WorldWideScience

Sample records for heat treatment distortion

  1. Study Of Gear Teeth Distortions Due To Heat Treatment

    Directory of Open Access Journals (Sweden)

    V. Khade

    2015-02-01

    Full Text Available Abstract The work aims to study the distortion occurred due to heat treatment on the Gear teeth. The paper studies various causes of distortion control techniques to eliminate distortion which includes changes in design selection of material heat treatment process mainly due to quenching that includes cooling rates quenching mediums fixtures. An experimental study and results conducted for the effects of the distortion on the Gear teeth and to reduce the distortion with certain changes design modification resulting in shape amp size changes phase changes changes in hardness microstructure and residual stresses. It is observed that adequate velocity of quench oil around the component to be heat treated ensures uniform amp desired cooling rate as per heat treatment cycle. Modification in design of baffles achieved the adequate velocity and minimization of distortion. Also Fixtures for holding finished parts or assemblies during heat treatment may be either support or restraint type to control dimensional relations during aging.

  2. Gear distortion analysis due to heat treatment process

    Science.gov (United States)

    Guterres, Natalino F. D. S.; Rusnaldy, Widodo, Achmad

    2017-01-01

    One way to extend the life time of the gear is minimizing the distortion during the manufacturing process. One of the most important processes in manufacturing to produce gears is heat treatment process. The purpose of this study is to analyze the distortion of the gear after heat treatment process. The material of gear is AISI 1045, and it was designed with the module (m) 1.75, and a number of teeth (z) 29. Gear was heat-treated in the furnace at a temperature of 800°C, holding time of 30 minutes, and then quenched in water. Furthermore, surface hardening process was also performed on gear teeth at a temperature of 820°C and holding time of 35 seconds and the similar procedure of analysis was conducted. The hardness of gear after heat treatment average 63.2 HRC and the teeth surface hardness after gear to induction hardening was 64.9 HRC at the case depth 1 mm. The microstructure of tested gear are martensitic and pearlite. The highest distortion on tooth thickness to upper than 0.063 can cause high precision at the tooth contact is not appropriate. Besides the shrinkage of tooth thickness will also affect to contact angle because the size of gear tolerance was not standardized.

  3. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Beckermann, Christoph; Carlson, Kent

    2011-07-22

    Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting's overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions

  4. Predictive Model and Methodology for Heat Treatment Distortion Final Report CRADA No. TC-298-92

    Energy Technology Data Exchange (ETDEWEB)

    Nikkel, D. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCabe, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    This project was a multi-lab, multi-partner CRADA involving LLNL, Los Alamos National Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, Martin Marietta Energy Systems and the industrial partner, The National Center of Manufacturing Sciences (NCMS). A number of member companies of NCMS participated including General Motors Corporation, Ford Motor Company, The Torrington Company, Gear Research, the Illinois Institute of Technology Research Institute, and Deformation Control Technology •. LLNL was the lead laboratory for metrology technology used for validation of the computational tool/methodology. LLNL was also the lead laboratory for the development of the software user interface , for the computational tool. This report focuses on the participation of LLNL and NCMS. The purpose of the project was to develop a computational tool/methodology that engineers would use to predict the effects of heat treatment on the _size and shape of industrial parts made of quench hardenable alloys. Initially, the target application of the tool was gears for automotive power trains.

  5. Improved life of die casting dies of H13 steel by attaining improved mechanical properties and distortion control during heat treatment. Year 1 report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.F.; Schwam, D. [Case Western Reserve Univ., Cleveland, OH (United States)

    1995-03-01

    Optimum heat treatment of dies (quenching) is critical in ensuring satisfactory service performance: rapid cooling rates increase the thermal fatigue/heat checking resistance of the steel, although very fast cooling rates can also lead to distortion and lower fracture toughness, increasing the danger of catastrophic fracture. Goal of this project is to increase die life by using fast enough quenching rates (> 30 F/min ave cooling rate from 1750 to 550 F, 1/2 in. below working surfaces) to obtain good toughness and fatigue resistance in Premium grade H-13 steel dies. An iterative approach of computer modeling validated by experiment was taken. Cooling curves during gas quenching of H-13 blocks and die shapes were measured under 2, 5, and 7.5 bar N2 and 4 bar Ar. Resulting dimensional changes and residual stresses were determined. To facilitate the computer modeling work, a database of H-13 mechanical and physical properties was compiled. Finite element analysis of the heat treated shapes was conducted. Good fit of modeled vs measured quenched rates was demonstrated for simple die shapes. The models predict well the phase transformation products from the quench. There is good fit between predicted and measured distortion contours; however magnitude of predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required.

  6. Improved Life of Die Casting Dies of H13 Steel by Attaining Improved Mechanical Properties and Distortion Control During Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    J. F. Wallace; D. Schwam

    1998-10-01

    The ultimate goal of this project is to increase die casting die life by using fast enough quenching rates to obtain good toughness and fatigue resistance in premium grade H-13 steel dies. The main tasks of the project were to compile a database on physical and mechanical properties of H-13; conduct gas quenching experiments to determine cooling rates of dies in difference vacuum furnaces; measure the as-quenched distortion of dies and the residual stresses; generate finite element analysis models to predict cooling rates, distortion, and residual stress of gas quenched dies; and establish rules and create PC-based expert system for prediction of cooling rates, distortion, and residual stress in vacuum/gas quenched H-13 dies. Cooling curves during gas quenching of H-13 blocks and die shapes have been measured under a variety of gas pressure. Dimensional changes caused by the gas quenching processes have been determined by accurate mapping of all surfaces with coordinate measuring machines before and after the quench. Residual stresses were determined by the ASTM E837 hole-drilling strain gage method. To facilitate the computer modeling work, a comprehensive database of H-13 mechanical and physical properties has been compiled. Finite element analysis of the heat treated shapes has been conducted using the TRAST/ABAQUS codes. There is a good fit between the predicted and measured distortion contours. However, the magnitude of the predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required before it can be used to predict distortion and residual stress in a quantitative manner. This last step is a prerequisite to generating rules for a reliable expert system.

  7. A meta-analysis on cognitive distortions and externalizing problem behavior : associations, moderators, and treatment effectiveness

    NARCIS (Netherlands)

    Helmond, P.; Overbeek, G.; Brugman, D.; Gibbs, J.C.

    2015-01-01

    Cognitive distortions are an important focus in many investigations and treatments of externalizing problem behavior, such as antisocial, delinquent, and aggressive behavior. Yet the overall strength of the association between cognitive distortions and externalizing behavior is unknown. Furthermore,

  8. Anomalous Schottky Specific Heat and Structural Distortion in Ferromagnetic PrAl2

    Science.gov (United States)

    Pathak, Arjun K.; Paudyal, D.; Mudryk, Y.; Gschneidner, K. A., Jr.; Pecharsky, V. K.

    2013-05-01

    Unique from other rare earth dialuminides, PrAl2 undergoes a cubic to tetragonal distortion below T=30K in a zero magnetic field, but the system recovers its cubic symmetry upon the application of an external magnetic field of 10 kOe via a lifting of the 4f crystal field splitting. The nuclear Schottky specific heat in PrAl2 is anomalously high compared to that of pure Pr metal. First principles calculations reveal that the 4f crystal field splitting in the tetragonally distorted phase of PrAl2 underpins the observed unusual low temperature phenomena.

  9. Heat treatment furnace

    Energy Technology Data Exchange (ETDEWEB)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  10. Heat treatment deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bavaro, A. (Soliveri SpA, Caravaggio (Italy))

    1990-02-01

    Types and causes of heat treatement derived isotropic and anisotropic dilatancies in ferrous materials are reviewed. The concepts are developed in such a way as to allow extension to all materials exhibiting martensitic tempering behaviour. This paper intends to illustrate the basic processes of dimensional variations undergone by the materials under heat treatments. The parametric analysis includes an analysis of the interactions amongst the parameters themselves. The relative importance of each parameter is assessed in order to determine methods to attenuate deformation action. Simplified examples are offered to provide technicians explanations as to why specific deformations occur and indications on improved materials working techniques.

  11. Heat sink welding of austenitic stainless steel pipes to control distortion and residual stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Div., Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2007-07-01

    Construction of India's Prototype Fast Breeder Reactor (PFBR) involves extensive welding of austenitic stainless steels pipes of different dimensions. Due to high thermal expansion coefficient and poor thermal conductivity of this class of steels, welding can result in significant distortion of these pipes. Attempts to arrest this distortion can lead to high levels of residual stresses in the welded parts. Heat sink welding is one of the techniques often employed to minimize distortion and residual stress in austenitic stainless steel pipe welding. This technique has also been employed to repair welding of the piping of the Boiling Water Reactors (BWRs) subjected to radiation induced intergranular stress corrosion cracking (IGSCC). In the present study, a comparison of the distortion in two pipe welds, one made with heat sink welding and another a normal welds. Pipes of dimensions 350{phi} x 250(L) x 8(t) mm was fabricated from 316LN plates of dimensions 1100 x 250 x 8 mm by bending and long seam (L-seam) welding by SMAW process. Two fit ups with a root gap of 2 mm, land height of 1mm and a groove angle of 70 were prepared using these pipes for circumferential seam (C-seam) welding. Dimensions at predetermined points in the fit up were made before and after welding to check the variation in radius, circumference and and ovality of the pipes. Root pass for both the pipe fit up were carried out using conventional GTAW process with 1.6 mm AWS ER 16-8-2 as consumables. Welding of one of the pipe fit ups were completed using conventions GTAW process while the other was completed using heat sink welding. For second and subsequent layers of welding using this process, water was sprayed at the root side of the joint while welding was in progress. Flow rate of the water was {proportional_to}6 1/minute. Welding parameters employed were same as those used for the other pipe weld. Results of the dimensional measurements showed that there is no circumferential shrinkage in

  12. Pulse Mask Controlled HFAC Resonant Converter for high efficiency Industrial Induction Heating with less harmonic distortion

    Directory of Open Access Journals (Sweden)

    Nagarajan Booma

    2016-04-01

    Full Text Available This paper discusses about the fixed frequency pulse mask control based high frequency AC conversion circuit for industrial induction heating applications. Conventionally, for induction heating load, the output power control is achieved using the pulse with modulation based converters. The conventional converters do not guarantee the zero voltage switching condition required for the minimization of the switching losses. In this paper, pulse mask control scheme for the power control of induction heating load is proposed. This power control strategy allows the inverter to operate closer to the resonant frequency, to obtain zero voltage switching condition. The proposed high frequency AC power conversion circuit has lesser total harmonic distortion in the supply side. Modeling of the IH load, design of conversion circuit and principle of the control scheme and its implementation using low cost PIC controller are briefly discussed. Simulation results obtained using the Matlab environment are presented to illustrate the effectiveness of the pulse mask scheme. The obtained results indicate the reduction in losses, improvement in the output power and lesser harmonic distortion in the supply side by the proposed converter. The hardware results are in good agreement with the simulation results.

  13. MRI temperature map reconstruction directly from k-space with compensation for heating-induced geometric distortions

    Science.gov (United States)

    Gaur, Pooja; Grissom, William A.

    2017-03-01

    Proton resonance frequency (PRF) change is used to measure tissue heating, but also distorts the image and causes geometric distortions in temperature estimates in the same manner as other chemical shift distortions if left uncompensated. We propose an algorithm that produces PRF temperature maps free of these distortions by fitting a signal model directly to acquired k-space data that accounts for PRF-induced phase both up to and during the readout. We also introduce a faster method compatible with Cartesian data that corrects distortions from image-domain temperature maps. Gel heating experiments show the proposed CS compensation algorithms correct magnitude image artifacts and hotspot distortions. Without CS compensation, thermal dose values are overestimated in spiral data, and are spatially offset in 2DFT and EPI data. Compensating for heat-induced CS distortions improves the accuracy of temperature change and thermal dose measurements, and can have a significant positive impact on clinical and research applications of PRF-shift thermometry.

  14. Studies of Deteriorated Heat Transfer in Prismatic Cores Stemming from Irradiation-Induced Geometry Distortion

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian G. [Idaho State Univ., Pocatello, ID (United States); Schultz, Richard R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McEligot, Don M. [Univ. of Idaho, Moscow, ID (United States); McCreery, Glenn [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-08-31

    A reference design for the Next Generation Nuclear Plant (NGNP) is to use General Atomics Modular High Temperature Gas-cooled Reactor (MHTGR). For such a configuration in normal operation, the helium coolant flow proceeds from the upper plenum to the lower plenum principally through the core coolant channels and the interstitial gaps (bypass flow) that separate the prismatic blocks from one another. Only the core prismatic blocks have coolant channels. The interstitial gaps are present throughout the core, the inner reflector region, and the out reflector region. The bypass flows in a prismatic gas-cooled reactor (GCR) are of potential concern because they reduce the desired flow rates in the coolant channels and, thereby, can increase outlet gas temperatures and maximum fuel temperatures. Consequently, it is appropriate to account for bypass flows in reactor thermal gas dynamic analyses. The objectives of this project include the following: fundamentally understand bypass flow and heat transfer at scaled, undistorted conditions and with geometry distortions; develop improved estimates of associated loss coefficients, surface friction and heat transfer for systems and network codes; and obtain related data for validation of CFD (computational fluid dynamic) or system (e.g., RELAP5) codes which can be employed in predictions for a GCR for normal power, reduced power, and residual heat removal operations.

  15. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    Directory of Open Access Journals (Sweden)

    Werner E.

    2010-06-01

    Full Text Available To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a shows the forged part and 1(b the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and

  16. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    Science.gov (United States)

    Regener, B.; Krempaszky, C.; Werner, E.

    2010-06-01

    To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a) shows the forged part and 1(b) the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and removing the alpha-case by

  17. Cognitive distortions as a component and treatment focus of pathological gambling: a review.

    Science.gov (United States)

    Fortune, Erica E; Goodie, Adam S

    2012-06-01

    The literature on the role of cognitive distortions in the understanding and treatment of pathological gambling (PG) is reviewed, with sections focusing on (a) conceptual underpinnings of cognitive distortions, (b) cognitive distortions related to PG, (c) PG therapies that target cognitive distortions, (d) methodological factors and outcome variations, and (e) conclusions and prescriptive recommendations. The conceptual background for distortions related to PG lies in the program of heuristics and biases (Kahneman & Tversky, 1974) as well as other errors identified in basic psychology. The literature has focused on distortions arising from the representativeness heuristic (gambler's fallacy, overconfidence, and trends in number picking), the availability heuristic (illusory correlation, other individuals' wins, and inherent memory bias), and other sources (the illusion of control and double switching). Some therapies have incorporated cognitive restructuring within broader cognitive-behavioral therapies, with success. Other therapies have focused more narrowly on correcting distorted beliefs, more often with limited success. It is concluded that the literature establishes the role of cognitive distortions in PG and suggests therapies with particularly good promise, but is in need of further enrichment.

  18. Prestorage Heat Treatment of Apples

    National Research Council Canada - National Science Library

    Skrzyński, Jan

    2007-01-01

    .... The main effect of heat treatment was total reduction of fruit spoilage due to storage diseases, whereas non treated fruits were affected by bitter rot (Gloeosporium), gray mold (Botrytis) and blue mold (Penicillium) respectively...

  19. Perceived Visual Distortions in Juvenile Amblyopes During/Following Routine Amblyopia Treatment.

    Science.gov (United States)

    Piano, Marianne E F; Bex, Peter J; Simmers, Anita J

    2016-08-01

    To establish the point prevalence of perceived visual distortions (PVDs) in amblyopic children; the association between severity of PVDs and clinical parameters of amblyopia; and the relationship between PVDs and amblyopia treatment outcomes. Perceived visual distortions were measured using a 16-point dichoptic alignment paradigm in 148 visually normal children (aged, 9.18 ± 2.51 years), and 82 amblyopic children (aged, 6.33 ± 1.48 years) receiving or following amblyopia treatment. Global distortion (GD; vector sum of mean-centered individual alignment error between physical and perceived target location) and Global uncertainty (GU; SD of GD over two experiment runs) were compared to age-matched control data, and correlated against clinical parameters of amblyopia (type, monocular visual acuity, pretreatment interocular acuity difference, refractive error, age at diagnosis, motor fusion, stereopsis, near angle of deviation) and amblyopia treatment outcomes (refractive adaption duration, treatment duration, occlusion dosage, posttreatment interocular acuity difference, number of lines improvement). Point prevalence of PVDs in amblyopes was 56.1%. Strabismic amblyopes experienced more severe distortions than anisometropic or microtropic amblyopes (GD Kruskal Wallis H = 16.89, P amblyopia treatment outcomes, or the amblyopic visual acuity deficit. Perceived visual distortions persisted in more than one-half of treated amblyopic cases whose treatment was deemed successful. Perceived visual distortions are common symptoms of amblyopia and are correlated with binocular (stereoacuity, angle of deviation), but not monocular (visual acuity) clinical outcomes. This adds to evidence demonstrating the role of decorrelated binocular single vision in many aspects of amblyopia, and emphasizes the importance of restoring and improving binocular single vision in amblyopic individuals.

  20. Doing cognitive distortions: a discursive psychology analysis of sex offender treatment talk.

    Science.gov (United States)

    Auburn, Timothy; Lea, Susan

    2003-06-01

    Theories of sex offending have for several years relied upon the notion of cognitive distortions as an important cause of sexual offending. In this study we critique this notion and suggest that the sort of phenomenon addressed by cognitive distortions is better understood by adopting a discursive psychology approach. In this approach, talk is regarded as occasioned and action oriented. Thus 'cognitive distortions' are conceptualized as something people do rather than something that people have. Sessions from a prison-based sex offender treatment programme were taped and transcribed. A discursive psychology analysis was conducted on those sessions relating to offenders' first accounts of their offences. Our analysis suggests that offenders utilize a particular narrative organization to manage their blame and responsibility for the offence. This organization is based on a first part which is oriented to quotidian precursors to the offence and an immediately following second which is oriented to a sudden shift in the definition of the situation. The implications of this analysis are discussed, in relation to the status of cognitive distortions and treatment.

  1. Heat treatment of milk and its importance

    OpenAIRE

    VOČADLOVÁ, Kateřina

    2016-01-01

    The aim of this work is to assess the public knowledge of heat treatment, its purpose and effect on milk quality and to find out their attitude to raw milk consumption. Heat treatment of milk is a commonly used part of dairy processing. Although the heat treatment has a significant impact on ensuring microbial quality, safety and shelf life of milk, its application still face a public disagreement, primary in connection with potential health benefits, which are lost during heat treatment. The...

  2. Heat Treatment Procedure Qualification for Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Mariol Charles; Nicholas Deskevich; Vipin Varkey; Robert Voigt; Angela Wollenburg

    2004-04-29

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure qualification development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualifications have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  3. Heat Treatment Procedure Qualification for Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Robert C. [Pennsylvania State Univ., University Park, PA (United States); Charles, Mariol [Pennsylvania State Univ., University Park, PA (United States); Deskevich, Nicholas [Pennsylvania State Univ., University Park, PA (United States); Varkey, Vipin [Pennsylvania State Univ., University Park, PA (United States); Wollenburg, Angela [Pennsylvania State Univ., University Park, PA (United States)

    2004-10-15

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure qualification development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualifications have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  4. 29 CFR 1919.36 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...

  5. 29 CFR 1919.80 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out in...

  6. Optimization of a novel large field of view distortion phantom for MR-only treatment planning.

    Science.gov (United States)

    Price, Ryan G; Knight, Robert A; Hwang, Ken-Pin; Bayram, Ersin; Nejad-Davarani, Siamak P; Glide-Hurst, Carri K

    2017-07-01

    MR-only treatment planning requires images of high geometric fidelity, particularly for large fields of view (FOV). However, the availability of large FOV distortion phantoms with analysis software is currently limited. This work sought to optimize a modular distortion phantom to accommodate multiple bore configurations and implement distortion characterization in a widely implementable solution. To determine candidate materials, 1.0 T MR and CT images were acquired of twelve urethane foam samples of various densities and strengths. Samples were precision-machined to accommodate 6 mm diameter paintballs used as landmarks. Final material candidates were selected by balancing strength, machinability, weight, and cost. Bore sizes and minimum aperture width resulting from couch position were tabulated from the literature (14 systems, 5 vendors). Bore geometry and couch position were simulated using MATLAB to generate machine-specific models to optimize the phantom build. Previously developed software for distortion characterization was modified for several magnet geometries (1.0 T, 1.5 T, 3.0 T), compared against previously published 1.0 T results, and integrated into the 3D Slicer application platform. All foam samples provided sufficient MR image contrast with paintball landmarks. Urethane foam (compressive strength ∼1000 psi, density ~20 lb/ft3 ) was selected for its accurate machinability and weight characteristics. For smaller bores, a phantom version with the following parameters was used: 15 foam plates, 55 × 55 × 37.5 cm3 (L×W×H), 5,082 landmarks, and weight ~30 kg. To accommodate > 70 cm wide bores, an extended build used 20 plates spanning 55 × 55 × 50 cm3 with 7,497 landmarks and weight ~44 kg. Distortion characterization software was implemented as an external module into 3D Slicer's plugin framework and results agreed with the literature. The design and implementation of a modular, extendable distortion phantom was optimized for several bore

  7. Relationship Between Casting Distortion, Mold Filling, and Interfacial Heat Transfer in Sand Molds

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Parker; K. A. Woodbury; T. S. Piwonka; Y. Owusu

    1999-09-30

    This project sought to determine the relationship between casting dimensions and interfacial heat transfer in aluminum alloy sand castings. The program had four parts; measurement of interfacial heat transfer coefficients in resin bonded and green sand molds, the measurement of gap formation in these molds, the analysis of castings made in varying gatings, orientations and thicknesses, and the measurement of residual stresses in castings in the as-cast and gate removed condition. New values for interfacial heat transfer coefficients were measured, a novel method for gap formation was developed, and the variation of casting dimensions with casting method, gating, and casting orientation in the mold was documented.

  8. Distortion Control during Welding

    OpenAIRE

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ methods to control welding distortion. In these methods local heating and/or cooling strategies are applied during welding. Additional heating and/or cooling sources can be implemented either stationa...

  9. 29 CFR 1919.16 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains (other...

  10. DISTORTION OF 16MnCr5 STEEL PARTS DURING LOW-PRESSURE CARBURIZING

    Directory of Open Access Journals (Sweden)

    Konrad Dybowski

    2017-03-01

    This article presents a study of the distortion rate of workpieces carburized at low pressure then quenched in nitrogen at 1.4MPa. By comparing the distortion which takes place during the carburizing stage only and the carburizing combined with post-carburizing heat treatment it will be possible to assess the distortion rate and its causes at the different stages of the heat treatment process.

  11. Making sense, making good, or making meaning? Cognitive distortions as targets of change in offender treatment.

    Science.gov (United States)

    Friestad, Christine

    2012-05-01

    Most structured sex-offender programs are based on a cognitive-behavioural model of behaviour change. Within this overarching theoretical paradigm, extensive use of cognitive distortions is seen as a central core symptom among sex offenders. However, the literature on cognitive distortions lacks a clear and consistent definition of the term. It is unclear whether cognitive distortions are consciously employed excuses or unconscious processes serving to protect the offender from feelings of guilt or shame. In this article, the dominant cognitive-behavioural interpretation of cognitive distortions is contrasted with two alternative interpretations. One is based on an attributional perspective and the notion of attributional biases. The other explanation is based on a narrative approach focusing on the action elements of cognitive distortions, that is, as something people do rather than something they have. Clinical implications of these alternative conceptualizations are discussed and illustrated throughout by a case example.

  12. MATHEMATICAL MODELING OF HEATING RATE PRODUCT AT HIGH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova

    2014-01-01

    Full Text Available Methods of computing and mathematical modeling are all widely used in the study of various heat exchange processes that provide the ability to study the dynamics of the processes, as well as to conduct a reasonable search for the optimal technological parameters of heat treatment.This work is devoted to the identification of correlations among the factors that have the greatest effect on the rate of heating of the product at hightemperature heat sterilization in a stream of hot air, which are chosen as the temperature difference (between the most and least warming up points and speed cans during heat sterilization.As a result of the experimental data warming of the central and peripheral layers compote of apples in a 3 liter pot at high-temperature heat treatment in a stream of hot air obtained by the regression equation in the form of a seconddegree polynomial, taking into account the effects of pair interaction of these parameters. 

  13. Quantifying the Effect of 3T Magnetic Resonance Imaging Residual System Distortions and Patient-Induced Susceptibility Distortions on Radiation Therapy Treatment Planning for Prostate Cancer.

    Science.gov (United States)

    Adjeiwaah, Mary; Bylund, Mikael; Lundman, Josef A; Karlsson, Camilla Thellenberg; Jonsson, Joakim H; Nyholm, Tufve

    2017-10-20

    To investigate the effect of magnetic resonance system- and patient-induced susceptibility distortions from a 3T scanner on dose distributions for prostate cancers. Combined displacement fields from the residual system and patient-induced susceptibility distortions were used to distort 17 prostate patient CT images. VMAT dose plans were initially optimized on distorted CT images and the plan parameters transferred to the original patient CT images to calculate a new dose distribution. Maximum residual mean distortions of 3.19 mm at a radial distance of 25 cm and maximum mean patient-induced susceptibility shifts of 5.8 mm were found using the lowest bandwidth of 122 Hz per pixel. There was a dose difference of resonance scanners are larger than residual system distortions after using vendor-supplied 3-dimensional correction for the delineated regions studied. However, errors in dose due to disturbed patient outline and shifts caused by patient-induced susceptibility effects are below 0.5%. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Distortion Mechanisms During Carburizing and Quenching in a Transmission Shaft

    Science.gov (United States)

    Tewary, Ujjal; Mohapatra, Goutam; Sahay, Satyam S.

    2017-10-01

    Distortion control during industrial carburizing and quenching operation of precision transmission components is of utmost importance due to their direct impact on performance, such as efficiency, noise and vibrations. The importance of controlling various heat treatment process parameters for mitigating distortion is well accepted, but their specific influence on mechanisms is less understood. In the present work, an integrated finite element-based model is used to simulate gas carburizing and quenching operation on a typical transmission shaft. Investigation is carried out on the effect of raw materials, carburizing and quenching process parameters to predict, analyze and minimize distortion. The effect of phase transformation and generation of thermal strain during heating and cooling stage of heat treatment is investigated, and the mechanisms of bending, diameter and length distortion of a shaft are analyzed. The displacive nature of transformation of bainite at higher temperature with its inherent large shear component of deformation was identified to be responsible for bending distortion in a shaft. Bainitic transformation, martensitic transformation and thermal strains developed during quenching cause volume expansion which leads to diameter expansion and lesser length shrinkage. Finally, bending distortion of a shaft and bore distortion of a gear are contrasted, both in terms of mechanisms and distortion control strategies.

  15. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Amy, E-mail: aw554@uowmail.edu.au; Metcalfe, Peter [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia and Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Liney, Gary [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Holloway, Lois [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Dowling, Jason; Rivest-Henault, David [Commonwealth Scientific and Industrial Research Organisation, Australian E-Health Research Centre, Herston, QLD 4029 (Australia)

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through

  16. 49 CFR 179.500-6 - Heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Heat treatment. 179.500-6 Section 179.500-6...-6 Heat treatment. (a) Each necked-down tank shall be uniformly heat treated. Heat treatment shall... treatment of alternate steels shall be approved. All scale shall be removed from outside of tank to an...

  17. In situ heat treatment process utilizing a closed loop heating system

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  18. Improved Heat Treatment Of Steel Alloy 4340

    Science.gov (United States)

    Cooper, Lawrence B.

    1993-01-01

    New process takes significantly less time than prior heat-treatment processes. Involves placing steel plate directly in furnace and heat-treating. Plate then quenched in slowly moving oil to reduce stresses. Any deflection then pressed out. Possible uses of 4340 steel include new and improved bulletproof vests for military and police personnel and armor for bulletproof automobiles for military, police, diplomatic, and private users. Also used in other military land vehicles as tanks and in both military and civilian aircraft. Lighter armorplate enables land vehicles and aircraft to attain greater speed and maneuverability, consume less fuel, and afford better protection from snipers or terrorists.

  19. 7 CFR 305.25 - Dry heat treatment schedules.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Dry heat treatment schedules. 305.25 Section 305.25... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.25 Dry heat treatment schedules. Treatment schedule Temperature ( °F) Time Directions T302-a-1-2 168 minimum At least 2 hours...

  20. Precision Measurement and Modeling of Quenching-Tempering Distortion in Low-Alloy Steel Components with Internal Threads

    Science.gov (United States)

    Nie, Zhenguo; Wang, Gang; Lin, Yongliang; Rong, Yiming (Kevin)

    2015-12-01

    Distortion resulting from heat treatment may cause serious problems for precision parts. A precision component made from 30CrNi3Mo steel with internal threads distorts slightly after quenching-tempering treatment. Such a small distortion results in serious difficulties in the subsequent assembly process. The distortion of the internal thread was measured using semi-destructive testing with video measuring system. Periodic wavy distortions emerged in the internal threads after heat treatment. Then both XRD analysis and hardness testing were conducted. A numerical simulation of the complete quenching-tempering process was conducted by DANTE, which is a set of user subroutines that link into the ABAQUS/STD solver. The results from the simulations are in good agreement with the measurement in distortion, microstructure field, and hardness. The effects of the technological parameters including quenchant, immersion orientation, and grooves were discussed on the basis of the simulation results. Finally, strategies to significantly decrease distortion and residual stress are proposed.

  1. 7 CFR 305.29 - Vacuum heat treatment schedule.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Vacuum heat treatment schedule. 305.29 Section 305.29... SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.29 Vacuum heat treatment schedule. T111-a-1. Place bay leaves in a vacuum chamber. Starting at 0 hour, gradually reduce to 0.133 Kpa...

  2. Fluxless Brazing and Heat Treatment of a Plate-Fin Sandwich Actively Cooled Panel

    Science.gov (United States)

    Beuyukian, C. S.

    1978-01-01

    The processes and techniques used to fabricate plate-fin sandwich actively cooled panels are presented. The materials were 6061 aluminum alloy and brazing sheet having clad brazing alloy. The panels consisted of small scale specimens, fatigue specimens, and a large 0.61 m by 1.22 m test panel. All panels were fluxless brazed in retorts in heated platen presses while exerting external pressure to assure intimate contact of details. Distortion and damage normally associated with that heat treatment were minimized by heat treating without fixtures and solution quenching in an organic polymer solution. The test panel is the largest fluxless brazed and heat treated panel of its configuration known to exist.

  3. Relationship between casting distortion, mold filling, and interfacial heat transfer. Annual technical report, September 1997 - September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Woodbury, K.A.; Parker, J.K.; Piwonka, T.S.; Owusu, Y.

    1998-10-22

    In the third year of this program, the final castings necessary to evaluate the effect of casting orientation and gating in silica sand lost foam were poured and measured using a CMM machine. Interfacial heat transfer and gap formation measurements continued. However, significant problems were encountered in making accurate measurements. No consistent evidence of gap formation was found in aluminum sand casting. Initial analysis yields heat transfer values below those previously reported in the literature. The program in continuing.

  4. HIFU treatment time reduction through heating approach optimisation.

    Science.gov (United States)

    Coon, Joshua; Todd, Nick; Roemer, Robert

    2012-01-01

    This study evaluated the HIFU treatment time reductions attainable for several scan paths when optimising the heating approach used (single, discrete pulses versus volumetric scanning) and the paths' focal zone heating locations'; number (N(FZL)), spacings, sequencing order, number of heating cycles (N(CYCLES)), and heating times. Also evaluated were the effects of focal zone size, increased tissue absorptivity due to heating, and optimisation technique. Treatments of homogeneous constant property tumours were simulated for several simple generic tumour shapes and sizes. The concentrated heating approach (which delivered the desired thermal dose to each location in one discrete heating pulse (N(CYCLES) = 1)) was compared to the fractionated heating approach (which dosed the tumour using multiple, shorter pulses repeatedly scanned around the heating path (i.e. 'volumetric scanning' with N(CYCLES) > 1)). Treatment times were minimised using both simultaneous, collective pulse optimisation (which used full a priori knowledge of the interacting effects of all pulses) and sequential, single pulse optimisation (which used only the information from previous pulses and cooling of the current pulse). Optimised concentrated heating always had shorter treatment times than optimised fractionated heating, and concentrated heating resulted in less normal tissue heating. When large, rapid tissue absorptivity changes were present (doubled or quadrupled immediately after heating) the optimal ordering of the scan path's sequence of focal zone locations changed. Concentrated heating yields significant treatment time reductions and less normal tissue heating when compared to all fractionated scanning approaches, e.g. volumetric scanning.

  5. Distortion compensator

    NARCIS (Netherlands)

    Sakamoto, K.; Nauta, Bram

    2013-01-01

    PROBLEM TO BE SOLVED: To improve distortion compensation accuracy of a power amplifier. :SOLUTION: An LMS algorithm using a feedback signal that is an output signal of a power amplifier 1 input via an attenuator 15 and pseudorandom data calculates a delay of an input signal to the power amplifier 1.

  6. Distortion Compensator

    NARCIS (Netherlands)

    Sakamoto, K.; Nauta, Bram

    2013-01-01

    PROBLEM TO BE SOLVED: To improve distortion compensation accuracy of a power amplifier. ;SOLUTION: An LMS algorithm using a feedback signal that is an output signal of a power amplifier 1 input via an attenuator 17 and pseudorandom data calculates a delay of an input signal to the power amplifier 1

  7. Distortion Compensator

    NARCIS (Netherlands)

    Sakamoto, K.; Nauta, Bram

    2013-01-01

    PROBLEM TO BE SOLVED: To improve the accuracy of distortion compensation of a power amplifier. SOLUTION: An LMS algorithm using a feedback signal that is an output signal of a power amplifier 1 input via an attenuator 17 and pseudorandom data calculates a delay of an input signal to the power

  8. [Treatment of syphilis with malaria or heat].

    Science.gov (United States)

    Verhave, Jan Peter

    2016-01-01

    Until the end of the Second World War, syphilis was a common sexually transmitted infection. This stigmatising infectious disease caused mental decline, paralysis and eventually death. The history of syphilis was given public attention because of 'malaria therapy', which had been applied from the First World War onwards in patients with paralytic dementia. In 1917, the Austrian physician Julius Wagner-Jauregg (1857-1940) induced fever in these patients by infecting them with malaria parasites; in 1927, he received the Nobel Prize for his discovery of the healing properties of malarial fever. One source, not cited anywhere, is an interview that the American bacteriologist and science writer/medical journalist Paul de Kruif conducted with Wagner-Jauregg in 1930. The reporting of this meeting, and De Kruif's later involvement in the mechanical heat treatment of patients with syphilis, form the inspiration for this article. When penicillin became available, both treatments became obsolete.

  9. Efficacy of heat treatment for disinfestation of concrete grain silos

    Science.gov (United States)

    Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50°C for at least 6 h. Ventilated plastic containers with a capacity of...

  10. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    750º to 450º C. Initially, a simple analytical model was used to calculate the ideal energy contributions from a CO2 high power laser source together with an induction heat source such that the temperature can be kept at 600º C for 2.5 seconds. This knowledge was then used for the design......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...... of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...

  11. [Efficacy of a manual treatment method according to the fascial distortion model in the management of contracted ("frozen") shoulder].

    Science.gov (United States)

    Fink, M; Schiller, J; Buhck, H

    2012-09-01

    Frozen shoulder is a common problem and difficult to treat. The present prospective randomised single-blind controlled trial evaluates the efficacy of the 'fascial distortion model' according to Typaldos as a remedy for the 'frozen shoulder'. A total of 60 patients were randomised to receive either the FDM-guided treatment (FDM, n = 30) or a 'conventional' manual therapy (MT, n = 30). The primary endpoint for the treatment effect was the shoulder mobility, and secondary endpoints were pain (measured on a VAS), raw force and function as expressed by the Constant-Murley and DASH scores. Before therapy, groups were well comparable in terms of all outcome parameters. All endpoints showed a substantial and significant improvement in both treatment groups. Improvement was significantly more marked in the FDM group as compared to the MT group, and the effect occurred significantly faster. During post-treatment observation, there was no further improvement and the achieved benefit in mobility in the FDM group decreased. However, the abduction ability of 150.2 ± 37.2° continued to be substantially better than in control patients (124.1 ± 38.6°, p manual therapy. Long-term effects and modes of action need to be investigated. Georg Thieme Verlag KG Stuttgart · New York.

  12. Cast construction elements for heat treatment furnaces

    Directory of Open Access Journals (Sweden)

    B. Piekarski

    2011-07-01

    Full Text Available The study presents sketches and photos of the cast creep-resistant components used in various types of heat treatment furnaces. The shape of the elements results from the type of the operation carried out in the furnace, while dimensions are adjusted to the size of the furnace working chamber. The castings are mainly made from the high-alloyed, austenitic chromium-nickel or nickel-chromium steel, selecting the grade in accordance with the furnace operating conditions described by the rated temperature, the type and parameters of the applied operating atmosphere, and the charge weight. Typical examples in this family of construction elements are: crucibles, roller tracks, radiant tubes and guides. The majority of castings are produced in sand moulds.

  13. Hydrolysis and heat treatment of aluminum dust.

    Science.gov (United States)

    López, F A; Peña, M C; López-Delgado, A

    2001-06-01

    Aluminum dust is a toxic and hazardous byproduct of Al remelting. The present research was performed to characterize and evaluate its behavior in water. The materials obtained by hydrolysis were also characterized, and the gases generated during the process were qualitatively analyzed. The effects of hydrolysis reaction time and temperature on the dust were also explored. The hydrolysis of Al dust is an exothermic reaction that gave rise to a solid composed of aluminum oxide, silicon oxide, and spinel (MgAl2O4). Most of the CH4, NH3, and SH2 gases generated were emitted immediately upon the start of the reaction, though their production continued for a long time. This slow reaction, which was moderately accelerated by temperature, led to the formation of a material less reactive than the untreated dust. On the other hand, heat treatment of the dust gave rise to an inert material composed of spinel, alumina, and magnesium and aluminum silicates.

  14. Efficacy of Fascial Distortion Model Treatment for Acute, Nonspecific Low-Back Pain in Primary Care: A Prospective Controlled Trial.

    Science.gov (United States)

    Richter, Detlef; Karst, Matthias; Buhck, Hartmut; Fink, Matthias G

    2017-06-23

    Context • Low-back pain (LBP) is a prevalent and potentially crippling condition for which treatment is often unsatisfactory from the perspectives of physicians, patients, and payers. The application of the fascial distortion model (FDM), an integrated concept for the diagnosis and manipulative treatment of musculoskeletal disorders, is conceptually promising for LBP but has not been investigated systematically. Objective • The study intended to provide proof of concept to establish the noninferiority of the FDM treatment as opposed to the therapy recommended by the German National Disease Management Guideline (NDMG) for acute LBP. Design • The study was a prospective, nonrandomized, controlled, parallel-group trial. Setting • The study took place in a private practice for surgery and orthopedics. Participants • Seventy-seven outpatients with acute LBP with an average age of 42.6 ± 13.5 y, 50.6% of whom were male, took part in the study. Intervention • Participants in the intervention group (FDM group) received osteopathic manipulative treatments according to the FDM, whereas the control group (NDMG group) received an active control treatment following the NDMG. Outcome Measures • Comparing the FDM group (n = 39) and the NDMG group (n = 38), the study measured pain (visual analog scale, patient diary), functional (FFbH-R) and self-reported vocational status, and use of medication (patient diary) at baseline and after 1, 4 and 12 wk of treatment. Results • The study found marked improvements of the symptoms in both groups, with a faster onset of efficacy and significantly less medication under the FDM treatment. Conclusions • FDM appears to be effective with regard to pain relief and functional improvement for LBP.

  15. Treatment of Medial Tibial Stress Syndrome according to the Fascial Distortion Model: A Prospective Case Control Study

    Directory of Open Access Journals (Sweden)

    Christoph Schulze

    2014-01-01

    Full Text Available Medial tibial stress syndrome (MTSS is a common problem among athletes and soldiers. There is no proven theory that could explain the pathophysiology of shin splints. The therapies described so far are time-consuming and involve a high risk of relapse. The method according to the fascial distortion model (FDM addresses local changes in the area of the lower leg fascia. It is suited to reduce pain and functional impairments associated with this symptom complex by applying targeted manual techniques. 32 patients (male: 30; female: 2 participated in this study. Visual analogue scale (VAS was used for the quantification of pain. Scores were also given to rate the maximum painless exercise tolerance of the patients. Subsequently treatment of the crural fascia was performed. Patients retested ability of running and jumping. Therapy was continued until full exercise tolerance or painlessness was reached. A significant reduction of the VAS pain score from 5.2 to 1.1 could be achieved (P<0.001. The impairment of exercise tolerance could be reduced from 7 to 2 points (P<0.001. The duration of treatment was 6.3 (SD: 4.3 days on average. The FDM therapy is a potential effective method for acute treatment of MTSS.

  16. Treatment of medial tibial stress syndrome according to the fascial distortion model: a prospective case control study.

    Science.gov (United States)

    Schulze, Christoph; Finze, Susanne; Bader, Rainer; Lison, Andreas

    2014-01-01

    Medial tibial stress syndrome (MTSS) is a common problem among athletes and soldiers. There is no proven theory that could explain the pathophysiology of shin splints. The therapies described so far are time-consuming and involve a high risk of relapse. The method according to the fascial distortion model (FDM) addresses local changes in the area of the lower leg fascia. It is suited to reduce pain and functional impairments associated with this symptom complex by applying targeted manual techniques. 32 patients (male: 30; female: 2) participated in this study. Visual analogue scale (VAS) was used for the quantification of pain. Scores were also given to rate the maximum painless exercise tolerance of the patients. Subsequently treatment of the crural fascia was performed. Patients retested ability of running and jumping. Therapy was continued until full exercise tolerance or painlessness was reached. A significant reduction of the VAS pain score from 5.2 to 1.1 could be achieved (P treatment was 6.3 (SD: 4.3) days on average. The FDM therapy is a potential effective method for acute treatment of MTSS.

  17. Process map for laser heat treatment of carbon steels

    Science.gov (United States)

    Ki, Hyungson; So, Sangwoo

    2012-10-01

    We propose a process map for diode-laser heat treatment of carbon steels. After first identifying a heat treatable region in terms of laser intensity and interaction time using a heat conduction model, two most important factors in heat treatment, carbon diffusion time in austenite and cooling time, are calculated and plotted in the heat treatable region. Because overall characteristics of laser heat treatment for a given steel type can be graphically visualized on a map, this map can be used in the determination of optimal process parameters. Hardening depth is also calculated using the concept of the critical effective carbon diffusion time. For demonstration and validation purposes, we have systematically conducted laser heat treatment on AISI 1020 and 1035 steel specimens using a 3 kW diode laser and measured surface hardness and hardening depth. The experimental results are in agreement with the calculated process map.

  18. Cryogenic heat treatment — a review of the current state

    Directory of Open Access Journals (Sweden)

    Kamran Amini

    2017-03-01

    Full Text Available The deep cryogenic heat treatment is an old and effective heat treatment, performed on steels and cast irons to improve the wear resistance and hardness. This process includes cooling down to the liquid nitrogen temperature, holding the samples at that temperature and heating at the room temperature. The benefits of this process are significant on the ferrous materials, but recently some studies focused on other nonferrous materials. This study attempts to clarify the different behavior of some materials subjected to the deep cryogenic heat treatment, as well as explaining the common theories about the effect of the cryogenic heat treatment on these materials. Results showed that polymers exhibit different behavior regarding to their crystallinity, however the magnesium alloys, titanium alloys and tungsten carbide show a noticeable improvement after the deep cryogenic heat treatment due to their crystal structure.

  19. Prediction of heat treatment in food processing machinery

    DEFF Research Database (Denmark)

    Karlson, Torben; Friis, Alan; Szabo, Peter

    1997-01-01

    The velocity and temperature fields of a shear thinning fluid in a co-rotating disc scraped surface heat exchanger (CDHE) are calculated using the finite element method. By tracking and timingparticles through the heat exchanger residence time and thermal time distributions are computed....... The residence time distributions are compared to experimentally obtained distributions. A prediction of the heat treatment of the fluid passing through several heat exchangers inseries is obtained using the thermal time distributions....

  20. Interaction of Cognitive Distortions and Cognitive Deficits in the Formulation and Treatment of Obsessive-Compulsive Behaviours in a Woman with an Intellectual Disability

    Science.gov (United States)

    Willner, Paul; Goodey, Rebecca

    2006-01-01

    Aims: This case study describes the formulation and cognitive-behavioural treatment (CBT) of obsessive-compulsive thoughts and behaviours in a woman with an intellectual disability. The report aimed to distinguish the cognitive deficits that reflect her disability from the cognitive distortions integral to her obsessive-compulsive disorder. Case…

  1. Influence of different heat treatment programs on properties of sol ...

    Indian Academy of Sciences (India)

    DTA) experiments, five heat treatment programs were developed. All programs lead to single phase perovskite KNN films with random crystal orientation, but only the programs that included a treatment after each single spin-coating step ...

  2. Effect of heat treatment on structure and magnetic properties of ...

    Indian Academy of Sciences (India)

    Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorption and heat treatment processes. We investigated the effect of heat treatment conditions on structure, morphology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles attached on the ...

  3. Effect of heat treatment temperature on microstructure and ...

    Indian Academy of Sciences (India)

    Effect of heat treatment temperature on microstructure and electrochemical properties of hollow carbon spheres prepared in high-pressure argon. Boyang Liu Yun ... 40 cycles. However, the discharge capacity of the HCSs decreases and the cycling performance is improved with the increase of heat treatment temperature.

  4. IMPROVED MANUFACTURING CANNED "COMPOTE CHERRY" USING COMBINED HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    A. F. Demirova

    2013-01-01

    Full Text Available The results of studies on the development of new modes of heat sterilization compote cherry using stepwise heating in a stream of hot air and hot water dushevaniem air cooled rotating container. Revealed that the modes provide commercial sterility of finished products, reducing the length of the heat treatment and the quality of the finished product. Are some of the modes of heat sterilization step of cherry compote in a stream of heated air and water dushevaniem air-cooled rotating container.

  5. SU-G-JeP2-10: On the Need for a Dynamic Model for Patient-Specific Distortion Corrections for MR-Only Pelvis Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C; Zheng, W [Henry Ford Health System, Detroit, MI (United States); Stehning, C; Weiss, S; Renisch, S [Philips Research Laboratories, Hamburg (Germany)

    2016-06-15

    Purpose: Patient-specific distortions, particularly near tissue/air interfaces, require assessment and possible corrections for MRI-only radiation treatment planning (RTP). However, patients are dynamic due to changes in physiological status and motion during imaging sessions. This work investigated the need for dynamic patient-specific distortion corrections to support pelvis MR-only RTP. Methods: The pelvises of healthy volunteers were imaged at 1.0T, 1.5T, and 3.0T. Patient-specific distortion field maps were generated using a dual-echo gradient-recalled echo (GRE) sequence with B0 field maps obtained from the phase difference between the two echoes acquired at two timepoints: empty and full bladders. To quantify changes arising from respiratory state, end-inhalation and end-expiration data were acquired. Distortion map differences were computed between the empty/full bladder and inhalation/expiration to characterize local changes. The normalized frequency distortion distributions in T2-weighted TSE images were characterized, particularly for simulated prostate planning target volumes (PTVs). Results: Changes in rectal and bowel air location were observed, likely due to changes in bladder filling. Within the PTVs, displacement differences (mean ± stdev, range) were −0.02 ± 0.02 mm (−0.13 to 0.07 mm) for 1.0T, −0.1 ± 0.2 mm (−0.92 to 0.74 mm) for 1.5T, and −0.20 ± 0.03 mm (−0.61 to 0.38 mm) for 3.0T. Local changes of ∼1 mm at the prostate-rectal interface were observed for an extreme case at 1.5T. For end-inhale and end-exhale scans at 3.0T, 99% of the voxels had Δx differences within ±0.25mm, thus the displacement differences due to respiratory state appear negligible in the pelvis. Conclusion: Our work suggests that transient bowel/rectal gas due to bladder filling may yield non-negligible patient-specific distortion differences near the prostate/rectal interface, whereas respiration had minimal effect. A temporal patient model for patient

  6. Influence of different heat treatment programs on properties of sol ...

    Indian Academy of Sciences (India)

    C, respectively. In the three-step program, T1, the sample was first dried, then pyrolyzed, and finally calcinated, in the two-step pro- gram, T2, the drying step was omitted, while in program. T3 (one step), the sample was directly heated to the calcina- tion temperature. Heat treatment programs T4 and T5 were similar to heat ...

  7. Effect of heat treatment on viability of Taenia hydatigena eggs.

    Science.gov (United States)

    Buttar, Birpal S; Nelson, Mark L; Busboom, Jan R; Hancock, Dale D; Walsh, Douglas B; Jasmer, Douglas P

    2013-04-01

    Effects of heat treatments on activation and infectivity of Taenia hydatigena eggs were assessed. Eggs containing oncospheres were used for in vitro and in vivo studies to determine the response to 5min of heat treatment, ranging from room temperature (22°C) to 60°C. The study demonstrated 99.47% and 100% reduction in oncosphere activation or infectivity after 5min of heat treatment at 60°C and 57.38°C under in vitro and in vivo conditions, respectively. Similar results between the two approaches indicted the appropriateness of the in vitro methods to identify oncosphericidal treatments of practical significance. Similar heat treatments may also be effective against Taenia saginata and help to reduce occurrence of beef cysticercosis. Published by Elsevier Inc.

  8. Effect of Heat Treatment on Properties of Glass Nanocomposite Sealants.

    Science.gov (United States)

    Lee, Dong Bok; Ha, Su-Jeong; Jang, Dong-Hoon; Park, Sung; Bae, Joongmyeon; Lee, Jae Chun

    2015-01-01

    The objective of this study was to investigate the effect of heat treatments on the viscosities and electrical conductivities of glass sealants to be used in solid oxide fuel cells. Glass-based sealants, both with and without an alumina nanopowder added as a nanofiller, were heat treated at temperatures ranging from 750 degrees C to 770 degrees C for periods of up to 240 h. The effects of heat treatments on the viscosities, electrical conductivities and phase transformations of the sealants were investigated. The results showed that alumina nanopowder added to the glass increased both high-temperature electrical conductivities and the viscosities of the sintered glass nanocomposite sealants. However, lengthy heat treatments decreased the electrical conductivities of the glass nanocomposite sealants. This decrease in the conductivities of the heat-treated glass nanocomposites was attributed to the crystallization of glass phase, owing to the dissolution of the alumina nanofiller in the sealing glass.

  9. EFFECT OF POST-WELD HEAT TREATMENT ON THE ...

    African Journals Online (AJOL)

    Effect of post- weld heat treatment on the microstructure and mechanical properties of arc welded medium carbon steel was investigated. Medium carbon steel samples were butt- welded by using the shielded metal arc welding technique and, thereafter, heat treated by annealing, normalising and quench hardening in ...

  10. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    obtained from Alapli-Zonguldak Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for varying durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. The mechanical properties ...

  11. (AJST) EFFECT OF HEAT TREATMENT ON WEAR RESISTANCE ...

    African Journals Online (AJOL)

    ABSTRACT: The effects of heat treatment on the hardness and by extension the wear resistance of locally produced grinding plate ... from the grinding plate and were heat treated at 840°C, 860°C and 880°C and quenched at different rate. Some of the ... during dry sliding at low loading conditions has been attributed to the ...

  12. Influence of heat treatment on microstructure and passivity of Cu ...

    Indian Academy of Sciences (India)

    The corrosion resistance in buffer solution (pH 9), H3BO3/Na2B4O7·10H2O, with various concentrations of chloride ions was evaluated by potentiodynamic polarization curves and compared with multi- component Pourbaix diagrams. A correlation between the heat treatment, microstructure and passivity of the heat.

  13. Heat Treatment and Properties of Iron and Steel

    National Research Council Canada - National Science Library

    Digges, Thomas

    1966-01-01

    This monograph is a revision of the previous NBS Monograph 18. Its purpose is to provide an understanding of the heat treatment of iron and steels, principally to those unacquainted with this subject...

  14. Effect of Heat Treatment on Microstructural Changes in Aluminium Bronze

    Directory of Open Access Journals (Sweden)

    Hájek J.

    2016-09-01

    Full Text Available This paper attempts to summarise the microstructural changes which take place in aluminium bronzes during heat treatment. Another objective of this study was to map the potential of a certain type of aluminium bronzes for undergoing martensitic transformation. The methods, which were chosen for assessing the results of heat treatment with regard to their availability, included measurement of hardness and observation of microstructure using light and scanning electron microscopy, Additional tools for evaluation of microstructure comprised measurement of microhardness and chemical analysis by EDS. An important part of the experiment is observation of microstructural changes in the Jominy bar during the end-quench test. Upon completing experiments of this kind, one can define the heat treatment conditions necessary for obtaining optimum properties. In addition, the paper presents important findings on how to improve the corrosion resistance of aluminium bronzes by special heat treatment sequences.

  15. Review on prevention and treatment of severe heat stroke

    Directory of Open Access Journals (Sweden)

    Lei SU

    2011-09-01

    Full Text Available The conventional definition and typing of severe heat stroke are frequently based on its external behavior,not on its pathogenesis and essential characteristics.The present paper introduced the recognition of the essence of severe heat stroke,"the first critical point" and "the second critical point" hypotheses,as well as the academic progresses achieved domestically and abroad.The pathogenesis,clinical prevention,and treatments of heat stroke were discussed and reviewed to combine the basic research and clinical application of severe heat stroke pathogenesis,and to establish a new diagnostic criterion and therapy standard.

  16. Examination of heat treatments at preservation of grape must

    Directory of Open Access Journals (Sweden)

    Péter Korzenszky

    2014-02-01

    Full Text Available Heat treatment is a well-known process in food preservation. It is made to avoid and to slow down food deterioration. The process was developed by Louise Pasteur French scientist to avoid late among others wine further fermentation. The different heat treatments influence the shelf life in food production. In our article we present the process of grape must fermentation, as grape must is the base material of wine production. The treatment of harvested fresh grape juice has a big influence on end product quality. It is our experiments we examined the same grape must with four different methods in closed and in open spaces to determine CO2 concentration change. There are four different methods for treatment of grape juice: boiling, microwave treatment, treatment by water bath thermostat and a control without treatment. As a result of the comparison it can be stated that the heat treatment delays the start of fermentation, thereby increasing shelf life of grape must. However, no significant differences were found between two fermentation of heat-treated grape must by the microwave and water-bath thermostat. The different heat treatment of grape must base materials was done at the laboratory in Faculty of Mechanical Engineering of Szent István University. The origin of the table grapes used for the examination was Gödöllő-hillside. Normal 0 21 false false false HU X-NONE X-NONE

  17. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    OpenAIRE

    D?Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-01-01

    Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in ...

  18. Distorted Images.

    Science.gov (United States)

    Casey, Carolyn

    1994-01-01

    Discusses the treatment of Native Americans in the news media, highlighting both the biases in news reporting and efforts made to reform such practices. Indicates that although news coverage has slowly improved, the news media still has a general lack of understanding of Native American cultures. (MAB)

  19. Transient analysis of heat and mass transfer during heat treatment of wood including pressure equation

    Directory of Open Access Journals (Sweden)

    Younsi Ramdane

    2015-01-01

    Full Text Available In the present paper, three-dimensional equations for coupled heat and mass conservation equations for wood are solved to study the transient heat and mass transfer during high thermal treatment of wood. The model is based on Luikov’s approach, including pressure. The model equations are solved numerically by the commercial package FEMLfor the temperature and moisture content histories under different treatment conditions. The simulation of the proposed conjugate problem allows the assessment of the effect of the heat and mass transfer within wood. A parametric study was also carried out to determine the effects of several parameters such as initial moisture content and the sample thickness on the temperature, pressure and moisture content distributions within the samples during heat treatment.

  20. An Energy Savings Model for the Heat Treatment of Castings

    Energy Technology Data Exchange (ETDEWEB)

    Y. Rong; R. Sisson; J. Morral; H. Brody

    2006-12-31

    An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

  1. Optical fiber temperature sensors: applications in heat treatments for foods

    Science.gov (United States)

    Sosa-Morales, María Elena; Rojas-Laguna, Roberto; López-Malo, Aurelio

    2010-10-01

    Heat treatments are important methods to provide safe foods. Conventional heat treatments involve the application of steam and recently microwave treatments have been studied and applied as they are considered as fast, clean and efficient. Optical fiber sensing is an excellent tool to measure the temperature during microwave treatments. This paper shows the application of optical fiber temperature sensing during the heat treatment of different foods such as vegetables (jalapeño pepper and cilantro), cheese and ostrich meat. Reaching the target temperature, important bacteria were inactivated: Salmonella, Listeria and Escherichia coli. Thus, the use of optical fiber sensors has resulted be a useful way to develop protocols to inactivate microorganisms and to propose new methods for food processing.

  2. Effect of heat treatment on corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2017-01-01

    Full Text Available In the present paper, duplex WC-Co/NiCrAlY coating is coated onto Ti6Al4V substrate and vacuum heat treatment is employed to investigate the corrosion behavior of heat treated samples as well as Ti6Al4V substrate for comparison. In this duplex coating system, High Velocity Oxy Fuel (HVOF process is used to deposit NiCrAlY interlayer with a constant thickness of 200 μm and WC-Co ceramic top layer with varying thickness of 250 μm, 350 μm and 450 μm deposited by Detonation Spray (DS process. Different heat treatment temperatures (600–1150 °C were employed for the coated samples to study the microstructure and the effect on corrosion resistance of the duplex coatings. Potentiodynamic polarization tests were carried to investigate the corrosion performance of duplex coated heat treated samples and the substrate in Ringer’s solution at 37 °C and prepared the pH to 5.7. The microstructure upon corrosion after heat treatment was characterized by SEM analysis to understand the corrosion behavior. The results disclosed that at all heat treatment temperatures, all the coated samples exhibited better corrosion resistance than the base substrate. However, during 950 °C and 1150 °C heat treatment temperatures, it was observed highest corrosion potential than 600 °C and 800 °C. The 350 μm thickness, coated sample exhibited highest corrosion resistance compared to other two coated samples and the substrate at all heat treatment temperatures.

  3. Treatment of Medial Tibial Stress Syndrome according to the Fascial Distortion Model: A Prospective Case Control Study

    OpenAIRE

    Schulze, Christoph; Finze, Susanne; Bader, Rainer; Lison, Andreas

    2014-01-01

    Medial tibial stress syndrome (MTSS) is a common problem among athletes and soldiers. There is no proven theory that could explain the pathophysiology of shin splints. The therapies described so far are time-consuming and involve a high risk of relapse. The method according to the fascial distortion model (FDM) addresses local changes in the area of the lower leg fascia. It is suited to reduce pain and functional impairments associated with this symptom complex by applying targeted manual tec...

  4. Heat Pre-Treatment of Beverages Wastewater on Hydrogen Production

    Science.gov (United States)

    Uyub, S. Z.; Mohd, N. S.; Ibrahim, S.

    2017-06-01

    At present, a large variety of alternative fuels have been investigated and hydrogen gas is considered as the possible solution for the future due to its unique characteristics. Through dark fermentation process, several factors were found to have significant impact on the hydrogen production either through process enhancement or inhibition and degradation rates or influencing parameters. This work was initiated to investigate the optimum conditions for heat pre-treatment and initial pH for the dark fermentative process under mesophilic condition using a central composite design and response surface methodology (RSM). Different heat treatment conditions and pH were performed on the seed sludge collected from the anaerobic digester of beverage wastewater treatment plant. Heat treatment of inoculum was optimized at different exposure times (30, 90, 120 min), temperatures (80, 90 and 100°C) and pH (4.5, 5.5, 6.5) in order to maximize the biohydrogen production and methanogens activity inhibition. It was found that the optimum heat pre-treatment condition and pH occurred at 100°C for 50 min and the pH of 6.00. At this optimum condition the hydrogen yield was 63.0476 ml H2/mol glucose (H2 Yield) and the COD removal efficiency was 90.87%. In conclusion, it can be hypothesized that different heat treatment conditions led to differences in the initial microbial communities (hydrogen producing bacteria) which resulted in the different hydrogen yields.

  5. Effect of heat moisture treatment and annealing on physicochemical ...

    African Journals Online (AJOL)

    Red sorghum starch was physically modified by annealing and heat moisture treatment. The swelling power and solubility increased with increasing temperature range (60-90°), while annealing and heatmoisture treatment decreased swelling power and solubility of starch. Solubility and swelling were pH dependent with ...

  6. Compositions produced using an in situ heat treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2013-05-28

    Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  7. Compositions produced using an in situ heat treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Nair, Vijay [Katy, TX; Munsterman, Erwin Henh [Amsterdam, NL; Van Bergen, Petrus Franciscus [Amsterdam, NL; Van Den Berg, Franciscus Gondulfus Antonius (Amsterdam, NL)

    2009-10-20

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  8. Field Heat Treatment Technician: Competency Profile. Apprenticeship and Industry Training. 20908.1

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2008

    2008-01-01

    The graduate of the Field Heat Treatment Technician apprenticeship program is a certified journeyperson who will be able: (1) use heat treatment equipment to apply heat to materials in order to change a material's properties; (2) Use their knowledge of the properties of heat, industry codes and specifications to determine how heat treatment will…

  9. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    Science.gov (United States)

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  10. Rapid Heat Treatment of Aluminum High-Pressure Diecastings

    Science.gov (United States)

    Lumley, R. N.; Polmear, I. J.; Curtis, P. R.

    2009-07-01

    Recently, it has been demonstrated that common high-pressure diecasting (HPDC) alloys, such as those based on the Al-Si-Cu and Al-Si-Mg-(Cu) systems, may be successfully heat treated without causing surface blistering or dimensional instability. In some compositions, the capacity to exploit age hardening may allow the proof stress values to be doubled when compared to the as-cast condition. This heat treatment procedure involves the use of severely truncated solution treatment cycles conducted at lower than normal temperatures, followed by quenching and natural or artificial aging. The potential therefore exists to develop and evaluate secondary HPDC alloys designed specifically for rapid heat treatment, while still displaying high castability. This article reports results of an experimental program in which responses of various alloy compositions to age hardening have been investigated with the primary aim of further reducing the duration and cost of the heat treatment cycle while maintaining high tensile properties. Composition ranges have been established for which values of 0.2 pct proof stress exceeding 300 MPa ( i.e., increases of ~100 pct above as-cast values) can be achieved using a procedure that involves a total time for solution treatment plus age hardening of only 30 minutes. This rapid aging behavior is shown to be related to precipitation of the complex Q' phase, which forms primarily when Mg contents of the alloys are above ~0.2 wt pct.

  11. EFFECT OF HEAT TREATMENT ON SOYBEAN PROTEIN SOLUBILITY

    Directory of Open Access Journals (Sweden)

    RODICA CĂPRIŢĂ

    2007-05-01

    Full Text Available The use of soybean products in animal feeds is limited due to the presence of antinutritional factors (ANF. Proper heat processing is required to destroy ANF naturally present in raw soybeans and to remove solvent remaining from the oil extraction process. Over and under toasting of soybean causes lower nutritional value. Excessive heat treatment causes Maillard reaction which affects the availability of lysine in particular and produces changes to the chemical structure of proteins resulting in a decrease of the nutritive value. The objective of this study was to evaluate the effect of heating time on the protein solubility. The investigation of the heating time on protein solubility in soybean meal (SBM revealed a negative correlation (r = -0.9596. Since the urease index is suitable only for detecting under processed SBM, the protein solubility is an important index for monitoring SBM quality.

  12. 49 CFR 179.220-11 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... treated before welding to shell if postweld heat treatment is not practicable due to assembly procedures... SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-11...

  13. intercritical heat treatments effects on low carbon steels quenched

    African Journals Online (AJOL)

    DR B. A. EZEKOYE

    of a duplex structure comprising hard particles embedded in a soft ferrite matrix, but then differ in the way the strain is partitioned between the phases. The purpose of this work was to investigate the effect of diverse intercritical heat treatments on the mechanical properties of six low carbon steels, containing carbon with the ...

  14. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    Effect of heat treatment (55°C/20 min) on polyphenol oxidase (PPO) and peroxidase (POD) activities and total phenolic compounds was investigated in Algerian dates (Deglet Nour variety) at Tamar (fully ripe) stage and in dates stored for 5 months at ambient temperature and in cold storage (10°C). Results obtained ...

  15. Effects of heat treatment on deformation characteristics of medium ...

    African Journals Online (AJOL)

    The effects of heat treatment on bending deformation, tensile strength and hardness of RST 37 medium carbon steels were investigated. Steel rod samples of ø12 mm diameter, 100 mm length, and % weight composition of 0.39 wt % C, 0.70 wt % Mn and 0.80 wt % Si and traces of alloying elements were tested.

  16. Effect of heat treatment temperature on microstructure and ...

    Indian Academy of Sciences (India)

    Administrator

    Keywords. Hollow carbon spheres; heat treatment; gas pressure; lithium ion battery. 1. Introduction. The development of portable devices in recent years has ..... project of Shanghai Municipal Education Commission and. Shanghai Education Development Foundation Science and. Technology (No. 09CG53), Science and ...

  17. Heuristic algorithms for scheduling heat-treatment furnaces of steel ...

    Indian Academy of Sciences (India)

    The scheduling of furnaces for heat-treatment of castings is of considerable interest as a large proportion of the total production time is the processing times of these ... Department of Management Studies, Indian Institute of Science, Bangalore 560 012; Singapore-MIT Alliance, School of Mechanical and Aerospace ...

  18. Effects of moisture content and heat treatment on peroxide value ...

    African Journals Online (AJOL)

    Effects of moisture content and heat treatment on peroxide value and oxidative stability of un-refined sesame oil. ... Its seed contains about 42-54 % quality oil, 22-25 % protein, 20-25 % carbohydrates and 4-6% ash. This composition varies with genetic ... and temperature. Key words: Sesame, Oil, Crude, Oxidation, Storage ...

  19. Changes in hydroxyapatite powder properties via heat treatment

    Indian Academy of Sciences (India)

    The properties of hydroxyaptite (HA) powder, especially its physical one, are largely influenced by the heat treatment process. Controlling of these changes is vital in deciding the suitability of applying this powder in wet processing routes for green body fabrication. Chemically, the crystallinity of the HA powder was found to ...

  20. Effects of heat treatment on density, dimensional stability and color ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate the effect of heat treatment on some physical properties and color change of Pinus nigra wood which has high industrial use potential and large growing stocks in Turkey. Wood samples which comprised the material of the study were obtained from an industrial plant. Samples were ...

  1. Heat transition during magnetic heating treatment: Study with tissue models and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Henrich, Franziska [Technische Universität Dresden, Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, 01062 Dresden (Germany); Max Planck Institute for Polymer Research, Physics at Interfaces, 55128 Mainz (Germany); Rahn, Helene, E-mail: helene.rahn@tu-dresden.de [Technische Universität Dresden, Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, 01062 Dresden (Germany); Odenbach, Stefan [Technische Universität Dresden, Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, 01062 Dresden (Germany)

    2015-04-15

    The magnetic heating treatment (MHT) is well known as a promising therapy for cancer diseases. Depending on concentration and specific heating power of the magnetic material as well as on parameters of the magnetic field, temperatures between 43 and 55 °C can be reached. This paper deals with the evaluation of heat distribution around such a heat source in a tissue model, thereby focusing on the heat transfer from tissue enriched with magnetic nanoparticles to regions of no or little enrichment of magnetic nanoparticles. We examined the temperature distribution with several tissue phantoms made of polyurethane (PUR) with similar thermal conductivity coefficient as biological tissue. These phantoms are composed of a cylinder with one sphere embedded, enriched with magnetic fluid. Thereby the spheres have different diameters in order to study the influence of the surface-to-volume ratio. The phantoms were exposed to an alternating magnetic field. The magnetically induced heat increase within the phantoms was measured with thermocouples. Those were placed at defined positions inside the phantoms. Based on the measured results a 3-dimensional simulation of each phantom was built. We achieved an agreement between the measured and simulated temperatures for all phantoms produced in this experimental study. The established experiment theoretically allows a prediction of temperature profiles in tumors and the surrounding tissue for the potential cancer treatment and therefore an optimization of e.g. the respective magnetic nanoparticles concentrations for the desirable rise of temperature. - Highlights: • Four phantoms built to measure the temperature distribution during magnetic heating. • Simulations have been carried out based on experimental data. • Measured and simulated temperature distribution for different magnetic field strength. • Temperature profiles for with ferrofluid enriched areas of different size. • Comparison of experimental and simulated data.

  2. Optimisation of the T6 heat treatment of rheocast alloy A356

    CSIR Research Space (South Africa)

    Moller, H

    2007-11-01

    Full Text Available The heat treatment cycles that are currently applied to processed components are mostly those that are in use for traditional dendritic alloys. These heat treatments are not necessarily the optimum heat treatments for SSM processing. The T6 heat...

  3. Cleaning graphene: Comparing heat treatments in air and in vacuum

    Science.gov (United States)

    Tripathi, Mukesh; Mittelberger, Andreas; Mustonen, Kimmo; Mangler, Clemens; Kotakoski, Jani; Meyer, Jannik C.; Susi, Toma

    2017-08-01

    Surface impurities and contamination often seriously degrade the properties of two-dimensional materials such as graphene. To remove contamination, thermal annealing is commonly used. We present a comparative analysis of annealing treatments in air and in vacuum, both ex situ and "pre-situ", where an ultra-high vacuum treatment chamber is directly connected to an aberration-corrected scanning transmission electron microscope. While ex situ treatments do remove contamination, it is challenging to obtain atomically clean surfaces after ambient transfer. However, pre-situ cleaning with radiative or laser heating appears reliable and well suited to clean graphene without undue damage to its structure.

  4. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    Directory of Open Access Journals (Sweden)

    N. V. Kolebina

    2015-01-01

    Full Text Available The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. However, taking into account the large size of the blanks for the hydro turbine parts, the thermal cycling is an advanced method of the grain refinement adaptable to streamlined production. This work experimentally studies the heat treatment influence on the microstructure of the low-carbon 01X13N04 alloy steel and proposes the optimal regime of the heat treatment to provide a significantly reduced grain size. L.M. Kleiner, N.P. Melnikov and I.N. Bogachyova’s works focused both on the microstructure of these steels and on the influence of its parameters on the mechanical properties. The paper focuses mainly on defining an optimal regime of the heat treatment for grain refinement. The phase composition of steel and temperature of phase transformation were defined by the theoretical analysis. The dilatometric experiment was done to determine the precise temperature of the phase transformations. The analysis and comparison of the experimental data with theoretical data and earlier studies have shown that the initial sample has residual stress and chemical heterogeneity. The influence of the heat treatment on the grain size was studied in detail. It is found that at temperatures above 950 ° C there is a high grain growth. It is determined that the optimal number of cycles is two. The postincreasing number of cycles does not cause further reducing grain size because of the accumulative recrystallization process. Based on the results obtained, the thermal cycling

  5. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    Directory of Open Access Journals (Sweden)

    Laura D'Evoli

    2013-07-01

    Full Text Available Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g. Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (−17%, while for lutein it was greater in the pulp fraction (−25%. Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (−36%. The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  6. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes.

    Science.gov (United States)

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-07-31

    Tomatoes and tomato products are rich sources of carotenoids-principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g). Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (-17%), while for lutein it was greater in the pulp fraction (-25%). Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (-36%). The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  7. Laboratory tests on heat treatment of ballast water using engine waste heat.

    Science.gov (United States)

    Balaji, Rajoo; Lee Siang, Hing; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri Bin; Ismail, Nasrudin Bin; Ahmad, Badruzzaman Bin; Ismail, Mohd Arif Bin; Wan Nik, W B

    2017-05-07

    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.

  8. Temperature Evaluation of Heat Transferring Body while Preparing Temperature Chart of Heating Technologies and Metal Thermal Treatment

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2011-01-01

    Full Text Available The paper considers problems pertaining to temperature evaluation of a heat transferring body in the operational space of high temperature installations. A formula for evaluation of this temperature has been written down in the paper. Calculation of a heating transferring body (furnace makes it possible to realize temperature chart parameters in the plant heating technologies and steel thermal treatment.

  9. Evaluating the Heat Pump Alternative for Heating Enclosed Wastewater Treatment Facilities in Cold Regions.

    Science.gov (United States)

    1982-05-01

    develop this procedure was obtained from site visits, technical reports and papers, and heating!/I ventilation and air conditioning (HVAC) manuals . It...Calculation Manual (1979) for many U.S., Canadian and foreign cities. Appendix A lists winter design temperatures for a few selected cities in the United...Service Capacity Construction* maintenance materiall area (1000 Btu/hr) costs ($) costs ($/yr) 1 Enclosed 2100 86,676 4,400 Treatment Area 2 Office area

  10. The heat treatment of steel. A mathematical control problem

    Energy Technology Data Exchange (ETDEWEB)

    Hoemberg, Dietmar; Kern, Daniela

    2009-07-21

    The goal of this paper is to show how the heat treatment of steel can be modelled in terms of a mathematical optimal control problem. The approach is applied to laser surface hardening and the cooling of a steel slab including mechanical effects. Finally, it is shown how the results can be utilized in industrial practice by a coupling with machine-based control. (orig.)

  11. Effect of heat treatment on precipitation on V-5Cr-5Ti heat BL63

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Li, H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    The microstructures of V-5Cr-5Ti heat BL63 are compared following heat treatments at 1125{degrees}C for 1 h and 1125{degrees}C for 1 h followed by 890{degrees}C for 24 h. Following the 890{degrees}C treatment, precipitate density was increased due to the presence of a moderate density of highly elongated particles. Microchemical analysis showed that these particles often contained both Ti and V, some particles showed minor amounts of Si, S, and P, but it was also possible to show that these precipitates were enriched in O rather than C or N. Following the 1125{degrees}C heat treatment, only Si was found as a minor impurity in large particles, but S could be identified at grain boundaries, which were coated with a fine distribution of precipitates. The embrittlement observed is ascribed to a combination of interstitial solid solution hardening and grain boundary embrittlement, with interstitial hardening likely the dominant factor.

  12. THE HEAT TREATMENT ANALYSIS OF E110 CASE HARDENING STEEL

    Directory of Open Access Journals (Sweden)

    MAJID TOLOUEI-RAD

    2016-03-01

    Full Text Available This paper investigates mechanical and microstructural behaviour of E110 case hardening steel when subjected to different heat treatment processes including quenching, normalizing and tempering. After heat treatment samples were subjected to mechanical and metallographic analysis and the properties obtained from applying different processes were analysed. The heat treatment process had certain effects on the resultant properties and microstructures obtained for E110 steel which are described in details. Quenching produced a martensitic microstructure characterized by significant increase in material’s hardness and a significant decreased in its impact energy. Annealed specimens produced a coarse pearlitic microstructure with minimal variation in hardness and impact energy. For normalized samples, fine pearlitic microstructure was identified with a moderate increase in hardness and significant reduction in impact energy. Tempering had a significant effect on quenched specimens, with a substantial rise in material ductility and reduction of hardness with increasing tempering temperature. Furthermore, Results provide additional substantiation of temper embrittlement theory for low-carbon alloys, and indicate potential occurrence of temper embrittlement for fine pearlitic microstructures.

  13. New heat treatment process for advanced high-strength steels

    Science.gov (United States)

    Bublíková, D.; Jeníček, Š.; Vorel, I.; Mašek, B.

    2017-02-01

    Today’s advanced steels are required to possess high strength and ductility. It can be achieved by choosing an appropriate steel chemistry which has a substantial effect on the properties obtained by heat treatment. Mechanical properties influenced the presence of retained austenite in the final structure. Steels of this group typically require complicated heat treatment which places great demands on the equipment used. The present paper introduces new procedures aimed at simplifying the heat treatment of high-strength steels with the use of material-technological modelling. Four experimental steels were made and cast, whose main alloying additions were manganese, silicon, chromium, molybdenum and nickel. The steels were treated using the Q-P process with subsequent interrupted quenching. The resulting structure was a mixture of martensite and retained austenite. Strength levels of more than 2000 MPa combined with 10-15 % elongation were obtained. These properties thus offer potential for the manufacture of intricate closed-die forgings with a reduced weight. Intercritical annealing was obtained structure not only on the basis of martensite, but also with certain proportion of bainitic ferrite and retained austenite.

  14. Analysis and control of harmonic distortions on electrical distribution ...

    African Journals Online (AJOL)

    ... peak factor and harmonic distortions of the alternating or sinusoidal wave forms. The consequences of harmonic distortions of transmitted electrical energy might be damage of con-densers, untimely release of circuit breakers, resonance in the networks, warming of transformers and over heat-ing of electrical appliances.

  15. Advances in rapid cooling treatment for heat stroke

    Directory of Open Access Journals (Sweden)

    Jia-jia ZHAO

    2014-10-01

    Full Text Available Heat stroke is a life-threatening disease characterized clinically by central nervous system dysfunction and severe hyperthermia (core temperature rises to higher than 40℃. The unchecked rise of body core temperature overwhelms intrinsic or extrinsic heat generation mechanism, thus overwhelms homoeostatic thermoregulation. Hyperthermia causes cellular and organ dysfunction with progressive exacerbation resulting in multi-organ failure and death. Rapid cooling to reduce core temperature as quickly as possible is the primary and most effective treatment, as it has been shown that the major determinant of outcome in heatstroke is the degree and duration of hyperthermia. If suppression of body temperature is delayed, the fatality rate will be elevated. Several cooling methods are available, including physical cooling by conduction, convection and evaporation with ice/cold water immersion, internal cooling by invasive methods such as hemofiltration, intravascular cooling, cold water gastric and rectal lavage, and cooling with drugs. It is crucial to formulate a scientific and reasonable strategy for the subsequent treatment in accordance with the patient's physical condition, the condition of cooling equipment, and the manipulator's proficiency in cooling methods and equipment usage. This article reviews the domestic and international advances in study of rapid and efficient cooling measures for heat stroke. DOI: 10.11855/j.issn.0577-7402.2014.10.17

  16. Integration of heat treatment of wood with cogeneration production and district heating; Vaermebehandling av trae integrerad med kraftvaermeproduktion och fjaerrvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Delin, Lennart; Essen, Henrik (AaF, Stockholm (Sweden))

    2011-05-15

    Heat treatment of wood changes the properties of wood so that the moisture uptake is reduced and the wood movements are reduced at variations in the ambient air humidity. The wood gets an increased resistance to rot and can therefore replace impregnated wood in certain applications. Heat treated wood is however not suitable for direct contact with soil. The strength is also reduced by heat treatment, so it is not recommended for supporting constructions. No additives whatsoever are used in the treatment, so the heat treated wood is very advantageous from an environmental point of view. The wood is dried completely at the heat treatment and heated to about 200 deg C. The question has hence been put, if it is advantageous to collocate a heat treatment plant with district heating or a power cogeneration plant. The aim of the study is to assess the value of such a collocation. Existing heat treatment plants are both few and small and the calculations have hence been made for how a large plant could be designed. A market study is included to assess the market for this type of plants. This shows that the present market for heat treated wood is very small. A full scale treatment plant of the type discussed in this study could probably not be built, since even single plants of this size would require a too large part of the market. The potential to replace impregnated wood is on the other hand very large. The cost for large scale heat treatment should be significantly lower than for impregnated wood and the cost for handling hazardous waste (which impregnated wood is classified as) is also removed. There should therefore be a potential for a future much larger volume of heat treated wood. The study shows that the energetic profit of collocation of a heat treatment plant for wood with district heating or power cogeneration plants is of lower importance. Maximally about 0.5 MSEK/year can be saved for a 25 000 m3/year plant. The initial drying of all sawn lumber has much more

  17. Developing Novel Heat treatments for Automotive Spring Steels : Phase Transformations, Microstructure and Performance

    NARCIS (Netherlands)

    Goulas, K.

    2018-01-01

    This Ph.D. thesis investigates the substitution of quenching and tempering treat-
    ments by isothermal bainitic treatments in automotive spring production. An isothermal bainitic treatment has benefits mainly in terms of energy savings, but it can also prevent quench cracking, distortion and

  18. Heat Treatment Development for a Rapidly Solidified Heat Resistant Cast Al-Si Alloy

    Science.gov (United States)

    Kasprzak, W.; Chen, D. L.; Shaha, S. K.

    2013-07-01

    Existing heat treatment standards do not properly define tempers for thin-walled castings that solidified with high solidification rates. Recently emerged casting processes such as vacuum high pressure die casting should not require long solution treatment times due to the fine microstructures arising from rapid solidification rates. The heat treatment studies involving rapidly solidified samples with secondary dendrite arm spacing between 10 and 35 μm were conducted for solution times between 30 min and 9 h and temperatures of 510 and 525 °C and for various aging parameters. The metallurgical analysis revealed that an increase in microstructure refinement could enable a reduction of solution time up to 88%. Solution treatment resulted in the dissolution of Al2Cu and Al5Mg8Si6Cu2, while Fe- and TiZrV-based phases remained partially in the microstructure. The highest strength of approximately 351 ± 9.7 and 309 ± 3.4 MPa for the UTS and YS, respectively, was achieved for a 2-step solution treatment at 510 and 525 °C in the T6 peak aging conditions, i.e., 150 °C for 100 h. The T6 temper did not yield dimensionally stable microstructure since exceeding 250 °C during in-service operation could result in phase transformation corresponding to the over-aging reaction. The microstructure refinement had a statistically stronger effect on the alloy strength than the increase in solutionizing time. Additionally, thermal analysis and dilatometer results were presented to assess the dissolution of phases during solution treatment, aging kinetics as well as dimensional stability.

  19. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  20. Moist heat treatment on physicochemical change of chitosan salt films.

    Science.gov (United States)

    Ritthidej, Garnpimol C; Phaechamud, Thawatchai; Koizumi, Tamotsu

    2002-01-31

    Chitosan salt films were prepared by casting method using acetic, citric, formic, glycolic, lactic, malic and propionic acids as solubilizers. The films were then exposed to moist heat at 60 degrees C and 75% relative humidity for several time intervals. The influence of moist heat treatment on their physicochemical characteristics was investigated. All freshly prepared films were soluble in deionized water and HCl buffer solution. Chitosan citrate film also dissolved in phosphate buffer solution. After treatment, the percentage of water sorption and dissolution of chitosan films in three media were gradually decreased. Longer alkyl group and less carboxyl and hydroxyl groups in the molecule of organic acid resulted in lower percentage of water sorption and dissolution of treated films. The FT-IR spectra revealed that there was amide formation between chitosan and organic acids after treatment especially in chitosan acetate and propionate films. However, the absorption peaks of ammonium ['NH3+] and free carboxylate groups were still remained in treated chitosan citrate and malate films. Change in the degree of crystallinity from powder X-ray diffractogram and thermal characteristic from DSC thermogram were also related to the water sorption and dissolution of films.

  1. The Effect of Heat Treatment on Alkali Activated Materials

    Directory of Open Access Journals (Sweden)

    Girts BUMANIS

    2017-08-01

    Full Text Available The primary object of the present research was to investigate the porous low calcium alkali activated material (AAM. Traditionally Na+ ions for alkali activation solution ensure highly alkaline media which enhances the dissolution of amorphous phase in the raw materials forming solid cementitious material with sodium aluminosilicate hydrate (N-A-S-H structure afterwards. Almost all alkali ions are partially hydrated filling the pores in the gel structure (N-A-S-H gel, type zeolite precursor and neutralizing the charge on Al(OH-4 groups. These alkali ions are available for leaching in water environment. Due to this property the application of porous AAM in this research is related to the water treatment systems similar to those of natural zeolites which are considered as effective sorbent because of their porous structure, high specific surface and ion exchange. Porous AAM was obtained from metakaolin, sodium silicate glass, modified sodium silicate solution with Ms = 1.68 and diethylene glycol (DEG aluminium paste as pore forming agent. The density of AAM was 1150 ± 12 kg/m3 and compressive strength fc > 12 MPa. The effect of heat treatment to microstructure and structural properties of AAM was investigated. Heat treatment is an effective method for changing the alkali leaching kinetic form AAM structure.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16280

  2. COMPUTERIZED HEAT-TREATMENT IN A ZIMBABWEAN FACTORY

    Directory of Open Access Journals (Sweden)

    M. Collier

    2012-01-01

    Full Text Available In the context of Zimbabwe's current economic problems, parts of the manufacturing industry are turning their attention to the possibility of utilising local design talent in upgrading their manufacturing plants. This paper describes a project undertaken by the National University of Science and Technology to convert the heat-treatment process in a major manufacturing plant from semi -manual to a computerized one. The system comprises microcontroller connection to the furnaces and sensors, and communicates with a central computer on which software for a windowed user-interface is hosted. Experimental results for the system are presented, and a strategy for other companies in the same predicament is proposed.

  3. Effect of heat treatment on mechanical properties and microstructure of selective laser melting 316L stainless steel

    Science.gov (United States)

    Kamariah, M. S. I. N.; Harun, W. S. W.; Khalil, N. Z.; Ahmad, F.; Ismail, M. H.; Sharif, S.

    2017-10-01

    Selective Laser Melting (SLM) has been one of the preferred Additive Manufacturing process to fabricate parts due to its merits in terms of design freedom, lower material waste and faster production when compare to the conventional manufacturing processes. However, due to the thermal gradient experienced during the process, the parts are exposed to the residual stress that leads to parts distortion. This work presents the effect of heat treatments on the micro-hardness of 316L stainless steel parts. In current study, SLM has been employed to fabricate 316L stainless steel compacts. Different heat treatments of 650°C, 950°C, and 1100°C for 2 hours were applied on the compacts. Hardness test were performed on the as-built and heat-treated compacts. The relationship between the microstructures and micro-hardness were discussed in this paper. The results revealed that the micro-hardness of the as-built compacts is between 209.0 and 212.2 HV, which is much higher than the heattreated compacts.

  4. Efficacy of a manual method according to the fascial distortion model in the treatment of contracted («frozen» shoulder

    Directory of Open Access Journals (Sweden)

    M. Fink

    2014-01-01

    Full Text Available «Frozen shoulder» is a common problem and difficult to treat. The present prospective randomised single-blind controlled trial evaluates the efficacy of the fascial distortion model according to Typaldos as a remedy for the «frozen shoulder». Material and methods. A total of 60 patients were randomised to receive either the FDM-guided treatment (FDM, n = 30 or a «conventional» manual therapy (MT, n=30. The primary endpoint for the treatment effect was the shoulder mobility, and secondary endpoints were pain (measured on a VAS, raw force and function as expressed by the Constant-Murley and DASH scores. Results. Before therapy groups were well comparable in terms of all outcome parameters. All endpoints showed a substantial and significant improvement in both treatment groups. Improvement was significantly more marked in the FDM group as compared to the MT group, and the effect occurred significantly faster. During posttreatment observation, there was no further improvement and the achieved benefit in mobility in the FDM group decreased. However, the abduction ability of 15,2±37,2° continued to be substantially better than in control patients (124.1±38.6°, p <0,01, and the ultimate improvement in abduction was 59.4° (64% more than baseline as opposed to 25.9° (27% in controls. Secondary outcome parameters (raw force, functional handicap, and pain showed a significant improvement in both groups but a significantly better result in patients treated according to FDM guidelines. However, patients in this group experienced pain during the treatment more frequently (21/27 vs. 10/27, P < 0,01 . Conclusion. «Frozen shoulder» treatment according to the FDM is an effective modality with swift onset of action and acceptable side effects that is superior to conventional manual therapy. Long-tern effects, and modes of action need to be investigated.

  5. SU-E-J-205: Dose Distribution Differences Caused by System Related Geometric Distortion in MRI-Guided Radiation Treatment System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J; Yang, J; Wen, Z [MD Anderson Cancer Center, Houston, TX (United States); Marshall, S [Monaco, Elekta AB, Tampa, FL (Monaco); Court, L; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: MRI has superb soft tissue contrast but is also known for geometric distortions. The concerns and uncertainty about MRI’s geometric distortion have contributed to the hesitation of using only MRI for simulation in radiation therapy. There are two major categories of geometric distortion in MRI; system related and patient related. In this presentation, we studied the impact of system-related geometric distortion on dose distribution in a digital body phantom under an MR-Linac environment. Methods: Residual geometric distortion (after built-in geometric correction) was modeled based on phantom measurements of the system-related geometric distortions of a MRI scanner of a combined MR guided Radiation Therapy (MRgRT) system. A digital oval shaped phantom (40×25 cm) as well as one ellipsoid shaped tumor volume was created to simulate a simplified human body. The simulated tumor volume was positioned at several locations between the isocenter and the body surface. CT numbers in HUs that approximate soft tissue and tumor were assigned to the respective regions in the digital phantom. To study the effect of geometric distortion caused by system imperfections, an IMRT plan was optimized with the distorted image set with the B field. Dose distributions were re-calculated on the undistorted image set with the B field (as in MR-Linac). Results: The maximum discrepancies in both body contour and tumor boundary was less than 2 mm, which leads to small dose distribution change. For the target in the center, coverage was reduced from 98.8% (with distortion) to 98.2%; for the other peripheral target coverage was reduced from 98.4% to 95.9%. Conclusion: System related geometric distortions over the 40×25 area were within 2mm and the resulted dosimetric effects were minor for the two tumor locations in the phantom. Patient study will be needed for further investigation. The authors received a corporate research grant from Elekta.

  6. 76 FR 3077 - Notice of Decision To Revise a Heat Treatment Schedule for Emerald Ash Borer

    Science.gov (United States)

    2011-01-19

    ... use hot water to produce heat. That design limits the internal temperature of the kiln to... Animal and Plant Health Inspection Service Notice of Decision To Revise a Heat Treatment Schedule for... are advising the public of our decision to revise a heat treatment schedule for the emerald ash borer...

  7. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Similarly, application of postharvest quarantine heat treatment (52-55 °C) for 5 minutes to mango showed no heat injury (HI) symptoms like skin scalding, damaged lenticels which could be due to very short duration of exposure. Extent of recommendation of pre-cooling temperature and heat treatment of these fruits after ...

  8. Heat Recovery Apparatus for the Local Air Treatment

    OpenAIRE

    Burlacu, Andrei; Mateescu, Theodor

    2009-01-01

    The present paper presents a heat-recovery apparatus with heat pipes, originally designed by the authors for the controlled mechanical ventila-tion systems to ensure the comfort in the insulated buildings. The paper highlights a close correlation between the heat pipes heat exchangers and the concepts of thermal comfort, energy economy, environment, etc.

  9. Heat Recovery Apparatus for the Local Air Treatment

    Directory of Open Access Journals (Sweden)

    Theodor Mateescu

    2009-01-01

    Full Text Available The present paper presents a heat-recovery apparatus with heat pipes, originally designed by the authors for the controlled mechanical ventila-tion systems to ensure the comfort in the insulated buildings. The paper highlights a close correlation between the heat pipes heat exchangers and the concepts of thermal comfort, energy economy, environment, etc.

  10. Gas injection to inhibit migration during an in situ heat treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Myron Ira (Houston, TX); Vinegar; Harold J. (Bellaire, TX); Baker, Ralph Sterman (Fitchburg, MA); Heron, Goren (Keene, CA)

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  11. Effect of erythrocyte heat treatment on pulmonary vascular resistance.

    Science.gov (United States)

    Hakim, T S

    1994-07-01

    The effect of red blood cell deformability on the pulmonary vascular resistance was studied in isolated dog and rat lungs. Blood cells were incubated at 49 degrees C for 1 hr, to render them rigid. The resistance to blood flow in the lung was assessed either by calculating the pulmonary vascular resistance (PVR = arterial - venous pressure difference divided by flow rate) or by examining the vascular pressure-flow relationship for changes in slope and intercept. The resistance in the lung was first assessed during perfusion with normal blood and again during perfusion with rigid cells. The results showed that PVR in dog lungs increased by 15% during perfusion with heat-treated blood and that this increase in PVR was associated with a significant increase in the middle segment resistance (arterial-venous occlusion technique) and with an increase in critical closing pressure (pressure intercept of the pressure-flow curve). In contrast to the small effect in dog lungs, the PVR in rat lungs rose more than 400% during perfusion with heat-treated blood. The marked increase of PVR in rat lungs was prevented with papaverine (PVR increased only 58%), suggesting that vasoconstriction was a primary event in rat lungs. The rise in vascular resistance in rat lungs was further shown to be primarily due to the presence of rigid erythrocytes (RBC). The increase in PVR in the rat lungs was not due to mechanical obstruction of the vasculature but rather to constriction of arteries and veins (double occlusion technique). The conclusion from this study is that RBC deformability plays an important role in the pulmonary vasculature, primarily because of release of vasoactive substances and partially because of the potential mechanical obstruction of capillaries. These events are apparently species dependent and are attributed mostly to red blood cell deformability which decreases during heat treatment.

  12. Cognitive Distortions in Depressed Women: Trait, or State Dependent?

    Directory of Open Access Journals (Sweden)

    Sedat BATMAZ

    2015-12-01

    Conclusion: The results have revealed that self-criticism, helplessness, hopelessness and preoccupation with danger related distortions had trait-like features, whereas self-blame related distortions were state dependent. This has clinical implications for the psychotherapeutic treatment of cognitive distortions in depression. Specifically, self-criticism related distortions should be managed during cognitive therapy for depression since the other subscales seem rather problematic. [JCBPR 2015; 4(3.000: 147-152

  13. [The influence of heat treatment on retention force of magnetic attachments].

    Science.gov (United States)

    Zhuang, Wen-jie; Weng, Wei-min

    2011-10-01

    To study the influence of heat treatment on retention force of magnetic attachments. Three groups of magnetic attachments (including 10 Magfit EX 400W, 10 Magfit EX 600W, 10 Magfit EX 800W) were fixed on universal test machine respectively. The retention force of each attachment was measured. After heat treatment, their retention force was measured again. The difference of retention force before and after heat treatment was compared using SPSS11.0 software package. The average retention force of magnetic attachments (Magfit EX 400W) was (1.58±0.12)N before heat treatment and (1.64±0.11)N after heat treatment. The average retention force of magnetic attachments (Magfit EX 600W) was (2.67±0.19)N before heat treatment and (2.65±0.14)N after heat treatment.The average retention force of magnetic attachments (Magfit EX 800W) was (3.02±0.25)N before heat treatment and (3.02±0.24)N after heat treatment. The retention force of magnetic attachments had no significant change after heat treatment (P>0.05). The magnetic attachments can be treated by waterbath heart treatment in the clinic without significant change of their retention force.

  14. Cooling methods used in the treatment of exertional heat illness.

    Science.gov (United States)

    Smith, J E

    2005-08-01

    To review the different methods of reducing body core temperature in patients with exertional heatstroke. The search strategy included articles from 1966 to July 2003 using the databases Medline and Premedline, Embase, Evidence Based Medicine (EBM) reviews, SPORTDiscus, and cross referencing the bibliographies of relevant papers. Studies were included if they contained original data on cooling times or cooling rates in patients with heat illness or normal subjects who were subjected to heat stress. In total, 17 papers were included in the analysis. From the evidence currently available, the most effective method of reducing body core temperature appears to be immersion in iced water, although the practicalities of this treatment may limit its use. Other methods include both evaporative and invasive techniques, and the use of chemical agents such as dantrolene. The main predictor of outcome in exertional heatstroke is the duration and degree of hyperthermia. Where possible, patients should be cooled using iced water immersion, but, if this is not possible, a combination of other techniques may be used to facilitate rapid cooling. There is no evidence to support the use of dantrolene in these patients. Further work should include a randomised trial comparing immersion and evaporative therapy in heatstroke patients.

  15. Structural transitions in alumina nanoparticles by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Nirmal; Khanna, Atul, E-mail: atul.phy@gndu.ac.in [Glass Physics and Sensors Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar-143005, Punjab (India); Chen, Banghao [Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306-4390 (United States); González, Fernando [Department of Chemistry and Process & Recourse Engineering, University of Cantabria, Santander-39005 (Spain)

    2016-05-23

    γ-alumina nanoparticles were annealed sequentially at 800°C, 950°C and 1100°C and structural transitions as a function of heat treatment were studied by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and {sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) methods.. XRD studies found that γ-Al{sub 2}O{sub 3} is stable upto a temperature of at least 950°C and transforms to the thermodynamically stable α-phase after annealing at 1100°C. MAS-NMR revealed that γ-alumina contains AlO{sub 4} and AlO{sub 6} structural units in the ratio 1: 2, while α-phase contains only AlO{sub 6} units. DSC confirmed that γ → α transition initiates at 1060°C.

  16. A study of the effects of prior heat treatment on the skin reaction of mouse feet after heat alone or combined with X-rays: influence of misonidazole

    NARCIS (Netherlands)

    Wondergem, J.; Haveman, J.

    1984-01-01

    The skin of mouse feet was used to study the effects of hyperthermic treatment, either alone or combined with irradiation. The present experiments show that a priming heat treatment induces resistance both to a subsequent heat treatment and to a subsequent combined irradiation-heat treatment. The

  17. Heat Treatment in High Chromium White Cast Iron Ti Alloy

    Directory of Open Access Journals (Sweden)

    Khaled M. Ibrahim

    2014-01-01

    Full Text Available The influence of heat treatment on microstructure and mechanical properties of high chromium white cast iron alloyed with titanium was investigated. The austenitizing temperatures of 980°C and 1150°C for 1 hour each followed by tempering at 260°C for 2 hours have been performed and the effect of these treatments on wear resistance/impact toughness combination is reported. The microstructure of irons austenitized at 1150°C showed a fine precipitate of secondary carbides (M6C23 in a matrix of eutectic austenite and eutectic carbides (M7C3. At 980°C, the structure consisted of spheroidal martensite matrix, small amounts of fine secondary carbides, and eutectic carbides. Titanium carbides (TiC particles with cuboidal morphology were uniformly distributed in both matrices. Irons austenitized at 980°C showed relatively higher tensile strength compared to those austenitized at 1150°C, while the latter showed higher impact toughness. For both cases, optimum tensile strength was reported for the irons alloyed with 1.31% Ti, whereas maximum impact toughness was obtained for the irons without Ti-addition. Higher wear resistance was obtained for the samples austenitized at 980°C compared to the irons treated at 1150°C. For both treatments, optimum wear resistance was obtained with 1.3% Ti.

  18. Effectiveness of sanitizers, dry heat, hot water, and gas catalytic infrared heat treatments to inactivate Salmonella on almonds.

    Science.gov (United States)

    Bari, Md Latiful; Nei, Daisuke; Sotome, Itaru; Nishina, Ikuo; Isobe, Seiichi; Kawamoto, Shinnichi

    2009-10-01

    The majority of almond-related foodborne outbreaks have been associated with Salmonella. Therefore, it is necessary to find an effective method to inactivate these organisms on raw almond prior to market distribution. This study was conducted to assess the effectiveness of sanitizers (strong or mild electrolyzed water, ozonated water, and distilled water), dry heat treatment, and hot water treatments followed by catalytic infrared (IR) heat treatment to inactivate Salmonella populations on raw almond. Raw almonds inoculated with four-strain cocktails of Salmonella were treated either by soaking in different chemical sanitizers or with dry heat and/or hot water for various periods of time followed by catalytic IR heat treatment for 70 seconds. The treated seeds were then assessed for the efficacy of the treatment in reducing populations of the pathogens. After inoculation and air-drying, 5.73 +/- 0.12 log colony-forming units (CFU)/g Salmonella were detected in nonselective medium. Sanitizer treatment alone did not show significant reduction in the Salmonella population, but in combination with IR drying it reduced the population to 3.0 log CFU/g. Dry heating at 60 degrees C for 4 days followed by IR drying for 70 seconds reduced the Salmonella population an additional 1.0 log CFU/g. Hot water treatments at 85 degrees C for 40 seconds followed by IR drying for 70 seconds reduced pathogens to an undetectable level by direct plating, but not by enrichment.

  19. The causes of milk deposit formation on the walls of the heat exchangers during the heat treatment of milk

    Directory of Open Access Journals (Sweden)

    Bojan Matijević

    2006-03-01

    Full Text Available The results of research on finding the causes and preventing the formation of milk deposit are described in this paper.During the heat treatment of milk, an unwanted phenomenon occurs; the formation of milk deposit on heating surfaces of heat exchangers. This phenomenon causes the decrease of heat transfer coefficient as well as the pressure drop, it restricts the flow of milk, and causes additional production costs and increases production loss.The formation of milk deposit is a result of complex processes caused by thermal treatment of proteins and mineral substances in milk. Factors which cause milk deposit are: pH - value, the amount of proteins and mineral substances in milk, dissolved gases in milk, characteristics of heating surface, the difference in temperatures of milk and heating surfaces, and the regime of milk circulation. The chemical composition of milk can not be influenced, but the standards of heat treatment in order to minimise this phenomenon can, and that is precisely the topic of the latest researches.

  20. Effects of Heat-treatments on the Mechanical Strength of Coated YSZ: An Experimental Assessment

    DEFF Research Database (Denmark)

    Toftegaard, Helmuth Langmaack; Sørensen, Bent F.; Linderoth, Søren

    2009-01-01

    The mechanical strength of thin, symmetric sandwich specimens consisting of a dense yttria-stabilized zirconia (YSZ) substrate coated with a porous NiO–YSZ layer at both major faces was investigated. Specimens were loaded in uniaxial tension to failure following heat treatments at various...... temperatures. In comparison with the YSZ material, the failure strength of coated specimens was found to increase for heat treatments at 1100°C, but decreased again with further increased heat-treatment temperatures....

  1. Patient-induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner

    Science.gov (United States)

    Wang, H.; Balter, J.; Cao, Y.

    2013-02-01

    Concerns about the geometric accuracy of MRI in radiation therapy (RT) have been present since its invention. Although modern scanners typically have system levels of geometric accuracy that meet requirements of RT, subject-specific distortion is variable, and methods to in vivo assess and control patient-induced geometric distortion are not yet resolved. This study investigated the nature and magnitude of the subject-induced susceptibility effect on geometric distortions in clinical brain MRI, and tested the feasibility of in vivo quality control using field inhomogeneity mapping. For 19 consecutive patients scanned on a dedicated 3T MR scanner, B0 field inhomogeneity maps were acquired and analyzed to determine subject-induced distortions. For 3D T1 weighted images frequency-encoded with a bandwidth of 180 Hz/pixel, 86.9% of the estimated displacements were 2 mm. The maximum displacement was maps in 17 patients revealed a within-subject standard deviation of 0.25 ppm, equivalent to 0.22 mm displacement in the frequency-encoding direction in the 3D T1 weighted images. Susceptibility-induced voxel displacements in the brain are generally small, but should be monitored for precision RT. These effects are manageable at 3T and lower fields, and the methods applied can be used to monitor for potential local errors in individual patients, as well as to correct for local distortions as needed.

  2. Calculation and Designing of Up-to-Date Gas-Flame Plants for Metal Heating and Heat Treatment

    Directory of Open Access Journals (Sweden)

    V. I. Тimoshpolsky

    2008-01-01

    Full Text Available An analysis of development trends in the CIS machine-building industry and current status of the heating and heat treatment furnaces of main machine-building enterprises of the Republic of Belarus as of the 1st quarter of 2008 is given in the paper.The paper presents the most efficient engineering solutions from technological and economic point of view that concern calculation and designing of up-to-date gas-flame plants which are to be applied for modernization of the current heating and heat treatment furnaces of the machine-building enterprises in the Republic of Belarus.A thermo-technical calculation of main indices of the up-to-date gas-flame plant has been carried out in the paper.

  3. Numerical simulation of machining distortions on a forged component obtained by ring rolling process

    Science.gov (United States)

    Franchi, Rodolfo; Del Prete, Antonio; Calabrese, Maurizio; Donatiello, Iolanda

    2017-10-01

    Residual stresses induced in the component by previous thermal/mechanical processes are compressive or tensile stresses having a zero resultant. In particular, they arise as consequence of thermo-mechanical processes (e.g. ring-rolling process), casting and heat treatments. When machining stressed components, volume removal leads to a re-arrangement of residual stresses, which inevitably causes distortions in the workpiece. If distortions are excessive, they can lead to a large number of scrap parts. This paper describes the development of a numerical procedure for the analysis of the distortions on a waspaloy turbine case, obtained by ring rolling process. A 3D model of ring rolling process has been set in the commercial software DEFORM 3D. Three different ring rolling strategies have been analyzed, in order to find the combination of process parameters which allows to obtain the best component in terms of geometrical precision. Then, the heat treatments (air cooling, solubilization, stabilization and aging) have been simulated to predict the bulk residual stresses distributions. Finally, the numerical distortions induced by machining have been simulated considering the material removal in some machining operations.

  4. Distortion dependent intersystem crossing

    DEFF Research Database (Denmark)

    Stephansen, Anne Boutrup; Sølling, Theis Ivan

    2017-01-01

    The competition between ultrafast intersystem crossing and internal conversion in benzene, toluene, and p-xylene is investigated with time-resolved photoelectron spectroscopy and quantum chemical calculations. By exciting to S2 out-of-plane symmetry breaking, distortions are activated at early...

  5. Time Distortions in Mind

    OpenAIRE

    Vatakis, A.; Allman, M.

    2015-01-01

    Time Distortions in Mind brings together current research on temporal processing in clinical populations to elucidate the interdependence between perturbations in timing and disturbances in the mind and brain. For the student, the scientist, and the stepping-stone for further research.

  6. Distortion in Perspective Projection

    Science.gov (United States)

    Kelso, Robert P., Sr.

    2008-01-01

    The paper presents a unique approach in associating perspective projection with the image beheld by the eye and demonstrates that all graphical and photographic perspective projections must contain distortion when compared to the image beheld by the eye. (Contains 8 figures.)

  7. Enhanced boiling performance of a nanoporous copper surface by electrodeposition and heat treatment

    Science.gov (United States)

    Gao, Jiao; Lu, Long-Sheng; Sun, Jia-Wei; Liu, Xiao-Kang; Tang, Biao

    2017-03-01

    A nanoporous structure was fabricated on the surface of a copper block by electrodeposition and heat treatment compound technology. The influence of the heat treatment parameters on the binding force of a structure was analyzed, and a platform was set up to test the pool boiling heat transfer performance. By observing the SEM morphology, the effect of electrodeposition parameters on the formation of nanoporous structure was determined, and the heat transfer coefficient and wall superheat between different surfaces were compared. At the same time, by means of visualization, the bubble behavior of a smooth surface and a nanoporous surface under different heat fluxes was studied. The results show that the surface structure of nanoporous copper prepared by electrodeposition and heat treatment can improve the bonding strength by 77 %, decrease the wall superheat by 45 %, and increase the heat transfer coefficient by 80 %.

  8. Produktivitas Benih Cabai Rawit Setelah Diperlakukan Dry Heat Treatment dan Penyimpanan

    Directory of Open Access Journals (Sweden)

    I GUSTI NGURAH RAKA

    2015-09-01

    Full Text Available Productivity of Pepper Seeds Which are Treated Dry Heat Treatment and Storage Pepper plants (Capsicum frutescens L. is one type of horticultural crops which is very high usage levels therefor, it is necessary to increase productivity dramatically. One effort to fulfil the need is preparing healthy seed with long shelf life . This study aims to determine the growth and yield of pepper plants whose seed was treated with dry heat treatment and storage. The experiment was conducted in Br . Marga Tengah, Kerta Village, Payangan District, Gianyar Regency, since May to October 2013. This study used a randomized block design (RBD with two factors and four replications. The first factor is treated seeds by dry heat treatment at two levels i.e. given dry heat treatment at 70OC for 72 hours (D1 and without dry heat treatment (D0. The second factor is the storage of seeds with three levels, namely: non-stored seeds (T0, seed stored 2 months (T2 and the seeds stored for 4 months (T4. The results showed that there was no interaction between treatment with dry heat treatment and seed storage treatment of all variables of growth and yield of pepper plants. Dry heat treatment resulted the better growth and yield compared to non dry heat treatment. An increase in the number of fruit harvest as much as 33,43% and increased the weight of the fruit harvest per hectare as much as 33,79% on dry heat treatment compared with no dry heat treatment. Treatment of seed storage until the shelf life of 4 months did not affect the growth and yield of pepper plants.

  9. A combination of heat treatment and Pichia guilliermondii prevents cherry tomato spoilage by fungi.

    Science.gov (United States)

    Zhao, Yan; Tu, Kang; Tu, Sicong; Liu, Ming; Su, Jing; Hou, Yue-Peng

    2010-01-31

    This study investigated the effectiveness of heat treatment and Pichia guilliermondii, either alone or in combination, to combat postharvest fungal spoilage in cherry tomato fruit. In vitro experiments demonstrated that heat treatment at 38 degrees C significantly inhibited mycelial growth of three different pathogens (Botrytis cinerea, Alternaria alternata and Rhizopus stolonifer Ehrenb). In vivo experiments unveiled that either heat treatment or P. guilliermondii reduced decay caused by these pathogens. Furthermore, a combination of heat treatment followed by the application of P. guilliermondii (H+P) provided the best efficacy in prevention of cherry tomato from fungal spoilage. Following, H+P treatment, electronic nose detected a reduction of volatility in cherry tomato fruit odor, an indicator of preserving fruit's freshness. Scanning electron microscopy unveiled that heat treatment at 38 degrees C for 24h inhibited hyphae growth and spore germination of R. stolonifer Ehrenb while P. guilliermondii multiplied rapidly on fruit wounds, and its cells had a strong capability of adhesion to the hyphae of R. stolonifer Ehrenb. However, heat treatment also seriously injured P. guilliermondii, therefore P. guilliermondii should be applied after heat treatment. A combination of heat treatment and P. guilliermondii is one of the most effective techniques at controlling postharvest fungal spoilage in cherry tomato fruit. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  11. Effect of heat treatment on transformation temperatures and bending properties of nickel-titanium endodontic instruments.

    Science.gov (United States)

    Yahata, Y; Yoneyama, T; Hayashi, Y; Ebihara, A; Doi, H; Hanawa, T; Suda, H

    2009-07-01

    To investigate the effect of heat treatment on the bending properties of nickel-titanium endodontic instruments in relation to their transformation behaviour. Nickel-titanium super-elastic alloy wire (1.00 mm Ø) was processed into a conical shape with a 0.30 mm diameter tip and 0.06 taper. The heat treatment temperature was set at 440 or 500 degrees C for a period of 10 or 30 min. Nonheat-treated specimens were used as controls. The phase transformation behaviour was examined using differential scanning calorimetry. A cantilever-bending test was used to evaluate the bending properties of the specimens. Data were analyzed by ANOVA and the Tukey-Kramer test (P = 0.05). The transformation temperature was higher for each heat treatment condition compared with the control. Two clear thermal peaks were observed for the heat treatment at 440 degrees C. The specimen heated at 440 degrees C for 30 min exhibited the highest temperatures for M(s) and A(f), with subsequently lower temperatures observed for specimens heated at 440 degrees C for 10 min, 500 degrees C for 30 min, 500 degrees C for 10 min, and control specimens. The sample heated at 440 degrees C for 30 min had the lowest bending load values (P treatment time was less than that of heat treatment temperature. Change in the transformation behaviour by heat treatment may be effective in increasing the flexibility of nickel-titanium endodontic instruments.

  12. Influence of Heat Treatment on the Conductivity of Nickel-Based Superalloys

    Directory of Open Access Journals (Sweden)

    Nagarajan Balasubramanian

    2015-01-01

    Full Text Available Non-destructive measurement of residual stress at the subsurface of nickel-based alloys using eddy current method has been limited by its sensitivity to its microstructure, especially to the precipitates. This paper investigates the effect of heat treatment on the electrical conductivity of RR1000, a nickel-based superalloy with a large fraction of γ’ precipitates. Different heat treatment conditions, ranging from solution heat treatment to precipitation hardening with different aging times and temperatures, are used to achieve varying initial microstructures. Hardness of the samples is measured first to quantify the heat treated samples followed by the measurement of electrical conductivity using the conductivity probes of frequencies between 1 MHz and 5 MHz. The relationship between the hardness and conductivity of the heat treated samples is then correlated further. The results highlight the significant influence of heat treatment on the sample hardness and the electrical conductivity of RR1000.

  13. Prospective analysis of in vivo landmark point-based MRI geometric distortion in head and neck cancer patients scanned in immobilized radiation treatment position: Results of a prospective quality assurance protocol

    Directory of Open Access Journals (Sweden)

    Abdallah S.R. Mohamed

    2017-12-01

    Full Text Available Purpose: Uncertainties related to geometric distortion are a major obstacle for effectively utilizing MRI in radiation oncology. We aim to quantify the geometric distortion in patient images by comparing their in-treatment position MRIs with the corresponding planning CTs, using CT as the non-distorted gold standard. Methods: Twenty-one head and neck cancer patients were imaged with MRI as part of a prospective Institutional Review Board approved study. MR images were acquired with a T2 SE sequence (0.5 × 0.5 × 2.5 mm voxel size in the same immobilization position as in the CTs. MRI to CT rigid registration was then done and geometric distortion comparison was assessed by measuring the corresponding anatomical landmarks on both the MRI and the CT images. Several landmark measurements were obtained including; skin to skin (STS, bone to bone, and soft tissue to soft tissue at specific levels in horizontal and vertical planes of both scans. Inter-observer variability was assessed and interclass correlation (ICC was calculated. Results: A total of 430 landmark measurements were obtained. The median distortion for all landmarks in all scans was 1.06 mm (IQR 0.6–1.98. For each patient 48% of the measurements were done in the right-left direction and 52% were done in the anteroposterior direction. The measured geometric distortion was not statistically different in the right-left direction compared to the anteroposterior direction (1.5 ± 1.6 vs. 1.6 ± 1.7 mm, respectively, p = 0.4. The magnitude of distortion was higher in the STS peripheral landmarks compared to the more central landmarks (2.0 ± 1.9 vs. 1.2 ± 1.3 mm, p < 0.0001. The mean distortion measured by observer one was not significantly different compared to observer 2, 3, and 4 (1.05, 1.23, 1.06 and 1.05 mm, respectively, p = 0.4 with ICC = 0.84. Conclusion: MRI geometric distortions were

  14. Seedbed treatment with direct heat from burning stubble and its ...

    African Journals Online (AJOL)

    off was 0, 0.65 and 55.88 per cent, respectively, on the heated, formalin-treated and untreated beds. Tomato seedling growth (seedling height, fresh and dry weights) was significantly greater on the heated bed than on the unheated bed. Higher ...

  15. Industrial heat treatment of R-HPDC A356 automotive brake callipers

    CSIR Research Space (South Africa)

    Chauke, L

    2012-10-01

    Full Text Available Heat treatment of rheo-high pressure die cast (R-HPDC) A356 brake callipers has produced good mechanical properties on the laboratory scale. An industrial heat treatment is required to evaluate the applicability and conformance of the R-HPDC A356...

  16. 49 CFR 179.201-5 - Postweld heat treatment and corrosion resistance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment and corrosion resistance....201-5 Postweld heat treatment and corrosion resistance. (a) Tanks and attachments welded directly... tested to demonstrate that they possess the corrosion resistance specified in § 179.200-7(d), Footnote 2...

  17. Industrial heat treatment of R-HPDC A356 automotive brake callipers [Conference paper

    CSIR Research Space (South Africa)

    Chauke, L

    2012-10-01

    Full Text Available Heat treatment of rheo-high pressure die cast (R-HPDC) A356 brake callipers has produced good mechanical properties on the laboratory scale. An industrial heat treatment is required to evaluate the applicability and conformance of the R-HPDC A356...

  18. Effects of heat treatment on the mechanical properties of kenaf fiber

    Energy Technology Data Exchange (ETDEWEB)

    Carada, Paulo Teodoro D. L. [Master’s student in the Graduate School of Science and Engineering, Mechanical Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan); Fujii, Toru; Okubo, Kazuya [Professor in the Faculty of Science and Engineering, Department of Mechanical and Systems Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan)

    2016-05-18

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  19. Study of heat treatment parameters for large-scale hydraulic steel gate track

    Directory of Open Access Journals (Sweden)

    Ping-zhou Cao

    2013-10-01

    Full Text Available In order to enhance external hardness and strength, a large-scale hydraulic gate track should go through heat treatment. The current design method of hydraulic gate wheels and tracks is based on Hertz contact linear elastic theory, and does not take into account the changes in mechanical properties of materials caused by heat treatment. In this study, the heat treatment parameters were designed and analyzed according to the bearing mechanisms of the wheel and track. The quenching process of the track was simulated by the ANSYS program, and the temperature variation, residual stress, and deformation were obtained and analyzed. The metallurgical structure field after heat treatment was predicted by the method based on time-temperature-transformation (TTT curves. The results show that the analysis method and designed track heat treatment process are feasible, and can provide a reference for practical projects.

  20. Effect of heat treatment on mechanical dissipation in Ta2O5 coatings

    Science.gov (United States)

    Martin, I. W.; Bassiri, R.; Nawrodt, R.; Fejer, M. M.; Gretarsson, A.; Gustafson, E.; Harry, G.; Hough, J.; MacLaren, I.; Penn, S.; Reid, S.; Route, R.; Rowan, S.; Schwarz, C.; Seidel, P.; Scott, J.; Woodcraft, A. L.

    2010-11-01

    Thermal noise arising from mechanical dissipation in dielectric reflective coatings is expected to critically limit the sensitivity of precision measurement systems such as high-resolution optical spectroscopy, optical frequency standards and future generations of interferometric gravitational wave detectors. We present measurements of the effect of post-deposition heat treatment on the temperature dependence of the mechanical dissipation in ion-beam sputtered tantalum pentoxide between 11 K and 300 K. We find that the temperature dependence of the dissipation is strongly dependent on the temperature at which the heat treatment was carried out, and we have identified three dissipation peaks occurring at different heat treatment temperatures. At temperatures below 200 K, the magnitude of the loss was found to increase with higher heat treatment temperatures, indicating that heat treatment is a significant factor in determining the level of coating thermal noise.

  1. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    Directory of Open Access Journals (Sweden)

    Ramesh Gopalan

    2011-01-01

    Full Text Available Abstract The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  2. Interactions between goethite particles subjected to heat treatment

    DEFF Research Database (Denmark)

    Madsen, Daniel Esmarch; Hansen, Mikkel Fougt; Koch, C.B.

    2008-01-01

    We have studied the effect of heating on the magnetic properties of particles of nanocrystalline goethite by use of Mossbauer spectroscopy. Heating at 150 degrees C for 24 h leads to a change in the quadrupole shift in the low-temperature spectra, indicating a rotation of the sublattice...... magnetization directions. Fitting of quantiles, derived from the asymmetrically broadened spectra between 80 and 300 K, to the superferromagnetism model indicates that this change is due to a stronger magnetic coupling between the particles....

  3. Studying heat treatment impact on heat resisting properties of Cr-Ni – A. E. system alloy

    Directory of Open Access Journals (Sweden)

    Sv. Kvon

    2017-01-01

    Full Text Available The article presents the results the impact of heat treatment on iron-n ickel alloys with adding Mo, Nb, Ti and Al, at this the content of chrome was increased in comparison with the classical structure to 40-45%.

  4. Experimental and Modelling Study of the Denaturation of Milk Protein by Heat Treatment.

    Science.gov (United States)

    Qian, Fang; Sun, Jiayue; Cao, Di; Tuo, Yanfeng; Jiang, Shujuan; Mu, Guangqing

    2017-01-01

    Heat treatment of milk aims to inhibit the growth of microbes, extend the shelf-life of products and improve the quality of the products. Heat treatment also leads to denaturation of whey protein and the formation of whey protein-casein polymer, which has negative effects on milk product. Hence the milk heat treatment conditions should be controlled in milk processing. In this study, the denaturation degree of whey protein and the combination degree of whey protein and casein when undergoing heat treatment were also determined by using the Native-PAGE and SDS-PAGE analysis. The results showed that the denaturation degree of whey protein and the combination degree of whey protein with casein extended with the increase of the heat-treated temperature and time. The effects of the heat-treated temperature and heat-treated time on the denaturation degree of whey protein and on the combination degree of whey protein and casein were well described using the quadratic regression equation. The analysis strategy used in this study reveals an intuitive and effective measure of the denaturation degree of whey protein, and the changes of milk protein under different heat treatment conditions efficiently and accurately in the dairy industry. It can be of great significance for dairy product proteins following processing treatments applied for dairy product manufacturing.

  5. HARDENING OF THE ELECTRODESIEGED IRON CHEMICAL HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    V. I. Serebrovskii

    2015-01-01

    Full Text Available Summary. Currently in the repair and manufacture at the stage of recovery of steel parts, widely used special coatings formed by electrolytic effects on ferrous ions. This technique offers high performance, ease of implementation, low cost of technological equipment and materials used, as well as easy automation of the process. However, this method has several disadvantages: low fatigue strength of reconditioned parts, insufficiently strong grip of the iron coating to the substrate, particularly in alloy steels, insufficient wear resistance. For the purpose of increasing durability and wear resistance of parts, restored through electrochemical action, it is proposed to use chemical-heat treatment, consisting in the application of carbonitriding. Investigated the efficacy of different modes of carbonitriding in the highly carburizing paste-and their influence on the structure and properties of iron plating. It is established that the nitrocarburizing both low and high temperatures repeatedly (6-7.5 times increases the microhardness of the coatings. The highest hardness is obtained by low-temperature carbonitriding with direct quenching in water. Conducting the carbonitriding process at low temperatures (650 °C, significantly increases the hardness of the iron coatings, increasing the limit of its fluidity, a and also greatly increases its endurance limit. Nitrocarburized fatigue strength of samples with iron precipitation on the surface, as shown by our studies, not only higher strength of the same samples without carbonitriding (more than 2 times, but higher than the fatigue strength of the base metal without coatings. Raising the temperature of the carbonitriding did not increase the hardness of electrolytic iron. Developed a rational technology of hardening of steel parts, re-chain iron fortification. Selected optimum conditions for carbonitriding hardening restored iron fortification, with the purpose of increasing durability of machine

  6. Coarsening of carbides during different heat treatment conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Kai, E-mail: miaok21@126.com; He, Yanlin, E-mail: ylhe@staff.shu.edu.cn; Zhu, Naqiong; Wang, Jingjing; Lu, Xiaogang; Li, Lin

    2015-02-15

    Highlights: • Coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides was quantitatively described in detail. • Cooling mode is a key factor to the simulation for the coarsening of carbides. • Coarsening of above spherical carbides can be calculated by Ostwald ripening model. • The interfacial energy between the γ matrix with M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides are 0.7 J/m{sup 2}. - Abstract: Coarsening of carbides in 1# Fe-5.96Cr-0.35C (wt.%) alloy and 2# Fe-0.5V-0.53C (wt.%) alloy during different heat treatment conditions was investigated by carbon replica, high-resolution transmission electron microscopy (HRTEM) , X-ray diffraction (XRD) and SEM techniques. The equilibrium phases at 850 °C constitute of austenitic matrix (γ) + M{sub 7}C{sub 3} and austenite matrix (γ) + V{sub 4}C{sub 3} for 1# and 2# alloy respectively. Morphology of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} carbides was mainly determined by cooling mode due to the different nucleation sites and growth mechanisms. Under directly aging condition, most carbides nucleate in the grain boundaries and grow into rod-shaped or flake-shaped particles by discontinuous growth mechanism. These particles turn out to be excluded during coarsening simulation using Oswald ripening model to give a more reasonable result. In addition, interfacial energy between M{sub 7}C{sub 3}/γ and V{sub 4}C{sub 3}/γ for the coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} during aging at 850 °C is evaluated by fitting experimental data using thermodynamic and kinetic calculations. The interfacial energy is determined to be 0.7 J/m{sup 2} for the coarsening of M{sub 7}C{sub 3} and V{sub 4}C{sub 3} in austenitic matrix.

  7. The use of superficial heat for treatment of temporomandibular disorders: an integrative review.

    Science.gov (United States)

    Furlan, Renata Maria Moreira Moraes; Giovanardi, Raquel Safar; Britto, Ana Teresa Brandão de Oliveira e; Oliveira e Britto, Denise Brandão de

    2015-01-01

    To perform an integrative review of scientific bibliographic production on the use of superficial heat treatment for temporomandibular disorders. Research strategy : Literature review was accomplished on PubMed, LiLACS, SciELO, Bireme, Web of Science, and BBO databases. The following descriptors were used: hot temperature, hyperthermia induced, heat transference, temporomandibular joint, temporomandibular joint disorders, temporomandibular joint dysfunction syndrome, and their equivalents in Portuguese and Spanish. Articles that addressed the superficial heat for the treatment of temporomandibular disorders, published in English, Spanish, or Portuguese, between 1980 and 2013. The following data were collected: technique of applying superficial heat, duration of application, stimulated body area, temperature of the stimulus, frequency of application, and benefits. initially, 211 studies were found, but just 13 contemplated the proposed selection criteria. Data were tabulated and presented in chronological order. Several techniques for superficial heat application on treatment of temporomandibular disorders were found in the literature. The moist heat was the most widely used technique. Many studies suggested the application of heat for at least 20 minutes once a day. Most authors recommended the application of heat in facial and cervical regions. The heat treatment resulted in significant relief of pain, reduced muscle tension, improved function of the mandible, and increased mouth opening.

  8. Thermal treatment of low permeability soils using electrical resistance heating

    Energy Technology Data Exchange (ETDEWEB)

    Udell, K.S. [Univ. of California, Berkeley, CA (United States)

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies of electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.

  9. Characterization of Aluminum Magnesium Alloy Reverse Sensitized via Heat Treatment

    Science.gov (United States)

    2016-09-01

    during friction stir welding [25] and may be suited for heating Al-Mg alloys in the context of this study. LED arrays can be finely tuned and controlled...25] B. Baker et. al, "Use of High-Power diode Laser Arrays for Pre- and Post- Weld Heating During Friction Stir Welding of Steels," in Friction ...strength prior to welding , but lower yield strength than 5XXX series Al-Mg alloys following welding . This makes 5XXX series Al-Mg alloys the more

  10. Suicide and cognitive distortions

    Directory of Open Access Journals (Sweden)

    Éva Jekkel

    2004-05-01

    Full Text Available The process of preventing suicidal acts has been studied thoroughly. There are few studies concerning cognitive mechanisms preceding suicidal actions. Suicidal behaviour consists of complexity of biological, psychological, and social factors. The transition of these factors to suicide attempt appears to be determined by cognitive processes. In this article the authors give a short review of relevant literature. To answer the question whether there are specific suicidal cognitive distortions, the authors compared a group of suicidal patients with a matched control group. In the last section of the paper they analyse their data obtained by comparing the two groups using a set of tests.

  11. The effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L.) wood

    National Research Council Canada - National Science Library

    Korkut, Derya Sevim; Korkut, Süleyman; Bekar, Ilter; Budakçi, Mehmet; Dilik, Tuncer; Cakicier, Nevzat

    2008-01-01

    Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L.) wood were examined...

  12. {sup 57}Fe-Moessbauer study of electrically conducting barium iron vanadate glass after heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kubuki, Shiro, E-mail: kubuki@ube-k.ac.jp; Sakka, Hiroshi; Tsuge, Kanako [Ube National College of Technology, Department of Chemical and Biological Engineering (Japan); Homonnay, Zoltan [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry (Hungary); Sinko, Katalin [Eoetvoes Lorand University, Institute of Chemistry (Hungary); Kuzmann, Erno [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry, HAS CRC (Hungary); Yasumitsu, Hiroki; Nishida, Tetsuaki [Kinki University, Graduate School of Advanced Technology (Japan)

    2008-07-15

    Local structure and thermal durability of semiconducting xBaO{center_dot}(90 - x)V{sub 2}O{sub 5} {center_dot} 10Fe{sub 2}O{sub 3} glasses (x = 20, 30 and 40), NTA glass{sup TM}, before and after isothermal annealing were investigated by {sup 57}Fe-Moessbauer spectroscopy and differential thermal analysis (DTA). An identical isomer shift ({delta}) of 0.39 {+-} 0.01 mm s{sup -1} and a systematic increase in the quadrupole splitting ({Delta}) were observed from 0.70 {+-} 0.02 to 0.80 {+-} 0.02 mm s{sup -1} with an increasing BaO content, showing an increase in the local distortion of Fe{sup III}O{sub 4} tetrahedra. From the slope of the straight line in the T{sub g}-{Delta} plot of NTA glass{sup TM}, it proved that Fe{sup III} plays a role of network former. Large Debye temperature ({Theta}{sub D}) values of 1000 and 486 K were respectively obtained for 20BaO {center_dot} 70V{sub 2}O{sub 5} {center_dot} 10Fe{sub 2}O{sub 3} glass before and after isothermal annealing at 400 deg. C for 60 min, respectively. This result also suggests that Fe{sup III} atoms constitute the glass network composed of tetrahedral FeO{sub 4}, tetrahedral VO{sub 4} and pyramidal VO{sub 5} units. The electric conductivity of 20BaO {center_dot} 70V{sub 2}O{sub 5} {center_dot} 10Fe{sub 2}O{sub 3} glass increased from 1.6 x 10{sup -5} to 5.8 x 10{sup -2} S cm{sup -1} after isothermal annealing at 450 deg. C for 2,000 min. These results suggest that the drastic increase in the electric conductivity caused by heat treatment is closely related to the structural relaxation of the glass network structure.

  13. Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification.

    Science.gov (United States)

    Schmidt, Patrick; Spinelli Sanchez, Océane; Kind, Claus-Joachim

    2017-01-01

    The Early Mesolithic of southwestern Germany, the so-called Beuronian (9600-7100 BC), is a period of important transformations in the way people lived, in their subsistence and in the stone tools they produced. One of the perhaps most spectacular re-inventions of that time is heat treatment of stones prior to their manufacture into tools. Although heat treatment has been understood as one of the defining characteristics of the Beuronian of southwestern Germany, and although its existence has been known for almost 30 years now, relatively few systematic studies on it are available. In this paper, we present such a study, aiming to shed light on two questions: (1) what technique and heating parameters were used in the Beuronian and (2) how reliable are the macroscopic proxies traditionally used to identify heat treatment in this context? We investigate these questions using a non-destructive archaeometric technique for measuring past heating temperatures of heat-treated stones and a quantitative surface roughness analysis aiming to understand the relations between surface aspect and heat treatment. These methods are applied to 46 Jurassic chert artefacts from the site Helga-Abri located in the Swabian Alb region of southwestern Germany. Our results document that an opportunistic low-investment procedure was used to heat stone, probably relying on the use of the above-ground part of regular camp-fires. We also found that the traditionally used macroscopic criteria, such as colour and surface gloss, cannot be unambiguously used to identify heat treatment in assemblages made from Jurassic chert. These findings have important implications for our understanding of the Beuronian lithic chaîne opératoire in terms of the investment in time and resources necessary, and for the refinement of archaeological techniques used to identify heat treatment in the Mesolithic of the Swabian Alb.

  14. Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification.

    Directory of Open Access Journals (Sweden)

    Patrick Schmidt

    Full Text Available The Early Mesolithic of southwestern Germany, the so-called Beuronian (9600-7100 BC, is a period of important transformations in the way people lived, in their subsistence and in the stone tools they produced. One of the perhaps most spectacular re-inventions of that time is heat treatment of stones prior to their manufacture into tools. Although heat treatment has been understood as one of the defining characteristics of the Beuronian of southwestern Germany, and although its existence has been known for almost 30 years now, relatively few systematic studies on it are available. In this paper, we present such a study, aiming to shed light on two questions: (1 what technique and heating parameters were used in the Beuronian and (2 how reliable are the macroscopic proxies traditionally used to identify heat treatment in this context? We investigate these questions using a non-destructive archaeometric technique for measuring past heating temperatures of heat-treated stones and a quantitative surface roughness analysis aiming to understand the relations between surface aspect and heat treatment. These methods are applied to 46 Jurassic chert artefacts from the site Helga-Abri located in the Swabian Alb region of southwestern Germany. Our results document that an opportunistic low-investment procedure was used to heat stone, probably relying on the use of the above-ground part of regular camp-fires. We also found that the traditionally used macroscopic criteria, such as colour and surface gloss, cannot be unambiguously used to identify heat treatment in assemblages made from Jurassic chert. These findings have important implications for our understanding of the Beuronian lithic chaîne opératoire in terms of the investment in time and resources necessary, and for the refinement of archaeological techniques used to identify heat treatment in the Mesolithic of the Swabian Alb.

  15. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    Science.gov (United States)

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  16. Effect of heat treatment on wear resistance of a grinding plate ...

    African Journals Online (AJOL)

    The effects of heat treatment on the hardness and by extension the wear resistance of locally produced grinding plate of known composition were investigated. Specimens were prepared from the grinding plate and were heat treated at 840°C, 860°C and 880°C and quenched at different rate. Some of the specimens were ...

  17. Radio Frequency Heat Treatments to Disinfest Dried Pulses of Cowpea Weevil

    Science.gov (United States)

    To explore the potential of radio frequency (RF) heat treatments as an alternative to chemical fumigants for disinfestation of dried pulses, the relative heat tolerance and dielectric properties of different stages of the cowpea weevil (Callosobruchus maculatus) was determined. Among the immature st...

  18. Improved corrosion resistance of aluminum brazing sheet by a post-brazing heat treatment

    NARCIS (Netherlands)

    Norouzi Afshar, F.; Tichelaar, F.D.; Glenn, A. M.; Taheri, P.; Sababi, M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    This work studies the influence of the microstructure on the corrosion mechanism and susceptibility of as-brazed aluminum sheet. Various microstructures are obtained using postbrazing heat treatments developed to enhance the corrosion resistance of an AA4xxx/AA3xxx brazing sheet. The heat

  19. Reactions of lactose during heat treatment of milk : a quantitative study

    NARCIS (Netherlands)

    Berg, H.E.

    1993-01-01

    The kinetics of the chemical reactions of lactose during heat treatment of milk were studied. Skim milk and model solutions resembling milk were heated. Reaction products were determined and the influence of varying lactose, casein and fat concentration on the formation of these products

  20. Effects of heat treatment of wood on hydroxylapatite type mineral precipitation and biomechanical properties in vitro.

    Science.gov (United States)

    Rekola, J; Lassila, L V J; Hirvonen, J; Lahdenperä, M; Grenman, R; Aho, A J; Vallittu, P K

    2010-08-01

    Wood is a natural fiber reinforced composite. It structurally resembles bone tissue to some extent. Specially heat-treated birch wood has been used as a model material for further development of synthetic fiber reinforced composites (FRC) for medical and dental use. In previous studies it has been shown, that heat treatment has a positive effect on the osteoconductivity of an implanted wood. In this study the effects of two different heat treatment temperatures (140 and 200 degrees C) on wood were studied in vitro. Untreated wood was used as a control material. Heat treatment induced biomechanical changes were studied with flexural and compressive tests on dry birch wood as well as on wood after 63 days of simulated body fluid (SBF) immersion. Dimensional changes, SBF sorption and hydroxylapatite type mineral formation were also assessed. The results showed that SBF immersion decreases the biomechanical performance of wood and that the heat treatment diminishes the effect of SBF immersion on biomechanical properties. With scanning electron microscopy and energy dispersive X-ray analysis it was shown that hydroxylapatite type mineral precipitation formed on the 200 degrees C heat-treated wood. An increased weight gain of the same material during SBF immersion supported this finding. The results of this study give more detailed insight of the biologically relevant changes that heat treatment induces in wood material. Furthermore the findings in this study are in line with previous in vivo studies.

  1. Heat treatment effect on erosion behavior of poly(methylmethacrylate) for optical transmittance efficiency

    Science.gov (United States)

    Çoban, Onur

    2014-10-01

    Influence of heat treatment on optical transmittance of poly(methyl methacrylate) (PMMA) samples was investigated under solid particle erosion. Heat treatment was employed at 85 °C for 1, 2 and 3 h. Effect of heat treatment on physical, chemical, mechanical and thermal properties of PMMA samples was investigated by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, Vickers microhardness measurement methods. After these analysis, both pristine and heat treated PMMA samples were eroded at 15°, 30°, 45°, 60°, 75° and 90° impingement angles. Then, optical transmittance of all eroded PMMA samples was inspected by a UV-Vis spectrometer. Scanning electron microscopy (SEM) was used to explain the erosion mechanisms and to compare the roughness and optical transmittance of eroded PMMA surfaces. Heat treatment under glass transition temperature of PMMA increased the Tg and hardness values. According to erosion test results, both pristine and heat treated PMMA samples were showed ductile erosion behavior. However; maximum and minimum optical transmittance values of eroded pristine PMMA samples were obtained for the angles of 15° and 90°, respectively. A positive effect of heat treatment on optical transmittance of PMMA was obtained for all impingement angles, but most pronounced effect was seen for 15°.

  2. EFFECT OF HEAT TREATMENT ON ANTIOXIDANT ACTIVITY OF SOME SPICES

    OpenAIRE

    Ademoyegun Olufemi Temitope; Adewuyi Gregory Olufemi; Fariyike Timothy Alaba

    2010-01-01

    Spices show potential health benefits as they possess antioxidant activity. The study was to determine the effect of cooking on the antioxidant activity of some selected spices. The total phenol content of five spices (Onion, Garlic, Ginger, Turmeric, and Basil) was determined at different heating periods (1h and 2 h) at 1000c. Although these dietary spice are resistant to thermal denaturation, interestingly, in the case of onion shows reduction in all the tested activities and others show...

  3. Reproducibility of High-Q SRF Cavities by High Temperature Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Pashupati [JLAB; Ciovati, Gianluigi [JLAB; Kneisel, Peter [JLAB; Myneni, Ganapati Rao [JLAB

    2014-07-01

    Recent work on high-temperature (> 600 °C) heat treatment of ingot Nb cavities in a customized vacuum furnace for several hours showed the possibility of achieving Q0-values of up to ~5×1010 at 2.0 K, 1.5 GHz and accelerating gradients of ~20 MV/m. This contribution presents results on further studies of the heat treatment process to produce cavities with high Q0 values for continuous-wave accelerator application. Single-cell cavities of different Nb purity have been processed through few cycles of heat-treatments and chemical etching. Measurements of Q0 as a function of temperature at low RF field and of Q0 as a function of the RF field at or below 2.0 K have been made after each treatment. Measurements by TOF-SIMS of the impurities depth profiles were made on samples heat treated with the cavities.

  4. Effects of Mead Wort Heat Treatment on the Mead Fermentation Process and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Sławomir Czabaj

    2017-05-01

    Full Text Available The effects of mead wort heat treatment on the mead fermentation process and antioxidant activity were tested. The experiment was conducted with the use of two different honeys (multiflorous and honeydew collected from the Lower Silesia region (Poland. Heat treatment was performed with the use of a traditional technique (gently boiling, the more commonly used pasteurization, and without heat treatment (control. During the experiment fermentation dynamics were monitored using high performance liquid chromatography with refractive index detection (HPLC-RID. Total antioxidant capacity (TAC and total phenolic content (TPC were estimated for worts and meads using UV/Vis spectrophotometric analysis. The formation of 5-hydroxymethylfurfural (HMF was monitored by HPLC analyses. Heat treatment had a great impact on the final antioxidant capacity of meads.

  5. Effect of Carbon Nanofiber Heat Treatment on Physical Properties of Polymeric Nanocomposites—Part I

    Directory of Open Access Journals (Sweden)

    Khalid Lafdi

    2007-01-01

    Full Text Available The definition of a nanocomposite material has broadened significantly to encompass a large variety of systems made of dissimilar components and mixed at the nanometer scale. The properties of nanocomposite materials also depend on the morphology, crystallinity, and interfacial characteristics of the individual constituents. In the current work, vapor-grown carbon nanofibers were subjected to varying heat-treatment temperatures. The strength of adhesion between the nanofiber and an epoxy (thermoset matrix was characterized by the flexural strength and modulus. Heat treatment to 1800C∘ demonstrated maximum improvement in mechanical properties over that of the neat resin, while heat-treatment to higher temperatures demonstrated a slight decrease in mechanical properties likely due to the elimination of potential bonding sites caused by the elimination of the truncated edges of the graphene layers. Both the electrical and thermal properties of the resulting nanocomposites increased in conjunction with the increasing heat-treatment temperature.

  6. Influence of Heat Treatment on the Bending Behaviour of LLDPE Monofilaments

    Directory of Open Access Journals (Sweden)

    Kolgjini Blerina

    2014-09-01

    Full Text Available It is known that artificial turf surfaces based on LLDPE monofilaments have the potential to replace natural turf surfaces used for several sport surfaces. Even though the production parameters have a strong influence on the behaviour of monofilaments and indirectly on the final product, the effect of heat treatment at different stages of the production lines is not studied in detail. Therefore, the influence of heat treatment during the production of monofilaments was investigated. This investigation includes a study of the mechanical properties such as tensile testing and bending behaviour and morphological analyses by employing DSC measurements. The results show that the applied heat treatment has a strong influence on the bending behaviour even though the classical studied morphology structures do not show significant changes. Heat treatment influences quite importantly the characteristics of the non-crystalline part of the monofilaments and results in better long-term properties, such as resilience, deformation recovery and fibrillation resistance.

  7. Microhardness of heat cure acrylic resin after treatment with disinfectants.

    Science.gov (United States)

    Amin, Faiza; Rehman, Abdur; Abbas, Muhammad

    2015-08-01

    To evaluate the effect of disinfectants and distilled water on the micro-hardness of heat cure acrylic resins. The case-control study was conducted at Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, and Nadirshaw Edulji Dinshaw University of Engineering and Technology, Karachi, from April to October 2011. Specimens were fabricated from heat cure acrylic resin material and they were divided into four equal groups. Group 1 was evaluated at baseline and was taken as the control group. Group 2 was immersed in distilled water for 20 minutes, Group 3 in1% sodium hypochlorite for 20 minutes, and Group 4 in 2% alkaline gluteraldehyde for 10 minutes. All specimens were polished, stored in distilled water for 24 hours prior to experiment. All the specimens were immersed twice daily for a total of 60 days after which they were tested for Vickers micro-hardness test. Statistical analysis was conducted with one-way analysis of variance and Tukey post hoc test (a=0.05). There were 72 specimens divided into four groups of 18(25%) each. Statistically significant differences were found among all groups (pacrylic resins. Group 4 showed the most reduction in the hardness value which was followed by Group 3. The hardness of heat cure acrylic resin was affected by disinfectants.

  8. A Cognitive Distortions and Deficits Model of Suicide Ideation.

    Science.gov (United States)

    Fazakas-DeHoog, Laura L; Rnic, Katerina; Dozois, David J A

    2017-05-01

    Although cognitive distortions and deficits are known risk factors for the development and escalation of suicide ideation and behaviour, no empirical work has examined how these variables interact to predict suicide ideation. The current study proposes an integrative model of cognitive distortions (hopelessness and negative evaluations of self and future) and deficits (problem solving deficits, problem solving avoidance, and cognitive rigidity). To test the integrity of this model, a sample of 397 undergraduate students completed measures of deficits, distortions, and current suicide ideation. A structural equation model demonstrated excellent fit, and findings indicated that only distortions have a direct effect on suicidal thinking, whereas cognitive deficits may exert their effects on suicide ideation via their reciprocal relation with distortions. Findings underscore the importance of both cognitive distortions and deficits for understanding suicidality, which may have implications for preventative efforts and treatment.

  9. A Cognitive Distortions and Deficits Model of Suicide Ideation

    Directory of Open Access Journals (Sweden)

    Laura L. Fazakas-DeHoog

    2017-05-01

    Full Text Available Although cognitive distortions and deficits are known risk factors for the development and escalation of suicide ideation and behaviour, no empirical work has examined how these variables interact to predict suicide ideation. The current study proposes an integrative model of cognitive distortions (hopelessness and negative evaluations of self and future and deficits (problem solving deficits, problem solving avoidance, and cognitive rigidity. To test the integrity of this model, a sample of 397 undergraduate students completed measures of deficits, distortions, and current suicide ideation. A structural equation model demonstrated excellent fit, and findings indicated that only distortions have a direct effect on suicidal thinking, whereas cognitive deficits may exert their effects on suicide ideation via their reciprocal relation with distortions. Findings underscore the importance of both cognitive distortions and deficits for understanding suicidality, which may have implications for preventative efforts and treatment.

  10. Influence of heat treatment on antioxidant capacity and (poly)phenolic compounds of selected vegetables

    OpenAIRE

    Juaniz, I. (Isabel); Ludwig, I.A. (Iziar A.); Huarte, E; Pereira-Caro, G.; Moreno-Rojas, J.M.; Cid, C. (Concepción); Peña, M.P. (María Paz) de

    2016-01-01

    The impact of cooking heat treatments (frying in olive oil, frying in sunflower oil and griddled) on the antioxidant capacity and (poly)phenolic compounds of onion, green pepper and cardoon, was evaluated. The main compounds were quercetin and isorhamnetin derivates in onion, quercetin and luteolin derivates in green pepper samples, and chlorogenic acids in cardoon. All heat treatments tended to increase the concentration of phenolic compounds in vegetables suggesting a thermal destruction of...

  11. Structural transformations and properties of titanium-aluminum composite during heat treatment

    Science.gov (United States)

    Pervukhin, L. B.; Kryukov, D. B.; Krivenkov, A. O.; Chugunov, S. N.

    2017-08-01

    The link between the parameters of heat treatment of a layered titanium-aluminum composite material obtained by explosive welding with the formation of intermetallic compounds in it has been analyzed. The results of measurements of the microhardness of the composite and the thickness of the interlayer of the intermetallic phase obtained using different regimes of heat treatment have been discussed. Special attention has been paid to estimating the composition of the intermetallic phase in the composite prepared by explosive welding.

  12. Produktivitas Benih Cabai Rawit Setelah Diperlakukan Dry Heat Treatment dan Penyimpanan

    OpenAIRE

    I GUSTI NGURAH RAKA; I DEWA NYOMAN NYANA; NI LUH MADE PRADNYAWATHI

    2015-01-01

    Productivity of Pepper Seeds Which are Treated Dry Heat Treatment and Storage Pepper plants (Capsicum frutescens L.) is one type of horticultural crops which is very high usage levels therefor, it is necessary to increase productivity dramatically. One effort to fulfil the need is preparing healthy seed with long shelf life . This study aims to determine the growth and yield of pepper plants whose seed was treated with dry heat treatment and storage. The experiment was conducted in Br . Marga...

  13. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2014-01-01

    Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate...... this lifespan-prolonging effect late in life, we treated flies with mild heat stress (34 °C for 2 h) 3 times early in life and compared the transcriptomic response in these flies versus non-heat-treated controls 10–51 days after the last heat treatment. We found significant transcriptomic changes in the heat......-treated flies. Several hsp70 probe sets were up-regulated 1.7–2-fold in the mildly stressed flies weeks after the last heat treatment (P stress. We...

  14. Mapping QTLs associated to germination stability following dry-heat treatment in rice seed.

    Science.gov (United States)

    Lee, Seung-Yeob; Kim, Yong-Hwan; Lee, Gang-Seob

    2017-07-01

    Using 164 recombinant inbred lines (RILs) derived from a cross between Milyang 23 (indica/japonica) and Gihobyeo (japonica) in rice, dry-heat tolerance was evaluated for the seeds of parents and RILs, whose dormancy was naturally broken in six months after harvesting. Mapping QTLs associated to dry-heat tolerance was carried out through interval mapping using Qgene 3.0. Seed germination after dry-heat treatments (90 °C for 24 h) showed a significant difference between the two parents, when evaluated for percentage germination and mean germination time. Milyang 23 was highly tolerant to the dry-heat treatment, while Gihobyeo was sensitive. Three QTLs (qDHT 1, qDHT 5, and qDHT 7) conferring the dry-heat tolerance were mapped to chromosomes 1, 5 and 7, respectively. qDHT 1 on chromosome 1 was tightly linked at 4 cM from ME1-1. The phenotypic variation explained by the three QTLs was 27.18% of the total variance in the 164 RIL populations, and the parental additive effects of three QTLs affected the Milyang 23 allele increased dry-heat tolerance. The detection of new QTLs associated with dry-heat tolerance will provide important information for disease and insect control, using dry-heat treatment in organic or low input sustainable agriculture.

  15. Distorted Fingerprint Verification System

    Directory of Open Access Journals (Sweden)

    Divya KARTHIKAESHWARAN

    2011-01-01

    Full Text Available Fingerprint verification is one of the most reliable personal identification methods. Fingerprint matching is affected by non-linear distortion introduced in fingerprint impression during the image acquisition process. This non-linear deformation changes both the position and orientation of minutiae. The proposed system operates in three stages: alignment based fingerprint matching, fuzzy clustering and classifier framework. First, an enhanced input fingerprint image has been aligned with the template fingerprint image and matching score is computed. To improve the performance of the system, a fuzzy clustering based on distance and density has been used to cluster the feature set obtained from the fingerprint matcher. Finally a classifier framework has been developed and found that cost sensitive classifier produces better results. The system has been evaluated on fingerprint database and the experimental result shows that system produces a verification rate of 96%. This system plays an important role in forensic and civilian applications.

  16. Heat

    CERN Document Server

    Lawrence, Ellen

    2016-01-01

    Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.

  17. Graphene transport properties upon exposure to PMMA processing and heat treatments

    DEFF Research Database (Denmark)

    Gammelgaard, Lene; Caridad, Jose; Cagliani, Alberto

    2014-01-01

    The evolution of graphene's electrical transport properties due to processing with the polymer polymethyl methacrylate (PMMA) and heat are examined in this study. The use of stencil (shadow mask) lithography enables fabrication of graphene devices without the usage of polymers, chemicals or heat......, allowing us to measure the evolution of the electrical transport properties during individual processing steps from the initial as-exfoliated to the PMMA-processed graphene. Heating generally promotes the conformation of graphene to SiO2 and is found to play a major role for the electrical properties...... that flakes conforming poorly to the substrate will have a higher carrier mobility which will however be reduced as heat treatment enhance the conformation. We finally show the electrical properties of graphene to be reversible upon heat treatments in air up to 200°C....

  18. Ruminal Biohydrogenation Kinetics of Defatted Flaxseed and Sunflower Is Affected by Heat Treatment.

    Science.gov (United States)

    Lashkari, Saman; Hymøller, Lone; Jensen, Søren Krogh

    2017-10-11

    The effect of heat treatment on biohydrogenation of linoleic acid (LA) and linolenic acid (LNA) and formation of stearic acid (SA), cis-9, trans-11 conjugated LA (CLA), trans-10, cis-12 CLA and trans-vaccenic acid (VA) was studied in in vitro incubations with diluted rumen fluid as inoculum and partly defatted flaxseed (DF) and partly defatted sunflower (DS) as test feeds. Feeds were heated in a laboratory oven at 110 °C for 0 (unheated), 45, or 90 min. Michaelis-Menten kinetics was applied for quantifying biohydrogenation rate. The DF heated for 90 min showed the lowest biohydrogenation rate of LNA and LA, indicated by the lowest Vmax value (P < 0.04 and P < 0.03, respectively). The DS heated for 45 min had the lowest biohydrogenation rate of LNA, indicated by the lowest Vmax value (P < 0.04). In conclusion, heat treatment decreased biohydrogenation of LA and LNA in DF and LNA in DS.

  19. Cognitive Distortions and Suicide Attempts.

    Science.gov (United States)

    Jager-Hyman, Shari; Cunningham, Amy; Wenzel, Amy; Mattei, Stephanie; Brown, Gregory K; Beck, Aaron T

    2014-08-01

    Although theorists have posited that suicidal individuals are more likely than non-suicidal individuals to experience cognitive distortions, little empirical work has examined whether those who recently attempted suicide are more likely to engage in cognitive distortions than those who have not recently attempted suicide. In the present study, 111 participants who attempted suicide in the 30 days prior to participation and 57 psychiatric control participants completed measures of cognitive distortions, depression, and hopelessness. Findings support the hypothesis that individuals who recently attempted suicide are more likely than psychiatric controls to experience cognitive distortions, even when controlling for depression and hopelessness. Fortune telling was the only cognitive distortion uniquely associated with suicide attempt status. However, fortune telling was no longer significantly associated with suicide attempt status when controlling for hopelessness. Findings underscore the importance of directly targeting cognitive distortions when treating individuals at risk for suicide.

  20. Heat Treatment of Cr- and Cr-V ledeburitic tool steels

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2014-11-01

    Full Text Available Cr- and Cr-V ledeburitic cold work tool steels belong to the most important tool materials for large series manufacturing. To enable high production stability, the tools must be heat treated before use. This overview paper brings a comprehensive study on the heat treatment of these materials, starting from the soft annealing and finishing with the tempering. Also, it describes the impact of any step of the heat treatment on the most important structural and mechanical characteristics, like the hardness, the toughness and the wear resistance. The widely used AIS D2- steel (conventionally manufactured and Vanadis 6 (PM are used as examples in most cases.

  1. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Starckpoole, M. M.; Frenkel, A. I.

    2000-01-01

    their transformations caused by heat treatment prior to disposal or aging at a proper disposal site. The transformations were investigated by XRD, SEM, XANES, EXAFS, surface area measurements, pH static leaching tests, and extractions with oxalate and weak hydrochloric acid. It was found that at 600 and 900 °C the iron...... oxides were transformed to hematite, which had a greater thermodynamic stability but less surface area than the initial products. Heat treatment also caused some volatilization of heavy metals (most notably, Hg). Leaching with water at pH 9 (L/S 10, 24 h) and weak acid extraction showed that heat...

  2. Effect of heat treatments in the silicon eutectic crystal evolution in Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Forn, A.; Baile, M.T.; Martin, E.; Ruperez, E. [Light Alloys and Surface Treatments Design Centre (CDAL), Univ. Politecnica de Catalunya, Vilanova I la Geltru (Spain)

    2005-07-01

    This paper describes the heat treatment effect on the eutectic silicon evolution in the A357 alloy, obtained by semisolid forming process (SSM). The coarsening rate of the silicon was determined by image analysis technique in specimens from rheocasting ingots and thixocasting components. The study was realized in the temperature range from 450 to 550 C by applying heating times between 1 and 24 hours. The results show that during the heat treatment the coarsening and sphereodization of the silicon particles is produced and the fragmentation stages, which are observed in conventional alloys, do not appear. Kinetic silicon growth has been adjusted to the Oswald's ripening equation. (orig.)

  3. Effect of alkali and heat treatments for bioactivity of TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seo young, E-mail: mast6269@nate.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Kim, Yu kyoung, E-mail: yk0830@naver.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Park, Il song, E-mail: ilsong@jbnu.ac.kr [Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jin, Guang chun, E-mail: jingc88@126.com [Oral Medical College, Beihua University, Jilin City 132013 (China); Bae, Tae sung, E-mail: bts@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Lee, Min ho, E-mail: mh@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of)

    2014-12-01

    Highlights: • TiO{sub 2} nanotubes formed via anodization were treated by alkali and heat. • The surface roughness was increased after alkali treatment (p < 0.05). • After alkali and heat treatment, the wettability was better than before treatment. • Alkali treated TiO{sub 2} nanotubes were shown higher HAp formation in SBF. • Heat treatment affected on the attachment of cells for alkali treated nanotubes. - Abstract: In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO{sub 2} nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO{sub 2} nanotubes (PNA) and alkali and heat-treated TiO{sub 2} nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na{sub 2}TiO{sub 3}) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  4. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat.

    Science.gov (United States)

    Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard

    2013-10-01

    A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... elasticity in bending, Janka-hardness (cross-section, parallel and perpendicular to grain), impact bending strength, tensile strength perpendicular to grain and surface roughness values decreased with increasing treatment temperature and treatment times. Increase in temperature and duration further.

  6. THE CHANGE OF MECHANICAL PROPERTIES IN COLD DRAWN BARS BY HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    N. Sinan KÖKSAL

    1999-02-01

    Full Text Available Manufacturing methods and the applied heat treatment are important for the properties of materials. Building safe constructions with the materials used depends on the knowledge and correct use of their properties. In this study, cold drawn bar specimens of Ç1040 are heat treated in three different temperatures (500 o C, 650 o C, 840 o C and the strength, hardness, and strain values are compared with those of untreated materials. Cold drawn bars has shown higher strength values when compared with the hot rolled bars. This is because of the type of process selected for manufacturing. By heat treatment, strain has increased, hardness and strength have decreased. It has been observed that the rate of increasing or decreasing depends on the temperature and duration of the heat treatment.

  7. Optimizing the heat treatment of Ni-based superalloy turbine discs

    Science.gov (United States)

    Furrer, D. U.; Shankar, R.; White, C.

    2003-03-01

    The heat-treatment processes for nickel-based superalloys continue to change due to the development of new alloys, new requirements, and subsequent new manufacturing facilities. Nickel-based superalloys are continuing to evolve to meet emerging applications, while new alloys are also being introduced for advanced applications. These new materials are also being optimized for numerous mechanical and physical properties, making the selection of heat-treatment parameters increasingly challenging. New processing facilities and methods are also being implemented to allow tailoring of heat-treating parameters to meet these new challenges. For example, the Ladish SuperCooler technology allows engineering and control of all aspects of the heat-treatment process for nickel-based components, resulting in never-before possible disc properties.

  8. Dry heat treatment affects wheat bran surface properties and hydration kinetics.

    Science.gov (United States)

    Jacobs, Pieter J; Hemdane, Sami; Delcour, Jan A; Courtin, Christophe M

    2016-07-15

    Heat stabilization of wheat bran aims at inactivation of enzymes which may cause rancidity and processability issues. Such treatments may however cause additional unanticipated phenomena which may affect wheat bran technological properties. In this work, the impact of toasting on wheat bran hydration capacity and hydration kinetics was studied. Hydration properties were assessed using the Enslin-Neff and drainage centrifugation water retention capacity methods, thermogravimetric analysis and contact angle goniometry, next to more traditional methods. While equilibrium hydration properties of bran were not affected by the heat treatment, the rate at which the heat treated bran hydrated was, however, very significantly reduced compared to the untreated bran. This phenomenon was found to originate from the formation of a lipid coating during the treatment rendering the bran surface hydrophobic. These insights help to understand and partially account for the modified processability of heat treated bran in food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth

    Directory of Open Access Journals (Sweden)

    M. Gouma

    2015-01-01

    Full Text Available This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment to inactivate 5-Log10 cycles (performance criterion of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature that would achieve the stated performance criterion, mathematical equations based on Geeraerd’s model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min and 2.26 J/mL (2.09 min to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55°C and 60°C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60°C.

  10. Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels

    Directory of Open Access Journals (Sweden)

    Harisha S. R.

    2018-01-01

    Full Text Available The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to low carbon steels. From the last two decades a number of research scholars reported the use of verity of heat treatments to tailor the properties of medium carbon steels. Spheroidizing is the novel industrial heat treatment employed to improve formability and machinability of medium/high carbon low alloy steels. This exclusive study covers procedure, the effects and possible outcomes of various heat treatments on medium carbon steels. In the present work, other related heat treatments like annealing and special treatments for property alterations which serve as pretreatments for spheroidizing are also reviewed. Medium carbon steels with property alterations by various heat treatment processes are finding increased responsiveness in transportation, aerospace, space, underwater along with other variegated fields. Improved tribological and mechanical properties consisting of impact resistance, stiffness, abrasion and strength are the main reasons for the increased attention of these steels in various industries. In the present scenario for the consolidation of important aspects of various heat treatments and effects on mechanical properties of medium carbons steel, a review of different research papers has been attempted. This review may be used as a guide to provide practical data for heat treatment industry, especially as a tool to enhance workability and tool life.

  11. Influence of the heat treatment on the microstructure and properties of austenitic cast steel

    Directory of Open Access Journals (Sweden)

    P. Bała

    2010-07-01

    Full Text Available Exploitation investigations of a centrifugally cast pipe of austenitic cast steel indicated a significant influence of its microstructure on functional properties. Determination of the possibility of forming the microstructure and properties of the investigated cast steel by heat treatments was the aim of the presented paper. According to the Standard ASTM A 297, material from which the pipe was made is determined as HF type cast steel. The solution heat treatment from a temperature of 1080 °C was performed and followed by the microstructure observations and hardness measurements. It was found, that the solution heat treatment from this temperature will notsignificantly improve the material strength properties. However, it will visibly influence its fracture toughness. An influence of agingperformed after the solution heat treatment on microstructure and hardness was also investigated. Cast steel was aged for 1 hour at 600°C (solution heat treatment from 1080 °C. On the basis of the obtained results it was found, that the solution heat treatment temperature should be the maximum permissible by the Standard i.e. 1150 °C. Heating the supersaturated material (from 1150 °C even toa temperature of 600 °C should not cause the carbide precipitation in a form of the continuous network in grain boundaries, which woulddecrease fracture toughness of the investigated cast steel. Due to fracture toughness a service exposure of this material should not exceed 600 °C. The permissible service exposure up to 900 °C, given for this material in the Standard, is correct only on account of heat and high temperature creep resistance but not fracture toughness.

  12. The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

    2014-03-01

    The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

  13. Susceptibility of Plodia interpunctella (Lepidoptera: Pyralidae) developmental stages to high temperatures used during structural heat treatments.

    Science.gov (United States)

    Mahroof, R; Subramanyam, B

    2006-12-01

    Heating the ambient air of a whole, or a portion of a food-processing facility to 50 to 60 degrees C and maintaining these elevated temperatures for 24 to 36 h, is an old technology, referred to as heat treatment. There is renewed interest in adopting heat treatments around the world as a viable insect control alternative to fumigation with methyl bromide. There is limited published information on responses of the Indian meal moth, Plodia interpunctella (Hübner), exposed to elevated temperatures typically used during heat treatments. Time-mortality relationships were determined for eggs, fifth-instars (wandering-phase larvae), pupae, and adults of P. interpunctella exposed to five constant temperatures between 44 and 52 degrees C. Mortality of each stage increased with increasing temperature and exposure time. In general, fifth-instars were the most heat-tolerant stage at all temperatures tested. Exposure for a minimum of 34 min at 50 degrees C was required to kill 99% of the fifth-instars. It is proposed that heat treatments aimed at controlling fifth-instars should be able to control all other stages of P. interpunctella.

  14. Increased prevalence of Dirofilaria immitis antigen in canine samples after heat treatment.

    Science.gov (United States)

    Velasquez, Luisa; Blagburn, Byron L; Duncan-Decoq, Rebecca; Johnson, Eileen M; Allen, Kelly E; Meinkoth, James; Gruntmeir, Jeff; Little, Susan E

    2014-11-15

    Canine serum samples may contain factors that prevent detection of antigen of Dirofilaria immitis on commercial assays, precluding accurate diagnosis. To determine the degree to which the presence of blocking antibodies or other inhibitors of antigen detection may interfere with our ability to detect circulating antigen in canine samples, archived plasma and serum samples (n=165) collected from dogs in animal shelters were tested for D. immitis antigen before and after heat treatment. Negative samples were also evaluated for their ability to block detection of D. immitis antigen in a sample from a positive dog. All 165 samples were negative prior to heating, but 11/154 (7.1%) became positive after heat treatment, a conversion that was documented and quantified on spectrophotometric plate assays, and 7/165 (4.2%) samples decreased detection of antigen when mixed with a known positive sample, suggesting some blocking ability was present. An additional 103 plasma and serum samples that tested positive prior to heating also were evaluated; the optical density of 14/101 (13.9%) increased by ≥50%, and one sample by as much as 15-fold, after heat treatment. Our results suggest that canine serum and plasma samples from dogs in the southeastern United States can contain inhibitors of D. immitis antigen detection, and that prevalence estimates of heartworm infection based on these assays would benefit from heat treatment of samples prior to testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A Study on Infrared Local Heat Treatment for AA5083 to Improve Formability and Automotive Part Forming

    Science.gov (United States)

    Lee, Eun-Ho; Yang, Dong-Yol; Ko, SeJin

    2017-09-01

    Automotive industries are increasingly employing aluminum alloys for auto parts to reduce vehicle weight. However, the low formability of aluminum alloys has been an obstacle to their application. To resolve the formability problem, some studies involving heat treatments under laboratory conditions have been reported. However, for industrial applications, the heat treatment sequence, heating energy efficiency, and a commercial part test should be studied. This work shows an infrared (IR) local heat treatment, heating only small areas where the heat treatment is required, for an aluminum alloy to improve the formability with a reduction of heating energy. The experiment shows that the formability drastically increases when the aluminum alloy is heat treated between two forming stages, referred to as intermediate heat treatment. The microstructures of the test pieces are evaluated to identify the cause of the increase in the formability. For an industrial application, an aluminum tailgate, which cannot be manufactured without heat treatment, was successfully manufactured by the IR local heat treatment with a reduction of energy. A simulation was also conducted with a stress-based forming limit diagram, which is not affected by the strain path and heat treatment histories. The simulation gives a good prediction of the formability improvement.

  16. Influence of Heat Treatment on Abrasive Wear Resistance of Silumin Matrix Composite Castings

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2016-03-01

    Full Text Available The authors attempted at examining the effect of heat treatment on abrasive wear resistance of metal composite castings. Metal matrix composites were made by infiltrating preforms created from unordered short fibers (graphite or silumin with liquid aluminium alloy AlSi12(b. Thus prepared composites were subject to solution heat treatment at a temperature of 520°C for four hours, then aging at a temperature of 220°C for four hours. Abrasion resistance of the material was tested before and after thermal treatment.

  17. Effects of local heat and cold treatment on surface and articular temperature of arthritic knees

    NARCIS (Netherlands)

    Oosterveld, Frederikus G.J.; Rasker, Hans J.

    1994-01-01

    Objective: To evaluate and compare the effects of locally applied heat and cold treatments on skin and intraarticular temperature in patients with arthritis. Methods. Thirty-nine patients with arthritis of the knee were divided at random into 4 treatment groups (ice chips, nitrogen cold air,

  18. Effects of heating treatment on some of the physical properties of ...

    African Journals Online (AJOL)

    Once heat treatment was conducted, four types of varnish layers (cellulose lacquer, synthetic varnish, polyurethane varnish and water based varnish) were applied to the materials. After the treatments application, color, brightness and surface roughness of varnish film layers of the treated woods were measured. The effects ...

  19. Heuristic algorithms for scheduling heat-treatment furnaces of steel ...

    Indian Academy of Sciences (India)

    treatment furnaces in a steel-casting foundry, a special problem of batch processor scheduling, ... production management is to maximize throughput and reduce flow time and WIP. This motivated the choice of ..... A computational experiment is appropriate in order to provide a perspective on the relative effectiveness of any ...

  20. Influence of heat treatments on microstructure, mechanical properties, and corrosion resistance of weld alloy 625

    Science.gov (United States)

    Cortial, F.; Corrieu, J. M.; Vernot-Loier, C.

    1995-05-01

    The effects of heat treatments of the industrial type (eight-hour hold times at temperatures between 600 °C and 1000 °C) on the structural, mechanical, and corrosion resistance characteristics of weld alloy 625 have been studied. During the heat treatment, the mean concentration ratios of Nb, Mo, Si, Cr, Ni, and Fe elements between the interdendritic spaces and dendrite cores show little evolution up to 850 °C. Beyond that temperature, this ratio approximates 1, and the composition heterogeneity has practically disappeared at 1000 °C. An eight-hour heat treatment at temperatures between 650 °C and 750 °C results in increased mechanical strength values and reduced ductility and impact strength linked to the precipitation of body-centered tetragonal metastable intermetallic γ″ Ni3Nb phase in the interdendritic spaces. An eight-hour treatment in the temperature range between 750 °C and 950 °C has catastrophic effects on all mechanical characteristics in relation with the precipitation, in the interdendritic spaces, of the stable orthorhombic intermetallic δ Ni3(Nb, Mo, Cr, Fe, Ti) phase. At 1000 °C, the ductility and impact strength are restored. However, the higher the heat treatment temperature, the weaker the mechanical strength. Heat treatments have no effect on the pitting resistance of weld alloy 625 in sea water. The comparison of the results of this study on weld alloy 625 with those previously obtained on forged metal 625 shows that heat treatments below 650 °C and above 1000 °C are the sole treatments to avoid embrittlement and impairment of the corrosion resistance characteristics of alloy 625.

  1. Modification of the original color of the Eucalyptus grandis wood by heat treatments

    Directory of Open Access Journals (Sweden)

    Rosilei Aparecida Garcia

    2014-09-01

    Full Text Available The objective of this study was to determine the modification of original color of Eucalyptus grandis Hill ex. Maiden wood after heat-treatment. Wood samples were heat-treated under different temperatures (180, 200, 215 and 230ºC and time conditions (15 minutes, 2 and 4 hours. Color analysis were performed on the CIE L*a*b* system by using a Color Eye XTH-X-Rite 200d spectrophotometer. All heat treatments promoted an alteration of the original color of wood. Heat-treated woods presented lower L* (lightness values than untreated wood (control, characterizing the wood darkness, mainly for more severe conditions of temperature and time. Chromatic coordinates (a* and b* showed different behaviors depending on the temperature-time combination. The modification of the original color of the wood allowed the creation of new color patterns, which can add greater value to the studied wood.

  2. Manufacturing of tailored tubes with a process integrated heat treatment

    Science.gov (United States)

    Hordych, Illia; Boiarkin, Viacheslav; Rodman, Dmytro; Nürnberger, Florian

    2017-10-01

    The usage of work-pieces with tailored properties allows for reducing costs and materials. One example are tailored tubes that can be used as end parts e.g. in the automotive industry or in domestic applications as well as semi-finished products for subsequent controlled deformation processes. An innovative technology to manufacture tubes is roll forming with a subsequent inductive heating and adapted quenching to obtain tailored properties in the longitudinal direction. This processing offers a great potential for the production of tubes with a wide range of properties, although this novel approach still requires a suited process design. Based on experimental data, a process simulation is being developed. The simulation shall be suitable for a virtual design of the tubes and allows for gaining a deeper understanding of the required processing. The model proposed shall predict microstructural and mechanical tube properties by considering process parameters, different geometries, batch-related influences etc. A validation is carried out using experimental data of tubes manufactured from various steel grades.

  3. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms.

    Science.gov (United States)

    Almatroudi, A; Tahir, S; Hu, H; Chowdhury, D; Gosbell, I B; Jensen, S O; Whiteley, G S; Deva, A K; Glasbey, T; Vickery, K

    2018-02-01

    The importance of biofilms to clinical practice is being increasingly realized. Biofilm tolerance to antibiotics is well described but limited work has been conducted on the efficacy of heat disinfection and sterilization against biofilms. To test the susceptibility of planktonic, hydrated biofilm and dry-surface biofilm forms of Staphylococcus aureus, to dry-heat and wet-heat treatments. S. aureus was grown as both hydrated biofilm and dry-surface biofilm in the CDC biofilm generator. Biofilm was subjected to a range of temperatures in a hot-air oven (dry heat), water bath or autoclave (wet heat). Dry-surface biofilms remained culture positive even when treated with the harshest dry-heat condition of 100°C for 60min. Following autoclaving samples were culture negative but 62-74% of bacteria in dry-surface biofilms remained alive as demonstrated by live/dead staining and confocal microscopy. Dry-surface biofilms subjected to autoclaving at 121°C for up to 30min recovered and released planktonic cells. Recovery did not occur following autoclaving for longer or at 134°C, at least during the time-period tested. Hydrated biofilm recovered following dry-heat treatment up to 100°C for 10min but failed to recover following autoclaving despite the presence of 43-60% live cells as demonstrated by live/dead staining. S. aureus dry-surface biofilms are less susceptible to killing by dry heat and steam autoclaving than hydrated biofilms, which are less susceptible to heat treatment than planktonic suspensions. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Study of the Al-Si-X system by different cooling rates and heat treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Suarez

    2012-10-01

    Full Text Available The solidification behavior of the Al-12.6% Si (A1, the hypereutectic Al-20%Si (A2 and the Al-20%Si-1.5% Fe-0.5%Mn (A3 (in wt. (% alloys, at different cooling rates is reported and discussed. The cooling rates ranged between 0.93 °C/s and 190 °C/s when cast in sand and copper wedge-shaped molds, respectively. A spheroidization heat treatment was carried out to the alloys in the as-cast condition at 540 °C for 11 hours and quench in water with a subsequent heat treatment at 170 °C for 5 hours with the purpose of improving the mechanical properties. The samples were characterized by optical microscopy, scanning electron microscopy and mechanically by tensile test, in order to evaluate the response of the heat treatment on the different starting microstructures and mechanical properties. It was found that alloys cooled at rates greater than 10.8 °C/s had a smaller particle size and better distribution, also showed a greater response to spheroidization heat treatment of all silicon (Si phases. The spheroidization heat treatment caused an increase in the ultimate tensile stress (UTS and elongation when compared with the alloys in the as-cast condition. The highest UTS value of 174 MPa was obtained for the (A1 alloy.

  5. Heat treatment of the EN AC-AlSi9Cu3(Fe alloy

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-04-01

    Full Text Available Silumins are widely used in automotive, aviation and shipbuilding industries; as having specific gravity nearly three times lower than specific gravity of cast iron the silumins can be characterized by high mechanical properties. Additionally, they feature good casting properties, good machinability and good thermal conductivity. i.e. properties as required for machinery components operating in high temperatures and at considerable loads. Mechanical properties of the silumins can be upgraded, implementing suitably selected heat treatment. In the paper is presented an effect of modification and heat treatment processes on mechanical properties of the EN AC-AlSi9Cu3(Fe alloy. Investigated alloy has undergone typical processes of modification and refining, and next heat treatment. Temperature range of the heat treatment operations was determined on base of curves from the ATD method. Obtained results concern registered melting and solidification curves from the ATD method and strength tests. On base of the performed tests one has determined range of the heat treatment parameters which would assure obtainment of the best possible mechanical properties of the EN AC-AlSi9Cu3(Fe alloy.

  6. Effect of Cold Drawing and Heat Treatment on the Microstructure of Invar36 Alloy Wire

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Youb; Jang, Seon Ah; Eun, Hee-Chul; Choi, Jung-Hoon; Lee, Ki Rak; Park, Hwan Seo; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Soo Young; Kim, Jea Youl [RandD Center, KOS Ltd., Yangsan (Korea, Republic of); Shin, Sang Yong [University of Ulsan, Ulsan (Korea, Republic of)

    2016-10-15

    In this study, the effect of cold drawing and heat treatment on the microstructure of Invar36 alloy wire was investigated. Invar36 alloy wire is used as a transmission line core material, and is required to have high strength. The diameter of the Invar36 alloy wire specimens were reduced from 16 mm to 4.3 mm after three cold drawing and two heat treatment processes, thereby increasing tensile strength. Specimens were taken after each of the cold drawing and heat treatment processes, and their microstructure and tensile properties were analyzed. The Invar36 alloy wire had a γ-(Fe, Ni) phase matrix before the cold drawing and heat treatment processes. After the cold drawing processes, {220} and {200} textures were mainly achieved. After the heat treatment processes, a {200} recrystallization γ-(Fe, Ni) phase was formed with fine carbides. The recrystallization γ-(Fe, Ni) phase grains had low dislocation density, so they probably accommodated a large amount of deformation during the cold drawing processes.

  7. Effects of temperature and method of heat treatment on myofibrillar proteins of pork

    Directory of Open Access Journals (Sweden)

    Vujadinović Dragan

    2014-01-01

    Full Text Available During the tests in this paper, meat processing was carried out at different temperatures between the range of 51°C to 100°C. The meat was processed by dry heat (roasting and wet heat treatments (cooking in water at atmospheric pressure. After heat treatment, myofibrillar proteins were extracted from solutions at constant ionic strength. Quantitative and qualitative determinations of protein´s fractions were performed by capillary electrophoresis. Myofibrillar proteins were also analized for fresh pork meat sample. Results obtained in fresh meat were compared with those recorded after roasting and cooking. In the fresh and thermally processed pork the following proteins were identified: myosin, light chain 3; myosin, light chain 2; troponin - C; troponin - I; myosin, light chain 1; tropomyosin; troponin - T; actin; desmin; α - actinin; C - protein; M - protein (Mβ; M - protein (Mα; heavy meromyosin - HMM. For both methods of thermal processing, with increasing heat treatment temperature, concentration of soluble protein in the extract decreases rapidly after 51°C. Cooking treatment had a more intense effect on the proteins change and denaturation than roasting. [Projekat Ministartsva nauke Republike Srbije: Effect of heat treatment temperature on protein structure and properties of pork meat

  8. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment

    OpenAIRE

    Qin, Yang; Liu, Chengzhen; Jiang, Suisui; Cao, Jinmiao; Xiong, Liu; Sun, Qingjie

    2016-01-01

    Glutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p < 0.05). Meanwhile, dry heating remarkably increased the apparent viscosities o...

  9. Effect of heat-moisture treatment on the structural, physicochemical, and rheological characteristics of arrowroot starch.

    Science.gov (United States)

    Pepe, Larissa S; Moraes, Jaqueline; Albano, Kivia M; Telis, Vânia R N; Franco, Célia M L

    2016-04-01

    The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100 ℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch. © The Author(s) 2015.

  10. Heat Treatment and Properties of Iron and Steel

    Science.gov (United States)

    1966-11-01

    piece of a carbon or low- alloy steel in the low temperature range used for tempering from the color of the thin oxide film that forms on the cleaned... Carbonitriding 16 d. Nitriding : IQ 5.6. Surface hardening 17 a. Induction hardening 17 b. Flame hardening 17 5.7. Special treatments 17 a...steels and in cast irons. These are manganese, silicon , phosphorus, and sulfur. Steels may be broadly classified into two types, (1) carbon and (2

  11. Effect of heat treatment on gravity die-cast Sc-A356 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Lim Ying Pio

    2017-01-01

    Full Text Available The effects of scandium addition (0.00 wt.%, 0.2 wt.%, 0.4 wt.% and 0.6 wt.% and T6 heat treatment on the microstructure and mechanical properties of A356 aluminium alloy have been investigated in the research reported in this paper. The Sc inoculated specimens were prepared by gravity die-casting, according to ASTM B557-06 standard. The cast samples were then subjected to heat treatment at solutionizing temperature of 540 °C for 8 h followed by water quenching and artificial aging at 160 °C for 6 h. The microstructure, microhardness and tensile strength of the heat-treated samples were examined with use of scanning electron microscope (SEM, optical microscope, Vicker’s hardness tester, and Instron static machine respectively. Heat treatment was found to be able to effectively reduce grain size down to 16 μm (0.6 wt.% Sc, from 40 μm (original A356. The tensile strength was significantly improved, up to 338 MPa for heat treated 0.6 wt.% Sc-A356 having been achieved. The microhardness of 118 HV has been obtained for heat treated 0.6 wt.%Sc-A356.

  12. Effects of heat stress on the level of heat shock protein 70 on the surface of hepatocellular carcinoma Hep G2 cells: implications for the treatment of tumors.

    Science.gov (United States)

    Cui, Naizhong; Xu, Yongping; Cao, Zhenhui; Xu, Fanxing; Zhang, Peng; Jin, Liji

    2013-04-01

    The ability to distinguish tumor cells from normal cells is vital to allow the immune system to selectively destroy tumor cells. In order to find an effective marker, we used enzyme-linked immunosorbent assay, immunocytochemistry, immunofluorescence, and flow cytometry to investigate the effects of heat stress on the amount of heat shock protein 70 on the surface of tumor cells (Hep G2 cells). Heat shock protein 70 is the major stress-induced heat shock protein found on the surface of tumor cells. Our results indicate that the percentage of Hep G2 cells with a detectable level of heat shock protein 70 on their cell surface increased significantly (P heat stress at 42 °C for 2 h (up to 1.92 times the level before heat treatment). The detectable level of heat shock protein 70 on the surface of Hep G2 cells reached its peak 12 h after treatment. However, the fluorescent intensity of stressed and unstressed Hep G2 cells was not significantly different (P > 0.05). The increase in the level of heat shock protein 70 on the surface of tumor cells following heat stress could provide a basis for finding novel immunotoxins as targets for drug action and may have application to be used in conjunction with hyperthermia in the treatment of tumors.

  13. MATHEMATICAL SIMULATION OF WELDING DISTORTIONS IN THIN PLATES

    Directory of Open Access Journals (Sweden)

    Afshin Kheidari Monfared

    2011-01-01

    Full Text Available Welding is a crucial manufacturing process and widely used for manufacturing various products including ships, automobiles, trains and bridges. Welding distortions often occur in welded structures of thin plates due to relatively low stiffness and result in their warpage during assembly process and high manufacturing cost. Therefore, prediction and reduction of welding distortions are important in order to improve quality of welded structures. Welding distortion during the assembly process is caused not only by local shrinkage due to rapid heating and cooling. 3-D thermo-elastic-plastic finite element method (FEM has been used to simulate single-bead-on-plate welding with 1 mm thickness. Experiments have been carried out to prove the simulated results. Comparison of the experimental results and FEM simulation results has confirmed that the proposed method efficiently  predicts level of  welding distortions while making single-bead-on-plate welding with 1 mm thickness.

  14. Effect of heat treatment on the magnetic and magnetoelastic properties of cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Nlebedim, I.C., E-mail: nlebedimci@Cardiff.ac.u [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom); Ranvah, N.; Williams, P.I.; Melikhov, Y.; Snyder, J.E.; Moses, A.J.; Jiles, D.C. [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom)

    2010-07-15

    The influence of different heat treatments on the magnetic and magnetoelastic properties of highly magnetostrictive CoFe{sub 2}O{sub 4} has been investigated. The first order cubic anisotropy coefficient, coercive field, magnetostriction and high strain sensitivity were observed to decrease as the heat treatment temperature increased. The saturation magnetization of the samples on the other hand increased with increase in heat treatment temperature. These changes were not accompanied by any observable changes in crystal structure or composition and are indicative of migration of Co{sup 2+} from the octahedral sites (B-sites) to the tetrahedral sites (A-sites) and Fe{sup 3+} from the A-sites to the B-sites of the spinel structure. Different distributions of the cations at the two distinct lattice sites can strongly affect the magnetic and magnetoelastic properties of these materials.

  15. Hydrogen Degassing Study During the Heat Treatment of 1.3-GHZ SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Mijoung [Fermilab; Kim, H. J. [IBS, Daejeon; Rowe, A. [Fermilab; Wong, M. [Fermilab

    2013-10-02

    Superconducting radio frequency (SRF) cavities undergo a number of processes as part of its manufacturing procedure in order to optimize their performance. Among these processes is a high temperature hydrogen degas heat treatment used to prevent 'Q' decrease. The heat treatment occurs in the processing sequence after either chemically or mechanically polishing the cavity. This paper summarizes the hydrogen measurements during the heat treatment of a sample of chemically and mechanically polished single-cell and nine-cell 1.3-GHz cavities. The hydrogen measurements are analyzed according the polishing method, the polishing history, the amount of time that the cavity was baked at 800°C, and the temperature ramp rate.

  16. Heat treatment of processing sludge of ornamental rocks: application as pozzolan in cement matrices

    Directory of Open Access Journals (Sweden)

    J.G. Uliana

    Full Text Available The sector of ornamental rocks produces significant volume of waste during the sawing of the blocks and demand to find ways to recycle, given its environmental impact. Considering the possibilities of use of industrial by-products as mineral admixtures, aiming at sustainable development in the construction industry, this paper aims to study the performance of the processing sludge of ornamental rocks and grinding after heat treatment, based on their potential application as partial substitute for cement. The residue was characterized, cast and milled to produce glassy material. Was analyzed the mechanical performance and pozzolanic activity with partial replacement of cement by waste in natural condition and after heat treatment in mortars for comparison. The results were promising, so it was possible to verify that after heat treatment, the treated waste is presented as a material with pozzolanic characteristics.

  17. Heuristic algorithm for planning and scheduling of forged pieces heat treatment

    Directory of Open Access Journals (Sweden)

    R. Lenort

    2012-04-01

    Full Text Available The paper presents a heuristic algorithm for planning and scheduling of forged pieces heat treatment which allows maximizing the capacity exploitation of the heat treatment process and the entire forging process. Five Focusing Steps continuous improvement process was selected as a methodological basis for the algorithm design. Its application was supported by simulation experiments performed on a dynamic computer model of the researched process. The experimental work has made it possible to elicit the general rules for planning and scheduling of the heat treatment process of forged pieces which reduce losses caused by equipment conversion and setup times, and which increase the throughput of this process. The HIPO diagram was used to design the algorithm.

  18. Examination of the influence of heat treatment on the properties of Al-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Vuksanovic, D.; Rakocevic, S. [Faculty of Metallurgy, Podgorica (RS); Markovic, S. [Faculty of Technology and Metallurgy, Belgrade (RS); Petrovic, T. [Institute ' Kirilo Savic' , Belgrade (RS); Kovacevic, K. [Institute for Ferrous Metallurgy (RS); Tripkovic, S. [H.K. Petar Drapsin, Mladenovac (RS)

    2007-08-15

    In this paper the influence of heat treatment on the structural and mechanical properties of Al-Si alloys was investigated. Silicon content in the examined alloys was in the range 11 to 14%, the contents of the other alloying elements were in the standard range but all alloys were modified with strontium. The regime of the applied heat treatment was quenching (520 C/6h - cooling in water) + aging (205oC/7h - air cooling). The examinations were carried out at room temperature as well as at 250 C and 300 C. The obtained results showed a positive influence of the applied heat treatment on the mechanical properties of the examined alloys. The improvement of the mechanical properties can be considered as a consequence of a redistribution and change of morphology of the phases present in the structure of the alloys. (orig.)

  19. EFFECT OF HEAT TREATMENT ON THE GERMINATION OF SEEDS SOEL

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-01-01

    Full Text Available The object of this work was to study the effect of thermal treatments (in the oven and in the compost on the seed germination SOEL. The laboratory evaluation on the treatment in the oven berries at two temperatures (50°C and 60°C for three exposure time ( one day, two days and three days gave a germination rate zero for 60°C for an exposure time of one day. The spatio-temporal thermal monitoring of forestry compost windrow which was introduced to deal with berries SOEL showed a substantially homogeneous distribution of the temperature rising to 60°C and even longer swath stretching and used for a time period of 5 consecutive days. The germination rate was zero for all fruit seeds treated before the first reversal fact, regardless of the depth and location of the windrow considered that the berries were introduced. Thus, composting can be a solution to prevent the spread of SOEL by seed.

  20. Evolution of the properties of ZnO thin films subjected to heating treatments

    Energy Technology Data Exchange (ETDEWEB)

    Prepelita, Petronela; Stefan, N.; Luculescu, C.; Garoi, F., E-mail: florin.garoi@gmail.com; Birjega, R.

    2012-05-01

    Structural and optical properties of ZnO thin films (200 nm thickness) deposited using magnetron sputtering technique are influenced by structural defects. Therefore, we applied various heating treatments in order to control and improve the crystallinity of the samples. These treatments were realized in air at temperatures of 350 Degree-Sign C, 550 Degree-Sign C and 700 Degree-Sign C respectively, each for a duration of 1 h. The properties of the samples were investigated both before and after the heating treatment. Modern methods like X-ray Diffraction, Atomic Force Microscopy and Scanning Electron Microscopy were used to analyze the structure and morphology of the heated ZnO thin films. These heating treatments may be held responsible for rearrangements in the morphology of the thin films. Thus, it was observed that an increase of porosity and agglomeration of the crystallites is followed by an increase in the size of the crystallites. Inter-crystalline borders will migrate determining a coalescence of several crystallites during the heating process, as well. As a consequence, an increase of the band gap width from 3.26 eV to 3.30 eV (at 350 Degree-Sign C) and 3.32 eV (at 550 Degree-Sign C) respectively, occurred.

  1. Combined effects of chlorine dioxide, drying, and dry heat treatments in inactivating microorganisms on radish seeds.

    Science.gov (United States)

    Bang, Jihyun; Kim, Haeyoung; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2011-02-01

    We determined the combined effectiveness of ClO(2) (200 and 500 μg/ml, 5 min), air drying [25 °C, 40% relative humidity (RH), 2 h], and mild dry heat (55 °C, 23% RH, up to 48 h) treatments in killing total aerobic bacteria (TAB), Escherichia coli O157:H7, and molds and yeasts (MY) on radish seeds. A 5.1-log reduction in the number of TAB was achieved on radish seeds treated with 200 or 500 μg/ml ClO(2) followed by air drying for 2 h and dry heat treatment for 48 h or 24 h, respectively. When radish seeds were treated with 200 and 500 μg/ml ClO(2), air dried, and heat treated for 12 h and 6 h, respectively, the initial population of E. coli O157:H7 (5.6 log CFU/g) on seeds was reduced to an undetectable level (heat treatment up to 48 h. Results show that treating radish seeds with 500 μg/ml ClO(2), followed by air dried at 25 °C for 2 h and heat treatment at 55 °C for 36 h achieved a >5-log CFU/g reduction of TAB and E. coli O157:H7. These observations will be useful when developing effective strategies and practices to enhance the microbiological safety of radish sprouts. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Effect of heat treatment on the grooving corrosion resistance of ERW pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kwon; Lee, Jae Young; Lim, Soo Hyun; Park, Ji Hwan; Seo, Bo Min; Kim, Seon Hwa [Soonchunhyang University, Asan (Korea, Republic of)

    2002-06-15

    The v-sharp grooving corrosion of ERW(electrical resistance welding) steel pipes limited their wide application in the industry in spite of their high productivity and efficiency. The grooving corrosion is caused mainly by the different microstructures between the matrix and weld that is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. Even though the diminishing of sulfur content is most effective to decrease the susceptibility of grooving corrosion, it requires costly process. In this study, improvement of grooving corrosion resistance was pursuited by post weld heat treatment in the temperature range between 650 .deg. C and 950 .deg. C. Also, the effect of heat input in the welding was investigated. By employing chromnoamperometry and potentiodynamic experiment, the corrosion rate and grooving corrosion index({alpha}) were obtained. It was found that heat treatment could improve the grooving corrosion resistance. Among them, the heat treated at 900 .deg. C and 950 .deg. C had excellent grooving corrosion resistance. The index of heat treated specimen at 900 .deg. C and 950 .deg. C were 1.0, 1.2, respectively, which are almost immune to the grooving corrosion. Potential difference after the heat treatment, between base and weld metal was decreased considerably. While the as-received one measured 61{approx}71 mV, that of the 900 .deg. C heat treated steel pipe measured only 10mV. The results were explained and discussed

  3. The effects of wet heat treatment on the structural and chemical components of Bacillus sporothermodurans spores.

    Science.gov (United States)

    Tabit, Frederick T; Buys, Elna

    2010-06-15

    The objective of this research was to study the rate of structural damage and survival of Bacillus sporothermodurans spores following treatment at high temperatures by determining the amount of Dipicolinic acid (DPA) and soluble protein leakage over time. A reference strain of B. sporothermodurans (DSM 10599) and a South African strain (UP20A) isolated from UHT milk were used. To determine the survival of spores at 130 degrees C, spores were heated for 4, 8 and 12min. To check the viability of spores plate counts were determined, while structural damage was determined using the Transmission Electron Microscopy. The filtrate of the heated spore suspension was analysed for the amount of DPA and soluble protein release due to heating. The amount of DPA released was quantified by HPLC analysis while the amount of soluble protein released from heated spores was quantified using the Bradford method. The log values of spore counts, released DPA and soluble proteins from triplicate experiments were analysed. The results of this study indicate that the inactivation of B. sporothermodurans spores during wet heat treatment is due to the penetration of hot moisture into the spore which then moistens the spore components, and inactivates enzymes, and because of the high water pressure, vital spore components such as proteins and DPA in solution leak out of the spore. Interestingly a vast majority of heated spores were inactivated before a significant amount of DPA was released. This research is the first to determine the effect of high temperature wet heat treatment on the structure of B. sporothermodurans spores and has given an insight regarding the mechanisms of destruction of B. sporothermodurans spores by wet heat. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Cognitive distortions in obese patients with or without eating disorders.

    Science.gov (United States)

    Volery, M; Carrard, I; Rouget, P; Archinard, M; Golay, A

    2006-12-01

    In the normal weight population, cognitive distortions are more often found in people with eating disorders such as anorexia and bulimia than in a control population. With these cognitive distortions, weight and body image become central elements in self-esteem. This exploratory study investigated cognitive distortions in obese patients suffering from binge eating disorder or not. The hypothesis was that the patients suffering from binge eating disorder would have more cognitive distortions. Twenty-nine obese women (11 without and 18 with binge eating disorder) and 13 non-obese female controls were selected. To evaluate the cognitive distortions, subjects completed the Mizes Anorectic Cognitions-Revised (MAC-R) questionnaire. Contrary to our hypothesis, we found no difference in evidence between the two obese groups with or without eating disorders. Possible perspectives for treatment are discussed.

  5. Heat treatment of a direct composite resin: influence on flexural strength

    Directory of Open Access Journals (Sweden)

    Caroline Lumi Miyazaki

    2009-09-01

    Full Text Available The purpose of this study was to evaluate the flexural strength of a direct composite, for indirect application, that received heat treatment, with or without investment. One indirect composite was used for comparison. For determination of the heat treatment temperature, thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were performed, considering the initial weight loss temperature and glass transition temperature (Tg. Then, after photoactivation (600 mW/cm² - 40 s, the specimens (10 x 2 x 2 mm were heat-treated following these conditions: 170ºC for 5, 10 or 15 min, embedded or not embedded in investment. Flexural strength was assessed as a means to evaluate the influence of different heat treatment periods and investment embedding on mechanical properties. The data were analyzed by ANOVA and Tukey's test (α = 0.05. TGA showed an initial weight loss temperature of 180ºC and DSC showed a Tg value of 157°C. Heat treatment was conducted in an oven (Flli Manfredi, Italy, after 37°C storage for 48 h. Flexural strength was evaluated after 120 h at 37°C storage. The results showed that different periods and investment embedding presented similar statistical values. Nevertheless, the direct composite resin with treatments presented higher values (178.7 MPa compared to the indirect composite resin (146.0 MPa and the same direct composite submitted to photoactivation only (151.7 MPa. Within the limitations of this study, it could be concluded that the heat treatment increased the flexural strength of the direct composite studied, leading to higher mechanical strength compared to the indirect composite.

  6. EFFECT OF PRE-HEAT TREATMENT ON MECHANICAL PROPERTIES OF Ti-6Al-4V WELDS

    Directory of Open Access Journals (Sweden)

    Gnofam Jacques TCHEIN

    2016-11-01

    Full Text Available The work presented here is related to the optimization of the Friction Stir Welding (FSW process. The objective is to study the influence of some parameters used in the production of welded joints by FSW. The most important parameters are the welding speed and the rotational speed of the tool. The effect of pre-heat treatment on the plates to be welded is also studied by the design of experimental methods. These pre-heat treatments result not only in a change of mechanical properties of plates to be welded, but also of their microstructure. The experiments were performed following a 16 lines fractional Taguchi table.

  7. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bartholomew, Timothy V [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-26

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient to passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon

  8. Evolution of microstructure and hardness of AE42 alloy after heat treatments

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    the microstructure of squeeze cast AE42 magnesium alloy and evaluates its hardness before and after heat treatments. The change in hardness is discussed based on the microstructural observations. Some suggestions are given concerning future design of alloy compositions in order to improve high temperature creep...... properties even further. It is shown that the microstructure of the squeeze-cast AE42 alloy is stable at high temperature 450 degrees C. The subsequent solution and ageing treatments have a limited effect on the hardness. The weak age-hardening is attributed to the precipitation of small amount Of Mg17Al12......-phase with the use of about 0.7 wt.% aluminum. The heat treatment to achieve a maximum increase in the hardness is: solution treatment at 450 degrees C for 5-10 h followed by an ageing treatment at 190-220 degrees C for about 5 It. (C) 2007 Elsevier B.V. All rights reserved....

  9. Vacuum evaporation treatment of digestate: full exploitation of cogeneration heat to process the whole digestate production.

    Science.gov (United States)

    Guercini, S; Castelli, G; Rumor, C

    2014-01-01

    Vacuum evaporation represents an interesting and innovative solution for managing animal waste surpluses in areas with high livestock density. To reduce operational costs, a key factor is the availability of an inexpensive source of heat, such as that coming from an anaerobic digestion (AD) plant. The aim of this study was to test vacuum evaporation for the treatment of cattle slurry digestate focusing on heat exploitation. Tests were performed with a pilot plant fed with the digestate from a full-scale AD plant. The results were used to evaluate if and how cogeneration heat can support both the AD plant and the subsequent evaporation of the whole daily digestate production in a full-scale plant. The concentrate obtained (12% total solids) represents 40-50% of the influent. The heat requirement is 0.44 kWh/kg condensate. Heat power availability exceeding the needs of the digestor ranges from 325 (in winter) to 585 kW (in summer) versus the 382 kW required for processing the whole digestate production. To by-pass fluctuations, we propose to use the heat coming from the cogenerator directly in the evaporator, tempering the digestor with the latent heat of distillation vapor.

  10. Triangulation in Random Refractive Distortions.

    Science.gov (United States)

    Alterman, Marina; Schechner, Yoav Y; Swirski, Yohay

    2017-03-01

    Random refraction occurs in turbulence and through a wavy water-air interface. It creates distortion that changes in space, time and with viewpoint. Localizing objects in three dimensions (3D) despite this random distortion is important to some predators and also to submariners avoiding the salient use of periscopes. We take a multiview approach to this task. Refracted distortion statistics induce a probabilistic relation between any pixel location and a line of sight in space. Measurements of an object's random projection from multiple views and times lead to a likelihood function of the object's 3D location. The likelihood leads to estimates of the 3D location and its uncertainty. Furthermore, multiview images acquired simultaneously in a wide stereo baseline have uncorrelated distortions. This helps reduce the acquisition time needed for localization. The method is demonstrated in stereoscopic video sequences, both in a lab and a swimming pool.

  11. Impact of Heat Treatment on the Freezing Points of Cow and Goat Milk

    Directory of Open Access Journals (Sweden)

    Bohumíra Janštová

    2009-01-01

    Full Text Available The aim of this study was to monitor the impact of heat treatment variables on the freezing point of cow and goat milk. The freezing point (FP was established in 30 bulk tank samples of goat milk and in 30 bulk tank samples of cow milk which were subject to laboratory heat treatment at temperatures of 72 °C (A, 85 °C (B, 95 °C (C, with the same exposition times of 20 s. Freezing point measurements of raw and heat-treated milk were carried out in compliance with the Standard CTS 57 0538 by a thermistor cryoscope. The FP of raw cow milk increased with heat treatment from the initial values of -0.5252 ± 0.0114 °C (O by 0.0023 °C (A, 0.0034 °C (B and 0.0051°C (C. Changes in FP values of goat milk were detected, from its initial value of –0.5530 ± 0.0086 °C there was an increase in the FP depending on the mode of heat treatment due to pasteurization by an average of 0.0028 °C (A, 0.0036 °C (B and 0.0054 °C (C. The dynamics of the changes were similar both in goat and cow milk. Freezing point values in cow and goat milk differed (P ⪬ 0.01 when compared to the freezing point of untreated milk after the individual interventions as well as when compared between each other. An increase in the heat treatment temperature of cow and goat milk causes an increase in the freezing point (a shift towards zero. These results can be used in practice for checking the raw material in dairy industry.

  12. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Gabriela Freitas RAMOS

    2016-01-01

    Full Text Available Abstract The present study investigated the effect of grinding on roughness, flexural strength, and reliability of a zirconia ceramic before and after heat treatment. Seven groups were tested (n = 15: a control group (labeled CG, untreated, and six groups of samples ground with diamond discs, simulating diamond burs, with grits of 200 µm (G80; 160 µm (G120, and 25 µm (G600, either untreated or heat-treated at 1200°C for 2 h (labeled A. Yttria tetragonal zirconia polycrystal discs were manufactured, ground, and submitted to roughness and crystalline phase analyses before the biaxial flexural strength test. There was no correlation between roughness (Ra and Rz and flexural strength. The reliability of the materials was not affected by grinding or heat treatment, but the characteristic strength was higher after abrasion with diamond discs, irrespective of grit size. The X-ray diffraction data showed that grinding leads to a higher monoclinic (m phase content, whereas heat treatment produces reverse transformation, leading to a fraction of m-phase in ground samples similar to that observed in the control group. However, after heat treatment, only the G80A samples presented strength similar to that of the control group, while the other groups showed higher strength values. When zirconia pieces must be adjusted for clinical use, a smoother surface can be obtained by employing finer-grit diamond burs. Moreover, when the amount of monoclinic phase is related to the degradation of zirconia, the laboratory heat treatment of ground pieces is indicated for the reverse transformation of zirconia crystals.

  13. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Directory of Open Access Journals (Sweden)

    G. Asala

    2016-01-01

    Full Text Available The susceptibility of heat affected zone (HAZ to cracking in Tungsten Inert Gas (TIG welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  14. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus

    Science.gov (United States)

    Asala, G.; Ojo, O. A.

    The susceptibility of heat affected zone (HAZ) to cracking in Tungsten Inert Gas (TIG) welded Allvac 718Plus superalloy during post-weld heat treatment (PWHT) was studied. Contrary to the previously reported case of low heat input electron beam welded Allvac 718Plus, where HAZ cracking occurred during PWHT, the TIG welded alloy is crack-free after PWHT, notwithstanding the presence of similar micro-constituents that caused cracking in the low input weld. Accordingly, the formation of brittle HAZ intergranular micro-constituents may not be a sufficient factor to determine cracking propensity, the extent of heat input during welding may be another major factor that influences HAZ cracking during PWHT of the aerospace superalloy Allvac 718Plus.

  15. In situ visualization of thermal distortions of synchrotron radiation optics

    Science.gov (United States)

    Revesz, P.; Kazimirov, A.; Bazarov, I.

    2007-06-01

    We have developed a new in situ method to measure heating-induced distortions of the surface of the first monochromator crystal exposed to high-power white synchrotron radiation beam. The method is based on recording the image of a stationary grid of dots captured by a CCD camera as reflected from the surface of a crystal with and without a heat load. The three-dimensional surface profile (heat bump) is then reconstructed from the distortions of the original pattern. In experiments performed at the CHESS A2 wiggler beam line we measured the heat bumps with the heights of up to 600 nm produced by a wiggler beam with total power in the range of 15-60 W incident on the (1 1 1) Si crystal at various angles between 3° and 15°.

  16. Influence of Heat Treatment on the Morphologies of Copper Nanoparticles Based Films by a Spin Coating Method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-01-01

    Full Text Available We have investigated the influence of heat treatment on the morphologies of copper nanoparticles based films on glass slides by a spin coating method. The experiments show that heat treatment can modify the sizes and morphologies of copper nanoparticles based films on glass slides. We suggest that through changing the parameters of heat treatment process may be helpful to vary the scattering and absorbing intensity of copper nanoparticles when used in energy harvesting/conversion and optical devices.

  17. The influence of distal-end heat treatment on deflection of nickel-titanium archwire

    Directory of Open Access Journals (Sweden)

    Marcelo Faria da Silva

    2016-02-01

    Full Text Available Objective: The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi orthodontic wires adjacent to the portion submitted to heat treatment. Material and Methods: A total of 106 segments of NiTi wires (0.019 x 0.025-in and heat-activated NiTi wires (0.016 x 0.022-in from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40, while the other distal portion of the same archwire was used as a heating-free control group (n = 40. Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. Results: There were no statistically significant differences between the tested groups with the same size and brand of wire. Conclusions: Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions.

  18. Proteomic profiling of camel and cow milk proteins under heat treatment.

    Science.gov (United States)

    Felfoul, Imène; Jardin, Julien; Gaucheron, Frédéric; Attia, Hamadi; Ayadi, M A

    2017-02-01

    Cow and camel milk proteins before and after heat treatment at 80°C for 60min were identified using LC/MS and LC-MS/MS following monodimensional electrophoresis. The database used for the identification of camel and cow proteins was set from http://www.uniprot.org/. The obtained results showed that, after heating, camel milk at 80°C for 60min, camel α-lactalbumin (α-la) and peptidoglycan recognition protein (PGRP) were not detected while camel serum albumin (CSA) was significantly diminished. When heating cow milk at 80°C for 60min, α-lactalbumin (α-la) and β-lactoglobulin (β-lg) were not significantly detected. Moreover, 19 protein bands from SDS-PAGE were analyzed and a total of 45 different proteins were identified by LC-MS/MS. Casein fractions were kept intact under a heat treatment of 80°C during 60min of both camel and cow milks. Camel and bovine whey proteins were affected by a heat treatment of 80°C for 60min. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Improvement in the mechanical properties of PTFE bonded NdFeB magnets by heat treatment

    Science.gov (United States)

    Tattam, C.; Williams, A. J.; Hay, J. N.; Harris, I. R.; Tedstone, S. F.; Ashraf, M. M.

    1996-05-01

    Rotary forging has been used to produce high density bonded magnets using NdFeB based melt spun ribbons (MQP-D). The binder used was polytetrafluoroethylene (PTFE). A post-forging heat treatment at temperatures above the crystalline melting point of PTFE (˜ 340°C) has been seen to improve substantially the mechanical integrity of the compacts. Heat treatments that were undertaken in air resulted in oxidation of the magnets, but the extent of oxidation was reduced with increasing PTFE content, characterised by a greater retention of magnetic properties. This behaviour suggests that to some extent. PTFE is effective as a barrier to oxidation. By heat treating in a vacuum, an improvement of over 100% in the mechanical strength of the compacts could be obtained with little loss in the magnetic properties. The fracture surfaces of both as-forged and heat treated compacts have been examined using scanning electron microscopy and it appears that bonding between the melt spun ribbon (MQI) and PTFE occurs during heat treatment.

  20. Study on Disinfestation of Fruit Fly (Bactrocera dorsalis using Vapor Heat Treatment on Gedong Gincu Mango

    Directory of Open Access Journals (Sweden)

    Rokhani Hasbullah

    2009-04-01

    Full Text Available Since the prohibition of chemical method for insect disinfestations processes such as ethylene dibromide in 1984, heat treatment method was developed as quarantine technology. One of the heat treatment methods is vapor heat treatment (VHT. The objectives of this research were to study mortality of fruit fly (Bactrocera dorsalis and to study the responses of VHT on quality of gedong gincu mango. Fruit fly mortality due to heat has been investigated by immersing fruit fly eggs into heated water at temperatures of 40, 43, 46 and 49OC for 30 minutes immersed, also at temperature of 46OC for 5, 10, 15, 20, 25 and 30 minutes. Gedong gincu mangoes were treated at temperature 46.5OC for 0, 10, 20, and 30 minutes. The results showed that mortality has been achieved 100% at temperature more than and equal to 43OC for 30 minutes and at temperature 46OC for more than and equal to 10 minutes. The VHT has significantly and fungi population although without adversely affecting to the fruit quality and there were no significant change in the fruit weight loss, hardness, color, soluble solid content, water content, vitamin C and organoleptic test. VHT at temperature 46.5OC for 20 up to 30 minutes were effective to kill fruit flies inside mangoes and were able to maintaining mango quality during storage.

  1. Analysis of Thermal Stresses and Strains Developing during the Heat Treatment of Windmill Shaft

    Directory of Open Access Journals (Sweden)

    Cebo-Rudnicka A.

    2017-06-01

    Full Text Available In the paper the results of evaluation of the temperature and stress fields during four cycles of the heat treatment process of the windmill shaft has been presented. The temperature field has been calculated from the solution to the heat conduction equation over the whole heat treatment cycles of the windmill shaft. To calculate the stress field an incremental method has been used. The relations between stresses and strains have been described by Prandtl-Reuss equation for the elastic-plastic body. In order to determine the changes in the temperature and stress fields during heat treatment of the windmill shaft self-developed software utilizing the Finite Element Method has been used. This software can also be used to calculate temperature changes and stress field in ingots and other axially symmetric products. In the mathematical model of heating and cooling of the shaft maximum values of the strains have been determined, which allowed to avoid the crack formation. The critical values of strains have been determined by using modified Rice and Tracy criterion.

  2. Influence of heat treatment on physicochemical and rheological characteristics of natural yogurts

    Directory of Open Access Journals (Sweden)

    Juliana Aparecida Célia

    2017-08-01

    Full Text Available The aim of this study was to assess the influence of heat treatment on physicochemical and rheological characteristics of natural yogurts, as well as the influence of lyophilization process on natural yogurts after reconstitution. In the first experiment, three yogurt treatments were processed, as follows: Treatment 1, yogurt produced with raw refrigerated milk; Treatment 2, yogurt produced with refrigerated pasteurized milk; and Treatment 3, yogurt produced with UHT (ultra-high temperature milk, in addition to analyses of fat, protein, moisture, titratable acidity, and pH. The shelf life of yogurts at 1, 8, 15, 22, and 29 days of storage, as well as pH, acidity, syneresis, viscosity, viable lactic bacteria, and total coliforms were also assessed. In the second experiment, yogurts were submitted to lyophilization process, performed by scanning electron microscopy analysis and subsequently in those reconstituted, in addition to being assessed the physicochemical, rheological, and viable lactic bacteria characteristics. The results found in the first experiment showed that heat treatment was positive for viscosity, syneresis, and lactic bacteria, being viable until the 15th day of storage only for yogurts submitted to heat treatment. In the second experiment, lyophilization preserved the physicochemical characteristics of yogurts, but the number of initial lactic bacteria was different, also negatively affecting yogurt viscosity.

  3. Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan (China); Wang, Xiaomin, E-mail: xmwang991011@163.com [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan (China); Chen, Hui; Hu, Jie [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan (China); Huang, Cui [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan (China); Gou, Guoqing [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan (China)

    2016-09-05

    7N01 aluminum (Al) alloys are treated by five heat treatment methods as peak aging (T6), over aging (T74), high temperature and subsequently low temperature aging (HLA), retrogression and reaging (RRA) and double retrogression and reaging (DRRA). The strength and fracture toughness of the five samples are tested, and the microstructures are investigated by optical microscopy (OM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that 7N01 Al-alloy treated at T6 condition has high strength but low fracture toughness. Compared with T6 treatment, T74 and HLA treatments increase the fracture toughness by 67% and 90% respectively, while the strength decrease by 9% and 17%. RRA process is a proper treatment method for 7N01 which improves the fracture toughness without sacrificing strength. The fracture toughness of DRRA treated alloy is much lower than that of RRA. Quantitative analysis through TEM images shows that the heat treatment affects the mechanical properties of 7N01 Al-alloy highly through changing the precipitates in grains and on grain boundaries, which can be explained by the coherency strengthening mechanism and Orowan mechanism. - Highlights: • Five heat treatments which can change the properties of 7N01 Al alloy were designed. • Quantitative analysis of precipitates was employed to study the mechanism. • RRA treatment can make proper strength/toughness property balances for 7N01 Al alloy.

  4. Relationship between Secondary Structure and Surface Hydrophobicity of Soybean Protein Isolate Subjected to Heat Treatment

    Directory of Open Access Journals (Sweden)

    Zhongjiang Wang

    2014-01-01

    Full Text Available This study investigated relationship between secondary structure and surface hydrophobicity of soy protein isolate (SPI subjected to a thermal treatment at 70~90°C. Heat denaturation increased the surface hydrophobicity and surface hydrophobicity decreased as aggregate formed. Heat caused an increase in the relative amount of α-helix structures and an overall decrease in the amount of β-sheet structures when compared with nontreated SPI. The relative amounts of secondary structures varied with time, temperature, and intensity of heat treatment applied. The β-sheet structure was most important for its significant role in denaturation of 7S globulin and following formed aggregates and even in denaturation of 11S globulin. The amount of β-sheet structure in SPI had an inverse correlation with the surface hydrophobicity when the temperature was kept below 90°C. Besides, β-turn structure increased as β-7S/B-11S aggregate formated.

  5. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    Science.gov (United States)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  6. Effect of Intercritical Heat Treatment on Mechanical Properties of Reinforcing Steel Bars

    Directory of Open Access Journals (Sweden)

    MUHAMMAD ISHAQUE ABRO

    2017-07-01

    Full Text Available Intercritical heat treatments attempts were made to enhance the mechanical properties of reinforcing steel bars milled from scrap metal. For this, two grades of steel bars were obtained from different steel mills and their mechanical properties that include hardness, ultimate tensile strength, and percent elongation before and after intercritical heat treatment were determined. Results indicated that 25.5 and 17.6%, improvements in UTS (Ultimate Tensile Strength and 18.8 and 14.3% improvement in percent elongation in two grades of reinforcing steel samples containing 0.17 and 0.24% carbon respectively was achieved while heating at 750oC for 2h. Appreciable improvement in the mechanical properties was noted due to birth of sufficient quantity of martensite along with ferrite

  7. Influence of heat treatment on mechanical property of steel hollow sphere and its sheet construction

    Science.gov (United States)

    Yoshida, Yoshinori; Ozawa, Sho

    2017-10-01

    Heat treatments, water quenching and annealing, are performed on the metallic hollow spheres (MHS) made from steel with 4.0 mm in outer diameter. They are pierced then put on a piece of tungsten alloy wire for making a MHS thread. The thread is set in between two neighboring warps of the tungsten alloy and the thread is placed in a reticular pattern. The MHS fabric sheet which has plain weave structure is produced by the weaving process. Furthermore, a sandwich construction of the sheet with 2 sheets of aluminum plate. The influence of the heat treatments on difference of mechanical and energy absorption property are evaluated by mean of compression test for the sheet along with the thickness direction. In addition, an aluminum pipe is filled with a heat treated MHS sheet and compression test is performed for the pipe along the radial direction. Its difference of compression load and energy consumption property is investigated.

  8. Microstructure Evolution during Supersolvus Heat Treatment of a Powder Metallurgy Nickel-Base Superalloy

    Science.gov (United States)

    Semiatin, S. L.; McClary, K. E.; Rollett, A. D.; Roberts, C. G.; Payton, E. J.; Zhang, F.; Gabb, T. P.

    2012-05-01

    Microstructure evolution during the supersolvus heat treatment of a powder-metallurgy, low-solvus, high-refractory (LSHR) superalloy was established. For this purpose, three lots of LSHR with varying initial carbon/boron composition and thermomechanical history were subjected to a series of short-time (induction) and long-time (furnace) heat treatments followed by scanning electron microscopy/electron backscatter diffraction and quantitative metallography. The size of the (pinned) gamma grains exhibited a limited dependence on heating rate and soak time at peak temperature, and it was generally smaller than the predictions based on the classic Smith-Zener model. The differences were rationalized in terms of stereological and pinning-particle location effects. Observations of limited coarsening of the carbide/boride pinning particles were interpreted in the context of prior experimental observations and a modified Lifshitz-Slyosov-Wagner model applied previously for the coarsening of compound phases in steels.

  9. Structural ordering of coal char during heat treatment and its impact on reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Bhatia, S.K.; Barry, J.C.

    2002-07-01

    The effect of heat treatment on the structure of an Australian semi-anthracite char was studied between 850-1150{sup o}C using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change during heat treatment, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained unchanged. This suggests the occurrence of catalytic ordering during heat treatment. Electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary. High resolution transmission electron micrographs depicted well-organized carbon layers surrounding iron particles. The fraction of organized carbon attains an apparent equilibrium value that increases with increase in temperature. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is structure sensitive. These results suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. It is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be low, which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron.

  10. Comparison of the heat treatment response of wrought and SSM-HPDC alloy 6082

    CSIR Research Space (South Africa)

    Möller, H

    2011-06-01

    Full Text Available The natural and artificial aging responses of wrought and SSM-HPDC alloy 6082 are compared. It is shown that the heat treatment response of this Al-Mg-Si alloy is not influenced by differences in microstructures produced by different processing...

  11. Effects of heat treatment on antioxidative and anti-inflammatory properties of orange by-products

    Science.gov (United States)

    This study investigated the changes in functional components, antioxidative activities, antibacterial activities, anti-inflammatory activities of orange (Citrus sinensis (L.) Osbeck) by-products (OBP) by heat treatment at 50 and 100 degrees C (hereafter, 50D and 100D extracts, respectively). Optimal...

  12. T5 heat treatment of semi-solid metal processed aluminium alloy F357

    CSIR Research Space (South Africa)

    Moller, H

    2009-04-01

    Full Text Available properties of SSM-HPDC F357 in different temper conditions (F, T4, T5 and T6) are compared. The Quality Index (QI) is used to compare the influence of different T5 heat treatment parameters and different temper conditions....

  13. Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel

    Science.gov (United States)

    Avishan, Behzad

    2017-09-01

    The microstructural evolution and consequent changes in strength and ductility of advanced NANOBAIN steel during prolonged isothermal heat-treatment stages were investigated. The microstructure and mechanical properties of nanostructured bainite were not expected to be influenced by extending the heat-treatment time beyond the optimum value because of the autotempering phenomenon and high tempering resistance. However, experimental results indicated that the microstructure was thermodynamically unstable and that prolonged austempering resulted in carbon depletion from high-carbon retained austenite and carbide precipitations. Therefore, austenite became thermally less stable and partially transformed into martensite during cooling to room temperature. Prolonged austempering did not lead to the typical tempering sequence of bainite, and the sizes of the microstructural constituents were independent of the extended heat-treatment times. This independence, in turn, resulted in almost constant ultimate tensile strength values. However, microstructural variations enhanced the yield strength and the hardness of the material at extended isothermal heat-treatment stages. Finally, although microstructural changes decreased the total elongation and impact toughness, considerable combinations of mechanical properties could still be achieved.

  14. Heat treatment prior to testing allows detection of antigen of Dirofilaria immitis in feline serum.

    Science.gov (United States)

    Little, Susan E; Raymond, Melissa R; Thomas, Jennifer E; Gruntmeir, Jeff; Hostetler, Joe A; Meinkoth, James H; Blagburn, Byron L

    2014-01-13

    Diagnosis of Dirofilaria immitis infection in cats is complicated by the difficulty associated with reliable detection of antigen in feline blood and serum samples. To determine if antigen-antibody complex formation may interfere with detection of antigen in feline samples, we evaluated the performance of four different commercially available heartworm tests using serum samples from six cats experimentally infected with D. immitis and confirmed to harbor a low number of adult worms (mean = 2.0). Sera collected 168 (n = 6), 196 (n = 6), and 224 (n = 6) days post infection were tested both directly and following heat treatment. Antigen was detected in serum samples from 0 or 1 of 6 infected cats using the assays according to manufacturer's directions, but after heat treatment of serum samples, as many as 5 of 6 cats had detectable antigen 6-8 months post infection. Antibodies to D. immitis were detected in all six infected cats by commercial in-clinic assay and at a reference laboratory. These results indicate that heat treatment of samples prior to testing can improve the sensitivity of antigen assays in feline patients, supporting more accurate diagnosis of this infection in cats. Surveys conducted by antigen testing without prior heat treatment of samples likely underestimate the true prevalence of infection in cats.

  15. Effect of heat treatment and artificial ageing on Al-5Mg-2Zn

    CSIR Research Space (South Africa)

    Chauke, Levy

    2017-10-01

    Full Text Available -cast state (F temper condition) there should be non-equilibrium intermetallics remaining at grain boundaries after casting which could be detrimental to corrosion properties of the alloy. This study investigated the effect of heat treatment and artificial...

  16. Acrylamide resulting from heat-time treatment in Cajanus cajan , a ...

    African Journals Online (AJOL)

    The influence that heat-time treatment has on the concentration of acrylamide in roasted Cajanus cajan was analysed. The study focussed on optimising the roasting conditions using Response Surface Methodology (RSM) to minimise concentration of acrylamide in roasted Cajanus cajan. The raw Cajanus cajan was ...

  17. The effect of heat treatment on the chemical composition of canned ...

    African Journals Online (AJOL)

    Beef, pork and chicken meat were used in this study. Heat treatments were carried out at 115 ºC in stationary and rotating autoclaves, 125 ºC in stationary and rotating autoclaves, 125 ºC in stationary and 125 ºC but higher Fo value in stationary and rotating autoclaves. The results of the analysis showed higher protein ...

  18. Effect of Heat Treatment on the Lycopene Content of Tomato Puree ...

    African Journals Online (AJOL)

    Lycopene is a powerful antioxidant. Epidemiological studies have associated its consumption with numerous health benefits. In this study the effects of heating on lycopene were investigated by exposing tomato (lycopersicon esculentum) puree to different temperature treatments (60, 90, 100, 120, and 1500C) for 5, 10, 30, ...

  19. Effect of heat treatment and packaging systems on the stability of fish sausage

    OpenAIRE

    Bruna Rafaela Dallabona; Laura Beatriz Karam; Roberta Wagner; Dayse Aline Ferreira Silva Bartolomeu; Jorge Daniel Mikos; João Gabriel Phabiano Francisco; Renata Ernlund Freitas Macedo; Peter Gaberz Kirschnik

    2013-01-01

    The purpose of this study was to evaluate the physicochemical and microbiological stability of sausages produced from mechanically separated fish meat (MSM) obtained from Nile tilapia filleting residues. Different heat treatments (pasteurization or smoking) and packaging systems (conventional or vacuum) were used. The sausages were characterized for chemical composition, weight loss, water activity, instrumental texture and sensorial analysis. Additionally, microbiological analysis, instrumen...

  20. Simulation of stretch forming with intermediate heat treatments of aircraft skins - A physically based modeling approach

    NARCIS (Netherlands)

    Kurukuri, S.; Miroux, Alexis; Wisselink, H.H.; van den Boogaard, Antonius H.

    2011-01-01

    In the aerospace industry stretch forming is often used to produce skin parts. During stretch forming a sheet is clamped at two sides and stretched over a die, such that the sheet gets the shape of the die. However for complex shapes it is necessary to use expensive intermediate heat-treatments in

  1. Influence of heat treatment and veneering on the storage modulus and surface of zirconia ceramic

    NARCIS (Netherlands)

    Siavikis, G.; Behr, M.; van der Zel, J.M.; Feilzer, A.J.; Rosentritt, M.

    2011-01-01

    Objectives: Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of

  2. Investigation of structural modification and thermal characteristics of lignin after heat treatment.

    Science.gov (United States)

    Kim, Jae-Young; Hwang, Hyewon; Oh, Shinyoung; Kim, Yong-Sik; Kim, Ung-Jin; Choi, Joon Weon

    2014-05-01

    Milled wood lignin was subjected to heat treatment between 150 and 300°C to understand the pattern of its structural modification and thermal properties. When the temperature was elevated with interval of 50°C, the color of the lignin became dark brown and the lignin released various forms of phenols from terminal phenolic groups in the lignin, leading to two physical phenomena: (1) gradual weight loss of the lignin, up to 19% based on dry weight and (2) increase in the carbon content and decrease in the oxygen content. Nitrobenzene oxidation and (13)C NMR analyses confirmed a cleavage of β-O-4 linkage (depolymerization) and reduction of methoxyl as well as phenolic hydroxyl group were also characteristic in the lignin structure during heat treatment. Simultaneously with lignin depolymerization, GPC analysis provided a possibility that condensation between lignin fragments could also occur during heat treatment. TGA/DTG/DSC data revealed that thermal stability of lignin obviously increased after heat treatment, implicating the structural rearrangement of lignin to reduction of β-O-4 linkage as well as accumulation of CC bonds. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Effect of solution heat treatment time on a rheocast Al-Zn-Mg-Cu alloy

    CSIR Research Space (South Africa)

    Mazibuko, NE

    2011-06-01

    Full Text Available During rheo-high pressure die casting (R-HPDC) of Al-Zn-Mg-Cu alloys a coarse eutectic phase is formed. This eutectic phase is difficult to take into solution because of its size and it would require longer solution heat treatment times...

  4. Effect of Dry Heat Pre-Treatment (Toasting) on the Cooking Time of ...

    African Journals Online (AJOL)

    Four cowpea varieties (Brown beans, Oloka beans, IAR48 and IT89KD-288) were toasted at 105oC, and used to study the effect of dry heat treatment on the cooking time and nutrient composition of cowpea seeds and also its effect on the functional properties of resultant flour of the cowpea seed varieties. Toasting reduced ...

  5. Formosan subterranean termite resistance to heat treatment of Scots pine and Norway spruce

    Science.gov (United States)

    W. Ramsay Smith; Andreas O. Rapp; Christian Welzbacher; Jerrold E. Winandy

    2003-01-01

    New challenges to the durability of wood building materials have arisen in the U.S. The Formosan subterranean termite (Coptotermes formosanus Shiraki) now infests sizable portions of the U.S. south (Figure 1) and their range is extending. Heat treatments offer a unique opportunity for wood-based composites because many of the process techniques already employ various...

  6. Combined action of S-carvone and mild heat treatment on Listeria monocytogenes Scott A

    NARCIS (Netherlands)

    Karatzas, A.K.; Bennik, M.H.J.; Smid, E.J.; Kets, E.P.W.

    2000-01-01

    The combined action of the plant-derived volatile, S-carvone, and mild heat treatment on the food-borne pathogen, Listeria monocytogenes, was evaluated. The viability of exponential phase cultures grown at 8 °C could be reduced by 1.3 log units after exposure to S-carvone (5 mmol 1-1) for 30 min at

  7. Effect of thermal ammoniation and heat treatment on the faecal and ...

    African Journals Online (AJOL)

    Polyphenol content was reduced from 1,24 to 0,55%. This study was therefore conducted to determine the effect of thermal ammoniation and heat treatment of ... high-tannin grain in the diet on the performance of growing pigs. Experimental Procedures. Digestion trial. Grain sorghum with a polyphenol content of 1,24%.

  8. Effect of high-temperature heat treatment duration on the purity and ...

    Indian Academy of Sciences (India)

    The effect of high-temperature heat treatment on purity and structural changes of multiwalled carbon nanotubes (MWCNTs) were studied by subjecting the raw MWCNTs (pristine MWCNTs) to 2600°C for 60 and 120 min. Thermogravimetric analysis (TGA), X-ray diffraction, Raman spectroscopy, transmission electron ...

  9. Retained austenite variation in dual-phase steel after mechanical stressing and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, L.; Tiziani, A.; Zambon, A. (Dipt. di Innovazione Meccanica e Gestionale, Padua Univ. (Italy)); Matteazzi, P. (Ist. di Chimica, Univ. di Udine (Italy))

    1991-01-20

    Retained austenite changes in a dual-phase steel have been studied after mechanical and thermal treatments. In order to determine the quantitative variations of retained austenite, whose amount in the examined steel is of the order of 5%, Moessbauer spectroscopy has been used. Retained austenite undergoes a martensitic transformation during deformation, but does not transform under the heat treatments performed on the sheet during anticorrosion and painting processes. (orig.).

  10. Successful Treatment of Cutaneous Botryomycosis with a Combination of Minocycline and Topical Heat Therapy

    Directory of Open Access Journals (Sweden)

    Masaya Ishibashi

    2012-05-01

    Full Text Available Cutaneous botryomycosis is a chronic focal infection characterized by a granulomatous inflammatory response to bacterial pathogens such as Staphylococcus aureus. Treatment requires antibiotic therapy and may also require surgical debridement. We employed topical heat therapy and oral minocycline. The lesions became flattened and pigmented after 1 month. We consider that this simple treatment can be an effective and harmless complementary therapy for cutaneous botryomycosis.

  11. Effect of heat treatment changes on swelling treatment of coal; Sekitan no bojun shori sayo ni oyobosu netsushori henka no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Satsuka, T.; Mashimo, K.; Wainai, T. [Nihon University, Tokyo (Japan). College of Science and Technology

    1996-10-28

    Discussions were given on effects of heat treatment at relatively low temperatures as a pretreatment for coal liquefaction on coal swelling and hydrogenolysis reaction. Taiheiyo coal was heated to 200{degree}C for one hour as a pretreatment. The attempted heating methods consisted of four steps of rapid heating (6.7{degree}C/min)quenching (20{degree}C/min), rapid heating/natural cooling (0.7{degree}C/min), heating (1.0{degree}C/min)/quenching, and heating/natural cooling. The swelling treatment was composed of adding methanol benzene into heat treated coal, and leaving it at room temperature for 24 hours. The hydrogenolysis was carried out by using a tetralin solvent and at an initial hydrogen pressure of 20 kg/cm{sup 2} and a temperature of 350{degree}C and for a time of one hour. Hydrogenolysis conversion in the heat treated coal was found lower than that of the original coal because of generation of liquefaction inactive components due to thermal polymerization. When the heat treated coal is swollen by using the solvent, gas yield from the hydrogenolysis reaction decreased due to gas suppression effect, and the conversion was lower than that of the original coal. Heat treatment suggests densification of the coal structure. Swollen coal shows no conspicuous difference in the heat treatment methods against the hydrogenolysis due to the swelling effect. 3 refs., 5 figs., 1 tab.

  12. Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment.

    Science.gov (United States)

    Raikos, Vassilios; Duthie, Garry; Ranawana, Viren

    2015-09-01

    The present study investigated the impact of heat treatments on the denaturation and oxidative stability of hemp seed protein during simulated gastrointestinal digestion (GID). Heat-denatured hemp protein isolate (HPI) solutions were prepared by heating HPI (2 mg/ml, pH 6.8) to 40, 60, 80 and 100 °C for 10 min. Heat-induced denaturation of the protein isolates was monitored by polyacrylamide gel electrophoresis. Heating HPI at temperatures above 80 °C significantly reduced solubility and led to the formation of large protein aggregates. The isolates were then subjected to in vitro GID and the oxidative stability of the generated peptides was investigated. Heating did not significantly affect the formation of oxidation products during GID. The results suggest that heat treatments should ideally remain below 80 °C if heat stability and solubility of HPI are to be preserved.

  13. Inactivation of Listeria monocytogenes using Water Bath Heat Treatment in Vacuum Packed Ricotta Salata Cheese Wedges.

    Science.gov (United States)

    Spanu, Carlo; Scarano, Christian; Spanu, Vincenzo; Pala, Carlo; Di Salvo, Riccardo; Piga, Carlo; Ullu, Antonio; Casti, Daniele; Lamon, Sonia; Cossu, Francesca; Ibba, Michela; De Santis, Enrico Pietro Luigi

    2015-07-01

    Ricotta salata cheese is frequently contaminated on the surface with Listeria monocytogenes. Water bath heat treatment in vacuum packed whole ricotta salata cheese wheels demonstrated to be effective in inactivating L. monocytogenes. However, the risk of cross-contamination in ricotta salata wedges is increased during cheese cutting. Therefore, the effectiveness of heat treatment in ricotta salata wedges has to be demonstrated conducting a new validation study. In this study, 9 different time temperature combinations, 75, 85, and 90 °C applied for 10, 20, and 30 min each, were tested on artificially contaminated ricotta salata cheese wedges. The extent of the lethal effect on L. monocytogenes was assessed 1 and 30 d after the application of the hot water bath treatment. Five of 9 combinations, 75 °C for 30 min, 85 °C for 20, and 30 min, and 90°C for 20 and 30 min, demonstrated to meet the process criteria of at least 5 log reduction. Sensory analyses were also conducted in order to account for the potential impact on sensory features of ricotta salata wedges, which showed no significant differences between treatments. This study allowed to select water bath heat treatments of vacuum packed ricotta salata wedges effective to reduce L. monocytogenes contamination. Such treatments can be successfully applied by food business operator to meet compliance with microbiological criteria through the designated shelf-life. © 2015 Institute of Food Technologists®

  14. Heat Treatment of Buckypaper for Use in Volatile Organic Compounds Sampling

    Directory of Open Access Journals (Sweden)

    Jonghwa Oh

    2016-01-01

    Full Text Available Three types of buckypapers (BPs, two of them fabricated with arc discharge (AD single-walled carbon nanotubes (SWNTs (acetone-cleaned AD BP and methanol-cleaned AD BP and one with high-pressure carbon monoxide (HiPco SWNTs (HiPco BP, were heat-treated at different conditions to find the specific conditions for each type that improve the adsorption properties. Based on thermogravimetric analysis (TGA data, three heat treatment conditions were designed for the AD BPs and another three conditions for the HiPco BPs. Also, changes in weight and physical integrity before and after the heat treatment were considered. Heating at 300°C for 90 minutes was selected for acetone-cleaned AD BP, in which the BP kept its physical integrity and yielded a relatively high Brunauer, Emmett, and Teller (BET surface area (970 ± 18 m2/g, while methanol-cleaned AD BP was excluded because of its physical change. For HiPco BP, a condition of 300°C heating for 30 minutes was chosen as a relatively higher surface area (933 ± 54 m2/g and less weight loss (5% were observed.

  15. Curie Temperature and Microstructural Changes Due to the Heating Treatment of Magnetic Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Gondro J.

    2016-03-01

    Full Text Available Three distinct alloys: Fe86Zr7Nb1Cu1B5, Fe82Zr7Nb2Cu1B8, and Fe81Pt5Zr7Nb1Cu1B5 were characterized both magnetically and structurally. The samples, obtained with spinning roller method as a ribbons 3 mm in width and 20 μm thick, were investigated as-quenched and after each step of a multi steps heating treatment procedure. Each sample was annealed at four steps, fifteen minutes at every temperature, starting from 573K+600K up to +700K depending on type of alloy. Mössbauer spectroscopy data and transmission electron microscope (HRE M pictures confirmed that the as-quenched samples are fully amorphous. This is not changed after the first stages of treatment heating leads to a reduction of free volumes. The heating treatment has a great influence on the magnetic susceptibilities. The treatment up to 600K improves soft magnetic properties: an χ increase was observed, from about 400 to almost 1000 for the samples of alloys without Pt, and from about 200 to 450 at maximum, for the Fe81Pt5Zr7Nb1Cu1B5. Further heating, at more elevated temperatures, leads to magnetic hardening of the samples. Curie temperatures, established from the location of Hopkinson’s maxima on the χ(T curve are in very good agreement with those obtained from the data of specific magnetization, σ(T, measured in a field of 0.75T. As a critical parameter β was chosen to be equal 0.36 for these calculations, it confirmed that the alloys may be considered as ferromagnetic of Heisenberg type. Heating treatment resulted in decreasing of TC. These changes are within a range of several K.

  16. PECULIARITIES OF GENERALIZATION OF SIMILAR PHENOMENA IN THE PROCESS OF FISH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    V. A. Pokhol’chenko

    2015-01-01

    Full Text Available The theoretical presuppositions for the possibility of generalizing and similarity founding in dehydration and wet materials heating processes are studieded in this article. It is offered to carry out the given processes generalization by using dimensionless numbers of similarity. At the detailed analyzing of regularities of heat treatment processes of fish in different modes a significant amount of experienced material was successfully generalized on the basis of dimensionless simplex (similarity numbers. Using the dimensionless simplex allowed to detect a number of simple mathematical models for the studied phenomena. The generalized kinetic models of fish dehydration, the generalized dynamic models (changing moisture diffusion coefficients, the generalized kinetic models of fish heating (the temperature field changing in the products thickness, average volume and center were founded. These generalized mathematical models showed also relationship of dehydration and heating at the processes of fish semi-hot, hot smoking (drying and frying. The relationship of the results from the physical nature of the dehydration process, including a change in the binding energy of the moisture with the material to the extent of the process and the shrinkage impact on the rate of the product moisture removal is given in the article. The factors influencing the internal structure and properties of the raw material changing and retarding the dehydration processes are described there. There was a heating rate dependence of fish products on the chemical composition the geometric dimensions of the object of heating and on the coolant regime parameters. A unique opportunity is opened by using the generalized models, combined with empirically derived equations and the technique of engineering calculation of these processes, to design a rational modes of heat treatment of raw materials and to optimize the performance of thermal equipment.

  17. Preferences for heat, cold, or contrast in patients with knee osteoarthritis affect treatment response

    Directory of Open Access Journals (Sweden)

    Craig R Denegar

    2010-07-01

    Full Text Available Craig R Denegar, Devon R Dougherty, Jacob E Friedman, Maureen E Schimizzi, James E Clark, Brett A Comstock, William J KraemerHuman Performance Laboratory and Physical Therapy Program, Department of Kinesiology, University of Connecticut, Storrs, CT, USAObjective: This investigation assessed preferences for, and effects of, 5 days of twice daily superficial heat, cold, or contrast therapy applied with a commercially available system ­permitting the circulation of water through a wrap-around garment, use of an electric heating pad, or rest for patients with level II–IV osteoarthritis (OA of the knee.Methods: We employed a within subject, randomized order design to study 34 patients ­receiving each treatment in 1-week blocks. A knee injury and osteoarthritis outcome score (KOOS questionnaire and visual analog pain scale was completed at baseline, and twice each week. Treatment preferences were assessed in the last week of the study.Results: Treatment with the device set to warm was preferred by 48% of subjects. Near equal preferences were observed for cold (24% and contrast (24%. Pain reduction and improvements in KOOS subscale measures were demonstrated for each treatment but responses were (P < 0.05 greater with preferred treatments. Most patients preferred treatment with the water circulating garment system over a heating pad.Conclusions: We recommend that when superficial heat or cold is considered in the management of knee OA that patients experiment to identify the intervention that offers them the greatest relief and that contrast is a treatment option.Keywords: pain scales, KOOS, therapeutic agents, knee, patient preferences

  18. Proteomic Profiling Comparing the Effects of Different Heat Treatments on Camel (Camelus dromedarius) Milk Whey Proteins.

    Science.gov (United States)

    Benabdelkamel, Hicham; Masood, Afshan; Alanazi, Ibrahim O; Alzahrani, Dunia A; Alrabiah, Deema K; AlYahya, Sami A; Alfadda, Assim A

    2017-03-28

    Camel milk is consumed in the Middle East because of its high nutritional value. Traditional heating methods and the duration of heating affect the protein content and nutritional quality of the milk. We examined the denaturation of whey proteins in camel milk by assessing the effects of temperature on the whey protein profile at room temperature (RT), moderate heating at 63 °C, and at 98 °C, for 1 h. The qualitative and quantitative variations in the whey proteins before and after heat treatments were determined using quantitative 2D-difference in gel electrophoresis (DIGE)-mass spectrometry. Qualitative gel image analysis revealed a similar spot distribution between samples at RT and those heated at 63 °C, while the spot distribution between RT and samples heated at 98 °C differed. One hundred sixteen protein spots were determined to be significantly different (p milk samples. Eighty protein spots were decreased in common in both the heat-treated samples and an additional 25 spots were further decreased in the 98 °C sample. The proteins with decreased abundance included serum albumin, lactadherin, fibrinogen β and γ chain, lactotransferrin, active receptor type-2A, arginase-1, glutathione peroxidase-1 and, thiopurine S, etc. Eight protein spots were increased in common to both the samples when compared to RT and included α-lactalbumin, a glycosylation-dependent cell adhesion molecule. Whey proteins present in camel milk were less affected by heating at 63 °C than at 98 °C. This experimental study showed that denaturation increased significantly as the temperature increased from 63 to 98 °C.

  19. Proteomic Profiling Comparing the Effects of Different Heat Treatments on Camel (Camelus dromedarius) Milk Whey Proteins

    Science.gov (United States)

    Benabdelkamel, Hicham; Masood, Afshan; Alanazi, Ibrahim O.; Alzahrani, Dunia A.; Alrabiah, Deema K.; AlYahya, Sami A.; Alfadda, Assim A.

    2017-01-01

    Camel milk is consumed in the Middle East because of its high nutritional value. Traditional heating methods and the duration of heating affect the protein content and nutritional quality of the milk. We examined the denaturation of whey proteins in camel milk by assessing the effects of temperature on the whey protein profile at room temperature (RT), moderate heating at 63 °C, and at 98 °C, for 1 h. The qualitative and quantitative variations in the whey proteins before and after heat treatments were determined using quantitative 2D-difference in gel electrophoresis (DIGE)-mass spectrometry. Qualitative gel image analysis revealed a similar spot distribution between samples at RT and those heated at 63 °C, while the spot distribution between RT and samples heated at 98 °C differed. One hundred sixteen protein spots were determined to be significantly different (p milk samples. Eighty protein spots were decreased in common in both the heat-treated samples and an additional 25 spots were further decreased in the 98 °C sample. The proteins with decreased abundance included serum albumin, lactadherin, fibrinogen β and γ chain, lactotransferrin, active receptor type-2A, arginase-1, glutathione peroxidase-1 and, thiopurine S, etc. Eight protein spots were increased in common to both the samples when compared to RT and included α-lactalbumin, a glycosylation-dependent cell adhesion molecule. Whey proteins present in camel milk were less affected by heating at 63 °C than at 98 °C. This experimental study showed that denaturation increased significantly as the temperature increased from 63 to 98 °C. PMID:28350354

  20. Creep rupture properties of P122 and P92 steel HAZs simulated by heat treatments and by a weld simulator

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.K. [IGCAR, Kalpakkam (India); Matsui, M. [Mitsubushi Heavy Industries, Nagasaki (Japan); Watanabe, T.; Hongo, H.; Kubo, K.; Tabuchi, M. [National Inst. for Materials Science, Ibaraki (Japan)

    2002-07-01

    In the present study, creep rupture properties of the heat affected zones (HAZs) of P122 and P92 steels, simulated by a heat treatments and by a weld simulator, are studied and compared with those of the actual weld joint. Specimen blanks cut out from steel plates were heated to different peak temperatures that corresponds to intercritical HAZ (ICHAZ), fine grained HAZ (FGHAZ) and coarse grained HAZ (CGHAZ) both by heat treatment and by employing a weld simulator. These were then subjected to post weld heat treatment (PWHT) and creep specimens prepared from these blanks were tested at 923 K for various stress levels. Microstructure was uniform for the specimens with HAZ simulated by heat treatment while for those produced by weld simulator, the uniform microstructures corresponding to the peak temperature of simulation was confined to only {proportional_to}10 mm at the center of the specimens. (orig.)

  1. Effect of Heat Treatment on the Hardness and Wear of Grinding Balls

    Science.gov (United States)

    Aissat, Sahraoui; Sadeddine, Abdelhamid; Bradai, Mohand Amokrane; Younes, Rassim; Bilek, Ali; Benabbas, Abderrahim

    2017-09-01

    The effect quenching and tempering by different regimes on Rockwell hardness and wear processes of grinding balls 50 and 70 mm in diameter made of two melts of chromium-molybdenum cast iron is studied. The heating temperature for quenching is 850, 950, and 1050°C; the tempering temperature is 250, 400, and 600°C. Iron is analyzed in an electron microscope. Diffraction patterns are obtained. A model of cast iron wear is suggested and compared to the Davis model and to experimental results. An optimum heat treatment regime is proposed.

  2. 3D numerical modeling of coupled phenomena in induced processes of heat treatment with malice

    Directory of Open Access Journals (Sweden)

    Triwong Peeteenut

    2008-01-01

    Full Text Available This paper describes a multi-method Malice package for three dimension coupled phenomena in induced processes of heat treatment by an algorithm weakly coupled with the Migen package integral method defining the electromagnetic model and the Flux-Expert package finite element method defining the thermal model. The integral method is well suited to inductive systems undergoing sinusoidal excitation at midrange or high frequency. The unknowns of both models are current density, scalar potential and temperature. Joule power in the electromagnetic model is generated by Eddy currents. It becomes the heat source in the thermal model.

  3. Heat Treatment of Cold-Sprayed C355 Al for Repair: Microstructure and Mechanical Properties

    Science.gov (United States)

    Murray, J. W.; Zuccoli, M. V.; Hussain, T.

    2018-01-01

    Cold gas dynamic spraying of commercially pure aluminum is widely used for dimensional repair in the aerospace sector as it is capable of producing oxide-free deposits of hundreds of micrometer thickness with strong bonding to the substrate, based on adhesive pull-off tests, and often with enhanced hardness compared to the powder prior to spraying. There is significant interest in extending this application to structural, load-bearing repairs. Particularly, in the case of high-strength aluminum alloys, cold spray deposits can exhibit high levels of porosity and microcracks, leading to mechanical properties that are inadequate for most load-bearing applications. Here, heat treatment was investigated as a potential means of improving the properties of cold-sprayed coatings from Al alloy C355. Coatings produced with process conditions of 500 °C and 60 bar were heat-treated at 175, 200, 225, 250 °C for 4 h in air, and the evolution of the microstructure and microhardness was analyzed. Heat treatment at 225 and 250 °C revealed a decreased porosity ( 0.14% and 0.02%, respectively) with the former yielding slightly reduced hardness (105 versus 130 HV0.05 as-sprayed). Compressive residual stress levels were approximately halved at all depths into the coating after heat treatment, and tensile testing showed an improvement in ductility.

  4. Effects of heat treatment on mechanical and tribological properties of cobalt-base tribaloy alloys

    Science.gov (United States)

    Liu, Rong; Yao, Matthew X.; Patnaik, Prakash C.; Wu, Xijia

    2005-10-01

    Cobalt-base Tribaloy alloys are important wear-resistant materials, especially for high-temperature applications, because of the outstanding properties of the strengthened cobalt solid solution and the hard Laves intermetallic phase that make up the alloys. The Laves intermetallic phase is so abundant (35-70 vol.%) in these alloys that its presence governs all of the material properties. Heat treatment may alter the volume fraction, the size/shape, and the distribution of the Laves phase in the microstructures as well as the phase and structure of the cobalt solid solution, thus influencing the mechanical and tribological properties of the alloys. In this work, the effects of heat treatment on two cobalt-based Tribaloy alloys, T-400 and T-200, were studied. The former is a well-known Tribaloy alloy, and the latter is a newly developed one. These two alloys were heat treated in different conditions. The phases and microstructures of the alloys before and after the heat treatments were analyzed using x-ray and scanning electron microscopy. The mechanical and tribological properties of the alloys were investigated using a nano-indentation technique and a pin-on-disc tribometer, respectively.

  5. Lama Pemanasan Metode Vapor Heat Treatment (VHT dan Pelilinan untuk Mempertahankan Mutu Pepaya Selama Penyimpanan

    Directory of Open Access Journals (Sweden)

    Rokhani Hasbullah

    2008-04-01

    Full Text Available Horticulture products are host for Tephritidae fruitflies that are considered a quarantine risk by many importing countries. This research was conducted to find out the specific condition for the heat treatment using vapor heat treatment (VHT method to control pest and diseases of papaya and the fruit quality during storage. Papayas were vapor heat treated at medium temperature of 46.5 0C for 0, 15, and 30 minutes. After the treatment, the fruits were waxed using beeswax of 6 % in concentration and then stored at temperature of 10 0C. The results show that the fruitfly of oriental fruitfly (Bactrocera dorsalis was completely killed by treating in deep water testing at temperature of 46 0C for 10 minutes or at 43 0C for 30 minutes. The VHT of papaya at fruit core temperature of 45.5-46.0 0C for 15-30 minutes following waxing using beeswax of 6% in concentration was found to be effective to control pest and diseases until 21 days of storage without any visible signs of heat injury and without adversely affecting the quality of the fruit.

  6. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment.

    Science.gov (United States)

    Qin, Yang; Liu, Chengzhen; Jiang, Suisui; Cao, Jinmiao; Xiong, Liu; Sun, Qingjie

    2016-01-01

    Glutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p dry heating remarkably increased the apparent viscosities of both GRF and GRS. Importantly, compared with GRS samples, the storage modulus (G') and loss modulus (G") values of modified GRF increased more greatly and the tanδ values decreased more remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of GRF is a more effective method than that of GRS, which omits the complex and tedious process for purifying GRS, and thereby has more practical applications in the food industry.

  7. Heat treatment of TI-6AL-4V produced by lasercusing

    Directory of Open Access Journals (Sweden)

    Becker, Thorsten

    2015-08-01

    Full Text Available LaserCUSING® is a selective laser melting (SLM process that is capable of manufacturing parts by melting powder with heat input from a laser beam. LaserCUSING demonstrates potential for producing the intricate geometries specifically required for biomedical implants and aerospace applications. One main limitation to this form of rapid prototyping is the lack of published studies on the material performance of the resulting material. Studies of the material’s performance are often complicated by dependence on several factors, including starting powder properties, laser parameters, and post-processing heat treatments. This study aims to investigate the mechanical properties of LaserCUSING-produced Ti-6Al-4V and its performance relative to the conventional wrought counterpart. A combination of conventional and LaserCUSING-tailored heat treatments is performed. The resulting microstructures are studied and linked to the properties obtained from hardness tests. The findings highlight that LaserCused Ti-6Al-4V is competitive with traditional materials, provided that optimal parameters are chosen and parts are subject to tailored post-processing. In the as-built condition, LaserCused Ti-6Al-4V displays superior strength and hardness as a result of a martensitic microstructure, and a poorer performance in ductility. However, the material performance can be improved using tailored heat treatments. Careful consideration must be given to suitable post-processing before application in critical components in the aerospace or biomedical industry can occur

  8. Effect of variable heat treatment modes on microstructures of Fe-Cr-B cast iron alloy

    Directory of Open Access Journals (Sweden)

    Guo Changqing

    2008-02-01

    Full Text Available The effect of heat treatment mode on the microstructure of Fe-Cr-B cast iron alloys was investigated in this paper by comparing the difference of precipitation patterns of secondary particles after thermal cycling treatment (TCT with those after normal heat treatment (NHT. No obvious differences were found in precipitation patterns of secondary particles between TCT and NHT when experimental temperature was below Ar1. However, when temperature was over Ar1, there were significant differences, with secondary particles prominently segregated at the grain boundaries under TCT, while the particles evenly distributed in the matrix under NHT. The reason for the microstructure differences could be associated with the development of non-equilibrium segregation of boron during TCT.

  9. Karakteristik Fisikokimia Mie Kering Berbasis Pati Ubi Jalar Varietas Lokal Dengan Menggunakan Metode Heat Moisture Treatment

    Directory of Open Access Journals (Sweden)

    Zaidiyah Zaidiyah

    2015-10-01

    Full Text Available The effects of heat moisture treatment (110°C and pretreatment on the physicochemical properties of sweet potato dried-noodles starch based were investigated. Completely randomized design was performed which arranged by two-factor. The first factor is noodles consist of native starch and treated starch (heat moisture treatment. The second factor is a type of sweet potato local varieties which consists of three levels: orange, purple and cream flesh color, respectively. Native starch and treated starch treatment showed significant effect on water content, protein and carbohydrate/fiber. Water absorption and cooking loss of dried noodle is highly different between native (non-HMT and treated starch (HMT.

  10. Modeling of precipitation and Cr depletion profiles of Inconel 600 during heat treatments and LSM procedure

    Energy Technology Data Exchange (ETDEWEB)

    Bao Gang [Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Hiroshima (Japan); Shinozaki, Kenji [Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Hiroshima (Japan)]. E-mail: kshino@hiroshima-u.ac.jp; Inkyo, Muneyuki [Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Hiroshima (Japan); Miyoshi, Tomohisa [Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Hiroshima (Japan); Yamamoto, Motomichi [Department of Mechanical System Engineering, Hiroshima University, 1-4-1 Higashi-Hiroshima, Hiroshima (Japan); Mahara, Yoichi [Babcock-Hitachi K.K., 3-36 Takara-machi, Kure, Hiroshima (Japan); Watanabe, Hiroshi [Babcock-Hitachi K.K., 3-36 Takara-machi, Kure, Hiroshima (Japan)

    2006-08-10

    A model based on the thermodynamic and kinetic was conducted to simulate the Cr depletion profiles near the grain boundary in Inconel 600 during the heat treatments and laser surface melting (LSM) process using Thermo-Calc and Dictra code. Based on the good agreement of Cr concentration distribution during heat treatments measured by experiments, the microsegregation of Cr induced by cellular microstructure formed during the LSM process was also modeled. The Cr depletion profile was evaluated using the Cr depletion area below the critical Cr concentration for intergranular cracking/intergranular stress corrosion cracking (IGC/IGSCC) susceptibility (8 mass%). Comparing with the result of Streicher test, the Cr depletion area calculated showed good coherence with the IGC/IGSCC susceptibility. The sample after SR + LTS treatment with the largest Cr depletion area showed the worst IGC/IGSCC resistance, while, the sample after LSM process with the smaller Cr depletion area showed the excellent IGC/IGSCC resistance.

  11. Effect of tin oxide nano particles and heat treatment on decay resistance and physical properties of beech wood (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    Maryam Ghorbani

    2014-11-01

    Full Text Available This research was conducted to investigate the effect of Tin oxide nanoparticles and heat treatment on decay resistance and physical properties of beech wood. Biological and physical test samples were prepared according to EN-113 and ASTM-D4446-05 standards respectively. Samples were classified into 4 groups: control, impregnation with Tin oxide nanoparticles, heat treatment and nano-heat treatment. Impregnation with Tin oxide nano at 5000ppm concentration was carried out in the cylinder according to Bethell method. Then, samples were heated at 140, 160 and 185˚C for 2 and 4 hours. According to results, decay resistance improved with increasing time and temperature of heat treatment. Least weight loss showed 46.39% reduction in nano-heat samples treated at 180˚C for 4 hours in comparison with control at highest weight loss. Nano-heat treated samples demonstrated the maximum amount of water absorption without significant difference with control and nanoparticles treated samples. Increase in heat treatment temperature reduced water absorption so that it is revealed 47.8% reduction in heat treated samples at 180°C for 4h after 24h immersion in water. In nano-heat treated samples at 180˚C for 2h was measured least volume swelling. Volume swelling in nano-treated samples decreased 8.7 and 22.76% after 2 and 24 h immersion in comparison with the control samples respectively.

  12. Influence of prolonged storage process, pasteurization, and heat treatment on biologically-active human milk proteins.

    Science.gov (United States)

    Chang, Jih-Chin; Chen, Chao-Huei; Fang, Li-Jung; Tsai, Chi-Ren; Chang, Yu-Chuan; Wang, Teh-Ming

    2013-12-01

    The bioactive proteins in human milk may be influenced by prolonged storage process, pasteurization, and heat treatment. This study was conducted to evaluate the effects of these procedures. Three forms of human milk - freshly expressed, frozen at -20°C for a prolonged duration, and pasteurized milk - were collected from 14 healthy lactating mothers and a milk bank. The concentrations of major bioactive proteins (secretory immunoglobulin A, lactoferrin, lysozyme, and leptin) were quantified using enzyme-linked immunosorbent assay kits. Changes in these proteins by heat treatment at 40°C or 60°C for 30 minutes were further evaluated. The mean concentrations of lactoferrin and secretory immunoglobulin A were significantly reduced by 66% and 25.9%, respectively, in pasteurized milk compared with those in freshly-expressed milk. Heat treatment at 40°C or 60°C did not cause significant changes in lactoferrin and secretory immunoglobulin A, but there was an apparent increase in lysozyme (p = 0.016). There were no significant differences in leptin level among these three forms of milk prior to (p = 0.153) or after heat treatment (p = 0.053). Various freezing/heating/pasteurization processes applied to human milk prior to delivery to neonates could affect the concentration of immunomodulatory proteins, especially lactoferrin, secretory immunoglobulin A, and lysozyme. Leptin was unaffected by the various handling processes tested. Fresh milk was found to be the best food for neonates. Further studies are warranted to evaluate the functional activity of these proteins and their effects on infants' immunological status. Copyright © 2013. Published by Elsevier B.V.

  13. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  14. Effects of Heat Treatments on the On-Line Service Life of a Press Die Manufactured by W-Edm

    Science.gov (United States)

    Choi, Kye-Kwang; Lee, Yong-Shin

    Effects of heat treatments on the on-line service life of a press die manufactured by W-EDM are studied. In this work, four manufacturing processes for a press die are considered: (1) milling and then grinding, (2) wire-cut electric discharge machining (W-EDM), (3) low temperature heat treatment after W-EDM, and (4) high temperature heat treatment after W-EDM. On-line punching experiments for an automobile part of BL646-chain are performed. The amount of wear of the die and punch, roll-over and burnish depth in the punched chain are measured every 1,000 strokes. Overall productivities are carefully compared. Finally, it is concluded that heat treatment after W-EDM for a press die can enhance its on-line service life. Especially, high temperature heat treatment after W-EDM is very attractive as a fast and cheap manufacturing method for a press die.

  15. Effect of heat-treatment on phase transition temperatures of a superelastic NiTi alloy for medical use

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, K.W.K.; Cheung, K.M.C.; Lu, W.W.; Luk, K.D.K. [Univ. of Hong Kong (China). Dept. of Orthopaedic Surgery; Chung, C.Y. [City Univ. of Hong Kong, Kowloon (China). Dept. of Physics and Materials Science

    2002-07-01

    Surgical correction of scoliosis typically uses stainless steel or titanium alloy spinal instrumentation to straighten the scoliotic spine by 70% only. Our aim is to develop a method to overcome this by using an implantable superelastic (SE) nickel-titanium (NiTi) alloy rod, which will impose a continuous gradual correction force to the spine after the surgery so as to achieve a superior correction. More than 75 specimens made of a Ti-50.0 at% Ni alloy were treated by different heat treatment routes. The Austenitic transition temperature of the NiTi alloy can be adjusted to be available at 37.5 C by altering the heat treatment parameters: time and temperature of heat treatment. The experimental results showed that the heat treatment temperature should set between 400-500 C and the heat treatment time should be less than 60 minutes for the alloy. (orig.)

  16. Effect of Heat Treatment on Microstructure and Mechanical Properties of A380 Aluminum Alloy Deposited by Cold Spray

    Science.gov (United States)

    Qiu, Xiang; Wang, Ji-qiang; Tariq, Naeem ul Haq; Gyansah, Lawrence; Zhang, Jing-xuan; Xiong, Tian-ying

    2017-09-01

    The microstructure and mechanical properties of cold-sprayed bulk A380 alloy were investigated after heat treatment at various conditions, using optical and electron microscopy and tensile and hardness tests, respectively. The results revealed that heat treatment increased the strength and ductility of the cold-sprayed A380 alloy deposits compared with as-sprayed state. Heat treatment showed two different effects on the mechanical properties of the deposits. On the one hand, it resulted in effective diffusion at interparticle boundaries that altered the particle bonding mechanism from pure mechanical interlocking to metallurgical bonding. Thus, the strength and ductility of the material were greatly enhanced. On the other hand, interparticle diffusion during high-temperature heat treatment resulted in growth of the Si phase and pores, which ultimately reduced the strength and elongation of the alloy. This observation was consistent with the hardness results, which showed a decreasing trend with increase of the heat treatment temperature.

  17. Stability and microbiological quality of rice bran subjected to different heat treatments

    Directory of Open Access Journals (Sweden)

    Márcia Gonzaga de Castro Oliveira

    2012-12-01

    Full Text Available Rice bran is a byproduct commonly used for animal feeding; however its nutritional value and potential application in human diet have attracted market interest. Its preservation for safe use is still a challenge, so the objective of this study was to determine the quality of commercially available rice bran samples subjected to different heat treatments (extruding, parboiling, toasting, and microwave oven heating in order to promote stabilization during storage under room temperature. Rice bran samples were collected from two industries, and each treatment was divided in three parts, each corresponding to three repetitions. All samples were evaluated for moisture content, total microorganisms, mold and yeast counting, hydrolytic rancidity, and lipase activity during 90 days of storage. Most of the heat treatments, including domestic and thermoplastic extrusion, generated products which may be used for human consumption under the tested conditions in terms of physicochemical and microbiological quality. The domestic treatments were more efficient in eliminating microorganisms or keeping them within acceptable limits. The toasted rice bran showed satisfactory results in terms of moisture, hydrolytic rancidity control, and lipase activity.

  18. Changes in protein and starch digestibility in sorghum flour during heat-moisture treatments.

    Science.gov (United States)

    Vu, Thanh-Hien; Bean, Scott; Hsieh, Chao-Feng; Shi, Yong-Cheng

    2017-11-01

    Heat-moisture treatment (HMT) has been used to modify properties of sorghum starches. However, information is limited on the effects of HMT on the digestibility of starch and the concurrent changes in protein in sorghum flour. The objectives of this research were to identify heat-moisture conditions to increase the resistant starch (RS) content of sorghum flour and investigate changes in sorghum proteins and starch structure. Sorghum flours with different moisture contents (0, 125, 200, and 300 g kg-1 w.b.) were heated at three temperatures (100, 120 and 140 °C) and times (1, 2 and 4 h). HMT of sorghum flour increased its RS level. The flour treated at 200 g kg-1 moisture and 100 °C for 4 h had a high RS content (221 g kg-1 vs. 56 g kg-1 for the untreated flour). Starch was not gelatinized when sorghum flours heated at moisture content of 200 g kg-1 or below. Sorghum protein digestibility and solubility decreased during HMT. The increase in RS of sorghum flour upon HMT was attributed to enhanced amylose-lipid complexes and heat induced structural changes in its protein fraction. HMT can be used to increase RS content in sorghum flour without gelatinizing its starch, thereby providing sorghum flour with unique food applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoo-Shin; Lee, Tae Hoon; O' Neill, Brian E., E-mail: BEOneill@houstonmethodist.org

    2015-08-14

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.

  20. Degradation of Anthocyanin Content in Sour Cherry Juice During Heat Treatment

    Directory of Open Access Journals (Sweden)

    Lilla Szalóki-Dorkó

    2015-01-01

    Full Text Available Sour cherry juices made from two sour cherry cultivars (Érdi bőtermő and Kántorjánosi 3, were investigated to determine their total anthocyanin content and half-life of anthocyanins during heat treatment at different temperatures (70, 80 and 90 °C for 4 h. Before the heat treatment, Érdi bőtermő juice had higher anthocyanin concentration (812 mg/L than Kántorjánosi 3 juice (513 mg/L. The greatest heat sensitivity of anthocyanins was measured at 90 °C, while the treatments at 80 and 70 °C caused lower thermal degradation. The loss of anthocyanins in Érdi bőtermő juice after treatment was 38, 29 and 18 %, respectively, while in Kántorjánosi 3 juice losses of 46, 29 and 19 % were observed, respectively. At 90 °C sour cherry Érdi bőtermő juice had higher half-life (t1/2 of anthocyanins, while the Kántorjánosi 3 juice had higher t1/2 values at 70 °C. Cyanidin-3-glucosyl-rutinoside was present in higher concentrations in both cultivars (Érdi bőtermő: 348 and Kántorjánosi 3: 200 mg/L than cyanidin-3-rutinoside (177 and 121 mg/L before treatment. However, during the experiment, cyanidin-3-rutinoside was proved to be more resistant to heat. Comparing the two varieties, both investigated pigment compounds were more stable in Kántorjánosi 3 than in Érdi bőtermő. Degradation rate of anthocyanins was cultivar-dependent characteristic, which should be taken into account in the food production.

  1. Combined effects of ZnO particle deposition and heat treatment on dimensional stability and mechanical properties of poplar wood.

    Science.gov (United States)

    Cui, Wei; Zhang, Nannan; Xu, Min; Cai, Liping

    2017-08-30

    This study proposed a one-step wood modification method by combining the deposition of ZnO particles on wood surface and heat treatment. The effects of ZnO particles and heat treatment on mechanical properties and dimensional stability of poplar wood were examined. Samples were sorted into 4 groups, i.e., control, heat-treated, impregnation/heat-treated, and hydrothermal-treated samples. The mechanical properties and dimensional stability of impregnation/heat-treated and hydrothermal-treated wood samples were measured in comparison with those of the control and heat-treated wood samples. Compared with the control ones, the reduction of the flexural strength of the heat-treated, impregnation/heat-treated and hydrothermal-treated samples were about 11.57%, 8.53% and 15.90%, respectively. The modulus of elasticity of the heat-treated and hydrothermal-treated samples decreased by 13.78% and 23.78%, respectively, while the impregnation/heat-treated samples increased by about 8.57% due to the ZnO particles growth. The dimensional stabilities of the heat-treated, impregnated/heat-treated and hydrothermal-treated samples were improved in comparison with that of the control sample. All samples were characterized by the scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X - ray diffraction (XRD).

  2. [Comparison between Ye Tianshi and Xue Shengbai in treatment of distention with damp-heat].

    Science.gov (United States)

    Li, Yu-Juan; Liu, Xiao-Yu; Jiang, Hou-Wang; Li, Hong-Pei; Xiao, Lian-Yu; Zhao, Yan-Song

    2017-06-01

    Ye Tianshi and Xue Shengbai were both epidemic febrile diseases specialists in same time of Qing dynasty. The Traditional Chinese Medicine Inheritance Support System was used to compare and analyze the therapeutic characteristics of these two specialists in treating damp-heat type fullness or distension in stomach. Distension is commonly caused by qi stagnation accompanied with damp-heat from internal and external factors. In treatment, separation of damp and heat and removing dampness and heat from sanjiao separately were their common therapeutic principles. Both Ye Tianshi and Xue Shengbai paid much greater attention to eliminating dampness, and the herbs with bitter and pungent flavor, warm in property were usually chosen to regulate qi flow and reduce dampness. Invigorating spleen, nourishing stomach and dispersing lung were the frequently used treatment to balance the organs'harmony. The difference between specialist Ye and specialist Xue was the preference of herbs. Hou Pu (Magnoliae Officinalis Cortex), Xing Ren (Armeniacae Semen Amarum), Chen Pi (Citri Reticulatae Pericarpium), and Hua Shi (Talcum) were often used in both administrations. Besides, Ye Tianshi preferred to use Ban Xia (Pinelliae Rhizoma), Huang Qin (Scutellariae Radix), Huang Lian (Coptidis Rhizoma), Fuling, et al. Xue Shengbai on the other hand enjoyed using Fu Lingpi(Poriae Cutis), Cao Guo (Tsaoko Fructus), and Guang Huoxiang (Pogostemonis Herba), et al. In herbs compatibility, both of the two specialists were fond of using Chen Pi-Hou Pu, Hou Pu-Xing Ren. Moreover, Ye Tianshi often used Ban Xia- Xing Ren, Ban Xia-Huang Qin, and Hua Shi-Xing Ren to achieve the expected outcome of the treatment. While, Chen Pi, Fu Lingpi, and Hou Pu were the common combination with each other in Xue's cases. The similarities and differences of their administration should have the guidance in current clinical Chinese medicine practice for damp-heat type fullness or distension in stomach. Copyright© by the

  3. Change in cell surface properties of Lactobacillus casei under heat shock treatment.

    Science.gov (United States)

    Haddaji, Najla; Mahdhi, Abdel Karim; Krifi, Boubaker; Ismail, Manel Ben; Bakhrouf, Amina

    2015-05-01

    We undertake this study in the aim to give new insight about the change in cellular physiological state under heat shock treatment and probiotic strain screening procedure. Different cell properties have been studied like adhesive ability to biotic and abiotic surfaces, the cell surface hydrophobicity and the fatty acids profiles. Compared to the normal cells, the heated cells increased their adhesive ability to biotic surface. However, the adhesion to abiotic surface was decreased. The cell surface hydrophobicity of the heated strains showed a significant decrease (P Lactobacillus casei cells was significantly higher than that of the control cells (P < 0.05). The present finding could firstly add new insight about the response of probiotic to stressful conditions, such us the important role of cell membrane, considered as the first main structure to be damaged by physicochemical stress, in stress resistance because of their composition that can change in adaptation to harsh conditions. Secondly, there is no relationship between changes in membrane composition and fluidity induced by heat shock treatment and adhesion to biotic and abiotic surface. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Influence of Heat Treatment on the Surface Structure of 6082 Al Alloys

    Science.gov (United States)

    Bayat, N.; Carlberg, T.

    2017-10-01

    The β-Al5FeSi intermetallic phase and coarse Mg2Si particles have negative effects on extrudability and workability of 6xxx Al alloys billets. To achieve extruded products with a high surface quality, the as-cast billets are heat-treated before extrusion. During heat treatment, the undesired intermetallic particles, i.e., β-AlFeSi platelets are transformed to rounded α-Al(FeMn)Si intermetallic phases. Although the heat treatment of the bulk areas of the 6xxx Al alloys has been the focus of many previous studies, the process of phase transformation at the very surface has not been paid the same attention. In this study, microstructures of a homogenized billet of a 6082 alloy at the area very close to the surface were investigated. By comparing the X-ray diffraction patterns (XRD) of heat-treated samples as a function of different holding times, the gradual phase transformations could be followed, and using GDOES and map analysis by EDX, the alloying elemental redistribution was analyzed. Partial remelting and porosity growth was detected, and transformation rates were faster than in bulk material and from what is known from industrial processes.

  5. New method of processing heat treatment experiments with numerical simulation support

    Science.gov (United States)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  6. Pre-treatment with heat facilitates detection of antigen of Dirofilaria immitis in canine samples.

    Science.gov (United States)

    Little, Susan E; Munzing, Candace; Heise, Steph R; Allen, Kelly E; Starkey, Lindsay A; Johnson, Eileen M; Meinkoth, James; Reichard, Mason V

    2014-06-16

    Diagnosis of Dirofilaria immitis infection in dogs is largely dependent on detection of antigen in canine serum, plasma, or whole blood, but antigen may be bound in immune complexes and thus not detected. To develop a model for antigen blocking, we mixed serum from a microfilaremic, antigen-positive dog with that of a hypergammaglobulinemic dog not currently infected with D. immitis and converted the positive sample to antigen-negative; detection of antigen was restored when the mixed sample was heat-treated, presumably due to disruption of antigen/antibody complexes. A blood sample was also evaluated from a dog that was microfilaremic and for which microfilariae were identified as D. immitis by morphologic examination. Antigen of D. immitis was not detected in this sample prior to heating but the sample was strongly positive after heat treatment of whole blood. Taken together, our results indicate that blood samples from some dogs may contain factors that inhibit detection of antigen of D. immitis, and that heat treatment of these samples prior to testing could improve the sensitivity of these assays in some patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of heat treatment of wood on the morphology, surface roughness and penetration of simulated and human blood.

    Science.gov (United States)

    Rekola, J; Lassila, L V J; Nganga, S; Ylä-Soininmäki, A; Fleming, G J P; Grenman, R; Aho, A J; Vallittu, P K

    2014-01-01

    Wood has been used as a model material for the development of novel fiber-reinforced composite bone substitute biomaterials. In previous studies heat treatment of wood was perceived to significantly increase the osteoconductivity of implanted wood material. The objective of this study was to examine some of the changing attributes of wood materials that may contribute to improved biological responses gained with heat treatment. Untreated and 140°C and 200°C heat-treated downy birch (Betula pubescens Ehrh.) were used as the wood materials. Surface roughness and the effect of pre-measurement grinding were measured with contact and non-contact profilometry. Liquid interaction was assessed with a dipping test using two manufactured liquids (simulated blood) as well as human blood. SEM was used to visualize possible heat treatment-induced changes in the hierarchical structure of wood. The surface roughness was observed to significantly decrease with heat treatment. Grinding methods had more influence on the surface contour and roughness than heat treatment. The penetration of the human blood in the 200°C heat-treated exceeded that in the untreated and 140°C heat-treated materials. SEM showed no significant change due to heat treatment in the dry-state morphology of the wood. The results of the liquid penetration test support previous findings in literature concerning the effects of heat treatment on the biological response to implanted wood. Heat-treatment has only a marginal effect on the surface contour of wood. The highly specialized liquid conveyance system of wood may serve as a biomimetic model for the further development of tailored fiber-composite materials.

  8. Heat treatment of serum samples from stray dogs naturally exposed to Dirofilaria immitis and Dirofilaria repens in Romania.

    Science.gov (United States)

    Ciucă, L; Genchi, M; Kramer, L; Mangia, C; Miron, L D; Prete, L Del; Maurelli, M P; Cringoli, G; Rinaldi, L

    2016-07-30

    Pre-heating of serum samples has been shown to reverse false negative antigen tests for Dirofilaria immitis infection in dogs. Here the authors report the results of serum sampling in a population of dogs naturally exposed to D. immitis and Dirofilaria repens infection by testing in ELISA before and after heat treatment. Of 194 dogs sampled from four cities in Romania, D. immitis circulating antigens were found in 16 (8.2%) non heated samples and in 52 (26.8%) heated samples. Of the 108 dogs examined by Knott test, 24 dogs (22.2%) were positive for circulating mf. Subsequent PCR identification showed six dogs had D. immitis mf only, 12 dogs, had only D. repens mf, and 5 were positive for both. Fifty% of dogs with circulating D. immitis mf had positive antigen tests before and after heating, while the other 50% reverted to positive only after heat treatment. Sixty% of dogs with mixed D. immitis/D. repens infection were antigen positive before and after heating, while the other 40% converted to positive after heating. Antigen testing for D. immitis in the 12 dogs with only D. repens mf gave conflicting results. Only two dogs (16%) were antigen negative both before and after heat treatment. Six dogs (50%) became antigen positive after heating and four dogs (30%) were antigen positive both before and after heat treatment. Results would suggest that: false negative result for antigen testing can be reverted by heating of the serum sample; dogs infected with D. repens may have also an occult infection with D. immitis; heat treatment of serum from D. repens-infected dogs can reveal an occult infection with D. immitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. On ultrahigh-vacuum preparation of monocrystalline transition metal surfaces by heat treatment

    CERN Document Server

    Krakhmalev, V A; Nimatov, S J; Garafutdinova, I A; Boltaev, N N

    2002-01-01

    The composition and substructure changes in monocrystalline singular W, Mo, Nb surfaces under heat treatment have been studied in the range 30-1900 sup d egC and vacuum approx 5 centre dot 10 sup - sup 8 Pa by electronic Auger spectroscopy, optical microscopy, and X-ray methods. Under multiple thermal-cycled treatment the large carbide inclusions have been found to become the places of local surface polygonization with block disordering >=3 sup d eg. In the case of Nb annealing the carbide in the O sub 2 atmosphere has led to solving O sub 2 in sample volume. In what follows, the solute O sub 2 is found to diffuse to on the surface under heating up to maximal temperatures of the above range. Under 30 min annealing of Nb(110) at approx 550 sup d egC, sulphur (S sub 1 sub 5 sub 2) segregation on surface appears that increases with temperature. (author)

  10. Dimensional Changes of Nb3Sn Rutherford Cables During Heat Treatment

    CERN Document Server

    Rochepault, E; Ambrosio, G; Anerella, M; Ballarino, A; Bonasia, A; Bordini, B; Cheng, D; Dietderich, D R; Felice, H; Garcia Fajardo, L; Ghosh, A; Holik, E F; Izquierdo Bermudez, S; Perez, J C; Pong, I; Schmalzle, J; Yu, M

    2016-01-01

    In high field magnet applications, Nb3Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb3Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. This paper summarizes measurements of dimensional changes on strands, single Rutherford cables, cable stacks, and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb3Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.

  11. Effect of the heat treatment conditions on the synthesis of Sr-hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Garcia, R., E-mail: rmartinez@fi.uba.ar [Laboratorio de Solidos Amorfos - INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850, C1063ACV, Buenos Aires (Argentina); Bilovol, V.; Socolovsky, L.M. [Laboratorio de Solidos Amorfos - INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850, C1063ACV, Buenos Aires (Argentina)

    2012-08-15

    The effect of heat treatment conditions under oxygen atmosphere on the SrFe{sub 12}O{sub 19} synthesis is analyzed. Effect of partial evacuation of decomposition gases of the organometallic precursor on the phase composition of different samples is studied. An accurate structural analysis of samples obtained between 250 Degree-Sign C and 600 Degree-Sign C is reported. From the structural analysis several secondary phases are identified. The amount of secondary phases can be manipulated through the control of the heat treatment conditions, and therefore, this constitutes a methodology to manipulate the composition and the magnetic properties of the obtained nanopowders. The quantitative determination of phases is performed by structural refinement of X-ray powder patterns, using Rietveld analysis. Magnetic study is done by magnetization vs. applied magnetic field at room temperature.

  12. Effects of erodant particle shape and various heat treatments on erosion resistance of plain carbon steel

    Science.gov (United States)

    Salik, J.; Buckley, D. H.

    1981-01-01

    Erosion tests were conducted on 1045 steel samples which had been subjected to different heat treatments. The weight of material removed upon erosion with glass beads and crushed glass was measured. The data show that there is no correlation between hardness and erosion resistance. The erosion rate was strongly dependent on the shape of erodant particles, being an order of magnitude higher for erosion with crushed glass than with glass beads. Heat treatment had a profound effect on the erosion resistance when the erodant particles were glass beads but little or no effect when the particles were crushed glass. It is thus concluded that different mechanisms of material removal are involved with these two erodants. This conclusion is supported by the surface morphology of annealed 1045 steel samples which had been eroded by these two types of erodant particles. SEM micrographs of the eroded surfaces show that for erosion with glass beads it is deformation induced fracture of surface layers.

  13. SO2 gas adsorption by modified kaolin clays: influence of previous heating and time acid treatments.

    Science.gov (United States)

    Volzone, Cristina; Ortiga, Jose

    2011-10-01

    Modified kaolin clays were used as adsorbents for SO(2) gas adsorptions. The clays were heated up to 900 °C previous to acid treatments with 0.5 N sulfuric acid solutions at boiling temperature during different times up to 1440 min. Equilibrium adsorption at 25 °C and 0.1 MPa was carried out by using a volumetric apparatus. The samples were characterized by chemical analysis, X-ray diffraction and infrared analysis. The heating of the clays followed by acid treatment improved the adsorption capacity of the kaolin clays. The presence of amorphous silica and hydroxyl in the final products improved SO(2) adsorption capacity. Better properties for SO(2) adsorption were found in kaolin rich in not well ordered kaolinite clay mineral. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Transformation of Oxide Inclusions in Type 304 Stainless Steels during Heat Treatment

    Science.gov (United States)

    Ren, Ying; Zhang, Lifeng; Pistorius, P. Chris

    2017-10-01

    Heat treatment of Type 304 stainless steel in the range of 1273 K (1000 °C) to 1473 K (1200 °C) can transform manganese silicate inclusions to manganese chromite (spinel) inclusions. During heat treatment, Cr reacts with manganese silicate to form spinel. The transformation rate of inclusions depends strongly on both temperature [in the range of 1273 K to 1473 K (1000 °C to 1200 °C)] and inclusion size. A kinetic model, developed using FactSage macros, showed that these effects agree quantitatively with diffusion-controlled transformation. A simplified analytical model, which can be used for rapid calculations, predicts similar transformation kinetics, in agreement with the experimental observations.

  15. Effect of phosphorus and heat treatment on microstructure of Al-25%Si alloy

    Directory of Open Access Journals (Sweden)

    Bo Dang

    2017-01-01

    Full Text Available It is known that phosphorus can refine the primary silicon and heat treatment can spheroidize the eutectic silicon. This paper presents an optimal combination of heat treatment processes and P refinement on hypereutectic Al-Si alloy. The optimal P addition amount, and the solution and aging temperatures for Al-25%Si alloy were obtained through the orthogonal experiment, and their modification effects were discussed. The results show that P addition has the greatest modification effect, followed by aging temperature, and the modification effect of solution temperature is the least. The optimized modification parameters are: addition of 0.6% P, solution at 540 篊 and aging at 160 篊 . In addition, the cooling curve, superheating and hardness of the alloy were also analyzed.

  16. Influence of heat treatment on the wear life of hydraulic fracturing tools

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chao; Liu, Yonghong; Wang, Hanxiang; Qin, Jie; Shen, Yang; Zhang, Shihong [China University of Petroleum, Qingdao (China)

    2017-02-15

    Wear phenomenon has caused severe damage or failure of fracturing tools in oil and gas industry. In this paper, influence of heat treatment on the mechanical properties and wear resistance of fracturing tool made of lamellar graphite grey cast iron were investigated. The surface composition and microstructure were characterized by X-ray diffraction (XRD) and metallographic microscope. Sliding wear tests were performed to study the tribological behavior. Tests results showed that wear rates of treated specimens decreased by 33 %. Besides, worn morphology and wear debris were analyzed using Scanning electron microscope (SEM) and Energy dispersive Xray spectra (EDS). Wear failure mechanisms of specimens were identified. Furthermore, on-site experiment results indicated that wear loss of treated samples decreased by 37.5 %. The wear life of hydraulic fracturing tools can be improved obviously by the heat treatment.

  17. Microstructures and Mechanical Properties of Binary Al-Zn Alloys Fabricated by Casting and Heat Treatment

    Science.gov (United States)

    Zhou, W. B.; Teng, G. B.; Liu, C. Y.; Qi, H. Q.; Huang, H. F.; Chen, Y.; Jiang, H. J.

    2017-08-01

    Binary Al-Zn alloys with different Zn contents were fabricated by casting and heat treatment. Analysis of mechanical properties showed that the hardness and tensile strength of Al-Zn alloys increased with increased Zn content, with the post-heat treatment hardness and ultimate tensile strength of Al-49Zn alloy reaching as high as 152 HV and 330 MPa, respectively. Meanwhile, the plasticity and toughness of Al-Zn alloys decreased with increased Zn content. Solid-solution strengthening was the main strengthening mechanism for Al-Zn alloys, and Orowan strengthening was also observed in Al-49Zn alloy. The fracture mode of Al-20Zn and Al-35Zn alloys was ductile, whereas Al-20Zn alloy showed good impact toughness. This work provided a basis for further improving the cast component design of the Al-Zn-X system.

  18. Dry-heat treatment process for enhancing viral safety of an antihemophilic factor VIII concentrate prepared from human plasma.

    Science.gov (United States)

    Kim, In Seop; Choi, Yong Woon; Kang, Yong; Sung, Hark Mo; Shin, Jeong Sup

    2008-05-01

    Viral safety is a prerequisite for manufacturing clinical antihemophilic factor VIII concentrates from human plasma. With particular regard to the hepatitis A virus (HAV), a terminal dry-heat treatment (100 degrees for 30 min) process, following lyophilization, was developed to improve the virus safety of a solvent/detergent-treated antihemophilic factor VIII concentrate. The loss of factor VIII activity during dry-heat treatment was of about 5%. No substantial changes were observed in the physical and biochemical characteristics of the dry-heat-treated factor VIII compared with those of the factor VIII before dry-heat treatment. The dry-heat-treated factor VIII was stable for up to 24 months at 4oC. The dry-heat treatment after lyophilization was an effective process for inactivating viruses. The HAV, murine encephalomyocarditis virus (EMCV), and human immunodeficiency virus (HIV) were completely inactivated to below detectable levels within 10 min of the dry-heat treatment. Bovine herpes virus (BHV) and bovine viral diarrhea virus (BVDV) were potentially sensitive to the treatment. However porcine parvovirus (PPV) was slightly resistant to the treatment. The log reduction factors achieved during lyophilization and dry-heat treatment were > or =5.55 for HAV, > or =5.87 for EMCV, > or =5.15 for HIV, 6.13 for BHV, 4.46 for BVDV, and 1.90 for PPV. These results indicate that dry-heat treatment improves the virus safety of factor VIII concentrates, without destroying the activity. Moreover, the treatment represents an effective measure for the inactivation of non-lipid-enveloped viruses, in particular HAV, which is resistant to solvent/detergent treatment.

  19. Effect of yeast antagonist in combination with heat treatment on postharvest blue mold decay and Rhizopus decay of peaches.

    Science.gov (United States)

    Zhang, Hongyin; Wang, Lei; Zheng, Xiaodong; Dong, Ying

    2007-04-01

    The potential of using heat treatment alone or in combination with an antagonistic yeast for the control of blue mold decay and Rhizopus decay of peaches caused by Penicillium expansum and Rhizopus stolonifer respectively, and in reducing natural decay development of peach fruits, as well as its effects on postharvest quality of fruit was investigated. In vitro tests, spore germination of pathogens in PDB was greatly controlled by the heat treatment of 37 degrees C for 2 d. In vivo test to control blue mold decay of peaches, heat treatment and antagonist yeast, as stand-alone treatments, were capable of reducing the percentage of infected wounds from 92.5% to 52.5% and 62.5%, respectively, when peach fruits stored at 25 degrees C for 6 d. However, in fruit treated with combination of heat treatment and Cryptococcus laurentii, the percentage of infected wounds of blue mold decay was only 22.5%. The test of using heat treatment alone or in combination with C. laurentii to control Rhizopus decay of peaches gave a similar result. The application of heat treatment and C. laurentii resulted in low average natural decay incidences on peaches after storage at 4 degrees C for 30 days and 20 degrees C for 7 days ranging from 40% to 30%, compared with 20% in the control fruit. The combination of heat treatment and C. laurentii was the most effective treatment, and the percentage of decayed fruits was 20%. Heat treatment in combination with C. laurentii had no significant effect on firmness, TSS, ascorbic acid or titratable acidity compared to control fruit. Thus, the combination of heat treatment and C. laurentii could be an alternative to chemicals for the control of postharvest decay on peach fruits.

  20. In situ heat treatment of a tar sands formation after drive process treatment

    Science.gov (United States)

    Vinegar, Harold J.; Stanecki, John

    2010-09-21

    A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.

  1. A Novel Combination of Thermal Ablation and Heat-Inducible Gene therapy for Breast Cancer Treatment

    Science.gov (United States)

    2009-04-01

    intensity focused ultrasound ( HIFU ) has been developed as an emerging non-invasive strategy for cancer treatment by thermal ablation of tumor tissue. The...feasibility of synergistic combination of HIFU thermal ablation and HIFU -induced gene therapy is interpreted both in vitro and in vivo using cancer...distribution. This work opens up a new paradigm for synergistic combination of HIFU thermal ablation with heat-induced gene therapy to improve the overall

  2. Endotoxin inactivation via steam-heat treatment in dilute simethicone emulsions used in biopharmaceutical processes.

    Science.gov (United States)

    Britt, Keith A; Galvin, Jeffrey; Gammell, Patrick; Nti-Gyabaah, Joseph; Boras, George; Kolwyck, David; Ramirez, José G; Presente, Esther; Naugle, Gregory

    2014-01-01

    Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam-heat treatment was fit to a four-parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature-related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration-related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre-exponential factor was >10(12) s(-1) suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam-heat treatment decreased endotoxin levels by 1-2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam-heat treatment. The results from this study show that steam-heat treatment is a viable endotoxin control strategy that can be implemented to support large-scale biopharmaceutical manufacturing. © 2014 American Institute of Chemical Engineers.

  3. Analyzing of Nonuniform Hardness for Anchorage Clamp Plate after Heat Treatment

    Science.gov (United States)

    Liu, Zhenmin; Wang, Lijun; Ruan, Shipeng; Wang, Ningtao

    2017-09-01

    20CrMnTi wire rod can be used to manufacture the anchorage clamp plate. In the normal production, the test results show that the hardness of anchorage clamp plate is nonuniform. In this paper, the chemical composition, microstructure, grain size of clamp plate billet and the microstructure, hardness of the finished clamp plate product were studied and analyzed. The results show that improper heat treatment technics causes nonuniform hardness for anchorage clamp plate.

  4. The influence of heat treatment conditions on {gamma}' characteristics in Udimet[reg] 720

    Energy Technology Data Exchange (ETDEWEB)

    Monajati, H.; Jahazi, M.; Bahrami, R.; Yue, S

    2004-05-25

    The influence of various heat treatment conditions on the kinetics of {gamma}' dissolution, re-precipitation and growth in nickel base superalloy Udimet 720 (U720) was studied. Cubical shape samples were extracted from a forged blade and solution treated at 1110, 1140, 1150, 1160 and 1170 deg. C for holding times ranging from 2 to 24 h. Samples were quenched at the end of each heat treatment process and the dissolution kinetics of {gamma}' precipitates was studied using optical and scanning electron microscopy. The {gamma}' solvus temperature was determined to be approximately of 1150 deg. C for the investigated alloy. Samples were aged at 760 and 850 deg. C from 2 to 90 h to study precipitation and growth kinetics of {gamma}' precipitates. A Lifshitz-Slyozov-Wagner (LSW) type relationship was found, leading to an activation energy value of 250 kJ/mol for the growth of cuboidal shape {gamma}' precipitates. A methodology was developed to take into account the temperature dependence of the growth coefficient, k, in the LSW equation. This results in more accurate evaluation of the activation energy value, compared to the general practice that assumes a temperature independent value for k. A heat treatment map for the Udimet 720 alloy studied in this investigation is proposed. The reference graph could be used to estimate {gamma}' volume fraction and size at different times and temperatures allowing the development of heat treatment schedules. The methodology employed in this investigation could be applied to other types of nickel base superalloys.

  5. The Decreasing of Die Cracking for HDPC Technology by Changing Parameters of Heat Treatment

    Directory of Open Access Journals (Sweden)

    A. Herman

    2012-09-01

    Full Text Available In earlier works were described trends in the production of tools for die casting (hot work. Almost the entire set of issues dealt with may seem insignificant when incompletely assembled acceptance of the material and the associated risks of processing a material with an inappropriate structure, leading to a very early defect of the die. Therefore, further work will focus particularly on identifying the causes of thermal cracks and preventing a suitable choice of acceptance criteria conditions and heat treatment.

  6. Effect of heat treatment on pore structure in nanocrystalline NiO: A ...

    Indian Academy of Sciences (India)

    D(R) has been taken as Weibull distribution as it may be skewed on both sides. The ratio of the number density for the two types of pores can be determined by taking the ratio of C1 and C2. The larger length scale pore size distribution for the samples with heat treatment 300, 600 and 900◦C, respectively, estimated from the ...

  7. A Novel Heat Treatment Process for Surface Hardening of Steel: Metal Melt Surface Hardening

    Science.gov (United States)

    Fu, Yong-sheng; Zhang, Wei; Xu, Xiaowei; Li, Jiehua; Li, Jun; Xia, Mingxu; Li, Jianguo

    2017-09-01

    A novel heat treatment process for surface hardening of steel has been demonstrated and named as "metal melt surface hardening (MMSH)." A surface layer with a thickness of about 400 μm and a hardness of about 700 HV has been achieved by ejecting AISI 304 stainless steel melt at a temperature of about 1783 K (1510 °C) onto the 40Cr steel surface. This proposed MMSH provides a very promising application for surface hardening of steel.

  8. The Effects of Heat Treatment on the Physical Properties and Surface Roughness of Turkish Hazel (Corylus colurna L. Wood

    Directory of Open Access Journals (Sweden)

    Nevzat Çakıcıer

    2008-09-01

    Full Text Available Heat treatment is often used to improve the dimensional stability of wood. In this study, the effects of heat treatment on the physical properties and surface roughness of Turkish Hazel (Corylus colurna L. wood were examined. Samples obtained from Kastamonu Forest Enterprises, Turkey, were subjected to heat treatment at varying temperatures and for different durations. The physical properties of heat-treated and control samples were tested, and oven-dry density, air-dry density, and swelling properties were determined. A stylus method was employed to evaluate the surface characteristics of the samples. Roughness measurements, using the stylus method, wereb made in the direction perpendicular to the fiber. Four main roughness parameters, mean arithmetic deviation of profile (Ra, mean peak-to-valley height (Rz, root mean square roughness (Rq, and maximum roughness (Ry obtained from the surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of the specimens. Significant difference was determined (p = 0.05 between physical properties and surface roughness parameters (Ra,Rz, Ry, Rq for three temperatures and three durations of heat treatment. The results showed that the values of density, swelling and surface roughness decreased with increasing temperature treatment and treatment times. Turkish Hazel wood could be utilized successfully by applying proper heat treatment techniques without any losses in investigated parameters. This is vital in areas, such as window frames, where working stability and surface smoothness are important factors.

  9. ANALYSIS OF PITTING CORROSION ON AN INCONEL 718 ALLOY SUBMITTED TO AGING HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    Felipe Rocha Caliari

    2014-10-01

    Full Text Available Inconel 718 is one of the most important superalloys, and it is mainly used in the aerospace field on account of its high mechanical strength, good resistance to fatigue and creep, good corrosion resistance and ability to operate continuously at elevated temperatures. In this work the resistance to pitting corrosion of a superalloy, Inconel 718, is analyzed before and after double aging heat treatment. The used heat treatment increases the creep resistance of the alloy, which usually is used up to 0.6 Tm. Samples were subjected to pitting corrosion tests in chloride-containing aqueous solution, according to ASTM-F746-04 and the procedure described by Yashiro et al. The results of these trials show that after heat treatment the superalloy presents higher corrosion resistance, i.e., the pitting corrosion currents of the as received surfaces are about 6 (six times bigger (~0.15 mA than those of double aged surfaces (~0.025 mA.

  10. The influence of heat treatment on properties of lead-free solders

    Directory of Open Access Journals (Sweden)

    Lýdia Trnková Rízeková

    2015-02-01

    Full Text Available The article is focused on the analysis of degradation of properties of two eutectic lead-free solders SnCu0.7 and SnAg3.5Cu0.7. The microstructures of the intermetallic compound (IMC layers at the copper substrate - solder interface were examined before and after heat treatment at 150°C for 50, 200, 500 and 1000 hours. The thickness of IMC layers of the Cu6Sn5 phase was growing with the increasing time of annealing and shown the typical scallops. For the heat treatment times of 200 hours and longer, the Cu3Sn IMC layers located near the Cu substrate were also observed. The experiments showed there is a link between the thickness of IMC layers and decrease of the shear strength of solder joints. In general, the joints made of the ternary solder showed higher shear strength before and after heat treatment in comparison to joints from solder SnCu0.7.

  11. Effect of heat treatment of camelina (Camelina sativa) seeds on the antioxidant potential of their extracts.

    Science.gov (United States)

    Terpinc, Petra; Polak, Tomaz; Ulrih, Natasa Poklar; Abramovic, Helena

    2011-08-24

    The effect of different heat treatments of camelina (Camelina sativa) seeds on the phenolic profile and antioxidant activity of their hydrolyzed extracts was investigated. The results showed that total phenol contents increased in thermally treated seeds. Heat treatment affected also the quantities of individual phenolic compounds in extracts. Phenolics in unheated camelina seeds existed in bound rather than in free form. A temperature of 160 °C was required for release of insoluble bound phenolics, whereas lower temperatures were found to be optimal to liberate those present as soluble conjugates. The best reducing power and alkyl peroxyl radical scavenging activity in the emulsion was expressed by phenolics which were bound to the cell wall, whereas the best iron chelators and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavengers were found to be those present in free form. The heat treatment of seeds up to 120 °C increased the reducing power and DPPH• radical scavenging ability of extracts, but negatively affected iron chelating ability and their activity in an emulsion against alkyl peroxyl radicals.

  12. Effect of Nisin and Thermal Treatments on the Heat Resistance of Clostridium sporogenes Spores.

    Science.gov (United States)

    Ros-Chumillas, Maria; Esteban, Maria-Dolores; Huertas, Juan-Pablo; Palop, Alfredo

    2015-11-01

    The aim of this research was to evaluate the effect of thermal treatments (isothermal or nonisothermal) combined with nisin, a natural antimicrobial, on the survival and recovery of Clostridium sporogenes spores. The addition of nisin to the heating medium at concentrations up to 0.1 mg liter(-1) did not reduce the heat resistance of C. sporogenes. Without a thermal treatment, nisin added at concentrations up to 0.1 mg liter(-1) did not reduce the viable counts of C. sporogenes when added to the recovery medium, but inactivation of more than 4 log cycles was achieved after only 3 s at 100°C. At 100°C, the time needed to reduce viable counts by more than 3 log cycles was nine times shorter when 0.01 mg liter(-1) nisin was added to the recovery medium than without it. The heat resistance values calculated under isothermal conditions were used to predict the survival in the nonisothermal experiments, and the predicted values accurately fit the experimental data. The combination of nisin with a thermal treatment can help control C. sporogenes.

  13. Effects of heat treatment conditions on microstructure and mechanical properties of AISI 420 steel

    Energy Technology Data Exchange (ETDEWEB)

    Scheuer, C.J.; Fraga, R.A.; Cardoso, R.P.; Brunatto, S.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Engenharia Mecanica. Grupo de Tecnologia de Fabricacao Assistida por Plasma e Metalurgia do Po

    2014-07-01

    The cycle control of heat treatments, on the quenching and tempering operation of AISI 420 stainless steel, is essential for improved material performance. The adequate choice of heat treatment parameters, can lead an optimization on its mechanical properties and corrosion resistance. Thus, this paper aims to investigate the effects of quenchants medium, and austenitizing and tempering temperatures, on the microstructure and mechanical properties of AISI 420 steel. Different heat treatments cycles were studied: 1) samples were austenitized at 1050°C and water, oil and air quenched; 2) samples were austenitized at range temperatures of 950-1050°C and oil quenched; and 3) as-quenched samples were tempering at range temperatures of 400-500°C. Treated samples were characterized by optical microscopy, X-ray diffractometry and hardness measurements. The samples hardness increases with increasing cooling rate (water > oil > air quenched). Water quenched samples presented crack after cooling to room temperature. Samples hardness also increases with austenitizing temperature increasing, and decreases with increasing tempering temperature. (author)

  14. The Effect of Heat and Free Chlorine Treatments on the Surface Properties of Murine Norovirus.

    Science.gov (United States)

    Brié, Adrien; Razafimahefa, Ravo; Loutreul, Julie; Robert, Aurélie; Gantzer, Christophe; Boudaud, Nicolas; Bertrand, Isabelle

    2017-06-01

    Heat and free chlorine are among the most efficient and commonly used treatments to inactivate enteric viruses, but their global inactivation mechanisms have not been elucidated yet. These treatments have been shown to affect at least the capsid proteins of viruses and thus may affect the surface properties (i.e. electrostatic charge and hydrophobicity) of such particles. Our aim was to study the effects of heat and free chlorine on surface properties for a murine norovirus chosen as surrogate for human norovirus. No changes in the surface properties were observed with our methods for murine norovirus exposed to free chlorine. Only the heat treatment led to major changes in the surface properties of the virus with the expression of hydrophobic domains at the surface of the particles after exposure to a temperature of 55 °C. No modification of the expression of hydrophobic domains occurred after exposure to 60 °C, and the low hydrophobic state exhibited by infectious and inactivated particles after exposure to 60 °C appeared to be irreversible for inactivated particles only, which may provide a means to discriminate infectious from inactivated murine noroviruses. When exposed to a temperature of 72 °C or to free chlorine at a concentration of 50 mg/L, the genome became available for RNases.

  15. Mild heat treatments induce long-term changes in metabolites associated with energy metabolism in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sarup, Pernille; Petersen, Simon Metz Mariendal; Nielsen, Niels Chr

    2016-01-01

    treatments on the metabolome of male Drosophila melanogaster. 10 days after the heat treatment, metabolic aging appears to be slowed down, and a treatment response with 40 % higher levels of alanine and lactate and lower levels of aspartate and glutamate were measured. All treatment effects had disappeared...

  16. Transformation of silver nanowires into nanoparticles by Rayleigh instability: Comparison between laser irradiation and heat treatment

    Science.gov (United States)

    Oh, Harim; Lee, Jeeyoung; Lee, Myeongkyu

    2018-01-01

    We comparatively study the morphological evolutions of silver nanowires under nanosecond-pulsed laser irradiation and thermal treatment in ambient air. While single-crystalline, pure Ag nanospheres could be produced by laser-driven Rayleigh instability, the particles produced by heat treatment were subject to oxidation and exhibited polyhedron shapes. The different results are attributed to the significantly different time scales of the two processes. In this article, we also show that bimetallic Ag-Au nanospheres can be synthesized by irradiating Ag nanowires coated with a thin Au film using a pulsed laser beam. This may provide a facile route to tune the plasmonic behavior of metal nanoparticles.

  17. Behavior of sheets from Ti-alloys by rolling and heat treatment

    Science.gov (United States)

    Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Gritskevich, M.; Stolbov, S.; Zaripova, M.

    2017-10-01

    Sheets from single- and two-phase Ti-alloys (VT1-0, Ti-22Nb-9%Zr and VT-16) were rolled at the room temperature up to various deformation degrees and annealed at temperatures 500-900 °C. The regularities of texture formation in both phases were established. In the technically pure Ti (VT1-0) with the single α-Ti phase the final stable texture component is (0001)±30-40°ND-TD. In the two-phase alloy the reorientation of basal axes of α-Ti occurs by the same trajectories as in the single phase alloy. However, in the case of two-phase alloy texture development in α-Ti stops at the intermediate stage, when this texture consists of components with rolling planes (0001)±15-20°ND-RD and (0001)±30-40°ND-TD. The stability of the first components can be provided both by the mutually balanced operation of pyramidal and basal slip systems, activity of which remains at the high deformation degree of two-phase alloy, and by the dynamic α↔β phase transformations, taking place in the distorted structures of α- and β-phases in the course of its cold rolling. At recrystallization of technically pure Ti the basal component disappears in its texture. At the same time, prismatic axes turn by angles 20÷30° depending on the heating rate of the rolled sheet and annealing temperature. At recrystallization of the two-phase Ti-alloy prismatic axes of its α-grains doesn't turn relative to their positions in the rolling texture, as it occurs in the single-phase alloy. This fact indicates to some alternative mode of arising new recrystallized grains in two-phase alloys.

  18. Effects of Porosity, Heat Input and Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of TIG Welded Joints of AA6082-T6

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2017-11-01

    Full Text Available Various heat input conditions and post-weld heat treatments were adopted to investigate the microstructure evolution and mechanical properties of tungsten inert gas (TIG welded joints of AA6082-T6 with porosity defects. The results show that the fracture location is uncertain when an as-welded joint has porosities in the weld zone (WZ, and overaging in the heat-affected zone (HAZ at the same time. When the fracture of the as-welded joint occurs in the HAZ, the total heat input has a linear relation with the tensile strength of the joint. An excess heat input induces the overgrowth of Mg2Si precipitates in HAZ and the coarsening of α-Al grains in WZ, resulting in a decrease in the microhardness of the corresponding areas. After artificial aging treatment, the tensile strength of the welded joint is increased by approximately 9–13% as compared to that of as-welded joint, and fracture also occurs in HAZ. In contrast, for solution treated and artificial aging treated joint, fracture occurs suddenly at the rising phase of the tensile curve due to porosity defects throughout the weld metal. Furthermore, the eutectic Si particles of WZ coarsen and spheroidize after solution treatment and artificial aging treatment, due to the diffusion of Si to the surface of the original Si phases when soaking at high temperature.

  19. Optimisasi Suhu Pemanasan dan Kadar Air pada Produksi Pati Talas Kimpul Termodifikasi dengan Teknik Heat Moisture Treatment (HMT (Optimization of Heating Temperature and Moisture Content on the Production of Modified Cocoyam Starch Using Heat Moisture Treatment (HMT Technique

    Directory of Open Access Journals (Sweden)

    I Nengah Kencana Putra

    2016-12-01

    Full Text Available One of the physically starch modification technique is heat-moisture treatment (HMT. This technique can increase the resistance of starch to heat, mechanical treatment, and acid during processing.  This research aimed to find out the influence of heating temperature and moisture content in the modification process of cocoyam starch  with HMT techniques on the characteristic of product, and then to determine the optimum heating temperature and moisture content in the process. The research was designed with a complete randomized design (CRD with two factors factorial experiment.  The first factor was temperature of the heating consists of 3 levels namely 100 °C, 110 °C, and 120 °C. The second factor was the moisture content of starch which consists of 4 levels, namely 15 %, 20 %, 25 %, and 30 %. The results showed that the heating temperature and moisture content significantly affected water content, amylose content and swelling power of modified cocoyam starch product, but the treatment had no significant effect on the solubility of the product. HMT process was able to change the type of cocoyam starch from type B to type C. The optimum heating temperature and water content on modified cocoyam starch production process was 110 °C and 30 % respectively. Such treatment resulted in a modified cocoyam starch with moisture content of 6.50 %, 50,14 % amylose content, swelling power of 7.90, 0.0009% solubility, paste clarity of 96.310 % T, and was classified as a type C starch.   ABSTRAK Salah satu teknik modifikasi pati secara fisik adalah teknik Heat Moisture Treatment (HMT. Teknik ini dapat meningkatkan ketahanan pati terhadap panas, perlakuan mekanik, dan asam selama pengolahan. Penelitian ini bertujuan untuk mengetahui pengaruh suhu dan kadar air pada proses modifikasi pati talas kimpul dengan teknik HMT terhadap karakteristik produk, dan selanjutnya menentukan suhu dan kadar air yang optimal dalam proses tersebut. Penelitian ini dirancang

  20. Structural ordering of Pennsylvania anthracites on heat treatment to 2000-2900{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    J.V. Atria; F. Rusinko Jr.; H.H. Schobert [Pennsylvania State University, University Park, PA (United States). Energy Institute

    2002-12-01

    Three Pennsylvania anthracites from the Penn State Coal Sample Bank and Data Base were heat-treated to temperatures to 2900{sup o}C. The products were characterized by X-ray diffraction. These anthracites clearly differ in the extent to which they transform to a graphitic structure by heat treatment at ambient pressure. Graphitizability, based on approach of interlayer spacing to the ideal value for graphite and development of crystallite height, is in the order DECS 21 {gt} PSOC 1461 {gt} PSOC 1468. By 2700{sup o}C the interlayer spacing is largely established, since improvements by increasing graphitization temperature to 2900{sup o}C are small. The crystallite stacking continues to develop; significant changes are achieved at 2900 vs 2700{sup o}C. The structural changes can be related to composition via two factors. In heat treatment to 2000{sup o}C, the structural ordering may be impeded by a 'locking' of aromatic sheets in place by cross-linkers, such as oxygen atoms. At the higher temperatures, i.e., 2700 and 2900{sup o}C, the ease of rearrangement of aromatic sheets, which is related to their size, is the dominant issue. The relative sizes of aromatic sheets can be approximated from the net hydrogen content of the anthracites. DECS-21, which has both the highest oxygen content and the highest net hydrogen value, shows the least order after heat treatment to 2000{sup o}C, but the best structural development after reaction at 2700 or 2900{sup o}C. 38 refs., 2 tabs.

  1. Influence of Heat Treatment Conditions on Strength Properties of Poplar Wood (Populus deltoides

    Directory of Open Access Journals (Sweden)

    Mohamad Ghofrani

    2012-01-01

    Full Text Available In this research heat treatments of poplar wood in 2 different mediums (hot water and steam at 185ºC were done in the sealed autoclave for 1 and 3 hours. Specimens were compared in density and mechanical properties. Density loss in hydrothermally treated wood was higher than hygrothermally treated samples. Mechanical properties (MOR and MOE were decreased in both mediums, but strength loss was higher for hygrothermal treated samples. Compression strength parallel to grain didn’t show any significant change for hydrothermally treated wood but decreased in specimens with hygrothermal treatment. Poplar wood showed more decrease in toughness test with hygrothermal treatment. According to the results, hydrothermal treatment of poplar wood is recommended as a modification method with less negative effects on mechanical properties

  2. [Influence of cryogenic treatment and age-hardening heat treatment on the corrosion behavior of a dental casting Ag-Pd alloy].

    Science.gov (United States)

    Zhao, Yao; Wu, Bin; Meng, Yukun

    2014-06-01

    The purpose of this study is to investigate the influence of cryogenic treatment and age-hardening heat treatment on the corrosion behavior of a dental casting Ag-Pd alloy. A low gold content dental casting alloy composed of Ag-Pd-Cu-Au was prepared for this study. Corrosion test was performed according to ISO 10271:2001 dental metallie-corrosion test methods. Experimental specimens were casted according to a standard dental lost-wax casting procedure, treated with solution by heating the specimens to 900 degrees C, and immediately quenched in ice water. The specimens were then divided into four groups and subjected to heat treatment, cryogenic treatment, and heat treatment combined with cryogenic treatment. The specimens after the solution treatment were taken as control. The metallographic structures of the specimens were observed. The electrochemical parameters and the quantity of non-precious metallic ions released were evaluated via electrochemical and static immersion tests. Metallographic observation revealed that all the treatments resulted in a change in the microstructure of the alloy. The treatments were effective in improving the electrochemical parameters, such as an increase in Eocp and Ecorr and a decrease in Icorr (P 0.05). After different treatments, the antierosion properties of the alloy satisfied the ISO requirements. Age-hardening heat treatment and cryogenic treatment improved the corrosion resistance of the alloy.

  3. Effect of dry heat treatment with xanthan on waxy rice starch.

    Science.gov (United States)

    Li, Yue; Zhang, Huien; Shoemaker, Charles F; Xu, Zhiting; Zhu, Song; Zhong, Fang

    2013-02-15

    Waxy rice starch was impregnated with xanthan and heat-treated in a dry state. The effects on the pasting and rheological properties of the treated starch-xanthan mixture were evaluated. Swelling of the granule was restricted, and a continuous rise of the viscosity during pasting was provided for the treated sample. After pasting, the gel forming ability of the treated starch was strengthened, as both storage and loss modulus increased and tan δ decreased. The paste also owned the highest zero order Newtonian viscosity and yield stress. An increase in starch particle size of the dry heated starch-xanthan mixture suggested a cross linking of the starch granules by the xanthan polymers. An increase of crystallinity was observed for the starch after dry heat treatment, but with the addition of xanthan the amorphous region of the granule became more resistant to dry-heating. The melting enthalpy was found to be correlated with the crystallinity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Analysis of the building system of four mills and their suitability for heat treatment pest disinfestation

    Directory of Open Access Journals (Sweden)

    Loredana Strano

    2013-09-01

    Full Text Available The last century researchers at Kansas State University demonstrated the validity of the heat treatment as a method of pest control in more than 20 mills. However factors such as the high capital investment required to heat large buildings, inadequate control of high temperatures and the risk of damage to parts of the plants or the construction materials have prevented the large-scale adoption of this technique as a viable alternative to fumigants. Today the combination of the industrialization of the food industry, the technological and structural modernization of plants and developments in heat disinfection technologies have resulted in interesting results being obtained for the use of this system in primary and secondary production processing plants, both experimentally and in practice. However, the scientific literature highlights some of the factors that limit the efficiency of the treatment. This is related to aspects of the buildings and the plants and the environment of the buildings. The structure of the buildings appear to have an enormous impact on energy consumption, because this depends on the amount of heating time and the methods that have to be used when establishing a heat treatment regime. These factors are important if the fumigation temperatures are to be reached in the shortest possible time and can affect the choice of the technique used with current fumigants, especially when this is combined with the amount and cost of the energy consumed. The aim of this work is to analyse four Sicilians mills that intend to use the heat system for fumigation and pest control in order to identify those aspects of the buildings, plant and their environment which are “critical elements” and may discourage the use of this technology. Particular attention was paid to the type of construction materials and their thermal conductivity (roof, floors and walls, the number and volume of the buildings and the distance between them, the

  5. Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law

    Science.gov (United States)

    Želi, Velibor; Zorica, Dušan

    2018-02-01

    Generalization of the heat conduction equation is obtained by considering the system of equations consisting of the energy balance equation and fractional-order constitutive heat conduction law, assumed in the form of the distributed-order Cattaneo type. The Cauchy problem for system of energy balance equation and constitutive heat conduction law is treated analytically through Fourier and Laplace integral transform methods, as well as numerically by the method of finite differences through Adams-Bashforth and Grünwald-Letnikov schemes for approximation derivatives in temporal domain and leap frog scheme for spatial derivatives. Numerical examples, showing time evolution of temperature and heat flux spatial profiles, demonstrate applicability and good agreement of both methods in cases of multi-term and power-type distributed-order heat conduction laws.

  6. Effect of Heat Shock Treatment and Aloe Vera Coating on Chilling Injury Symptom in Tomato (Lycopersicon asculantum Mill.

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2010-04-01

    Full Text Available This research was undertaken to determine the effect of length in heat shock and edible coating as prestorage treatment on Chilling Injury (CI symptom reflected by ion leakage induced and quality properties in tomato (Lycopersicon asculantum Mill.. Heat Shock Treatment (HST was conducted at three different levels of length, which were, 20, 40 and 60 min. Edible coating was conducted using aloe vera gel. The result showed that HST and Aloe Vera Coating (AVC were more effective to reduce CI symptom at lower chilling storage. Prolong exposure to heated water may delay climacteric peak. The length of heat shock; AVC treatment and low temperature storage significantly affected the tomato quality parameter but not significantly different for each treatment except weight loss. HST for 20 min at ambient temperature was significantly different to other treatment.

  7. Effect of Heat Shock Treatment and Aloe Vera Coating to Chilling Injury Symptom in Tomato (Lycopersicon asculantum Mill.

    Directory of Open Access Journals (Sweden)

    Sutrisno

    2012-04-01

    Full Text Available This research was undertaken to determine the effect of length in heat shock and edible coating as pre-storage treatment to Chilling Injury (CI symptom reflected by ion leakage induced and quality properties in tomato (Lycopersicon asculantum Mill.. Heat Shock Treatment (HST was conducted at three different levels of length, which were, 20; 40 and 60 min. Edible coating was conducted using aloe vera gel. The result showed that HST and Aloe Vera Coating (AVC were more effective to reduce CI symptom at lower chilling storage. Prolong exposure to heated water may delay climacteric peak. The length of heat shock, AVC treatment and low temperature storage significantly affected the tomato quality parameter but not significantly different for each treatment except weight loss. HST for 20 min at ambient temperature was significantly different to other treatment.

  8. Correlation between platinum nanoparticle surface rearrangement induced by heat treatment and activity for an oxygen reduction reaction.

    Science.gov (United States)

    Chung, Dong Young; Chung, Young-Hoon; Jung, Namgee; Choi, Kwang-Hyun; Sung, Yung-Eun

    2013-08-28

    Heat treatment of nanoparticles could induce the surface rearrangement for more stable facet exposure induced by thermodynamics. By changing the heat treatment environment, we confirmed the correlation between the oxygen reduction activity and the effect of surface oxide and the degree of surface rearrangement of Pt nanoparticles. Native surface oxide was not a critical factor for oxygen reduction activity. However, the degree of surface rearrangement could affect the activity, which was confirmed by the surface sensitive techniques such as CO(ad) oxidation and potential of zero total charge. Analysis indicated that the driving force for nanoparticle surface rearrangement was affected by the heat treatment environment such as gas, in our case.

  9. Detection and Rectification of Distorted Fingerprints.

    Science.gov (United States)

    Si, Xuanbin; Feng, Jianjiang; Zhou, Jie; Luo, Yuxuan

    2015-03-01

    Elastic distortion of fingerprints is one of the major causes for false non-match. While this problem affects all fingerprint recognition applications, it is especially dangerous in negative recognition applications, such as watchlist and deduplication applications. In such applications, malicious users may purposely distort their fingerprints to evade identification. In this paper, we proposed novel algorithms to detect and rectify skin distortion based on a single fingerprint image. Distortion detection is viewed as a two-class classification problem, for which the registered ridge orientation map and period map of a fingerprint are used as the feature vector and a SVM classifier is trained to perform the classification task. Distortion rectification (or equivalently distortion field estimation) is viewed as a regression problem, where the input is a distorted fingerprint and the output is the distortion field. To solve this problem, a database (called reference database) of various distorted reference fingerprints and corresponding distortion fields is built in the offline stage, and then in the online stage, the nearest neighbor of the input fingerprint is found in the reference database and the corresponding distortion field is used to transform the input fingerprint into a normal one. Promising results have been obtained on three databases containing many distorted fingerprints, namely FVC2004 DB1, Tsinghua Distorted Fingerprint database, and the NIST SD27 latent fingerprint database.

  10. Effect of hydrothermal heat treatment on magnetic properties of copper zinc ferrite rf sputtered films

    Science.gov (United States)

    Kaur, Jasmeet; Gadipelly, Thirupathi; Singh, R.

    2016-05-01

    The hydrothermal treatment to the nano-structured films can overcome the destruction of the films. The Cu-Zn Ferrite films were fabricated by RF-sputtering on quartz substrates. Subsequently, the as deposited films were heat treated using hydrothermal process. The X-ray diffraction pattern of the as-deposited and hydrothermal treated films indicate nano-crystalline cubic spinel structure. The amorphous nature of the films is removed after hydrothermal treatment with decreased crystallite size. The field emission scanning electron micrographs showed merged columnar growth for as deposited films, which changes to well define columns after hydrothermal heating. The homogeneous cluster distribution is observed in surface view of the hydrothermal treated films. Hydrothermal treated films show merging of in-plane and out of plane magnetization plots (M(H)) whereas the M(H) plots of as deposited films show angular dependence. The strong angular dependence is observed in the FMR spectra due to the presence of a uniaxial anisotropy in the films. The ferromagnetic interactions decrease in hydrothermal heated films due to the reduced shape anisotropy and crystallite size.

  11. Relationship Between Mechanical Properties of Lead-Free Solders and Their Heat Treatment Parameters

    Science.gov (United States)

    Klasik, A.; Sobczak, N.; Pietrzak, K.; Makowska, K.; Wojciechowski, A.; Kudyba, A.; Sienicki, E.

    2012-05-01

    The research was undertaken to establish mechanical properties of as-cast and heat-treated Sn-Zn-based alloys of binary and ternary systems as candidates for lead (Pb)-free solder materials for high-temperature applications. The heat treatment of as-cast alloys was made under different combinations of processing parameters (168 h/50 °C, 42 h/80 °C, and 24 h/110 °C). The systematic study of structure-property relationships in Sn-Zn, Sn-Zn-Ag, and Sn-Zn-Cu alloys containing the same amount of Zn (4.5, 9, 13.5 wt.%) and 1 wt.% of either Ag or Cu was conducted to identify the effects of chemical composition and heat treatment processing parameters on the alloy microstructure and mechanical behavior. Structural characterization was made using optical microscopy and scanning electron microscopy techniques coupled with EDS analysis. Mechanical properties (initial Young's modulus E, ultimate tensile strength UTS, elastic limit R 0.05, yield point R 0.2, elongation A 5, and necking Z) were determined by means of static tensile tests. All the examined Sn-Zn-based alloys have attractive combination of mechanical characteristics, especially tensile strength, having values higher than that of common leaded solders and their substitutes of Pb-free SAC family. The results obtained demonstrate that the Sn-Zn-based alloys present competitive Pb-free solder candidates for high-temperature applications.

  12. Exploiting heat treatment effects on SMAs macro and microscopic properties in developing fire protection devices

    Science.gov (United States)

    Burlacu, L.; Cimpoeşu, N.; Bujoreanu, L. G.; Lohan, N. M.

    2017-08-01

    Ni-Ti shape memory alloys (SMAs) are intelligent alloys which demonstrate unique properties, such as shape memory effect, two-way shape memory effect, super-elasticity and vibration damping which, accompanied by good processability, excellent corrosion resistance and biocompatibility as well as fair wear resistance and cyclic stability, enabled the development of important industrial applications (such as sensors, actuators, fasteners, couplings and valves), medical applications (such as stents, bone implants, orthodontic archwires, minimal invasive surgical equipment) as well as environmental health and safety devices (anti-seismic dampers, fire safety devices). The phase transitions in Ni-Ti SMAs are strongly influenced by processing methods, chemical compositions and thermomechanical history. This paper presents a study of the effects of heat treatment on the mechanical and thermal properties of commercial Ni-Ti shape memory alloy (SMA). The experimental work involved subjecting a SMA rod to heat-treatment consisting in heating up to 500°C, 10 minutes-maintaining and water quenching. Mechanical properties were highlighted by microhardness tests while thermal characteristics were emphasized by differential scanning calorimetry (DSC). The presence of chemical composition fluctuations was checked by X-ray energy dispersive spectroscopy performed with an EDAX Bruker analyzer.

  13. Optimization of post-consolidation heat treatment on particulate reinforced metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Montilla, K.; Ravichandran, G. [California Institute of Technology, Pasadena, CA (United States)

    1995-12-31

    Titanium/SiC particulate reinforced metal matrix composites (MMC) continue to receive a great deal of attention due to their enhanced strength, stiffness and wear characteristics. A significant limiting factor in the production of Titanium based MMCs has been the detrimental interfacial reaction zone which occurs during conventional processing techniques (i.e., extrusion, hot rolling). Shock wave consolidation has proven to be an efficient technique for producing crack free, fully dense particulate reinforced metal matrix composites with no interfacial reaction zone. The purpose of this work was to look beyond the consolidation process into post consolidation heat treatments of shock consolidated MMCS. The consolidation of the green compact is accomplished by the passage of a strong shock wave through the powder. It is widely recognized that post consolidation heat treatment is essential in achieving good mechanical properties. The identification of the optimal annealing schedule according to reinforcement size and volume fraction must be established in order to improve the overall mechanical response of the composite. A limited amount of research has been directed towards investigating annealing schedules at relatively low temperatures with an extended heating interval. The current status of this research will be presented.

  14. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  15. Developing a two-step heat treatment for inactivating desiccation-adapted Salmonella spp. in aged chicken litter.

    Science.gov (United States)

    Chen, Zhao; Wang, Hongye; Jiang, Xiuping

    2015-02-01

    The effectiveness of a two-step heat treatment for eliminating desiccation-adapted Salmonella spp. in aged chicken litter was evaluated. The aged chicken litter with 20, 30, 40, and 50% moisture contents was inoculated with a mixture of four Salmonella serotypes for a 24-h adaptation. Afterwards, the inoculated chicken litter was added into the chicken litter with the adjusted moisture content for a 1-h moist-heat treatment at 65 °C and 100% relative humidity inside a water bath, followed by a dry-heat treatment in a convection oven at 85 °C for 1 h to the desired moisture level (heat treatment, the populations of Salmonella in aged chicken litter at 20 and 30% moisture contents declined from ≈6.70 log colony-forming units (CFU)/g to 3.31 and 3.00 log CFU/g, respectively. After subsequent 1-h dry-heat treatment, the populations further decreased to 2.97 and 2.57 log CFU/g, respectively. Salmonella cells in chicken litter with 40% and 50% moisture contents were only detectable by enrichment after 40 and 20 min of moist-heat treatment, respectively. Moisture contents in all samples were reduced to dry-heat process. Our results demonstrated that the two-step heat treatment was effective in reducing >5.5 logs of desiccation-adapted Salmonella in aged chicken litter with moisture content at or above 40%. Clearly, the findings from this study may provide the chicken litter processing industry with an effective heat treatment method for producing Salmonella-free chicken litter.

  16. Concentration of plasticizers applied during heat-moisture treatment affects properties of the modified canna starch.

    Science.gov (United States)

    Juansang, Juraluck; Puncha-Arnon, Santhanee; Uttapap, Dudsadee; Puttanlek, Chureerat; Rungsardthong, Vilai; Watcharatewinkul, Yanika

    2017-04-15

    Effects of the concentration of plasticizers applied during heat-moisture treatment (HMT) on the properties of canna starch were investigated. The modified starches were prepared by soaking starch in 0 (water), 1, 3, 5, 10, 20 and 30% w/w glycerol or sorbitol solution for 24h and adjusting the moisture content to 25% before HMT (100°C, 1h). Changes in the pasting profiles of heat-moisture treated starches were more obvious when glycerol solutions were used instead of water. An increase in the concentration of glycerol solution from 1% to 5% resulted in a progressive decrease in paste viscosity; paste viscosity then increased as the glycerol concentration rose from 10 to 30%. A similar trend was observed when sorbitol was used as a plasticizer, but with a lesser effect. A scheme for arrangements of the molecular structure of starch during the process of HMT was suggested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of heat treatment on the microstructure and the mechanical behavior of TZM alloy

    Science.gov (United States)

    Morito, Fumio

    1994-09-01

    The effect of heat treatment on the microstructure and the tensile behavior of the TZM alloys welded by an electron beam process was studied. Strength of the as-welded samples, exhibited a considerable increase. Deformation was concentrated in the weld metal and the heat affected zone due to strain localization. Postweld annealing induced a remarkable elongation by recrystallization of the base metal. Elongation of the as-welded TZM with annealing before welding was significant. ehavior described by an effective strain rate demonstrated that deformation at a very low strain rate induced a ductility of the welds. Carburization was also effective to enhance the intergranular cohesion by additional segregation and precipitation. As a result, it was found that dispersion and composition of segragates and precipitates along grain boundaries contributed to the intergranular cohesion, indicating that intergranular embrittlement can be suppressed by controlling chemical bonding at grain boundaries.

  18. Purification of Single-Wall carbon nanotubes by heat treatment and supercritical extraction

    Directory of Open Access Journals (Sweden)

    Mariana Bertoncini

    2011-09-01

    Full Text Available Arc discharge is the most practical method for the synthesis of single wall carbon nanotubes (SWCNT. However, the production of SWCNT by this technique has low selectivity and yield, requiring further purification steps. This work is a study of purification of SWCNT by heat treatment in an inert atmosphere followed by supercritical fluid extraction. The raw arc discharge material was first heat-treated at 1250 °C under argon. The nanotubes were further submitted to an extraction process using supercritical CO2 as solvent. A surfactant (tributylphosphate, TBP and a chelating agent (hexafluoroacetylacetone, HFA were used together to eliminate metallic impurities from the remaining arc discharge catalysts. Analysis of Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES showed an efficient removal of iron and cobalt (>80%. The purified nanotubes were further analyzed by TGA and Raman spectroscopy.

  19. Surface hardening using cw CO2 laser: laser heat treatment, modelation, and experimental work

    Science.gov (United States)

    Muniz, German; Alum, Jorge

    1996-02-01

    In the present work are given the results of the application of laser metal surface hardening techniques using a cw carbon dioxide laser as an energy source on steel 65 G. The laser heat treatment results are presented theoretically and experimentally. Continuous wave carbon dioxide laser of 0.6, 0.3, and 0.4 kW were used. A physical model for the descriptions of the thermophysical laser metal interactions process is given and a numerical algorithm is used to solve this problem by means of the LHT code. The results are compared with the corresponding experimental ones and a very good agreement is observed. The LHT code is able to do predictions of transformation hardening by laser heating. These results will be completed with other ones concerning laser alloying and cladding presented in a second paper.

  20. QUALITY IMPROVEMENT OF SECONDARY SILUMINS BY USING REFINING-MODIFYING, HEAT AND LASER TREATMENTS

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2014-10-01

    Full Text Available Purpose. As a rule secondary silumins are characterized by lower quality than their primary analogues. During manufacture of alloys a large quantity of intermetallides, first of all on the basis of iron, in their structure is ignored. To achieve the optimum level of properties it is necessary to search for ways to adapt refining-modifying, heat and laser treatments to peculiarities of the structure of secondary Al-Si alloys. Methodology. The research was carried out by using standard methods of metallographic analysis, determination of foundry, mechanical and service properties of alloys according to rotatable plans of multifactor experiments. Findings. It was established, that refiningmodifying treatment is a required procedure during manufacture of secondary silumins as it permits to effectively influence the iron-containing phases' segregations by changing their morphology, size and distribution and to increase the effectiveness of further treatment in solid state. It was found that standard modes of heat treatment are not optimal for secondary silumins. Laser treatment has shown high effectiveness in increasing of strength, wear resistance, corrosion and cavitation resistance of secondary Al-Si alloys, and the increased iron content contributed to additional solid solution hardening. Originality. It was established, that after refining-modifying treatment the phase Al5SiFe, which crystallizes in the shape of long stretched plates transformed into phase Al15(FeMn3Si2 in skeletal or polyhedral shape. The relationship between iron content in secondary silumins and holding time during heat treatment that ensures optimum of mechanical properties was obtained. It was proved that the presence of ironcontaining intermetallides Al5SiFe results in the decrease of hardened layer's depth during laser treatment. It was established, that with increasing of iron concentration the corrosion rate of secondary silumins in 3 % NaCl + 0.1 % H2O2 and 10 % HCl

  1. A Precision Analysis of Camera Distortion Models.

    Science.gov (United States)

    Tang, Zhongwei; Grompone von Gioi, Rafael; Monasse, Pascal; Morel, Jean-Michel

    2017-06-01

    This paper addresses the question of identifying the right camera direct or inverse distortion model, permitting a high subpixel precision to fit to real camera distortion. Five classic camera distortion models are reviewed and their precision is compared for direct or inverse distortion. By definition, the three radially symmetric models can only model a distortion radially symmetric around some distortion center. They can be extended to deal with non-radially symmetric distortions by adding tangential distortion components, but still may be too simple for very accurate modeling of real cameras. The polynomial and the rational models instead miss a physical or optical interpretation, but can cope equally with radially and non-radially symmetric distortions. Indeed, they do not require the evaluation of a distortion center. When requiring high precisions, we found that the distortion modeling must also be evaluated primarily as a numerical problem. Indeed, all models except the polynomial involve a non-linear minimization, which increases the numerical risk. The estimation of a polynomial distortion model leads instead to a linear problem, which is secure and much faster. We concluded by extensive numerical experiments that, although high degree polynomials were required to reach a high precision of 1/100 pixels, such polynomials were easily estimated and produced a precise distortion modeling without overfitting. Our conclusion is validated by three independent experimental setups: the models were compared first on the lens distortion database of the Lensfun library by their distortion simulation and inversion power; second by fitting real camera distortions estimated by a non parametric algorithm; and finally by the absolute correction measurement provided by the photographs of tightly stretched strings, warranting a high straightness.

  2. Influence of heat treatment and veneering on the storage modulus and surface of zirconia ceramic.

    Science.gov (United States)

    Siavikis, Georgius; Behr, Michael; van der Zel, Jef M; Feilzer, Albert J; Rosentritt, Martin

    2011-04-01

    Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of zirconia. Zirconia bars (Cercon, DeguDent, G; 0.5x2x20 mm) were fabricated and treated according to veneering conditions. Besides heating regimes between 680°C and 1000°C (liner bake and annealing), sandblasting (Al(2)O(3)) or steam cleaning were used. The bars were investigated after 90 days storage in water and acid. For investigating the influence of veneering, the bars were veneered in press- or layer technique. Dynamic mechanical analysis (DMA) in a three-point-bending design was performed to determine the storage modulus between 25°C and 200°C at a frequency of 1.66 Hz. All specimens were loaded on top and bottom (treatment on pressure or tensile stress side). Scanning electron microscopy (SEM) was used for evaluating the superficial changes of the zirconia surface due to treatment. Statistical analysis was performed using Mann Whitney U-test (α=0.05). Sintered zirconia provided a storage modulus E' of 215 (203/219) GPa and tan δ of 0.04 at 110°C. A 10%-decrease of E' was found up to 180°C. The superficial appearance changed due to heating regime. Sandblasting reduced E' to 213 GPa, heating influenced E' between 205 GPa (liner bake 1) and 222 GPa (dentin bake 1). Steam cleaning, annealing and storage changed E' between 4 GPa and 22 GPa, depending on the side of loading. After veneering, strong E'-reduction was found down to 84 GPa and 125 GPa. Veneering of zirconia with glass-ceramic in contrast to heat treating during veneering procedure had a strong influence on the modulus. The application of the glass-ceramic caused a stronger decrease of the storage modulus.

  3. Effect of Post-weld Heat Treatment on the Mechanical Properties of Supermartensitic Stainless Steel Deposit

    Science.gov (United States)

    Zappa, Sebastián; Svoboda, Hernán; Surian, Estela

    2017-02-01

    Supermartensitic stainless steels have good weldability and adequate tensile property, toughness and corrosion resistance. They have been developed as an alternative technology, mainly for oil and gas industries. The final properties of a supermartensitic stainless steel deposit depend on its chemical composition and microstructure: martensite, tempered martensite, ferrite, retained austenite and carbides and/or nitrides. In these steels, the post-weld heat treatments (PWHTs) are usually double tempering ones, to ensure both complete tempering of martensite and high austenite content, to increase toughness and decrease hardness. The aim of this work was to study the effect of post-weld heat treatments (solution treatment with single and double tempering) on the mechanical properties of a supermartensitic stainless steel deposit. An all-weld metal test coupon was welded according to standard ANSI/AWS A5.22-95 using a GMAW supermartensitic stainless steel metal cored wire, under gas shielding. PWHTs were carried out varying the temperature of the first tempering treatment with and without a second tempering one, after solution treatment. All-weld metal chemical composition analysis, metallurgical characterization, hardness and tensile property measurements and Charpy-V tests were carried out. There are several factors which can be affected by the PWHTs, among them austenite content is a significant one. Different austenite contents (0-42%) were found. Microhardness, tensile property and toughness were affected with up to 15% of austenite content, by martensite tempering and carbide precipitation. The second tempering treatment seemed not to have had an important effect on the mechanical properties measured in this work.

  4. EFFECTS OF HEAT TREATMENTS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL PHASE ODS STEELS FOR HIGH TEMPERATURE STRENGTH

    Directory of Open Access Journals (Sweden)

    SANGHOON NOH

    2013-11-01

    Full Text Available In the present study, the effects of various heat treatments on the microstructure and mechanical properties of dual phase ODS steels were investigated to enhance the high strength at elevated temperature. Dual phase ODS steels have been designed by the control of ferrite and austenite formers, i.e., Cr, W and Ni, C in Fe-based alloys. The ODS steels were fabricated by mechanical alloying and a hot isostatic pressing process. Heat treatments, including hot rolling-tempering and normalizing-tempering with air- and furnace-cooling, were carefully carried out. It was revealed that the grain size and oxide distributions of the ODS steels can be changed by heat treatment, which significantly affected the strengths at elevated temperature. Therefore, the high temperature strength of dual phase ODS steel can be enhanced by a proper heat treatment process with a good combination of ferrite grains, nano-oxide particles, and grain boundary sliding.

  5. Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics

    Science.gov (United States)

    Im, Ui-Su; Kim, Jiyoung; Lee, Seon Ho; Lee, Byung-Rok; Peck, Dong-Hyun; Jung, Doo-Hwan

    2017-12-01

    In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.

  6. Influence of Solution Heat Treatment on Structure and Mechanical Properties of ZnAl22Cu3 Alloy

    Directory of Open Access Journals (Sweden)

    Michalik R.

    2016-09-01

    Full Text Available The influence of solution heat treatment at 385°C over 10 h with cooling in water on the structure, hardness and strength of the ZnAl22Cu3 eutectoid alloy is presented in the paper. The eutectoid ZnAl22Cu3 alloy is characterized by a dendritic structure. Dendrites are composed of a supersaturated solid solution of Al in Zn. In the interdendritic spaces a eutectoid mixture is present, with an absence of the ε (CuZn4 phase. Solution heat treatment of the ZnAl22Cu3 alloy causes the occurrence of precipitates rich in Zn and Cu, possibly ε phase. Solution heat treatment at 385°C initially causes a significant decrease of the alloy hardness, although longer solution heat treatment causes a significant increase of the hardness as compared to the as-cast alloy.

  7. Effects of heat treatment on the dye adsorption of ZnO nanorods for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Won Suk; Choi, Seok Cheol; Sohn, Sang Ho [Kyungpook National University, Daegu (Korea, Republic of); Oh, Sang Jin [Phoenix Materials, Gumi (Korea, Republic of)

    2012-11-15

    Well-aligned ZnO nanorods for the photoelectrode of dye-sensitized solar cells (DSSCs) were grown via a sonochemical method, and the heat-treatment effects on the dye adsorption in the DSSCs were studied. The heat treatment of well-aligned ZnO nanorods was performed at 200 ∼ 500 .deg. C for 1 h, which was immediately followed by the dye adsorption. The dye amounts adsorbed in the ZnO nanorods were estimated from the UV-Vis absorbance by using Beer-Lambert's law. The efficiency of the DSSCs with ZnO nanorods was measured to investigate the heat-treatment effects of ZnO nanorods on the dye adsorption properties. The heat-treatment of ZnO nanorods was found to yield a change in their dye adsorption ability, resulting in a change in the efficiency of the DSSCs.

  8. Effects of heat treatment on the dye adsorption of ZnO nanorods for dye-sensitized solar cells

    Science.gov (United States)

    Yun, Won Suk; Choi, Seok Cheol; Sohn, Sang Ho; Oh, Sang Jin

    2012-11-01

    Well-aligned ZnO nanorods for the photoelectrode of dye-sensitized solar cells (DSSCs) were grown via a sonochemical method, and the heat-treatment effects on the dye adsorption in the DSSCs were studied. The heat treatment of well-aligned ZnO nanorods was performed at 200 ˜ 500 °C for 1 h, which was immediately followed by the dye adsorption. The dye amounts adsorbed in the ZnO nanorods were estimated from the UV-Vis absorbance by using Beer-Lambert's law. The efficiency of the DSSCs with ZnO nanorods was measured to investigate the heat-treatment effects of ZnO nanorods on the dye adsorption properties. The heat-treatment of ZnO nanorods was found to yield a change in their dye adsorption ability, resulting in a change in the efficiency of the DSSCs.

  9. Effect of Heat Treatment Parameters on the Toughness of Unalloyed Ausferritic Ductile Iron

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2016-06-01

    Full Text Available Studies were carried out to determine the effect of heat treatment parameters on the plastic properties of unalloyed ausferritic ductile iron, such as the elongation and toughness at ambient temperature and at – 60 °C. The effect of austenitizing temperature (850, 900 and 950°C and ausferritizing time (5 - 180 min. at a temperature of 360°C was also discussed. The next step covered investigations of a relationship that is believed to exist between the temperature (270, 300, 330, 360 and 390 °C and time (5, 10, 30, 60, 90, 120, 150, 180, 240 min. of the austempering treatment and the mechanical properties of unalloyed ausferritic ductile iron, when the austenitizing temperature is 950°C. The “process window” was calculated for the ADI characterized by high toughness corresponding to the EN-GJS-800-10-RT and EN-GJS-900-8 grades according to EN-PN 1564 and to other high-strength grades included in this standard. Low-alloyed cast iron with the nodular graphite is an excellent starting material for the technological design of all the ausferritic ductile iron grades included in the PN-EN-1624 standard. The examined cast iron is characterized by high mechanical properties stable within the entire range of heat treatment parameters.

  10. Influence of heat treatment on antioxidant capacity and (poly)phenolic compounds of selected vegetables.

    Science.gov (United States)

    Juániz, Isabel; Ludwig, Iziar A; Huarte, Estibaliz; Pereira-Caro, Gema; Moreno-Rojas, Jose Manuel; Cid, Concepción; De Peña, María-Paz

    2016-04-15

    The impact of cooking heat treatments (frying in olive oil, frying in sunflower oil and griddled) on the antioxidant capacity and (poly)phenolic compounds of onion, green pepper and cardoon, was evaluated. The main compounds were quercetin and isorhamnetin derivates in onion, quercetin and luteolin derivates in green pepper samples, and chlorogenic acids in cardoon. All heat treatments tended to increase the concentration of phenolic compounds in vegetables suggesting a thermal destruction of cell walls and sub cellular compartments during the cooking process that favor the release of these compounds. This increase, specially that observed for chlorogenic acids, was significantly correlated with an increase in the antioxidant capacity measured by DPPH (r=0.70). Griddled vegetables, because of the higher temperature applied during treatment in comparison with frying processes, showed the highest amounts of phenolic compounds with increments of 57.35%, 25.55% and 203.06% compared to raw onion, pepper and cardoon, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Enhancing the mechanical properties of electrospun polyester mats by heat treatment

    Directory of Open Access Journals (Sweden)

    M. Kancheva

    2015-01-01

    Full Text Available Microfibrous materials with a targeted design based on poly(L-lactic acid (PLA and poly(ε-caprolactone (PCL were prepared by electrospinning and by combining electrospinning and electrospraying. Several approaches were used: (i electrospinning of a common solution of the two polymers, (ii simultaneous electrospinning of two separate solutions of PLA and PCL, (iii electrospinning of PLA solution in conjunction with electrospraying of PCL solution, and (iv alternating layer-by-layer deposition by electrospinning of separate PLA and PCL solutions. The mats were heated at the melting temperature of PCL (60°", thus achieving melting of PCL fibers/particles and thermal sealing of the fibers. The mats subjected to thermal treatment were characterized by greater mean fiber diameters and reduced values of the water contact angle compared to the pristine mats. Heat treatment of the mats affected their thermal stability and led to an increase in the crystallinity degree of PLA incorporated in the mats, whereas that of PCL was reduced. All mats were characterized by enhanced mechanical properties after thermal treatment as compared to the non-treated fibrous materials.

  12. The Effect of Heat Treatment on Physical, Chemical and Structural Properties of Calcium Sulfate Based Scaffolds

    Directory of Open Access Journals (Sweden)

    Hakan OFLAZ

    2017-03-01

    Full Text Available 3D printed calcium sulfate (CS is a promising material for on custom bone substitutes. Since it dissolves easily in body fluids, manufactured samples require to being improved to reduce solubility.  The main aim of this study was reducing the dissolubility of CS based samples by using sintering and investigating the effect of heat treatment on their physical, chemical and structural properties. To observe the effect of heat treatment on samples, contact angles were measured, X-Ray diffraction analysis (XRD was performed, and scanning electron microscope (SEM micrographs were captured before and after the sintering process, and the results were compared. Furthermore, sintered and non-sintered samples were soaked in phosphate buffered saline (PBS to observe the impact of sintering on the solubility of the material. Also, three different pore sized scaffolds were manufactured to test the limits of the 3D printer for manufacturing of scaffolds with open pores. Sintering process results in a volume reduction and according to SEM results, CS grains were fused together after heat treatment. Although non-sintered CS sample starts to dissolve in high rate and nearly 1/3 of the sample was at the bottom of the glass in a matter of minutes, sintering creates more rigid structure and there were not visible dissolution in PBS at the end of a week. The contact angle of samples cannot be measured, so it can be concluded that 3D printed material showed a super-hydrophilic property. XRD diagram suggested that there is not any new phase created in the printing and sintering processes except related hydrates of CS. As a result of the 3D printing, 500 µm, 750 µm and 1000 µm pore sized scaffolds were manufactured, successfully. However, it was seen that 500 µm pores could not be open by using depowdering after the printing process.

  13. Determination of optimum heat treatment conditions for hardness criterion of multicomponent steel based on fuzzy mathematical simulation

    Directory of Open Access Journals (Sweden)

    Александр Алексеевич Радченко

    2016-06-01

    Full Text Available The mathematical simulation of high-strength cast steel grade alloyed with manganese, nickel, chromium and molybdenum, and heat treatment conditions on the steel hardness are done. The model is developed on the basis of orthogonal experimental design, in which the input variables are considered as fuzzy numbers. The optimal heat treatment conditions for steels 25ГНХМЛ, 35ГНХМЛ, 40ГНХМЛ are determined

  14. Effect of heat treatment on microstructures and mechanical behavior of porous Sr-Ca-P coatings on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Yuan Kuo [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer We used an efficient technique to coat porous Sr-Ca-P coatings on titanium. Black-Right-Pointing-Pointer The heat treatment method accelerates mechanical properties and crystallinity of the coatings. Black-Right-Pointing-Pointer After heat treatment at various temperatures, all specimens show the same morphologies. Black-Right-Pointing-Pointer Adhesion strength between the coating and the substrate increases with increasing heat treatment temperature. Black-Right-Pointing-Pointer The heat treatment is beneficial method for improving coatings adhesion in medical applications. - Abstract: Titanium and its alloys are widely used in dental and orthopedic fields due to their excellent chemical stability. The micro-arc oxidation (MAO) technique is an effective method for coating strontium, calcium, and phosphorus onto titanium. In clinical application, the adhesion between the coating and the substrate is important factor for dental implants and artificial joint prosthesis. The present study investigates the effects of heat treatment on the properties of MAO coatings. The physicochemical characteristics are investigated using scanning electron microscopy (SEM) observation, thin film X-ray diffraction (TF-XRD) analysis, and the scratch test. After heat treatment, the TF-XRD results indicate that the tricalcium phosphate phase appears at a temperature of 800 Degree-Sign C. SEM results show that the surface morphology does not change. The scratch test results reveal that the adhesion strength between the coatings and the substrate increases with increasing heat treatment temperature. Consequently, all findings in this study indicated that MAO coatings with heat treatment have good mechanical properties for clinical applications.

  15. Statement on a heat treatment to control Agrilus planipennis

    DEFF Research Database (Denmark)

    Baker, R.; Candresse, T.; Dormannsné Simon, E.

    2012-01-01

    the publication of this scientific opinion, the US Authorities submitted a new proposal to the European Commission, consisting in a new heat treatment (71.1 °C/60 min). The EFSA Panel on Plant Health was asked to consider whether this new proposal was within the scope of the published opinion and, if not...... lists the information required in the checklist presented in the Panel’s draft guidance document on methodology for evaluation of the effectiveness of options to reduce the risk of introduction and spread of organisms harmful to plant health in the EU territory, currently under public consultation...

  16. The influence of heat treatment by annealing on clad plates residual stresses

    Directory of Open Access Journals (Sweden)

    B. Mateša

    2011-10-01

    Full Text Available The influence of applied clad procedure as well as heat treatment by annealing (650 °C/2h on level and nature of residual stresses was researched. Three clad procedures are used i.e. hot rolling, submerged arc welding (SAW with strip electrode and explosion welding. The relaxed deformation measurement on clad plate surfaces was performed by applying centre-hole drilling method using special measuring electrical resistance strain gauges (rosettes. After performed measuring, size and nature of residual stresses were determined using analytical method. Depending of residual stresses on depth of drilled blind-hole is studied.

  17. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  18. Effects of heat treatment on properties of multi-element low alloy wear-resistant steel

    Directory of Open Access Journals (Sweden)

    SONG Xu-ding

    2007-02-01

    Full Text Available The paper has studied the mechanical properties and heat treatment effects on multi-element low alloy wear-resistant steel (MLAWS used as a material for the liner of rolling mill torii. The results show that when quenched at 900-920℃ and tempered at 350-370℃, the MLAWS has achieved hardness above 60 HRC, tensile strength greater than 1 600 MPa, impact toughness higher than 18J/cm2 and fracture toughness greater than 37 MPa

  19. Tribological Examination of Different Steel Materials after Special Heat Treatment and Salt Bath Nitriding

    Directory of Open Access Journals (Sweden)

    Opaliński M.

    2016-12-01

    Full Text Available The main aim of the presented research was examination of new tribological pairs made of different types of steel. Materials of disc probes were submitted to unusual heat treatment processes and salt bath nitriding. The research is focused on the friction coefficients and mass losses of the material probes. Based on the results it was noticed that the best wear resistant pair was bearing steel 100Cr6 coupled with high speed steel S705. The lowest friction coefficient appeared for the pair bearing steel 100Cr6 and maraging steel C350.

  20. MICROSTRUCTURAL AND MECHANICAL STUDY OF ALUMINIUM ALLOYS SUBMITTED TO DISTINCT SOAKING TIMES DURING SOLUTION HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    Valmir Martins Monteiro

    2014-12-01

    Full Text Available This work studies the microstructural characteristics and mechanical properties for different aluminium alloys (1100, 3104 and 8011 hot rolled sheets that were subjected to a solution heat treatment with distinct soaking times, in order to promote microstructural and mechanical changes on these alloys with solute fractions slightly above the maximum solubility limit. Scanning Electronic Microscopy (SEM / Energy Dispersive Spectroscopy X-Ray (EDS, X-Ray Diffraction (XRD and Hardness Tests were employed to observe the microstructural / compositional and mechanical evaluation. For the 1100 and 8011 alloys the more suitable soaking time occur between 1 and 2 hours, and for the 3104 alloy occurs between 2 and 3 hours.

  1. The structural properties of barium cobalt hexaferrite powder prepared by a simple heat treatment method

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Chetna, E-mail: chetna.chauhan@nirmauni.ac.in [Electrical Engineering Department, Institute of Technology, Nirma University, Ahmedabad-382 481. Gujarat. India (India); Jotania, Rajshree, E-mail: rbjotania@gmail.com [Department of Physics, University School of Sciences, Gujarat University, Ahmeabad – 380009. Gujarat. India (India)

    2016-05-06

    The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carried out by SEM analysis.

  2. Influence of preparation conditions and heat treatment on the properties of supercooled smectic cholesteryl myristate nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Bunjes, H

    2007-01-01

    with a phospholipid/bile salt blend were evaluated. For effective particle size reduction homogenization with high pressure and at temperatures above the melting temperature of the cholesterol ester (isotropic melt) is necessary. Homogenization at lower temperature where the matrix lipid is in the smectic state...... stability of cholesteryl myristate nanoparticles stabilized with different surface active agents during heat treatment was investigated as well. The dispersions were characterized by particle size and zeta potential measurements, differential scanning calorimetry (DSC) and high performance thin layer...

  3. The structural properties of barium cobalt hexaferrite powder prepared by a simple heat treatment method

    Science.gov (United States)

    Chauhan, Chetna; Jotania, Rajshree

    2016-05-01

    The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carried out by SEM analysis.

  4. Influence of the heat treatment on the color of ground pepper (Capsicum annuum

    Directory of Open Access Journals (Sweden)

    Vračar Ljubo O.

    2007-01-01

    Full Text Available Red pepper (Capsicum annuum L. is one of the most important vegetables in the world. The main ground pepper quality attributes are extractable color, surface color, qualitative and quantitative carotenoid content. In this work, the influence of heat treatment on ground pepper quality was investigated. Microbiological status was examined in non-sterilized and sterilized ground pepper. Color changes were assessed by measuring the extractable color (ASTA and surface color, using a photocolorimeter. The obtained results showed that at the end of experiment, non-sterilized samples had higher color values in comparison to the sterilized ones. Also, color deterioration was heightened at room temperature.

  5. Effect of heat treatment to sweet potato flour on dough properties and characteristics of sweet potato-wheat bread.

    Science.gov (United States)

    Pérez, Isela Carballo; Mu, Tai-Hua; Zhang, Miao; Ji, Lei-Lei

    2017-12-01

    The effect of heat treatment at 90, 100, 110 and 120 ℃ for 20 min to sweet potato flour on dough properties and characteristics of sweet potato-wheat bread was investigated. The lightness (L*) and a* of sweet potato flour samples after heat treatment were increased, while the b* were decreased significantly, as well as the particle size, volume and area mean diameter ( p sweet potato flour was observed, where the number of irregular granules increased as the temperature increased from 90 to 120 ℃. Compared with sweet potato flour samples without heat treatment and with heat treatment at 90, 100 and 120 ℃, the gelatinization temperature and enthalpy change of sweet potato flour at 110 ℃ were the lowest, which were 77.94 ℃ and 3.67 J/g, respectively ( p sweet potato flour increased significantly from 1199 ml without heat treatment to 1214 ml at 90 ℃ ( p sweet potato-wheat bread with sweet potato flour after heat treatment increased significantly, which was the largest at 90 ℃ (2.53 cm 3 /g) ( p sweet potato flour could be potentially used in wheat bread production.

  6. Effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of Beech (Fagus orientalis

    Directory of Open Access Journals (Sweden)

    مریم قربانی

    2015-05-01

    Full Text Available This research was conducted to determine the effect of heat-treatment with raw cotton seed oil on decay resistance and dimensional stability of beech according to EN113 and ASTM-D1037 standards respectively. The heat treatment with raw cotton seed oil was carried out in the cylinder at the temperatures of 130 and 170oC for 30 and 60 minutes. Oil uptake, density, volumetric swelling, water absorption and weight loss exposed to decay were measured. Oil uptake at 30 and 60 min were determined 10.5 and 13.3 Kg/cm3 respectively. Oil-heat treated samples at 30min and 130°C indicated the maximum density with 87.7% increase. According to results, oil-heat treatment improved water repellency and dimensional stability. Water absorption in 130°C and 60 minutes decreased 76% in comparison with control. Decay resistance of oil soaked samples for 60minutes was 80.2% more than control samples. Oil-heat treatment compared with oil treatment improved decay resistance, this effect was significant at 30 min. The temperature rise of oil–heat treatment at 30 minutes improved decay resistance, but the improvement under same level of temperature with increase time was not significant.

  7. Effects of heat-moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: moisture and length of heating.

    Science.gov (United States)

    Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong

    2015-04-15

    Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Alkmim, Danielle Gomides; Almeida, Frederico Ozanan Tomaz de; Lameiras, Fernando Soares, E-mail: alkmia@yahoo.com.br, E-mail: fredufmg@gmail.com, E-mail: fsl@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-15

    Beryl, Be{sub 3}Al{sub 2}(SiO{sub 3}){sub 6}, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR) can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm{sup -1} may be related to the position of Na{sup +} ion in the crystal lattice of beryl. (author)

  9. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    Directory of Open Access Journals (Sweden)

    Danielle Gomides Alkmim

    Full Text Available Abstract Beryl, Be3Al2(SiO36, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm-1 may be related to the position of Na+ ion in the crystal lattice of beryl.

  10. Rapid heat treatment for anatase conversion of titania nanotube orthopedic surfaces

    Science.gov (United States)

    Bhosle, Sachin M.; Friedrich, Craig R.

    2017-10-01

    The amorphous to anatase transformation of anodized nanotubular titania surfaces has been studied by x-ray diffraction and transmission electron microscopy (TEM). A more rapid heat treatment for conversion of amorphous to crystalline anatase favorable for orthopedic implant applications was demonstrated. Nanotube titania surfaces were fabricated by electrochemical anodization of Ti6Al4V in an electrolyte containing 0.2 wt% NH4F, 60% ethylene glycol and 40% deionized water. The resulting surfaces were systematically heat treated in air with isochronal and isothermal experiments to study the temperature and time dependent transformation respectively. Energy dispersive spectroscopy shows that the anatase phase transformation of TiO2 in the as-anodized amorphous nanotube layer can be achieved in as little as 5 min at 350 °C in contrast to reports of higher temperature and much longer time. Crystallinity analysis at different temperatures and times yield transformation rate coefficients and activation energy for crystalline anatase coalescence. TEM confirms the (101) TiO2 presence within the nanotubes. These results confirm that for applications where amorphous titania nanotube surfaces are converted to crystalline anatase, a 5 min production flow-through heating process could be used instead of a 3 h batch process, reducing time, cost, and complexity.

  11. Effects of Induction Heat Bending and Heat Treatment on the Boric Acid Corrosion of Low Alloy Steel Pipe for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Tae; Kim, Young-Sik [Andong National University, Gyeongbuk (Korea, Republic of); Chang, Hyun-Young; Park, Heung-Bae [KEPCO EandC, Gyeongbuk (Korea, Republic of); Sung, Gi-Ho; Shin, Min-Chul [Sungil SIM Co. Ltd, Busan (Korea, Republic of)

    2016-11-15

    In many plants, including nuclear power plants, pipelines are composed of numerous fittings such as elbows. When plants use these fittings, welding points need to be increased, and the number of inspections also then increases. As an alternative to welding, the pipe bending process forms bent pipe by applying strain at low or high temperatures. This work investigates how heat treatment affects on the boric acid corrosion of ASME SA335 Gr. P22 caused by the induction heat bending process. Microstructure analysis and immersion corrosion tests were performed. It was shown that every area of the induction heat bent pipe exhibited a high corrosion rate in the boric acid corrosion test. This behavior was due to the enrichment of phosphorous in the ferrite phase, which occurred during the induction heat bending process. This caused the ferrite phase to act as a corrosion initiation site. However, when re-heat treatment was applied after the bending process, it enhanced corrosion resistance. It was proved that this resistance was closely related to the degree of the phosphorus segregation in the ferrite phase.

  12. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment.

    Science.gov (United States)

    Fujita, Toyohisa; Ono, Hiroyuki; Dodbiba, Gjergj; Yamaguchi, Kunihiko

    2014-07-01

    Printed circuit boards (PCBs) from discarded personal computer (PC) and hard disk drive were crushed by explosion in water or mechanical comminution in order to disintegrate the attached parts. More parts were stripped from PCB of PC, composed of epoxy resin; than from PCB of household appliance, composed of phenol resin. In an attempt to raise the copper grade of PCB by removing other components, a carbonization treatment was investigated. The crushed PCB without surface-mounted parts was carbonized under a nitrogen atmosphere at 873-1073 K. After screening, the char was classified by size into oversized pieces, undersized pieces and powder. The copper foil and glass fiber pieces were liberated and collected in undersized fraction. The copper foil was liberated easily from glass fiber by stamping treatment. As one of the mounted parts, the multi-layered ceramic capacitors (MLCCs), which contain nickel, were carbonized at 873 K. The magnetic separation is carried out at a lower magnetic field strength of 0.1T and then at 0.8 T. In the +0.5mm size fraction the nickel grade in magnetic product was increased from 0.16% to 6.7% and the nickel recovery is 74%. The other useful mounted parts are tantalum capacitors. The tantalum capacitors were collected from mounted parts. The tantalum-sintered bodies were separated from molded resins by heat treatment at 723-773 K in air atmosphere and screening of 0.5mm. Silica was removed and 70% of tantalum grade was obtained after more than 823K heating and separation. Next, the evaluation of Cu recycling in PCB is estimated. Energy consumption of new process increased and the treatment cost becomes 3 times higher comparing the conventional process, while the environmental burden of new process decreased comparing conventional process. The nickel recovery process in fine ground particles increased energy and energy cost comparing those of the conventional process. However, the environmental burden decreased than the conventional

  13. Effect of Heat Treatment on the Mechanical Properties and Microstructure of a API 5CT J55 Pipeline Steel

    Directory of Open Access Journals (Sweden)

    Soria-Aguilar Ma. de Jesús

    2015-09-01

    Full Text Available The effects of two different post-weld heat treatment cycles on the microstructure and mechanical properties of welded API 5CT J55 steels were investigated in the present work. Experiments were carried out based on a Taguchi experimental design. Ortogonal arrays (L9 of Taguchi and statistical analysis of variance (ANOVA were employed to determine the impact of the heat treatment parameters on the microstructure and mechanical properties of experimental steel. From the results of ANOVA, there were obtained the empirical equations for optimizing the heat treating conditions that lead to the best mechanical properties.

  14. Produksi Benih Cabai Rawit (Capsicum frutescens L.) Bebas TMV(Tobacco mosaic virus) Melalui Dry Heat Treatment

    OpenAIRE

    I KETUT SIADI; I GUSTI NGURAH RAKA; I GUSTI NGURAH WISNU PURWADI

    2013-01-01

    The study was done in Denpasar, Bali under greenhouse condition as well as in the field. The objective of the research is to know the effectiveness of dry heat treatment to inactivate TMV which was contaminated chili pepper seeds, and to improves the seeds quality. The seeds which were dry heated under 40ºC for 24 hours and hereinafter 70ºC for 72 hours showed to have no different viability with those of non treated seeds. These indicated that dry heat treatment does not affect to germination...

  15. Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk-Jin [Hi-Sten Co., Ltd., Gimhae (Korea, Republic of); Lim, Su Gun [Gyeongsang National University, Jinju (Korea, Republic of); Pak, S. J. [Gachon BioNano Research Institute, Gachon University, Sungnam (Korea, Republic of)

    2015-04-15

    Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of 34 .deg. C and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at 1120 °C and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at 34 °C nitric acid solution.

  16. Analysis of Brown camera distortion model

    Science.gov (United States)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  17. Investigation on the optimized heat treatment procedure for laser fabricated IN718 alloy

    Science.gov (United States)

    Zhang, Yaocheng; Yang, Li; Chen, Tingyi; Zhang, Weihui; Huang, Xiwang; Dai, Jun

    2017-12-01

    The laser fabricated IN718 alloys were prepared by laser cladding system. The microstructure and microhardness of laser fabricated IN718 alloys were investigated after heat treatment. The microstructure and the elevated temperature mechanical properties of laser fabricated IN718 alloys were analyzed. The results showed that the microstructure of laser fabricated IN718 alloy consisted of austenitic matrix and dendritic Laves/γ eutectic. Most all Laves/γ eutectic was dissolved into austenitic matrix, and the complete recrystallization and the large grains occurred in the laser fabricated IN718 alloy after homogenization at 1080-1140 °C for 1 h, the dendritic Laves/γ eutectic was refined and the partial recrystallization occurred during the solid solution at 940-1000 °C for 1.5 h, the microhardness of the double aging (DA) alloys was about more than twice that of as-fabricated IN718 alloy. The recrystallized microstructure was obtained in the heat-treated laser fabricated IN718 alloy after 1100 °C/1 h air cooling (AC), 980 °C/1.5 h (AC), 700 °C/8 h furnace cooling (FC, 100 °C/h) to 600 °C/8 h (AC). The microhardness and the elevated temperature tensile strength were more than twice that of as-fabricated IN718 alloy due to a large concentration of γ″ phase precipitation to improve the transgranular strength and large grain to guarantee the grain boundary strength. The fracture morphologies of as-fabricated and heat-treated laser fabricated IN718 alloys were presented as the fiber dimples, the fracture mechanism of as-fabricated and heat-treated laser fabricated IN718 alloys was ductile fracture.

  18. Heat inactivation of wine spoilage yeast Dekkera bruxellensis by hot water treatment.

    Science.gov (United States)

    Fabrizio, V; Vigentini, I; Parisi, N; Picozzi, C; Compagno, C; Foschino, R

    2015-08-01

    Cell suspensions of four Dekkera bruxellensis strains (CBS 2499, CBS 2797, CBS 4459 and CBS 4601) were subjected to heat treatment in deionized water at four different temperatures (55·0, 57·5, 60·0 and 62·5°C) to investigate their thermal resistance. The decimal reduction times at a specific temperature were calculated from the resulting inactivation curves: the D-values at 55·0°C ranged from 63 to 79·4 s, at 57·5°C from 39·6 to 46·1 s, at 60·0°C from 19·5 to 20·7 s, at 62·5°C from 10·2 to 13·7 s. The z-values were between 9·2 and 10·2°C, confirming that heat resistance is a strain-dependent character. A protocol for the sanitization of 225 l casks by immersion in hot water was set up and applied to contaminated 3-year-old barrels. The heat penetration through the staves was evaluated for each investigated temperature by positioning a thermal probe at 8 mm deep. A treatment at 60°C for an exposure time of 19 min allowed to eliminate the yeast populations up to a log count reduction of 8. Brettanomyces/Dekkera bruxellensis is the main yeast involved in red wine spoilage that occurs during ageing in barrel, generating considerable economic losses. Current sanitization protocols, performed using different chemicals, are ineffective due to the porous nature of the wood. The thermal inactivation of D. bruxellensis cells by hot water treatment proves to be efficacious and easy to perform, provided that the holding time at the killing temperature takes into account the filling time of the vessel and the time for the heat penetration into the wood structure. © 2015 The Society for Applied Microbiology.

  19. Effect of heat treatment on an AISI 304 austenitic stainless steel evaluated by the ultrasonic attenuation coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Moghanizadeh, Abbas; Farzi, Abolfazl [Islamic Azad Univ., Esfarayen (Iran, Islamic Republic of). Dept. of Civil Engineering

    2016-07-01

    The properties of metals can be substantially changed by various methods, one of them is using heat treatment processes. Moreover, ultrasonic testing is the most preferred and effective, nondestructive testing technique for characterization of mechanical material properties. Austenitic stainless steel AISI 304 serves in many applications due to high strength and corrosion resistance. In certain applications, it is important to evaluate the mechanical properties of AISI 304 stainless steel. In this study, the ultrasonic method (attenuation measurement technique) is used to evaluate the hardness of AISI 304 stainless steel samples which were heat treated at different levels. Due to the heat treatment process, each sample has its specific microstructure and hardness which attenuate ultrasonic waves appropriately. The ultrasonic and hardness test show that it is possible to evaluate the hardness of AISI 304 stainless steel by ultrasonic attenuation coefficient. In addition, the relationship between ultrasonic attenuation coefficients and time of heat treatment is investigated.

  20. Effect of heat treatments on stability of altemariol, alternariol monomethyl ether and tenuazonic acid in sunflower flour.

    Science.gov (United States)

    Combina, M; Dalcero, A; Varsavsky, E; Torres, A; Etcheverry, M; Rodriguez, M; Gonzalez, Q H

    1999-03-01

    A study was carried out to evaluate the effect of heat treatment on the stability of alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TeA) in sunflower flour and the effectiveness of this treatment by a biological assay in rats. The concentrations of AOH and AME remained constant during heating at 100°C for up to 90 minutes while TeA concentration decreased with time to 50% after 90 minutes. The most effective treatment in reducing AOH and AME levels was heating at 121°C for 60 minutes. Histopathological evaluation in the biological assay in rats fed withAlternaria toxins showed marked atrophy and fusion of villi in the intestines and liver cell damage; these lesions were less severe in rats fed heat-treated sunflower flour in line with the reduced toxin content. However, a lower weight gain and a noticeable renal damage in rats were produced when they fed decontaminated flour.

  1. Effects of heat treatments on the transport properties of Cu/sub x/S thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hmurcik, L.; Allen, L.; Serway, R.A.

    1982-12-01

    We have studied the effects of heat treatments on three Cu/sub x/S thin films (1.995< or =x< or =2). Our results suggest that initial heat treatments cause copper in grain boundaries to diffuse irreversibly into the Cu/sub x/S crystallites. Subsequent heating in hydrogen causes a reduction in surface oxides while the reverse process occurs in an oxygen atmosphere. At a given elevated temperature, the resistivity rho and charge density P vary with time according to the expressions P = P/sub 0/e/sup( plus-or-minust//tau)/sup 1/2/ and rho = rho/sub 0/e/sup( minus-or-plust//tau)/sup 1/2/ . On the other hand, the mobility is found to be approximately constant at a given temperature during heat treatment.

  2. Enhancement of native and phosphorylated TDP-43 immunoreactivity by proteinase K treatment following autoclave heating.

    Science.gov (United States)

    Mori, Fumiaki; Tanji, Kunikazu; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2011-08-01

    TDP-43 is a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). To evaluate the effectiveness of proteinase K (PK) treatment in antigen retrieval for native and phosphorylated TDP-43 protein, we examined the temporal cortex and spinal cord from patients with sporadic ALS and FTLD-TDP and control subjects. PK treatment following heat retrieval enhanced the immunoreactivity for native TDP-43 in controls as well as for native and phosphorylated TDP-43 in ALS and FTLD-TDP. A significant number of TDP-43-positive neuropil threads were demonstrated in lesions, in which routine immunohistochemistry revealed that the predominant inclusions are cytoplasmic. This retrieval method is the best of immunohistochemical techniques for demonstrating TDP-43 pathology, especially in the neuropil. © 2010 Japanese Society of Neuropathology.

  3. Effect of heat treatment on corrosion behavior of duplex stainless steel in orthodontic applications

    Science.gov (United States)

    Sabea Hammood, Ali; Faraj Noor, Ahmed; Talib Alkhafagy, Mohammed

    2017-12-01

    Heat treatment is necessary for duplex stainless steel (DSS) to remove or dissolve intermetallic phases, to remove segregation and to relieve any residual thermal stress in DSS, which may be formed during production processes. In the present study, the corrosion resistance of a DSS in artificial saliva was studied by potentiodynamic measurements. The microstructure was investigated by scanning electron microscopy (SEM),x-ray diffraction (XRD) and Vickers hardness (HV). The properties were tested in as–received and in thermally treated conditions (800–900 °C, 2–8 min). The research aims to evaluate the capability of DSS for orthodontic applications, in order to substitute the austenitic grades. The results indicate that the corrosion resistance is mainly affected by the ferrite/austenite ratio. The best result was obtained with a treatment at 900 °C for 2 min.

  4. Induction of systemic acquired resistance by heat shock treatment in Arabidopsis.

    Science.gov (United States)

    Kusajima, Miyuki; Kwon, Soonil; Nakajima, Masami; Sato, Tatsuo; Yamakawa, Takashi; Akutsu, Katsumi; Nakashita, Hideo

    2012-01-01

    Systemic acquired resistance (SAR) is a potent innate immunity system in plants and has been used in rice fields. Development of SAR, involving priming, is achieved by activation of salicylic acid (SA)-mediated pathway. To determine whether heat shock (HS) treatment can induce SAR, we analyzed the effects of HS on Arabidopsis. HS treatment induced disease resistance, expression of SAR marker genes, and SA accumulation in wild-type but not in SA-deficient sid2 and NahG plants, indicating induction of SAR. Time course analysis of the effects of HS indicated that SAR was activated transiently, differently from biological induction, with a peak at 2-3 d after HS, and that it ceased in several days. Production of reactive oxygen species was observed before SA biosynthesis, which might be a trigger for SAR activation. The data presented here suggest that HS can induce SAR, but there exist unknown regulation mechanisms for the maintenance of SAR.

  5. Effect of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins.

    Science.gov (United States)

    Jorge, Janaina Habib; Giampaolo, Eunice Teresinha; Vergani, Carlos Eduardo; Machado, Ana Lúcia; Pavarina, Ana Cláudia; Carlos, Iracilda Zeppone

    2006-06-01

    Most denture base acrylic resins have polymethylmethacrylate in their composition. Several authors have discussed the polymerization process involved in converting monomer into polymer because adequate polymerization is a crucial factor in optimizing the physical properties and biocompatibility of denture base acrylic resins. To ensure the safety of these materials, in vitro cytotoxicity assays have been developed as preliminary screening tests to evaluate material biocompatibility. (3)H-thymidine incorporation test, which measures the number of cells synthesizing DNA, is one of the biological assays suggested for cytotoxicity testing. The purpose of this study was to investigate, using (3)H-thymidine incorporation test, the effect of microwave and water-bath post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins. Nine disc-shaped specimens (10 x 1 mm) of each denture base resin (Lucitone 550 and QC 20) were prepared according to the manufacturers' recommendations and stored in distilled water at 37 degrees C for 48 h. The specimens were assigned to 3 groups: 1) post-polymerization in a microwave oven for 3 min at 500 W; 2) post-polymerization in water-bath at 55 degrees C for 60 min; and 3) without post-polymerization. For preparation of eluates, 3 discs were placed into a sterile glass vial with 9 mL of Eagle's medium and incubated at 37 degrees C for 24 h. The cytotoxic effect of the eluates was evaluated by (3)H-thymidine incorporation. The results showed that the components leached from the resins were cytotoxic to L929 cells, except for the specimens heat treated in water bath (pmicrowave post-polymerization heat treatment.

  6. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  7. Properties enhancement of Al-Zn-Mg alloy by retrogression and re-aging heat treatment

    Directory of Open Access Journals (Sweden)

    Zaid H.R.

    2011-01-01

    Full Text Available The higher strength 7xxx aluminum alloys exhibited low resistance to stress corrosion cracking (SCC when aged to the peak hardness (T6 temper. The overaged alloys (T7 temper developed to enhance the SCC with loss in the strength of the alloy. Recently, retrogression and re-aging (RRA heat treatments are used for improving the SCC behavior for alloys in T6 tempers such as 7075, 7475 and 8090. In this study, an application of retrogression and re-aging heat treatment processes are carried out to enhance toughness properties of the 7079-T651 aluminum alloy, while maintaining the higher strength of T651-temper. The results of charpy impact energy and electrical conductivity tests show a significantly increases in absorbed energy and electrical conductivity values, when the alloys are exposed to various retrogression temperatures (190, 200, 210°C and times (20, 40, 60 minutes, and then re-aged at 160°C for 18 hours.

  8. Effect of heat treatment on structure and properties of multilayer Zn-Ni alloy coatings

    Directory of Open Access Journals (Sweden)

    VAISHAKA R. RAO

    2013-11-01

    Full Text Available Composition modulated multilayer alloy (CMMA coatings of Zn-Ni were electrodeposited galvanostatically on mild steel (MS for enhanced corrosion protection using single bath technique. Successive layers of Zn-Ni alloys, having alternately different composition were obtained in nanometer scale by making the cathode current to cycle between two values, called cyclic cathode current densities (CCCD’s. The coatings configuration, in terms of compositions and thicknesses were optimized, and their corrosion performances were evaluated in 5 % NaCl by electrochemical methods. The corrosion rates (CR’s of multilayer alloy coatings were found to decrease drastically (35 times with increase in number of layers (only up to 300 layers, compared to monolayer alloy deposited from the same bath. Surface study was carried with SEM, while XRD was used to determine metal lattice parameters, texture and phase composition of the coatings. The effect of heat treatment on surface morphology, thickness, hardness and corrosion behaviour of multilayer Zn-Ni alloy coatings were studied. The significant structural modification due to heat treatment is not accompanied by any decrease in corrosion rate. This effect is related to the formation of a less disordered lattice for multilayer Zn-Ni alloy coatings.

  9. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    Science.gov (United States)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  10. TO SELECTION OF TECHNOLOGICAL SCHEME OF SOFTENING HEAT TREATMENT FOR HIGH CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. G. Efremenko

    2014-03-01

    Full Text Available Purpose. High chromium cast irons with austenitic matrix have low machinability. The aim of work is search of new energy-saving modes of preliminary softening heat treatment enhancing the machinability of castings by forming an optimum microstructure. Methodology. Metallographic analysis, hardness testing and machinability testing are applied. Findings. It was found out that high temperature annealing with continuous cooling yields to martensite-austenite matrix in cast iron 270Х15Г2Н1MPhT, which abruptly affects the machinability of cast iron. Significant improvement of machinability is achieved by forming of structure "ferrite + granular carbides" and by decline of hardness to 37-39 HRC in the case of two-stage isothermal annealing in the subcritical temperature range or by the use of quenching and tempering (two-step or cyclic. Originality. It was found that the formation of the optimal structure of the matrix and achievement of desired hardness level needed for improving machinability of high chromium cast iron containing 3 % austenite-forming elements, can be obtained: 1 due to pearlite original austenite followed by spherodization eutectoid carbides, and 2 by getting predominantly martensite structure followed by the decay of martensite and carbides coagulation at high-temperature tempering. Practical value. The new energy-saving schemes of softening heat treatment to ensure the growth of machinability of high chromium cast iron, alloyed by higher quantity of austenite forming elements, are proposed.

  11. Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI 420

    Science.gov (United States)

    Barlow, L. D.; Du Toit, M.

    2012-07-01

    The effect of austenitizing on the microstructure and hardness of two martensitic stainless steels was examined with the aim of supplying heat-treatment guidelines to the user that will ensure a martensitic structure with minimal retained austenite, evenly dispersed carbides and a hardness of between 610 and 740 HV (Vickers hardness) after quenching and tempering. The steels examined during the course of this examination conform in composition to medium-carbon AISI 420 martensitic stainless steel, except for the addition of 0.13% vanadium and 0.62% molybdenum to one of the alloys. Steel samples were austenitized at temperatures between 1000 and 1200 °C, followed by oil quenching. The as-quenched microstructures were found to range from almost fully martensitic structures to martensite with up to 35% retained austenite after quenching, with varying amounts of carbides. Optical and scanning electron microscopy was used to characterize the microstructures, and X-ray diffraction was employed to identify the carbide present in the as-quenched structures and to quantify the retained austenite contents. Hardness tests were performed to determine the effect of heat treatment on mechanical properties. As-quenched hardness values ranged from 700 to 270 HV, depending on the amount of retained austenite. Thermodynamic predictions (using the CALPHAD™ model) were employed to explain these microstructures based on the solubility of the carbide particles at various austenitizing temperatures.

  12. Effect of heat treatment on the crystal structure of deformed samples of chromium-manganese steel

    Science.gov (United States)

    Chezganov, D. S.; Chikova, O. A.; Borovykh, M. A.

    2017-09-01

    Results of studying microstructures and the crystal structure of samples of 35KhGF steel (0.31-0.38 wt % C, 0.17-0.37 wt % Si, 0.95-1.25 wt % Mn, 1.0-1.3 wt % Cr, 0.06-0.12 wt % V, and the remainder was Fe) have been presented. The samples have been selected from hot-rolled pipes subjected to different heat treatments. A study has been carried out in order to explain the choice of the heat-treatment regime based on determining the structure-properties relationship that provides an increase in the corrosion resistance of pipes to the effect of hydrocarbons. Methods of the energy-dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) have been used. In the microstructure of samples, oxide inclusions and discontinuities with sizes of 1-50 μm that presumably consist of the scale were detected. The ferrite grain size and the orientations of crystals were determined; the data on the local mechanical stresses in the Taylor orientation- factor maps were obtained. The grain refinement; the increase in the fraction of the low-angle boundaries; and the decrease in the local mechanical stresses and, therefore, the highest corrosion resistance to the effect of hydrocarbons is achieved by normalizing at 910°C.

  13. Heat treatment-induced functional and structural aspects of Mus musculus TAp63γ

    Science.gov (United States)

    Xu, Ya; Wang, Jing-Zhang; Li, Jun-Song; Huang, Xin-He; Xing, Zhi-Hua; Du, Lin-Fang

    2011-06-01

    TAp63γ plays as an important tumor suppressor gene protecting from cancer development, especially in p53-deficient cancer cells under stresses. Here, we investigated the effects of heat treatment on the functional and structural stabilities of TAp63γ by means of the electrophoretic mobility shift assay, intrinsic tryptophan fluorescence, exogenous ANS fluorescence, and CD spectroscopies. The electrophoretic mobility shift assay result showed that the DNA binding activity of GST-TAp63γ decreased above 55 °C. The intrinsic fluorescence spectra indicated an increase of the hydrophobicity and a decrease of the polarity in the microenvironments around the tyrosine and tryptophan residues. The ANS fluorescence spectra suggested that the hydrophobic pockets in TAp63γ gradually unfolded below 50 °C. The above results indicated that TAp63γ partially unfolded at 55 °C, while the CD result showed that TAp63γ still processed a pronounced secondary structure at the same temperature, suggesting that heat treatment possibly induced the molten globule state of TAp63γ, which was an intermediate state between the native and denatured protein. Taken together, TAp63γ is a relatively unstable protein, but it has higher activity than p53 at about 50 °C. The presented work also implies that TAp63γ may play an important role in stressed microenvironments especially when p53 is deficient.

  14. Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment

    Directory of Open Access Journals (Sweden)

    Shih-Ching Wu

    2016-03-01

    Full Text Available Every day, several million tons of eggshells are being generated as bio-waste across the world. This study demonstrates the synthesis of HA powder using dicalcium phosphate dehydrate (CaHPO4·2H2O, DCPD and eggshell powders via ball milling and subsequent heat treatment. The formation of HA phase can be initiated by sintering the 1 h milled sample at 1000 °C for 1 h, while pure HA phase can be obtained upon sintering the 10 h milled sample. Additionally, the final products composed of biphasic calcium phosphate (HA + β-TCP crystals can easily be prepared by ball milling for 5 h followed by heat treatment at 1000 °C for 1 h. The carbonate peaks observed in the FTIR analysis of the as-prepared HA closely matched those of A- and B-type carbonates, which is typical of the biological apatite. The elemental composition of the as-synthesized HA showed the presence of Ca, P, Mg, and Sr.

  15. Effects of heat treatment on sound absorption coefficients in nanosilver-impregnated and normal solid woods.

    Science.gov (United States)

    Esmailpour, Ayoub; Taghiyari, Hamid Reza; Zolfaghari, Habib

    2017-06-01

    Effects of impregnation with silver nano-suspension as well as heat-treatment on sound absorption coefficients (AC) were studied in tangential direction of five different solid woods based on their importance. AC was measured at two frequencies of 250 and 500 Hz. A 400 ppm nanosuspension was used for the impregnation; silver nanoparticles had a size range of 30-80 nm. Based on the obtained results, the species reacted significantly different in absorbing sound at the two frequencies. Impregnation with nano-suspension substantially decreased AC at the lower frequency of 250 Hz; it did not show any particular trend when AC was measured at the frequency of 500 Hz. Heat treatment significantly increased AC at the frequency of 250 Hz. ACs of mulberry tended to be similar at the two frequencies; in the other four species though, ACs were significantly different. High significant correlations were found in the hardwoods between the ACs measured at the two frequencies.

  16. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel

    Science.gov (United States)

    Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.

    2017-12-01

    The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.

  17. Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys

    Directory of Open Access Journals (Sweden)

    Xiumin Ma

    2016-01-01

    Full Text Available Corrosion behavior of Mg-5Y-1.5Nd alloy was investigated after heat treatment. The microstructure and precipitation were studied by scanning electron microscope (SEM and energy dispersive spectrometer (EDS. The weight loss rates of different samples were arranged as T6-24 h>T6-6 h>T6-14 h>as-cast>T4. The open circuit potential (OCP showed that T4 sample had a more positive potential than that of other samples. The potentiodynamic polarization curves showed that the T6-24 h sample had the highest corrosion current density of 245.362 μA·cm−2, whereas the T4 sample had the lowest at 52.164 μA·cm−2. The EIS results confirmed that the heat treatment reduced the corrosion resistance for Mg-5Y-1.5Nd alloy, because the precipitations acted as the cathode of electrochemical reactions to accelerate the corrosion process. The corrosion rates of different samples were mainly determined by the amount and distribution of the precipitations. The precipitations played dual roles that depended on the amount and distribution. The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better anticorrosion barrier.

  18. Inactivation of Alicyclobacillus acidoterrestris in orange juice by saponin extracts combined with heat-treatment.

    Science.gov (United States)

    Alberice, Juliana Vieira; Funes-Huacca, Maribel Elizabeth; Guterres, Sheila Barreto; Carrilho, Emanuel

    2012-10-01

    Alicyclobacillus acidoterrestris is a spoilage-causing bacterium in fruit juices. The inactivation of this bacterium by commercial saponin and saponin purified extract from Sapindus saponaria fruits combined with heat-treatment is described. We investigated heat treatment (87, 90, 95, and 99°C) with incubation time ranging from 0 to 50min, in both concentrated and reconstituted juice. Juices were inoculated with 1.0×10(4)CFU/mL of A. acidoterrestris spores for the evaluation of the best temperature for inactivation. For the temperatures of 87, 90, and 95°C counts of cell viability decreased rapidly within the first 10 to 20min of incubation in both concentrated and reconstituted juices; inactivation at 99°C ensued within 1 and 2min. Combination of commercial saponin (100mg/L) with a very short incubation time (1min) at 99°C showed a reduction of 2.34 log cycle for concentrated juice A. acidoterrestris spores (1.0×10(4)CFU/mL) in the first 24h of incubation after treatments. The most efficient treatment was reached with 300, 400 or 500mg/L of purified extract of saponins from S. saponaria after 5days of incubation in concentrated juice, and after 5days with 300 and 400mg/L or 72h with 500mg/L in reconstituted juice. Commercial saponin and purified extracts from S. saponaria had similar inactivation power on A. acidoterrestris spores, without significant differences (P>0.05). Therefore, purified extract of saponins can be an alternative for the control of A. acidoterrestris in fruit juices. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Cognitive distortions among older adult gamblers in an Asian context.

    Science.gov (United States)

    Subramaniam, Mythily; Chong, Siow Ann; Browning, Colette; Thomas, Shane

    2017-01-01

    The study aims to describe the construct of cognitive distortions based on the narratives of older adult gamblers (aged 60 years and above) in Singapore. Singapore residents (citizens or permanent residents) aged 60 years and above, who were current or past regular gamblers were included in the study. Participants were recruited using a combination of venue based approach, referrals from service providers as well as by snowball sampling. In all, 25 in-depth interviews were conducted with older adult gamblers. The six-step thematic network analysis methodology was adopted for data analysis. The mean age of the participants was 66.2 years. The majority were male (n = 18), of Chinese ethnicity (n = 16), with a mean age of gambling initiation at 24.5 years. Among older adult gamblers, cognitive distortions emerged as a significant global theme comprising three organizing themes-illusion of control, probability control and interpretive control. The organizing themes comprised nine basic themes: perception of gambling as a skill, near miss, concept of luck, superstitious beliefs, entrapment, gambler's fallacy, chasing wins, chasing losses, and beliefs that wins are more than losses. Cognitive distortions were endorsed by all gamblers in the current study and were shown to play a role in both maintaining and escalating the gambling behaviour. While the surface characteristics of the distortions had a culture-specific appearance, the deeper characteristics of the distortions may in fact be more universal than previously thought. Future research must include longitudinal studies to understand causal relationships between cognitive distortions and gambling as well as the role of culture-specific distortions both in the maintenance and treatment of the disorder.

  20. Cognitive distortions among older adult gamblers in an Asian context

    Science.gov (United States)

    Subramaniam, Mythily; Chong, Siow Ann; Browning, Colette; Thomas, Shane

    2017-01-01

    Aims The study aims to describe the construct of cognitive distortions based on the narratives of older adult gamblers (aged 60 years and above) in Singapore. Methods Singapore residents (citizens or permanent residents) aged 60 years and above, who were current or past regular gamblers were included in the study. Participants were recruited using a combination of venue based approach, referrals from service providers as well as by snowball sampling. In all, 25 in-depth interviews were conducted with older adult gamblers. The six-step thematic network analysis methodology was adopted for data analysis. Results The mean age of the participants was 66.2 years. The majority were male (n = 18), of Chinese ethnicity (n = 16), with a mean age of gambling initiation at 24.5 years. Among older adult gamblers, cognitive distortions emerged as a significant global theme comprising three organizing themes–illusion of control, probability control and interpretive control. The organizing themes comprised nine basic themes: perception of gambling as a skill, near miss, concept of luck, superstitious beliefs, entrapment, gambler’s fallacy, chasing wins, chasing losses, and beliefs that wins are more than losses. Conclusions Cognitive distortions were endorsed by all gamblers in the current study and were shown to play a role in both maintaining and escalating the gambling behaviour. While the surface characteristics of the distortions had a culture-specific appearance, the deeper characteristics of the distortions may in fact be more universal than previously thought. Future research must include longitudinal studies to understand causal relationships between cognitive distortions and gambling as well as the role of culture-specific distortions both in the maintenance and treatment of the disorder. PMID:28542389

  1. Cognitive distortions among older adult gamblers in an Asian context.

    Directory of Open Access Journals (Sweden)

    Mythily Subramaniam

    Full Text Available The study aims to describe the construct of cognitive distortions based on the narratives of older adult gamblers (aged 60 years and above in Singapore.Singapore residents (citizens or permanent residents aged 60 years and above, who were current or past regular gamblers were included in the study. Participants were recruited using a combination of venue based approach, referrals from service providers as well as by snowball sampling. In all, 25 in-depth interviews were conducted with older adult gamblers. The six-step thematic network analysis methodology was adopted for data analysis.The mean age of the participants was 66.2 years. The majority were male (n = 18, of Chinese ethnicity (n = 16, with a mean age of gambling initiation at 24.5 years. Among older adult gamblers, cognitive distortions emerged as a significant global theme comprising three organizing themes-illusion of control, probability control and interpretive control. The organizing themes comprised nine basic themes: perception of gambling as a skill, near miss, concept of luck, superstitious beliefs, entrapment, gambler's fallacy, chasing wins, chasing losses, and beliefs that wins are more than losses.Cognitive distortions were endorsed by all gamblers in the current study and were shown to play a role in both maintaining and escalating the gambling behaviour. While the surface characteristics of the distortions had a culture-specific appearance, the deeper characteristics of the distortions may in fact be more universal than previously thought. Future research must include longitudinal studies to understand causal relationships between cognitive distortions and gambling as well as the role of culture-specific distortions both in the maintenance and treatment of the disorder.

  2. Effect of surface and heat treatments on the biaxial flexural strength and phase transformation of a Y-TZP ceramic.

    Science.gov (United States)

    Fonseca, Renata Garcia; Abi-Rached, Filipe de Oliveira; da Silva, Filipe Samuel Correia Pereira; Henriques, Bruno Alexandre Pacheco de; Pinelli, Ligia Antunes Pereira

    2014-10-01

    To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-μm silica-modified Al₂O₃particles (Rocatec Soft); 2) 110-μm silica-modified Al₂O₃particles (Rocatec Plus); and 3) 120-μm Al₂O₃particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. Grinding significantly decreased the BFS of the non-heat-treated groups (p heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-μm Al₂O₃particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic

  3. Biological motion distorts size perception

    Science.gov (United States)

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.

    2017-02-01

    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions - stimuli whose size is consistently misperceived - do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size.

  4. EFFECT OF HEAT TREATMENT ON THERMAL PROPERTIES OF PITCH-BASED AND PAN-BASED CARBON-CARBON COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Sardar S. [Southern Illinois University; Dinwiddie, Ralph Barton [ORNL; Porter, Wallace D [ORNL; Lance, Michael J [ORNL; Fillip, Peter [Southern Illinois University

    2011-01-01

    Thermal properties of two directional (2D) pitch-based carbon fiber with charred resin and three directional (3D) PAN-based carbon fiber with CVI carbon matrix C/C composite were investigated for non-heat treated (NHT) and heat treated (HT) materials through the thickness (z-direction). Heat treatment was performed at 1800, 2100 and 2400 oC for 1-hr in inert argon atmosphere. Thermal diffusivity, heat capacity and bulk density were measured to calculate thermal conductivity. Thermal diffusivity and conductivity was the highest for 3D C/C heat treated at maximum temperature with non-heat treated one exhibiting the lowest one. Similarly, 2D C/C heat treated at maximum temperature exhibited the highest thermal diffusivity and thermal conductivity. Polarized light microscopy (PLM) images of HTT C/C show a progressive improvement in microstructure when compared to NHT C/C. However, HTT 2D and 3D C/C composites exhibited extensive shrinkage of charred resin and CVI carbon matrix, respectively, from fibers resulting in intra and inter-bundles cracking when compared to NHT one. Raman spectroscopy and XRD results of NHT and HTT C/C indicated increased ordering of structure. A progressive improvement in thermal properties was observed with increased heat treatment temperatures.

  5. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours.

    Science.gov (United States)

    Bucsella, Blanka; Takács, Ágnes; Vizer, Viktoria; Schwendener, Urs; Tömösközi, Sándor

    2016-01-01

    Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Physicochemical and antibacterial properties of lactoferrin and its hydrolysate produced by heat treatment at acidic pH.

    Science.gov (United States)

    Saito, H; Takase, M; Tamura, Y; Shimamura, S; Tomita, M

    1994-01-01

    In order to apply functionally active lactoferrin (Lf) to food products, the effect of pH on the heat stability of Lf was studied. Lf was easily denatured to an insoluble state by heat treatment under neutral or alkaline conditions, above pH 6. In contrast, it remained soluble after heat treatment under acidic conditions at pH 2 to 5, and the HPLC pattern of Lf heat-treated at pH 4 at 100 degrees C for 5 min was the same as that of native Lf. Lf was found to be very thermostable at pH 4, and could be pasteurized or sterilized without any significant loss of its physicochemical properties. Lf was hydrolyzed by heat treatment at pH 2 to 3 at above 100 degrees C, and its iron binding capacity and antigenicity were lost. But the antibacterial activity of the hydrolysate was found to be much stronger than that of native Lf. The antibacterial component of Lf hydrolysate produced by heat treatment at acidic pH was verified to be a peptide including the sequence of residues 1-54 from the N-terminal end of the bovine Lf molecule.

  7. Heat treatment effects on the antimicrobial activity of macrolide and lincosamide antibiotics in milk.

    Science.gov (United States)

    Zorraquino, M A; Althaus, R L; Roca, M; Molina, M P

    2011-02-01

    Antibiotic residues in milk can cause serious problems for consumers and the dairy industry. Heat treatment of milk may diminish the antimicrobial activity of these antibiotic residues. This study analyzed the effect of milk processing (60 °C for 30 min, 120 °C for 20 min, and 140 °C for 10 s) on the antimicrobial activity of milk samples fortified with three concentrations of three macrolides (erythromycin: 20, 40 and 80 μg/liter; spiramycin: 100, 200, and 400 μg/liter; and tylosin: 500, 1,000, and 2,000 μg/liter) and one lincosamide (lincomycin: 1,000, 2,000, and 4,000 μg/liter). To measure the loss of antimicrobial activity, a bioassay based on the growth inhibition of Micrococcus luteus was done. The data were analyzed using a multiple linear regression model. The results indicate that treatment at 120 °C for 20 min produces inactivation percentages of 93% (erythromycin), 64% (spiramycin), 51% (tylosin), and 5% (lincomycin), while treatment at 140 °C for 10 s results in generally lower percentages (30% erythromycin, 35% spiramycin, 12% tylosin, and 5% lincomycin). The lowest loss or lowest reduction of antimicrobial activity (21% erythromycin and 13% spiramycin) was obtained by treatment at 60 °C for 30 min. Copyright ©, International Association for Food Protection

  8. The effect of heat treatment on the internal structure of nanostructured block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Sepe, A; Hoppe, E T; Jaksch, S; Magerl, D; Zhong, Q; Papadakis, C M [Technische Universitaet Muenchen, Physikdepartment, Fachgebiet Physik weicher Materie/Lehrstuhl fuer funktionelle Materialien, James-Franck-Strasse 1, 85747 Garching (Germany); Perlich, J [HASYLAB at DESY, Notkestrasse 85, 22603 Hamburg (Germany); Posselt, D [IMFUFA, Department of Science, Systems and Models, Roskilde University, PO Box 260, 4000 Roskilde (Denmark); Smilgies, D-M, E-mail: papadakis@tum.de [Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States)

    2011-06-29

    We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular to the substrate. In situ GISAXS measurements elucidate the structural changes during heat treatment at temperatures between 60 and 130 {sup 0}C. Thermal treatment below 100 {sup 0}C does not destroy the perpendicular lamellar order. In contrast, treatment between 105 and 120 {sup 0}C leads to a broad distribution of lamellar orientations which only partially recovers upon subsequent cooling. Treatment at 130 {sup 0}C leads to severe changes of the film structure. We attribute the change of behavior at 100 {sup 0}C to the onset of the glass transition of the polystyrene block and the related increase of long-range mobility. Our results indicate that the perpendicular lamellar orientation for high molar mass samples is not stable under all conditions.

  9. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    Science.gov (United States)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-11-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  10. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    Science.gov (United States)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  11. Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718

    Science.gov (United States)

    Prater, Tracie; Tilson, Will; Jones, Zack

    2015-01-01

    The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future

  12. Isolation and characterization of the main small heat shock proteins induced in tomato pericarp by thermal treatment.

    Science.gov (United States)

    Polenta, Gustavo A; Calvete, Juan J; González, Claudia B

    2007-12-01

    In recent years, heat treatment has been used to prevent the development of chilling injury in fruits and vegetables. The acquired tolerance to chilling seen in treated fruit is related to the accumulation of heat shock proteins (HSPs). The positive effect of heat treatment has generally been verified for only a narrow range of treatment intensities and more reliable methods of determining optimal conditions are therefore needed. In this regard, quantitation of HSPs would seem to be an interesting tool for monitoring purposes. As a step toward the development of analytical methodology, the objective of this study was the isolation and characterization of relevant HSPs from plant tissues. Tomato fruits were exposed to a temperature of 38 degrees C for 0, 3, 20 and 27 h, and protein extracts from pericarp were analysed using SDS/PAGE. Analysis revealed the appearance of an intense 21 kDa protein band in treated samples. IEF of this band showed the presence of four major proteins (HSPC1, HSPC2, HSPC3 and HSPC4) with similar pI values. A monospecific polyclonal antiserum was raised in rabbits against purified HSPC1 protein, which cross-reacted with other small heat shock proteins. The major proteins were characterized by MS/MS analysis of tryptic peptides, all having blocked N-termini. The antiserum obtained proved suitable for detecting increased amounts of small heat shock proteins in tomatoes and grapefruits subjected to heat treatment for 24 and 48 h; these treatments were successful in preventing the development of chilling injury symptoms during cold storage. Our data are valuable for the future development of analytical methods to evaluate the optimal protection induced by heat treatment in different fruits.

  13. Effects of Heat Treatment on Interface Microstructure and Mechanical Properties of Explosively Welded Ck60/St37 Plates

    Science.gov (United States)

    Yazdani, Majid; Toroghinejad, Mohammad Reza; Hashemi, Seyyed Mohammad

    2016-12-01

    This study explores the effects of heat treatment on the microstructure and mechanical properties of explosively welded Ck60 steel/St37 steel. The objective is to find an economical way for manufacturing bimetallic plates that can be used in the rolling stand of hot rolling mill units. The explosive ratio and stand-off distance are set at 1.7 and 1.5 t ( t = flyer thickness), respectively. Since explosive welding is accompanied by such undesirable metallurgical effects as remarkable hardening, severe plastic deformation, and even formation of local melted zones near the interface, heat treatment is required to overcome or alleviate these adverse effects. For this purpose, the composites are subjected to heat treatment in a temperature range of 600-700 °C at a rate of 90 °C/h for 1 h. Results demonstrate well-bonded composite plates with a wavy interface. In the as-welded case, vortex zones are formed along the interface; however, they are transformed into fine grains upon heat treatment. Microhardness is also observed to be maximum near the interface in the welded case before it decreases with increasing temperature. Shear strength is the highest in the as-welded specimen, which later decreases as a result of heat treatment. Moreover, the energy absorbed by the heat-treated specimens is observed to increase with increasing temperature so that the lowest value of absorbed energy belongs to the as-welded specimen. Finally, fractography is carried out using the scanning electron microscope to examine the specimens subjected to shear and impact tests. As a result of heat treatment, fracture surfaces exhibit dimpled ruptures and fail in the mixed mode, while failure in the as-welded specimens predominantly occurs in the brittle mode.

  14. Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch.

    Science.gov (United States)

    Sun, Qingjie; Gong, Min; Li, Ying; Xiong, Liu

    2014-09-22

    Proso millet (Panicum miliaceum L.) flour and starch were heated in a dry state at 130°C for 2 or 4 h. The effects of dry heat treatment (DHT) on the pasting, morphological and structural properties of the samples were evaluated. Dry heat treatment had a more significant effect on the pasting viscosity of flour than starch; it increased the pasting viscosity of the flour while it only increased the final viscosity of the starch. After dry heating, the onset of gelatinization and the peak temperatures of the samples increased significantly while the endothermic enthalpy decreased. Scanning electron microscopy showed that the gel structure of the samples became more compact and the particles were plumper when compared with the native ones. Crystallinity of the samples decreased while the X-ray diffraction patterns remained the same after DHT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Distorted Wave Calculations and Applications

    Science.gov (United States)

    Bhatia, A. K.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    Physical properties such as temperature and electron density of solar plasma and other astrophysical objects can be inferred from EUV and X-ray emission lines observed from space. These lines are emitted when the higher states of an ion are excited by electron impact and then decay by photon emission. Excitation cross sections are required for the spectroscopic analyses of the observations and various approximations have been used to calculate the scattering functions. One of them which has been widely used is a distorted wave approximation. This approximation, along with its applications to solar observations, is discussed. The Bowen fluorescence mechanism and optical depth effects are also discussed. It is concluded that such calculations are reliable for highly charged ions and for high electron temperatures.

  16. Dynamic Dazzle Distorts Speed Perception.

    Directory of Open Access Journals (Sweden)

    Joanna R Hall

    Full Text Available Static high contrast ('dazzle' patterns, such as zigzags, have been shown to reduce the perceived speed of an object. It has not escaped our notice that this effect has possible military applications and here we report a series of experiments on humans, designed to establish whether dynamic dazzle patterns can cause distortions of perceived speed sufficient to provide effective defence in the field, and the extent to which these effects are robust to a battery of manipulations. Dynamic stripe patterns moving in the same direction as the target are found to increase the perceived speed of that target, whilst dynamic stripes moving in the opposite direction to the target reduce the perceived speed. We establish the optimum position for such dazzle patches; confirm that reduced contrast and the addition of colour do not affect the performance of the dynamic dazzle, and finally, using the CO2 challenge, show that the effect is robust to stressful conditions.

  17. Static stereo vision depth distortions in teleoperation

    Science.gov (United States)

    Diner, D. B.; Von Sydow, M.

    1988-01-01

    A major problem in high-precision teleoperation is the high-resolution presentation of depth information. Stereo television has so far proved to be only a partial solution, due to an inherent trade-off among depth resolution, depth distortion and the alignment of the stereo image pair. Converged cameras can guarantee image alignment but suffer significant depth distortion when configured for high depth resolution. Moving the stereo camera rig to scan the work space further distorts depth. The 'dynamic' (camera-motion induced) depth distortion problem was solved by Diner and Von Sydow (1987), who have quantified the 'static' (camera-configuration induced) depth distortion. In this paper, a stereo image presentation technique which yields aligned images, high depth resolution and low depth distortion is demonstrated, thus solving the trade-off problem.

  18. The Microstructure And Mechanical Properties Of The AlSi17Cu5 Alloy After Heat Treatment

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2015-09-01

    Full Text Available In the paper results of the microstructure and mechanical properties (HB, Rm and R0,2 of AlSi17Cu5 alloy, subjected by solution heat treatment (500ºC/6h/woda and aging (200ºC/16h/piec are presented. In next step the alloy was modified and heated significantly above the Tliq temperature (separately and together. It was found that the increase in the strength properties of the tested alloy after heat treatment compared to alloys without solution heat treatment and aging was due to precipitation hardening. The applied aging treatment of ingots (preceded by solution heat treatment, causes not only increase in concentration in α(Al solid solution, but also a favorable change of the primary Si crystals morphology. During stereological measurements significant size reduction and change in the morphology of hypereutectic silicon crystals ware found. This effects can be further enhanced by overheating the alloy to a temperature of 920ºC and rapid cooling before casting of the alloy.

  19. Study of the formation and thermal stability of Mg{sub 2}Co obtained by mechanical alloying and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Carola, E-mail: carola.martinezu@usach.cl [Escuela de Ingeniería Mecánica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Los Carrera 01567, Casilla de correo 4059, Quilpué (Chile); Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile); Ordoñez, Stella, E-mail: stella.ordonez@usach.cl [Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 10233, Santiago (Chile); Serafini, Daniel [Departamento de Física, Facultad de Ciencias, Universidad de Santiago de Chile, Av. Lib. Bernardo O’Higgins 3363, Casilla de correo 307, Santiago (Chile); Guzmán, Danny [Departamento de Metalurgia, Facultad de Ingeniería, Universidad de Atacama y CRIDESAT, Av. Copayapu 485, Casilla de correo 240, Copiapó (Chile); Rojas, Paula [Escuela de Ingeniería Mecánica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Los Carrera 01567, Casilla de correo 4059, Quilpué (Chile)

    2014-03-25

    Highlights: • Study of phase evolution of elemental powders Mg and Co by MA and heat treatment. • The activation energies and apparent enthalpies for crystallization were obtained. • The phase transformation during the mechanical alloying process was determined. • The feasibility to obtain Mg{sub 2}Co by MA plus heat treatment has been established. -- Abstract: The microstructural evolution of Mg and Co in a 2:1 atomic ratio was investigated during mechanical alloying and subsequent heat treatments. Microstructural characterization was determined using X-ray diffraction and scanning electron microscopy, while thermal stability was studied by means of differential scanning calorimetry. The results show that mechanical alloying produces amorphization and promotes greater microstructural refinement. Formation of Mg{sub 2}Co requires an additional heat treatment at temperatures between 679 and 705 K, depending on milling time. Additionally, it was determined that the activation energy for Mg{sub 2}Co crystallization decreases from 206 to 184 kJ/mol when the milling time increases from 12 to 36 h, respectively. Finally, a combination of the mechanical alloying process and heat treatment phase evolutions was proposed as an optimal processing route in order to obtain the Mg{sub 2}Co compound.

  20. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-08-15

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  1. Detrimental Cr-rich Phases Precipitation on SAF 2205 Duplex Stainless Steels Welds After Heat Treatment

    Directory of Open Access Journals (Sweden)

    Argelia Fabiola Miranda Pérez

    Full Text Available Abstract The austeno-ferritic Stainless Steels are commonly employed in various applications requiring structural performances with enhanced corrosion resistance. Their characteristics can be worsened if the material is exposed to thermal cycles, since the high-temperature decomposition of ferrite causes the formation of detrimental secondary phases. The Submerged Arc Welding (SAW process is currently adopted for joining DSS owing to its relatively simple execution, cost savings, and using molten slag and granular flux from protecting the seam of atmospheric gases. However, since it produces high contents of δ-ferrite in the heat affected zone and low content of γ-austenite in the weld, high-Ni filler materials must be employed, to avoid excessive ferritization of the joint. The present work is aimed to study the effect of 3 and 6 hours isothermal heat treatments at 850°C and 900°C in a SAF 2205 DSS welded joint in terms of phases precipitation. The results showed the presence of σ-phase at any time-temperature combination, precipitating at the δ/γ interphases and often accompanied by the presence of χ-phase. However, certain differences in secondary phases amounts were revealed among the different zones constituting the joint, ascribable both to peculiar elements partitioning and to the different morphology pertaining to each microstructure.

  2. Effect of Laser Heat Treatment on Microstructures of 1Cr5Mo Steel Welded Joint

    Directory of Open Access Journals (Sweden)

    GUO Wei

    2017-01-01

    Full Text Available The surface of 1Cr5Mo heat-resistant steel welded joint was treated with CO2 laser,the microstructure and grain size grades of welded joints before and after laser heat treatment (LHT were analyzed with 4XC type optical microscope (OM,and the distribution of residual stress and retained austenite content in the surface of the welded joints were measured with X-ray diffraction (XRD stress tester.The results show that the grains of 1Cr5Mo steel welded joints are refined by LHT,and the microstructure uniformity improves significantly,the grain levels of welded zone,fusion zone,overheated zone and normalized zone increase from level 9,level 9.8,level 8 and level 10.7 to level 10,level 10.2,level 8.5 and level 11 respectively,the mechanical weak areas reduce from overheated zone,welded zone and fusion zone to the overheated zone.The tensile residual stress in the welded joint surface is eliminated by LHT and a layer of compressive residual stress with thickness of about 0.28mm is formed.The residual austenite content in the welded joint surface increases after LHT,of which the distribution is more uniform and conducive to the improvement of mechanical properties.

  3. Application of microwave radiation to biofilm heating during wastewater treatment in trickling filters.

    Science.gov (United States)

    Zieliński, Marcin; Zielińska, Magdalena; Dębowski, Marcin

    2013-01-01

    The purpose of this study was to demonstrate the potential for improving wastewater treatment by the application of microwave radiation (MW) compared to convective heating (CH) of trickling filters. Microwaves were delivered to the biofilm in a continuous and intermittent way to obtain temperatures of 20, 25, 35 and 40 °C. Although there was no effect of MW on organic removal, the observed yield coefficient was lower during the continuous MW supply compared to the periodic dosage and CH. The presence of organic compounds in the influent and continuous biofilm exposure to MW resulted in ca. 10% higher efficiency and ca. 20% higher rate of nitrification compared to intermittent MW dosage and CH. Independent of the method of reactor heating, the absence of organic carbon in the influent induced a significant increase in ammonium oxidation efficiency at 20-35 °C. Despite the aerobic conditions in trickling filters, nitrogen loss was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Optimisation of Mechanical Properties of 18%Ni350 Grade Maraging Steel Using Novel Heat Treatment

    Directory of Open Access Journals (Sweden)

    Marcisz J.

    2017-03-01

    Full Text Available The paper presents results of examinations of properties and microstructure of maraging steel grade MS350 (18Ni350 produced by a novel heat treatment method called „short-time ageing“. It has been found that maraging steel after application of the short-time ageing achieves unique properties, in particular good combination of strength and impact toughness. After short-time ageing for time of heating up to 600 seconds at temperature of 550°C hardness in the range from 48 to 56 HRC, tensile strength ranging from 2000 to 2250 MPa, yield strength from 1930 to 2170 MPa and total elongation in the range 7-8% as well as notch impact toughness of 20 J/cm2 at temperature minus 40°C were obtained. Results of microstructure examination in transmission electron microscope (TEM with application of high resolution technique (HRTEM have shown presence of Ni3Mo nano-precipitates of orthorhombic crystallographic structure. Precipitates were characterized by rod-like shape and were homogenously distributed in martensitic matrix of steel with high density of dislocations. The average size of cross-section of precipitates was ca. 4 nm while length reached several dozen of nm.

  5. Industrial application of different heat treatments and cream fat contents for improving the spreadability of butter

    DEFF Research Database (Denmark)

    Tondhoosh, Arash; Nayebzadeh, Kooshan; Mohammadifar, Mohammad Amin

    2016-01-01

    hardening of texture especially in winter. Methods: Firstly, Pasteurized cream with different fat contents (40 & 45% fat) was passed through heat treatments, and then it was injected to a continuous churn. Textural and melting behavior and fatty acid composition of butter were analyzed. Results: Increasing...... the fat content of cream (from 40 to 45 %) and holding time (from 3h to 5h) in mid-temperature (18 °C) and reducing the churning temperature (from 12 °C to 10 °C), resulted in soft butter texture and improved butter spreadability. Loss Tangent (tan δ) was increased from 0.11 to 0.74 (T=15 °C;f=1Hz......). The melting temperature of butter was decreased from 36°C to 32°C and total trans fatty acid content was decreased from 3.2 % to 1.87 %. Conclusion: It was concluded that such heating process (which has been studied and reported in patents) absorbs the low- SFC fats of the cream, integrates them...

  6. Effect of heat treatment on Fe-B-Si-Nb alloy powder prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rodrigo Estevam Coelho

    2005-06-01

    Full Text Available The effect of heat treatment on crystallization behavior of Fe73.5B15Si10Nb1.5 alloy powder prepared by mechanical alloying was studied. The powder samples were prepared by mechanical alloying (MA and for different milling times (1, 5, 25, 70 and 100 hours. Crystalline powders of iron, boron, silicon and niobium were sealed with tungsten carbide balls in a cylindrical vial under nitrogen atmosphere. The ball-to-powder weight ratio was 20 to 1. A Fritsch Pulverizette 5 planetary ball mill was used for MA the powders at room temperature and at 250 rpm. To study the microstructural evolution, a small amount of powder was collected after different milling times and examined by X-ray diffraction, using CuKalpha radiation (lambda = 0.15418 nm. The crystallization behavior was studied by differential thermal analysis, from 25 up to 1000 °C at a heating rate of 25 °C min-1.

  7. Effect of fat type and heat treatment on the microstructure of meat emulsions

    DEFF Research Database (Denmark)

    Miklos, Rikke; Lametsch, René; Nielsen, Mikkel Schou

    2013-01-01

    In comminuted meat products the gel-forming abilities of the myofibrillar proteins are of major importance. In meat emulsions fat will be present in globules which are stabilized by a membrane coating made of salt-soluble proteins. These discontinuous fat particles act as fillers or co-polymers a......In comminuted meat products the gel-forming abilities of the myofibrillar proteins are of major importance. In meat emulsions fat will be present in globules which are stabilized by a membrane coating made of salt-soluble proteins. These discontinuous fat particles act as fillers or co...... in microstructure of meat emulsions by use of a novel quantitative application of absorption- and phase-contrast tomography. The non-invasive technique offered the possibility to study the same sample in both raw and cooked condition. The samples were raw and heat treated meat emulsions (10% protein, 25% fat, 60...... imaging of the tomograms were used to analyse the impact of lipid type on spatial fat distribution, microstructure of the protein network and structural changes caused by heat treatment. The tomograms showed that the fat distribution in the meat emulsions depended on the physicochemical properties...

  8. Effect of heat treatment on the crystal structure and FTIR spectra of Sm doped cerium dioxide film

    Science.gov (United States)

    Liu, Xiaozhou; Liu, Xiaozhou; Xia, Letian; Chen, Jie; Wang, Xiaoyu

    2017-04-01

    The Sm doped cerium dioxide films were prepared with cerium foils as raw materials by anodization in Sm(NO3)3-Na2C2O4-NH3·H2O-H2O-(CH2OH)2 electrolyte. The anodic Sm doped cerium oxide films were heat treated in 100°C ~ 400°C. The heat treated anodic Sm doped cerium oxide films were characterized with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques respectively. The heat treated anodic Sm doped cerium oxide film at 100°C is the semi crystalline film. As heat treatment temperatures being in 200°C ~ 400°C, the heat treated anodic Sm doped cerium oxide films have a structure of cubic fluorite respectively. The doping of Sm can be achieved well by anodization method and be recognized as replacement doping or caulking doping. The crystal structure of Sm doped cerium dioxide films become more complete with the increase of heat treatment temperature in 200 ~ 400 °C. The doping of Sm can improve the crystallinity of the cerium dioxide film. The presence of adsorbing water, ethylene glycol and CO2 in the heat treated anodic Sm doped cerium oxide film at 100°C. The adsorbing ethylene glycols and water, CO2 in the anodic Sm doped cerium oxide film are removed at 200°C and 300°C respectively.

  9. Microstructural evolution and microhardness of a selective-laser-melted Ti–6Al–4V alloy after post heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.Q.; Lu, Y.J.; Gan, Y.L.; Huang, T.T. [Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou (China); Zhao, C.Q. [Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou (China); College Materials Science and Engineering, Fujian Normal University, Fuzhou (China); Lin, J.J.; Guo, S. [Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou (China); Lin, J.X., E-mail: franklin@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou (China)

    2016-07-05

    Microstructure and hardness of a powder-bed-type selective laser melted Ti–6Al–4V alloy after post heat treatments at from 300 °C to 1020 °C were systematically investigated by using optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and Vickers hardness (HV) tester. Long columnar original β grains together with the inside dominated parallel acicular martensite in the side view, and chessboard pattern in the top view, were found in the as-received specimen. The subtransus heat treatment does not enable modification of the morphology of the original columnar β grain, only leading to the acicular α′ martensite decomposition into the α platelet and whether surrounded β phase or transformed α′ phase depending on the heating temperature; while the supertransus heat treatment would thoroughly break up the original long columnar β grain, leaving only big original equiaxial β grain filled with the new forming weave-type acicular α′ martensite like the supertransus heat treated wrought specimen. Vickers hardness evolution strictly follows the trend of the microstructural change as the heating temperature increasing, and the double peak phenomenon of the Hardness–Temperature plot should be attributed to substructural refinement effect at around 500 °C, martensitic refinement effect at around 1000 °C, and softening effect resulting from the completely decomposition of the martensite at around 875 °C. - Highlights: • Heat treatment affects microstructure and hardness of the SLM Ti–6Al–4V alloy. • The as-received alloy is of columnar β grains with the inside acicular martensites. • The as-received martensites decompose into α and β/β{sub t} plates during heating. • Double peak phenomenon appears in the Microhardness–Temperature plot.

  10. The Effect of Heat Treatment on the chemical and color change of Black Locust (Robinia Pseudoacacia) wood flour

    Science.gov (United States)

    Yao Chen; Yongming Fan; Jianmin Gao; Nicole M. Stark

    2012-01-01

    The aim of this study was to investigate the effects of oxygen and moisture content (MC) on the chemical and color changes of black locust (Robinia pseudoacacia) wood during heat treatment. The wood flour was conditioned to different initial MCs and heated for 24 h at a constant temperature of 120°C in either oxygen or nitrogen atmosphere. The pH values and...

  11. Effects of heat treatment and concentration of fish serum on cell growth in adhesion culture of Chinese hamster ovary cells

    OpenAIRE

    Fujiwara, Masashi; Tsukada, Ryohei; Shioya, Itaru; Takagi, Mutsumi

    2009-01-01

    The effects of heat treatment and concentration of fish serum (FS) on cell growth and human granulocyte-macrophage colony-stimulating factor (hGM-CSF) production in an adhesion culture of recombinant Chinese hamster ovary (CHO) cells, DR1000L4N, were investigated. The addition of heat treated FS instead of non-heat-treated FS improved cell growth in terms of cell density, which reached 60% that in 10% fetal calf serum (FCS)-containing medium (FCS medium). A decrease in FS concentration from 1...

  12. Synthesis of Mo{sub 5}SiB{sub 2} based nanocomposites by mechanical alloying and subsequent heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, A.R. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Isfahan (Iran, Islamic Republic of); Shamanian, M., E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Isfahan (Iran, Islamic Republic of)

    2011-04-15

    Research highlights: {yields} {alpha}-Mo-Mo{sub 5}SiB{sub 2} nanocomposite was produced after 20 h milling of Mo-Si-B powders. {yields} Heat treatment of 5 h MAed powders led to the formation of boride phases. {yields} Heat treatment of 10 h MAed powders led to the formation of Mo{sub 5}SiB{sub 2} phase. {yields} By increasing heat treatment time, quantity of Mo{sub 5}SiB{sub 2} phase increased. {yields} 5 h heat treatment of 20 h MAed powders led to the formation of Mo{sub 5}SiB{sub 2}-based composite. - Abstract: In this study, systematic investigations were conducted on the synthesis of Mo{sub 5}SiB{sub 2}-based alloy by mechanical alloying and subsequent heat treatment. In this regard, Mo-12.5 mol% Si-25 mol% B powder mixture was milled for different times. Then, the mechanically alloyed powders were heat treated at 1373 K for 1 h. The phase transitions and microstructural evolutions of powder particles during mechanical alloying and heat treatment were studied by X-ray diffractometry and scanning electron microscopy. The results showed that the phase evolutions during mechanical alloying and subsequent heat treatment are strongly dependent on milling time. After 10 h of milling, a Mo solid solution was formed, but, no intermetallic phases were detected at this stage. However, an {alpha}-Mo-Mo{sub 5}SiB{sub 2} nanocomposite was formed after 20 h of milling. After heat treatment of 5 h mechanically alloyed powders, small amounts of MoB and Mo{sub 2}B were detected and {alpha}-Mo-MoB-Mo{sub 2}B composite was produced. On the other hand, heat treatment of 10 h and 20 h mechanically alloyed powders led to the formation of an {alpha}-Mo-Mo{sub 5}SiB{sub 2}-MoSi{sub 2}-Mo{sub 3}Si composite. At this point, there is a critical milling time (10 h) for the formation of Mo{sub 5}SiB{sub 2} phase after heat treatment wherein below that time, boride phase and after that time, Mo{sub 5}SiB{sub 2} phase are formed. In the case of 20 h mechanically alloyed powders, by

  13. Advanced Machining Toolpath for Low Distortion

    Science.gov (United States)

    2017-02-28

    completed a project funded by the Aviation Development Directorate (ADD) to minimize distortion in an aluminum fatigue coupon machining process. To achieve...of this project was delivery of an optimized NC toolpath that reflected the modeling efforts to minimize final part distortion. 2.0 TASK SUMMARY...W911W6-16-P-0044 6 NC Optimization The optimization strategy taken in this project focused on minimizing part distortion. To accomplish

  14. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  15. Effect of Intercritical Heat Treatment on Mechanical Properties of Plain Carbon Dual Phase Steel

    Directory of Open Access Journals (Sweden)

    Imtiaz Ali Soomro

    2017-12-01

    Full Text Available Mechanical properties of DP (Dual Phase steels are greatly influenced by the microstructural features such as grain size, morphology and martensite volume fraction (Vm%. These microstructural features can be altered by changing the soaking time and temperature within intercritical zone. Present study aims to study the effect of intercritical annealing temperature and soaking time on Vm% and its effects on mechanical properties of plain low carbon steel grade (AISI 1020 steel having ferritemartensitemicrostructure. Nine DP steel specimens with various amount of martensite were produced via intercritical heat treatment. Mechanical properties including TS (Tensile Strength, hardness and toughness were characterized and co-related with martensite volume fraction. It was found that increasing the intercritical annealing temperature and soaking time increases the Vm%. The optimum TS and hardness were found at 64Vm% and then decrease with further increase in Vm%. The toughness was found to have linear relationship with Vm%.

  16. Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment

    Directory of Open Access Journals (Sweden)

    Guanglong Xu

    2016-12-01

    Full Text Available An overview about one thermodynamic database of multi-component Mg alloys is given in this work. This thermodynamic database includes thermodynamic descriptions for 145 binary systems and 48 ternary systems in 23-component (Mg–Ag–Al–Ca–Ce–Cu–Fe–Gd–K–La–Li–Mn–Na–Nd–Ni–Pr–Si–Sn–Sr–Th–Y–Zn–Zr system. First, the major computational and experimental tools to establish the thermodynamic database of Mg alloys are briefly described. Subsequently, among the investigated binary and ternary systems, representative binary and ternary systems are shown to demonstrate the major feature of the database. Finally, application of the thermodynamic database to solidification simulation and selection of heat treatment schedule is described.

  17. Heat treatment study of $Nb_{3}Sn$ strands for the Fermilab's high field dipole model

    CERN Document Server

    Barzi, E; Limon, P J; Ozelis, J P; Yamada, R; Zlobin, A V; Gregory, E; Pyon, T; Wake, M

    2000-01-01

    Fermilab is developing high field superconducting dipole magnets based on Nb/sub 3/Sn for a post-LHC very large hadron collider (VLHC) . The first prototype is a 1 meter long two-layer shell-type (cos- theta) coil with a nominal field of 11 T. A keystoned Rutherford-type cable made of 28 Nb/sub 3/Sn strands of 1 mm in diameter is used. The development of high J/sub c/ multifilamentary Nb/sub 3/Sn strands with low magnetization is an important step of this program. To achieve this goal, strand R&D is actively pursued by Fermilab and IGC using the internal tin process. Conductor designs, heat treatment studies, and results of measurements, including I/sub c/, n-value, RRR, magnetization, and chemical analyses, are presented. (4 refs).

  18. Cast Steels for Creep-resistant Parts Used in Heat Treatment Plants

    Directory of Open Access Journals (Sweden)

    A. Drotlew

    2012-12-01

    Full Text Available Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium ironalloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.

  19. Cast Steels for Creep-Resistant Parts Used in Heat Treatment Plants

    Directory of Open Access Journals (Sweden)

    Drotlew A.

    2012-12-01

    Full Text Available Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium iron alloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.

  20. Effect of Heat Treatment on Microstructure and Hardness of Grade 91 Steel

    Directory of Open Access Journals (Sweden)

    Triratna Shrestha

    2015-01-01

    Full Text Available Grade 91 steel (modified 9Cr-1Mo steel is considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures of up to 650 °C. In this study, heat treatment of Grade 91 steel was performed by normalizing and tempering the steel at various temperatures for different periods of time. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the microstructural evolution including precipitate structures and were correlated with mechanical behavior of the steel. Thermo-Calc™ calculations were used to support the experimental work. Furthermore, carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed.

  1. Effect of heat treatment on the flexural properties of a titanium matrix composite

    Science.gov (United States)

    Warrier, S. G.; Lin, R. Y.

    1992-01-01

    Titanium matrix composites (TMC) reinforced with carbon fibers are widely used in the aerospace industry due to their light weight, high strength and modulus and the retention of their strength and modulus at elevated temperatures. Liquid infiltration, a low cost technique for making TMCs, has been little used due to the extent of the reaction between titanium and carbon during fabrication. Rapid infrared processing (RIP) has been developed as a technique for reducing interfacial reaction during composite fabrication. The strength and modulus of composites produced using RIP were higher than or comparable to those for other composites. This paper examines the effect of heat treatment on the room temperature flexural strength and modulus of TMC produced using RIP. The experiments carried out are described and results are presented. Results showed increased flexural strength of the composites upon aging at temperatures of 800 and 900 degrees C. This increased strength may be due to increased strength of the matrix.

  2. Influence of composition, heat treatment and neutron irradiation on the electrical conductivity of copper alloys

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1998-01-01

    The electrical conductivity of three different types of copper alloys, viz. CuNiBe, CuCrZr and Cu-Al(2)O(3) as well as of pure copper are reported. The alloys have undergone different pre-irradiation heat treatments and have been fission-neutron irradiated up to 0.3 dpa. In some cases post......-irradiation annealing has been carried out. The results are discussed with reference to equivalent Transmission Electron Microscopy results on the microstructure of the materials. The CuNiBe has the lowest conductivity (less than or equal to 55% of that of pure Cu), and Cu-Al(2)O(3) the highest (75-90% of pure Cu). (C...

  3. Formation of helical dislocations in ammonothermal GaN substrate by heat treatment

    Science.gov (United States)

    Horibuchi, Kayo; Yamaguchi, Satoshi; Kimoto, Yasuji; Nishikawa, Koichi; Kachi, Tetsu

    2016-03-01

    GaN substrate produced by the basic ammonothermal method and an epitaxial layer on the substrate was evaluated using synchrotron radiation x-ray topography and transmission electron microscopy. We revealed that the threading dislocations present in the GaN substrate are deformed into helical dislocations and the generation of the voids by heat treatment in the substrate for the first observation in the GaN crystal. These phenomena are formed by the interactions between the dislocations and vacancies. The helical dislocation was formed in the substrate region, and not in the epitaxial layer region. Furthermore, the evaluation of the influence of the dislocations on the leakage current of Schottky barrier diodes fabricated on the epitaxial layer is discussed. The dislocations did not affect the leakage current characteristics of the epitaxial layer. Our results suggest that the deformation of dislocations in the GaN substrate does not adversely affect the epitaxial layer.

  4. Glycoalkaloid and calystegine levels in table potato cultivars subjected to wounding, light, and heat treatments.

    Science.gov (United States)

    Petersson, Erik V; Arif, Usman; Schulzova, Vera; Krtková, Veronika; Hajšlová, Jana; Meijer, Johan; Andersson, Hans Christer; Jonsson, Lisbeth; Sitbon, Folke

    2013-06-19

    Potato tubers naturally contain a number of defense substances, some of which are of major concern for food safety. Among these substances are the glycoalkaloids and calystegines. We have here analyzed levels of glycoalkaloids (α-chaconine and α-solanine) and calystegines (A₃, B₂, and B₄) in potato tubers subjected to mechanical wounding, light exposure, or elevated temperature: stress treatments that are known or anticipated to induce glycoalkaloid levels. Basal glycoalkaloid levels in tubers varied between potato cultivars. Wounding and light exposure, but not heat, increased tuber glycoalkaloid levels, and the relative response differed among the cultivars. Also, calystegine levels varied between cultivars, with calystegine B4 showing the most marked variation. However, the total calystegine level was not affected by wounding or light exposure. The results demonstrate a strong variation among potato cultivars with regard to postharvest glycoalkaloid increases, and they suggest that the biosynthesis of glycoalkaloids and calystegines occurs independently of each other.

  5. Wettability, Shrinkage and Color Changes of Araucaria angustifolia After Heating Treatment

    Directory of Open Access Journals (Sweden)

    Rodrigo Marques de Oliveira

    2010-09-01

    Full Text Available The effects of thermal treatment on the wettability and shrink resistance of Araucaria angustifolia (Parana pine were studied from 20 to 200 °C. The contact angles of water droplets on untreated and heat-treated samples were measured by the sessile drop method in the grain of heartwood and sapwood cut in the radial, longitudinal, and tangential directions. A significant increase of the contact angles was verified for the samples from room temperature to 120 °C, in particular in the radial and tangential directions; at higher temperatures, the contact angles assumed almost constant values. From 120 to 200 °C, the sapwood of Araucaria angustifolia showed better dimensional stability and lower thermal resistance when compared to the heartwood. Variations of color were also studied by using the CIELab system, which showed to be capable of accurately distinguishing samples treated at different temperatures.

  6. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumanjeet [Porifera Inc., Hayward, CA (United States); Wilson, Aaron [Porifera Inc., Hayward, CA (United States); Wendt, Daniel [Porifera Inc., Hayward, CA (United States); Mendelssohn, Jeffrey [Porifera Inc., Hayward, CA (United States); Bakajin, Olgica [Porifera Inc., Hayward, CA (United States); Desormeaux, Erik [Porifera Inc., Hayward, CA (United States); Klare, Jennifer [Porifera Inc., Hayward, CA (United States)

    2017-07-25

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but we also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.

  7. Structural evolution of defective graphene under heat treatment and gamma irradiation

    Science.gov (United States)

    Zhang, Yifei; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Zhao, Lihuan; Li, Jing; Jing, Miaolei

    2018-03-01

    We have studied the structural change of defective graphene built by annealing in different temperature under the condition of gamma irradiation. Firstly, we found the heat treatment not only reduced but also striped the graphene. This behavior made defects become more firstly and then become less with the increase of temperature. And then gamma irradiation removed some oxygen-containing groups, by a simultaneous changed over carbon in the graphitic lattice from sp3 to sp2. Also, the gamma irradiation decreased the interlayer spacing between graphene lowest to 3.391 Å and made a crosslink which resulting in the size of the ordered gaining. A variation was detected by Raman spectroscopy that the amorphous carbon was declined after gamma irradiation. Furtherly we found the degree of this decline raised first and then diminished with the increase in the number of defects. The change in repair capacity of gamma irradiation presented a strategy for repairing the defects of graphene.

  8. Polymorphism, microstructure and rheology of butter. Effects of cream heat treatment.

    Science.gov (United States)

    Rønholt, Stine; Kirkensgaard, Jacob Judas Kain; Pedersen, Thomas Bæk; Mortensen, Kell; Knudsen, Jes Christian

    2012-12-01

    The effect of cream heat treatment prior to butter manufacturing, fluctuating temperatures during storage and presence of fat globules vs. no fat globules was examined in laboratory scale produced butter. X-ray diffraction and differential scanning calorimetry was used to study crystallization behaviour and nuclear magnetic resonance to measure solid fat content and water droplet size distribution. Furthermore, the crystal structure was linked to the rheological properties and microstructure of the butter using confocal laser scanning microscopy. Butter produced from non-matured cream mainly formed α- and β'-crystals with minor traces of β-crystals. Maturing of the cream caused a transition from α- to β'- and β-form. The rheological behaviour of slow cooled butter deviated from the matured ones by having a lower elastic modulus, caused by a weaker crystal network. Presence of fat globules did not affect the rheological properties significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Dual modification of taro starch by microwave and other heat moisture treatments.

    Science.gov (United States)

    Deka, Dhritiman; Sit, Nandan

    2016-11-01

    Effect of heat moisture treatment on the physicochemical properties of taro starch with 25% moisture (w/w) modified by single treatments of microwave (HMT1), autoclave (HMT2) and hot air oven (HMT3), and dual treatments of microwave followed by autoclave (HMT4) and microwave followed by hot air oven (HMT5) were investigated. Amylose contents of the modified starches increased except for HMT3. A loss of physical integrity of the starch granules were observed for dual modified starches. The swelling and solubility of all the modified starches increased. The peak viscosities of starches modified by HMT1 and HMT5 were found to be higher whereas for other modified starches it was lower than that of native starch. The holding and final viscosities of all the modified starches except HMT4 were higher than native starch. The freeze-thaw stabilities of the modified starches were also found to be better than that of native starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Influence of annealing heat treatment on pitting corrosion resistance of stainless steel type 316

    Directory of Open Access Journals (Sweden)

    Amirreza Bakhtiari

    2014-07-01

    Full Text Available The effect of annealing heat treatment on pitting resistance of stainless steel type 316L has been studied using Tafel polarization and ASTM G150 for estimating of the pitting potential and CPT, respectively. The materials were tested in 3.5% NaCl solution. The chemical composition of the material was analyzed via optical emission spectrometry. It was found that the sample treated at 940°C shows better pitting corrosion resistance than samples treated at 520°C and 820°C. The treatment at 940°C produced two types of morphologies, austenitic-ferritic matrix with δ-ferrite and only small amount of the σ phase. In the range up to 820°C the σ phase embedded in the γ phase matrix and at δ/γ interface was causing brittleness of the material and aggravated corrosion resistance. The treatment at 940°C produced the microstructure which prevented the corrosion attack to develop. It was revealed that the pitting size in samples treated at 520°C and 820°C is greater than that at 940°C. In addition, depth of pitting has been considered as a factor of pitting corrosion resistance. The depth of pitting in sample treated at 940°C is low since the pitting is almost superficial, while the pitting size in samples treated in 520°C and 820°C is higher and deeper.

  11. EXPERIENCES OF POLISH MECHANICAL HEAT TREATMENT TECHNOLOGY APPLIED TO MUNICIPAL WASTE

    Directory of Open Access Journals (Sweden)

    Jurand Damian Bień

    2017-08-01

    Full Text Available In Poland and in several EU countries, the processing of mixed municipal waste is based on waste treatment in mechanical and biological installations and thermal processing plants. The experience gained from the operation of these installations, particularly in the aspect of material recycling, what is important in an aspect of the circular economy formulation is not satisfactory. To think about a high level of reuse and recycling of municipal waste, which is expected to be at least 65% by 2030, efforts to improve waste quality are needed. Certainly, one of the solution is a selective collection of waste at source, but here it is important to say that it should be conducted at a real high level. How costly it is, many countries already know. In search of other methods the UK countries are turning their attention to mechanical heat treatment technology. In Poland there is one such installation so the idea of this paper is discuss issues connected with it. The practical experience of operating of this installations shows so far that the process gives an ability to match good process parameters to a variable input. The very good quality of secondary raw materials obtained in the process has a higher attractiveness to the final consumer. Also levels of recycling for the four fractions of waste, such as: paper, metals, plastics and glass are high and exceeds significantly factors achieved in the process of mechanical and biological treatment.

  12. Modelling Thermoelastic Distortion of Optics Using Elastodynamic Reciprocity

    CERN Document Server

    King, Eleanor; Veitch, Peter; Levin, Yuri

    2015-01-01

    Thermoelastic distortion resulting from optical absorption by transmissive and reflective optics can cause unacceptable changes in optical systems that employ high power beams. In advanced-generation laser-interferometric gravitational wave detectors for example, optical absorption is expected to result in wavefront distortions that would compromise the sensitivity of the detector; thus necessitating the use of adaptive thermal compensation. Unfortunately, these systems have long thermal time constants and so predictive feed-forward control systems could be required - but the finite-element analysis is computationally expensive. We describe here the use of the Betti-Maxwell elastodynamic reciprocity theorem to calculate the response of linear elastic bodies (optics) to heating that has arbitrary spatial distribution. We demonstrate using a simple example, that it can yield accurate results in computational times that are significantly less than those required for finite-element analyses.

  13. Cognitive Distortions, Humor Styles, and Depression.

    Science.gov (United States)

    Rnic, Katerina; Dozois, David J A; Martin, Rod A

    2016-08-01

    Cognitive distortions are negative biases in thinking that are theorized to represent vulnerability factors for depression and dysphoria. Despite the emphasis placed on cognitive distortions in the context of cognitive behavioural theory and practice, a paucity of research has examined the mechanisms through which they impact depressive symptomatology. Both adaptive and maladaptive styles of humor represent coping strategies that may mediate the relation between cognitive distortions and depressive symptoms. The current study examined the correlations between the frequency and impact of cognitive distortions across both social and achievement-related contexts and types of humor. Cognitive distortions were associated with reduced use of adaptive Affiliative and Self-Enhancing humor styles and increased use of maladaptive Aggressive and Self-Defeating humor. Reduced use of Self-Enhancing humor mediated the relationship between most types of cognitive distortions and depressed mood, indicating that distorted negative thinking may interfere with an individual's ability to adopt a humorous and cheerful outlook on life (i.e., use Self-Enhancing humor) as a way of regulating emotions and coping with stress, thereby resulting in elevated depressive symptoms. Similarly, Self-Defeating humor mediated the association of the social impact of cognitive distortions with depression, such that this humor style may be used as a coping strategy for dealing with distorted thinking that ultimately backfires and results in increased dysphoria.

  14. Cognitive Distortions, Humor Styles, and Depression

    Directory of Open Access Journals (Sweden)

    Katerina Rnic

    2016-08-01

    Full Text Available Cognitive distortions are negative biases in thinking that are theorized to represent vulnerability factors for depression and dysphoria. Despite the emphasis placed on cognitive distortions in the context of cognitive behavioural theory and practice, a paucity of research has examined the mechanisms through which they impact depressive symptomatology. Both adaptive and maladaptive styles of humor represent coping strategies that may mediate the relation between cognitive distortions and depressive symptoms. The current study examined the correlations between the frequency and impact of cognitive distortions across both social and achievement-related contexts and types of humor. Cognitive distortions were associated with reduced use of adaptive Affiliative and Self-Enhancing humor styles and increased use of maladaptive Aggressive and Self-Defeating humor. Reduced use of Self-Enhancing humor mediated the relationship between most types of cognitive distortions and depressed mood, indicating that distorted negative thinking may interfere with an individual’s ability to adopt a humorous and cheerful outlook on life (i.e., use Self-Enhancing humor as a way of regulating emotions and coping with stress, thereby resulting in elevated depressive symptoms. Similarly, Self-Defeating humor mediated the association of the social impact of cognitive distortions with depression, such that this humor style may be used as a coping strategy for dealing with distorted thinking that ultimately backfires and results in increased dysphoria.

  15. Specificity of cognitive distortions to antisocial behaviours.

    Science.gov (United States)

    Barriga, Alvaro Q; Hawkins, Mark A; Camelia, Carl R T

    2008-01-01

    Cognitive distortions have long been posited to facilitate antisocial behaviours, but the specificity of such distortions has rarely been studied. To replicate findings of specificity between particular cognitions and externalizing or internalizing behaviours; to test for specificity of relationship between particular cognitions and different types of externalizing behaviours. The participants were 239 male youths aged 10 to 19 years (mean (M) = 14.22, standard deviation (SD) = 1.64) from schools on the island of Curaçao. Their cognitive distortions and problem behaviours were investigated through self-report. Results In controlled analyses, self-serving cognitive distortions were associated with externalizing behaviours whereas self-debasing cognitive distortions were associated with internalizing behaviours. Within the externalizing domain, self-serving distortions with overt behavioural referents were linked to aggressive behaviour while self-serving distortions with covert behavioural referents were linked to delinquent behaviour. Within the aggression domain, distortions with opposition-defiance referents related to verbal aggression whereas distortions with physical aggression referents related to physically aggressive behaviour. The degree of cognitive-behavioural specificity documented by this study was remarkable. The observed pattern suggests that cognitive interventions designed for externalizing versus internalizing behaviours should differ in therapeutic approach.

  16. Harmonic Distortion in CMOS Current Mirrors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1998-01-01

    One of the origins of harmonic distortion in CMOS current mirrors is the inevitable mismatch between the MOS transistors involved. In this paper we examine both single current mirrors and complementary class AB current mirrors and develop an analytical model for the mismatch induced harmonic...... distortion. This analytical model is verified through simulations and is used for a discussion of the impact of mismatch on harmonic distortion properties of CMOS current mirrors. It is found that distortion levels somewhat below 1% can be attained by carefully matching the mirror transistors but ultra low...

  17. Heated lidocaine/tetracaine patch for treatment of patellar tendinopathy pain

    Directory of Open Access Journals (Sweden)

    Gammaitoni AR

    2013-07-01

    Full Text Available Arnold R Gammaitoni,1 Henry T Goitz,2 Stephanie Marsh,2 Thomas B Marriott,3 Bradley S Galer1 1Pain Group, Nuvo Research US, West Chester, PA, USA; 2Sports Medicine, Detroit Medical Center, Warren, MI, USA; 3Pain Group, Nuvo Research US, Salt Lake City, UT, USA Introduction: The pain of patellar tendinopathy (PT may be mediated by neuronal glutamate and sodium channels. Lidocaine and tetracaine block both of these channels. This study tested the self-heated lidocaine-tetracaine patch (HLT patch in patients with PT confirmed by physical examination to determine if the HLT patch might relieve pain and improve function. Methods: Thirteen patients with PT pain of ≥14 days' duration and baseline average pain scores ≥4 (on a 0–10 scale enrolled in and completed this prospective, single-center pilot study. Patients applied one HLT patch to the affected knee twice daily for 2–4 hours for a total of 14 days. Change in average pain intensity and interference (Victorian Institute of Sport Assessment [VISA] scores from baseline to day 14 were assessed. No statistical inference testing was performed. Results: Average pain scores declined from 5.5 ± 1.3 (mean ± standard deviation at baseline to 3.8 ± 2.5 on day 14. Similarly, VISA scores improved from 45.2 ± 14.4 at baseline to 54.3 ± 24.5 on day 14. A clinically important reduction in pain score (≥30% was demonstrated by 54% of patients. Conclusion: The results of this pilot study suggest that topical treatment that targets neuronal sodium and glutamate channels may be useful in the treatment of PT. Keywords: patellar tendinopathy, patellar tendinosis, heated lidocaine/tetracaine patch, topical analgesic patch, knee pain

  18. Structure and properties of the Mg alloys in as-cast state and after heat and laser treatment

    OpenAIRE

    L.A. Dobrzański; T. Tański; J. Domagała; M. Król; Sz. Malara; A. Klimpel

    2008-01-01

    Purpose: The goal of this paper is to present the structure and properties of the magnesium cast alloys in as-cast state and after a heat treatment. Moreover in purpose of this paper is to extend a complex evaluation of magnesium alloys after laser surface treatment and the new methodology to determine the thermal characteristics of magnesium alloy using the novel Universal Metallurgical Simulator and Analyzer Platform (UMSA).Design/methodology/approach: Laser treatment of magnesium allo...

  19. Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment

    Science.gov (United States)

    Bai, J. Y.; Fan, C. L.; Lin, S. B.; Yang, C. L.; Dong, B. L.

    2017-04-01

    2219-Al parts were produced by gas tungsten arc-additive manufacturing and sequentially processed by an especial heat treatment. In order to investigate the effects of heat treatment on its mechanical properties, multiple tests were conducted. Hardness tests were carried out on part scale and layer scale along with tensile tests which were performed on welding and building directions. Results show that compared to conventional casting + T6 2219-Al, the current deposit + T6 2219-Al exhibits satisfying properties with regard to strength but unsatisfying results in plasticity. Additionally, anisotropy is significant. Fractures were observed and the cracks' propagating paths in both directional specimens are described. The effects of heat treatment on the cracks' initiation and propagation were also investigated. Ultimately, a revised formula was developed to calculate the strength of the deposit + T6 2219-Al. The aforementioned formula, which takes into consideration the belt-like porosities-distributing feature, can scientifically describe the anisotropic properties in the material.

  20. Recovering hydrogen production performance of upflow anaerobic sludge blanket reactor (UASBR) fed with galactose via repeated heat treatment strategy.

    Science.gov (United States)

    Sivagurunathan, Periyasamy; Anburajan, Parthiban; Kumar, Gopalakrishnan; Park, Jong-Hun; Kim, Sang-Hyoun

    2017-09-01

    This study evaluated the effect of repeated heat treatment towards the enhancement of hydrogen fermentation from galactose in an upflow anaerobic sludge blanket reactor with the hydraulic retention time of 6h and the operation temperature of 37°C. The hydrogen production rate (HPR) and hydrogen yield (HY) gradually increased up to 9.1L/L/d and 1.1mol/mol galactose, respectively, until the 33rd day of operation. When heat treatment at 80°C for 30min was applied, hydrogen production performance was enhanced by 37% with the enrichment of hydrogen producing bacteria population. The HPR and HY were achieved at 12.5L/L/d and 1.5mol/mol hexose, respectively, during further 30 cycles of reactor operation. The repeated heat treatment would be a viable strategy to warrant reliable continuous hydrogen production using mixed culture. Copyright © 2017 Elsevier Ltd. All rights reserved.