil water budget. The phenology and carbon

  2. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  3. Ion Bernstein wave heating experiments in HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Zhao Yanping

    2005-01-01

    Ion Bernstein Wave (IBW) experiments have been carried out in recent years in the HT-7 superconducting Tokamak. The electron heating experiment has been concentrated on deuterium plasma with an injecting RF power up to 350 kw. The globe heating and localized heating can be seen clearly by controlling the ICRF resonance layer's position. On-axis and off-axis electron heating have been realized by properly setting the target plasma parameters. Experimental results show that the maximum increment in electron temperature has been more than 1 keV, the electron temperature profile has been modified by IBW under different plasma conditions, and both energy and particle confinement improvements have been obtained. (author)

  4. Effects of a Heat Wave on Nocturnal Stomatal Conductance in Eucalyptus camaldulensis

    Directory of Open Access Journals (Sweden)

    Víctor Resco de Dios

    2018-06-01

    Full Text Available Nocturnal transpiration constitutes a significant yet poorly understood component of the global water cycle. Modeling nocturnal transpiration has been complicated by recent findings showing that stomata respond differently to environmental drivers over day- vs. night-time periods. Here, we propose that nocturnal stomatal conductance depends on antecedent daytime conditions. We tested this hypothesis across six genotypes of Eucalyptus camaldulensis Dehnh. growing under different CO2 concentrations (ambient vs. elevated and exposed to contrasting temperatures (ambient vs. heat wave for four days prior to the night of measurements, when all plants experienced ambient temperature conditions. We observed significant effects after the heat wave that led to 36% reductions in nocturnal stomatal conductance. The response was partly driven by changes in daytime stomatal behavior but additional factors may have come into play. We also observed significant differences in response to the heat wave across genotypes, likely driven by local adaptation to their climate of origin, but CO2 played no effect. Stomatal models may need to incorporate the role of antecedent effects to improve projections particularly after drastic changes in the environment such as heat waves.

  5. The 2011 marine heat wave in Cockburn Sound, southwest Australia

    Directory of Open Access Journals (Sweden)

    T. H. Rose

    2012-07-01

    Full Text Available Over 2000 km of Western Australian coastline experienced a significant marine heat wave in February and March 2011. Seawater temperature anomalies of +2–4 °C were recorded at a number of locations, and satellite-derived SSTs (sea surface temperatures were the highest on record. Here, we present seawater temperatures from southwestern Australia and describe, in detail, the marine climatology of Cockburn Sound, a large, multiple-use coastal embayment. We compared temperature and dissolved oxygen levels in 2011 with data from routine monitoring conducted from 2002–2010. A significant warming event, 2–4 °C in magnitude, persisted for > 8 weeks, and seawater temperatures at 10 to 20 m depth were significantly higher than those recorded in the previous 9 yr. Dissolved oxygen levels were depressed at most monitoring sites, being ~ 2 mg l−1 lower than usual in early March 2011. Ecological responses to short-term extreme events are poorly understood, but evidence from elsewhere along the Western Australian coastline suggests that the heat wave was associated with high rates of coral bleaching; fish, invertebrate and macroalgae mortalities; and algal blooms. However, there is a paucity of historical information on ecologically-sensitive habitats and taxa in Cockburn Sound, so that formal examinations of biological responses to the heat wave were not possible. The 2011 heat wave provided insights into conditions that may become more prevalent in Cockburn Sound, and elsewhere, if the intensity and frequency of short-term extreme events increases as predicted.

  6. Resilience to seasonal heat wave episodes in a Mediterranean pine forest.

    Science.gov (United States)

    Tatarinov, Fedor; Rotenberg, Eyal; Maseyk, Kadmiel; Ogée, Jérôme; Klein, Tamir; Yakir, Dan

    2016-04-01

    Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Effects of roll waves on annular flow heat transfer at horizontal condenser tube

    International Nuclear Information System (INIS)

    Kondo, Masaya; Nakamura, Hideo; Anoda, Yoshinari; Sakashita, Akihiro

    2002-01-01

    Heat removal characteristic of a horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. Flow regime observed at the inlet of the condenser tube was annular flow, and the local heat transfer rate was ∼20% larger than the prediction by the Dobson-Chato correlation. Roll waves were found to appear on the liquid film in the annular flow. The measured local condensation heat transfer rate was being closely related to the roll waves frequency. Based on these observations, a model is proposed which predicts the condensation heat transfer coefficient for annular flows around the tube inlet. The proposed model predicts well the influences of pressure, local gas-phase velocity and film thickness. (author)

  8. Associations between risk perception, spontaneous adaptation behavior to heat waves and heatstroke in Guangdong province, China.

    Science.gov (United States)

    Liu, Tao; Xu, Yan Jun; Zhang, Yong Hui; Yan, Qing Hua; Song, Xiu Ling; Xie, Hui Yan; Luo, Yuan; Rutherford, Shannon; Chu, Cordia; Lin, Hua Liang; Ma, Wen Jun

    2013-10-02

    In many parts of the world, including in China, extreme heat events or heat waves are likely to increase in intensity, frequency, and duration in light of climate change in the next decades. Risk perception and adaptation behaviors are two important components in reducing the health impacts of heat waves, but little is known about their relationships in China. This study aimed to examine the associations between risk perception to heat waves, adaptation behaviors, and heatstroke among the public in Guangdong province, China. A total of 2,183 adult participants were selected using a four-stage sampling method in Guangdong province. From September to November of 2010 each subject was interviewed at home by a well-trained investigator using a structured questionnaire. The information collected included socio-demographic characteristics, risk perception and spontaneous adaptation behaviors during heat wave periods, and heatstroke experience in the last year. Chi-square tests and unconditional logistic regression models were employed to analyze the data. This study found that 14.8%, 65.3% and 19.9% of participants perceived heat waves as a low, moderate or high health risk, respectively. About 99.1% participants employed at least one spontaneous adaptation behavior, and 26.2%, 51.2% and 22.6% respondents employed 7 adaptation behaviors during heat waves, respectively. Individuals with moderate (OR=2.93, 95% CI: 1.38-6.22) or high (OR=10.58, 95% CI: 4.74-23.63) risk perception experienced more heatstroke in the past year than others. Drinking more water and wearing light clothes in urban areas, while decreasing activity as well as wearing light clothes in rural areas were negatively associated with heatstroke. Individuals with high risk perception and employing risks of heatstroke (OR=47.46, 95% CI: 12.82-175.73). There is a large room for improving health risk perception and adaptation capacity to heat waves among the public of Guangdong province. People with higher

  9. Associations between risk perception, spontaneous adaptation behavior to heat waves and heatstroke in Guangdong province, China

    Science.gov (United States)

    2013-01-01

    Background In many parts of the world, including in China, extreme heat events or heat waves are likely to increase in intensity, frequency, and duration in light of climate change in the next decades. Risk perception and adaptation behaviors are two important components in reducing the health impacts of heat waves, but little is known about their relationships in China. This study aimed to examine the associations between risk perception to heat waves, adaptation behaviors, and heatstroke among the public in Guangdong province, China. Methods A total of 2,183 adult participants were selected using a four-stage sampling method in Guangdong province. From September to November of 2010 each subject was interviewed at home by a well-trained investigator using a structured questionnaire. The information collected included socio-demographic characteristics, risk perception and spontaneous adaptation behaviors during heat wave periods, and heatstroke experience in the last year. Chi-square tests and unconditional logistic regression models were employed to analyze the data. Results This study found that 14.8%, 65.3% and 19.9% of participants perceived heat waves as a low, moderate or high health risk, respectively. About 99.1% participants employed at least one spontaneous adaptation behavior, and 26.2%, 51.2% and 22.6% respondents employed 7 adaptation behaviors during heat waves, respectively. Individuals with moderate (OR=2.93, 95% CI: 1.38-6.22) or high (OR=10.58, 95% CI: 4.74-23.63) risk perception experienced more heatstroke in the past year than others. Drinking more water and wearing light clothes in urban areas, while decreasing activity as well as wearing light clothes in rural areas were negatively associated with heatstroke. Individuals with high risk perception and employing risks of heatstroke (OR=47.46, 95% CI: 12.82-175.73). Conclusions There is a large room for improving health risk perception and adaptation capacity to heat waves among the public of

  10. Plasma heating by kinetic Alfven wave

    International Nuclear Information System (INIS)

    Assis, A.S. de.

    1982-01-01

    The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt

  11. Ion Bernstein wave heating on the Compact Ignition Tokamak (CIT)

    International Nuclear Information System (INIS)

    Ignat, D.W.; Ono, M.

    1989-02-01

    In the present plan, CIT is to be heated by power in the ion cyclotron range of frequencies (ICRF), and electron cyclotron heating (ECH) may be used if suitable rf sources can be developed. We consider the option of ion Bernstein wave heating (IBWH). The key points are that a simple vacuum waveguide launcher can be well- removed from high fluxes of heat and particles and that the development of a suitable source is straightforward. A practical point is that an IBWH waveguide launcher, including transition from coaxial power feeds, fits inside the shield wall surrounding CIT. To confirm IBWH as an option for CIT, experiments are needed on a shaped, H-mode plasma at high power. Successful experiments should be followed by a tube development program to allow CIT heating at 200 - 275 MHz. 2 refs., 3 figs

  12. Wave trajectory and electron cyclotron heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Maekawa, T.; Tanaka, S.; Terumichi, Y.; Hamada, Y.

    1977-12-01

    Wave trajectories propagating obliquely to magnetic field in toroidal plasmas are studied theoretically. Results show that the ordinary wave at appropriate incident angle is mode-converted to the extraordinary wave at first turning point and is further converted to the electron Bernstein wave during passing a loop or a hooked nail curve near second turning point and is cyclotron-damped away, resulting in local electron heating, before arriving at cyclotron resonance layer. (auth.)

  13. Simulation of Heating with the Waves of Ion Cyclotron Range of Frequencies in Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Yang Cheng; Zhu Sizheng; Zhang Xinjun

    2010-01-01

    Simulation on the heating scenarios in experimental advanced superconducting tokamak (EAST) was performed by using a full wave code TORIC. The locations of resonance layers for these heating schemes are predicted and the simulations for different schemes in ICRF experiments in EAST, for example, ion heating (both fundamental and harmonic frequency) or electron heating (by direct fast waves or by mode conversion waves), on-axis or off-axis heating, and high-field-side (HFS) launching or low-field-side (LFS) launching, etc, were conducted. For the on-axis minority ion heating of 3 He in D( 3 He) plasma, the impacts of both density and temperature on heating were discussed in the EAST parameter ranges.

  14. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents.

    Science.gov (United States)

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-11

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers' health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002-2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies.

  15. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents

    Science.gov (United States)

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-01

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies. PMID:28085067

  16. The Heating of Solar Coronal Loops by Alfvén Wave Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Van Ballegooijen, A. A. [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Asgari-Targhi, M.; Voss, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-11-01

    In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magnetohydrodynamic model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in the chromosphere and corona. For a particular combination of model parameters we find that AWT can produce enough heat to maintain a peak temperature of about 2.5 MK, somewhat lower than the temperatures of 3–4 MK observed in the cores of active regions. The heating rates vary strongly in space and time, but the simulated heating events have durations less than 1 minute and are unlikely to reproduce the observed broad differential emission measure distributions of active regions. The simulated spectral line nonthermal widths are predicted to be about 27 km s{sup −1}, which is high compared to the observed values. Therefore, the present AWT model does not satisfy the observational constraints. An alternative “magnetic braiding” model is considered in which the coronal field lines are subject to slow random footpoint motions, but we find that such long-period motions produce much less heating than the shorter-period waves launched within the flux tubes. We discuss several possibilities for resolving the problem of producing sufficiently hot loops in active regions.

  17. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.

    Science.gov (United States)

    Chavan, Shreyas; Park, Deokgeun; Singla, Nitish; Sokalski, Peter; Boyina, Kalyan; Miljkovic, Nenad

    2018-05-21

    Frost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets. The relative significance of these two mechanisms is still not understood. Here, we study the significance of the latent heat released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by studying the dynamics of individual water droplet freezing on aluminum-, copper-, and glass-based hydrophobic and superhydrophobic surfaces. The latent heat flux released into the substrate was calculated from the measured droplet sizes and the respective freezing times ( t f ), defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To probe the effect of latent heat release, we performed three-dimensional transient finite element simulations showing that the transfer of latent heat to neighboring droplets is insignificant and accounts for a negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet evaporation during condensation frosting is governed solely by vapor pressure gradients. This study not only provides key insights into the individual droplet freezing process but also

  18. Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes

    Science.gov (United States)

    Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert

    2018-05-01

    Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.

  19. Energy balance in the TCA tokamak plasma with Alfven wave heating

    International Nuclear Information System (INIS)

    Ding Ning; Qu Wenxiao; Huang Li; Long Yongxing; Qiu Xiaoming

    1993-01-01

    The energy balance in TCA tokamak plasma with Alfven wave heating is studied, in which the equivalent electron thermal conductivity is determined by using the profile consistency principle. The results are in good agreement with experiments. It is shown that this method is applicable to various devices and other heating methods

  20. Solitary heat waves in nonlinear lattices with squared on-site potential

    Indian Academy of Sciences (India)

    A model Hamiltonian is proposed for heat conduction in a nonlinear lattice with squared on-site potential using the second quantized operators and averaging the same using a suitable wave function, equations are derived in discrete form for the field amplitude and the properties of heat transfer are examined theoretically.

  1. Risk perception of heat waves and its spatial variation in Nanjing, China

    Science.gov (United States)

    Huang, Lei; Yang, Qianqi; Li, Jie; Chen, Jin; He, Ruoying; Zhang, Can; Chen, Kai; Dong, Steven Guanpeng; Liu, Yang

    2018-05-01

    The intensity, frequency, and duration of heat waves are expected to increase with climate change. In this study, we found a significant difference of public perceived effects of heat waves and trust in government among urban, suburban, and rural districts. Rural residents had a significant higher effect perception than urbanites and also showed stronger willingness to have medical insurance or regular physical examinations. Meanwhile, suburban residents had the lowest trust perception in government among these three districts, which may be due to suburban districts' unique social structure and complex social issues. Besides, we assessed the relationship between the factor effect and demographic variables. The results showed that urban respondents' effect perception was significantly related to heat wave experiences. Suburban respondents' effect perception was significantly related to age, income, and heat wave experiences. And rural respondents' effect perception was significantly related to income and chronic diseases. Based on our results, much more attention needs to be paid to rural districts. The government should strengthen infrastructure construction such as cooling centers, improve emergency response plans and mechanisms, and increase reserves of emergency supplies in rural districts. Also, targeted risk communication is of the equal importance to aid the policy-makers improving the relationship with the public and regaining the public's trust and support.

  2. Risk perception of heat waves and its spatial variation in Nanjing, China

    Science.gov (United States)

    Huang, Lei; Yang, Qianqi; Li, Jie; Chen, Jin; He, Ruoying; Zhang, Can; Chen, Kai; Dong, Steven Guanpeng; Liu, Yang

    2017-12-01

    The intensity, frequency, and duration of heat waves are expected to increase with climate change. In this study, we found a significant difference of public perceived effects of heat waves and trust in government among urban, suburban, and rural districts. Rural residents had a significant higher effect perception than urbanites and also showed stronger willingness to have medical insurance or regular physical examinations. Meanwhile, suburban residents had the lowest trust perception in government among these three districts, which may be due to suburban districts' unique social structure and complex social issues. Besides, we assessed the relationship between the factor effect and demographic variables. The results showed that urban respondents' effect perception was significantly related to heat wave experiences. Suburban respondents' effect perception was significantly related to age, income, and heat wave experiences. And rural respondents' effect perception was significantly related to income and chronic diseases. Based on our results, much more attention needs to be paid to rural districts. The government should strengthen infrastructure construction such as cooling centers, improve emergency response plans and mechanisms, and increase reserves of emergency supplies in rural districts. Also, targeted risk communication is of the equal importance to aid the policy-makers improving the relationship with the public and regaining the public's trust and support.

  3. Projection of heat waves variation over a warming climate in China

    Science.gov (United States)

    Yue, X.; Wu, S.; Pan, T.

    2016-12-01

    Heat waves (HW) have adverse impacts on economies, human health, societies and environment, which have been observed around the world and are expected to increase in a warming climate. However, the variations of HW under climate change over China are not clear yet. Using the HadGEM2-ES RCP4.5 and RCP8.5 daily maximum temperature and humidity dataset, variation of heat waves in China for 2021-2050 comparing to 1991-2000 as baseline were analyzed. The CMA-HI (Heat Index standardized by China Meteorological Administration) index was used to calculate the frequency and intensity of head waves. This paper classified the HW into three intensity levels including mild HW, moderate HW and severe HW , and defined a heat wave event (HWE) as that CMA-HI are all above or equal to 2.8 and keep at a intensity level more than five consecutive days. Results show that during 2021to 2050, the distribution area, frequency and duration of each intensity level have an increasing trend over China, and those of severe HW will increase mostly. The distribution area of mild, moderate and severe HW will increase 18%, 22%, 35% respectively. Average HWE frequency of each level will concentrate on 0.5-1instead of 0-0.3 in baseline period. Maximum frequency of each intensity can reach to almost 3 times a year. During 1991-2000, the average frequency of mild HW, moderate HW and severe HW kept a downward sequence. But it will change to increase in the future, and the shift occurs during 2031-2040. In addition, only severe HW duration will increase in the future. Its average value will increase from 9days to 13days, and keep a maximum duration of 42days.While the average duration of mild HW and moderate HW just keep almost 6 days and 8 days as usual. Regionally, both the frequency and duration will keep high value in the region of eastern China, central China, southern China and central Xinjiang autonomous region in the future. And only severe HW has a great change in distribution. Under RCP 8

  4. Solitary heat waves in nonlinear lattices with squared on-site potential

    Indian Academy of Sciences (India)

    Abstract. A model Hamiltonian is proposed for heat conduction in a nonlinear lattice with squared on-site potential using the second quantized operators and averaging the same using a suitable wave function, equations are derived in discrete form for the field amplitude and the prop- erties of heat transfer are examined ...

  5. Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment

    DEFF Research Database (Denmark)

    Dinh, Khuong Van; Janssens, Lizanne; Stoks, Robby

    2016-01-01

    Extreme temperatures and exposure to agricultural pesticides are becoming more frequent and intense under global change. Their combination may be especially problematic when animals suffer food limitation. We exposed Coenagrion puella damselfly larvae to a simulated heat wave combined with food...... limitation and subsequently to a widespread agricultural pesticide (chlorpyrifos) in an indoor laboratory experiment designed to obtain mechanistic insights in the direct effects of these stressors in isolation and when combined. The heat wave reduced immune function (activity of phenoloxidase, PO...... variables. While the immediate effects of the heat wave were subtle, our results indicate the importance of delayed effects in shaping the total fitness impact of a heat wave when followed by pesticide exposure. Firstly, the combination of delayed negative effects of the heat wave and starvation...

  6. [Analysis of gene expression pattern in peripheral blood leukocytes during experimental heat wave].

    Science.gov (United States)

    Feoktistova, E S; Skamrov, A V; Goryunova, L E; Khaspekov, G L; Osyaeva, M K; Rodnenkov, O V; Beabealashvilli, R Sh

    2017-03-01

    The conditions of Moscow 2010 summer heat wave were simulated in an accommodation module. Six healthy men aged from 22 to 46 years stayed in the module for 30 days. Measurements of gene expression in peripheral blood leukocytes before, during and 3 day after simulated heat wave were performed using qRT-PCR. We observed a shift in the expression level of certain genes after heat exposure for a long time, and rapid return to the initial level, when volunteers leaved the accommodation module. Eight genes were chosen to form the "heat expression signature". EGR2, EGR3 were upregulated in all six volunteers, EGR1, SIRT1, CYP51A1, MAPK9, BAG5, MNDA were upregulated in 5 volunteers.

  7. Extreme heat waves under 1.5 °C and 2 °C global warming

    Science.gov (United States)

    Dosio, Alessandro; Mentaschi, Lorenzo; Fischer, Erich M.; Wyser, Klaus

    2018-05-01

    Severe, extreme, and exceptional heat waves, such as those that occurred over the Balkans (2007), France (2003), or Russia (2010), are associated with increased mortality, human discomfort and reduced labour productivity. Based on the results of a very high-resolution global model, we show that, even at 1.5 °C warming, a significant increase in heat wave magnitude is expected over Africa, South America, and Southeast Asia. Compared to a 1.5 °C world, under 2 °C warming the frequency of extreme heat waves would double over most of the globe. In a 1.5 °C world, 13.8% of the world population will be exposed to severe heat waves at least once every 5 years. This fraction becomes nearly three times larger (36.9%) under 2 °C warming, i.e. a difference of around 1.7 billion people. Limiting global warming to 1.5 °C will also result in around 420 million fewer people being frequently exposed to extreme heat waves, and ~65 million to exceptional heat waves. Nearly 700 million people (9.0% of world population) will be exposed to extreme heat waves at least once every 20 years in a 1.5 °C world, but more than 2 billion people (28.2%) in a 2 °C world. With current emission trends threatening even the 2 °C target, our study is helpful to identify regions where limiting the warming to 1.5 °C would have the strongest benefits in reducing population exposure to extreme heat.

  8. Possibilities of heating a TFR plasma by absorption of the fast hydromagnetic wave

    International Nuclear Information System (INIS)

    Adam, J.

    The prospects of TFR heating by fast hydromagnetic waves are considered by an examination of the following topics: (1) characteristics of the dispersion relation, (2) the charge impedance of an antenna capable of exciting these modes, and (3) the heating effects which would be caused by dissipation of these waves around ω = ω/sub ci/ and ω = 2ω/sub ci/

  9. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents

    Directory of Open Access Journals (Sweden)

    Rameez Rameezdeen

    2017-01-01

    Full Text Available The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS policies.

  10. Plasma heating

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  11. Bulk Ion Heating with ICRF Waves in Tokamaks

    DEFF Research Database (Denmark)

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.

    2015-01-01

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER...... when 3 MW of ICRF power tuned to the central 3He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LTi of about 20, which are unusually large for AUG...

  12. A Simulated Heat Wave Has Diverse Effects on Immune Function and Oxidative Physiology in the Corn Snake (Pantherophis guttatus).

    Science.gov (United States)

    Stahlschmidt, Z R; French, S S; Ahn, A; Webb, A; Butler, M W

    Animals will continue to encounter increasingly warm environments, including more frequent and intense heat waves. Yet the physiological consequences of heat waves remain equivocal, potentially because of variation in adaptive plasticity (reversible acclimation) and/or aspects of experimental design. Thus, we measured a suite of physiological variables in the corn snake (Pantherophis guttatus) after exposure to field-parameterized, fluctuating temperature regimes (moderate temperature and heat wave treatments) to address two hypotheses: (1) a heat wave causes physiological stress, and (2) thermal performance of immune function exhibits adaptive plasticity in response to a heat wave. We found little support for our first hypothesis because a simulated heat wave had a negative effect on body mass, but it also reduced oxidative damage and did not affect peak performance of three immune metrics. Likewise, we found only partial support for our second hypothesis. After exposure to a simulated heat wave, P. guttatus exhibited greater performance breadth and reduced temperature specialization (the standardized difference between peak performance and performance breadth) for only one of three immune metrics and did so in a sex-dependent manner. Further, a simulated heat wave did not elicit greater performance of any immune metric at higher temperatures. Yet a heat wave likely reduced innate immune function in P. guttatus because each metric of innate immune performance in this species (as in most vertebrates) was lower at elevated temperatures. Together with previous research, our study indicates that a heat wave may have complex, modest, and even positive physiological effects in some taxa.

  13. The calculation for energy balance of heating plasmas by Alfven waves

    International Nuclear Information System (INIS)

    Long Yongxing; Ding Ning; He Qibing; Qu Wenxiao; Huang Lin; Qiu Xiaoming

    1992-10-01

    A numerical method for computing the energy balance of heating tokamak plasmas by Alfven waves is introduced. The results are in agreement with experiments. This method is not only simpler and more distinct but also considerably saving time in computation. It also can be used in kinetic problems with other types of radio frequency (RF) heating

  14. Ranking of European Capitals According to the Impact of Future Heat Waves

    Science.gov (United States)

    Smid, M.; Costa, A. C.; Russo, S.; Pebesma, E. J.; Canut, C. G.

    2017-12-01

    In warming Europe, we are witnessing a growth in urban population with aging trend, which will make the society more vulnerable to extreme heat waves. In the period 1950-2015 the occurrence of extreme heat waves increased across European capitals. As an example, Moscow was hit by the strongest heat wave of the present era, killing more than ten thousand people. Here we focus on larger metropolitan areas of European capitals. By using observations and an ensemble of eight EURO-CORDEX models under the RCP8.5 scenario, we calculate a suite of temperature based climate indices. We introduce a simple ranking procedure based on ensemble predictions using the mean of metropolitan grid cells for each capital, and population density as a proxy to quantify the future impact. Results show that the selected ensemble provides solid simulation of climate characteristics over most of the targeted metropolitan areas. All the investigated European metropolitan areas will be more vulnerable to extreme heat in the coming decades. Based on the impact ranking, the results reveal that in near, but mainly in distant future, the extreme heat events in European capitals will be not exclusive to traditionally exposed areas such as the Mediterranean and the Iberian Peninsula. The ranking of European capitals based on their vulnerability to the extreme heat could be of paramount importance to the decision makers in order to mitigate the heat related mortality, especially with the foreseen increase of global mean temperature. Acknowledgments: The authors gratefully acknowledge the support of Geoinformatics: Enabling Open Cities (GEO-C), the project funded by the European Commission within the Marie Skłodowska-Curie Actions, International Training Networks (ITN), European Joint Doctorates (EJD). Grant Agreement number 642332 — GEO-C — H2020-MSCA-ITN-2014.

  15. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Rafikov, Roman R., E-mail: rrr@ias.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2016-11-10

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  16. Future changes of temperature and heat waves in Ontario, Canada

    Science.gov (United States)

    Li, Zhong; Huang, Guohe; Huang, Wendy; Lin, Qianguo; Liao, Renfei; Fan, Yurui

    2018-05-01

    Apparent changes in the temperature patterns in recent years brought many challenges to the province of Ontario, Canada. As the need for adapting to climate change challenges increases, the development of reliable climate projections becomes a crucial task. In this study, a regional climate modeling system, Providing Regional Climates for Impacts Studies (PRECIS), is used to simulate the temperature patterns in Ontario. Three PRECIS runs with a resolution of 25 km × 25 km are carried out to simulate the present (1961-1990) temperature variations. There is a good match between the simulated and observed data, which validates the performance of PRECIS in reproducing temperature changes in Ontario. Future changes of daily maximum, mean, and minimum temperatures during the period 2071-2100 are then projected under the IPCC SRES A2 and B2 emission scenarios using PRECIS. Spatial variations of annual mean temperature, mean diurnal range, and temperature seasonality are generated. Furthermore, heat waves defined based on the exceedance of local climatology and their temporal and spatial characteristics are analyzed. The results indicate that the highest temperature and the most intensive heat waves are most likely to occur at the Toronto-Windsor corridor in Southern Ontario. The Northern Ontario, in spite of the relatively low projected temperature, would be under the risk of long-lasting heat waves, and thus needs effective measures to enhance its climate resilience in the future. This study can assist the decision makers in better understanding the future temperature changes in Ontario and provide decision support for mitigating heat-related loss.

  17. PROTOPLANETARY DISK HEATING AND EVOLUTION DRIVEN BY SPIRAL DENSITY WAVES

    International Nuclear Information System (INIS)

    Rafikov, Roman R.

    2016-01-01

    Scattered light imaging of protoplanetary disks often reveals prominent spiral arms, likely excited by massive planets or stellar companions. Assuming that these arms are density waves, evolving into spiral shocks, we assess their effect on the thermodynamics, accretion, and global evolution of the disk. We derive analytical expressions for the direct (irreversible) heating, angular momentum transport, and mass accretion rate induced by disk shocks of arbitrary amplitude. These processes are very sensitive to the shock strength. We show that waves of moderate strength (density jump at the shock ΔΣ/Σ ∼ 1) result in negligible disk heating (contributing at the ∼1% level to the energy budget) in passive, irradiated protoplanetary disks on ∼100 au scales, but become important within several au. However, shock heating is a significant (or even dominant) energy source in disks of cataclysmic variables, stellar X-ray binaries, and supermassive black hole binaries, heated mainly by viscous dissipation. Mass accretion induced by the spiral shocks is comparable to (or exceeds) the mass inflow due to viscous stresses. Protoplanetary disks featuring prominent global spirals must be evolving rapidly, in ≲0.5 Myr at ∼100 au. A direct upper limit on the evolution timescale can be established by measuring the gravitational torque due to the spiral arms from the imaging data. We find that, regardless of their origin, global spiral waves must be important agents of the protoplanetary disk evolution. They may serve as an effective mechanism of disk dispersal and could be related to the phenomenon of transitional disks.

  18. The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, preliminary results are presented showing that the two record-setting extreme events during 2010 summer (i.e., the Russian heat wave-wildfires and Pakistan flood) were physically connected. It is found that the Russian heat wave was associated with the development of an extraordinarily strong and prolonged extratropical atmospheric blocking event in association with the excitation of a large-scale atmospheric Rossby wave train spanning western Russia, Kazakhstan, and the northwestern China-Tibetan Plateau region. The southward penetration of upper-level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid- to late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below-normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayan foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation.

  19. Heat wave propagation in a thin film irradiated by ultra-short laser pulses

    International Nuclear Information System (INIS)

    Yoo, Jae Gwon; Kim, Cheol Jung; Lim, C. H.

    2004-01-01

    A thermal wave solution of a hyperbolic heat conduction equation in a thin film is developed on the basis of the Green's function formalism. Numerical computations are carried out to investigate the temperature response and the propagation of the thermal wave inside a thin film due to a heat pulse generated by ultra-short laser pulses with various laser pulse durations and thickness of the film

  20. Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF

    International Nuclear Information System (INIS)

    Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.

    1984-10-01

    The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)

  1. Alfven wave heating in ASDEX

    International Nuclear Information System (INIS)

    Besson, G.; Borg, G.G.; Lister, J.B.; Marmillod, Ph.; Braun, F.; Murphy, A.B.; Noterdaeme, J.M.; Ryter, F.; Wesner, F.

    1990-01-01

    An experiment has been completed on ASDEX to study the response of the plasma to Alfven wave heating (AWH). Antenna excitation was provided by the old TCA rf generator with an output power capability of 500 kW. Two poloidal loop antennas were installed at the east and west ends of the tokamak allowing either N=1 or N=2 phasings. Since the largest antenna coupling to the Alfven resonance is provided by the m=1 surface wave, the antenna consisted only of a single element on the low field side, whereas in TCA the antennas are located on the top and the bottom of the torus. The antenna elements consisted of 2 parallel bars of inductance 730 nH and, as in TCA, were left unshielded. A typical antenna circulating current of 2 kA peak at 1.80 MHz was provided for the experiments. (author) 3 refs., 4 figs

  2. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    Science.gov (United States)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  3. Spatiotemporal characteristics of heat waves over China in regional climate simulations within the CORDEX-EA project

    Science.gov (United States)

    Wang, Pinya; Tang, Jianping; Sun, Xuguang; Liu, Jianyong; Juan, Fang

    2018-03-01

    Using the Weather Research and Forecasting (WRF) model, this paper analyzes the spatiotemporal features of heat waves in 20-year regional climate simulations over East Asia, and investigates the capability of WRF to reproduce observational heat waves in China. Within the framework of the Coordinated Regional Climate Downscaling Experiment (CORDEX), the WRF model is driven by the ERA-Interim (ERAIN) reanalysis, and five continuous simulations are conducted from 1989 to 2008. Of these, four runs apply the interior spectral nudging (SN) technique with different wavenumbers, nudging variables and nudging coefficients. Model validations show that WRF can reasonably reproduce the spatiotemporal features of heat waves in China. Compared with the experiment without SN, the application of SN is effectie on improving the skill of the model in simulating both the spatial distributions and temporal variations of heat waves of different intensities. The WRF model shows advantages in reproducing the synoptic circulations with SN and therefore yields better representations for heat wave events. Besides, the SN method is able to preserve the variability of large-scale circulations quite well, which in turn adjusts the extreme temperature variability towards the observation. Among the four SN experiments, those with stronger nudging coefficients perform better in modulating both the spatial and temporal features of heat waves. In contrast, smaller nudging coefficients weaken the effects of SN on improving WRF's performances.

  4. [Media and public health: example of heat wave during summer 2003].

    Science.gov (United States)

    Boyer, L; Robitail, S; Debensason, D; Auquier, P; San Marco, J-L

    2005-11-01

    The summer of 2003 was the hottest for France in the last 50 years with record day and nighttime temperatures. INSERM statistics estimated that 14,802 heat-related deaths occurred during August 2003 heat wave in France. In the aftermath of this crisis, we thought that it was useful to analyze how the French media dealt with public health during the period from June 1 to August 31, 2003. The objective was to analyze French coverage of public health information during the August 2003 heat wave. Manual and computerized analysis of newspaper and radio reports published from June 1 to August 31, 2003. Articles were obtained by searching the EUROPRESS database. Text analysis was performed using the ALCESTE software package. A total of 1,599 articles were analyzed. Few articles contained warnings about heat exposure and preventive measures. Public health policy was relegated to third place after business and ecology themes. The special problems of the high-risk populations were not mentioned until after the rising death toll was known and emphasis was placed on the implications of the crisis in the political process. The findings of this study show the poor performance of public health policy in France and that media must be given guidance to fulfil its role in providing public health information. This crisis discloses the absence of public health culture in France and involves the "social exclusion" related to a breakdown of social cohesion. More cooperation is needed between the media and public health professionals to avoid future heat-wave and other public health crises. France must develop a public health culture to promote involvement of both the community and individuals in public health issues.

  5. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  6. Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii.

    Science.gov (United States)

    Carreira, Bruno M; Segurado, Pedro; Laurila, Anssi; Rebelo, Rui

    2017-01-01

    In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton's condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N). The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i) heat waves may change the predominant impacts of this keystone species and ii) that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.

  7. Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii.

    Directory of Open Access Journals (Sweden)

    Bruno M Carreira

    Full Text Available In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton's condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N. The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i heat waves may change the predominant impacts of this keystone species and ii that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.

  8. The effect of heat waves, elevated [CO2 ] and low soil water availability on northern red oak (Quercus rubra L.) seedlings.

    Science.gov (United States)

    Bauweraerts, Ingvar; Wertin, Timothy M; Ameye, Maarten; McGuire, Mary Anne; Teskey, Robert O; Steppe, Kathy

    2013-02-01

    The frequency and intensity of heat waves are predicted to increase. This study investigates whether heat waves would have the same impact as a constant increase in temperature with the same heat sum, and whether there would be any interactive effects of elevated [CO2 ] and soil moisture content. We grew Quercus rubra seedlings in treatment chambers maintained at either ambient or elevated [CO2 ] (380 or 700 μmol CO2 mol(-1) ) with temperature treatments of ambient, ambient +3 °C, moderate heat wave (+6 °C every other week) or severe heat wave (+12 °C every fourth week) temperatures. Averaged over a 4-week period, and the entire growing season, the three elevated temperature treatments had the same average temperature and heat sum. Half the seedlings were watered to a soil water content near field capacity, half to about 50% of this value. Foliar gas exchange measurements were performed morning and afternoon (9:00 and 15:00 hours) before, during and after an applied heat wave in August 2010. Biomass accumulation was measured after five heat wave cycles. Under ambient [CO2 ] and well-watered conditions, biomass accumulation was highest in the +3 °C treatment, intermediate in the +6 °C heat wave and lowest in the +12 °C heat wave treatment. This response was mitigated by elevated [CO2 ]. Low soil moisture significantly decreased net photosynthesis (Anet ) and biomass in all [CO2 ] and temperature treatments. The +12 °C heat wave reduced afternoon Anet by 23% in ambient [CO2 ]. Although this reduction was relatively greater under elevated [CO2 ], Anet values during this heat wave were still 34% higher than under ambient [CO2 ]. We concluded that heat waves affected biomass growth differently than the same amount of heat applied uniformly over the growing season, and that the plant response to heat waves also depends on [CO2 ] and soil moisture conditions. © 2012 Blackwell Publishing Ltd.

  9. Awareness of and Attitudes towards Heat Waves within the Context of Climate Change among a Cohort of Residents in Adelaide, Australia

    Directory of Open Access Journals (Sweden)

    Iain A. Walker

    2012-12-01

    Full Text Available Heat waves are a public health concern in Australia and unprecedented heat waves have been recorded in Adelaide over recent years. The aim of this study was to examine the perception and attitudes towards heat waves in the context of climate change among a group of residents in Adelaide, an Australian city with a temperate climate. A cross-sectional study was conducted in the summer of 2012 among a sample of 267 residents. The results of the survey found that television (89.9%, radio (71.2%, newspapers (45.3% were the main sources from which respondents received information about heat waves. The majority of the respondents (73.0% followed news about heat waves very or somewhat closely. About 26.6% of the respondents were extremely or very concerned about the effects of heat waves on them personally. The main issues that were of personal concern for respondents during a heat wave were their personal comfort (60.7%, their garden (48.7%, and sleeping well (47.6%. Overall, respondents were more concerned about the impacts of heat waves to the society than on themselves. There was a significant association between gender (χ² = 21.2, df = 3, p = 0.000, gross annual household income (p = 0.03 and concern for the societal effects of heat waves. Less than half (43.2% of the respondents believed that heat waves will extremely or very likely increase in Adelaide according to climate projections. Nearly half (49.3% believed that the effects of heat waves were already being felt in Adelaide. These findings may inform the reframing and communication strategies for heat waves in Adelaide in the context of climate change.

  10. Future changes in heat-waves, droughts and floods in 571 European cities

    Science.gov (United States)

    Guerreiro, Selma; Dawson, Richard; Kilsby, Chris; Lewis, Elizabeth; Ford, Alistair

    2017-04-01

    Future changes in heat-waves, droughts and floods were assessed for 571 European cities. We used all available climate model runs from the Coupled Model Intercomparison Project Phase 5 - CMIP5 - for their higher emission scenario (RCP8.5) and grouped the projections into Low, Mid and High impact scenarios. This resulted in impact projections outside the range of published literature, but enabled us to better understand uncertainties in future climate projections (both due to climate model errors but also the effects of natural variability) therefore providing the basis for broad scale risk analysis and thereafter identification of robust adaptation strategies. While heat-waves will worsen for every European city, changes in droughts and floods are spatially variable and climate model dependent. The largest increases in the number of heat-wave days are shown to be in southern Europe, but higher heat-wave maximum temperature increases are expected in the mid-latitudes. In the low impact scenario, drought conditions are expected to intensify only in southern Europe while river flooding in expected to worsen in the north. However, in the high impact scenario most European cities show increases in both drought conditions and river flooding. There is a very wide range of projections for future changes in Europe with disagreement between different studies, partly due to their methodological differences but potentially also due to the small number of climate model runs that limits the uncertainties due to natural variability and model errors that each study captures.

  11. Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Dittmar, Janine; Janssen, Hannah; Kuske, Andra; Kurtz, Joachim; Scharsack, Jörn P

    2014-07-01

    Global climate change is predicted to lead to increased temperatures and more extreme climatic events. This may influence host-parasite interactions, immunity and therefore the impact of infectious diseases on ecosystems. However, little is known about the effects of rising temperatures on immune defence, in particular in ectothermic animals, where the immune system is directly exposed to external temperature change. Fish are ideal models for studying the effect of temperature on immunity, because they are poikilothermic, but possess a complete vertebrate immune system with both innate and adaptive immunity. We used three-spined sticklebacks ( Gasterosteus aculeatus) originating from a stream and a pond, whereby the latter supposedly were adapted to higher temperature variation. We studied the effect of increasing and decreasing temperatures and a simulated heat wave with subsequent recovery on body condition and immune parameters. We hypothesized that the immune system might be less active at low temperatures, but will be even more suppressed at temperatures towards the upper tolerable temperature range. Contrary to our expectation, we found innate and adaptive immune activity to be highest at a temperature as low as 13 °C. Exposure to a simulated heat wave induced long-lasting immune disorders, in particular in a stickleback population that might be less adapted to temperature variation in its natural environment. The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  12. Electron heating and current drive by mode converted slow waves

    International Nuclear Information System (INIS)

    Majeski, R.; Phillips, C.K.; Wilson, J.R.

    1994-01-01

    An approach to obtaining efficient single pass mode conversion at high parallel wave number from the fast magnetosonic wave to the slow ion Bernstein wave, in a two-ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modeling for the case of deuterium-tritium plasmas in TFTR is presented

  13. The impact of heat waves and cold spells on mortality rates in the Dutch population

    NARCIS (Netherlands)

    Huynen, M. M.; Martens, P.; Schram, D.; Weijenberg, M. P.; Kunst, A. E.

    2001-01-01

    We conducted the study described in this paper to investigate the impact of ambient temperature on mortality in the Netherlands during 1979-1997, the impact of heat waves and cold spells on mortality in particular, and the possibility of any heat wave- or cold spell-induced forward displacement of

  14. Radiofrequency plasma heating: proceedings

    International Nuclear Information System (INIS)

    Swenson, D.G.

    1985-01-01

    The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately

  15. Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires

    Czech Academy of Sciences Publication Activity Database

    Rusticucci, M.; Kyselý, Jan; Almeira, G.; Lhotka, Ondřej

    2016-01-01

    Roč. 124, č. 3 (2016), s. 679-689 ISSN 0177-798X R&D Projects: GA MŠk 7AMB15AR001 Institutional support: RVO:68378289 Keywords : heat waves * long-term variability * climate extremes Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.640, year: 2016 http://link.springer.com/article/10.1007%2Fs00704-015-1445-7

  16. Introduction to wave heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Pinsker, R. I.

    2001-01-01

    The development of high-power wave heating and current drive in magnetized plasmas in the last 40 years is a major ongoing success story in plasma science. A hallmark of this area of research has been the detailed quantitative comparison of theory and experiment; the good agreement consistently found is indicative of the robustness and the predictive power of the underlying theory. This tutorial paper is a brief overview of the fundamental concepts and applications of this branch of plasma science. Most of the high-power applications have been in three frequency regimes: the ion cyclotron range of frequencies (ICRF), the lower hybrid range of frequencies (LHRF), and the electron cyclotron range of frequencies (ECRF). The basic physics of wave propagation and damping in these regimes is briefly discussed. Some of the coupling structures (antennas) used to excite the waves at the plasma boundary are described, and the high-power systems used to generate the wave energy are touched on. Representative examples of the remarkably wide range of applications of high-power wave heating and current drive in high-temperature fusion plasmas will be discussed

  17. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Seneviratne, Sonia I.

    2016-03-01

    The severe 2010 heat wave in western Russia was found to be influenced by anthropogenic climate change. Additionally, soil moisture-temperature feedbacks were deemed important for the buildup of the exceptionally high temperatures. We quantify the relative role of both factors by applying the probabilistic event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. The dry 2010 soil moisture alone has increased the risk of a severe heat wave in western Russia sixfold, while climate change from 1960 to 2000 has approximately tripled it. The combined effect of climate change and 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed a necessary basis for the extreme heat wave.

  18. Wave trajectory and electron cyclotron heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Tanaka, S.; Maekawa, T.; Terumichi, Y.; Hamada, Y.

    1980-01-01

    Wave trajectories in high density tokamak plasmas are studied numerically. Results show that the ordinary wave injected at an appropriate incident angle can propagate into the dense plasmas and is mode-converted to the extraordinary wave at the plasma cutoff, is further converted to the electron Bernstein wave during passing a loop or a folded curve near the upper hybrid resonance layer, and is cyclotron damped away, resulting in local electron heating before arriving at the cyclotron resonance layer. Similar trajectory and damping are obtained when a microwave in a form of extraordinary wave is injected quasi-perpendicularly in the direction of decreasing toroidal field

  19. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

    2011-01-01

    Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...

  20. Full-wave and Fokker Planck analysis of ICRF heating experiments in the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Golovato, S.; Porkolab, M.; Takase, Y.

    1996-01-01

    The Alcator C-Mod device is a high field, high density, shaped tokamak with parameters a = 0.22 m, R 0 = 0.67 m, B 0 ≤ 9.0 T, κ ≤ 1.8, δ ≤ 0.8, and 1.0 x 10 20 m -3 n e (0) ≤ 1.0 x 10 21 m -3 . Four megawatt of ICRF power is available at 80 MHz. The wide operating range in magnetic field makes several heating schemes possible: (i) Second harmonic heating of hydrogen (f 0 = 2f CH ) at 2.6 T in (D-H); (ii) Fundamental heating of (H) (f 0 = f CH ) at 5.3T in a D-(H) plasma; and (iii) Fundamental heating of ( 3 He) (f 0 = f C 3 He ) at 7.9 T in a D-( 3 He) plasma. The most successful heating regime to date has been (H)-minority heating at 5.3 T. Pellet enhanced performance (PEP) modes have also been achieved in C-Mod in D-(H) at 5.3 T and in D-( 3 He) at 7.9 T, with a combination of intense ICRF heating and Li-pellet injection. A variety of numerical models are used to analyze these heating schemes. A 1-D full-wave code (FELICE) is used to study open-quotes single passclose quotes damping of the ICRF wavefront and damping of mode-converted ion Bernstein waves. A toroidal full-wave code (FISIC) is used to study interference and focussing effects of the ICRF waves as well as damping of the ICRF power upon multiple passes of the ICRF wavefront. A combined bounce averaged Fokker Planck and toroidal full-wave code (FPPRF) is used to study the ion tail formation, orbit losses, and the power partition of the ICRF tail to the background electrons and ions. Full-wave and Fokker Planck analyses confirm the strong single pass absorption of the ICRF power in D-(H) at 5.3 T. Analysis of PEP-mode plasmas in D-( 3 He) indicates improved wave focussing and 3 He-cyclotron absorption of the ICRF waves relative to L-mode. A dramatic increase in the transfer of 3 He tail power to the background deuterium is also found for PEP-mode plasmas

  1. Effects on Public Health of Heat Waves to Improve the Urban Quality of Life

    Directory of Open Access Journals (Sweden)

    Vito Telesca

    2018-04-01

    Full Text Available Life satisfaction has been widely used in recent studies to evaluate the effect of environmental factors on individuals’ well-being. In the last few years, many studies have shown that the potential impact of climate change on cities depends on a variety of social, economic, and environmental determinants. In particular, extreme events, such as flood and heat waves, may cause more severe impacts and induce a relatively higher level of vulnerability in populations that live in urban areas. Therefore, the impact of climate change and related extreme events certainly influences the economy and quality of life in affected cities. Heat wave frequency, intensity, and duration are increasing in global and local climate change scenarios. The association between high temperatures and morbidity is well-documented, but few studies have examined the role of meteo-climatic variables on hospital admissions. This study investigates the effects of temperature, relative humidity, and barometric pressure on health by linking daily access to a Matera (Italy hospital with meteorological conditions in summer 2012. Extreme heat wave episodes that affected most of the city from 1 June to 31 August 2012 (among the selected years 2003, 2012, and 2017 were analyzed. Results were compared with heat waves from other years included in the base period (1971–2000 and the number of emergency hospital admissions on each day was considered. The meteorological data used in this study were collected from two weather stations in Matera. In order to detect correlations between the daily emergency admissions and the extreme health events, a combined methodology based on a heat wave identification technique, multivariate analysis (PCA, and regression analysis was applied. The results highlight that the role of relative humidity decreases as the severity level of heat waves increases. Moreover, the combination of temperatures and daily barometric pressure range (DPR has been

  2. Syndromic surveillance and heat wave morbidity: a pilot study based on emergency departments in France

    Directory of Open Access Journals (Sweden)

    Filleul Laurent

    2009-02-01

    Full Text Available Abstract Background The health impacts of heat waves are serious and have prompted the development of heat wave response plans. Even when they are efficient, these plans are developed to limit the health effects of heat waves. This study was designed to determine relevant indicators related to health effects of heat waves and to evaluate the ability of a syndromic surveillance system to monitor variations in the activity of emergency departments over time. The study uses data collected during the summer 2006 when a new heat wave occurred in France. Methods Data recorded from 49 emergency departments since July 2004, were transmitted daily via the Internet to the French Institute for Public Health Surveillance. Items collected on patients included diagnosis (ICD10 codes, outcome, and age. Statistical t-tests were used to compare, for several health conditions, the daily averages of patients within different age groups and periods (whether 'on alert' or 'off alert'. Results A limited number of adverse health conditions occurred more frequently during hot period: dehydration, hyperthermia, malaise, hyponatremia, renal colic, and renal failure. Over all health conditions, the total number of patients per day remained equal between the 'on alert' and 'off alert' periods (4,557.7/day vs. 4,511.2/day, but the number of elderly patients increased significantly during the 'on alert' period relative to the 'off alert' period (476.7/day vs. 446.2/day p Conclusion Our results show the interest to monitor specific indicators during hot periods and to focus surveillance efforts on the elderly. Syndromic surveillance allowed the collection of data in real time and the subsequent optimization of the response by public health agencies. This method of surveillance should therefore be considered as an essential part of efforts to prevent the health effects of heat waves.

  3. Anomalies of hydrological cycle components during the 2007 heat wave in Bulgaria

    Science.gov (United States)

    Mircheva, Biliana; Tsekov, Milen; Meyer, Ulrich; Guerova, Guergana

    2017-12-01

    Heat waves have large adverse social, economic and environmental effects which include increased mortality, transport restrictions and a decreased agricultural production. The estimated economic losses of the 2007 heat wave in South-east Europe exceed 2 billion EUR with 19 000 hospitalisation in Romania only. Understanding the changes of the hydrological cycle components is essential for early forecasting of heat wave occurrence. Valuable insight of two components of the hydrological cycle, namely Integrated Water Vapour (IWV) and Terrestrial Water Storage Anomaly (TWSA), is now possible using observations from Global Navigation Satellite System (GNSS) and Gravity Recovery And Climate Experiment (GRACE) mission. In this study anomalies of temperature, precipitation, IWV and TWS in 2007 are compared to 2003-2013 period for Sofia, Bulgaria. In 2007, positive temperature anomalies are observed in January, February and July. There are negative IWV and precipitation anomalies in July 2007 that coincides with the heat wave in Bulgaria. TWSA in 2007 are negative in January, May and from July to October being largest in August. Long-term trends of: 1) temperatures have a local maximum in March 2007, 2) TWSA has a local minimum in May 2007, 3) IWV has a local minimum in September 2007, and 4) precipitation has a local maximum in July 2007. The TWSA interannual trends in Bulgaria, Hungary and Poland show similar behaviour as indicated by cross correlation coefficients of 0.9 and 0.7 between Bulgaria and Hungary and Bulgaria and Poland respectively. ALADIN-Climate describes the anomalies of temperature and IWV more successfully than those of precipitation and TWS.

  4. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    Science.gov (United States)

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is

  5. Particle simulation of intense electron cyclotron heating and beat-wave current drive

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1987-01-01

    High-power free-electron lasers make new methods possible for heating plasmas and driving current in toroidal plasmas with electromagnetic waves. We have undertaken particle simulation studies with one and two dimensional, relativistic particle simulation codes of intense pulsed electron cyclotron heating and beat-wave current drive. The particle simulation methods here are conventional: the algorithms are time-centered, second-order-accurate, explicit, leap-frog difference schemes. The use of conventional methods restricts the range of space and time scales to be relatively compact in the problems addressed. Nevertheless, experimentally relevant simulations have been performed. 10 refs., 2 figs

  6. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

    Science.gov (United States)

    Bajargaan, Ruchi; Patel, Arvind

    2018-04-01

    One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

  7. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge

    Science.gov (United States)

    Peterson, Thomas C.; Heim, Richard R.; Hirsch, Robert M.; Kaiser, Dale P.; Brooks, Harold; Diffenbaugh, Noah S.; Dole, Randall M.; Giovannettone, Jason P.; Guirguis, Kristen; Karl, Thomas R.; Katz, Richard W.; Kunkel, Kenneth E.; Lettenmaier, Dennis P.; McCabe, Gregory J.; Paciorek, Christopher J.; Ryberg, Karen R.; K Wolter, BS Silva; Schubert, Siegfried; Silva, Viviane B. S.; Stewart, Brooke C.; Vecchia, Aldo V.; Villarini, Gabriele; Vose, Russell S.; Walsh, John; Wehner, Michael; Wolock, David; Wolter, Klaus; Woodhouse, Connie A.; Wuebbles, Donald

    2013-01-01

    Weather and climate extremes have been varying and changing on many different time scales. In recent decades, heat waves have generally become more frequent across the United States, while cold waves have been decreasing. While this is in keeping with expectations in a warming climate, it turns out that decadal variations in the number of U.S. heat and cold waves do not correlate well with the observed U.S. warming during the last century. Annual peak flow data reveal that river flooding trends on the century scale do not show uniform changes across the country. While flood magnitudes in the Southwest have been decreasing, flood magnitudes in the Northeast and north-central United States have been increasing. Confounding the analysis of trends in river flooding is multiyear and even multidecadal variability likely caused by both large-scale atmospheric circulation changes and basin-scale “memory” in the form of soil moisture. Droughts also have long-term trends as well as multiyear and decadal variability. Instrumental data indicate that the Dust Bowl of the 1930s and the drought in the 1950s were the most significant twentieth-century droughts in the United States, while tree ring data indicate that the megadroughts over the twelfth century exceeded anything in the twentieth century in both spatial extent and duration. The state of knowledge of the factors that cause heat waves, cold waves, floods, and drought to change is fairly good with heat waves being the best understood.

  8. [Physical and mechanical properties of the thermosetting resin for crown and bridge cured by micro-wave heating].

    Science.gov (United States)

    Kaneko, K

    1989-09-01

    A heating method using micro-waves was utilized to obtain strong thermosetting resin for crown and bridge. The physical and mechanical properties of the thermosetting resin were examined. The resin was cured in a shorter time by the micro-waves heating method than by the conventional heat curing method and the working time was reduced markedly. The base resins of the thermosetting resin for crown and bridge for the micro-waves heating method were 2 PA and diluent 3 G. A compounding volume of 30 wt% for diluent 3 G was considered good the results of compressive strength, bending strength and diametral tensile strength. Grams of 200-230 of the filler compounded to the base resins of 2 PA-3 G system provided optimal compressive strength, bending strength and diametral tensile strength. A filler gram of 230 provided optimal hardness and curing shrinkage rate, the coefficient of thermal expansion became smaller with the increase of the compounding volume of the filler. The trial thermosetting resin for crown and bridge formed by the micro-waves heating method was not inferior to the conventional resin by the heat curing method or the light curing method.

  9. Emergence of traveling wave endothermic reaction in a catalytic fixed bed under microwave heating

    International Nuclear Information System (INIS)

    Gerasev, Alexander P.

    2017-01-01

    This paper presents a new phenomenon in a packed bed catalytic reactor under microwave heating - traveling wave (moving reaction zones) endothermic chemical reaction. A two-phase model is developed to simulate the nonlinear dynamic behavior of the packed bed catalytic reactor with an irreversible first-order chemical reaction. The absorbed microwave power was obtained from Lambert's law. The structure of traveling wave endothermic chemical reaction was explored. The effects of the gas velocity and microwave power on performance of the packed bed catalytic reactor were presented. Finally, the effects of the change in the location of the microwave source at the packed bed reactor was demonstrated. - Highlights: • A new phenomenon - traveling waves of endothermic reaction - is predicted. • The physical and mathematical model of a packed bed catalytic reactor under microwave heating is presented. • The structure of the traveling waves is explored. • The configuration of heating the packed bed reactor via microwave plays a key role.

  10. Individual and Public-Program Adaptation: Coping with Heat Waves in Five Cities in Canada

    Directory of Open Access Journals (Sweden)

    Mustapha Alhassan

    2011-12-01

    Full Text Available Heat Alert and Response Systems (HARS are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals’ recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as “not at risk” and that they would cope with excessive heat by staying in air conditioned environments and keeping well hydrated. Despite the absence of heat outreach and education programs in their city, our respondents at least a rough idea of how to take care of themselves. The presence of air conditioning and knowledge of cooling centers is location-specific, which provides opportunities for targeting HARS interventions.

  11. Individual and public-program adaptation: coping with heat waves in five cities in Canada.

    Science.gov (United States)

    Alberini, Anna; Gans, Will; Alhassan, Mustapha

    2011-12-01

    Heat Alert and Response Systems (HARS) are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals' recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as "not at risk" and that they would cope with excessive heat by staying in air conditioned environments and keeping well hydrated. Despite the absence of heat outreach and education programs in their city, our respondents at least a rough idea of how to take care of themselves. The presence of air conditioning and knowledge of cooling centers is location-specific, which provides opportunities for targeting HARS interventions.

  12. Electron heating and current drive by mode converted slow waves

    International Nuclear Information System (INIS)

    Majeski, R.; Phillips, C.K.; Wilson, J.R.

    1994-08-01

    An approach to obtaining efficient single pass mode conversion at high parallel wavenumber from the fast magnetosonic wave to the slow ion Bernstein wave, in a two ion species tokamak plasma, is described. The intent is to produce localized electron heating or current drive via the mode converted slow wave. In particular, this technique can be adapted to off-axis current drive for current profile control. Modelling for the case of deuterium-tritium plasmas in TFTR is presented

  13. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  14. Demonstration of Electron Bernstein Wave Heating in a Reversed Field Pinch

    Science.gov (United States)

    Seltzman, Andrew H.

    The Electron Bernstein wave (EBW) presents an alternative to conventional electron cyclotron resonance heating and current drive in overdense plasmas, where electromagnetic waves are inaccessible. The first observation of rf heating in a reversed field pinch (RFP) using the EBW has been demonstrated on Madison Symmetric Torus (MST). The EBW propagates radially inward through a magnetic field that is either stochastic or has broken flux surfaces, before absorption on a substantially Doppler-shifted cyclotron resonance (? = n*?_ce - k_parallel*v_parallel), where n is the harmonic number. Deposition depth is controllable with plasma current on a broad range (n=1-7) of harmonics. Novel techniques were required to measure the suprathermal electron tail generated by EBW heating in the presence of intense Ohmic heating. In the thick-shelled MST RFP, the radial accessibility of the EBW is limited to r/a > 0.8 ( 10 cm), where a=52cm is the minor radius, by magnetic field error induced by the porthole necessary for the antenna; accessibility in a thin-shelled device with actively controlled saddle coils (without the burden of substantial porthole field error) is likely to be r/a> 0.5 in agreement with ray tracing studies. Measured electron loss rates with falloff time constants in the 10s of micros imply a large, non-collisional radial diffusivity; collisional times with background particles are on the order of one millisecond. EBW-heated test electrons are used as a probe of edge (r/a > 0.9) radial transport, showing a modest transition from 'standard' to reduced-tearing RFP operation.

  15. Predictions of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1994-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve these objectives requires compatibility and flexibility in the use of available heating and current drive systems--ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various roles of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The authors have addressed these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX

  16. Study of clay behaviour around a heat source by frequency spectrum analysis of seismic waves

    International Nuclear Information System (INIS)

    Sloovere, P. de.

    1993-01-01

    Wave propagated into soft rock is not completely described by purely linear elastic theory. Through spectrum analysis of wave, one can see that several frequencies are selected by the ground. ME2i uses this method to check grouting, piles a.s.o. The Mol experiment (on Radioactive Waste Disposal) aims to prove that little changes into heated clay can be detected by 'frequential seismic'. A cross-hole investigation system has been installed and tests have been performed for two years with a shear-hammer named MARGOT built to work inside horizontal boreholes: - Before heating the tests show the same results every time: . main frequency at 330 hertz; . maximal frequency at 520 hertz; - During heating: . the rays at 330 and 520 hertz disappear; . The frequencies in the range 100 - 300 hertz are prevailing; - After heating spectra have again their original shape. These results show that the effect is clear around an heated zone. The next steps should be: - Interpretation with computer's codes treating of wave propagation into a viscoelastic body; - Experimentations: . at the opening of a new gallery; . on big samples; . on granites and salt. 9 refs., 4 appendices

  17. Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening

    Energy Technology Data Exchange (ETDEWEB)

    Oran, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Landi, E.; Holst, B. van der; Sokolov, I. V.; Gombosi, T. I., E-mail: roran@mit.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48109 (United States)

    2017-08-20

    We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening is calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.

  18. Specific heat, polarization and heat conduction in microwave heating systems: A nonequilibrium thermodynamic point of view

    International Nuclear Information System (INIS)

    Bergese, Paolo

    2006-01-01

    A microwave (MW) field can induce in a dielectric material an oscillatory polarization. By this mechanism part of the energy carried by the waves is converted into chaotic agitation, and the material heats up. MW heating is a nonequilibrium phenomenon, while conventional heating can generally be considered as quasi-static. Excess (or nonthermal) effects of MWs with respect to conventional heating lie in this difference. Macroscopically, MW heating can be described in the framework of linear nonequilibrium thermodynamics (NET). This approach indicates that in a dielectric material under MW heating the specific heat has a dynamic component linked to the variation of polarization with temperature, and that polarization and heat conduction are intertwined. In particular, linear NET provides a new phenomenological equation for heat conduction that is composed of the classic Fourier's law and an additional term due to polarization relaxation. This term quantitatively describes the excess effect of MWs on thermal conduction

  19. Air pollution during the 2003 European heat wave as seen by MOZAIC airliners

    Directory of Open Access Journals (Sweden)

    M. Tressol

    2008-04-01

    Full Text Available This study presents an analysis of both MOZAIC profiles above Frankfurt and Lagrangian dispersion model simulations for the 2003 European heat wave. The comparison of MOZAIC measurements in summer 2003 with the 11-year MOZAIC climatology reflects strong temperature anomalies (exceeding 4°C throughout the lower troposphere. Higher positive anomalies of temperature and negative anomalies of both wind speed and relative humidity are found for the period defined here as the heat wave (2–14 August 2003, compared to the periods before (16–31 July 2003 and after (16–31 August 2003 the heat wave. In addition, Lagrangian model simulations in backward mode indicate the suppressed long-range transport in the mid- to lower troposphere and the enhanced southern origin of air masses for all tropospheric levels during the heat wave. Ozone and carbon monoxide also present strong anomalies (both ~+40 ppbv during the heat wave, with a maximum vertical extension reaching 6 km altitude around 11 August 2003. Pollution in the planetary boundary layer (PBL is enhanced during the day, with ozone mixing ratios two times higher than climatological values. This is due to a combination of factors, such as high temperature and radiation, stagnation of air masses and weak dry deposition, which favour the accumulation of ozone precursors and the build-up of ozone. A negligible role of a stratospheric-origin ozone tracer has been found for the lower troposphere in this study. From 29 July to 15 August 2003 forest fires burnt around 0.3×106 ha in Portugal and added to atmospheric pollution in Europe. Layers with enhanced CO and NOy mixing ratios, advected from Portugal, were crossed by the MOZAIC aircraft in the free troposphere over Frankfurt. A series of forward and backward Lagrangian model simulations have been performed to investigate the origin of anomalies during the whole heat wave. European anthropogenic emissions present the strongest

  20. Propagation of a surface electromagnetic wave in a plasma with allowance for electron heating

    International Nuclear Information System (INIS)

    Boev, A.G.; Prokopov, A.V.

    1978-01-01

    Considered is propagation of a surface high-frequency wave in a semibounded plasma, which electron component is heated within the wave field. Dissipative effects are considered small, that is possible if wave frequency is much higher than the collision frequency and phase velocity of wave considerably exceeds electron heat velocity. Under conditions of anomalous skin-effect the distributions of electron temperature and wave damping have been found. It is established, that higher electron temperature on the boundary results in a higher decrease of temperature inside a plasma, far from the boundary temperature decreases exponentially; damping coefficient under anomalous skin-effect conditions is characterized by a stronger dependence not only on the wave amplitude, but as well as on gas pressure and wave frequency in comparison with normal conditions

  1. Theory of unidirectional spin heat conveyer

    Science.gov (United States)

    Adachi, Hiroto; Maekawa, Sadamichi

    2015-05-01

    We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.

  2. Geographical differences on the mortality impact of heat waves in Europe

    Directory of Open Access Journals (Sweden)

    Sunyer Jordi

    2010-07-01

    Full Text Available Abstract Climate change is potentially the biggest global health threat in the 21st century. Deaths related with heat waves and spread of infectious diseases will be part of the menace though the major impact will be caused by malnutrition, diarrhea and extreme climate events. Consequently, loss of healthy life years as a result of global climate change is predicted to be 500 times greater in poor African populations than in European populations. However, the increase of more than 2°C of average temperature will result in a negative health impact in all regions, the potential benefits of a warmer temperature being negatively compensated, heat waves being one of the largest climate change threats in the developed world.

  3. Heat waves, intense droughts and desertification. summer 1994 in Southeast of Spain

    International Nuclear Information System (INIS)

    Avila, F.

    2009-01-01

    The South-East of spain, which has semiarid climate, is one of the hottest and dries areas in Europe. This region is specialized in irrigated agricultures and citrus fruits (lemons). the drought can last a long period, sometimes two or three years. The lack of water is becoming the biggest problem, especially since the development of irrigated cultures. Drought and heat waves are the major climatic risks and they cause most of the economic losses in agricultural activity. 1994 summer was exceptional in this region of Spain: heat waves and drought. A major disaster that revealed a crisis that began many years ago. The need of water is growing while the volume of available water tends to go down. 1994 summer and its disasters (fire, burnt crops by heat) generated social and politic tensions. Desertification is threatening the region. This situation is not new the drought is a normal phenomenon in a semiarid area, but the accumulation of drought, aridity and human actions worsening desertification. After 1994, new droughts and heat waves increased the lack of water because agriculture needs more and more water. Nonetheless this cultural method is compacting soil by the reduction of organic matter and by the heavy falls of rain. No solution has been found yet, they have to find new resources of water or change agricultural irrigation methods to save water and build up a sustainable development of this semiarid area. (Author) 12 refs.

  4. Investigation of the radiation properties of magnetospheric ELF waves induced by modulated ionospheric heating

    Science.gov (United States)

    Wang, Feng; Ni, Binbin; Zhao, Zhengyu; Zhao, Shufan; Zhao, Guangxin; Wang, Min

    2017-05-01

    Electromagnetic extremely low frequency (ELF) waves play an important role in modulating the Earth's radiation belt electron dynamics. High-frequency (HF) modulated heating of the ionosphere acts as a viable means to generate artificial ELF waves. The artificial ELF waves can reside in two different plasma regions in geo-space by propagating in the ionosphere and penetrating into the magnetosphere. As a consequence, the entire trajectory of ELF wave propagation should be considered to carefully analyze the wave radiation properties resulting from modulated ionospheric heating. We adopt a model of full wave solution to evaluate the Poynting vector of the ELF radiation field in the ionosphere, which can reflect the propagation characteristics of the radiated ELF waves along the background magnetic field and provide the initial condition of waves for ray tracing in the magnetosphere. The results indicate that the induced ELF wave energy forms a collimated beam and the center of the ELF radiation shifts obviously with respect to the ambient magnetic field with the radiation power inversely proportional to the wave frequency. The intensity of ELF wave radiation also shows a weak correlation with the size of the radiation source or its geographical location. Furthermore, the combination of ELF propagation in the ionosphere and magnetosphere is proposed on basis of the characteristics of the ELF radiation field from the upper ionospheric boundary and ray tracing simulations are implemented to reasonably calculate magnetospheric ray paths of ELF waves induced by modulated ionospheric heating.

  5. X-ray analysis of electron Bernstein wave heating in MST

    Energy Technology Data Exchange (ETDEWEB)

    Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.; Almagri, A.; Forest, C. B. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2016-11-15

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. This provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.

  6. Major enhancement of extra-low-frequency radiation by increasing the high-frequency heating wave power in electrojet modulation

    International Nuclear Information System (INIS)

    Kuo, S.P.; Lee, S.H.; Kossey, Paul

    2002-01-01

    Extra-low-frequency (ELF) wave generation by modulated polar electrojet currents is studied. The amplitude-modulated high-frequency (HF) heating wave excites a stimulated thermal instability to enhance the electrojet current modulation by the passive Ohmic heating process. Inelastic collisions of electrons with neutral particles (mainly due to vibrational excitation of N 2 ) damp nonlinearly this instability, which is normally saturated at low levels. However, the electron's inelastic collision loss rate drops rapidly to a low value in the energy regime from 3.5 to 6 eV. As the power of the modulated HF heating wave exceeds a threshold level, it is shown that significant electron heating enhanced by the stimulated thermal instability can indeed cause a steep drop in the electron inelastic collision loss rate. Consequently, this instability saturates at a much higher level, resulting to a near step increase (of about 10-13 dB, depending on the modulation wave form) in the spectral intensity of ELF radiation. The dependence of the threshold power of the HF heating wave on the modulation frequency is determined

  7. Changes in cause-specific mortality during heat waves in central Spain, 1975-2008

    Science.gov (United States)

    Miron, Isidro Juan; Linares, Cristina; Montero, Juan Carlos; Criado-Alvarez, Juan Jose; Díaz, Julio

    2015-09-01

    The relationship between heat waves and mortality has been widely described, but there are few studies using long daily data on specific-cause mortality. This study is undertaken in central Spain and analysing natural causes, circulatory and respiratory causes of mortality from 1975 to 2008. Time-series analysis was performed using ARIMA models, including data on specific-cause mortality and maximum and mean daily temperature and mean daily air pressure. The length of heat waves and their chronological number were analysed. Data were stratified in three decadal stages: 1975-1985, 1986-1996 and 1997-2008. Heat-related mortality was triggered by a threshold temperature of 37 °C. For each degree that the daily maximum temperature exceeded 37 °C, the percentage increase in mortality due to circulatory causes was 19.3 % (17.3-21.3) in 1975-1985, 30.3 % (28.3-32.3) in 1986-1996 and 7.3 % (6.2-8.4) in 1997-2008. The increase in respiratory cause ranged from 12.4 % (7.8-17.0) in the first period, to 16.3 % (14.1-18.4) in the second and 13.7 % (11.5-15.9) in the last. Each day of heat-wave duration explained 5.3 % (2.6-8.0) increase in respiratory mortality in the first period and 2.3 % (1.6-3.0) in the last. Decadal scale differences exist for specific-causes mortality induced by extreme heat. The impact on heat-related mortality by natural and circulatory causes increases between the first and the second period and falls significantly in the last. For respiratory causes, the increase is no reduced in the last period. These results are of particular importance for the estimation of future impacts of climate change on health.

  8. HIGH IMPACT HEAT WAVES OVER THE EURO-MEDITERRANEAN REGION AND TURKEY - IN CONCERT WITH ATMOSPHERIC BLOCKING AND LARGE DYNAMICAL AND PHYSICAL ANOMALIES

    Directory of Open Access Journals (Sweden)

    Meral Demirtaş

    2017-03-01

    Full Text Available The increase in high impact heat waves in the Euro-Mediterranean region and Turkey is related to a number of concurring factors that include the persistent anticyclonic weather regimes. The present study investigates the June-July-August (JJA of 2000, 2007 and 2010 heat wave events in concert with some meteorological anomalies (the 500 hPa geopotential height, 850 hPa temperature, sea surface temperature and soil wetness and blocking anticyclones, focusing on heat wave occurrences on a grid point base. Detection methods for atmospheric blocking and heat wave are introduced and applied for the mentioned years. During the 2000 JJA very high temperatures were recorded over the Balkan Peninsula and in Turkey where 42 cities had breaking all time highest temperature records for June, but the duration of heat wave was the shortest. The 2007 summer was also abnormally hot for the region and record breaking temperatures were observed in Greece, Romania, Bulgaria and Turkey where 34 cities had highest temperature records for June and July, and the highest total heat wave duration was 60-70 days. The 2010 JJA period was extremely hot over Russia and nearby countries including Turkey where 9 cities had highest temperature records for August. The 2010 case was marked for; large anomalies, the longest heat wave duration and the highest heat wave intensity. In all cases, heat wave occurrences found to be particularly high over the western part of Turkey. The abnormally hot summers of 2000, 2007 and 2010 could reflect summers to come. The results indicate that summer climate might experience a pronounced increase in year-to-year variability. Increase in variability might be able to explain the high impact heat waves, and would strongly affect their incidence in the future. The results may also contribute to a better understanding of heat waves in context of climate variability.

  9. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2003-01-01

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows

  10. Alfven wave heating and stability

    International Nuclear Information System (INIS)

    Villard, L.; Brunner, S.; Jaun, A.; Vaclavik, J.

    1994-10-01

    Alfven waves in fusion plasmas play an important role in a number of situations. First, in Alfven Wave Heating (AWH) schemes. Second, both theory and experiment have demonstrated the existence of Global Alfven Eigenmodes (GAEs). GAEs have been observed in different tokamaks (PRETEXT, TCA, TEXTOR, etc.) and, more recently, in a stellarator (Wendelstein 7-AS) where they were shown to become unstable under intense Neutral Beam injection. Third, the existence and possible destabilization by fast ions of Toroidicity induced Alfven Eigenmodes (TAEs) has been evidenced both theoretically and experimentally. This destabilization could hamper the operation of a magnetically confined fusion reactor by setting a limit on the number of fusion alpha particles in the plasma. It is therefore crucial to understand the mechanisms leading to the occurrence of the instability and also those that can stabilize the TAEs by increasing the strength of the damping. The aim is to be able to devise possible ways to avoid the instability of Alfven eigenmodes in a region of parameter space that is compatible with the functioning of a fusion reactor. A global perturbative approach is presented to tackle the problem of the linear stability of TAEs. Our model computes the overall wave particle power transfers to the different species and thus could also be applied to the study of alpha power extraction in the presence of Alfven waves. We indicate also how to go beyond the perturbative approach. (author) 15 figs., 38 refs

  11. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    Science.gov (United States)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  12. Diffusive and convective transport modelling from analysis of ECRH-stimulated electron heat wave propagation

    International Nuclear Information System (INIS)

    Erckmann, V.; Gasparino, U.; Giannone, L.

    1992-01-01

    ECRH power modulation experiments in toroidal devices offer the chance to analyze the electron heat transport more conclusively: the electron heat wave propagation can be observed by ECE (or SX) leading to radial profiles of electron temperature modulation amplitude and time delay (phase shift). Taking also the stationary power balance into account, the local electron heat transport can be modelled by a combination of diffusive and convective transport terms. This method is applied to ECRH discharges in the W7-AS stellarator (B=2.5T, R=2m, a≤18 cm) where the ECRH power deposition is highly localized. In W7-AS, the T e modulation profiles measured by a high resolution ECE system are the basis for the local transport analysis. As experimental errors limit the separation of diffusive and convective terms in the electron heat transport for central power deposition, also ECRH power modulation experiments with off-axis deposition and inward heat wave propagation were performed (with 70 GHz o-mode as well as with 140 GHz x-mode for increased absorption). Because collisional electron-ion coupling and radiative losses are only small, low density ECRH discharges are best candidates for estimating the electron heat flux from power balance. (author) 2 refs., 3 figs

  13. Heat waves and cold spells: an analysis of policy response and perceptions of vulnerable populations in the UK

    OpenAIRE

    Johanna Wolf; W Neil Adger; Irene Lorenzoni

    2010-01-01

    Heat waves and cold spells pose ongoing seasonal risks to the health and well-being of vulnerable individuals. Current attempts to address these risks in the UK are implemented through fuel-poverty strategies and heat-wave planning. This paper examines evidence from the UK on whether heat waves and cold spells are addressed differently by public policy in the UK given that risks are mediated by similar perceptions that shape behavioural responses by vulnerable individuals. It is based on a re...

  14. Ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  15. Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX

    International Nuclear Information System (INIS)

    Biewer, T.M.; Bell, R.E.; Diem, S.J.; Phillips, C.K.; Wilson, J.R.; Ryan, P.M.

    2004-01-01

    A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) measures the velocity distribution of ions in the plasma edge simultaneously along both poloidal and toroidal views. An anisotropic ion temperature is measured during high-power high harmonic fast wave (HHFW) radio-frequency (rf) heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations of ions are present and have temperatures of typically 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively (predominantly perpendicular to the local magnetic field). This bi-modal distribution is observed in both the toroidal and poloidal views (for both He + and C 2+ ions), and is well correlated with the period of rf power application to the plasma. The temperature of the hot component is observed to increase with the applied rf power, which was scanned between 0 and 4.3 MW . The 30 MHz HHFW launched by the NSTX antenna is expected and observed to heat core electrons, but plasma ions do not resonate with the launched wave, which is typically at >10th harmonic of the ion cyclotron frequency in the region of observation. A likely ion heating mechanism is parametric decay of the launched HHFW into an Ion Bernstein Wave (IBW). The presence of the IBW in NSTX plasmas during HHFW application has been directly confirmed with probe measurements. IBW heating occurs in the perpendicular ion distribution, consistent with the toroidal and poloidal observations. Calculations of IBW propagation indicate that multiple waves could be created in the parametric decay process, and that most of the IBW power would be absorbed in the outer 10 to 20 cm of the plasma, predominantly on fully stripped ions. These predictions are in qualitative agreement with the observations, and must be accounted for when calculating the energy budget of the plasma

  16. He{sup 2+} HEATING VIA PARAMETRIC INSTABILITIES OF PARALLEL PROPAGATING ALFVÉN WAVES WITH AN INCOHERENT SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    He, Peng; Gao, Xinliang; Lu, Quanming; Wang, Shui, E-mail: gaoxl@mail.ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-10

    The preferential heating of heavy ions in the solar corona and solar wind has been a long-standing hot topic. In this paper we use a one-dimensional hybrid simulation model to investigate the heating of He{sup 2+} particles during the parametric instabilities of parallel propagating Alfvén waves with an incoherent spectrum. The evolution of the parametric instabilities has two stages and involves the heavy ion heating during the entire evolution. In the first stage, the density fluctuations are generated by the modulation of the pump Alfvén waves with a spectrum, which then results in rapid coupling with the pump Alfvén waves and the cascade of the magnetic fluctuations. In the second stage, each pump Alfvén wave decays into a forward density mode and a backward daughter Alfvén mode, which is similar to that of a monochromatic pump Alfvén wave. In both stages the perpendicular heating of He{sup 2+} particles occurs. This is caused by the cyclotron resonance between He{sup 2+} particles and the high-frequency magnetic fluctuations, whereas the Landau resonance between He{sup 2+} particles and the density fluctuations leads to the parallel heating of He{sup 2+} particles. The influence of the drift velocity between the protons and the He{sup 2+} particles on the heating of He{sup 2+} particles is also discussed in this paper.

  17. Modification of boundary plasma behavior by Ion Bernstein Wave heating on HT-7 tokamak

    International Nuclear Information System (INIS)

    Xu Guoshen

    2002-01-01

    Cooperated with Fusion Research Center, the University of Texas at Austin, U.S.A. The boundary plasma behavior during Ion Bernstein Wave (IBW) heating was investigated using Langmuir probe arrays on HT-7 tokamak. The particle confinement improvement of over a factor of 2 was observed in 30 MHz IBW heated plasma with RF power > 120 kW. The strong de-correlation effect of fluctuations resulted in that the turbulent particle flux dropped more than an order of magnitude. In IBW heated plasma, an additional inward E r and associated poloidal ExB flows were produced, which could account for the additional poloidal velocity in the electron diamagnetic direction in the scrape-of layer (SOL). Three-wave nonlinear phase coupling increased evidently and low frequency fluctuations (about 5 kHz) were generated, which dominated the boundary turbulence during IBW heating. The 5/2-D resonant layer was located in the plasma edge region, which is found to be the mechanism underlying these phenomena. (author)

  18. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, Leon, E-mail: Leon.Ofman@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-03-25

    Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  19. Periodic heat wave determination of thermal diffusivity of clays ...

    African Journals Online (AJOL)

    The responses of Ankaful, Tetegu (# 1 & 2) and Mamfe clays to periodic heat waves were analyzed to deter-mine the thermal diffusivity values. The temperature amplitude attenuated with depth of penetration, while the phase shift increased. The thermal diffusivity values ranged from 3.0 - 9.5 x 10P-7P mP2P/s by amplitude ...

  20. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    International Nuclear Information System (INIS)

    Vishwakarma, J P; Nath, G

    2010-01-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient α R are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  1. Extended-range forecasting of Chinese summer surface air temperature and heat waves

    Science.gov (United States)

    Zhu, Zhiwei; Li, Tim

    2018-03-01

    Because of growing demand from agricultural planning, power management and activity scheduling, extended-range (5-30-day lead) forecasting of summer surface air temperature (SAT) and heat waves over China is carried out in the present study via spatial-temporal projection models (STPMs). Based on the training data during 1960-1999, the predictability sources are found to propagate from Europe, Northeast Asia, and the tropical Pacific, to influence the intraseasonal 10-80 day SAT over China. STPMs are therefore constructed using the projection domains, which are determined by these previous predictability sources. For the independent forecast period (2000-2013), the STPMs can reproduce EOF-filtered 30-80 day SAT at all lead times of 5-30 days over most part of China, and observed 30-80 and 10-80 day SAT at 25-30 days over eastern China. Significant pattern correlation coefficients account for more than 50% of total forecasts at all 5-30-day lead times against EOF-filtered and observed 30-80 day SAT, and at a 20-day lead time against observed 10-80 day SAT. The STPMs perform poorly in reproducing 10-30 day SAT. Forecasting for the first two modes of 10-30 day SAT only shows useful skill within a 15-day lead time. Forecasting for the third mode of 10-30 day SAT is useless after a 10-day lead time. The forecasted heat waves over China are determined by the reconstructed SAT which is the summation of the forecasted 10-80 day SAT and the lower frequency (longer than 80-day) climatological SAT. Over a large part of China, the STPMs can forecast more than 30% of heat waves within a 15-day lead time. In general, the STPMs demonstrate the promising skill for extended-range forecasting of Chinese summer SAT and heat waves.

  2. Resonance localization and poloidal electric field due to cyclo- tron wave heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Hsu, J.Y.; Chan, V.S.; Harvey, R.W.; Prater, R.; Wong, S.K.

    1984-01-01

    The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed

  3. PROTON HEATING IN SOLAR WIND COMPRESSIBLE TURBULENCE WITH COLLISIONS BETWEEN COUNTER-PROPAGATING WAVES

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiansen; Tu, Chuanyi; Wang, Linghua; Pei, Zhongtian [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Chen, Christopher H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zhang, Lei [Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Salem, Chadi S.; Bale, Stuart D., E-mail: jshept@gmail.com [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)

    2015-11-10

    Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.

  4. Three-wave interaction during electron cyclotron resonance heating and current drive

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer

    2016-01-01

    Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...... experiments. The observations can be linked to parametric decay of the gyrotron radiation at the second harmonic upper hybrid resonance layer....

  5. High Harmonic Fast Wave Heating Experiments on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.; Bitter, M.; Bonoli, P.

    2000-01-01

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ and a toroidal beta, bT , =10% and bn = 2.7

  6. High harmonic fast wave heating experiments on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Bell, R.; Bitter, M.

    2001-01-01

    A radio frequency (rf) system has been installed on the National Spherical Torus Experiment (NSTX) with the aim of heating the plasma and driving plasma current. The system consists of six rf transmitters, a twelve element antenna and associated transmission line components to distribute and couple the power from the transmitters to the antenna elements in a fashion to allow control of the antenna toroidal wavenumber spectrum. To date, power levels up to 3.85 MW have been applied to the NSTX plasmas. The frequency and spectrum of the rf waves has been selected to heat electrons via Landau damping and transit time magnetic pumping. The electron temperature has been observed to increase from 400 to 900 eV with little change in plasma density resulting in a plasma stored energy of 59 kJ , a toroidal beta, β T =10% and a normalized beta, β n =2.7. (author)

  7. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    Science.gov (United States)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  8. Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation

    International Nuclear Information System (INIS)

    Tanabe, M.; Nishimura, H.; Fujioka, S.; Nagai, K.; Iwamae, A.; Ohnishi, N.; Fournier, K.B.; Girard, F.; Primout, M.; Villette, B.; Tobin, M.; Mima, K.

    2008-01-01

    We have observed supersonic heat wave propagation in a low-density aerogel target (ρ ∼ 3.2 mg/cc) irradiated at the intensity of 4 x 10 14 W/cm 2 . The heat wave propagation was measured with a time-resolved x-ray imaging diagnostics, and the results were compared with simulations made with the two-dimensional radiation-hydrodynamic code, RAICHO. Propagation velocity of the ionization front gradually decreased as the wave propagates into the target. The reason of decrease is due to increase of laser absorption region as the front propagates and interplay of hydrodynamic motion and reflection of laser propagation. These features are well reported with the simulation

  9. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G.; Di Giugno, R.; Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F. P. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Celona, L.; Gammino, S.; Lanaia, D.; Ciavola, G. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Di Bartolo, F. [Universita di Messina, Ctr. da Papardo-Sperone, 98100 Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); IET-Institute of Energy Technology, LEC-Laboratory for Energy Conversion, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich (Switzerland)

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electrons will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.

  10. Predictions of of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1995-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve this objective requires compatibility and flexibility in the use of available heating and current drive systems - ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various role of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The paper addresses these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX. (author). 6 refs, 3 figs

  11. Scrape-off measurements during Alfven wave heating in the TCA tokamak

    International Nuclear Information System (INIS)

    Hofmann, F.; Hollenstein, C.; Joye, B.; Lietti, A.; Lister, J.B.; Pochelon, A.; Gimzewski, J.K.; Veprek, S.

    1984-01-01

    Plasma parameters and impurity fluxes in the scrape-off layer of the TCA tokamak have been measured during Alfven wave heating. Langmuir probes are used to measure electron density, electron temperature and plasma potential. Collection probes, in conjunction with XPS surface analysis, are used to determine impurity fluxes and ion impact energies. During RF heating, the electron edge temperature rises, the plasma potential drops and impurity fluxes are enhanced. Probe erosion due to impurity sputtering is clearly observed. The measurements are correlated with other diagnostics on TCA. (orig.)

  12. Lower solar chromosphere-corona transition region. II - Wave pressure effects for a specific form of the heating function

    Science.gov (United States)

    Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.

    1990-01-01

    Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.

  13. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  14. A kind of iteration algorithm for fast wave heating

    International Nuclear Information System (INIS)

    Zhu Xueguang; Kuang Guangli; Zhao Yanping; Li Youyi; Xie Jikang

    1998-03-01

    The standard normal distribution for particles in Tokamak geometry is usually assumed in fast wave heating. In fact, due to the quasi-linear diffusion effect, the parallel and vertical temperature of resonant particles is not equal, so, this will bring some error. For this case, the Fokker-Planck equation is introduced, and iteration algorithm is adopted to solve the problem well

  15. Contributions to the stability analysis of self-similar supersonic heat waves related to inertial confinement fusion

    International Nuclear Information System (INIS)

    Dastugue, Laurent

    2013-01-01

    Exact self-similar solutions of gas dynamics equations with nonlinear heat conduction for semi-infinite slabs of perfect gases are used for studying the stability of flows in inertial confinement fusion. Both the similarity solutions and their linear perturbations are computed with a multi domain Chebyshev pseudo-spectral method, allowing us to account for, without any other approximation, compressibility and unsteadiness. Following previous results (Clarisse et al., 2008; Lombard, 2008) representative of the early ablation of a target by a nonuniform laser flux (electronic conduction, subsonic heat front downstream of a quasi-perfect shock front), we explore here other configurations. For this early ablation phase, but for a nonuniform incident X-radiation (radiative conduction), we study a compressible and a weakly compressible flow. In both cases, we recover the behaviours obtained for compressible flows with electronic heat conduction with a maximal instability for a zero wavenumber. Besides, the spectral method is extended to compute similarity solutions taking into account the supersonic heat wave ahead of the shock front. Based on an analysis of the reduced equations singularities (infinitely stiff front), this method allows us to describe the supersonic heat wave regime proper to the initial irradiation of the target and to recover the ablative solutions which were obtained under a negligible fore-running heat wave approximation. (author) [fr

  16. Social media responses to heat waves

    Science.gov (United States)

    Jung, Jihoon; Uejio, Christopher K.

    2017-07-01

    Social network services (SNSs) may benefit public health by augmenting surveillance and distributing information to the public. In this study, we collected Twitter data focusing on six different heat-related themes (air conditioning, cooling center, dehydration, electrical outage, energy assistance, and heat) for 182 days from May 7 to November 3, 2014. First, exploratory linear regression associated outdoor heat exposure to the theme-specific tweet counts for five study cities (Los Angeles, New York, Chicago, Houston, and Atlanta). Next, autoregressive integrated moving average (ARIMA) time series models formally associated heat exposure to the combined count of heat and air conditioning tweets while controlling for temporal autocorrelation. Finally, we examined the spatial and temporal distribution of energy assistance and cooling center tweets. The result indicates that the number of tweets in most themes exhibited a significant positive relationship with maximum temperature. The ARIMA model results suggest that each city shows a slightly different relationship between heat exposure and the tweet count. A one-degree change in the temperature correspondingly increased the Box-Cox transformed tweets by 0.09 for Atlanta, 0.07 for Los Angeles, and 0.01 for New York City. The energy assistance and cooling center theme tweets suggest that only a few municipalities used Twitter for public service announcements. The timing of the energy assistance tweets suggests that most jurisdictions provide heating instead of cooling energy assistance.

  17. Observed changes in seasonal heat waves and warm temperature extremes in the Romanian Carpathians

    Science.gov (United States)

    Micu, Dana; Birsan, Marius-Victor; Dumitrescu, Alexandru; Cheval, Sorin

    2015-04-01

    Extreme high temperature have a large impact on environment and human activities, especially in high elevation areas particularly sensitive to the recent climate warming. The climate of the Romanian Carpathians became warmer particularly in winter, spring and summer, exibiting a significant increasing frequency of warm extremes. The paper investigates the seasonal changes in the frequency, duration and intensity of heat waves in relation to the shifts in the daily distribution of maximum temperatures over a 50-year period of meteorological observations (1961-2010). The paper uses the heat wave definition recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) and exploits the gridded daily dataset of maximum temperature at 0.1° resolution (~10 km) developed in the framework of the CarpatClim project (www.carpatclim.eu). The seasonal changes in heat waves behavior were identified using the Mann-Kendall non-parametric trend test. The results suggest an increase in heat wave frequency and a lengthening of intervals affected by warm temperature extremes all over the study region, which are explained by the shifts in the upper (extreme) tail of the daily maximum temperature distribution in most seasons. The trends are consistent across the region and are well correlated to the positive phases of the East Atlantic Oscillation. Our results are in good agreement with the previous temperature-related studies concerning the Carpathian region. This study was realized within the framework of the project GENCLIM, financed by UEFISCDI, code PN-II 151/2014.

  18. ON THE SPATIAL SCALES OF WAVE HEATING IN THE SOLAR CHROMOSPHERE

    International Nuclear Information System (INIS)

    Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc

    2015-01-01

    Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical processes and spatial scales that are required for the efficient dissipation of Alfvén waves and slow magnetoacoustic waves. We consider the governing equations for a partially ionized hydrogen-helium plasma in the single-fluid MHD approximation and include realistic wave damping mechanisms that may operate in the chromosphere, namely, Ohmic and ambipolar magnetic diffusion, viscosity, thermal conduction, and radiative losses. We perform an analytic local study in the limit of small amplitudes to approximately derive the lengthscales for critical damping and efficient dissipation of MHD wave energy. We find that the critical dissipation lengthscale for Alfvén waves depends strongly on the magnetic field strength and ranges from 10 m to 1 km for realistic field strengths. The damping of Alfvén waves is dominated by Ohmic diffusion for weak magnetic field and low heights in the chromosphere, and by ambipolar diffusion for strong magnetic field and medium/large heights in the chromosphere. Conversely, the damping of slow magnetoacoustic waves is less efficient, and spatial scales shorter than 10 m are required for critical damping. Thermal conduction and viscosity govern the damping of slow magnetoacoustic waves and play an equally important role at all heights. These results indicate that the spatial scales at which strong wave heating may work in the chromosphere are currently unresolved by observations

  19. ON THE SPATIAL SCALES OF WAVE HEATING IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Roberto; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain); Carbonell, Marc, E-mail: roberto.soler@uib.es [Institute of Applied Computing and Community Code (IAC), Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)

    2015-09-10

    Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical processes and spatial scales that are required for the efficient dissipation of Alfvén waves and slow magnetoacoustic waves. We consider the governing equations for a partially ionized hydrogen-helium plasma in the single-fluid MHD approximation and include realistic wave damping mechanisms that may operate in the chromosphere, namely, Ohmic and ambipolar magnetic diffusion, viscosity, thermal conduction, and radiative losses. We perform an analytic local study in the limit of small amplitudes to approximately derive the lengthscales for critical damping and efficient dissipation of MHD wave energy. We find that the critical dissipation lengthscale for Alfvén waves depends strongly on the magnetic field strength and ranges from 10 m to 1 km for realistic field strengths. The damping of Alfvén waves is dominated by Ohmic diffusion for weak magnetic field and low heights in the chromosphere, and by ambipolar diffusion for strong magnetic field and medium/large heights in the chromosphere. Conversely, the damping of slow magnetoacoustic waves is less efficient, and spatial scales shorter than 10 m are required for critical damping. Thermal conduction and viscosity govern the damping of slow magnetoacoustic waves and play an equally important role at all heights. These results indicate that the spatial scales at which strong wave heating may work in the chromosphere are currently unresolved by observations.

  20. Two-dimensional nonlinear heat conduction wave in a layer-inhomogeneous medium and the characteristics of heat transfer in laser thermonuclear fusion targets

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Doskach, I Ya

    1999-01-01

    An analytical solution is obtained to the problem of propagation of a 2-D nonlinear heat conduction wave from a cylindrical energy source, which acts in a planar layer of a material surrounded by a medium with different mass density and degree of ionisation. A theoretical justification is given of several interesting phenomena of 2-D thermal wave propagation through an inhomogeneous medium. These phenomena are related to the difference between the thermal wave velocities in the media with different thermal diffusivities. When the mass density in a layer experiencing the action of an energy source exceeds the density of the surrounding medium, the thermal wave front is shown to glide along the layer boundaries with a spatial velocity exceeding the velocity of the wave inside the layer. Moreover, there is a possibility of 'themal flow' of a layer across the boundaries between the layer and the surrounding medium in front of a thermal wave propagating inside the layer. The problems of heat transfer in multilayer targets for laser thermonuclear fusion are considered as an application. (interaction of laser radiation with matter. laser plasma)

  1. The study on pressure oscillation and heat transfer characteristics of oscillating capillary tube heat pipe

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Bui, Ngoc Hung; Jung, Hyun Seok; Lee, Wook Hyun

    2003-01-01

    In the present study, the characteristics of pressure oscillation and heat transfer performance in an oscillating capillary tube heat pipe were experimentally investigated with respect to the heat flux, the charging ratio of working fluid, and the inclination angle to the horizontal orientation. The experimental results showed that the frequency of pressure oscillation was between 0.1 Hz and 1.5 Hz at the charging ratio of 40 vol.%. The saturation pressure of working fluid in the oscillating capillary tube heat pipe increased as the heat flux was increased. Also, as the charging ratio of working fluid was increased, the amplitude of pressure oscillation increased. When the pressure waves were symmetric sinusoidal waves at the charging ratios of 40 vol.% and 60 vol.%, the heat transfer performance was improved. At the charging ratios of 20 vol.% and 80 vol.%, the waveforms of pressure oscillation were more complicated, and the heat transfer performance reduced. At the charging ratio of 40 vol.%, the heat transfer performance of the OCHP was at the best when the inclination angle was 90 .deg., the pressure wave was a sinusoidal waveform, the pressure difference was at the least, the oscillation amplitude was at the least, and the frequency of pressure oscillation was the highest

  2. Traveling wave antenna for fast wave heating and current drive in tokamaks

    International Nuclear Information System (INIS)

    Ikezi, H.; Phelps, D.A.

    1995-07-01

    The traveling wave antenna for heating and current drive in the ion cyclotron range of frequencies is shown theoretically to have loading and wavenumber spectrum which are largely independent of plasma conditions. These characteristics have been demonstrated in low power experiments on the DIII-D tokamak, in which a standard four-strap antenna was converted to a traveling wave antenna through use of external coupling elements. The experiments indicate that the array maintains good impedance matching without dynamic tuning during abrupt changes in the plasma, such as during L- to H-mode transitions, edge localized mode activity, and disruptions. An analytic model was developed which exhibits the features observed in the experiments. Guidelines for the design of traveling wave antennas are derived from the validated model

  3. A new approach to the theory of heat conduction with finite wave speeds

    Directory of Open Access Journals (Sweden)

    Vito Antonio Cimmelli

    1991-05-01

    Full Text Available Relations between the physical models describing the heat conduction in solids and a phenomenological model leading to quasi-linear hyperbolic equations and systems of conservation laws are presented. A new semi-empirical temperature scale is introduced in terms of which a modified Fourier law is formulated. The hyperbolicity of the heat conduction equation is discussed together with some wave propagation problems.

  4. Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer

    Science.gov (United States)

    Kergerise, Michael A.; Rufer, Shann J.

    2016-01-01

    In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  5. The temporal behaviour of MHD waves in a partially ionized prominence-like plasma: Effect of heating and cooling

    Science.gov (United States)

    Ballester, J. L.; Carbonell, M.; Soler, R.; Terradas, J.

    2018-01-01

    Context. During heating or cooling processes in prominences, the plasma microscopic parameters are modified due to the change of temperature and ionization degree. Furthermore, if waves are excited on this non-stationary plasma, the changing physical conditions of the plasma also affect wave dynamics. Aims: Our aim is to study how temporal variation of temperature and microscopic plasma parameters modify the behaviour of magnetohydrodynamic (MHD) waves excited in a prominence-like hydrogen plasma. Methods: Assuming optically thin radiation, a constant external heating, the full expression of specific internal energy, and a suitable energy equation, we have derived the profiles for the temporal variation of the background temperature. We have computed the variation of the ionization degree using a Saha equation, and have linearized the single-fluid MHD equations to study the temporal behaviour of MHD waves. Results: For all the MHD waves considered, the period and damping time become time dependent. In the case of Alfvén waves, the cut-off wavenumbers also become time dependent and the attenuation rate is completely different in a cooling or heating process. In the case of slow waves, while it is difficult to distinguish the slow wave properties in a cooling partially ionized plasma from those in an almost fully ionized plasma, the period and damping time of these waves in both plasmas are completely different when the plasma is heated. The temporal behaviour of the Alfvén and fast wave is very similar in the cooling case, but in the heating case, an important difference appears that is related with the time damping. Conclusions: Our results point out important differences in the behaviour of MHD waves when the plasma is heated or cooled, and show that a correct interpretation of the observed prominence oscillations is very important in order to put accurate constraints on the physical situation of the prominence plasma under study, that is, to perform prominence

  6. Interplay between the energy gap and heat capacity in S-wave superconductor

    International Nuclear Information System (INIS)

    Gonczarek, R.; Mulak, M.

    1998-01-01

    Starting from the postulated, generalized form of the BCS gap equation, suitable for a wide class of microscopic models, the thermodynamic properties of S-wave superconductors are studied. The precise analytical formulas for the main thermodynamic quantities are given and discussed in the characteristic temperature limits. In particular the inversion of the equations defining the specific heat as a function of Δ(T), i.e. the temperature dependence of the energy gap in S-wave superconductor is presented. It makes possible a reconstruction of the energy gap as a function of temperature from the heat capacity data. As predicted, in the frame of the model, the other thermodynamic quantities from the Δ(T) function seem also to be interesting. (orig.)

  7. Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings.

    Science.gov (United States)

    Guerrero-Meseguer, Laura; Marín, Arnaldo; Sanz-Lázaro, Carlos

    2017-11-01

    Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Exact traveling wave solutions for a new nonlinear heat transfer equation

    Directory of Open Access Journals (Sweden)

    Gao Feng

    2017-01-01

    Full Text Available In this paper, we propose a new non-linear partial differential equation to de-scribe the heat transfer problems at the extreme excess temperatures. Its exact traveling wave solutions are obtained by using Cornejo-Perez and Rosu method.

  9. Heating in toroidal plasmas

    International Nuclear Information System (INIS)

    Knoepfel, H.; Mazzitelli, G.

    1984-01-01

    The article is a rather detailed report on the highlights in the area of the ''Heating in toroidal plasmas'', as derived from the presentations and discussions at the international symposium with the same name, held in Rome, March 1984. The symposium covered both the physics (experiments and theory) and technology of toroidal fusion plasma heating. Both large fusion devices (either already in operation or near completion) requiring auxiliary heating systems at the level of tens of megawatts, as well as physics of their heating processes and their induced side effects (as studied on smaller devices), received attention. Substantial progress was reported on the broad front of auxiliary plasma heating and Ohmic heating. The presentation of the main conclusions of the symposium is divided under the following topics: neutral-beam heating, Alfven wave heating, ion cyclotron heating, lower hybrid heating, RF current drive, electron cyclotron heating, Ohmic heating and special contributions

  10. Second harmonic ion cylotron resonance heating by the fast magnetosonic wave on the PLT tokamak

    International Nuclear Information System (INIS)

    Thompson, H.R. Jr.

    1984-01-01

    Second harmonic ion cyclotron resonance heating by the fast magnetosonic wave, and the propagation of the fast wave from the fundamental of the ion cyclotron frequency to its second harmonic was investigated in a hydrogen plasma on the PLT tokamak. The theory of fast magnetosonic wave propagation was extended to include the effects of density gradients, plasma current, and impurity ion species. The damping of the fast wave at the second harmonic is calculated, where the theory has been extended to include the full radial dependence of the fast wave fields. Power deposition profiles and eigenmode Q's are calculated using this theory. The effects of the interaction between the ion Bernstein wave and the fast magnetosonic wave are calculated, and enhanced fast wave damping is predicted. The antenna loading is calculated including the effects of overlap of the fast wave eigenmodes. During the second harmonic heating experiments, the antenna loading was characterized as a function of the plasma parameters, and efficient coupling of the RF power to the plasma at high density was observed. At very low densities, fast wave eigenmodes were identified on PLT, and their Q's are measured. Eigenmodes with different toroidal directions of propagation were observed to exhibit large splitting in density due to the plasma current. Efficient bulk heating, with centrally peaked profiles, is observed at the second harmonic, and a tail, which decreases monotonically with energy, is observed on the ion distribution

  11. High frequency ion Bernstein wave heating experiment on JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Seki, T.; Kumazawa, R.; Watari, T.

    1992-08-01

    An experiment in a new regime of ion Bernstein wave (IBW) heating has been carried out using 130 MHz high power transmitters in the JIPP T-IIU tokamak. The heating regime utilized the IBW branch between the 3rd and 4th harmonics of the hydrogen ion cyclotron frequencies. This harmonic number is the highest among those used in the IBW experiments ever conducted. The net radio-frequency (RF) power injected into the plasma is around 400 kW, limited by the transmitter output power. Core heating of ions and electrons was confirmed in the experiment and density profile peaking was found to feature the IBW heating (IBWH). The peaking of the density profile was also found when IBW was applied to the neutral beam injection heated discharges. An analysis by use of a transport code with these experimental data indicates that the particle confinement should be improved in the plasma core region on the application of IBWH. It is also found that the ion energy distribution function observed during IBWH has less high energy tail than those in conventional ion cyclotron range of frequency heating regimes. The observed IBWH-produced ion energy distribution function is in a reasonable agreement with the calculation based on the quasi-linear RF diffusion / Fokker-Planck model. (author)

  12. A study on the heating and diagnostic of a tokamak plasma by electromagnetic waves of the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi

    1989-09-01

    A study on the heating and diagnosis of tokamak plasma by electromagnetic waves of electron cyclotron range of frequency is summarized. The main results obtained are as follows. On the engineering and technology, the technology of injecting high frequency, large power millimeter waves into tokamak plasma was established by carrying out the design, manufacture and test of a 60 GHz, 400 kW high frequency heating system, and the design, manufacture and test of a heterodyne type electron cyclotron radiation multi-channel mealsuring system were carried out, and the technology of measuring the radiation from tokamak plasma with the time resolution of 10 μs in multi-channel was established. On nuclear fusion reactor core engineering and plasma physics, the high efficiency electron heating of tokamak plasma by the incidence of fundamental irregular and regular waves at electron cyclotron frequency was verified. The discovery and analysis of the heating by electrostatic waves arising due to mode transformation from electromagnetic waves in upper hybrid resonance layer were carried out. By the incidence of second harmonic waves, the high efficiency electron heating of tokamak plasma was verified, and the heating characteristics were clarified. And others. (K.I.) 179 refs

  13. E × B shear pattern formation by radial propagation of heat flux waves

    Energy Technology Data Exchange (ETDEWEB)

    Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)

    2014-05-15

    A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.

  14. Development of slow and fast wave coupling and heating from the C-Stellarator to NSTX

    Directory of Open Access Journals (Sweden)

    Hosea Joel

    2017-01-01

    Full Text Available A historical perspective on key discoveries which contributed to understanding the properties of coupling both slow and fast waves and the effects on plasma heating and current drive will be presented. Important steps made include the demonstration that the Alfven resonance was in fact a mode conversion on the C-stellarator, that toroidal m = -1 eigenmodes were excited in toroidal geometry and impurity influx caused the Z mode on the ST tokamak, that the H minority regime provided strong heating and that 3He minority could be used as well on PLT, that the 2nd harmonic majority tritium regime was viable on TFTR, and that high harmonic fast wave heating was efficient when the SOL losses were avoided on NSTX.

  15. Traveling-wave antenna for fast-wave heating and current drive in tokamaks

    International Nuclear Information System (INIS)

    Ikezi, H.; Phelps, D.A.

    1997-01-01

    The travelling-wave antenna for heating and current drive in the ion cyclotron range of frequencies is shown theoretically to have loading and wavenumber spectra that are largely independent of plasma conditions. These characteristics have been demonstrated in low-power experiments on the DIII-D tokamak, in which a standard four-strap antenna was converted to a traveling-wave antenna through use of external coupling elements. The experiments indicate that the array maintains good impedance matching without dynamic tuning during abrupt changes in the plasma, such as during L- to H-mode transitions, edge-localized mode activity, and disruptions. An analytic model was developed that exhibits the features observed in the experiments. Guidelines for the design of travelling-wave antennas are derived from the validated model. 11 refs., 14 figs

  16. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation

    Science.gov (United States)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2016-10-01

    Objective. While ultrasound is largely established for use in diagnostic imaging, its application for neuromodulation is relatively new and crudely understood. The objective of the present study was to investigate the effects of tissue properties and geometry on the wave propagation and heating in the context of transcranial neuromodulation. Approach. A computational model of transcranial-focused ultrasound was constructed and validated against empirical data. The models were then incrementally extended to investigate a number of issues related to the use of ultrasound for neuromodulation, including the effect on wave propagation of variations in geometry of skull and gyral anatomy as well as the effect of multiple tissue and media layers, including scalp, skull, CSF, and gray/white matter. In addition, a sensitivity analysis was run to characterize the influence of acoustic properties of intracranial tissues. Finally, the heating associated with ultrasonic stimulation waveforms designed for neuromodulation was modeled. Main results. The wave propagation of a transcranially focused ultrasound beam is significantly influenced by the cranial domain. The half maximum acoustic beam intensity profiles are insensitive overall to small changes in material properties, though the inclusion of sulci in models results in greater peak intensity values compared to a model without sulci (1%-30% greater). Finally, heating using currently employed stimulation parameters in humans is highest in bone (0.16 °C) and is negligible in brain (4.27 × 10-3 °C) for a 0.5 s exposure. Significance. Ultrasound for noninvasive neuromodulation holds great promise and appeal for its non-invasiveness, high spatial resolution and deep focal lengths. Here we show gross brain anatomy and biological material properties to have limited effect on ultrasound wave propagation and to result in safe heating levels in the skull and brain.

  17. Role of Soil Moisture vs. Recent Climate Change for the 2010 Heat Wave in Western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Seneviratne, Sonia

    2016-04-01

    Extreme event attribution statements are often conditional on increased greenhouse gas concentrations or a particular ocean state, but not on other physical factors of the climate system. Here we extend the classical framework and assess the influence of soil moisture on a heat wave to obtain a physical attribution statement. In particular, we test the role of soil-moisture-temperature feedbacks which have been shown to be generally relevant for the build-up of exceptionally high temperatures. As a case study we investigate the severe 2010 heat wave in western Russia, which was previously found to be influenced by anthropogenic climate change. We quantify the relative role of climate change and that of soil moisture-temperature feedbacks with the event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. We find that climate change from 1960 to 2000 alone has approximately tripled the risk of a severe heat wave in western Russia. The combined effect of climate change and the dry 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed the basis for this extreme heatwave.

  18. d-3He reaction measurements during fast wave minority heating in PLT

    International Nuclear Information System (INIS)

    Chrien, R.E.; Strachan, J.D.

    1983-01-01

    Time- and energy-resolved d- 3 He fusion reactions have been measured to infer the energy of the d + or He ++ minority ions heated near their cyclotron frequency by the magnetosonic fast wave. The average energy of the reacting 3 He ions during 3 He minority heating is in the range of 100 to 400 keV, as deduced from the magnitude of the reaction rate, its decay time, and the energy spread of the proton reaction products. The observed reaction rate and its scaling with wave power and electron density and temperature are in qualitative agreement with a radial reaction rate model using the minority distribution predicted from quasilinear velocity space diffusion. Oscillations in the reaction rate are observed concurrent with sawtooth and m = 2 MHD activity in the plasma

  19. Impacts of updated green vegetation fraction data on WRF simulations of the 2006 European heat wave

    Science.gov (United States)

    Refslund, J.; Dellwik, E.; Hahmann, A. N.; Barlage, M. J.; Boegh, E.

    2012-12-01

    Climate change studies suggest an increase in heat wave occurrences over Europe in the coming decades. Extreme events with excessive heat and associated drought will impact vegetation growth and health and lead to alterations in the partitioning of the surface energy. In this study, the atmospheric conditions during the heat wave year 2006 over Europe were simulated using the Weather Research and Forecasting (WRF) model. To account for the drought effects on the vegetation, new high-resolution green vegetation fraction (GVF) data were developed for the domain using NDVI data from MODIS satellite observations. Many empirical relationships exist to convert NDVI to GVF and both a linear and a quadratic formulation were evaluated. The new GVF product has a spatial resolution of 1 km2 and a temporal resolution of 8 days. To minimize impacts from low-quality satellite retrievals in the NDVI series, as well as for comparison with the default GVF climatology in WRF, a new background climatology using 10 recent years of observations was also developed. The annual time series of the new GVF climatology was compared to the default WRF GVF climatology at 18 km2 grid resolution for the most common land use classes in the European domain. The new climatology generally has higher GVF levels throughout the year, in particular an extended autumnal growth season. Comparison of 2006 GVF with the climatology clearly indicates vegetation stresses related to heat and drought. The GVF product based on a quadratic NDVI relationship shows the best agreement with the magnitude and annual range of the default input data, in addition to including updated seasonality for various land use classes. The new GVF products were tested in WRF and found to work well for the spring of 2006 where the difference between the default and new GVF products was small. The WRF 2006 heat wave simulations were verified by comparison with daily gridded observations of mean, minimum and maximum temperature and

  20. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    Science.gov (United States)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  1. Drought and Heat Wave Impacts on Electricity Grid Reliability in Illinois

    Science.gov (United States)

    Stillwell, A. S.; Lubega, W. N.

    2016-12-01

    A large proportion of thermal power plants in the United States use cooling systems that discharge large volumes of heated water into rivers and cooling ponds. To minimize thermal pollution from these discharges, restrictions are placed on temperatures at the edge of defined mixing zones in the receiving waters. However, during extended hydrological droughts and heat waves, power plants are often granted thermal variances permitting them to exceed these temperature restrictions. These thermal variances are often deemed necessary for maintaining electricity reliability, particularly as heat waves cause increased electricity demand. Current practice, however, lacks tools for the development of grid-scale operational policies specifying generator output levels that ensure reliable electricity supply while minimizing thermal variances. Such policies must take into consideration characteristics of individual power plants, topology and characteristics of the electricity grid, and locations of power plants within the river basin. In this work, we develop a methodology for the development of these operational policies that captures necessary factors. We develop optimal rules for different hydrological and meteorological conditions, serving as rule curves for thermal power plants. The rules are conditioned on leading modes of the ambient hydrological and meteorological conditions at the different power plant locations, as the locations are geographically close and hydrologically connected. Heat dissipation in the rivers and cooling ponds is modeled using the equilibrium temperature concept. Optimal rules are determined through a Monte Carlo sampling optimization framework. The methodology is applied to a case study of eight power plants in Illinois that were granted thermal variances in the summer of 2012, with a representative electricity grid model used in place of the actual electricity grid.

  2. Marine Heat Waves Hazard 3D Maps and the Risk for Low Motility Organisms in a Warming Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Giovanni Galli

    2017-05-01

    Full Text Available Frequency and severity of heat waves is expected to increase as a consequence of climate change with important impacts on human and ecosystems health. However, while many studies explored the projected occurrence of hot extremes on terrestrial systems, few studies dealt with marine systems, so that both the expected change in marine heat waves occurrence and the effects on marine organisms and ecosystems remain less understood and surprisingly poorly quantified. Here we: (i assess how much more frequent, severe, and depth-penetrating marine heat waves will be in the Mediterranean area in the next decades by post-processing the output of an ocean general circulation model; and (ii show that heat waves increase will impact on many species that live in shallow waters and have reduced motility, and related economic activities. This information is made available also as a dataset of temperature threshold exceedance indexes that can be used in combination with biological information to produce risk assessment maps for target species or biomes across the whole Mediterranean Sea. As case studies we compared projected heat waves occurrence with thermotolerance thresholds of low motility organisms. Results suggest a deepening of the survival horizon for red coral (Corallium rubrum, a commercially exploited benthic species already subjected to heat-related mass mortality events and coralligenous reefs as well as a reduction of suitable farming sites for the mussel Mythilus galloprovincialis. In recent years Mediterranean circalittoral ecosystems (coralligenous have been severely and repeatedly impacted by marine heat waves. Our results support that equally deleterious events are expected in the near future also for other ecologically important habitats (e.g., seagrass meadows and aquaculture activities (bivalvae, and point at the need for mitigation strategies.

  3. Theory of ionospheric heating experiments

    International Nuclear Information System (INIS)

    Cragin, B.L.

    1975-01-01

    A brief description of the F region ionospheric heating experiments is given including some historical notes and a brief summary of the observations. A theory for the phenomenon of ''artificial spread F'' is presented. The explanation is in terms of scattering by approximately field-aligned, large scale ionization density irregularities, which are produced by a thermal version of the stimulated Brillouin scattering instability in which the heating wave decays into another electromagnetic wave and an electrostatic wave of very low frequency. This thermal instability differs from conventional stimulated Brillouin scattering in that the low frequency wave is driven by differential heating in the interference pattern of the two electromagnetic waves, rather than by the usual ponderomotive force. Some aspects of the theory of the phenomenon of ''wide-band attenuation'' or ''anomalous absorption'' of a probing electromagnetic wave. Some general results from the theory of wave propagation in a random medium are used to derive equations describing the absorption of a probing electromagnetic wave due to scattering (by large scale irregularities) into new electromagnetic waves or (by small scale irregularities) into electron plasma oscillations

  4. ION HEATING IN INHOMOGENEOUS EXPANDING SOLAR WIND PLASMA: THE ROLE OF PARALLEL AND OBLIQUE ION-CYCLOTRON WAVES

    International Nuclear Information System (INIS)

    Ozak, N.; Ofman, L.; Viñas, A.-F.

    2015-01-01

    Remote sensing observations of coronal holes show that heavy ions are hotter than protons and their temperature is anisotropic. In-situ observations of fast solar wind streams provide direct evidence for turbulent Alfvén wave spectrum, left-hand polarized ion-cyclotron waves, and He ++ - proton drift in the solar wind plasma, which can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, the solar wind is expected to be inhomogeneous on decreasing scales approaching the Sun. We study the heating of solar wind ions in inhomogeneous plasma with a 2.5D hybrid code. We include the expansion of the solar wind in an inhomogeneous plasma background, combined with the effects of a turbulent wave spectrum of Alfvénic fluctuations and initial ion-proton drifts. We study the influence of these effects on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We find that inhomogeneities in the plasma lead to enhanced heating compared to the homogenous solar wind, and the generation of significant power of oblique waves in the solar wind plasma. The cooling effect due to the expansion is not significant for super-Alfvénic drifts, and is diminished further when we include an inhomogeneous background density. We reproduce the ion temperature anisotropy seen in observations and previous models, which is present regardless of the perpendicular cooling due to solar wind expansion. We conclude that small scale inhomogeneities in the inner heliosphere can significantly affect resonant wave ion heating

  5. The heat spells of Mexico City

    Directory of Open Access Journals (Sweden)

    Ernesto Jáuregui

    2010-06-01

    Full Text Available The warning of urban air has been documented to increase in intensity and area as cities grow (Oke, 1982. As the cities grow the so called “heat island” tends to increase the risk of more frequent heat waves as well as their impacts (IPCC, 2001. Threshold values to define a heat wave vary geographically. For the case of Mexico City located in a high inland valley in the tropics, values above 30° C (daily maximum observed for three or more consecutive days and 25° C or more as mean temperature have been adopted to define the phenomenon. These events occur at the end of the dry season during March to May when afternoon relative humidity is quite low (∼20% and thus reducing the stress. Maximum temperatute data from the Observatory of the National Meteorological Service were used. Results show that during the second half of the XXth century the frequency of heat waves as defined above has doubled from 6 events/decade to 16/decade in the 1990s with a marked increase in the last third of the last century when population of the city grew from 8.5 to 18.5 million (CONAPO, 2000. During this time the average urban/rural contrast grew considerably from about 6° C to 10° C (Jáuregui, 1986. While these heat waves may be considered as “mild”they receive attention from the media and prompt actions by the population to relieve the heat stress. Application of heat indices based on the human energy balance (PET and PMV result in moderate to strong heat stress during these events. Because climate change is expected to raise nighttime minimum temperatures more than daytime highs (as suggested by the IPCC, 2001 urban heat islands and their related heat waves are likely to be a significant health concern in days to come in large urban centers especially in the developing countries.

  6. Preferential heating of oxygen 5{sup +} ions by finite-amplitude oblique Alfvén waves

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Yana G.; Poedts, Stefaan [Centre for mathematical Plasma Astrophysics, KU Leuven, B-3001 Leuven (Belgium); Viñas, Adolfo [NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, 20771 MD (United States); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Casilla 160 - C, Concepción (Chile)

    2016-03-25

    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5{sup +} ions by large-scale finite-amplitude Alfvén waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5{sup +} ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfvén-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles θ ≤ 30°. The obliquely propagating Alfvén pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  7. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-01

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possibly IBW-generated sheared flows

  8. Heat stress and public health: a critical review.

    Science.gov (United States)

    Kovats, R Sari; Hajat, Shakoor

    2008-01-01

    Heat is an environmental and occupational hazard. The prevention of deaths in the community caused by extreme high temperatures (heat waves) is now an issue of public health concern. The risk of heat-related mortality increases with natural aging, but persons with particular social and/or physical vulnerability are also at risk. Important differences in vulnerability exist between populations, depending on climate, culture, infrastructure (housing), and other factors. Public health measures include health promotion and heat wave warning systems, but the effectiveness of acute measures in response to heat waves has not yet been formally evaluated. Climate change will increase the frequency and the intensity of heat waves, and a range of measures, including improvements to housing, management of chronic diseases, and institutional care of the elderly and the vulnerable, will need to be developed to reduce health impacts.

  9. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  10. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    Science.gov (United States)

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  11. Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak

    Science.gov (United States)

    Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST Team

    2018-01-01

    The transient perturbation method with metallic impurities such as iron (Fe, Z  =  26) and copper (Cu, Z  =  29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.

  12. Design of the RF system for Alfven wave heating and current drive in a TCA/BR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.; Andrade, M.L.; Ozono, E.; Galvao, R.M.O.; Degaspari, F.T.; Nascimento, I.C.

    1995-01-01

    The advanced RF system for Alfven wave plasma heating and current drive in TCA/BR tokamak is presented. The antenna system is capable of exciting the standing and travelling wave M = -1,N = 1,N =-4,-6 with single helicity and thus provides the possibility to improve Alfven wave plasma heating efficiency in TCA/BR tokamak and to increase input power level up to P ≅ 1 MW, without the uncontrolled density rise which was encountered in previous TCA (Switzerland) experiments. (author). 4 refs., 3 figs

  13. The analysis of Alfven wave current drive and plasma heating in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Lerche, E.A.; Galvao, R.M.O.; Elfimov, A.G.; Nascimento, I.C.; Sa, W.P. de; Sanada, E.; Elizondo, J.I.; Ferreira, A.A.; Saettone, E.A.; Severo, J.H.F.; Bellintani, V.; Usuriaga, O.N.

    2002-01-01

    The results of experiments on Alfven wave current drive and plasma heating in the TCABR tokamak are analyzed with the help of a numerical code for simulation of the diffusion of the toroidal electric field. It permits to find radial distributions of plasma current density and conductivity, which match the experimentally measured total plasma current and loop voltage changes, and thus to study the performance of the RF system during Alfven wave plasma heating and current drive experiments. Regimes with efficient RF power input in TCABR have been analyzed and revealed the possibility of noninductive current generation with magnitudes up to ∼8 kA. The increase of plasma energy content due to RF power input is consistent with the diamagnetic measurements. (author)

  14. Study of parametric instabilities during the Alcator C lower hybrid wave heating experiments

    International Nuclear Information System (INIS)

    Takase, Y.

    1983-10-01

    Parametric excitation of ion-cyclotron quasi-modes (ω/sub R/ approx. = nω/sub ci/) and ion-sound quasi-modes (ω/sub R/ approx. = k/sub parallel to/v/sub ti/) during lower hybrid wave heating of tokamak plasmas have been studied in detail. Such instabilities may significantly modify the incident wavenumber spectrum near the plasma edge. Convective losses for these instabilities are high if well-defined resonance cones exist, but they are significantly reduced if the resonance cones spread and fill the plasma volume (or some region of it). These instabilities preferentially excite lower hybrid waves with larger values of n/sub parallel to/ than themselves possess, and the new waves tend to be absorbed near the outer layers of the plasma. Parametric instabilities during lower hybrid heating of Alcator C plasmas have been investigated using rf probes (to study tilde phi and tilde n/sub i/) and CO 2 scattering technique (to study tilde n/sub e/). At lower densities (anti n/sub e/ less than or equal to 0.5 x 10 14 cm -3 ) where waves observed in the plasma interior using CO 2 scattering appear to be localized, parametric decay is very weak. Both ion-sound and ion-cyclotron parametric decay processes have been observed at higher densities (anti n greater than or equal to 1.5 x 10 14 cm -3 ) where waves appear to be unlocalized. Finally, at still higher densities (anti n /sub e/ greater than or equal to 2 x 10 4 cm -3 ) pump depletion has been observed. Above these densities heating and current drive efficiencies are expected to degrade significantly

  15. On Resonant Heating Below the Cyclotron Frequency

    International Nuclear Information System (INIS)

    Chen, Liu; Lin, Zhihong; White, R.

    2001-01-01

    Resonant heating of particles by an electrostatic wave propagating perpendicular to a confining uniform magnetic field is examined. It is shown that, with a sufficiently large wave amplitude, significant perpendicular stochastic heating can be obtained with wave frequency at a fraction of the cyclotron frequency

  16. Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating

    Science.gov (United States)

    Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume

    2018-03-01

    The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.

  17. Climate extremes in urban area and their impact on human health: the summer heat waves

    Science.gov (United States)

    Baldi, Marina

    2014-05-01

    In the period 1951-2012 the average global land and ocean temperature has increased by approximately 0.72°C [0.49-0.89] when described by a linear trend, and is projected to rapidly increase. Each of the past three decades has been warmer than all the previous decades, with the decade of the 2000's as the warmest, and, since 1880, nine of the ten warmest years are in the 21st century, the only exception being 1998, which was warmed by the strongest El Niño event of the past century. In parallel an increase in the frequency and intensity of extremely hot days is detected with differences at different scales, which represent an health risk specially in largely populated areas as documented for several regions in the world including the Euro-Mediterranean region. If it is still under discussion if heat wave episodes are a direct result of the warming of the lower troposphere, or if, more likely, they are a regional climate event, however heat episodes have been studied in order to define their correlation with large scale atmospheric patterns and with changes in the regional circulation. Whatever the causes and the spatio-temporal extension of the episodes, epidemiological studies show that these conditions pose increasing health risks inducing heat-related diseases including hyperthermia and heat stress, cardiovascular and respiratory illnesses in susceptible individuals with a significant increase in morbidity and mortality especially in densely populated urban areas. In several Mediterranean cities peaks of mortality associated with extremely high temperature (with simultaneous high humidity levels) have been documented showing that, in some cases, a large increase in daily mortality has been reached compared to the average for the period. The number of fatalities during the summer 2003 heat wave in Europe was estimated to largely exceed the average value of some between 22000 and 50000 cases. In the same summer it was also unusually hot across much of Asia, and

  18. Drought and Heat Waves: The Role of SST and Land Surface Feedbacks

    Science.gov (United States)

    Schubert, Siegfried

    2011-01-01

    Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. At the shortest time scales it is often associated with heat waves that last only several weeks to a few months but nevertheless can have profound detrimental impacts on society (e.g., heat-related impacts on human health, desiccation of croplands, increased fire hazard), while at the longest time scales it can extend over decades and can lead to long term structural changes in many aspects of society (e.g., agriculture, water resources, wetlands, tourism, population shifts). There is now considerable evidence that sea surface temperatures (SSTs) play a leading role in the development of drought world-wide, especially at seasonal and longer time scales, though land-atmosphere feedbacks can also play an important role. At shorter (subseasonal) time scales, SSTs are less important, but land feedbacks can play a critical role in maintaining and amplifying the atmospheric conditions associated with heat waves and short-term droughts. This talk reviews our current understanding of the physical mechanisms that drive precipitation and temperature variations on subseasonal to centennial time scales. This includes an assessment of predictability, prediction skill, and user needs at all time scales.

  19. Stochastic plasma heating by electrostatic waves: a comparison between a particle-in-cell simulation and a laboratory experiment

    International Nuclear Information System (INIS)

    Fivaz, M.; Fasoli, A.; Appert, K.; Trans, T.M.; Tran, M.Q.; Skiff, F.

    1993-08-01

    Dynamical chaos is produced by the interaction between plasma particles and two electrostatic waves. Experiments performed in a linear magnetized plasma and a 1D particle-in-cell simulation agree qualitatively: above a threshold wave amplitude, ion stochastic diffusion and heating occur on a fast time scale. Self-consistency appears to limit the extent of the heating process. (author) 5 figs., 18 refs

  20. Change of the high-latitude ionosphere during heating by a powerful short radio wave of the EISCAT/Heating complex according to signals of the GLONASS satellite and the incoherent scattering radar

    Directory of Open Access Journals (Sweden)

    Tereshchenko E. D.

    2018-03-01

    Full Text Available Results of observations of variations of temperature, electron concentration and total electron content of the high-latitude region of the ionosphere during its modification by powerful short radio waves of the heating complex EISCAT/Heating (Tromsø, Norway according to signals of the GLONASS satellites and the incoherent scattering UHF EISCAT radar (Tromsø, Norway have been provided. The geometry of passes of the GLONASS and GPS satellites for operating conditions of the heating complex in Tromsø has been considered. It has been shown that during the experiments on the EISCAT/Heating complex for the study of the modified structure of the high-latitude ionosphere it is more convenient to use the GLONASS satellites. Parameters of orbits of these satellites allow researching changes of total electron content in the direction along the geomagnetic field line at the place of observation. It has been shown that during heating of the ionosphere by powerful short radio waves its structure is becoming an irregular one. Operation of the heating complex in the mode "switched on – switched off" has caused appearance of wavy variations of total electron content with the periods close to the heating period. The main features of behavior of the total electron content in the case of the continuous heating of the ionosphere in the direction of the magnetic zenith according to the GLONASS satellite are: reduction of total electron content in the central zone of the antenna diagram, i. e. in the direction of the magnetic zenith, and presence of the increased values of total electron content at the edges of the heating zone. According to the incoherent scattering radar the heating of the ionosphere by the powerful short radio wave has created the region of the increased electron temperature and electron concentration along the direction of the magnetic zenith. The behavior of total electron content according to the GLONASS satellite and the radar of

  1. Heating experiments of JT-60

    International Nuclear Information System (INIS)

    1987-01-01

    In JT-60, after the finish of the first stage Joule experiment, the heating facilities were installed, and the heating experiment was started in August, 1986. As to neutral beam injection, the beam injection experiment at the maximum rating 20 MW carried out, and also as to RF, the injection experiment up to 1.4 MW was carried out in both ion cyclotron and low band hybrid waves. The results worthy of special mention in the heating experiment were the success in the current drive up to 1.7 MA at maximum using low band hybrid waves and the improvement of plasma confinement characteristics obtained by the compound heating of NBI and RF. In this paper, the main results of these heating experiments and their significance are explained. The JT-60 is the testing facilities for attaining the critical plasma condition by additionally heating the plasma which is generated by Joule electric discharge with NBI and RF heatings. The experimental operation cycle of the JT-60 consists of the unit cycle of two weeks, and the number of days in operation is nine days. The temperature of heated plasma rose to 70 million deg C in the 20 MW NBI heating. Hereafter, the improvement of confinement time by increasing the stored energy of plasma is attempted. (Kako, I.)

  2. Could aerosol emissions be used for regional heat wave mitigation?

    Directory of Open Access Journals (Sweden)

    D. N. Bernstein

    2013-07-01

    Full Text Available Geoengineering applications by injection of sulfate aerosols into the stratosphere are under consideration as a measure of last resort to counter global warming. Here a potential regional-scale application to offset the impacts of heat waves is critically examined. Using the Weather Research and Forecasting model with fully coupled chemistry (WRF-Chem, the effect of regional-scale sulfate aerosol emission over California in each of two days of the July 2006 heat wave is used to quantify potential reductions in surface temperature as a function of emission rates in a layer at 12 km altitude. Local meteorological factors yield geographical differences in surface air temperature sensitivity. For emission rates of approximately 30 μg m−2 s−1 of sulfate aerosols (with standard WRF-Chem size distribution over the region, temperature decreases of around 7 °C result during the middle part of the day over the Central Valley, one of the areas hardest hit by the heat wave. Regions more ventilated with oceanic air such as Los Angeles have slightly smaller reductions. The length of the hottest part of the day is also reduced. Advection effects on the aerosol cloud must be more carefully forecast for smaller injection regions. Verification of the impacts could be done via measurements of differences in reflected and surface downward shortwave. Such regional geoengineering applications with specific near-term target effects but smaller cost and side effects could potentially provide a means of testing larger scale applications. However, design considerations for regional applications, such as a preference for injection at a level of relatively low wind speed, differ from those for global applications. The size of the required injections and the necessity of injection close to the target region raise substantial concerns. The evaluation of this regional-scale application is thus consistent with global model evaluations, emphasizing that mitigation via

  3. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    Science.gov (United States)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  4. Awareness of and Attitudes towards Heat Waves within the Context of Climate Change among a Cohort of Residents in Adelaide, Australia

    OpenAIRE

    Akompab, Derick; Bi, Peng; Williams, Susan; Grant, Janet; Walker, Iain; Augoustinos, Martha

    2012-01-01

    Heat waves are a public health concern in Australia and unprecedented heat waves have been recorded in Adelaide over recent years. The aim of this study was to examine the perception and attitudes towards heat waves in the context of climate change among a group of residents in Adelaide, an Australian city with a temperate climate. A cross-sectional study was conducted in the summer of 2012 among a sample of 267 residents. The results of the survey found that television (89.9%), radio (71.2%)...

  5. An Analysis of the Impact of Heat Waves in Labor and Crop Productivity in the Agricultural Sector in California

    Science.gov (United States)

    Castillo, F.; Wehner, M. F.; Gilless, J. K.

    2017-12-01

    California agriculture is an important economic activity for the state. California leads the nation in farms sales since 1950. In addition, agricultural employment in California reached approximately 410,000. Production of many fruits and vegetables is labor intensive and labor costs represent anywhere from 20% to 40% of total production costs. In additon, agricutlural production growth has been the highest for labor intensive crops such as berries (all types) and nuts. Given the importance of the agricultural sector and the labor component whithin it, the analysis of the impact of climate change on the agricultural sector of California becomes imperative. Heat waves are a weather related extreme that impact labor productivity, specially outdoor labor producitivity. We use crop production function analysis that incorporates socio economic variables such as crop prices, total acreage, production levels and harvest timiline with climate related variables such as an estimated Heat Index (HI) to analize the impact of heat waves on crop production via an impact on labor productivity for selected crops in the Central and Imperial Valleys in California. The analysis finds that the impact of heat waves varies by the degree of labor intensity of the crop and the relative intensity of the heat wave.

  6. Fast-wave heating of a two-component plasma

    International Nuclear Information System (INIS)

    Stix, T.H.

    1975-02-01

    The use of the compressional hydromagnetic mode (also called the magnetosonic or, simply, the fast wave) is examined in some detail with respect to the heating of a tritium plasma containing a few percent deuterium. Efficient absorption of wave energy by the deuteron component is found when ω = ω/sub c/ (deuterons), with Q/sub wave/ greater than or equal to 100. The dominant behavior of the high-energy deuteron distribution function is found to be f(v) approximately exp[3/2) ∫/sup v/ dv less than Δv greater than/less than(Δv/sub perpendicular to/) 2 greater than], where [Δv] is the Chandrasekhar-Spitzer drag coefficient, and [(Δv/sub perpendicular to/) 2 sigma] is the Kennel-Englemann quasilinear diffusion coefficient for wave--particle interaction at the deuteron cyclotron frequency. An analytic solution to the one-dimensional Fokker--Planck equation, with rf-induced diffusion, is developed, and using this solution together with Duane's fit to the D-T fusion cross-section, it is found that the nuclear fusion power output from an rf-produced two-component plasma can significantly exceed the incremental (radiofrequency) power input. (auth)

  7. Wave heating and the U.S. magnetic fusion energy program

    International Nuclear Information System (INIS)

    Staten, H.S.

    1985-01-01

    The U.S. Government's support of the fusion program is predicated upon the long-term need for the fusion option in our energy future, as well as the near-term benefits associated with developments on the frontier of science and high technology. As a long-term energy option, magnetic fusion energy has the potential to provide an inexpensive, vast, and secure fuel reserve, to be environmentally clean and safe. It has many potential uses, which include production of central station electricity, fuel for fission reactors, synthetic fuels, and process heat for such applications as desalination of sea water. This paper presents an overview of the U.S. Government program for magnetic fusion energy. The goal and objectives of the U.S. program are reviewed followed by a summary of plasma experiments presently under way and the application of wave heating to these experiments

  8. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    Science.gov (United States)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  9. FISIC - a full-wave code to model ion cyclotron resonance heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Kruecken, T.

    1988-08-01

    We present a user manual for the FISIC code which solves the integrodifferential wave equation in the finite Larmor radius approximation in fully toroidal geometry to simulate ICRF heating experiments. The code models the electromagnetic wave field as well as antenna coupling and power deposition profiles in axisymmetric plasmas. (orig.)

  10. Differences on the effect of heat waves on mortality by sociodemographic and urban landscape characteristics.

    Science.gov (United States)

    Xu, Yihan; Dadvand, Payam; Barrera-Gómez, Jose; Sartini, Claudio; Marí-Dell'Olmo, Marc; Borrell, Carme; Medina-Ramón, Mercè; Sunyer, Jordi; Basagaña, Xavier

    2013-06-01

    Mortality increases during heat waves have been reported worldwide. The magnitude of these increases can vary within regions according to sociodemographic and urban landscape characteristics. The objectives of this study were to explore this variation and its determinants, and to identify the most heat-vulnerable areas by mapping heat vulnerability. We conducted a time-stratified case-crossover analysis using daily mortality in the Barcelona metropolitan area during the warm seasons of 1999-2006. Temperature data on the date of death were assigned to each individual, which were assigned to their census tract of residence. Eight census tract-level variables on socioeconomic or built environment characteristics were obtained from the census. Residence surrounding greenness was obtained from satellite data. The relative risk (RR) of mortality after three consecutive hot days (defined as those exceeding the 95th percentile of maximum temperature) was calculated via conditional logistic regression. Effect modification was examined by including interaction terms. Analyses were based on 52 806 deaths. The effect of three consecutive hot days was a 30% increase in all-cause mortality (RR=1.30, 95% CI 1.24 to 1.38). Heterogeneity of this effect was observed across census tracts. The effect of heat on mortality was higher in the census tracts with a large percentage of old buildings (RR=1.21, 95% CI 1.00 to 1.46), manual workers (RR=1.25, 95% CI 0.96 to 1.64) and residents perceiving little surrounding greenness (RR=1.29, 95% CI 1.01 to 1.65). After three consecutive hot days, mortality doubled in the most heat-vulnerable census tracts. Sociodemographic and urban landscape characteristics are associated to mortality risk during heat waves and are useful to build heat vulnerability maps.

  11. Fast wave heating experiments in the ion cyclotron range of frequencies on ATF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, M; Shepard, T D; Goulding, R H [Oak Ridge National Lab., TN (United States); and others

    1992-07-01

    Fast wave heating experiments in the ion cyclotron range of frequencies (ICRF) were performed on target plasmas produced by 350 kW of electron cyclotron heating at 53 GHz and also by neutral beam injection in the Advanced Toroidal Facility (ATF). Various heating regimes were investigated in the frequency range between 9.2 MHz and 28.8 MHz with magnetic fields of 0.95 T and 1.9 T on axis. The nominal pulse lengths of up to 200 kW RF power were in the range between 100 and 400 ms. Data from spectroscopy, loading measurements, and edge RF and Langmuir probes were used to characterize the RF induced effects on the ATF plasma. In the hydrogen minority regime at low plasma density, large suprathermal ion tails were observed with a neutral particle analyser. At high density (n-bar{sub e} {>=} 5.0 x 10{sup 13} cm{sup -3}) substantial increases in antenna loading were observed, but ICRF power was insufficient to produce definitive heating results. A two-dimensional RF heating code, ORION, and a Fokker-Planck code, RFTRANS, were used to simulate these experiments. A simulation of future high power, higher density experiments in ATF indicates improved bulk heating results due to the improved loading and more efficient thermalization of the minority tail. (author). 29 refs, 16 figs, 3 tabs.

  12. Heat transfer through the thermal skin of a cooling pond with waves

    International Nuclear Information System (INIS)

    Wesely, M.L.

    1979-01-01

    The temperature drop measured across the cool skin of a cooling pond is examined for 64 10-min data collection periods taken with wind speeds of 3--8.5 m s -1 (effectively at a height of 10 m) and surface temperatures of 18 0 --37.5 0 C. The total heat transfer through the skin is found with the use of bulk aerodynamic estimates of the latent and sensible heat flux densities and empirical expressions for the long-wave radiation exchange at the surface. Although it is questionable to describe the characteristics of a surface with waves by use of formulae derived partially on the assumption that a rigid boundary exists at the air-water interface, the parameterizations that result seem on the average to perform quite well. For example, values of the numerical proportionally coefficient lambda [Saunders, 1967], which relates the total heat transfer to the temperature drop, increase slightly from 6 to 7 as water temperature increases; these values are near those reported previously. No variation of lambda with wind speed is detected. If lambda is replaced by a numerical coefficient that also takes into account the difference of the thicknesses of the thermal and viscous sublayers, the new coefficient Λapprox. =lambdaPr/sup 1/3/, where Pr is the Prandtl number, does not vary significantly with temperature of the surface skin

  13. A quasilinear, Fokker--Planck description of fast wave minority heating permitting off-axis tangency interactions

    International Nuclear Information System (INIS)

    Catto, P.J.; Myra, J.R.; Russell, D.A.

    1994-01-01

    The off-axis quasilinear fast wave minority heating description of Catto and Myra [Phys. Fluids B 4, 187 (1992)] has been improved and implemented in a code which solves the combined quasilinear and collision operator equation for the minority distribution function. Geometrical complications of a minority resonance nearly tangent to a flux surface in the presence of trapped as well as passing particles are retained. The tangency interactions alter the moments and the fusion reaction rate parameter in a model which explores heating on a single flux surface. The strong tangency interactions enhance the more familiar interactions due to trapped particles turning in the vicinity of the minority resonance. An asymmetry in off-axis heating effects occurs because heating on the low field side of the magnetic axis heats more trapped particles than high field side heating. This asymmetry is responsible for the better performance of the low field side case relative to the high and on-axis cases and provides some control over the power absorbed by and the energy stored in the trapped particles

  14. Thermal diffusivity measurement of erythritol and numerical analysis of heat storage performance on a fin-type heat exchanger

    International Nuclear Information System (INIS)

    Zamengo, Massimiliano; Funada, Tomohiro; Morikawa, Junko

    2017-01-01

    Highlights: • Thermal diffusivity of Erythritol was measured by temperature wave method. • Thermal diffusivity was measured in function of temperature and during phase change. • Database of temperature-dependent thermal properties is used for numerical analysis. • Heat transfer and heat storage were analyzed in a fin-type heat exchanger. • Use of temperature-dependent properties in calculations lead to longer melting time. - Abstract: Temperature dependency of thermal diffusivity of erythritol was measured by temperature wave analysis (TWA) method. This modulating technique allowed measuring thermal diffusivity continuously, even during the phase transition solid-liquid. Together with specific heat capacity and specific enthalpy measured by differential scanning calorimetry, the values of measured properties were utilized in a bi-dimensional numerical model for analysis of heat transfer and heat storage performance. The geometry of the model is representative of a cross section of a fin-type heat exchanger, in which erythritol is filling the interspaces between fins. Time-dependent temperature change and heat storage performance were analyzed by considering the variation of thermophysical properties as a function of temperature. The numerical method can be utilized for a fast parametric analysis of heat transfer and heat storage performance into heat storage systems of phase-change materials and composites.

  15. Lower hybrid waves for current drive and heating in reactors

    International Nuclear Information System (INIS)

    Yugo, J.; Bernabei, S.; Bonoli, P.; Devoto, R.S.; Fenstermacher, M.; Porkolab, M.; Stevens, J.

    1988-01-01

    Lower hybrid (LH) waves are projected to be an important ingredient for current drive and heating in steady-state operation of reactors, such as the International Thermonuclear Experimental Reactor (ITER) or later power producing tokamaks. We have examined the required frequency and spectrum for such applications and designed a system to meet the specifications. We found that, to avoid damping of LH waves on alpha particles the frequency should be at least 6--8 GHz. At a typical volume average temperature of 14 keV, the LH rays penetrate about 30% of the minor radius, or to about 15 KeV, when N/sub parallel/ is chosen to maximize penetration and the spectral width, ΔN/sub parallel/ is about 0.05 (full width at 0.5 of spectral peak). For use in low density current ramp-up and transformer recharging, N/sub parallel/ is dynamically controlled. We have designed an LH system that satisfies requirements similar to those expected for ITER. It provides a Brambilla array which can be tuned from N/sub parallel/ of 1.0--2.8. An analysis has been performed to evaluate nuclear (1--2 MW/m 2 ), plasma radiation, and rf heating of the LH launcher. 4 refs., 3 figs., 4 tabs

  16. A Bayesian model averaging approach for estimating the relative risk of mortality associated with heat waves in 105 U.S. cities.

    Science.gov (United States)

    Bobb, Jennifer F; Dominici, Francesca; Peng, Roger D

    2011-12-01

    Estimating the risks heat waves pose to human health is a critical part of assessing the future impact of climate change. In this article, we propose a flexible class of time series models to estimate the relative risk of mortality associated with heat waves and conduct Bayesian model averaging (BMA) to account for the multiplicity of potential models. Applying these methods to data from 105 U.S. cities for the period 1987-2005, we identify those cities having a high posterior probability of increased mortality risk during heat waves, examine the heterogeneity of the posterior distributions of mortality risk across cities, assess sensitivity of the results to the selection of prior distributions, and compare our BMA results to a model selection approach. Our results show that no single model best predicts risk across the majority of cities, and that for some cities heat-wave risk estimation is sensitive to model choice. Although model averaging leads to posterior distributions with increased variance as compared to statistical inference conditional on a model obtained through model selection, we find that the posterior mean of heat wave mortality risk is robust to accounting for model uncertainty over a broad class of models. © 2011, The International Biometric Society.

  17. Time development of a blast wave with shock heated electrons

    International Nuclear Information System (INIS)

    Edgar, R.J.; Cox, D.P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures

  18. Simulation study of two-ion hybrid resonance heating

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Tajima, T.

    1986-02-01

    A one-dimensional low-noise, low-frequency electromagnetic particle simulation code that is appropriate for investigation of ion cyclotron resonance heating (ICRH) is developed. Retaining the hyperbolicity of the electromagnetic waves and exploiting nearly one-dimensional characteristics (perpendicular to the external magnetic field) of the ICRH, we use the guiding center electron approximation for the transverse electronic current calculation. We observe mode conversion of the incoming magnetosonic wave into the electrostatic ion-ion hybrid mode accompanied by strong ion-heating. The dependence of this heating on the different plasma parameters is examined through a series of simulations, focusing mainly on wave incidence from the high field side. Because K/sub parallel/ = 0 in our runs, the conventional Landau damping cannot explain the ion heating. Non-linear mechanisms for energy transfer are discussed. Our numerical results demonstrate the importance of the non-linear wave particle interaction for energy transfer are discussed. Our numerical results demonstrate the importance of the non-linear wave particle interaction for energy absorption during radio frequency heating in the ion cyclotron regime. 32 refs., 17 figs

  19. Fast wave direct electron heating in advanced inductive and ITER baseline scenario discharges in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Pinsker, R. I.; Jackson, G. L.; Luce, T. C.; Politzer, P. A. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Austin, M. E. [University of Texas at Austin, Austin, Texas 78712 (United States); Diem, S. J.; Kaufman, M. C.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Doyle, E. J.; Zeng, L. [University of California Los Angeles, Los Angeles, California 90095 (United States); Grierson, B. A.; Hosea, J. C.; Nagy, A.; Perkins, R.; Solomon, W. M.; Taylor, G. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Maggiora, R.; Milanesio, D. [Politecnico di Torino, Dipartimento di Elettronica, Torino (Italy); Porkolab, M. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Turco, F. [Columbia University, New York, New York 10027 (United States)

    2014-02-12

    Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedly strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.

  20. CHROMOSPHERIC HEATING BY ACOUSTIC WAVES COMPARED TO RADIATIVE COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J. [Astronomical Institute, Academy of Sciences of the Czech Republic (v.v.i.), Fričova 298, 25165 Ondřejov (Czech Republic); Del Moro, D.; Berrilli, F. [Department of Physics, University of Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome (Italy)

    2016-07-20

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  1. Electron cyclotron heating calculations for ATF

    International Nuclear Information System (INIS)

    Goldfinger, R.C.; Batchelor, D.B.

    1986-03-01

    The RAYS geometrical optics code has been used to calculate electron cyclotron wave propagation and heating in the Advanced Toroidal Facility (ATF) device under construction at Oak Ridge National Laboratory (ORNL). The intent of this work is to predict the outcome of various heating scenarios and to give guidance in designing an optimum heating system. Particular attention is paid to the effects of wave polarization and antenna location. We investigate first and second harmonic cyclotron heating with the parameters predicted for steady-state ATF operation. We also simulate the effect of wall reflections by calculating a uniform, isotropic flux of power radiating from the wall. These results, combined with the first-pass calculations, give a qualitative picture of the heat deposition profiles. From these results we identify the compromises that represent the optimum heating strategies for the ATF model considered here. Our basic conclusions are that second harmonic heating with the extraordinary mode (X-mode) gives the best result, with fundamental ordinary mode (O-mode) heating being slightly less efficient. Assuming the antenna location is restricted to the low magnetic field side, the antenna should be placed at phi = 0 0 (the toroidal angle where the helical coils are at the sides) for fundamental heating and at phi = 15 0 (where the helical coils are at the top and bottom) for second harmonic heating. These recommendations come directly from the ray tracing results as well as from a theoretical identification of the relevant factors affecting the heating

  2. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  3. ALFVEN WAVE REFLECTION AND TURBULENT HEATING IN THE SOLAR WIND FROM 1 SOLAR RADIUS TO 1 AU: AN ANALYTICAL TREATMENT

    International Nuclear Information System (INIS)

    Chandran, Benjamin D. G.; Hollweg, Joseph V.

    2009-01-01

    We study the propagation, reflection, and turbulent dissipation of Alfven waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfven critical point-that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfven-wave reflection and turbulent heating into fluid models of the solar wind.

  4. What do New Yorkers Think about Impacts and Adaptation to Heat Waves? An Evaluation Tool to Incorporate Perception of Low-Income Groups into Heat Wave Adaptation Scenarios in New York City

    Directory of Open Access Journals (Sweden)

    Sadra Matmir

    2017-07-01

    Full Text Available Low-income residents are among the most vulnerable groups to climate change in urban areas, particularly regarding heat stress. However, their perceptions about heat and the impacts they face go often undocumented, and are seldom considered in decision-making processes delivering adaptation. This paper presents a robust tool to allow the integration of perception, concerns and impacts of different income groups in urban adaptation planning and governance, using the City of New York as a case study. Employing online interviews—a solid method to reach poorer households—and Fuzzy Cognitive Mapping, we compare impacts and adaptation perception to heat and simulate adaptation scenarios. Results reveal that lower income groups are more concerned about impacts of heat waves than middle- and high-income populations. All income groups see citizens more in charge of adaptation, although more people from the lower income groups regard it necessary to do much more to protect themselves, proportionately more people from the higher income groups think they are doing the right amount. The scenario analysis shows that, compared to investments in the water/electricity and health system, improvements in the transit system would yield the largest decrease in negative impacts during heat, benefitting all income groups jointly.

  5. Experimental characteristics of ion Bernstein wave heating on JIPP T-IIU tokamak

    International Nuclear Information System (INIS)

    Ogawa, Y.; Kawahata, K.; Ando, R.

    1986-03-01

    The directly launched Ion Bernstein Wave (IBW) heating experiments have been carried out on JIPP T-IIU tokamak for two experimental conditions; (a) the ''3rd-branch'' of the IBW between 3rd- and 4th-cyclotron harmonics of the deuterium, and (b) the ''2nd-branch'' of the IBW between 2nd- and 3rd-cyclotron harmonics. In the case (a), the direct hydrogen heating at ω = 1.5 Ω H has been found in previous experiments. Here we present additional data to support this subharmonics heating, i.e., the spectroscopic measurement of Fe XVIII lines and mass separated analysis of charge-exchange neutrals. While, in the case (b), the remarkable increase of the electron temperature has been observed, especially at the central region of the plasma, and it has been estimated from the global energy balance that almost all of IBW power is delivered to the electron. To investigate this difference of the heating mode, the power absorption has been calculated with the ray tracing code, taking into account of the effect of the plasma/antenna coupling. It is concluded from the consideration of the electron Landau damping that the transition from the ion heating mode to the electron one would be explained by the difference of the electron temperature at the ohmic phase; i.e., T e (0) = 0.7 keV for the case (a) and T e (0) = 1.3 keV for the case (b). (author)

  6. Plasma heating: NBI ampersand RF, an introduction

    International Nuclear Information System (INIS)

    Koch, R.

    1996-01-01

    The additional heating and non-inductive current-drive methods are reviewed. First, the limitations of ohmic heating in tokamaks are examined and the motivations for using additional heating in tokamaks or other machines are discussed. Next we sketch the principles of heating by injection of fast neutrals - or Neutral Beam Injection (NBI). The principle of the injector is briefly outlined. Positive and negative ion based concepts are discussed. The remainder of the lecture focuses on the processes by which the beam transfers energy to the plasma: the ionisation and slowing-down processes. Next, I make a review of the different heating schemes based on the transfer of electromagnetic energy to the plasma. The different wave heating frequency ranges are listed and the propagation and damping peculiarities are sketched in each domain. Heating in the Alfven and lower hybrid wave domains are described in some more details. 21 refs., 9 figs., 1 tab

  7. An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves

    NARCIS (Netherlands)

    Stegehuis, A.I.; Vautard, R.; Ciais, P.; Teuling, A.J.; Gonzalez Miralles, D.; Wild, M.

    2015-01-01

    Many climate models have difficulties in properly reproducing climate extremes, such as heat wave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, in combination with the NOAH land-surface

  8. Numerical analysis for thermal waves in gas generated by impulsive heating of a boundary surface

    International Nuclear Information System (INIS)

    Utsumi, Takayuki; Kunugi, Tomoaki

    1996-01-01

    Thermal wave in gas generated by an impulsive heating of a solid boundary was analyzed numerically by the Differential Algebraic CIP (Cubic Interpolated Propagation) scheme. Numerical results for the ordinary heat conduction equation were obtained with a high accuracy. As for the hyperbolic thermal fluid dynamics equation, the fundamental feature of the experimental results by Brown and Churchill with regard to thermoacoustic convection was qualitatively reproduced by the DA-CIP scheme. (author)

  9. Fast wave heating of two-ion plasmas in the Princeton large torus through minority cyclotron resonance damping

    International Nuclear Information System (INIS)

    Hosea, J.; Bernabei, S.; Colestock, P.

    1979-07-01

    Strong minority proton heating is produced in PLT through ion cyclotron resonance damping of fast waves at moderate rf power levels. In addition to demonstrating good proton confinement, the proton energy distribution is consistent with Fokker--Planck theory which provides the prescription for extrapolation of this heating regime to higher rf power levels

  10. Application of the Guided Wave Technique to the Heat Exchanger Tube in NPP

    International Nuclear Information System (INIS)

    Yang, Dong Soon; Kim, Hyung Nam; Yoo, Hyun Joo

    2005-01-01

    The heat exchanger tube is examined by the method of eddy current test(ECT) to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the application of the guided wave technique to heat exchanger tube in NPP

  11. ICRF heating analysis on ASDEX plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae; Itoh, Kimitaka; Fukuyama, Atsushi; Morishita, Takayuki; Steinmetz, K.; Noterdaeme, J.-M.

    1988-01-01

    ICRF (ion cyclotron range of frequencies) waves heating in an ASDEX tokamak are analyzed. The excitation, propagation and absorption are studied by using a global wave code. This analysis is combined with a Fokker-Planck code. The waveform in the plasma, the loading resistance and the reactance of the antenna are calculated for both the minority ion heating and the second harmonic resonance heating. Attention is given to the change of the antenna loading associated with the L/H transition. Optimum conditions for the loading are discussed. In the minority heating case, the tail generation and thermalization are analyzed. Spatial profiles of the tail-ion temperature and the power transferred to the bulk electrons and ions are obtained. Central as well as off-central heating cases are investigated. The effect of the reactive electric field is discussed in connection with rf losses and impurity production. (author)

  12. Impact of boreal summer intraseasonal oscillation on heat wave occurrence in Asia and Europe during the summer of 2016

    Science.gov (United States)

    Lee, June-Yi; Hsu, Pang-Chi; ha, Kyung-Ja; Kim, Hae-Jeong; Jung, Yoo-Rim

    2017-04-01

    The summer of 2016 was the earth's hottest summer on record since 1880. Especially, in August, the global mean temperature was 1.66 degree higher than normal and heat waves set records across Asia, Europe, and North America. This study proposes that boreal summer intraseasonal oscillation (BSISO) played an important role in heat wave outbreaks over many regions of the Northern Hemisphere (NH) extratropics in the summer 2016 in addition to other factors including global warming, atmosphere-land interaction, and Africa-Pakistan heavy rainfall. By utilizing the real-time multivariate BSISO indices recently proposed, it has been demonstrated that the two dominant BSISO modes significantly modulate occurrence probability and spatial distributions of extreme rainfall and heat wave over Asia and Europe depending on their phases. The BSISO1 represents the canonical northward propagating variability that often occurs in conjunction with the eastward propagating Madden-Julian Oscillation with quasi-oscillating periods of 30-60 days. The BSISO2 represents the northward/northwestward propagating variability with periods of 10-30 days during primarily the pre-monsoon and monsoon-onset season. In August of 2016, BSISO1 was very active with amplitude up to 2 standard deviation and stayed at phase 7 state for about 20 days. During the phase 7 of BSISO1, extreme convective activity over the South China Sea and western North Pacific typically exerts significant global teleconnection leading to heat wave occurrence over East Asia including Korea and Japan, some part of Russia and Europe, and the western and eastern part of North America. In particular, anticyclonic circulation anomaly tends to be developed over East Asia inducing enhanced adiabatic and diabatic warming over Korea and Japan providing a favorable condition for extreme heat wave occurrence. The August of 2016 exhibited the typical global teleconnection pattern of BSISO1 associated with active convection over the western

  13. HEATING AND ACCELERATION OF THE FAST SOLAR WIND BY ALFVÉN WAVE TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Van Ballegooijen, A. A.; Asgari-Targhi, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-04-20

    We present numerical simulations of reduced magnetohydrodynamic (RMHD) turbulence in a magnetic flux tube at the center of a polar coronal hole. The model for the background atmosphere is a solution of the momentum equation and includes the effects of wave pressure on the solar wind outflow. Alfvén waves are launched at the coronal base and reflect at various heights owing to variations in Alfvén speed and outflow velocity. The turbulence is driven by nonlinear interactions between the counterpropagating Alfvén waves. Results are presented for two models of the background atmosphere. In the first model the plasma density and Alfvén speed vary smoothly with height, resulting in minimal wave reflections and low-energy dissipation rates. We find that the dissipation rate is insufficient to maintain the temperature of the background atmosphere. The standard phenomenological formula for the dissipation rate significantly overestimates the rate derived from our RMHD simulations, and a revised formula is proposed. In the second model we introduce additional density variations along the flux tube with a correlation length of 0.04 R {sub ⊙} and with relative amplitude of 10%. These density variations simulate the effects of compressive MHD waves on the Alfvén waves. We find that such variations significantly enhance the wave reflection and thereby the turbulent dissipation rates, producing enough heat to maintain the background atmosphere. We conclude that interactions between Alfvén and compressive waves may play an important role in the turbulent heating of the fast solar wind.

  14. Microwave pre-heating of natural rubber using a rectangular wave guide (MODE: TE10

    Directory of Open Access Journals (Sweden)

    Doo-ngam, N.

    2007-11-01

    Full Text Available This paper presents an application of microwave radiation for pre-heating of natural rubbercompounding with various sulphur contents. The natural rubber-compounding was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE10 operating at frequency of 2.45 GHz in which the power can vary from 0 to 1500 W. In the present work, the influence of power input, sample thickness, and sulphur content were examined after applying microwave radiation to the rubber samples. Results are discussed regarding the thermal properties, 3-D network, dielectric properties and chemical structures. From the result, firstly, it was found that microwave radiation can be applied to pre-heating natural rubber-compounding before the vulcanization process. Secondly, microwave radiation was very useful for pre-heating natural rubber-compounding that has a thickness greater than 5mm. Thirdly, crosslinking in natural rubber-compounding may occurs after pre-heating by microwave radiation though Fourier Transform Infrared Spectroscopy(FTIR. Finally, there a little effect of sulphur content on temperature profiles after applying microwave radiation to the natural rubber-compounding. Moreover, natural rubber-compounding without carbon black showed a lower heat absorption compared with natural rubbercompounding filled carbon black. This is due to the difference in dielectric loss factor. This preliminary result will be useful information in terms of microwave radiation for pre-heating natural rubber-compounding and rubber processing in industry.

  15. An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves

    NARCIS (Netherlands)

    Stegehuis, A.I.; Vautard, R.; Ciais, P.; Teuling, A.J.; Miralles, D.G.; Wild, M.

    2015-01-01

    Many climate models have difficulties in properly reproducing climate extremes, such as heat wave conditions. Here we use the Weather Research and Forecasting (WRF) regional climate model with a large combination of different atmospheric physics schemes, in combination with the NOAH land-surface

  16. Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves and Cold Spells in Europe

    Science.gov (United States)

    Lowe, Rachel; Ballester, Joan; Creswick, James; Robine, Jean-Marie; Herrmann, François R.; Rodó, Xavier

    2015-01-01

    The impact of climate change on human health is a serious concern. In particular, changes in the frequency and intensity of heat waves and cold spells are of high relevance in terms of mortality and morbidity. This demonstrates the urgent need for reliable early-warning systems to help authorities prepare and respond to emergency situations. In this study, we evaluate the performance of a climate-driven mortality model to provide probabilistic predictions of exceeding emergency mortality thresholds for heat wave and cold spell scenarios. Daily mortality data corresponding to 187 NUTS2 regions across 16 countries in Europe were obtained from 1998–2003. Data were aggregated to 54 larger regions in Europe, defined according to similarities in population structure and climate. Location-specific average mortality rates, at given temperature intervals over the time period, were modelled to account for the increased mortality observed during both high and low temperature extremes and differing comfort temperatures between regions. Model parameters were estimated in a Bayesian framework, in order to generate probabilistic simulations of mortality across Europe for time periods of interest. For the heat wave scenario (1–15 August 2003), the model was successfully able to anticipate the occurrence or non-occurrence of mortality rates exceeding the emergency threshold (75th percentile of the mortality distribution) for 89% of the 54 regions, given a probability decision threshold of 70%. For the cold spell scenario (1–15 January 2003), mortality events in 69% of the regions were correctly anticipated with a probability decision threshold of 70%. By using a more conservative decision threshold of 30%, this proportion increased to 87%. Overall, the model performed better for the heat wave scenario. By replacing observed temperature data in the model with forecast temperature, from state-of-the-art European forecasting systems, probabilistic mortality predictions could

  17. Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves and Cold Spells in Europe

    Directory of Open Access Journals (Sweden)

    Rachel Lowe

    2015-01-01

    Full Text Available The impact of climate change on human health is a serious concern. In particular, changes in the frequency and intensity of heat waves and cold spells are of high relevance in terms of mortality and morbidity. This demonstrates the urgent need for reliable early-warning systems to help authorities prepare and respond to emergency situations. In this study, we evaluate the performance of a climate-driven mortality model to provide probabilistic predictions of exceeding emergency mortality thresholds for heat wave and cold spell scenarios. Daily mortality data corresponding to 187 NUTS2 regions across 16 countries in Europe were obtained from 1998–2003. Data were aggregated to 54 larger regions in Europe, defined according to similarities in population structure and climate. Location-specific average mortality rates, at given temperature intervals over the time period, were modelled to account for the increased mortality observed during both high and low temperature extremes and differing comfort temperatures between regions. Model parameters were estimated in a Bayesian framework, in order to generate probabilistic simulations of mortality across Europe for time periods of interest. For the heat wave scenario (1–15 August 2003, the model was successfully able to anticipate the occurrence or non-occurrence of mortality rates exceeding the emergency threshold (75th percentile of the mortality distribution for 89% of the 54 regions, given a probability decision threshold of 70%. For the cold spell scenario (1–15 January 2003, mortality events in 69% of the regions were correctly anticipated with a probability decision threshold of 70%. By using a more conservative decision threshold of 30%, this proportion increased to 87%. Overall, the model performed better for the heat wave scenario. By replacing observed temperature data in the model with forecast temperature, from state-of-the-art European forecasting systems, probabilistic mortality

  18. Application of Electron Bernstein Wave heating and current drive to high beta plasmas

    International Nuclear Information System (INIS)

    Efthimion, P.C.

    2002-01-01

    Electron Bernstein Waves (EBW) can potentially heat and drive current in high-beta plasmas. Electromagnetic waves can convert to EBW via two paths. O-mode heating, demonstrated on W-7AS, requires waves be launched within a narrow k-parallel range. Alternately, in high-beta plasmas, the X-mode cutoff and EBW conversion layers are millimeters apart, so the fast X-mode can tunnel to the EBW branch. We are studying the conversion of EBW to the X-mode by measuring the radiation temperature of the cyclotron emission and comparing it to the electron temperature. In addition, mode conversion has been studied with an approximate kinetic full-wave code. We have enhanced EBW mode conversion to ∼ 100% by encircling the antenna with a limiter that shortens the density scale length at the conversion layer in the scrape off of the CDX-U spherical torus (ST) plasma. Consequently, a limiter in front of a launch antenna achieves efficient X-mode coupling to EBW. Ray tracing and Fokker-Planck codes have been used to develop current drive scenarios in NSTX high-beta (∼ 40%) ST plasmas and a relativistic code will examine the potential synergy of EBW current drive with the bootstrap current. (author)

  19. RF heating and current drive on NSTX with high harmonic fast waves

    International Nuclear Information System (INIS)

    Ryan, P.M.

    2002-01-01

    NSTX is a small aspect ratio tokamak with a large dielectric constant (50-100); under these conditions high harmonic fast waves (HHFW) will readily damp on electrons via Landau damping and TTMP. The HHFW system is a 30 MHz, 12-element array capable of launching both symmetric and directional wave spectra for plasma heating and non-inductive current drive. It has delivered up to 6 MW for short pulses and has routinely operated at ∼3-4 MW for 100-200 ms pulses. Results include strong, centrally-peaked electron heating in both D and He plasmas, for both high and low phase velocity spectra. H-modes were obtained with application of HHFW power alone, with stored energy doubling after the L-H transition. Beta poloidal as large as unity has been obtained with large fractions (0.4) of bootstrap current. A fast ion tail with energies extending up to 140 keV has been observed when HHFW interacts with 80 keV neutral beams; neutron rate and lost ion measurements, as well as modeling, indicate significant power absorption by the fast ions. Radial power deposition profiles are being calculated with ray tracing and kinetic full-wave codes and benchmarked against measurements. (author)

  20. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  1. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    Science.gov (United States)

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    ballistic regimes, from isotropic to anisotropic situations, are analyzed, thus providing a wide range of practical applications. Besides the steady-state effective thermal conductivity, the propagation of harmonic waves is also studied, motivated by the fact that vortex line density is experimentally detected via the attenuation of second sound and because it provides dynamical information on heat transport and thermal waves which complement the static information of the thermal conductivity.

  2. Theory of charged particle heating by low-frequency Alfven waves

    International Nuclear Information System (INIS)

    Guo Zehua; Crabtree, Chris; Chen, Liu

    2008-01-01

    The heating of charged particles by a linearly polarized and obliquely propagating shear Alfven wave (SAW) at frequencies a fraction of the charged particle cyclotron frequency is demonstrated both analytically and numerically. Applying Lie perturbation theory, with the wave amplitude as the perturbation parameter, the resonance conditions in the laboratory frame are systematically derived. At the lowest order, one recovers the well-known linear cyclotron resonance condition k parallel v parallel -ω-nΩ=0, where v parallel is the particle velocity parallel to the background magnetic field, k parallel is the parallel wave number, ω is the wave frequency, Ω is the gyrofrequency, and n is any integer. At higher orders, however, one discovers a novel nonlinear cyclotron resonance condition given by k parallel v parallel -ω-nΩ/2=0. Analytical predictions on the locations of fixed points, widths of resonances, and resonance overlapping criteria for global stochasticity are also found to agree with those given by computed Poincare surfaces of section

  3. Waveguide circuit for LHRF heating in 'JT-60'

    International Nuclear Information System (INIS)

    Uehara, Kazuya; Saegusa, Mikio; Mizuno, Takenori; Sano, Keigo; Hara, Mitsuru; Oishi, Isamu; Kanai, Takao.

    1985-01-01

    As the heating method for attaining the critical condition in the critical plasma experiment apparatus 'JT-60' in the Japan Atomic Energy Research Institute, in addition to Joule heating, as the second heating method, neutral beam injection heating and high frequency heating have been adopted. For this high frequency heating, several tens to 200 MHz band of ICRF heating, several hundreds MHz to several GHz band of LHRF heating and several tens to 200 GHz band of ECR heating were considered, and in the JT-60, 100 MHz band (ICRF) and 2 GHz band (LHRF) have been adopted. Furukawa Electric Co., Ltd. has engaged in the development and manufacture of the waveguides of transmission system used for this high frequency heating through NEC Corp. This high frequency heating is to heat plasma by injecting high frequency radio waves into plasma proper, and reaches 10 MW for the whole high frequency heating. The system efficiently transmitting the radio waves of large power from a Klystron as a high frequency source to the JT-60 is the transmission system. The outline of the waveguides of the 2 GHz band transmission system and the individual performance of respective waveguides are reported. (Kako, I.)

  4. Land surface anomalies preceding the 2010 Russian heat wave and a link to the North Atlantic oscillation

    International Nuclear Information System (INIS)

    Wright, Christopher K; Henebry, Geoffrey M; De Beurs, Kirsten M

    2014-01-01

    The Eurasian wheat belt (EWB) spans a region across Eastern Ukraine, Southern Russia, and Northern Kazakhstan; accounting for nearly 15% of global wheat production. We assessed land surface conditions across the EWB during the early growing season (April–May–June; AMJ) leading up to the 2010 Russian heat wave, and over a longer-term period from 2000 to 2010. A substantial reduction in early season values of the normalized difference vegetation index occurred prior to the Russian heat wave, continuing a decadal decline in early season primary production in the region. In 2010, an anomalously cold winter followed by an abrupt shift to a warmer-than-normal early growing season was consistent with a persistently negative phase of the North Atlantic oscillation (NAO). Regression analyses showed that early season vegetation productivity in the EWB is a function of both the winter (December–January–February; DJF) and AMJ phases of the NAO. Land surface anomalies preceding the heat wave were thus consistent with highly negative values of both the DJF NAO and AMJ NAO in 2010. (letter)

  5. Electron cyclotron heating (ECH) of tokamak plasmas

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi

    1990-01-01

    Electron cyclotron heating (ECH) is one of the intense methods of plasma heating, and which utilizes the collisionless electron-cyclotron-resonance-interaction between the launched electromagnetic waves (called electron cyclotron waves) and electrons which are one of the constituents of the high temperature plasmas. Another constituent, namely the ions which are subject to nuclear fusion, are heated indirectly but strongly and instantly (in about 0.1 s) by the collisions with the ECH-heated electrons in the fusion plasmas. The recent progress on the development of high-power and high-frequency millimeter-wave-source enabled the ECH experiments in the middle size tokamaks such as JFT-2M (Japan), Doublet III (USA), T-10 (USSR) etc., and ECH has been demonstrated to be the sure and intense plasma heating method. The ECH attracts much attention for its remarkable capabilities; to produce plasmas (pre-ionization), to heat plasmas, to drive plasma current for the plasma confinement, and recently especially by the localization and the spatial controllability of its heating zone, which is beneficial for the fine controls of the profiles of plasma parameters (temperature, current density etc.), for the control of the magnetohydrodynamic instabilities, or for the optimization/improvement of the plasma confinement characteristics. Here, the present status of the ECH studies on tokamak plasmas are reviewed. (author)

  6. Effects of polarization-charge shielding in microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R., E-mail: krchu@yahoo.com.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  7. Effects of N on plant response to heat-wave: a field study with prairie vegetation.

    Science.gov (United States)

    Wang, Dan; Heckathorn, Scott A; Mainali, Kumar; Hamilton, E William

    2008-11-01

    More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic ecological impacts. Increasing nitrogen (N) availability and its dynamics will likely impact plant responses to heat stress and carbon (C) sequestration in terrestrial ecosystems. This field study examined the effects of N availability on plant response to heat-stress (HS) treatment in naturally-occurring vegetation. HS (5 d at ambient or 40.5 degrees C) and N treatments (+/-N) were applied to 16 1 m(2) plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass) and Solidago canadensis (warm-season C3 forb). Before, during, and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (P(n)), quantum yield of photosystem II (Phi(PSII)), stomatal conductance (g(s)), and leaf water potential (Psi(w)) of the dominant species and soil respiration (R(soil)) of each plot were measured daily during HS. One week after HS, plots were harvested, and C% and N% were determined for rhizosphere and bulk soil, and above-ground tissue (green/senescent leaf, stem, and flower). Photosynthetic N-use efficiency (PNUE) and N resorption rate (NRR) were calculated. HS decreased P(n), g(s), Psi(w), and PNUE for both species, and +N treatment generally increased these variables (+/-HS), but often slowed their post-HS recovery. Aboveground biomass tended to decrease with HS in both species (and for green leaf mass in S. canadensis), but decrease with +N for A. gerardii and increase with +N for S. canadensis. For A. gerardii, HS tended to decrease N% in green tissues with +N, whereas in S. canadensis, HS increased N% in green leaves. Added N decreased NRR for A. gerardii and HS increased NRR for S. canadensis. These results suggest that heat waves, though transient, could have significant effects on plants, communities, and ecosystem N cycling, and N can influence the effect of heat waves.

  8. A Case-Only Study of Vulnerability to Heat Wave-Related Mortality in New York City (2000-2011).

    Science.gov (United States)

    Madrigano, Jaime; Ito, Kazuhiko; Johnson, Sarah; Kinney, Patrick L; Matte, Thomas

    2015-07-01

    As a result of climate change, the frequency of extreme temperature events is expected to increase, and such events are associated with increased morbidity and mortality. Vulnerability patterns, and corresponding adaptation strategies, are most usefully conceptualized at a local level. We used a case-only analysis to examine subject and neighborhood characteristics that modified the association between heat waves and mortality. All deaths of New York City residents from 2000 through 2011 were included in this analysis. Meteorological data were obtained from the National Climatic Data Center. Modifying characteristics were obtained from the death record and geographic data sets. A total of 234,042 adult deaths occurred during the warm season of our study period. Compared with other warm-season days, deaths during heat waves were more likely to occur in black (non-Hispanic) individuals than other race/ethnicities [odds ratio (OR) = 1.08; 95% CI: 1.03, 1.12], more likely to occur at home than in institutions and hospital settings (OR = 1.11; 95% CI: 1.06, 1.16), and more likely among those living in census tracts that received greater public assistance (OR = 1.05; 95% CI: 1.01, 1.09). Finally, deaths during heat waves were more likely among residents in areas of the city with higher relative daytime summer surface temperature and less likely among residents living in areas with more green space. Mortality during heat waves varies widely within a city. Understanding which individuals and neighborhoods are most vulnerable can help guide local preparedness efforts.

  9. Micromagnetic modeling for heat-assisted magnetic recording

    International Nuclear Information System (INIS)

    Li Zhenghua; Wei Dan; Wei Fulin

    2008-01-01

    Heat-assisted magnetic recording (HAMR) is one of the candidate systems beyond the perpendicular recording technology. Here, a micromagnetic model and a heat transfer model are introduced to study the heating and cooling processes in the HAMR media; then, by integration of the SPT head and the laser heating source, the recording performance is simulated and investigated on a single track at an area density of 1 Tb/in 2 . In the HAMR system, the temperature in the medium under the laser wave guide is increased by heating, and decreased by air bearing and heat conduction when the write process really occurred. The target of this study is to find the proper design of the head-laser assembly for optimum recording. It is found that the proper distance between the laser wave guide and the head's main pole rear/front edge is only 41.4/1.4 nm for optimum recording performance

  10. TRIAM-1 turbulent heating experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Kikuchi, Mitsuru; Nagao, Akihiro [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1983-02-01

    The experimental studies on the containment of high temperature plasma and turbulent heating using the tokamak device with strong magnetic field (TRIAM-1) started in 1977 have achieved much results up to fiscal 1979, and the anticipated objectives were almost attained. The results of these studies were summarized in the ''Report of the results of strong magnetic field tokamak TRIAM-1 experiment''. In this report, the results obtained by the second stage project of the TRIAM-1 project are summarized. The second stage was the two-year project for fiscal 1980 and 81. In the second stage project, by the complete preparation of measuring instrument and the improvement of the experimental setup, the carefully planned experiment on turbulent heating was performed, in particular, the clarification of the mechanism of turbulent heating was the central theme. As the important results obtained, the detection of ion sound waves at the time of turbulent heating, the formation of high energy ions by wave-particle interaction and the clarification of the process of their energy relaxation, and the verification of the effectiveness of double pulse turbulent heating are enumerated.

  11. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method

    International Nuclear Information System (INIS)

    Alomari, A. K.; Noorani, M. S. M.; Nazar, R.

    2008-01-01

    We employ the homotopy analysis method (HAM) to obtain approximate analytical solutions to the heat-like and wave-like equations. The HAM contains the auxiliary parameter ħ, which provides a convenient way of controlling the convergence region of series solutions. The analysis is accompanied by several linear and nonlinear heat-like and wave-like equations with initial boundary value problems. The results obtained prove that HAM is very effective and simple with less error than the Adomian decomposition method and the variational iteration method

  12. Plasma auxiliary heating and current drive

    International Nuclear Information System (INIS)

    1999-01-01

    Heating and current drive systems must fulfil several roles in ITER operating scenarios: heating through the H-mode transition and to ignition; plasma burn control; current drive and current profile control in steady state scenarios; and control of MHD instabilities. They must also perform ancillary functions, such as assisting plasma start-up and wall conditioning. It is recognized that no one system can satisfy all of these requirements with the degree of flexibility that ITER will require. Four heating and current drive systems are therefore under consideration for ITER: electron cyclotron waves at a principal frequency of 170 GHz; fast waves operating in the range 40-70 MHz (ion cyclotron waves); lower hybrid waves at 5 GHz; and neutral beam injection using negative ion beam technology for operation at 1 MeV energy. It is likely that several of these systems will be employed in parallel. The systems have been chosen on the basis of the maturity of physics understanding and operating experience in current experiments and on the feasibility of applying the relevant technology to ITER. Here, the fundamental physics describing the interaction of these heating systems with the plasma is reviewed, the relevant experimental results in the exploitation of the heating and current drive capabilities of each system are discussed, key aspects of their application to ITER are outlined, and the major technological developments required in each area are summarized. (author)

  13. Heating by the Raman instability

    International Nuclear Information System (INIS)

    Estabrook, K.G.; Kruer, W.L.

    1980-01-01

    Computer simulations are presented of the reflection and heating due to stimulated Raman backscatter of intense laser light in large regions of underdense plasma. The heated electron distribution is found to be approximately a Maxwellian of temperature (m/sub e//2)v/sub p/ 2 , where v/sub p/ is the phase velocity of the electron plasma wave. A simple model of the reflection is presented. Raman may cause a pre-heat problem with large laser fusion reactor targets

  14. Heating and current drive on NSTX

    Science.gov (United States)

    Wilson, J. R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C. K.; Rogers, J. H.; Schilling, G.

    1997-04-01

    Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (˜45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation.

  15. Heated electron distributions from resonant absorption

    International Nuclear Information System (INIS)

    DeGroot, J.S.; Tull, J.E.

    1975-01-01

    A simplified model of resonant absorption of obliquely incident laser light has been developed. Using a 1.5 dimensional electrostatic simulation computer code, it is shown that the inclusion of ion motion is critically important in determining the heated electron distributions from resonant absorption. The electromagnetic wave drives up an electron plasma wave. For long density scale lengths (Lapprox. =10 3 lambda/subD//sube/), the phase velocity of this wave is very large (ω/kapproximately-greater-than10V/sub th/) so that if heating does occur, a suprathermal tail of very energetic electrons is produced. However, the pressure due to this wave steepens the density profile until the density gradient scale length near the critical density (where the local plasma frequency equals the laser frequency) is of order 20lambda/subD//sube/. The electrostatic wave is thus forced to have a much lower phase velocity (ω/kapprox. =2.5V/sub th/). In this case, more electrons are heated to much lower velocities. The heated electron distributions are exponential in velocity space. Using a simple theory it is shown that this property of profile steepening applies to most of a typical laser fusion pulse. This steepening raises the threshold for parametric instabilities near the critical surface. Thus, the extensive suprathermal electron distributions typically produced by these parametric instabilities can be drastically reduced

  16. CORONAL HEATING BY SURFACE ALFVEN WAVE DAMPING: IMPLEMENTATION IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL OF THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: Rebekah.e.frolov@nasa.gov [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)

    2012-09-10

    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  17. AGN Heating in Simulated Cool-core Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Ruszkowski, Mateusz [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bryan, Greg L., E-mail: yuanlium@umich.edu [Department of Astronomy, Columbia University, Pupin Physics Laboratories, New York, NY 10027 (United States)

    2017-10-01

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss. However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.

  18. RF heating of currentless plasma in Heliotron E

    International Nuclear Information System (INIS)

    Iiyoshi, A.; Motojima, O.; Sato, M.

    1985-01-01

    Recent electron cyclotron resonance heating (ECRH) and ion cyclotron range frequency heating (ICRF) experiments performed with a current-free plasma in Heliotron E are described. Parametric studies of ECRH are in progress. For both fundamental and second-harmonic resonances, optimum heating is observed when the plasma density is near the cutoff density (for the ordinary wave, in the case of fundamental resonance and for the extraordinary wave, in the case of second-harmonic resonance) and when a resonance zone exists on the magnetic axis. The maximum heating efficiencies for the fundamental and second-harmonic resonances are 6.5 eV.kW -1 per 10 19 m -3 and 2.4 eV.kW -1 per 10 19 m -3 , respectively. The ray-tracing analysis agrees qualitatively well with the experimental results. The power dependences of the plasma parameters are also investigated. - The first ICRF experiment with fast-wave heating of a current-free plasma has been performed. The ICRF wave power and pulse length are 550 kW and 15 ms, respectively. The frequency is 26.7 MHz. Ions and electrons are heated effectively. The increase in ion temperature is only slightly changed by varying the hydrogen ratio of the gas puff. On the other hand, the electron temperature increase has a definite peak for a high proton ratio (approx. 15%). This agrees qualitatively with the mode conversion picture of minority heating. (author)

  19. An analysis of JET fast-wave heating and current drive experiments directly related to ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, V P; Eriksson, L; Gormezano, C; Jacquinot, J; Kaye, A; Start, D F.H. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs.

  20. An analysis of JET fast-wave heating and current drive experiments directly related to ITER

    International Nuclear Information System (INIS)

    Bhatnagar, V.P.; Eriksson, L.; Gormezano, C.; Jacquinot, J.; Kaye, A.; Start, D.F.H.

    1994-01-01

    The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs

  1. Future Midwest Heat Waves in WRF

    Science.gov (United States)

    Huber, M.; Buzan, J. R.; Yoo, J.

    2017-12-01

    We present heat stress results for the upper Midwest derived from convection resolving Weather Research and Forecasting (WRF) model simulations carried out for the RCP 8.5 Scenario and driven by Community Earth System Model (CESM) boundary conditions as part of the Indiana Climate Change Assessment. Using this modeling system we find widespread and severe increases in moist heat stress metrics in the Midwest by end of century. We detail scaling arguments that suggest our results are robust and not model dependent and describe potential health, welfare, and productivity implications of these results.

  2. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  3. RF heating and current drive on NSTX with high harmonic fast waves

    International Nuclear Information System (INIS)

    Ryan, P.M.; Swain, D.W.; Rosenberg, A.L.

    2003-01-01

    NSTX is a small aspect ratio tokamak (R = 0.85 m, a = 0.65 m). The High Harmonic Fast Wave (HHFW) system is a 30 MHz, 12-element array capable of launching both symmetric and directional wave spectra for plasma heating and non-inductive current drive. It has delivered up to 6 MW for short pulses and has routinely operated at ∼3 MW for 100-400 ms pulses. Results include strong, centrally-peaked electron heating in both D and He plasmas for both high and low phase velocity spectra. H-modes were obtained with application of HHFW power alone, with stored energy doubling after the L-H transition. Beta poloidal as large as unity has been obtained with significant fractions (0.4) of bootstrap current. Differences in the loop voltage are observed depending on whether the array is phased to drive current in the co- or counter-current directions. A fast ion tail with energies extending up to 140 keV has been observed when HHFW interacts with 80 keV neutral beams; neutron rate and lost ion measurements, as well as modeling, indicate significant power absorption by the fast ions. Radial rf power deposition and driven current profiles have been calculated with ray tracing and kinetic full-wave codes and compared with measurements. (author)

  4. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  5. Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island

    Directory of Open Access Journals (Sweden)

    Weihua Dong

    2014-10-01

    Full Text Available This research is motivated by the increasing threat of urban heat waves that are likely worsened by pervasive global warming and urbanization. Different regions of the city including urban, borderland and rural area will experience different levels of heat health risk. In this paper, we propose an improved approach to quantitatively assess Beijing’s heat health risk based on three factors from hazard, vulnerability and especially environment which is considered as an independent factor because different land use/cover types have different influence on ambient air temperatures under the Urban Heat Island effect. The results show that the heat health risk of Beijing demonstrates a spatial-temporal pattern with higher risk in the urban area, lower risk in the borderland between urban and rural area, and lowest risk in the rural area, and the total risk fluctuated dramatically during 2008–2011. To be more specific, the heat health risk was clearly higher in 2009 and 2010 than in 2008 and 2011. Further analysis with the urban area at sub-district level signifies that the impervious surface (urban area such as buildings, roads, et al. ratio is of high correlation with the heat health risk. The validation results show that the proposed method improved the accuracy of heat health risk assessment. We recommend that policy makers should develop efficient urban planning to accomplish Beijing’s sustainable development.

  6. Effects of PM fouling on the heat exchange effectiveness of wave fin type EGR cooler for diesel engine use

    Science.gov (United States)

    Jang, Sang-Hoon; Hwang, Se-Joon; Park, Sang-Ki; Choi, Kap-Seung; Kim, Hyung-Man

    2012-06-01

    Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers.

  7. Climate variability of heat wave and projection of warming scenario in Taiwan

    Science.gov (United States)

    Lin, C. Y.; Chien, Y. Y.; Su, C. J.

    2017-12-01

    This study examined the climate variability of heat wave (HW) according to air temperature and relative humidity to determine trends of variation and stress threshold in three major cities of Taiwan, Taipei (TP), Taichung (TC) and Kaohsiung (KH), during in the past four decades (1971-2010). According to data available, the wet-bulb globe temperature (WBGT) heat stress for the three studied cities was also calculated for the past (2003-2012) and simulated under the projected warming scenario for the end of this century (2075-2099) using ECHAM5/MPIOM-WRF (ECW) dynamic downscaling 5-km resolution Analysis showed that past decade (2001-2010) saw increase not only in number of HW days in all three cities but also the duration of each HW event in TP and KH. Simulation results revealed that ECW captures well the characteristics of data distribution in these three cities during 2003-2012. Under the A1B projection, ECW yielded higher WBGT in all three cities for 2075-2099. The WBGT in TP indicated that the heat stress for 50% of the days in July and August by 2075-2099 will be at danger level (WBGT ³ 31 °C). Even the median WBGT in TC and KH (30.91°C and 30.88°C, respectively), are close to 31°C. Hence, the heat stress in all three cities will either exceed or approach the danger level by the end of this century. Such projection under the global warming trend would necessitate adaptation and mitigation, and the huge impact of dangerous heat stress on public health merits urgent attention for Taiwan.

  8. Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger

    Science.gov (United States)

    Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.

    2017-02-01

    In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.

  9. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective.

    Science.gov (United States)

    Gao, C; Kuklane, K; Wang, F; Holmér, I

    2012-12-01

    The impact of heat waves arising from climate change on human health is predicted to be profound. It is important to be prepared with various preventive measures for such impacts on society. The objective of this study was to investigate whether personal cooling with phase change materials (PCM) could improve thermal comfort in simulated office work at 34°C. Cooling vests with PCM were measured on a thermal manikin before studies on human subjects. Eight male subjects participated in the study in a climatic chamber (T(a) = 34°C, RH = 60%, and ν(a) = 0.4 m/s). Results showed that the cooling effect on the manikin torso was 29.1 W/m(2) in the isothermal condition. The results on the manikin using a constant heating power mode reflect directly the local cooling effect on subjects. The results on the subjects showed that the torso skin temperature decreased by about 2-3°C and remained at 33.3°C. Both whole body and torso thermal sensations were improved. The findings indicate that the personal cooling with PCM can be used as an option to improve thermal comfort for office workers without air conditioning and may be used for vulnerable groups, such as elderly people, when confronted with heat waves. Wearable personal cooling integrated with phase change materials has the advantage of cooling human body's micro-environment in contrast to stationary personalized cooling and entire room or building cooling, thus providing greater mobility and helping to save energy. In places where air conditioning is not usually used, this personal cooling method can be used as a preventive measure when confronted with heat waves for office workers, vulnerable populations such as the elderly and disabled people, people with chronic diseases, and for use at home. © 2012 John Wiley & Sons A/S.

  10. The prospects for electron Bernstein wave heating of spherical tokamaks

    International Nuclear Information System (INIS)

    Cairns, R.A.; Lashmore-Davies, C.N.

    2000-02-01

    Electron Bernstein waves are analysed as possible candidates for heating spherical tokamaks. An inhomogeneous plane slab model of the plasma with a sheared magnetic field is used to calculate the linear conversion of the ordinary mode (O-mode) to the extraordinary mode (X-mode). A formula for the fraction of the incident O-mode energy which is converted to the X-mode at the O-mode cut-off is derived. This fraction is then able to propagate to the upper hybrid resonance where it is converted to the electron Bernstein mode. The damping of electron Bernstein waves at the fourth harmonic resonance, corresponding to a 60GHz source on the Mega Amp Spherical Tokamak MAST [A C Darke et al Proc 16th Symposium on Fusion Energy, Champaign- Urbana, Illinois USA IEEE, 2 p1456 (1995)], is computed. This is shown to be so strongly absorbing that the electron Bernstein wave would be totally absorbed in the outer regions of the resonance. This feature implies that electron Bernstein wave current drive (on- or off-axis) could be very efficient. (author)

  11. Mortality related to air pollution with the moscow heat wave and wildfire of 2010.

    Science.gov (United States)

    Shaposhnikov, Dmitry; Revich, Boris; Bellander, Tom; Bedada, Getahun Bero; Bottai, Matteo; Kharkova, Tatyana; Kvasha, Ekaterina; Lezina, Elena; Lind, Tomas; Semutnikova, Eugenia; Pershagen, Göran

    2014-05-01

    Prolonged high temperatures and air pollution from wildfires often occur together, and the two may interact in their effects on mortality. However, there are few data on such possible interactions. We analyzed day-to-day variations in the number of deaths in Moscow, Russia, in relation to air pollution levels and temperature during the disastrous heat wave and wildfire of 2010. Corresponding data for the period 2006-2009 were used for comparison. Daily average levels of PM10 and ozone were obtained from several continuous measurement stations. The daily number of nonaccidental deaths from specific causes was extracted from official records. Analyses of interactions considered the main effect of temperature as well as the added effect of prolonged high temperatures and the interaction with PM10. The major heat wave lasted for 44 days, with 24-hour average temperatures ranging from 24°C to 31°C and PM10 levels exceeding 300 μg/m on several days. There were close to 11,000 excess deaths from nonaccidental causes during this period, mainly among those older than 65 years. Increased risks also occurred in younger age groups. The most pronounced effects were for deaths from cardiovascular, respiratory, genitourinary, and nervous system diseases. Continuously increasing risks following prolonged high temperatures were apparent during the first 2 weeks of the heat wave. Interactions between high temperatures and air pollution from wildfires in excess of an additive effect contributed to more than 2000 deaths. Interactions between high temperatures and wildfire air pollution should be considered in risk assessments regarding health consequences of climate change.

  12. Planetary-scale circulations in the presence of climatological and wave-induced heating

    Science.gov (United States)

    Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.

    1994-01-01

    Interaction between the large-scale circulation and the convective pattern is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest zonal wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional wave-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical wave-CISK by rendering the gravest zonal dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional wave-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper

  13. Heating and current drive on NSTX

    International Nuclear Information System (INIS)

    Wilson, J.R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C.K.; Rogers, J.H.; Schilling, G.

    1997-01-01

    Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (∼45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation. copyright 1997 American Institute of Physics

  14. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, N., E-mail: nbertell@pppl.gov; Gerhardt, S.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaeger, E. F. [XCEL Engineering Inc., Oak Ridge, TN 37830 (United States); Lau, C.; Blazevski, D.; Green, D. L.; Berry, L.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169 (United States); Bonoli, P. T.; Wright, J. C. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Pinsker, R. I.; Prater, R. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Qin, C. M. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  15. Heatwaves and urban heat islands: A comparative analysis of multiple cities

    Science.gov (United States)

    Ramamurthy, P.; Bou-Zeid, E.

    2017-01-01

    The recent International Panel on Climate Change report predicts the highly urbanized Northeastern U.S. to be at high risk to heat waves. Since urban residents and infrastructure are known to be highly vulnerable to extreme heat, the goal of this paper is to understand the interaction between the synoptic-scale heat wave and the city-scale urban heat island (UHI) effects. The study also qualitatively analyzes the primary factors that contribute to UHIs by comparing their intensities in different cities with distinct geo-physical characteristics. Our results, generated by using the Weather Research and Forecasting model augmented with advanced urban surface parameterizations, confirm that the amplitude of UHI is related to the physical size of the city. However, the results suggest that cities of comparabale sizes might interact differently with heat waves: in New York City; Washington, DC; and Baltimore (but not in Philadelphia) the regular UHI was amplified more strongly during heat waves compared to smaller cities. The results also establish that the pattern of UHI in different cities, its variability, and its interaction with heat waves are inherently linked to dynamic factors.

  16. Microwave heating and diagnostic of suprathermal electrons in an overdense stellarator plasma

    International Nuclear Information System (INIS)

    Stange, Torsten

    2014-01-01

    The resonant coupling of microwaves into a magnetically confined plasma is one of the fundamental methods for the heating of such plasmas. Identifying and understanding the processes of the heating of overdense plasmas, in which the wave propagation is generally not possible because the wave frequency is below the plasma frequency, is becoming increasingly important for high density fusion plasmas. This work focuses on the heating of overdense plasmas in the WEGA stellarator. The excitation of electron Bernstein waves, utilizing the OXB-conversion process, provides a mechanism for the wave to reach the otherwise not accessible resonant absorption layer. In WEGA these OXB-heated plasmas exhibit a suprathermal electron component with energies up to 80 keV. The fast electrons are located in the plasma center and have a Maxwellian energy distribution function within the soft X-ray related energy range. The corresponding averaged energy is a few keV. The OXB-discharges are accompanied by a broadband microwave radiation spectrum with radiation temperatures of the order of keV. Its source was identified as a parametric decay of the heating wave and has no connection to the suprathermal electron component. For the detailed investigation of the microwave emission, a quasioptical mirror system, optimized for the OX-conversion, has been installed. Based on the measurement of the broadband microwave stray radiation of the decay process, the OX-conversion efficiency has been determined to 0.56 being in good agreement with full-wave calculations. In plasmas without an electron cyclotron resonance, corresponding to the wave frequency used, non-resonant heating mechanisms have been identified in the overdense plasma regions. Whistler waves or R-like waves are the only propagable wave types within the overdense plasmas. The analysis of the heating efficiency in dependence on the magnetic flux density leads to tunneling as the most probable coupling mechanism. For the determination

  17. Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves

    Directory of Open Access Journals (Sweden)

    Leyre Echevarria Icaza

    2016-03-01

    Full Text Available The urban heat island effect is often associated with large metropolises. However, in the Netherlands even small cities will be affected by the phenomenon in the future (Hove et al., 2011, due to the dispersed or mosaic urbanisation patterns in particularly the southern part of the country: the province of North Brabant. This study analyses the average night time land surface temperature (LST of 21 North-Brabant urban areas through 22 satellite images retrieved by Modis 11A1 during the 2006 heat wave and uses Landsat 5 Thematic Mapper to map albedo and normalized difference temperature index (NDVI values. Albedo, NDVI and imperviousness are found to play the most relevant role in the increase of night-time LST. The surface cover cluster analysis of these three parameters reveals that the 12 “urban living environment” categories used in the region of North Brabant can actually be reduced to 7 categories, which simplifies the design guidelines to improve the surface thermal behaviour of the different neighbourhoods thus reducing the Urban Heat Island (UHI effect in existing medium size cities and future developments adjacent to those cities.

  18. Plasma heating and hot ion sustaining in mirror based hybrids

    International Nuclear Information System (INIS)

    Moiseenko, V. E.; Ågren, O.

    2012-01-01

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  19. Forest response to heat waves at the dry timberline

    Science.gov (United States)

    Yakir, D.; Rotenberg, E.; Tatrinov, F.; Ogee, J.; Maseyk, K.

    2012-04-01

    Predictions of climate change consistently indicate continuous warming and drying for the entire Mediterranean basin and other regions during the next century. Investigating forest functioning at the current dry and hot "timberline" has therefore implications for predicting future forest distribution. In such investigations we should consider the forest adjustments to extreme conditions both at the long-term average climate basis, as at the time-scale of episodic extreme events, such as heat waves and droughts. Investigating both aspects in a 45-yr old semi-arid pine forest at the dry timberline (MuSICA) was used to test our understandings of underlying processes, and our ability to account for such differential responses.

  20. Resiliency of the Nation's Power Grid: Assessing Risks of Premature Failure of Large Power Transformers Under Climate Warming and Increased Heat Waves

    Science.gov (United States)

    Schlosser, C. A.; Gao, X.; Morgan, E.

    2017-12-01

    The aging pieces of our nation's power grid - the largest machine ever built - are at a critical time. Key assets in the transmission system, including large power transformers (LPTs), are approaching their originally designed lifetimes. Moreover, extreme weather and climate events upon which these design lifetimes are partially based are expected to change. In particular, more frequent and intense heat waves can accelerate the degradation of LPTs' insulation/cooling system. Thus, there are likely thousands of LPTs across the United States under increasing risk of premature failure - yet this risk has not been assessed. In this study, we investigate the impact of climate warming and corresponding shifts in heat waves for critical LPTs located in the Northeast corridor of the United States to assess: To what extent do changes in heat waves/events present a rising threat to the transformer network over the Northeast U.S. and to what extent can climate mitigation reduce this risk? This study focuses on a collection of LPTs with a high degree of "betweenness" - while recognizing other factors such as: connectivity, voltage rating, MVA rating, approximate price, weight, location/proximity to major transportation routes, and age. To assess the risk of future change in heat wave occurrence we use an analogue method, which detects the occurrence of heat waves based on associated large-scale atmospheric conditions. This method is compared to the more conventional approach that uses model-simulated daily maximum temperature. Under future climate warming scenarios, multi-model medians of both methods indicate strong increases in heat wave frequency during the latter half of this century. Under weak climate mitigation - the risks imposed from heat wave occurrence could quadruple, but a modest mitigation scenario cuts the increasing threat in half. As important, the analogue method substantially improves the model consensus through reduction of the interquartile range by a

  1. Fast wave ion cyclotron resonance heating experiments on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Shepard, T.D.

    1988-09-01

    Minority regime fast wave ICRF heating experiments have been conducted on the Alcator C tokamak at rf power levels sufficient to produce significant changes in plasma properties, and in particular to investigate the scaling to high density of the rf heating efficiency. Up to 450 kW of rf power at frequency f = 180 MHz, was injected into plasmas composed of deuterium majority and hydrogen minority ion species at magnetic field B 0 = 12 T, density 0.8 ≤ /bar n/sub e// ≤ 5 /times/ 10 20 m -3 , ion temperature T/sub D/(0) /approximately/ 1 keV, electron temperature T/sub e/(0) /approximately/ 1.5--2.5 keV, and minority concentration 0.25 /approx lt/ /eta/sub H// ≤ 8%. Deuterium heating ΔT/sub D/(0) = 400 eV was observed at /bar n/sub e// = 1 /times/ 10 20 m -3 , with smaller temperature increases at higher density. However, there was no significant change in electron temperature and the minority temperatures were insufficient to account for the launched rf power. Minority concentration scans indicated most efficient deuterium heating at the lowest possible concentration, in apparent contradiction with theory. Incremental heating /tau/sub inc// /equivalent to/ ΔW/ΔP up to 5 ms was independent of density, in spite of theoretical predictions of favorable density scaling of rf absorption and in stark contrast to Ohmic confinement times /tau/sub E// /equivalent to/ W/P. After accounting for mode conversion and minority losses due to toroidal field ripple, unconfined orbits, asymmetric drag, neoclassical and sawtooth transport, and charge-exchange, it was found that the losses as well as the net power deposition on deuterium do scale very favorably with density. Nevertheless, when the net rf and Ohmic powers deposited on deuterium are compared, they are found to be equally efficient at heating the deuterium. 139 refs

  2. Lower hybrid heating experiments in tokamaks: an overview

    International Nuclear Information System (INIS)

    Porkolab, M.

    1985-10-01

    Lower hybrid wave propagation theory relevant to heating fusion grade plasmas (tokamaks) is reviewed. A brief discussion of accessibility, absorption, and toroidal ray propagation is given. The main part of the paper reviews recent results in heating experiments on tokamaks. Both electron and ion heating regimes will be discussed. The prospects of heating to high temperatures in reactor grade plasmas will be evaluated

  3. Changes in the Intensity and Frequency of Atmospheric Blocking and Associated Heat Waves During Northern Summer Over Eurasia in the CMIP5 Model Simulations

    Science.gov (United States)

    Kim, Kyu-Myong; Lau, K. M.; Wu, H. T.; Kim, Maeng-Ki; Cho, Chunho

    2012-01-01

    The Russia heat wave and wild fires of the summer of 2010 was the most extreme weather event in the history of the country. Studies show that the root cause of the 2010 Russia heat wave/wild fires was an atmospheric blocking event which started to develop at the end of June and peaked around late July and early August. Atmospheric blocking in the summer of 2010 was anomalous in terms of the size, duration, and the location, which shifted to the east from the normal location. This and other similar continental scale severe summertime heat waves and blocking events in recent years have raised the question of whether such events are occurring more frequently and with higher intensity in a warmer climate induced by greenhouse gases. We studied the spatial and temporal distributions of the occurrence and intensity of atmospheric blocking and associated heat waves for northern summer over Eurasia based on CMIPS model simulations. To examine the global warming induced change of atmospheric blocking and heat waves, experiments for a high emissions scenario (RCP8.S) and a medium mitigation scenario (RCP4.S) are compared to the 20th century simulations (historical). Most models simulate the mean distributions of blockings reasonably well, including major blocking centers over Eurasia, northern Pacific, and northern Atlantic. However, the models tend to underestimate the number of blockings compared to MERRA and NCEPIDOE reanalysis, especially in western Siberia. Models also reproduced associated heat waves in terms of the shifting in the probability distribution function of near surface temperature. Seven out of eight models used in this study show that the frequency of atmospheric blocking over the Europe will likely decrease in a warmer climate, but slightly increase over the western Siberia. This spatial pattern resembles the blocking in the summer of 2010, indicating the possibility of more frequent occurrences of heat waves in western Siberia. In this talk, we will also

  4. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  5. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

    Science.gov (United States)

    Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

    2012-01-01

    In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

  6. Extreme heat in India and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    G. J. van Oldenborgh

    2018-01-01

    Full Text Available On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India – a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data. Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs, these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse

  7. Extreme heat in India and anthropogenic climate change

    Science.gov (United States)

    van Oldenborgh, Geert Jan; Philip, Sjoukje; Kew, Sarah; van Weele, Michiel; Uhe, Peter; Otto, Friederike; Singh, Roop; Pai, Indrani; Cullen, Heidi; AchutaRao, Krishna

    2018-01-01

    On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India - a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data). Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs), these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse, whereas decreased air pollution

  8. Additional heating experiments of FRC plasmas

    International Nuclear Information System (INIS)

    Okada, S.; Asai, T.; Kodera, F.; Kitano, K.; Suzuki, T.; Yamanaka, K.; Kanki, T.; Inomoto, M.; Yoshimura, S.; Okubo, M.; Sugimoto, S.; Ohi, S.; Goto, S.

    2001-01-01

    Additional heating experiments of neutral beam (NB) injection and application of low frequency wave on a plasma with extremely high averaged beta value of about 90% - a field reversed configuration (FRC) plasma - are carried out on the FRC Injection experiment (FIX) apparatus. These experiments are made possible by translating the FRC plasma produced in a formation region of a theta pinch to a confinement region in order to secure better accessibility to heating facilities and to control plasma density. By appropriate choice of injection geometry and the mirror ratio of the confinement region, the NB with the energy of 14keV and the current of 23A is enabled to be injected into the FRC in the solenoidal confining field of only 0.04-0.05T. Confinement is improved by this experiment. Ion heating is observed by the application of low frequency (80kHz ; about 1/4 of the ion gyro frequency) compressional wave. A shear wave, probably mode converted from the compressional wave, is detected to propagate axially. (author)

  9. A Cross-Sectional Study of Heat Wave-Related Knowledge, Attitude, and Practice among the Public in the Licheng District of Jinan City, China.

    Science.gov (United States)

    Li, Jing; Xu, Xin; Ding, Guoyong; Zhao, Yun; Zhao, Ruixia; Xue, Fuzhong; Li, Jing; Gao, Jinghong; Yang, Jun; Jiang, Baofa; Liu, Qiyong

    2016-06-29

    Knowledge, attitude, and practice (KAP) are three key components for reducing the adverse health impacts of heat waves. However, research in eastern China regarding this is scarce. The present study aimed to evaluate the heat wave-related KAP of a population in Licheng in northeast China. This cross-sectional study included 2241 participants. Data regarding demographic characteristics, KAP, and heat illnesses were collected using a structured questionnaire. Univariate analysis and unconditional logistic regression models were used to analyze the data. Most residents had high KAP scores, with a mean score of 12.23 (standard deviation = 2.23) on a 17-point scale. Urban women and participants aged 35-44 years had relatively high total scores, and those with high education levels had the highest total score. There was an increased risk of heat-related illness among those with knowledge scores of 3-5 on an 8-point scale with mean score of 5.40 (standard deviation = 1.45). Having a positive attitude toward sunstroke prevention and engaging in more preventive practices to avoid heat exposure had a protective interaction effect on reducing the prevalence of heat-related illnesses. Although the KAP scores were relatively high, knowledge and practice were lacking to some extent. Therefore, governments should further develop risk-awareness strategies that increase awareness and knowledge regarding the adverse health impact of heat and help in planning response strategies to improve the ability of individuals to cope with heat waves.

  10. A Cross-Sectional Study of Heat Wave-Related Knowledge, Attitude, and Practice among the Public in the Licheng District of Jinan City, China

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-06-01

    Full Text Available Knowledge, attitude, and practice (KAP are three key components for reducing the adverse health impacts of heat waves. However, research in eastern China regarding this is scarce. The present study aimed to evaluate the heat wave-related KAP of a population in Licheng in northeast China. This cross-sectional study included 2241 participants. Data regarding demographic characteristics, KAP, and heat illnesses were collected using a structured questionnaire. Univariate analysis and unconditional logistic regression models were used to analyze the data. Most residents had high KAP scores, with a mean score of 12.23 (standard deviation = 2.23 on a 17-point scale. Urban women and participants aged 35–44 years had relatively high total scores, and those with high education levels had the highest total score. There was an increased risk of heat-related illness among those with knowledge scores of 3–5 on an 8-point scale with mean score of 5.40 (standard deviation = 1.45. Having a positive attitude toward sunstroke prevention and engaging in more preventive practices to avoid heat exposure had a protective interaction effect on reducing the prevalence of heat-related illnesses. Although the KAP scores were relatively high, knowledge and practice were lacking to some extent. Therefore, governments should further develop risk-awareness strategies that increase awareness and knowledge regarding the adverse health impact of heat and help in planning response strategies to improve the ability of individuals to cope with heat waves.

  11. ELF wave generation in the ionosphere using pulse modulated HF heating: initial tests of a technique for increasing ELF wave generation efficiency

    Directory of Open Access Journals (Sweden)

    R. Barr

    1999-06-01

    Full Text Available This paper describes the results of a preliminary study to determine the effective heating and cooling time constants of ionospheric currents in a simulated modulated HF heating, `beam painting' configuration. It has been found that even and odd harmonics of the fundamental ELF wave used to amplitude modulate the HF heater are sourced from different regions of the ionosphere which support significantly different heating and cooling time constants. The fundamental frequency and its odd harmonics are sourced in a region of the ionosphere where the heating and cooling time constants are about equal. The even harmonics on the other hand are sourced from regions of the ionosphere characterised by ratios of cooling to heating time constant greater than ten. It is thought that the even harmonics are sourced in the lower ionosphere (around 65 km where the currents are much smaller than at the higher altitudes around 78 km where the currents at the fundamental frequency and odd harmonics maximise.Key words. Electromagnetics (antennae · Ionosphere (active experiments · Radio science (non linear phenomena

  12. Plasma heating - a comparative overview for future applications

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of D-T burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating system with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various functions of heating, which are: Plasma heating to fusion-relevant parameters and to ignition in future machines, non-inductive, steady-state current drive, plasma profile control, neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alfven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (orig.)

  13. Heat exchanges in a quenched ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Corberi, Federico; Zannetti, Marco [Dipartimento di Fisica ' E.R. Caianiello' , and CNISM, Unita di Salerno, Universita di Salerno, via Ponte don Melillo, I-84084 Fisciano, SA (Italy); Gonnella, Giuseppe; Piscitelli, Antonio [Dipartimento di Fisica, Universita di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126 Bari (Italy)

    2013-02-01

    The off-equilibrium probability distribution of the heat exchanged by a ferromagnet in a time interval after a quench below the critical point is calculated analytically in the large-N limit. The distribution is characterized by a singular threshold Q{sub C} < 0, below which a macroscopic fraction of heat is released by the k = 0 Fourier component of the order parameter. The mathematical structure producing this phenomenon is the same responsible for the order parameter condensation in the equilibrium low temperature phase. The heat exchanged by the individual Fourier modes follows a non-trivial pattern, with the unstable modes at small wave vectors warming up the modes around a characteristic finite wave vector k{sub M}. Two internal temperatures, associated with the k = 0 and k = k{sub M} modes, rule the heat currents through a fluctuation relation similar to the one for stationary systems in contact with two thermal reservoirs. (fast track communication)

  14. Electromagnetic heating of a shape memory alloy translator

    Science.gov (United States)

    Giroux, E.-A.; Maglione, M.; Gueldry, A.; Mantoux, J.-L.

    1996-03-01

    The active part of a linear translator is a shape memory alloy (SMA) made of nickel and titanium (NiTi) wire which is to be thermally cycled. We have achieved heating using electromagnetic radiation with a magnetic sheath and low-frequency waves at 8 kHz and without magnetic sheath and radio frequency waves at 28 MHz. The heating is equivalent for these two arrangements. In vitro experiments have been confirmed by computer simulations of the radiation distribution within the implant. We thus show that electromagnetic radiation could specifically heat a NiTi wire inside a stainless steel tube without heating the tube. An application could be a femoral prosthesis for the lengthening of the bone.

  15. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  16. Effects of PM fouling on the heat exchange effectiveness of wave fin type EGR cooler for diesel engine use

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sang-Hoon; Hwang, Se-Joon; Choi, Kap-Seung; Kim, Hyung-Man [INJE University, Department of Mechanical Engineering, High Safety Vehicle Core Technology Research Center, Gimhae-si, Gyeongnam-do (Korea, Republic of); Park, Sang-Ki [Hanyang University, Graduate School of Mechanical Engineering, Ansan, Gyeonggido (Korea, Republic of)

    2012-06-15

    Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers. (orig.)

  17. Consistent pattern of local adaptation during an experimental heat wave in a pipefish-trematode host-parasite system.

    Directory of Open Access Journals (Sweden)

    Susanne H Landis

    Full Text Available Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle as a host and its digenean trematode parasite (Cryptocotyle lingua. In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming.

  18. A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks

    Czech Academy of Sciences Publication Activity Database

    Urban, Jakub; Decker, J.; Peysson, Y.; Preinhaelter, Josef; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.

    2011-01-01

    Roč. 51, č. 8 (2011), 083050-083050 ISSN 0029-5515 R&D Projects: GA ČR GA202/08/0419; GA MŠk 7G10072 Institutional research plan: CEZ:AV0Z20430508 Keywords : spherical tokamak * electron Bernstein wave (EBW) * heating * current drive * electron cyclotron wave Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.090, year: 2011 http://iopscience.iop.org/0029-5515/51/8/083050/pdf/0029-5515_51_8_083050.pdf

  19. HEATING AND CURRENT DRIVE BY ELECTRON CYCLOTRON WAVES

    International Nuclear Information System (INIS)

    Prater, R.

    2003-01-01

    OAK-B135 The physics model of electron cyclotron heating (ECH) and current drive (ECCD) is becoming well validated through systematic comparisons of theory and experiment. This work has shown that ECH and ECCD can be highly localized and robustly controlled in toroidal plasma confinement systems, leading to applications including stabilization of magnetohydrodynamic (MHD) instabilities like neoclassical tearing modes, control and sustainment of desired profiles of current density and plasma pressure, and studies of localized transport in laboratory plasmas. The experimental work was supported by a broad base of theory based on first principles which is now well encapsulated in linear ray tracing codes describing wave propagation, absorption, and current drive and in fully relativistic quasilinear Fokker-Planck codes describing in detail the response of the electrons to the energy transferred from the wave. The subtle balance between wave-induced diffusion and Coulomb relaxation in velocity space provides an understanding of the effects of trapping of current-carrying electrons in the magnetic well. Strong quasilinear effects and radial transport of electrons, which may broaden the driven current profile, have also been observed under some conditions and appear to be consistent with theory, but in large devices these are usually insignificant. The agreement of theory and experiment, the wide range of established applications, and the technical advantages of ECH support the application of ECH in next-step tokamaks and stellarators

  20. Heat transfer characteristics of the two-phase closed thermosyphon (wickless heat pipe)

    International Nuclear Information System (INIS)

    Andros, F.E.; Florschuetz, L.W.

    1982-01-01

    Steady-state heat transfer characteristics and heat transfer limits (dry-out) for a vertical stainless steel tubular two-phase closed thermosyphon with Freon-113 working fluid are reported as a function of certain geometric parameters and liquid fill quantity. Condenser section heat transfer characteristics agreed reasonably well with existing laminar film condensation correlations and were found to be independent of the evaporator section, except for larger liquid fills. Evaporator characteristics were quite complex and appeared, under some conditions, to be coupled to condenser characteristics through effects of system pressure and/or surface wave as present on the descending condensate film. A laminar thin film evaporation model was found to give reasonable agreement with local evaporator temperature measurements in those regions of the evaporator where a continuous film apparently persisted. The measured heat transfer characteristics are interpreted relative to an earlier investigation by the authors in which flow characteristics in a similar device were visually and photographically observed. 10 references

  1. Role of lower hybrid waves in ion heating at dipolarization fronts

    Science.gov (United States)

    Greco, A.; Artemyev, A.; Zimbardo, G.; Angelopoulos, V.; Runov, A.

    2017-05-01

    One of the important sources of hot ions in the magnetotail is the bursty bulk flows propagating away from the reconnection region and heating the ambient plasma. Charged particles interact with nonlinear magnetic field pulses (dipolarization fronts, DFs) embedded into these flows. The convection electric fields associated with DF propagation are known to reflect and accelerate ambient ions. Moreover, a wide range of waves is observed within/near these fronts, the electric field fluctuations being dominated by the lower hybrid drift (LHD) instability. Here we investigate the potential role of these waves in the further acceleration of ambient ions. We use a LHD wave emission profile superimposed on the leading edge of a two-dimensional model profile of a DF and a test particle approach. We show that LHD waves with realistic amplitudes can significantly increase the upper limit of energies gained by ions. Wave-particle interaction near the front is more effective in producing superthermal ions than in increasing the flux of thermal ions. Comparison of test particle simulations and Time History of Events and Macroscale Interactions during Substorms observations show that ion acceleration by LHD waves is more important for slower DFs.

  2. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  3. Simultaneous Propagation of Heat Waves Induced by Sawteeth and Electron-Cyclotron Heating Power Modulation in the Rtp Tokamak

    NARCIS (Netherlands)

    Gorini, G.; Mantica, P.; Hogeweij, G. M. D.; De Luca, F.; Jacchia, A.; Konings, J. A.; Cardozo, N. J. L.; Peters, M.

    1993-01-01

    The incremental electron heat diffusivity chi(inc) is determined in Rijnhuizen Tokamak Project plasmas by measurements of simultaneous heat pulses due to (1) the sawtooth instability and (2) modulated electron cyclotron heating. No systematic difference is observed between the two measured chi(inc)

  4. On heat transfer through a solid slab heated uniformly and periodically: determination of thermal properties

    International Nuclear Information System (INIS)

    Rojas-Trigos, J B; Bermejo-Arenas, J A; Marín, E

    2012-01-01

    In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to the experimental results obtained by using the approach first proposed by Ångström, which has become a well-known thermal wave experimental procedure used for the determination of thermal diffusivity. A number of conclusions are drawn from this comparison, which highlight the need to carefully consider the experimental setup employed when carrying out this type of measurement. The results may be of interest to those dealing with heat transfer problems, thermal characterization techniques and/or involved in the teaching of partial differential equations at undergraduate or graduate level. (paper)

  5. Critical temperature gradient length signatures in heat wave propagation across internal transport barriers in the Joint European Torus

    International Nuclear Information System (INIS)

    Casati, Alessandro; Mantica, P.; Eester, D. van; Hawkes, N.; De Vries, P.; Imbeaux, F.; Joffrin, E.; Marinoni, A.; Ryter, F.; Salmi, A.; Tala, T.

    2007-01-01

    New results on electron heat wave propagation using ion cyclotron resonance heating power modulation in the Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)] plasmas characterized by internal transport barriers (ITBs) are presented. The heat wave generated outside the ITB, and traveling across it, always experiences a strong damping in the ITB layer, demonstrating a low level of transport and loss of stiffness. In some cases, however, the heat wave is strongly inflated in the region just outside the ITB, showing features of convective-like behavior. In other cases, a second maximum in the perturbation amplitude is generated close to the ITB foot. Such peculiar types of behavior can be explained on the basis of the existence of a critical temperature gradient length for the onset of turbulent transport. Convective-like features appear close to the threshold (i.e., just outside the ITB foot) when the value of the threshold is sufficiently high, with a good match with the theoretical predictions for the trapped electron mode threshold. The appearance of a second maximum is due to the oscillation of the temperature profile across the threshold in the case of a weak ITB. Simulations with an empirical critical gradient length model and with the theory based GLF23 [R. E. Waltz et al., Phys. Plasmas, 4, 2482 (1997)] model are presented. The difference with respect to previous results of cold pulse propagation across JET ITBs is also discussed

  6. The rate of plasma heating by harmonic ion cyclotron waves in tokamaks

    International Nuclear Information System (INIS)

    Moslehi-Fard, M.; Sobhanian, S.; Solati-Kia, F.

    2002-01-01

    In tokamaks, the toroidal magnetic field, B φ , is due to the current in coils around plasma, and the poloidal magnetic field B p results from the plasma itself. Usually B φ p , and the combination of these two fields forms a nested set of toroidal magnetic surfaces. The equilibrium Grad-Shafranov equation is investigated and it is shown that the particle products of fusion with different pitch angles on these surfaces have different orbital shapes. In the JET tokamak, the α particles with pitch angle θ smaller than 54.8 deg are passing, those with θ between 54.8 deg and 65.1 deg have trapping-passing orbits but for θ greater than 65.1 deg the orbit has a banana form. Other tokamaks such as Alcator and ITER are also considered. The passing, trapping-passing and banana orbits in these tokamaks are traced. The results obtained from this calculation are analyzed. The wave damping has been investigated produced from interaction with particles, particularly α particles, and the rate of heating for l = 1 to 8 harmonics is plotted. The results of calculation show that heating at the fourth harmonic reaches a maximum. For higher harmonics, the heating does not change much from the fourth harmonic. (author)

  7. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  8. Modifications of the urban heat island characteristics under exceptionally hot weather - A case study

    Science.gov (United States)

    Founda, Dimitra; Pierros, Fragiskos; Santamouris, Mathew

    2016-04-01

    Considerable recent research suggests that heat waves are becoming more frequent, more intense and longer in the future. Heat waves are characterised by the dominance of prolonged abnormally hot conditions related to synoptic scale anomalies, thus they affect extensive geographical areas. Heat waves (HW) have a profound impact on humans and they have been proven to increase mortality. Urban areas are known to be hotter than the surrounding rural areas due to the well documented urban heat island (UHI) phenomenon. Urban areas face increased risk under heat waves, due to the added heat from the urban heat island and increased population density. Given that urban populations keep increasing, citizens are exposed to significant heat related risk. Mitigation and adaptation strategies require a deep understanding of the response of the urban heat islands under extremely hot conditions. The response of the urban heat island under selected episodes of heat waves is examined in the city of Athens, from the comparison between stations of different characteristics (urban, suburban, coastal and rural). Two distinct episodes of heat waves occurring during summer 2000 were selected. Daily maximum air temperature at the urban station of the National Observatory of Athens (NOA) exceeded 40 0C for at least three consecutive days for both episodes. The intensity of UHI during heat waves was compared to the intensity under 'normal' conditions, represented from a period 'before' and 'after' the heat wave. Striking differences of UHI features between HW and no HW cases were observed, depending on the time of the day and the type of station. The comparison between the urban and the coastal station showed an increase of the order of 3 0C in the intensity of UHI during the HW days, as regards both daytime and nighttime conditions. The comparison between urban and a suburban (inland) station, revealed some different behaviour during HWs, with increases of the order of 3 0C in the nocturnal

  9. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone.

    Science.gov (United States)

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-03-09

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03-1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07-1.16). Total mortality risk was higher among those aged 35-44 years than ≥ 65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10-1.27) than from internal causes (RR = 1.04, CI 1.02-1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01-2.48) and the southernmost zone of California's Central Valley (RR = 1.43, CI 1.21-1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions.

  10. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  11. ICRF heating and current drive experiments on TFTR

    International Nuclear Information System (INIS)

    Rogers, J.H.; Hosea, J.C.; Phillips, C.K.

    1996-01-01

    Recent experiments in the Ion Cyclotron Range of Frequencies (ICRF) at TFTR have focused on the RF physics relevant to advanced tokamak D-T reactors. Experiments performed either tested confinement in reactor relevant plasmas or tested specific ICRF heating scenarios under consideration for reactors. H-minority heating was used to supply identical heating sources for matched D-T and D only L-mode plasmas to determine the species scaling for energy confinement. Second harmonic tritium heating was performed with only thermal tritium ions in an L-mode target plasma, verifying a possible start-up scenario for the International Thermonuclear Experimental Reactor (ITER). Direct electron heating in Enhanced Reverse Shear (ERS) plasmas has been found to delay the back transition out of the ERS state. D-T mode conversion of the fast magnetosonic wave to an Ion Berstein Wave (IBW) for off-axis heating and current drive has been successfully demonstrated for the first time. Parasitic Li 7 cyclotron damping limited the fraction of the power going to the electrons to less than 30%. Similar parasitic damping by Be 9 could be problematic in ITER. Doppler shifted fundamental resonance heating of beam ions and alpha particles has also been observed

  12. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  13. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  14. Integrating multiple stressors across life stages and latitudes: Combined and delayed effects of an egg heat wave and larval pesticide exposure in a damselfly.

    Science.gov (United States)

    Sniegula, Szymon; Janssens, Lizanne; Stoks, Robby

    2017-05-01

    To understand the effects of pollutants in a changing world we need multistressor studies that combine pollutants with other stressors associated with global change such as heat waves. We tested for the delayed and combined impact of a heat wave during the egg stage and subsequent sublethal exposure to the pesticide esfenvalerate during the larval stage on life history and physiology in the larval and adult stage of the damselfly Lestes sponsa. We studied this in a common garden experiment with replicated central- and high latitude populations to explore potential effects of local thermal adaptation and differences in life history shaping the multistressor responses. Exposure of eggs to the heat wave had no effect on larval traits, yet had delayed costs (lower fat and flight muscle mass) in the adult stage thereby crossing two life history transitions. These delayed costs were only present in central-latitude populations potentially indicating their lower heat tolerance. Exposure of larvae to the pesticide reduced larval growth rate and prolonged development time, and across metamorphosis reduced the adult fat content and the flight muscle mass, yet did not affect the adult heat tolerance. The pesticide-induced delayed emergence was only present in the slower growing central-latitude larvae, possibly reflecting stronger selection to keep development fast in the more time-constrained high-latitude populations. We observed no synergistic interactions between the egg heat wave and the larval pesticide exposure. Instead the pesticide-induced reduction in fat content was only present in animals that were not exposed to the egg heat wave. Our results based on laboratory conditions highlight that multistressor studies should integrate across life stages to fully capture cumulative effects of pollutants with other stressors related to global change. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Main-ion temperature and plasma rotation measurements based on scattering of electron cyclotron heating waves in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Pedersen, Morten Stejner; Rasmussen, Jesper; Nielsen, Stefan Kragh

    2017-01-01

    We demonstrate measurements of spectra of O-mode electron cyclotron resonance heating (ECRH) waves scattered collectively from microscopic plasma fluctuations in ASDEX Upgrade discharges with an ITER-like ECRH scenario. The measured spectra are shown to allow determination of the main ion...... temperature and plasma rotation velocity. This demonstrates that ECRH systems can be exploited for diagnostic purposes alongside their primary heating purpose in a reactor relevant scenario....

  16. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  17. Climate and heat-related emergencies in Chicago, Illinois (2003-2006).

    Science.gov (United States)

    Hartz, Donna A; Golden, Jay S; Sister, Chona; Chuang, Wen-Ching; Brazel, Anthony J

    2012-01-01

    Extreme heat events are responsible for more deaths in the United States than floods, hurricanes and tornados combined. Yet, highly publicized events, such as the 2003 heat wave in Europe which caused in excess of 35,000 deaths, and the Chicago heat wave of 1995 that produced over 500 deaths, draw attention away from the countless thousands who, each year, fall victim to nonfatal health emergencies and illnesses directly attributed to heat. The health impact of heat waves and excessive heat are well known. Cities worldwide are seeking to better understand heat-related illnesses with respect to the specifics of climate, social demographics and spatial distributions. This information can support better preparation for heat-related emergency situations with regards to planning for response capacity and placement of emergency resources and personnel. This study deals specifically with the relationship between climate and heat-related dispatches (HRD, emergency 911 calls) in Chicago, Illinois, between 2003 and 2006. It is part of a larger, more in-depth, study that includes urban morphology and social factors that impact heat-related emergency dispatch calls in Chicago. The highest occurrences of HRD are located in the central business district, but are generally scattered across the city. Though temperature can be a very good predictor of high HRD, heat index is a better indicator. We determined temperature and heat index thresholds for high HRD. We were also able to identify a lag in HRD as well as other situations that triggered higher (or lower) HRD than would typically be generated for the temperature and humidity levels, such as early afternoon rainfall and special events.

  18. Dependence of present and future European heat waves and cold spells on the location of atmospheric blocking

    Science.gov (United States)

    Brunner, L.; Schaller, N.; Sillmann, J.; Steiner, A. K.

    2017-12-01

    Atmospheric blocking describes stationary anti-cyclones, which weaken or reverse the climatological flow at mid-latitudes. In the northern hemisphere one of the main blocking regions is located over the North Atlantic and Northern Europe. The link between blocking and European temperature extremes, such as heat waves and cold spells, strongly depends on several aspects like season, longitudinal location of the block, and location of the extremes (particularly Northern Europe versus Southern Europe). We use a 50-member ensemble of the Canadian CanESM2 model to investigate historical (1981-2010) and future (2070-2099) blocking cases and their relationship with European temperature extremes. For the historical period the model results are also compared to those from the ERA-Interim reanalysis. Atmospheric blocking is detected on a daily basis in different 30° longitude windows between 60°W and 60°E, using a standard geopotential height-based detection index. Temperature extremes are defined by the daily Heat/Cold Wave Magnitude Index (HWMId/CWMId). The role of cold advection is found particularly important in winter conditions leading to a more than threefold increase in cold wave occurrence during blocking between 60°W and 0°. During blocking over Northern Europe (0° to 60°E) a split relationship is found with cold wave occurrence being strongly increased in Southern Europe, while it is decreased in Northern Europe. Direct, radiative effects dominate in summer, therefore blocking westward of Europe has a weaker effect, while blocking over Northern Europe leads to an increase of heat waves by at least a factor three at the location of the block and a decrease in cold wave occurrence in almost all of Europe. Comparing the historical and future period we find the link between blocking and temperature extremes in Europe to be robust, even though blocking frequency and temperatures are changing.

  19. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  20. Stability and heating of a poloidal divertor tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, A. P.; Dexter, R. N.; Holly, D. T.; Lipschultz, B.; Osborne, T. H.; Prager, S. C.; Shepard, D.A., Sprott, J.C.; Witherspoon, F. D.

    1980-06-01

    Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a Tokamak with a four node poloidal divertor. First, discharges have been attained with safety factor q as low as 0.6 over most of the column without degradation of confinement, and correlation of helical instability onset with current profile shape is being studied. Second, the axisymmetric instability has been investigated in detail for various noncircular cross-sectional shapes, and results have been compared with a numerical stability code adapted to the Tokapole machine. Third, application of high power fast wave ion cyclotron resonance heating doubles the ion temperature and permits observation of heating as a function of harmonic number and spatial location of the resonance. Fourth, low power shear Alfven wave propagation is underway to test the applicability of this heating method to tokamaks. Fifth, preionization by electron cyclotron heating has been employed to reduce the startup loop voltage by approx. 60%.

  1. Standard test method for measurement of roll wave optical distortion in heat-treated flat glass

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method is applicable to the determination of the peak-to-valley depth and peak-to-peak distances of the out-of-plane deformation referred to as roll wave which occurs in flat, heat-treated architectural glass substrates processed in a heat processing continuous or oscillating conveyance oven. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This test method does not address other flatness issues like edge kink, ream, pocket distortion, bow, or other distortions outside of roll wave as defined in this test method. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  3. Heat Stroke: A Medical Emergency Appearing in New Regions

    Directory of Open Access Journals (Sweden)

    Sofie Søndergaard Mørch

    2017-01-01

    Full Text Available Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat waves will occur in previously cooler regions. Therefore it is important to raise awareness of heat stroke since outcome depends on early recognition and rapid cooling.

  4. Computer simulations of upper-hybrid and electron cyclotron resonance heating

    International Nuclear Information System (INIS)

    Lin, A.T.; Lin, C.C.

    1983-01-01

    A 2 1/2 -dimensional relativistic electromagnetic particle code is used to investigate the dynamic behavior of electron heating around the electron cyclotron and upper-hybrid layers when an extraordinary wave is obliquely launched from the high-field side into a magnetized plasma. With a large angle of incidence most of the radiation wave energy converts into electrostatic electron Bernstein waves at the upper-hybrid layer. These mode-converted waves propagate back to the cyclotron layer and deposit their energy in the electrons through resonant interactions dominated first by the Doppler broadening and later by the relativistic mass correction. The line shape for both mechanisms has been observed in the simulations. At a later stage, the relativistic resonance effects shift the peak of the temperature profile to the high-field side. The heating ultimately causes the extraordinary wave to be substantially absorbed by the high-energy electrons. The steep temperature gradient created by the electron cyclotron heating eventually reflects a substantial part of the incident wave energy. The diamagnetic effects due to the gradient of the mode-converted Bernstein wave pressure enhance the spreading of the electron heating from the original electron cyclotron layer

  5. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  6. Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes

    Science.gov (United States)

    Nath, G.; Vishwakarma, J. P.

    2016-11-01

    Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  7. Amplification of heat extremes by plant CO2 physiological forcing.

    Science.gov (United States)

    Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S

    2018-03-15

    Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.

  8. Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.

    Science.gov (United States)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.

    2014-12-01

    Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.

  9. Electron Bernstein wave heating and current drive effects in QUEST

    International Nuclear Information System (INIS)

    Idei, H.; Zushi, H.; Hanada, K.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Watanabe, H.; Yoshida, N.; Tokunaga, K.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Kalinnikova, E.; Sakaguchi, M.; Itado, T.; Tashima, S.; Fukuyama, A.; Ejiri, A.; Takase, Y.; Igami, H.; Kubo, S.; Toi, K.; Isobe, M.; Nagaoka, K.; Nakanishi, H.; Nishino, N.; Ueda, Y.; Kikuchi, Mitsuru; Fujita, Takaaki; Mitarai, O.; Maekawa, T.

    2012-11-01

    Electron Bernstein Wave Heating and Current Drive (EBWH/CD) effects have been first observed in over dense plasmas using the developed phased-array antenna (PAA) system in QUEST. Good focusing and steering properties tested in the low power facilities were confirmed with a high power level in the QUEST device. The new operational window to sustain the plasma current was observed in the RF-sustained high-density plasmas at the higher incident RF power. Increment and decrement of the plasma current and the loop voltage were observed in the over dense ohmic plasma by the RF injection respectively, indicating the EBWH/CD effects. (author)

  10. Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak

    International Nuclear Information System (INIS)

    Ruchko, L.F.; Ozono, E.; Galvao, R.M.O.; Nascimento, I.C.; Degasperi, F.T.; Lerche, E.

    1998-01-01

    An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=Z R +Z I is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active Z R and reactive Z I impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)

  11. Transport in Auxiliary Heated NSTX Discharges

    International Nuclear Information System (INIS)

    LeBlanc, B.P.; Bell, M.G.; Bell, R.E.; Bitte, M.L.; Bourdelle, C.; Gates, D.A.; Kaye, S.M.; Maingi, R.; Menard, J.E.; Mueller, D.; Ono, M.; Paul, S.F.; Redi, M.H.; Roquemore, A.L.; Rosenberg, A.; Sabbagh, S.A.; Stutman, D.; Synakowski, E.J.; Soukhanovskii, V.A.; Wilson, J.R.

    2003-01-01

    The NSTX spherical torus (ST) provides a unique platform to investigate magnetic confinement in auxiliary-heated plasmas at low aspect ratio. Auxiliary power is routinely coupled to ohmically heated plasmas by deuterium neutral-beam injection (NBI) and by high-harmonic fast waves (HHFW) launch. While theory predicts both techniques to preferentially heat electrons, experiment reveals the electron temperature is greater than the ion temperature during HHFW, but the electron temperature is less than the ion temperature during NBI. In the following we present the experimental data and the results of transport analyses

  12. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    DEFF Research Database (Denmark)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.

    2012-01-01

    The rotation of L-mode plasmas in the JET tokamak heated by waves in the ion cyclotron range of frequencies (ICRF) damped on electrons, is reported. The plasma in the core is found to rotate in the counter-current direction with a high shear and in the outer part of the plasma with an almost......, electron absorption of the fast magnetosonic wave by transit time magnetic pumping and electron Landau damping (TTMP/ELD) is the dominating absorption mechanism. Inverted mode conversion is done in (He-3)-H plasmas where the mode converted waves are essentially absorbed by electron Landau damping. Similar...... rotation profiles are seen when heating at the second harmonic cyclotron frequency of He-3 and with mode conversion at high concentrations of He-3. The magnitude of the counter-rotation is found to decrease with an increasing plasma current. The correlation of the rotation with the electron temperature...

  13. Particle simulation on the propagation and plasma heating of the lower hybrid wave in the nonuniform system

    International Nuclear Information System (INIS)

    Abe, Hirotada; Kajitani, Hiroyuki; Itatani, Ryohei.

    1977-07-01

    A particle simulation model which treats the wave excitation and propagation in the nonuniform density by the external source is developed and applied for study of the lower hybrid heating in a fusion device. As the linear theory predicts, the cold lower hybrid wave is observed to increase its perpendicular wave number as it propagates to the higher density region and to damp away near the turning point. When the wave amplitude is large or the wave energy is about a half of the initial kinetic energy at a surface of plasma, the following features are observed for the increase of the ion and electron kinetic energies. Ion perpendicular energy distributions are observed to be approximated by the two Maxwell distributions or to have the components of the high energy tail, whose parallel velocities satisfy the resonance condition: νparallel = (ω-IOTAΩ sub(iota))/kappa parallel, where ω and kappa parallel the frequency and the parallel wave number of the external source, IOTA is an integer, and Ω sub(iota) is the ion cyclotron frequency. An strong increase of the parallel kinetic energy of the electron is observed near the plasma surface. These are mainly due to the trapped electrons and the collisional heating. (auth.)

  14. Modification of boundary plasma behavior by Ion Bernstein Wave heating on the HT-7 tokamak

    International Nuclear Information System (INIS)

    Xu, G.S.; Wan, B.N.; Song, M.; Ling, B.L.; Li, C.F.; Li, J.

    2003-01-01

    The boundary plasma behavior during Ion Bernstein Wave heating was investigated using Langmuir probe arrays on the HT-7 tokamak. A distinct weak turbulence regime was reproducibly observed in the 30 MHz IBW heated plasmas with RF power larger than 120 kW, which resulted in a particle confinement improvement of a factor of 2. The strong suppression and decorrelation effect of fluctuations resulted in the turbulent particle flux dropping by more than an order of magnitude in the plasma boundary region. An additional inward radial electric field and associated poloidal ExB flows were produced, which could account for the additional poloidal velocity in the electron diamagnetic direction at some radial locations of the boundary plasma. The electrostatic fluctuations were nearly completely decorrelated in the high frequency region and only low frequency fluctuations remained. The poloidal correlation was considerably reduced in the high poloidal wave number region and only the fluctuations with long poloidal wavelength remained. Three-wave nonlinear phase coupling between the whole frequency domain and the very low frequency region increased significantly in both the plasma edge and the SOL. Quite low frequency fluctuations (about 5 kHz) were generated, which dominated the boundary turbulence during IBW heating. Detailed analyses suggested that, when an IBW with a frequency of 30 MHz was launched into a plasma with the toroidal magnetic field between 1.75 T and 2.0 T, the ion cyclotron resonant layer of 5/2.D was located in the plasma edge region. The poloidal ExB sheared flows generated by IBW near this layer due to a ponderomotive interaction were found to be the mechanism underlying these phenomena. (author)

  15. Characterization of Urban Heat and Exacerbation: Development of a Heat Island Index for California

    Directory of Open Access Journals (Sweden)

    Haider Taha

    2017-08-01

    Full Text Available To further evaluate the factors influencing public heat and air-quality health, a characterization of how urban areas affect the thermal environment, particularly in terms of the air temperature, is necessary. To assist public health agencies in ranking urban areas in terms of heat stress and developing mitigation plans or allocating various resources, this study characterized urban heat in California and quantified an urban heat island index (UHII at the census-tract level (~1 km2. Multi-scale atmospheric modeling was carried out and a practical UHII definition was developed. The UHII was diagnosed with different metrics and its spatial patterns were characterized for small, large, urban-climate archipelago, inland, and coastal areas. It was found that within each region, wide ranges of urban heat and UHII exist. At the lower end of the scale (in smaller urban areas, the UHII reaches up to 20 degree-hours per day (DH/day; °C.hr/day, whereas at the higher end (in larger areas, it reaches up to 125 DH/day or greater. The average largest temperature difference (urban heat island within each region ranges from 0.5–1.0 °C in smaller areas to up to 5 °C or more at the higher end, such as in urban-climate archipelagos. Furthermore, urban heat is exacerbated during warmer weather and that, in turn, can worsen the health impacts of heat events presently and in the future, for which it is expected that both the frequency and duration of heat waves will increase.

  16. A heating mechanism of ions due to large amplitude coherent ion acoustic wave

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Kawai, Yoshinobu; Kogiso, Ken.

    1978-05-01

    Ion heating mechanism in a plasma with a coherent ion acoustic wave is studied experimentally and numerically. Ions are accelerated periodically in the electrostatic potential of the coherent wave and their oscillation energy is converted into the thermal energy of ions through the collision with the neutral atoms in plasma. The Monte Carlo calculation is applied to obtain the ion temperature. The amplitude of the electrostatic potential, the mean number of collisions and the mean life time of ions are treated as parameters in the calculation. The numerical results are compared with the experiments and both of them agree well. It is found that the ion temperature increases as the amplitude of the coherent wave increases and the high energy tail in the distribution function of ions are observed for the case of large wave-amplitude. (author)

  17. Analysis of the dual phase lag bio-heat transfer equation with constant and time-dependent heat flux conditions on skin surface

    Directory of Open Access Journals (Sweden)

    Ziaei Poor Hamed

    2016-01-01

    Full Text Available This article focuses on temperature response of skin tissue due to time-dependent surface heat fluxes. Analytical solution is constructed for DPL bio-heat transfer equation with constant, periodic and pulse train heat flux conditions on skin surface. Separation of variables and Duhamel’s theorem for a skin tissue as a finite domain are employed. The transient temperature responses for constant and time-dependent boundary conditions are obtained and discussed. The results show that there is major discrepancy between the predicted temperature of parabolic (Pennes bio-heat transfer, hyperbolic (thermal wave and DPL bio-heat transfer models when high heat flux accidents on the skin surface with a short duration or propagation speed of thermal wave is finite. The results illustrate that the DPL model reduces to the hyperbolic model when τT approaches zero and the classic Fourier model when both thermal relaxations approach zero. However for τq = τT the DPL model anticipates different temperature distribution with that predicted by the Pennes model. Such discrepancy is due to the blood perfusion term in energy equation. It is in contrast to results from the literature for pure conduction material, where the DPL model approaches the Fourier heat conduction model when τq = τT . The burn injury is also investigated.

  18. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  19. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  20. Alfvén wave heating of heavy ions in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Velli, M.; Trávníček, Pavel; Gary, S. P.; Goldstein, B. E.; Liewer, P. C.

    2005-01-01

    Roč. 110, - (2005), A12109/1-A12109/11 ISSN 0148-0227 R&D Projects: GA AV ČR IAA3042403 Institutional research plan: CEZ:AV0Z30420517 Keywords : Alfvén waves * solar wind heating * microinstabilities Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.784, year: 2005

  1. Heating networks and domestic central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  2. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow

    International Nuclear Information System (INIS)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs

  3. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  4. Industrial excess heat for district heating in Denmark

    International Nuclear Information System (INIS)

    Bühler, Fabian; Petrović, Stefan; Karlsson, Kenneth; Elmegaard, Brian

    2017-01-01

    Highlights: •Method for utilisation potential of industrial excess heat for district heating. •Industrial excess heat from thermal processes is quantified at single production units. •Linking of industrial excess heat sources and district heating demands done in GIS. •Excess heat recovery using direct heat transfer and heat pumps. •5.1% of the Danish district heating demand could be supplied by industrial excess heat. -- Abstract: Excess heat is available from various sources and its utilisation could reduce the primary energy use. The accessibility of this heat is however dependent amongst others on the source and sink temperature, amount and potential users in its vicinity. In this work a new method is developed which analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal processes which equals 5.1% of the current demand. More than half of this heat was found to be usable directly, without the need for a heat pump.

  5. Non-linear effects and plasma heating by lower-hybrid waves in the Petula tokamak

    International Nuclear Information System (INIS)

    Briand, P.; Dupas, L.; Golovato, S.N.; Singh, C.M.; Melin, G.; Grelot, P.; Legardeur, R.; Zymanski, S.

    1979-01-01

    Lower hybrid waves were excited by a two-waveguide 'grill' (nsub(parallel) approximately 1-10, Esub(grill) approximately 3kVcm -1 , Psub(grill) approximately 5kWcm -2 ) at 1.25GHz, 3ms, 600kW. Plasma heating was observed separately as due to non-linear effects alone as well as to a combination of linear and non-linear mechanisms. (author)

  6. Fast wave absorption at the Alfven resonance during ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Heikkinen, J.A.; Hellsten, T.; Alava, M.J.

    1991-01-01

    For ICRH scenarii where the majority cyclotron resonance intersects the plasma core, mode conversion of the fast magnetosonic wave to an Alfven wave takes place at the plasma boundary on the high field side. Simple analytical estimates of the converted power for this mode conversion process are derived and compared with numerical calculations including finite electron inertia and kinetic effects. The converted power is found to depend on the local value of the wave field as well as on plasma parameters at the Alfven wave resonance. The interference with the reflected wave will therefore modify the mode conversion. If the conversion layer is localized near the wall, the conversion will be strongly reduced. The conversion coefficient is found to be strongest for small density gradients and high density and it is sensitive to the value of the parallel wave number. Whether it increases or decreases with the latter depends on the ion composition. Analysis of this problem for ICRH in JET predicts that a large fraction of the power is mode converted at the plasma boundary for first harmonic heating of tritium in a deuterium-tritium plasma. (author). 13 refs, 10 figs, 1 tab

  7. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  8. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  9. ICRF heating and transport of deuterium-tritium plasmas in TFTR

    International Nuclear Information System (INIS)

    Murakami, M.; Batchelor, D.B.; Bush, C.E.

    1994-01-01

    This paper describes results of the first experiments utilizing high-power ion cyclotron range of frequency (ICRF) to heat deuterium-tritium (D-T) plasmas in reactor-relevant regimes on the Tokamak Fusion Test Reactor (TFTR). Results from these experiments have demonstrated efficient core, second harmonic, tritium heating of D-T supershot plasmas with tritium concentrations ranging from 6%--40%. Significant direct ion heating on the order of 60% of the input radio frequency (rf) power has been observed. The measured deposition profiles are in good agreement with two-dimensional modeling code predictions. Confinement in an rf-heated supershot is at least similar to that without rf, and possibly better in the electron channel. Efficient electron heating via mode conversion of fast waves to ion Bernstein waves (IBW) has been demonstrated in ohmic, deuterium-deuterium and DT-neutral beam injection plasmas with high concentrations of minority 3 He (n 3 He /n e > 10%). By changing the 3 He concentration or the toroidal field strength, the location of the mode-conversion radius was varied. The power deposition profile measured with rf power modulation showed that up to 70% of the power can be deposited on electrons at an off-axis position. Preliminary results with up to 4 MW coupled into the plasma by 90-degree phased antennas showed directional propagation of the mode-converted IBW. Heat wave propagation showed no strong inward thermal pinch in off-axis heating of an ohmically-heated (OH) target plasma in TFIR

  10. Factors of subjective heat stress of urban citizens in contexts of everyday life

    Science.gov (United States)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Janus Willem

    2016-04-01

    Heat waves and the consequent heat stress of urban populations have a growing relevance in urban risk management and strategies of urban adaptation to climate change. In this context, social science studies on subjective experiencing of heat as stress by urban citizens are a new emerging field. To contribute to the understanding of self-reported subjective heat stress and its major determinants in a daily life perspective, we conducted a questionnaire survey with 323 respondents in Karlsruhe, Germany, after heat waves in July and August 2013. Statistical data analysis showed that subjective heat stress is an issue permeating everyday activities. Subjective heat stress at home was lower than at work and in general. Subjective heat stress in general, at home, and at work was determined by the health impairments experienced during the heat and the feeling of being helplessly exposed to the heat. For subjective heat stress at home, characteristics of the residential building and the built environment additionally played a role. Although the rate of implemented coping measures was rather high, coping measures showed no uniform effect for the subjective heat stress. We conclude that in terms of urban adaptation strategies, further research is needed to understand how various processes of daily social (work) life enable or limit individual coping and that communication strategies are important for building capacities to better cope with future heat waves.

  11. ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS

    International Nuclear Information System (INIS)

    Perez-Becker, Daniel; Showman, Adam P.

    2013-01-01

    Infrared light curves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides—and thus have a larger day-night temperature contrast—than colder planets. To this day, no predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a shallow-water model of the atmospheric dynamics on synchronously rotating planets that explains why heat redistribution efficiency drops as stellar insolation rises. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory which shows that the timescale for gravity waves to propagate horizontally over planetary scales, τ wave , plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when τ wave ∼√(τ rad /Ω), where τ rad is the radiative relaxation time and Ω is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as τ rad ∼ τ vert , where τ vert is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the more widely used timescale comparison for estimating heat redistribution efficiency between τ rad and the horizontal day-night advection timescale, τ adv . Only

  12. Stability and heating of a poloidal divertor tokamak

    International Nuclear Information System (INIS)

    Biddle, A.P.; Dexter, R.N.; Holly, D.T.; Lipschultz, B.; Osborne, T.H.; Prager, S.C.; Shepard, D.A.; Sprott, J.C.; Witherspoon, F.D.

    1981-01-01

    Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a tokamak with a four-node poloidal divertor. After a brief description of the machine, discharges are described with q approximately 0.6 over most of the cross-section without degradation of confinement, observation of axisymmetric instability in dee, inverse-dee and square equilibria, high-power fast-wave ion-cyclotron resonance heating, studies of spatial shear Alfven wave resonances for heating, and reduction of the start-up loop voltage by approximately 60% by microwave pre-ionization at electron-cyclotron resonance. Work on axisymmetric instability and studies of pre-ionization have been described in detail elsewhere and are therefore only briefly mentioned. (author)

  13. Low-altitude ion heating with downflowing and upflowing ions

    Science.gov (United States)

    Shen, Y.; Knudsen, D. J.; Burchill, J. K.; Howarth, A. D.; Yau, A. W.; James, G.; Miles, D.; Cogger, L. L.; Perry, G. W.

    2017-12-01

    Mechanisms that energize ions at the initial stage of ion upflow are still not well understood. We statistically investigate ionospheric ion energization and field-aligned motion at very low altitudes (330-730 km) using simultaneous plasma, magnetic field, wave electric field and optical data from the e-POP satellite. The high-time-resolution (10 ms) dataset enables us to study the micro-structures of ion heating and field-aligned ion motion. The ion temperature and field-aligned bulk flow velocity are derived from 2-D ion distribution functions measured by the SEI instrument. From March 2015 to March 2016, we've found 17 orbits (in total 24 ion heating periods) with clear ion heating signatures passing across the dayside cleft or the nightside auroral regions. Most of these events have consistent ion heating and flow velocity characteristics observed from both the SEI and IRM instruments. The perpendicular ion temperature goes up to 4.5 eV within a 2 km-wide region in some cases, in which the Radio Receiver Instrument (RRI) sees broadband extremely low frequency (BBELF) waves, demonstrating significant wave-ion heating down to as low as 350 km. The e-POP Fast Auroral Imager (FAI) and Magnetic Field (MGF) instruments show that many events are associated with active aurora and are within downward current regions. Contrary to what would be expected from mirror-force acceleration of heated ions, the majority of these heating events (17 out of 24) are associated with the core ion downflow rather than upflow. These statistical results provide us with new sights into ion heating and field-aligned flow processes at very low altitudes.

  14. Analysis on the Extreme Heat Wave over China around Yangtze River Region in the Summer of 2013 and Its Main Contributing Factors

    OpenAIRE

    Jin Li; Ting Ding; Xiaolong Jia; Xianchan Zhao

    2015-01-01

    In the summer of 2013, a rare extreme heat wave occurred in the middle and lower reaches of the Yangtze River in China. Based on high resolution reanalysis data from ECMWF, comprehensive analyses on the associated atmospheric circulation and the sea surface temperature anomaly (SSTA) were provided. The stable and strong West Pacific Subtropical High (WPSH) was the direct cause for the heat wave. The WPSH had four westward extensions, which brought about four hot spells in southern China. The ...

  15. The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G. [Department of Physics, Catholic University of America, Washington DC, 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vinas, A. F. [Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-06-13

    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  16. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  17. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    2003-07-01

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  18. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  19. Temporal variation in the effect of heat and the role of the Italian heat prevention plan.

    Science.gov (United States)

    de'Donato, F; Scortichini, M; De Sario, M; de Martino, A; Michelozzi, P

    2018-05-08

    The aim of the article is to evaluate the temporal change in the effect of heat on mortality in Italy in the last 12 years after the introduction of the national heat plan. Time series analysis. Distributed lag non-linear models were used to estimate the association between maximum apparent temperature and mortality in 23 Italian cities included in the national heat plan in four study periods (before the introduction of the heat plan and three periods after the plan was in place between 2005 and 2016). The effect (relative risks) and impact (attributable fraction [AF] and number of heat-related deaths) were estimated for mild summer temperatures (20th and 75th percentile maximum apparent temperature [Tappmax]) and extreme summer temperatures (75th and 99th percentile Tappmax) in each study period. A survey of the heat preventive measures adopted over time in the cities included in the Italian heat plan was carried out to better describe adaptation measures and response. Although heat still has an impact on mortality in Italian cities, a reduction in heat-related mortality is observed progressively over time. In terms of the impact, the heat AF related to extreme temperatures declined from 6.3% in the period 1999-2002 to 4.1% in 2013-2016. Considering the entire temperature range (20th vs 99th percentile), the total number of heat-related deaths spared over the entire study period was 1900. Considering future climate change and the health burden associated to heat waves, it is important to promote adaptation measures by showing the potential effectiveness of heat prevention plans. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  20. Effective analysis of a community-based intervention during heat waves to improve knowledge, attitude and practice in a population in Licheng District, Jinan City, China.

    Science.gov (United States)

    Xu, Xin; Li, Jing; Gao, Jinghong; Liu, Keke; Liu, Qiyong

    2017-09-18

    Intervention strategies that focus on coping with continuous heat wave threats have been implemented in many countries. Despite these efforts, we still lack evidence concerning intervention efficacy. A Heat Wave Intervention Program (HWIP) that impacts knowledge, attitude and practice (KAP) was designed, and its effectiveness during heat waves was evaluated. A stratified two-stage probability proportion to size sampling method was employed to analyze an intervention group and a control group. Two cross-sectional surveys, which included questions about heat waves in 2014 and 2015, were analyzed using difference-in-difference (DID) analysis. Mean KAP scores among participants with different demographic characteristics in the intervention group were higher in 2015 than those in 2014. Further analysis by DID found that implementing interventions was positively associated with knowledge (ß = 0.387, P < 0.001) and attitude (ß = 0.166, P < 0.01). Intervention measures can significantly promote levels of knowledge and attitude. However, as the practice level, most of the sub-groups showed no significant differences for net values between in the intervention group and control group. A cost-benefit analysis was suggested as future work to check the effectiveness of the program. Therefore, further improvement measures should be targeted towards the populations to enable them to effectively cope with the heat waves. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  1. Molecular dynamics study of lubricant depletion by pulsed laser heating

    Science.gov (United States)

    Seo, Young Woo; Rosenkranz, Andreas; Talke, Frank E.

    2018-05-01

    In this study, molecular dynamics simulations were performed to numerically investigate the effect of pulsed laser heating on lubricant depletion. The maximum temperature, the lubricant depletion width, the number of evaporated lubricant beads and the number of fragmented lubricant chains were studied as a function of laser peak power, pulse duration and repetition rate. A continuous-wave laser and a square pulse laser were simulated and compared to a Gaussian pulse laser. With increasing repetition rate, pulsed laser heating was found to approach continuous-wave laser heating.

  2. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  3. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  4. Fast Heat Pulse Propagation by Turbulence Spreading

    DEFF Research Database (Denmark)

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  5. Phased-array antenna system for electron Bernstein wave heating and current drive experiments in QUEST

    International Nuclear Information System (INIS)

    Idei, H.; Sakaguchi, M.; Kalinnikova, E.I.

    2010-11-01

    The phased-array antenna system for Electron Bernstein Wave Heating and Current Drive (EBWH/CD) experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the EBWH/CD experiments, and was tested at a low power level. The measured two orthogonal fields were in excellent agreements with the fields evaluated by a developed Kirchhoff code. The heat load and thermal stress in CW 200 kW operation were analyzed with finite element codes. The phased array has been fast scanned [∼10 4 degree/s] to control the incident polarization and angle to follow time evolutions of the plasma current and density. The RF startup and sustainment experiments were conducted using the developed antenna system. The plasma current (< ∼15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection. The long pulse discharge of 10 kA was attained for 40 s with the 30 kW injection. (author)

  6. Acoustical heat pumping engine

    Science.gov (United States)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  7. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  8. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  9. Excess Mortality Attributable to Extreme Heat in New York City, 1997-2013.

    Science.gov (United States)

    Matte, Thomas D; Lane, Kathryn; Ito, Kazuhiko

    2016-01-01

    Extreme heat event excess mortality has been estimated statistically to assess impacts, evaluate heat emergency response, and project climate change risks. We estimated annual excess non-external-cause deaths associated with extreme heat events in New York City (NYC). Extreme heat events were defined as days meeting current National Weather Service forecast criteria for issuing heat advisories in NYC based on observed maximum daily heat index values from LaGuardia Airport. Outcomes were daily non-external-cause death counts for NYC residents from May through September from 1997 to 2013 (n = 337,162). The cumulative relative risk (CRR) of death associated with extreme heat events was estimated in a Poisson time-series model for each year using an unconstrained distributed lag for days 0-3 accommodating over dispersion, and adjusting for within-season trends and day of week. Attributable death counts were computed by year based on individual year CRRs. The pooled CRR per extreme heat event day was 1.11 (95%CI 1.08-1.14). The estimated annual excess non-external-cause deaths attributable to heat waves ranged from -14 to 358, with a median of 121. Point estimates of heat wave-attributable deaths were greater than 0 in all years but one and were correlated with the number of heat wave days (r = 0.81). Average excess non-external-cause deaths associated with extreme heat events were nearly 11-fold greater than hyperthermia deaths. Estimated extreme heat event-associated excess deaths may be a useful indicator of the impact of extreme heat events, but single-year estimates are currently too imprecise to identify short-term changes in risk.

  10. Heat Transfer Characteristics of a Focused Surface Acoustic Wave (F-SAW Device for Interfacial Droplet Jetting

    Directory of Open Access Journals (Sweden)

    Donghwi Lee

    2018-06-01

    Full Text Available In this study, we investigate the interfacial droplet jetting characteristics and thermal stability of a focused surface acoustic wave device (F-SAW. An F-SAW device capable of generating a 20 MHz surface acoustic wave by applying sufficient radio frequency power (2–19 W on a 128°-rotated YX-cut piezoelectric lithium niobate substrate for interfacial droplet jetting is proposed. The interfacial droplet jetting characteristics were visualized by a shadowgraph method using a high-speed camera, and a heat transfer experiment was conducted using K-type thermocouples. The interfacial droplet jetting characteristics (jet angle and height were analyzed for two different cases by applying a single interdigital transducer and two opposite interdigital transducers. Surface temperature variations were analyzed with radio frequency input power increases to evaluate the thermal stability of the F-SAW device in air and water environments. We demonstrate that the maximum temperature increase of the F-SAW device in the water was 1/20 of that in the air, owing to the very high convective heat transfer coefficient of the water, resulting in prevention of the performance degradation of the focused acoustic wave device.

  11. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  12. Transverse eV Ion Heating by Random Electric Field Fluctuations in the Plasmasphere

    Science.gov (United States)

    Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.; Blum, L.

    2017-01-01

    Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2-3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07-0.2 eV/h for protons and 0.007-0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti approx. 0.3 eV could potentially explain the observations.

  13. The role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere:Implications for RF heating of the auroral electrojet

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    1994-03-01

    Full Text Available Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.

  14. The role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere:Implications for RF heating of the auroral electrojet

    Directory of Open Access Journals (Sweden)

    T. R. Robinson

    Full Text Available Physical processes which affect the absorption of radio waves passing through the auroral E-region when Farley-Buneman irregularities are present are examined. In particular, the question of whether or not it is legitimate to include the anomalous wave-enhanced collision frequency, which has been used successfully to account for the heating effects of Farley-Buneman waves in the auroral E-region, in the usual expression for the radio-wave absorption coefficient is addressed. Effects also considered are those due to wave coupling between electromagnetic waves and high-frequency electrostatic waves in the presence of Farley-Buneman irregularities. The implications for radio-wave heating of the auroral electrojet of these processes are also discussed. In particular, a new theoretical model for calculating the effects of high-power radio-wave heating on the electron temperature in an electrojet containing Farley-Buneman turbulence is presented.

  15. High frequency parametric wave phenomena and plasma heating: a review

    International Nuclear Information System (INIS)

    Porkolab, M.

    1975-11-01

    A survey of parametric instabilities in plasma, and associated particle heating, is presented. A brief summary of linear theory is given. The physical mechanism of decay instability, the purely growing mode (oscillating two-stream instability) and soliton and density cavity formation is presented. Effects of density gradients are discussed. Possible nonlinear saturation mechanisms are pointed out. Experimental evidence for the existence of parametric instabilities in both unmagnetized and magnetized plasmas is reviewed in some detail. Experimental observation of plasma heating associated with the presence of parametric instabilities is demonstrated by a number of examples. Possible application of these phenomena to heating of pellets by lasers and heating of magnetically confined fusion plasmas by high power microwave sources is discussed

  16. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  17. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  18. Investigation of electron heating in laser-plasma interaction

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2013-03-01

    Full Text Available  In this paper, stimulated Raman scattering (SRS and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-SRS and dominateing initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-SRS plasma waves with high phase velocities. This tow-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  19. Investigation of electron heating in laser-plasma interaction

    International Nuclear Information System (INIS)

    Parvazian, A.; Haji Sharifi, K.

    2013-01-01

    In this paper, stimulated Raman scattering and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-stimulated Raman scattering and dominating initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-stimulated Raman scattering plasma waves with high phase velocities. This two-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  20. Industrial excess heat for district heating in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrovic, Stefan; Karlsson, Kenneth Bernard

    2017-01-01

    analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate...... the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity...... analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal...

  1. Existence of a time-dependent heat flux-related ponderomotive effect

    International Nuclear Information System (INIS)

    Schamel, H.; Sack, C.

    1980-01-01

    The existence of a new ponderomotive effect associated with high-frequency waves is pointed out. It originates when time-dependency, mean velocities, or divergent heat fluxes are involved and it supplements the two effects known previously, namely, the ponderomotive force and fake heating. Two proofs are presented; the first is obtained by establishing the momentum equations generalized by including radiation effects and the second by solving the quasi-linear-type diffusion equation explicitly. For a time-dependent wave packet the solution exhibits a new contribution in terms of an integral over previous states. Owing to this term, the plasma has a memory which leads to a breaking of the time symmetry of the plasma response. The range, influenced by the localized wave packet, expands during the course of time due to streamers emanating from the wave active region. Perturbations, among which is the heat flux, are carried to remote positions and, consequently, the region accessible to wave heating is increased. The density dip appears to be less pronounced at the center, and its generation and decay are delayed. The analysis includes a self-consistent action of high-frequency waves as well as the case of traveling wave packets. In order to establish the existence of this new effect, the analytical results are compared with recent microwave experiments. The possibility of generating fast particles by this new ponderomotive effect is emphasized

  2. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  3. Utilising heat from nuclear waste for space heating

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A heating unit utilising the decay heat from irradiated material comprises a storage envelope for the material associated with a heat exchange system, means for producing a flow of air over the heat exchange system to extract heat from the material, an exhaust duct capable of discharging the heated air to the atmosphere, and means for selectively diverting at least some of the heated air to effect the required heating. With the flow of air over the heat exchange system taking place by a natural thermosyphon process the arrangement is self regulating and inherently reliable. (author)

  4. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  5. Experimental device for the residential heating with heat pipe and electric heat storage blocks

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Boldak, I M; Domorod, L S; Rabetsky, M I; Schirokov, E I [AN Belorusskoj SSR, Minsk (Belarus). Inst. Teplo- i Massoobmena

    1992-01-01

    Residential heating using electric heat storage blocks nowadays is an actual problem from the point of view of heat recovery and nature protection. In the Luikov Heat and Mass Transfer Institute a new residential electrical heater capable of heating chambers by controlling air temperature and heat output using heat pipes and an electric heat storage block was developed. This heater (BETA) is fed from the source of energy and during 7 h of night time accumulates energy sufficiently to heat 10 m{sup 3} during 24 h. Heating device BETA has a ceramic thermal storage block, electric heaters and a heat pipe with evaporator inside the ceramic block and constant temperature (65{sup o}C) finned condenser outside it. The condenser temperature could be controlled easily. BETA is compact, has high thermal response, accurate air temperature control and safe operation. Such types of residential heaters are necessary for heating residential and office building in the Mogilev and Gomel regions in Byelorussia which suffered after the Chernobyl catastrophe. (Author).

  6. Perturbative Heat Transport Experiments on TJ-II

    International Nuclear Information System (INIS)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-01-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs

  7. Perturbative Heat Transport Experiments on TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-07-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs.

  8. ECR heating in L-2M stellarator

    International Nuclear Information System (INIS)

    Grebenshchikov, S.E.; Batanov, G.M.; Fedyanin, O.I.

    1995-01-01

    The first results of ECH experiments in the L-2M stellarator are presented. The main goal of the experiments is to investigate the physics of ECH and plasma confinement at very high values of the volume heating power density. A current free plasma is produced and heated by extraordinary waves at the second harmonic of the electron cyclotron frequency. The experimental results are compared with the numerical simulations of plasma confinement and heating processes based on neoclassical theory using the full matrix of transport coefficients and with LHD-scaling. 4 refs., 2 figs

  9. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  10. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales

    Science.gov (United States)

    Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A.

    2017-06-01

    Heat waves and drought are often considered the most damaging climatic stressors for wheat. In this study, we characterize and attribute the effects of these climate extremes on wheat yield anomalies (at global and national scales) from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (the latter capturing both excessively dry and wet conditions), we have developed a composite indicator that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains a significant portion (more than 40%) of the inter-annual production variability. By quantifying the contribution of national yield anomalies to global fluctuations, we have found that just two concurrent yield anomalies affecting the larger producers of the world could be responsible for more than half of the global annual fluctuations. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Moreover, in contrast to common perception, water excess affects wheat production more than drought in several countries. We have also performed the same analysis at the subnational level for France, which is the largest wheat producer of the European Union, and home to a range of climatic zones. Large subnational variability of inter-annual wheat yield is mostly captured by the heat and water stress indicators, consistently with the country-level result.

  11. 24 CFR 3280.506 - Heat loss/heat gain.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined in...

  12. Automation of heating system with heat pump

    OpenAIRE

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  13. A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks

    Science.gov (United States)

    Urban, Jakub; Decker, Joan; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George

    2011-08-01

    The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs) operate generally in high-β regimes, in which the usual EC O- and X-modes are cut off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves—controllable localized H&CD that can be used for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions, which are the fundamental EBW parameters that can be chosen and controlled. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.

  14. MM-wave cyclotron auto-resonance maser for plasma heating

    Science.gov (United States)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  15. Regenerative heat sources for heating networks

    International Nuclear Information System (INIS)

    Huenges, Ernst; Sperber, Evelyn; Eggers, Jan-Bleicke; Noll, Florian; Kallert, Anna Maria; Reuss, Manfred

    2015-01-01

    The ambitious goal, the German Federal Government has set itself, to reduce the emissions of greenhouse gases by 80% to 95% by the year 2050. As there are currently more than half of German energy consumption for the production of heat is required, big contributions to climate protection can be expected from this area if more renewable heat sources are used. Renewable heat sources such as bioenergy, solar thermal and geothermal energy in particular can be provided as compared to fossil fuels with significantly lower specific CO 2 emissions. Objectives in the heating market and scenarios for the transformation of the heat sector have been elaborated in the BMU Lead Study 2011. The main pillar of this scenario is the reduction of final energy consumption for heat by the energy-efficient renovation of existing buildings and further increasing demands on the energetic quality of new buildings. To cover the remaining energy demand, a focus is on the expansion of heating networks based on renewable energies. [de

  16. TRIAM-1 turbulent heating experiment

    International Nuclear Information System (INIS)

    Nakamura, Yukio; Hiraki, Naoji; Nakamura, Kazuo; Kikuchi, Mitsuru; Nagao, Akihiro

    1983-01-01

    The experimental studies on the containment of high temperature plasma and turbulent heating using the tokamak device with strong magnetic field (TRIAM-1) started in 1977 have achieved much results up to fiscal 1979, and the anticipated objectives were almost attained. The results of these studies were summarized in the ''Report of the results of strong magnetic field tokamak TRIAM-1 experiment''. In this report, the results obtained by the second stage project of the TRIAM-1 project are summarized. The second stage was the two-year project for fiscal 1980 and 81. In the second stage project, by the complete preparation of measuring instrument and the improvement of the experimental setup, the carefully planned experiment on turbulent heating was performed, in particular, the clarification of the mechanism of turbulent heating was the central theme. As the important results obtained, the detection of ion sound waves at the time of turbulent heating, the formation of high energy ions by waveparticle interaction and the clarification of the process of their energy relaxation, and the verification of the effectiveness of double pulse turbulent heating are enumerated. (Kako, I.)

  17. Heat pipes for ground heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L

    1988-01-01

    Different versions of heat pipe ground heating and cooling devices are considered. Solar energy, biomass, ground stored energy, recovered heat of industrial enterprises and ambient cold air are used as energy and cold sources. Heat pipe utilization of air in winter makes it possible to design accumulators of cold and ensures deep freezing of ground in order to increase its mechanical strength when building roadways through the swamps and ponds in Siberia. Long-term underground heat storage systems are considered, in which the solar and biomass energy is accumulated and then transferred to heat dwellings and greenhouses, as well as to remove snow from roadways with the help of heat pipes and solar collectors.

  18. Coping with heat in the city: what can we learn from a survey immediately after a hot weather period for future heat waves?

    Science.gov (United States)

    Kunz-Plapp, Tina; Schipper, Hans; Hackenbruch, Julia

    2015-04-01

    Karlsruhe is one of the hottest cities in Germany with a temperature record of 40.2°C in August 2003. In 2013, two hot weather periods with continuous heat warnings by the German Weather Service for 7 and 8 days occurred during the second half of July and first 10 days of August 2013, and in early August the temperatures in Karlsruhe almost reached again the record of 40.2°C. To understand how citizens experienced the heat and what strategies they used to cope with the heat, we conducted a questionnaire survey on subjective heat stress and coping strategies immediately after the hot weather period. Based on a holistic approach the questionnaire included questions on heat stress experience in different contexts of daily life, health impacts of the heat, coping measures, housing conditions, urban environment, living conditions, and socio-demographic characteristics. The responses of the 323 survey participants living and working in Karlsruhe show that they on average experienced the heat as rather stressful event, whereby the heat stress experienced at home was significant lower than heat stress experienced at work or in general. Regression analyses show that, among the factors included in the questionnaire, the health impairments suffered during the heat, the control belief and the coping measures implemented mainly determine heat stress experienced in general and at work. For the subjective heat stress at home, factors of the built urban environment such as heat loading of district, living in the attic or the ground floor, and heat protection elements of the inhabited building also played a role. At the same time, the way the respondents used different coping strategies in context of their daily activities and routines during heat suggests lessons to learn from this event how individual response to heat differs from responses to other types of natural hazards.

  19. Effect of heated length on the Critical Heat Flux of subcooled flow boiling. 2. Effective heated length under axially nonuniform heating condition

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio

    1998-01-01

    Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)

  20. Heat Roadmap Europe: Identifying strategic heat synergy regions

    International Nuclear Information System (INIS)

    Persson, U.; Möller, B.; Werner, S.

    2014-01-01

    This study presents a methodology to assess annual excess heat volumes from fuel combustion activities in energy and industry sector facilities based on carbon dioxide emission data. The aim is to determine regional balances of excess heat relative heat demands for all third level administrative regions in the European Union (EU) and to identify strategic regions suitable for large-scale implementation of district heating. The approach is motivated since the efficiency of current supply structures to meet building heat demands, mainly characterised by direct use of primary energy sources, is low and improvable. District heating is conceived as an urban supply side energy efficiency measure employable to enhance energy system efficiency by increased excess heat recoveries; hereby reducing primary energy demands by fuel substitution. However, the importance of heat has long been underestimated in EU decarbonisation strategies and local heat synergies have often been overlooked in energy models used for such scenarios. Study results indicate that 46% of all excess heat in EU27, corresponding to 31% of total building heat demands, is located within identified strategic regions. Still, a realisation of these rich opportunities will require higher recognition of the heat sector in future EU energy policy. - Highlights: • EU27 energy and industry sector heat recycling resources are mapped and quantified. • Target regions for large-scale implementation of district heating are identified. • 46% of total EU27 excess heat volume is seized in 63 strategic heat synergy regions. • Large urban zones have lead roles to play in transition to sustainability in Europe. • Higher recognition of heat sector is needed in future EU energy policy for realisation

  1. The application of the European heat wave of 2003 to Korean cities to analyze impacts on heat-related mortality

    Science.gov (United States)

    Greene, J. Scott; Kalkstein, Laurence S.; Kim, Kyu Rang; Choi, Young-Jean; Lee, Dae-Geun

    2016-02-01

    The goal of this research is to transpose the unprecedented 2003 European excessive heat event to six Korean cities and to develop meteorological analogs for each. Since this heat episode is not a model but an actual event, we can use a plausible analog to assess the risk of increasing heat on these cities instead of an analog that is dependent on general circulation (GCM) modeling or the development of arbitrary scenarios. Initially, the 2003 summer meteorological conditions from Paris are characterized statistically and these characteristics are transferred to the Korean cites. Next, the new meteorological dataset for each Korean city is converted into a daily air mass calendar. We can then determine the frequency and character of "offensive" air masses in the Korean cities that are historically associated with elevated heat-related mortality. One unexpected result is the comparative severity of the very hot summer of 1994 in Korea, which actually eclipsed the 2003 analog. The persistence of the offensive air masses is considerably greater for the summer of 1994, as were dew point temperatures for a majority of the Korean cities. For all the Korean cities but one, the summer of 1994 is associated with more heat-related deaths than the analog summer, in some cases yielding a sixfold increase over deaths in an average summer. The Korean cities appear less sensitive to heat-related mortality problems during very hot summers than do large eastern and Midwestern US cities, possibly due to a lesser summer climate variation and efficient social services available during extreme heat episodes.

  2. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube

    International Nuclear Information System (INIS)

    Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)

  3. Parametric decay instabilities in ECR heated plasmas

    International Nuclear Information System (INIS)

    Porkolab, M.

    1982-01-01

    The possibility of parametric excitation of electron Bernstein waves and low frequency ion oscillations during ECR heating at omega/sub o/ approx. = l omega/sub ce/, l = 1,2 is examined. In particular, the thresholds for such instabilities are calculated. It is found that Bernstein waves and lower hybrid quasi-modes have relatively low homogeneous where T/sub e/ approx. = T/sub i/. Thus, these processes may lead to nonlinear absorption and/or scattering of the incident pump wave. The resulting Bernstein waves may lead to either more effective heating (especially during the start-up phase) or to loss of microwave energy if the decay waves propagate out of the system before their energy is absorbed by particles. While at omega/sub o/ = omega/sub UH/ the threshold is reduced due to the WKB enhancement of the pump wave, (and this instability may be important in tokamaks) in EBT's and tandem mirrors the instability at omega /sub o/ greater than or equal to 2 omega/sub ce/ may be important. The instability may persist even if omega > 2 omega/sub ce/ and this may be the case during finite beta depression of the magnetic field in which case the decay waves may be trapped in the local magnetic well so that convective losses are minimized. The excited fluctuations may lead to additional scattering of the ring electrons and the incident microwave fields. Application of these calculations to ECR heating of tokamaks, tandem mirrors, and EBT's will be examined

  4. An experimental study of Alfven wave heating using electrostatically shielded antennas in TCA

    International Nuclear Information System (INIS)

    Borg, G.G.; Joye, B.

    1990-01-01

    Despite the wide acceptance of electrostatic screens in ICRH for the protection of the plasma from the near fields of rf antennas, it has always been considered that low voltages at low frequency have made such screens unnecessary in Alfven wave heating (AWH). Despite this, AWH performs rather poorly as a heating method; the results being confused by a density rise up to 300 % of the target density. It is known that the density increase arises neither from impurity injection nor from a change in recycling. In addition, an extensive range of phenomena have been observed in the plasma scrape-off layer (SOL). During AWH, the SOL density is observed to decrease, the SOL floating potential is perturbed in a way that reflects the Alfven wave spectrum, the antennas charge negatively and draw a large current from the plasma and harmonics have been observed on the edge wave fields. The cause and correlation of these effects with each other and their impression on the bulk plasma response was not known. Experimental results from the TORTUS tokamak have indicated that the density increase might be eliminated by electrostatic screens. In their case, two AWH experiments were performed. In the first, an unshielded OFHC copper loop antenna was excited at a given power and, in the second, the same antenna was excited at the same power after installation of an aluminium, TiN coated, slotted screen. The density increase in the first case was shown to be completely eliminated in the second, although spectroscopic measurements revealed a difference in the plasma O(II) and Cu(I) content for each case. (author) 2 refs., 3 figs

  5. A thermoacoustic-Stirling heat engine: detailed study

    Science.gov (United States)

    Backhaus; Swift

    2000-06-01

    A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood.

  6. Urban district heating using nuclear heat - a survey

    International Nuclear Information System (INIS)

    Beresovski, T.; Oliker, I.

    1979-01-01

    The use of heat from nuclear power plants is of great interest in connection with projected future expansions of large urban district heating systems. Oil price escalation and air pollution from increased burning of fossil fuels are substantial incentivers for the adoption of nuclear heat and power plants. The cost of the hot water piping system from the nuclear plant to the city is a major factor in determining the feasibility of using nuclear heat. To achieve reasonable costs, the heat load should be at least 1500 MW(th), transport temperatures 125-200 0 C and distances preferably 50 km or less. Heat may be extracted from the turbines of conventional power reactors. Alternatively, some special-purpose smaller reactors are under development which are specially suited to production of heat with little or no power coproduct. Many countries are conducting studies of future expansions of district heating systems to use nuclear heat. Several countries are developing technology suitable for this application. Actual experience with the use of nuclear heat for district heating is currently being gained only in the USSR, however. While district heating appears to be a desirable technology at a time of increasing fossil-fuel costs, the use of nuclear heat will require siting of nuclear plants within transmission radius of cities. The institutional barries toward use of nuclear heating will have to be overcome before the energy conservation potential of this approach can be realized on a significant scale. (author)

  7. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  8. Reactor waste heat utilization and district heating reactors. Nuclear district heating in Sweden - Regional reject heat utilization schemes and small heat-only reactors

    International Nuclear Information System (INIS)

    Hannerz, K.; Larsson, Y.; Margen, P.

    1977-01-01

    A brief review is given of the current status of district heating in Sweden. In future, district heating schemes will become increasingly interesting as a means of utilizing heat from nuclear reactors. Present recommendations in Sweden are that large reactors should not be located closer than about 20 km from large population centres. Reject heat from such reactors is cheap at source. To minimize the cost of long distance hot water transmission large heat rates must be transmitted. Only areas with large populations can meet this requirement. The three areas of main interest are Malmoe/Lund/Helsingborg housing close to 0.5 million; Greater Stockholm housing 1 to 1.5 million and Greater Gothenburg housing about 0.5 million people. There is an active proposal that the Malmoe/Lund/Helsingborg region would be served by a third nuclear unit at Barsebaeck, located about 20 km from Malmoe/Lund and supplying 950 MW of base load heat. Preliminary proposals for Stockholm involve a 2000 MW heat supply; proposals for Gothenburg are more tentative. The paper describes progress on these proposals and their technology. It also outlines technology under development to increase the economic range of large scale heat transport and to make distribution economic even for low heat-density family housing estates. Regions apart from the few major urban areas mentioned above require the adoption of a different approach. To this end the development of a small, simple low-temperature reactor for heat-only production suitable for urban location has been started in Sweden in close contact with Finland. Some results of the work in progress are presented, with emphasis on the safety requirements. An outline is given in the paper as to how problems of regional heat planning and institutional and legislative issues are being approached

  9. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  10. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  11. Heat-treatment and heat-to-heat variations in the fracture toughness of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.

    1981-07-01

    The effect of heat-treatment and heat-to-heat variations on the J Ic fracture toughness response of Alloy 718 was examined at room and elevated temperatures using the multiple-specimen R-curve technique. Six heats of alloy 718 were tested in the conventional and modified heat-treated conditions. The fracture toughness response for the modified superalloy was found to be superior to that exhibited by the conventional material. Heat-to-heat variations in the J Ic response of Alloy 718 were observed in both heat-treated conditions; the modified treatment exhibited much larger variability. The J Ic and corresponding K Ic fracture toughness values were analyzed statistically to establish minimum expected toughness, values for use in design and safety analyses. 26 refs., 10 figs., 9 tabs

  12. Intense radiative heat transport across a nano-scale gap

    International Nuclear Information System (INIS)

    Budaev, Bair V.; Ghafari, Amin; Bogy, David B.

    2016-01-01

    In this paper, we analyze the radiative heat transport in layered structures. The analysis is based on our prior description of the spectrum of thermally excited waves in systems with a heat flux. The developed method correctly predicts results for all known special cases for both large and closing gaps. Numerical examples demonstrate the applicability of our approach to the calculation of the radiative heat transport coefficient across various layered structures.

  13. Recent Fast Wave Coupling and Heating Studies on NSTX, with Possible Implications for ITER

    International Nuclear Information System (INIS)

    Hosea, J.C.; Bell, R.E.; Feibush, E.; Harvey, R.W.; Jaeger, E.F.; LeBlanc, B.P; Maingi, R.; Phillips, C.K.; Roquemore, L.; Ryan, P.M.; Taylor, G.; Tritz, K.; Valeo, E.J.; Wilgen, J.; Wilson, J.R.

    2009-01-01

    The goal of the high harmonic fast wave (HHFW) research on NSTX is to maximize the coupling of RF power to the core of the plasma by minimizing the coupling of RF power to edge loss processes. HHFW core plasma heating efficiency in helium and deuterium L-mode discharges is found to improve markedly on NSTX when the density 2 cm in front of the antenna is reduced below that for the onset of perpendicular wave propagation (n onset ∝ B*k # parallel# 2 /ω). In NSTX, the observed RF power losses in the plasma edge are driven in the vicinity of the antenna as opposed to resulting from multi-pass edge damping. PDI surface losses through ion-electron collisions are estimated to be significant. Recent spectroscopic measurements suggest that additional PDI losses could be caused by the loss of energetic edge ions on direct loss orbits and perhaps result in the observed clamping of the edge rotation. Initial deuterium H-mode heating studies reveal that core heating is degraded at lower k φ (- 8 m -1 relative to 13 m -1 ) as for the Lmode case at elevated edge density. Fast visible camera images clearly indicate that a major edge loss process is occurring from the plasma scrape off layer (SOL) in the vicinity of the antenna and along the magnetic field lines to the lower outer divertor plate. Large type I ELMs, which are observed at both k φ values, appear after antenna arcs caused by precursor blobs, low level ELMs, or dust. For large ELMs without arcs, the source reflection coefficients rise on a 0.1 ms time scale, which indicates that the time derivative of the reflection coefficient can be used to discriminate between arcs and ELMs.

  14. Ecological traps in shallow coastal waters-Potential effect of heat-waves in tropical and temperate organisms.

    Directory of Open Access Journals (Sweden)

    Catarina Vinagre

    Full Text Available Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species' acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1 tide pools could be considered ecological traps and 2 if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools.

  15. Influence of transport on EBW heating efficiency in magnetic confinement devices

    International Nuclear Information System (INIS)

    Cappa, A.; Castejon, F.; Lopez-Bruna, D.; Tereshchenko, M.

    2007-01-01

    The main advantage of the heating performed by electron Bernstein waves (EBW) in the O-X-B1 regime (O mode injection that is converted into X mode, which is converted in Bernstein wave, strongly absorbed close to the cyclotron resonance layer at first harmonic) is that there is no cut-off density. Therefore, this heating system can work without upper density limit, still having all the advantages of electron cyclotron resonance heating (ECRH), which is localised in phase space due to its resonant nature. The heating efficiency of Bernstein waves depends on the fraction of waves that is transformed from O to X mode at the O mode cut off layer, then on the fraction of power converted into Bernstein waves at the upper hybrid resonance layer and, finally, on the final position of the absorption in the plasma. All these factors are related to the density profile, since the positions of the cut off and of the upper hybrid resonance layers depend on the actual plasma density profile. Besides, the absorption profile depends also on the temperature profile. Moreover, it is possible to observe that the former layers only appear for high enough plasma density, than can be obtained by gas puffing, as has been observed in the simulations performed for TJ-II stellarator. For such reasons, particle transport is basic for understanding and guaranteeing EBW heating. In this work, TJ-II plasmas are taken as a case example in order to simulate the full evolution of a plasma discharge that is created and heated by ECRH in a first step and finally is heated using EBW. The evolution of the discharge is simulated using the transport code ASTRA and the sequence of the discharge is as follows: O mode is launched on a steady state plasma with density lower than the O mode cut-off. Then a gas puff is injected in order to increase the plasma density over the level in which EBW heating is efficient because O mode cut off and upper hybrid layer appear. EBW ray tracing calculations are performed

  16. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  17. Plasma rotation and rf heating in DIII-D

    International Nuclear Information System (INIS)

    DeGrassie, J.S.; Baker, D.R.; Burrell, K.H.

    1999-05-01

    In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current

  18. Plasma rotation and rf heating in DIII-D

    International Nuclear Information System (INIS)

    Grassie, J. S. de; Baker, D. R.; Burrell, K. H.; Greenfield, C. M.; Lin-Liu, Y. R.; Luce, T. C.; Petty, C. C.; Prater, R.; Heidbrink, W. W.; Rice, B. W.

    1999-01-01

    In a variety of discharge conditions on DIII-D it is observed that rf electron heating reduces the toroidal rotation speed and core ion temperature. The rf heating can be with either fast wave or electron cyclotron heating and this effect is insensitive to the details of the launched toroidal wavenumber spectrum. To date all target discharges have rotation first established with co-directed neutral beam injection. A possible cause is enhanced ion momentum and thermal diffusivity due to electron heating effectively creating greater anomalous viscosity. Another is that a counter directed toroidal force is applied to the bulk plasma via rf driven radial current. (c) 1999 American Institute of Physics

  19. Bubble Dynamics, Two-Phase Flow, and Boiling Heat Transfer in Microgravity

    Science.gov (United States)

    Chung, Jacob N.

    1998-01-01

    This report contains two independent sections. Part one is titled "Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave." Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, "Design and qualification of a microscale heater array for use in boiling heat transfer." This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of

  20. Waste heat of HTR power stations for district heating

    International Nuclear Information System (INIS)

    Bonnenberg, H.; Schlenker, H.V.

    1975-01-01

    The market situation, the applied techniques, and the transport, for district heating in combination with HTR plants are considered. Analysis of the heat market indicates a high demand for heat at temperatures between 100 and 150 0 C in household and industry. This market for district heating can be supplied by heat generated in HTR plants using two methods: (1) the combined heat and power generation in steam cycle plants by extracting steam from the turbine, and (2) the use of waste heat of a closed gas turbine cycle. The heat generation costs of (2) are negligible. The cost for transportation of heat over the average distance between existing plant sites and consumer regions (25 km) are between 10 and 20% of the total heat price, considering the high heat output of nuclear power stations. Comparing the price of heat gained by use of waste heat in HTR plants with that of conventional methods, considerable advantages are indicated for the combined heat and power generation in HTR plants. (author)