WorldWideScience

Sample records for heat treatment condition

  1. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Maziar Ramezani

    2015-04-01

    Full Text Available Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric control, heat treatment with stainless steel foil wrapping, pack carburization heat treatment and vacuum heat treatment. The results showed that stainless steel foil wrapping could restrict decarburization process, resulting in a constant hardness profile as vacuum heat treatment does. However, the tempering characteristic between these two heat treatment methods is different. Results from the gas nitrided samples showed that the thickness and the hardness of the nitrided layer is independent of the carbon content in H13 steel.

  2. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    OpenAIRE

    Ramezani, Maziar; Pasang, Timotius; Chen, Zhan; Neitzert, Thomas; Au, Dominique

    2015-01-01

    Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric contro...

  3. Combined heat and gamma-irradiation treatments for the control of strawberry diseases under market conditions

    International Nuclear Information System (INIS)

    Brodrick, H.T.; Thomas, A.C.; Van Tonder, A.J.; Terblanche, J.C.

    1977-02-01

    The spoilage of strawberries under local market conditions was investigated. It was confirmed that the major losses are due to 'leak' disease caused by Rhizopus stolonifer (Ehr. ex Fr.) Lind. It was also established that further fruit losses in summer are due to anthracnose caused by the fungus Colletotrichum acutatum Simmonds. This is the first time that the latter pathogen has been isolated and identified and recognised as a problem on strawberries in South Africa. Studies with R. stolonifer in culture showed that 46 degrees Celsius for 20 min (the previous international standard heat treatment for fruit) was disappointing, while a treatment at 50 degrees Celsius for 10 min effectively inhibited spore germination. Irradiation studies with cultures of R. stolonifer and C. acutatum showed that a dose of 200 and 100 krad, respectively, resulted in excellent inhibition of spore germination. However, irradiating in nitrogen gas resulted in a tenfold reduction in the effectiveness of the irradiation treatments. The use of nitrogen during irradiation, therefore, cannot be considered, especially where an effective control of the fungal pathogens is desired. Investigations with different cultivars clearly demonstrated the synergistic effect on disease control obtained when combining heat and irradiation treatments. The combination treatment (moist heat at 50-52 degrees Celsius for 10 min plus 200 krad), besides effectively controlling both diseases in strawberries, did not adversely affect berry quality. In simulated transport tests it was shown that a minimal amount of berry softening did occur with this treatment, but this adverse effect was negligible compared with the beneficial effect obtained from disease control. In semi-commercial experiments it was shown that the combination heat and irradiation treatment effectively controlled spoilage diseases for a period of several days from picking, thus allowing sufficient time to market the fruit under local market

  4. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  5. Study of secondary recrystallization in grain-oriented steel treated under dynamical heat treatment conditions

    Directory of Open Access Journals (Sweden)

    V. Stoyka

    2009-04-01

    Full Text Available The present study was made to investigate secondary recrystallization in grain-oriented steels annealed at short time temperature exposures with application of dynamical heating. The investigated GO steels for experiments were taken from one industrial line after final cold rolling reduction and subsequent box annealing. It was shown that application of short time heat treatment conditions could lead to complete abnormal grain growth in the investigated GO steel. The texture and microstructure obtained in the laboratory treated material is similar to that observed in the same GO steel taken after industrial final box-annealing. However, some “parasitic” grains were observed in the secondary recrystallized matrix of the laboratory treated GO steel. These “parasitic” grains possess the unwanted from magnetic properties point of view {111} orientation components.

  6. Effects of heat treatments of coal on coke destruction under blast furnace conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-09-01

    This paper discusses results of investigations on effects of chemical reactions in a blast furnace on coke disintegration and destruction. The investigations were carried out by the VUKhIN Institute branch in Kuznetsk. Effects of silicates and carbonates of sodium, potassium and zinc on mechanical coke properties were investigated under laboratory conditions. Coke samples were placed in a reactor and were treated by vapors of metal compounds. Coke produced from a coal mixture with conventional moisture content and from preheated coal mixture was used. Coal properties are given in a table. Design of laboratory equipment used for tests is shown in 2 schemes. Heat treatments influenced coke porosity and its structural strength. Proportion of large pores accessible to sodium and potassium in coke from preheated coal was 4.5 times lower than in coke from a conventional mixture. Adsorption of sodium and potassium on coke from preheated charge was lower (from 0.22% to 0.24%) than on coke from a conventional mixture (from 2.5% to 2.9%). Adsorption of alkali metals on coke reduced its structural strength and increased coke oxidation rate by carbon dioxide. Use of heat treatments of coal for coking reduced adsorption of alkali metals on coke in a blast furnace, increased coke structural strength and reduced coke oxidation rate by carbon dioxide. (16 refs.) (In Russian)

  7. The effects of combined treatment of irradiation and heat on bacteria escherichia coli and sarcina lutea in dry condition

    International Nuclear Information System (INIS)

    Nikham; Hilmy, Nazly

    1987-01-01

    The effects of combination treatment of irradiation and heat on bacteria escherichia coli and sarcina lutea in dry condition. Investigation on the effects of combined irradiation + heat and heat + irradiation treatments have been carried out i.e. at the doses of 0; 1.0; 1.5; and 2.0 kGy with heating at 50 0 C for 10; 20; and 30 minutes on escherichia coli B/r, escherichia coli from sludge and sarcine lutea. Samples of bacteria were prepared in dry condition by using sterile fine sand as carrier. Irradiation was done in aerobic condition with RH 90% and the time range between irradiation and heating was not more than 2 hours. The results showed that the D 10 value did not give significant difference between the combined irradiation + heat, and heat + irradiation treatments for the 3 species of bacteria, compared to irradiation only (p 0.05). Doses of 1.0 and 1.5 kGy combined with heating at 50 0 C for 10 and 20 minutes gave better results compared to irradiation only. 17 refs

  8. Heat treatment eliminates 'Candidatus Liberibacter asiaticus' from infected citrus trees under controlled conditions.

    Science.gov (United States)

    Hoffman, Michele T; Doud, Melissa S; Williams, Lisa; Zhang, Mu-Qing; Ding, Fang; Stover, Ed; Hall, David; Zhang, Shouan; Jones, Lisa; Gooch, Mark; Fleites, Laura; Dixon, Wayne; Gabriel, Dean; Duan, Yong-Ping

    2013-01-01

    Huanglongbing (HLB) is one of the most destructive diseases of citrus worldwide. The three known causal agents of HLB are species of α-proteobacteria: 'Candidatus Liberibacter asiaticus', 'Ca. L. africanus', and 'Ca. L. americanus'. Previous studies have found distinct variations in temperature sensitivity and tolerance among these species. Here, we describe the use of controlled heat treatments to cure HLB caused by 'Ca. L. asiaticus', the most prevalent and heat-tolerant species. Using temperature-controlled growth chambers, we evaluated the time duration and temperature required to suppress or eliminate the 'Ca. L. asiaticus' bacterium in citrus, using various temperature treatments for time periods ranging from 2 days to 4 months. Results of quantitative polymerase chain reaction (qPCR) after treatment illustrate significant decreases in the 'Ca. L. asiaticus' bacterial titer, combined with healthy vigorous growth by all surviving trees. Repeated qPCR testing confirmed that previously infected, heat-treated plants showed no detectable levels of 'Ca. L. asiaticus', while untreated control plants remained highly infected. Continuous thermal exposure to 40 to 42°C for a minimum of 48 h was sufficient to significantly reduce titer or eliminate 'Ca. L. asiaticus' bacteria entirely in HLB-affected citrus seedlings. This method may be useful for the control of 'Ca. Liberibacter'-infected plants in nursery and greenhouse settings.

  9. Effects of heat treatment conditions on microstructure and mechanical properties of AISI 420 steel

    Energy Technology Data Exchange (ETDEWEB)

    Scheuer, C.J.; Fraga, R.A.; Cardoso, R.P.; Brunatto, S.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Engenharia Mecanica. Grupo de Tecnologia de Fabricacao Assistida por Plasma e Metalurgia do Po

    2014-07-01

    The cycle control of heat treatments, on the quenching and tempering operation of AISI 420 stainless steel, is essential for improved material performance. The adequate choice of heat treatment parameters, can lead an optimization on its mechanical properties and corrosion resistance. Thus, this paper aims to investigate the effects of quenchants medium, and austenitizing and tempering temperatures, on the microstructure and mechanical properties of AISI 420 steel. Different heat treatments cycles were studied: 1) samples were austenitized at 1050°C and water, oil and air quenched; 2) samples were austenitized at range temperatures of 950-1050°C and oil quenched; and 3) as-quenched samples were tempering at range temperatures of 400-500°C. Treated samples were characterized by optical microscopy, X-ray diffractometry and hardness measurements. The samples hardness increases with increasing cooling rate (water > oil > air quenched). Water quenched samples presented crack after cooling to room temperature. Samples hardness also increases with austenitizing temperature increasing, and decreases with increasing tempering temperature. (author)

  10. Effect of heat treatment conditions on stress corrosion cracking resistance of alloy X-750 in high temperature water

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Onimura, Kichiro; Sakamoto, Naruo; Sasaguri, Nobuya; Susukida, Hiroshi; Nakata, Hidenori.

    1984-01-01

    In order to improve the resistance of the Alloy X-750 in high temperature and high purity water, the authors investigated the influence of heat treatment condition on the stress corrosion cracking resistance of the alloy. This paper describes results of the stress corrosion cracking test and some discussion on the mechanism of the stress corrosion cracking of Alloy X-750 in deaerated high temperature water. The following results were obtained. (1) The stress corrosion cracking resistance of Alloy X-750 in deaerated high temperature water remarkably depended upon the heat treatment condition. The materials solution heat treated and aged within temperature ranges from 1065 to 1100 0 C and from 704 to 732 0 C, respectively, have a good resistance to the stress corrosion cracking in deaerated high temperature water. Especially, water cooling after the solution heat treatment gives an excellent resistance to the stress corrosion cracking in deaerated high temperature water. (2) Any correlations were not observed between the stress corrosion cracking susceptibility of Alloy X-750 in deaerated high temperature water and grain boundary chromium depleted zones, precipitate free zones and the grain boundary segregation of impurity elements and so on. It appears that there are good correlations between the stress corrosion cracking resistance of the alloy in the environment and the kinds, morphology and coherency of precipitates along the grain boundaries. (author)

  11. Ability of possible DMS precursors to release DMS during wine aging and in the conditions of heat-alkaline treatment.

    Science.gov (United States)

    Segurel, Marie A; Razungles, Alain J; Riou, Christophe; Trigueiro, Mafalda G L; Baumes, Raymond L

    2005-04-06

    The origin of dimethyl sulfide (DMS) produced during wine aging was examined through different assays. The production of DMS during the model aging of a wine and the concomitant decrease of residual potential DMS (PDMS), as DMS released by heat-alkaline treatment in 0.5 M sodium hydroxide at 100 degrees C for 1 h, were demonstrated. Then, dimethyl sulfoxide (DMSO), methionine sulfoxide (MSO), S-methylmethionine (SMM), and dimethylsulfonium propanoic acid (DMSPA), reported previously as possible DMS precursors, were investigated for their ability to be DMS precursors in wine in the conditions of this model aging and of the heat-alkaline treatment. The results showed that DMSO, MSO, and DMSPA could hardly be DMS precursors in the conditions used, whereas SMM appeared to be a good candidate. Finally, the use of [(2)H(6)]-DMSPA as an internal standard for PDMS determination was proposed, because it provided better reproducibility than [(2)H(6)]-DMS used as an external standard.

  12. Effects of heat-moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: moisture and length of heating.

    Science.gov (United States)

    Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong

    2015-04-15

    Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Water corrosion of F82H-modified in simulated irradiation conditions by heat treatment

    International Nuclear Information System (INIS)

    Lapena, J.; Blazquez, F.

    2000-01-01

    This paper presents results of testing carried out on F82H in water at 260 deg. C with 2 ppm H 2 and the addition of 0.27 ppm Li in the form of LiOH. Uniform corrosion tests have been carried out on as-received material and on specimens from welded material [TIG and electron beam (EB)]. Stress corrosion cracking (SCC) tests have been carried out in as-received material and in material heat treated to simulate neutron irradiation hardening (1075 deg. C/30' a.c. and 1040 deg. C/30' + 625 deg. C/1 h a.c.) with hardness values of 405 and 270 HV30, respectively. Results for uniform corrosion after 2573 h of testing have shown weight losses of about 60 mg/dm 2 . Compact tension (CT) specimens from the as-received material tested under constant load have not experienced crack growth. However, in the simulated irradiation conditions for a stress intensity factor between 40 and 80 MPa√m, crack growth rates of about 7x10 -8 m/s have been measured

  14. Effect of furnace type and ceramming heat treatment conditions on the biaxial flexural strength of a canasite glass-ceramic.

    Science.gov (United States)

    Johnson, A; Shareef, M Y; van Noort, R; Walsh, J M

    2000-07-01

    To assess the effect of different heat treatment conditions when using two different furnace types on the biaxial flexural strength (BFS) of a fluorcanasite castable glass-ceramic. Two furnace types, one a programmable furnace (PF), the other a dental laboratory burnout furnace (DLF), were used with various ceramming times to determine their effect on the BFS of a fluorcanasite castable glass-ceramic. The glass-ceramic material was cast to produce discs of 12 mm diameter and 2 mm thickness using the lost wax casting process (n = 80). After casting, both furnace types were used to ceram the discs. Half the discs were not de-vested from the casting ring before ceramming but cerammed in situ (DLF) and half were de-vested before ceramming (PF). All the discs were given a nucleation heat treatment at 520 degrees C for 1 h and then cerammed at 860 degrees C using four heat soak times (0.5, 1, 2 and 3 h). The DLF furnace had a rate of climb of 13 degrees C/min and the PF furnace had a rate of climb of 5 degrees C/min to 520 degrees C and 3 degrees C/min to 860 degrees C. After ceramming the discs were de-vested and the BFS determined using a Lloyd 2000R tester. The maximum BFS values seen for both furnace types were almost identical (280 MPa), but were achieved at different heat soak times (1 h DLF, and 2 h PF). The only significant differences in BFS values for the two furnaces were between the 0.5 and 2 h heat soak times (p < or = 0.05). Individual differences were seen between results obtained from each furnace type/heat soak times evaluated (p < or = 0.05). Already available dental laboratory burnout furnaces can be used to ceram fluorcanasite glass-ceramic castings to the same BFS values as more expensive and slower specialist programmable furnaces.

  15. Investigation of effect of post weld heat treatment conditions on residual stress for ITER blanket shield blocks

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun-Chea, E-mail: hcjung@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Sa-Woong [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Yun-Hee [Division of Convergence Technology, Korea Research Institute of Standard and Science (KRISS), Daejeon (Korea, Republic of); Baek, Seung-Wook [Division of Industrial Metrology, Korea Research Institute of Standard and Science (KRISS), Daejeon (Korea, Republic of); Ha, Min-Su; Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • PWHT for ITER blanket shield block should be performed for dimensional stability. • Investigation of the effect of PWHT conditions on properties was performed. • Instrumented indentation method for evaluation of properties was used. • Residual stress and hardness decreased with increasing PWHT temperature. • Optimization of PWHT conditions would be needed for satisfaction of requirement. - Abstract: The blanket shield block (SB) shall be required the tight tolerance because SB interfaces with many components, such as flexible support keypads, First Wall (FW) support contact surfaces, FW central bolt, electrical strap contact surfaces and attachment inserts for both FW and Vacuum Vessel (VV). In order to fulfil the tight tolerance requirement, stress relieving shall be performed for dimensional stability after cover welding operation. In this paper, effect of Post Weld Heat Treatment (PWHT) conditions, temperature and holding time, was investigated on the residual stress and hardness. The 316L Stainless Steel (SS) was prepared and welded by manual TIG welding by using filler material with 2.4 mm of diameter. Welded 316L SS plate was machined to prepare the specimen for PWHT. PWHT was implemented at 250, 300, 400 °C for 2 and 3 h (400 °C only) and residual stress after relaxation were determined. The evaluation of residual stress and hardness for each specimen was carried out by instrumented indentation technique. The residual stress and hardness were decreased with increasing the heat treatment temperature and holding time.

  16. Studies on the Corrosion Behavior of TiCode-12 with the Variation of Environmental Factors and Heat Treatment Conditions

    International Nuclear Information System (INIS)

    Yoon, S. R.; Kim, T. Y.; Lee, K. H.

    1989-01-01

    Corrosion behavior of TiCode-12 (Ti-0.8Ni-0.3Mo) has been studied by means of electrochemical polarization measurements and corrosion morphology examinations in various corrosive environments and different heat treatment conditions of the alloy. 1N H 2 SO 4 at 45 .deg. C was taken as a standard corrosive solution in which Cl - , Fe 3+ and Br - ion were added to investigate their effects. Acid concentration and temperature were also varied. Polarization behaviors of pure Ti, Ni, Mo and Ti 2 Ni were compared with those of heat-treated TiCode-12 specimens to find out how the constituent elements and the intermetallic compound formed during heat treatment of TiCode-12 affect the corrosion of the alloy. Mill-annealed TiCode-12 showed primary and secondary active-passive transition behavior in all the tested H 2 SO 4 solutions. The former behavior was confirmed to be due to Ti and the latter due to Ni and Mo. The passive current densities increased with increased Cl - ion concentration but decreased reversely beyond certain concentration. Fe 3+ ion raised the corrosion potential of TiCode-12 to the passive region, thus reducing the corrosion rate. Br - ion was turned out to be a critical species to induce the pitting of TiCode-12 by some unknown reason. Cathodic polarization behavior of pure Ni and Ti 2 Ni revealed that hydrogen evolution reaction was promoted on these electrodes in acid media. This was ascribed to the cause for sensitization phenomena of TiCode-12 heat-treated in the temperature range in which the eutectoid reaction β→α + Ti 2 Ni occurs. Near pits, observed on a sensitized TiCode-12 specimen immersed in H 2 SO 4 , always found were β crystals in which Ni peak was detected by EDS

  17. Heat treatment of wet wood fiber: A study of the effect of reaction conditions on the formation of furfurals

    Science.gov (United States)

    Mandla A. Tshabalala; James D. McSweeny; Roger M. Rowell

    2012-01-01

    Furan monomers are produced when wood is heated at high temperatures. To understand the process conditions for production of furfural (FF) and hydroxymethylfurfural (HMF) from wood, samples of milled aspen wood were subjected to autohydrolyzis by microwave heating in a sealed Teflon reactor. The experiments were designed to simulate temperature and pressure variables...

  18. Thermal wave propagation in blood perfused tissues under hyperthermia treatment for unique oscillatory heat flux at skin surface and appropriate initial condition

    Science.gov (United States)

    Dutta, Jaideep; Kundu, Balaram

    2018-05-01

    This paper aims to develop an analytical study of heat propagation in biological tissues for constant and variable heat flux at the skin surface correlated with Hyperthermia treatment. In the present research work we have attempted to impose two unique kind of oscillating boundary condition relevant to practical aspect of the biomedical engineering while the initial condition is constructed as spatially dependent according to a real life situation. We have implemented Laplace's Transform method (LTM) and Green Function (GFs) method to solve single phase lag (SPL) thermal wave model of bioheat equation (TWMBHE). This research work strongly focuses upon the non-invasive therapy by employing oscillating heat flux. The heat flux at the skin surface is considered as constant, sinusoidal, and cosine forms. A comparative study of the impact of different kinds of heat flux on the temperature field in living tissue explored that sinusoidal heat flux will be more effective if the time of therapeutic heating is high. Cosine heating is also applicable in Hyperthermia treatment due to its precision in thermal waveform. The result also emphasizes that accurate observation must be required for the selection of phase angle and frequency of oscillating heat flux. By possible comparison with the published experimental research work and published mathematical study we have experienced a difference in temperature distribution as 5.33% and 4.73%, respectively. A parametric analysis has been devoted to suggest an appropriate procedure of the selection of important design variables in viewpoint of an effective heating in hyperthermia treatment.

  19. Production of starch nanoparticles using normal maize starch via heat-moisture treatment under mildly acidic conditions and homogenization.

    Science.gov (United States)

    Park, Eun Young; Kim, Min-Jung; Cho, MyoungLae; Lee, Ju Hun; Kim, Jong-Yea

    2016-10-20

    Normal maize starch was subjected to heat-moisture treatment (HMT) under mildly acidic conditions (0.000, 0.050, or 0.075M H2SO4) for various treatment times (3, 5, or 8h) followed by homogenization up to 60min to prepare nanoparticles. The combination of HMT (0.075M, for 8h) and homogenization (60min) produced nanoparticles with diameters of less than 50nm at a yield higher than 80%. X-ray diffractometry and size-exclusion chromatography revealed that HMT under mildly acidic conditions selectively hydrolyzed the starch chains (especially amylose and/or long chains of amylopectin) in the amorphous region of the granules without significant damage to the crystalline structure, however, modification of the molecular structure in the amorphous region increased fragility of the granules during homogenization. Homogenization for 60min caused obvious damage in the long-range crystalline structure of the HMT starch (0.15N, for 8h), while the short-range chain associations (FT-IR) remained intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Significance of heat-moisture treatment conditions on the pasting and gelling behaviour of various starch-rich cereal and pseudocereal flours.

    Science.gov (United States)

    Collar, Concha

    2017-10-01

    The impact of heat-moisture treatment processing conditions (15%, 25%, and 35% moisture content; 1, 3, and 5 h heating time at 120 ℃) on the viscosity pasting and gelling profiles of different grain flours matrices (barley, buckwheat, sorghum, high β-glucan barley, and wheat) was investigated by applying successive cooking and cooling cycles to rapid visco analyser canisters with highly hydrated samples (3.5:25, w:w). At a milder heat-moisture treatment conditions (15% moisture content, 1 h heating time), except for sorghum, heat-moisture treatment flours reached much higher viscosity values during earlier pasting and subsequent gelling than the corresponding native counterparts. Besides heat-moisture treatment wheat flour, the described behaviour found also for non-wheat-treated flours has not been previously reported in the literature. An increased hydrophobicity of prolamins and glutelins in low moisture-short heating time heat-moisture treatment of non-wheat flours with high protein content (12.92%-19.95%) could explain the enhanced viscosity profile observed.

  1. Selection of process conditions by risk assessment for apple juice pasteurization by UV-heat treatments at moderate temperatures.

    Science.gov (United States)

    Gayán, E; Torres, J A; Alvarez, I; Condón, S

    2014-02-01

    The effect of bactericidal UV-C treatments (254 nm) on Escherichia coli O157:H7 suspended in apple juice increased synergistically with temperature up to a threshold value. The optimum UV-C treatment temperature was 55 °C, yielding a 58.9% synergistic lethal effect. Under these treatment conditions, the UV-heat (UV-H55 °C) lethal variability achieving 5-log reductions had a logistic distribution (α = 37.92, β = 1.10). Using this distribution, UV-H55 °C doses to achieve the required juice safety goal with 95, 99, and 99.9% confidence were 41.17, 42.97, and 46.00 J/ml, respectively, i.e., doses higher than the 37.58 J/ml estimated by a deterministic procedure. The public health impact of these results is that the larger UV-H55 °C dose required for achieving 5-log reductions with 95, 99, and 99.9% confidence would reduce the probability of hemolytic uremic syndrome in children by 76.3, 88.6, and 96.9%, respectively. This study illustrates the importance of including the effect of data variability when selecting operational parameters for novel and conventional preservation processes to achieve high food safety standards with the desired confidence level.

  2. Melatonin treatment at dry-off improves reproductive performance postpartum in high-producing dairy cows under heat stress conditions.

    Science.gov (United States)

    Garcia-Ispierto, I; Abdelfatah, A; López-Gatius, F

    2013-08-01

    The aim of this study was to determine the effect of melatonin treatment during the early dry-off period on subsequent reproductive performance and milk production in high-producing dairy cows under heat stress conditions. In experiment I, addressing the pharmacokinetics of melatonin treatment in lactating dairy cows, doses of untreated, 3, 6, 9 or 12 implants/animal (18-mg melatonin each implant) were given as subcutaneous implants on gestation day 120-20 multiparous lactating dairy cows (four cows/dose group). Experiment II was performed during the warm season on 25 heifers and 114 high milk-producing Holstein-Friesian cows. Animals were randomly assigned to a control (C) or melatonin group (M). Animals in the M group received nine implants (heifers) or 12 (cows) of melatonin on day 220 of gestation. In experiment I, cows in the 12 implants group showed a higher maximum melatonin concentration (Cmax ) and area under the concentration curve from treatment day 0 to day 49 (AUC0-49d ) than those in the remaining groups, among which there were no significant differences in this variable. In experiment II, the likelihood of repeat breeding syndrome (pregnancy loss (first trimester) were 0.36 and 0.19 times lower in treated than control animals, respectively. Plasma prolactin levels decreased significantly (p = 0.01) after melatonin treatment and recovered during the postpartum compared to control cows. No significant effects on milk production were observed in the subsequent lactation. Significant differences in days open between groups (means 123 ± 71.9 and 103 ± 43, respectively, for C and M; p = 0.02) were registered. In conclusion, melatonin treatment in the early dry-off period improves the reproductive performance of dairy cattle, reducing the number of days open, repeat breeding syndrome and pregnancy loss. © 2012 Blackwell Verlag GmbH.

  3. On board short-time high temperature heat treatment of ballast water: a field trial under operational conditions.

    Science.gov (United States)

    Quilez-Badia, Gemma; McCollin, Tracy; Josefsen, Kjell D; Vourdachas, Anthony; Gill, Margaret E; Mesbahi, Ehsan; Frid, Chris L J

    2008-01-01

    A ballast water short-time high temperature heat treatment technique was applied on board a car-carrier during a voyage from Egypt to Belgium. Ballast water from three tanks was subjected for a few seconds to temperatures ranging from 55 degrees C to 80 degrees C. The water was heated using the vessel's heat exchanger steam and a second heat exchanger was used to pre-heat and cool down the water. The treatment was effective at causing mortality of bacteria, phytoplankton and zooplankton. The International Maritime Organization (IMO) standard was not agreed before this study was carried out, but comparing our results gives a broad indication that the IMO standard would have been met in some of the tests for the zooplankton, in all the tests for the phytoplankton; and probably on most occasions for the bacteria. Passing the water through the pump increased the kill rate but increasing the temperature above 55 degrees C did not improve the heat treatment's efficacy.

  4. Comparing the Structure and Mechanical Properties of Welds on Ductile Cast Iron (700 MPa under Different Heat Treatment Conditions

    Directory of Open Access Journals (Sweden)

    Ronny M. Gouveia

    2018-01-01

    Full Text Available The weldability of ductile iron, as widely known, is relatively poor, essentially due to its typical carbon equivalent value. The present study was developed surrounding the heat treatability of welded joints made with a high strength ductile cast iron detaining an ultimate tensile strength of 700 MPa, and aims to determine which heat treatment procedures promote the best results, in terms of microstructure and mechanical properties. These types of alloys are suitable for the automotive industry, as they allow engineers to reduce the thickness of parts while maintaining mechanical strength, decreasing the global weight of vehicles and providing a path for more sustainable development. The results allow us to conclude that heat treatment methodology has a large impact on the mechanical properties of welded joints created from the study material. However, the thermal cycles suffered during welding promote the formation of ledeburite areas near the weld joint. This situation could possibly be dealt through the implementation of post-welding heat treatments (PWHT with specific parameters. In contrast to a ductile cast iron tested in a previous work, the bull-eye ductile cast iron with 700 MPa ultimate tensile strength presented better results during the post-welding heat treatment than during preheating.

  5. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  6. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  7. Effect of heat treatment conditions on the passivation behavior of WE43C Mg–Y–Nd alloy in chloride containing alkaline environments

    Directory of Open Access Journals (Sweden)

    Jakraphan Ninlachart

    2017-06-01

    Full Text Available Mg–Y–Nd alloy (WE43C or Elektron 43 is a heat treatable magnesium wrought alloy that can be used up to 250 °C for aerospace application. This alloy has excellent mechanical properties (UTS: up to 345 MPa at room temperature and improved corrosion resistance. Electrochemical passivation studies were conducted on this alloy under different heat treatment conditions in 0.1 M NaOH solution with the addition of chloride from 0 to 1000 ppm. The passive potential range typically extended to more than 1.5 VAg/AgCl. The transpassive potential was not dependent on the heat treatment condition of the alloy when the chloride concentration increased up to 500 ppm. However, pitting protection potential varied with the heat treatment condition when the chloride addition was 500 ppm or more. The specimen surface was analyzed using scanning electron microscopy (SEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy to understand the passivation behavior of this alloy. The passivated surface of the WE43C specimens indicated that the surface layer consisted of MgO, Mg(OH2, and rare earth oxide phases, and the heat treatment conditions did not significantly affect the composition of the surface film.

  8. Heat removing under hypersonic conditions

    Directory of Open Access Journals (Sweden)

    Semenov Mikhail E.

    2016-01-01

    Full Text Available In this paper we consider the heat transfer properties of the axially symmetric body with parabolic shape at hypersonic speeds (with a Mach number M > 5. We use the numerical methods based on the implicit difference scheme (Fedorenko method with direct method based on LU-decomposition and iterative method based on the Gauss-Seigel method. Our numerical results show that the heat removing process should be performed in accordance with the nonlinear law of heat distribution over the surface taking into account the hypersonic conditions of motion.

  9. Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

    International Nuclear Information System (INIS)

    Ishiyama, Chiemi

    2012-01-01

    Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and 75 μm) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter

  10. Evaluation of Workability on the Microstructure and Mechanical Property of Modified 9Cr-2W Steel for Fuel Cladding by Cold Drawing Process and Intermediate Heat Treatment Condition

    Directory of Open Access Journals (Sweden)

    Hyeong-Min Heo

    2018-03-01

    Full Text Available In this study, we evaluated the cold drawing workability of two kinds of modified 9Cr-2W steel containing different contents of boron and nitrogen depending on the temperature and time of normalizing and tempering treatments. Using ring compression tests at room temperature, the effect of intermediate heat treatment condition on workability was investigated. It was found that the prior austenite grain size can be changed by the austenite transformation and that the grain size increases with increasing temperature during normalizing heat treatment. Alloy B and Alloy N showed different patterns after normalizing heat treatment. Alloy N had higher stress than Alloy B, and the reduction in alloy N increased while the reduction in alloy B decreased. Alloy B showed a larger number of initially formed cracks and a larger average crack length than Alloy N. Crack length and number increased proportionally in Alloy B as the stress increased. Alloy B had lower crack resistance than Alloy N due to boron segregation.

  11. Heat-treatment and heat-to-heat variations in the fracture toughness of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.

    1981-07-01

    The effect of heat-treatment and heat-to-heat variations on the J Ic fracture toughness response of Alloy 718 was examined at room and elevated temperatures using the multiple-specimen R-curve technique. Six heats of alloy 718 were tested in the conventional and modified heat-treated conditions. The fracture toughness response for the modified superalloy was found to be superior to that exhibited by the conventional material. Heat-to-heat variations in the J Ic response of Alloy 718 were observed in both heat-treated conditions; the modified treatment exhibited much larger variability. The J Ic and corresponding K Ic fracture toughness values were analyzed statistically to establish minimum expected toughness, values for use in design and safety analyses. 26 refs., 10 figs., 9 tabs

  12. Heat Treatment of Tools in Light Industry

    Science.gov (United States)

    Petukhov, V. A.

    2005-09-01

    Heat treatment processes for some tools (knitting needles, travelers for thimbles of spinning and doubling frames, thread-forming spinnerets) used for the production of cloths, hosiery, and other articles) in the knitting and textile industries are considered. Problems of the choice of steel and the kind and parameters of heat treatment are discussed in connection with the special features of tool design and operating conditions.

  13. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs.

  14. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    1997-01-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs

  15. Effect of melt conditioning on heat treatment and mechanical properties of AZ31 alloy strips produced by twin roll casting

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sanjeev, E-mail: sanjeevdas80@gmail.com [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); Barekar, N.S. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); El Fakir, Omer; Wang, Liliang [Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Prasada Rao, A.K.; Patel, J.B.; Kotadia, H.R.; Bhagurkar, A. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom); Dear, John P. [Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Fan, Z. [The EPSRC Centre ‐ LiME, BCAST, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2015-01-03

    In the present investigation, magnesium strips were produced by twin roll casting (TRC) and melt conditioned twin roll casting (MC-TRC) processes. Detailed optical microscopy studies were carried out on as-cast and homogenized TRC and MC-TRC strips. The results showed uniform, fine and equiaxed grain structure was observed for MC-TRC samples in as-cast condition. Whereas, coarse columnar grains with centreline segregation were observed in the case of as-cast TRC samples. The solidification mechanisms for TRC and MC-TRC have been found completely divergent. The homogenized TRC and MC-TRC samples were subjected to tensile test at elevated temperature (250–400 °C). At 250 °C, MC-TRC sample showed significant improvement in strength and ductility. However, at higher temperatures the tensile properties were almost comparable, despite of TRC samples having larger grains compared to MC-TRC samples. The mechanism of deformation has been explained by detailed fractures surface and sub-surface analysis carried out by scanning electron and optical microscopy. Homogenized MC-TRC samples were formed (hot stamping) into engineering component without any trace of crack on its surface. Whereas, TRC samples cracked in several places during hot stamping process.

  16. Optimized chemical composition, working and heat treatment condition for resistance to irradiation assisted stress corrosion cracking of cold worked 316 and high-chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, Toshio; Iwamura, Toshihiko; Fujimoto, Koji; Ajiki, Kazuhide

    2000-01-01

    The authors have reported that the primary water stress corrosion cracking (PWSCC) in baffle former bolts made of austenitic stainless steels for PWR after long-term operation is caused by irradiation-induced grain boundary segregation. The resistance to PWSCC of simulated austenitic stainless steels whose chemical compositions are simulated to the grain boundary chemical composition of 316 stainless steel after irradiation increased with decrease of the silicon content, increases of the chromium content, and precipitation of M 23 C 6 carbides at the grain boundaries. In order to develop resistance to irradiation assisted stress corrosion cracking in austenitic stainless steels, optimized chemical compositions and heat treatment conditions for 316CW and high-chromium austenitic stainless steels for PWR baffle former bolts were investigated. For 316CW stainless steel, ultra-low-impurities and high-chromium content are beneficial. About 20% cold working before aging and after solution treatment has also been recommended to recover sensitization and make M 23 C 6 carbides coherent with the matrix at the grain boundaries. Heating at 700 to 725degC for 20 to 50 h was selected as a suitable aging procedure. Cold working of 5 to 10% after aging produced the required mechanical properties. The optimized composition of the high-chromium austenitic stainless steel contents 30% chromium, 30% nickel, and ultra-low impurity levels. This composition also reduces the difference between its thermal expansion coefficient and that of 304 stainless steel for baffle plates. Aging at 700 to 725degC for longer than 40 h and cold working of 10 to 15% after aging were selected to meet mechanical property specifications. (author)

  17. Plasma assisted heat treatment: annealing

    International Nuclear Information System (INIS)

    Brunatto, S F; Guimaraes, N V

    2009-01-01

    This work comprises a new dc plasma application in the metallurgical-mechanical field, called plasma assisted heat treatment, and it presents the first results for annealing. Annealing treatments were performed in 90% reduction cold-rolled niobium samples at 900 deg. C and 60 min, in two different heating ways: (a) in a hollow cathode discharge (HCD) configuration and (b) in a plasma oven configuration. The evolution of the samples' recrystallization was determined by means of the microstructure, microhardness and softening rate characterization. The results indicate that plasma species (ions and neutrals) bombardment in HCD plays an important role in the recrystallization process activation and could lead to technological and economical advantages considering the metallic materials' heat treatment application. (fast track communication)

  18. Efficacy of heat treatment for disinfestation of concrete grain silos

    Science.gov (United States)

    Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50°C for at least 6 h. Ventilated plastic containers with a capacity of...

  19. Influence of heat treatment conditions on structure and corrosion fracture of welded joints of zirconium alloy with 2.5 % niobium in agressive media

    International Nuclear Information System (INIS)

    Goncharov, A.B.; Nerodenko, M.M.; Tkachenko, L.M.; Adeeva, L.I.

    1990-01-01

    Influence of heat treatment on corrosion resistance of Zr-2.5 % Nb alloy welded joints is studied. It is stated that alloy after annealing in β-region has maximum corrosion resistance in sulfuric acid. Corrosion resistance in acetic acid doesn't depend on heat treatment. The best operating characteristics in steam-water medium of high parameters have welded joints, structure and phase composition of which approach α-phase with fine-dispersed β Nb particles, uniformly distributed in grain matrix. Such structure is attained by annealing in α-region or quenching with the following annealing at 850 K

  20. Effects of heat treatment by immersion in household conditions on olive oil as compared to other culinary oils: a descriptive study

    Directory of Open Access Journals (Sweden)

    Carlos A. Nogueira-de-Almeida

    2018-04-01

    Full Text Available The objectives were to evaluate the properties of refined (ROO and extra-virgin olive oil (EVOO in their natural state (fresh and after heating, while comparing them with each other and with refined soybean (SBO and refined sunflower seed oil (SFO. The methodology was designed to simulate, in controlled laboratory conditions, the home-frying process, while evaluating fatty acid profile (fatty acid methyl esters were separated by gas chromatography, concentration of phenolic compounds (Gallic acid dosage, antioxidant activity (DPPH, and production of polar compounds (thin layer chromatography before and after heating to 200 oC for six minutes. It was observed that, before and after heating, SBO and SFO are rich in polyunsaturated fatty acids (FA and ROO and EVOO are rich in monounsaturated FA. Fresh or heated, ROO and EVOO do not have trans FA, which are present in SBO and SFO, and increase in SBO after heating (+ 32.8%. The concentrations of phenolic compounds are always higher in olive oils, despite the decrease that occurs after heating (-7.5% in the ROO and -24.6% in EVOO. Antioxidant activity is greater when olive oils are fresh and remains present in EVOO after heating. The concentration of polar compounds was similar for all oils after heating. In conclusion, ROO and EVOO are the richest in monounsaturated FA even after heating, with no production of saturated or trans FA. Despite losing some antioxidant activity, heated EVOO remains richer in monounsaturated FA than ROO, SBO and SFO in the fresh version. All oils suffer similar rates of degradation.

  1. Heating, ventilating, and air-conditioning applications

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Comfort air conditioning and heating of residences: Space HVAC systems; Industrial and special air conditioning and ventilation for nuclear facilities, and for mines; Energy sources, such as Geothermal energy, solar utilization, and energy resources; Building operation and maintenance; energy management, and Thermal storage

  2. Influence of the heat treatment condition of alloy AlCu4Mg1 on the microstructure and properties of anodic oxide layers

    Science.gov (United States)

    Morgenstern, R.; Dietrich, D.; Sieber, M.; Lampke, T.

    2017-03-01

    Due to their outstanding specific mechanical properties, high-strength, age-hardenable aluminum alloys offer a high potential for lightweight security-related applications. However, the use of copper-alloyed aluminum is limited because of their susceptibility to selective corrosion and their low wear resistance. These restrictions can be overcome and new applications can be opened up by the generation of protective anodic aluminum oxide layers. In contrast to the anodic oxidation of unalloyed aluminum, oxide layers produced on copper-rich alloys exhibit a significantly more complex pore structure. It is the aim of the investigation to identify the influence of microstructural parameters such as size and distribution of the strengthening precipitations on the coating microstructure. The aluminum alloy EN AW-2024 (AlCu4Mg1) in different heat treatment conditions serves as substrate material. The influence of the strengthening precipitations’ size and distribution on the development of the pore structure is investigated by the use of high-resolution scanning electron microscopy. Integral coating properties are characterized by non-destructive and light-microscopic thickness measurements and instrumented indentation tests.

  3. Research on suitable heating conditions during local PWHT. Pt. 1. Influence of heating conditions on temperature distribution

    International Nuclear Information System (INIS)

    Tanaka, Jinkichi; Horii, Yukihiko; Sato, Masanobu; Murakawa, Hidekazu; Wang Jianhua

    1999-01-01

    To improve weld joint properties a heat treatment so called post weld heat treatment (PWHT) is often implemented for steel weldment. Generally, the PWHT is conducted in a furnace at a factory. But in site welds such as the girth joint of pipe, a local PWHT is applied using electric heater and so on. In the local PWHT steep temperature gradient occurs depending on the heating condition and it leads to rise of the thermal stress in addition to the welding residual stress. However, heating condition is not always defined the same in some standards. Therefore, suitable heat conditions for the local PWHT were studied supposing the power plant and so on experimentally and theoretically. Temperature distribution and thermal strains under different heating conditions were measured during the local PWHT using carbon steel pipes of 340 mm in diameter and 53 mm in wall thickness. The temperature gradient, thermal strain were also analyzed using Finite Element Method (FEM) as axis-symmetric model. Further, the influences of pipe size and heat transfer coefficient on the temperature distribution were analyzed and suitable heating source widths for various pipe sizes were proposed from the viewpoint of temperature distribution. (orig.)

  4. 29 CFR 1919.80 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.80 Section 1919.80 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.80 Heat treatment. (a) Wherever heat treatment of any loose gear is recommended by the manufacturer, it shall be carried out in...

  5. 29 CFR 1919.36 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.36 Section 1919.36 Labor Regulations...) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.36 Heat treatment. (a) The annealing of wrought iron gear required by this part shall be...

  6. Theory and design of heat exchanger : Double pipe and heat exchanger in abnormal condition

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1996-02-01

    This book introduces theory and design of heat exchanger, which includes HTRI program, multiple tube heat exchanger external heating, theory of heat transfer, basis of design of heat exchanger, two-phase flow, condensation, boiling, material of heat exchanger, double pipe heat exchanger like hand calculation, heat exchanger in abnormal condition such as Jackets Vessel, and Coiled Vessel, design and summary of steam tracing.

  7. Effect of heat treatment on structure and magnetic properties

    Indian Academy of Sciences (India)

    Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorption and heat treatment processes. We investigated the effect of heat treatment conditions on structure, morphology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles attached on the ...

  8. 7 CFR 58.236 - Pasteurization and heat treatment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurization and heat treatment. 58.236 Section 58... Service 1 Operations and Operating Procedures § 58.236 Pasteurization and heat treatment. All milk and... is handled according to sanitary conditions approved by the Administrator. (a) Pasteurization. (1...

  9. Amelioration of Heat-Stress Conditions of Egyptian Summer Season on Friesian Calves Using Air Condition

    International Nuclear Information System (INIS)

    Nessim, M.Z.; Kamal, T.H.; Khalil, W.K.B.

    2010-01-01

    Male Friesian calves were used to evaluate cool air condition (AC) in alleviating heat stress (HS) determined by Heat Shock Protein genes expression (HSP), hormonal, biochemical and physiological parameters. The animals were exposed to summer heat stress (HS) under shade for two weeks (control). The maximum temperature humidity index (THI) during summer HS was from 81 to 88. Afterward the animals were exposed to AC, inside a climatic chamber for 6 hours daily for two weeks, where, the THI was from 70 to 71. The results revealed that expression level of the Hsp genes (Hsp72, Hsp70.1, Hsp70 and Hsp47) was lower under air condition treatment than under summer heat stress. Rectal temperature and respiration rate were significantly lower (p< 0.01) under air condition treatment than those under heat stress. Total triiodothyronin (T3) level was significantly higher (P< 0.05) in AC cooling treatments than in HS, while cortisol level was significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Creatinine and Urea -N levels were significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Triglycerides, ALT and AST levels were significantly lower (p<0.01), (P< 0.01) and (p<0.05), respectively in AC cooling treatment than in HS calves. These results demonstrated that there is a relationship between the molecular weight of HSPs and the level of HSPs gene exprisson. The higher the molecular weight (HSP 72) the lower is the HSPs gene expression level (0.82 in HS and 0.39 in AC) and vise versa. This holds true in both heat stress and air condition. AC treatment is capable to ameliorate heat stress of Friesian calves under hot summer climate

  10. Surface engineering and heat treatment

    International Nuclear Information System (INIS)

    Morton, P.H.

    1991-01-01

    This book is the proceedings of a Conference organised jointly by The Institute of Metals and The Centre for Exploitation of Science and Technology (CEST). It sets out to review this role and point the way to the future by collecting together a series of invited papers written by noted authorities in their fields. The opening review by CEST highlights the economic and industrial importance of Surface Engineering and is followed by a group of four articles devoted to specific branches of industry. Several technical papers then describe various aspects of the development of heat treatment over the last twenty-five years. These are followed by papers describing advances made possible by new technologies such as plasma, laser and ion beam. A separate abstract has been prepared for a paper on materials aspects of ion beam technology. (author)

  11. The effect of Al–8B grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior of an Al–12Zn–3Mg–2.5Cu aluminum alloy

    International Nuclear Information System (INIS)

    Alipour, M.; Azarbarmas, M.; Heydari, F.; Hoghoughi, M.; Alidoost, M.; Emamy, M.

    2012-01-01

    Highlights: ► The effect of Al–8B on the properties of aluminum alloy was studied. ► Al–8B is an effective in reducing the grain and reagent fine microstructure. ► Al–8B is an effective in optimization of properties. -- Abstract: In this study the effect of Al–8B grain refiner on the structural and properties of Al–12Zn–3Mg–2.5Cu aluminum alloy were investigated. The optimum amount for B containing grain refiner was selected as 3.75 wt.%. The results showed that B containing grain refiner is more effective in reducing average grain size of the alloy. T6 heat treatment was applied for all specimens before tensile testing. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the heat treatment, the average tensile strength increased from 479 MPa to 537 MPa for sample refined with 3.75 wt.% Al–8B. The fractography of the fractured faces and microstructure evolution was characterized by scanning electron microscopy and optical microscopy. Dry sliding wear performance of the alloy was examined in normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of Al–12Zn–3Mg–2.5Cu aluminum alloy to the dry sliding wear.

  12. Corrosion of heat exchanger materials under heat transfer conditions

    International Nuclear Information System (INIS)

    Tapping, R.L.; Lavoie, P.A.; Disney, D.J.

    1987-01-01

    Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at CRNL that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing, carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel-625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-28 1 . Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario Water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested

  13. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  14. Heat treatment of nickel alloys

    International Nuclear Information System (INIS)

    Smith, D.F. Jr.; Clatworthy, E.F.

    1975-01-01

    A heat treating process is described that can be used to produce desired combinations of strength, ductility, and fabricability characteristics in heat resistant age-hardenable alloys having precipitation-hardening amounts of niobium, titanium, and/or tantalum in a nickel-containing matrix. (U.S.)

  15. Heat transfer study under supercritical pressure conditions

    International Nuclear Information System (INIS)

    Yamashita, Tohru; Yoshida, Suguru; Mori, Hideo; Morooka, Shinichi; Komita, Hideo; Nishida, Kouji

    2003-01-01

    Experiments were performed on heat transfer and pressure drop of a supercritical pressure fluid flowing upward in a uniformly heated vertical tube of a small diameter, using HCFC22 as a test fluid. Following results were obtained. (1) Characteristics of the heat transfer are similar to those for the tubes of large diameter. (2) The effect of tube diameter on the heat transfer was seen for a 'normal heat transfer, but not for a 'deteriorated' heat transfer. (3) The limit heat flux for the occurrence of deterioration in heat transfer becomes larger with smaller diameter tube. (4) The Watts and Chou correlation has the best prediction performance for the present data in the 'normal' heat transfer region. (5) Frictional pressure drop becomes smaller than that for an isothermal flow in the region near the pseudocritical point, and this reduction was more remarkable for the deteriorated' heat transfer. (author)

  16. 29 CFR 1919.16 - Heat treatment.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Heat treatment. 1919.16 Section 1919.16 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.16 Heat treatment. (a) All chains (other...

  17. Advances in the heat treatment of steels

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.; Kim, J.I.; Syn, C.K.

    1978-06-01

    A number of important recent advances in the processing of steels have resulted from the sophisticated uses of heat treatment to tailor the microstructure of the steels so that desirable properties are established. These new heat treatments often involve the tempering or annealing of the steel to accompish a partial or complete reversion from martensite to austenite. The influence of these reversion heat treatments on the product microstructure and its properties may be systematically discussed in terms of the heat treating temperature in relation to the phase diagram. From this perspective, four characteristic heat treatments are defined: (1) normal tempering, (2) inter-critical tempering, (3) intercritical annealing, and (4) austenite reversion. The reactions occurring during each of these treatments are described and the nature and properties of typical product microstructures discussed, with specific reference to new commercial or laboratory steels having useful and exceptional properties

  18. Effect of heat-treatment on elevated temperature fatigue-crack growth behavior of two heats of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.; James, L.A.

    1978-05-01

    The room temperature and elevated temperature fatigue-crack growth behavior of two heats of Alloy 718 was characterized within a linear-elastic fracture mechanics framework. Two different heat-treatments were used: the ''conventional'' (ASTM A637) treatment, and a ''modified'' heat-treatment designed to improve the toughness of Alloy 718 base metal and weldments. Heat-to-heat variations in the fatigue-crack propagation behavior were observed in the conventionally-treated material. On the other hand, no heat-to-heat variations were observed in the modified condition. Furthermore, both heats of Alloy 718 exhibited superior fatigue-crack growth resistance when given the modified heat-treatment. Electron fractographic examination of Alloy 718 fatigue fracture surfaces revealed that the operative crack growth mechanisms were dependent on heat-treatment, temperature, and ΔK level

  19. Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel

    Science.gov (United States)

    Walker, Jacob D.

    Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces requires welding in the assembly; this drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment. As with most metallic materials grade 91 steel requires a very specific heat treatment process. This process includes a specific temperature and duration at that temperature to achieve the heat treatment desired. Extensive research has been done to determine the proper temperatures and duration to provide the proper microstructure for the superior mechanical properties that are inherent to Grade 91 steel. The welded sections are typically large structures that require local heat treatments and cannot be placed in an oven. The locations of these structures vary from indoors in a controlled environment to outdoors with unpredictable environments. These environments can be controlled somewhat, however in large part the surrounding conditions are unchangeable. Therefore, there is a need to develop methods to accurately apply the surrounding conditions and geometries to a theoretical model in order to provide the proper requirements for the local heat treatment procedure. Within this requirement is the requirement to define unknowns used in the heat transfer equations so that accurate models can be produced and accurate results predicted. This study investigates experimentally and numerically the heat transfer and temperature fields of Grade 91 piping in a local heat treatment. The objective of this thesis research is to determine all of the needed heat transfer coefficients. The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing a ceramic heat blanket. This will be done

  20. MATHEMATICAL MODELING OF HEATING RATE PRODUCT AT HIGH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova

    2014-01-01

    Full Text Available Methods of computing and mathematical modeling are all widely used in the study of various heat exchange processes that provide the ability to study the dynamics of the processes, as well as to conduct a reasonable search for the optimal technological parameters of heat treatment.This work is devoted to the identification of correlations among the factors that have the greatest effect on the rate of heating of the product at hightemperature heat sterilization in a stream of hot air, which are chosen as the temperature difference (between the most and least warming up points and speed cans during heat sterilization.As a result of the experimental data warming of the central and peripheral layers compote of apples in a 3 liter pot at high-temperature heat treatment in a stream of hot air obtained by the regression equation in the form of a seconddegree polynomial, taking into account the effects of pair interaction of these parameters. 

  1. Technical project of complex fast cycle heat treatment of hydrogenous coal preparation

    OpenAIRE

    Moiseev, V. A.; Andrienko, V. G.; Pileckij, V. G.; Urvancev, A. I.; Gvozdyakov, Dmitry Vasilievich; Gubin, Vladimir Evgenievich; Matveev, Aleksandr Sergeevich; Savostiyanova, Ludmila Viktorovna

    2015-01-01

    Problems of heat-treated milled hydrogenous coal preparation site creation in leading fast cycle heat treatment complex were considered. Conditions for effective use of electrostatic methods of heat-treated milled hydrogenous coal preparation were set. Technical project of heat treatment of milled hydrogenous coal preparation site was developed including coupling of working equipment complex on fast heat treatment and experimental samples of equipment being designed for manufacturing. It was ...

  2. 49 CFR 179.400-12 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.400-12 Section 179... and 107A) § 179.400-12 Postweld heat treatment. (a) Postweld heat treatment of the inner tank is not... be attached before postweld heat treatment. Welds securing the following need not be postweld heat...

  3. The effect of external boundary conditions on condensation heat transfer in rotating heat pipes

    Science.gov (United States)

    Daniels, T. C.; Williams, R. J.

    1979-01-01

    Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.

  4. Effects of heat treatment condition on the mechanical properties and weldability of 10Cr-1Mo-VNbN cast steel

    International Nuclear Information System (INIS)

    Shon, Dae Young; Bang, Kook Soo; Lee, Kyong Woon; Chi, Byung Ha

    2003-01-01

    Mechanical properties and weldability such as HAZ hardness, cold cracking susceptibility and hot ductility of two differently heat treated 10Cr-1Mo-VNbN cast steels were measured and compared. Because of high hardenability of the cast steel, as-annealed cast steel showed martensitic microstructure and thus had higher hardness than annealed-normalized-tempered cast steel which had tempered martensite. Because the welding electrode used resulted in a high hardness weld metal, both cast steels showed same weld metal cold cracking susceptibility even though the as-annealed cast steel had higher HAZ hardness than the annealed-normalized-tempered cast steel. Both cast steels had excellent hot ductility in high temperature range, indicating no risk of grain boundary liquation cracking in the HAZ. However, the as-annealed cast steel showed an inferior ductility in the intermediate temperature range of 1000∼1150 .deg. C because of larger unrecrystallized grain size

  5. Heat loss of heat pipelines in insulation moisture conditions with the evaporation

    Directory of Open Access Journals (Sweden)

    Polovnikov Vyacheslav Yu.

    2014-01-01

    Full Text Available Results of numerical simulation of heat and mass transfer in a wet fibroporous material in conditions of evaporation and steam diffusion were obtained. Values of heat and mass fluxes were established. The contribution of evaporation effect to total heat flux and need to consider volume fractions of water and steam into the structure of fibroporous material in calculation of effective thermal conductivity were shown. Nonstationarity of heat and mass transfer in conditions of considered problem can be ignored.

  6. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    Science.gov (United States)

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  7. Failures of tool steels after heat treatments

    International Nuclear Information System (INIS)

    Nunez-Gonzalez, G.

    1990-01-01

    The main objective of the work was to determine the most common defects occuring in tool steels of the AISI D-2, S-1, 0-1 and W-2 series during thermal treatment. Defects were evaluated by metallographic analyses, a method used to determine and recognize micro structural defects and their origin in order to be able to eliminate and correct some of the stages that are caused by heat treatment. Results show a large number of defects due to irregularities during thermal heating such as excess or lack of temperature, heating time, and atmosphere, rectifying and handling in service and, to a lesser extent, poor design. In conclusion, with the results obtained for each of the thermal treatments it is necessary to define, particularly the values each of these variables should have since they affect the material properties. (Author)

  8. Lowcost automated control for steel heat treatments

    International Nuclear Information System (INIS)

    Zambaldi, Edimilson; Magalhães, Ricardo R.; Barbosa, Bruno H.G.; Silva, Sandro P. da; Ferreira, Danton D.

    2017-01-01

    Highlights: • Control the furnace temperature measured by thermocouple and adjusts it. • Activating the furnace resistors through Pulse Width Modulation. • Appling heat treatments to steels by a low-cost controller. - Abstract: The aim of this paper is to propose a low cost, automated furnace control system for the heat treatment of steel. We used an open source electronic prototyping platform to control the furnace temperature, thus reducing human interaction during the heat process. The platform can be adapted to non-controlled commercial furnaces, which are often used by small businesses. A Proportional-Integral-Derivative (PID) controller was implemented to regulate the furnace temperature based on a defined heat treatment cycle. The embedded system activates the furnace resistors through Pulse Width Modulation (PWM), allowing for control of electrical power supplied to the furnace. Hardening and tempering were performed on standard steel samples using a traditional method (visual inspection without temperature control) as well the embedded system with PID feedback control. The results show that the proposed system can reproduce an arbitrary heat treatment curve with accuracy and provide the desired final hardness as inferred through metallographic analysis. In addition, we observed a 6% saving in energy consumption using the proposed control system. Furthermore, the estimated cost to implement the system is 42% lower than a commercial controller model implemented in commercial furnaces.

  9. Modeling heat stress under different environmental conditions.

    Science.gov (United States)

    Carabaño, M J; Logar, B; Bormann, J; Minet, J; Vanrobays, M-L; Díaz, C; Tychon, B; Gengler, N; Hammami, H

    2016-05-01

    Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The

  10. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of ... Some of the products developed by thermal treat- .... boards were stored uncontrolled condition in an unheated room for .... These results can be explained with material loses in ...... Finland-state of the art.

  11. A simple heat transfer model for a heat flux plate under transient conditions

    International Nuclear Information System (INIS)

    Ryan, L.; Dale, J.D.

    1985-01-01

    Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)

  12. 49 CFR 179.220-11 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.220-11 Section 179... Postweld heat treatment. (a) Postweld heat treatment of the inner container is not a specification requirement. (b) Postweld heat treatment of the cylindrical portions of the outer shell to which the anchorage...

  13. 49 CFR 179.500-6 - Heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Heat treatment. 179.500-6 Section 179.500-6...-6 Heat treatment. (a) Each necked-down tank shall be uniformly heat treated. Heat treatment shall... treatment of alternate steels shall be approved. All scale shall be removed from outside of tank to an...

  14. Assembly for melting and heat treatment

    International Nuclear Information System (INIS)

    Blumenfeld, M.

    1976-11-01

    Laboratory scale production of alloys having a precise alloying materials content and the exact heat treatment of metallurgical specimens are discussed. The design and assembly of two relevant instruments are described. These instruments include a laboratory vacuum induction furnace and a specially designed glass lathe, that enables even an unskilled operator to encapsulate and seal metallurgical specimens in glass capsules. (author)

  15. Effect of heat treatment temperature on microstructure

    Indian Academy of Sciences (India)

    The results of electrochemical performance measurements for the HCSs as anode material for lithium ion batteries indicate that the discharge capacity of the HCSs is improved after heat treatment at 800°C compared with the as-prepared HCSs and have a maximum value of 357 mAh/g and still retains 303 mAh/g after 40 ...

  16. Plasma treatment of heat-resistant materials

    International Nuclear Information System (INIS)

    Vlasov, V A; Kosmachev, P V; Skripnikova, N K; Bezukhov, K A

    2015-01-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion. (paper)

  17. Nonsteady heat conduction code with radiation boundary conditions

    International Nuclear Information System (INIS)

    Fillo, J.A.; Benenati, R.; Powell, J.

    1975-01-01

    A heat-transfer model for studying the temperature build-up in graphite blankets for fusion reactors is presented. In essence, the computer code developed is for two-dimensional, nonsteady heat conduction in heterogeneous, anisotropic solids with nonuniform internal heating. Thermal radiation as well as bremsstrahlung radiation boundary conditions are included. Numerical calculations are performed for two design options by varying the wall loading, bremsstrahlung, surface layer thickness and thermal conductivity, blanket dimensions, time step and grid size. (auth)

  18. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  19. Desensitization of stainless steels by laser surface heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Yoshikuni; Nishimoto, Kazutoshi

    1987-11-01

    Laser heating was applied for the desensitization heat-treatment of the surface layer in the sensitized HAZ of Type 304 stainless steel. The degree of sensitization was examined by EPR technique and the 10 % oxalic acid electrolytic etch test. The CO/sub 2/ laser with maximum power of 1.5 kW was used for heat-treatment. Time-Temperature-Desensitization diagram (TTDS diagram) for sensitized Type 304 stainless steels were developed by calculation assuming the chromium diffusion control for desensitization which might occur when the chromium depleted zone was healed up due to dissolution of chromium carbide and chromium diffusion from the matrix being heated at the solution annealing temperatures. TTDS diagrams calculated agree fairly well with ones determined by corrosion tests. Laser irradiation conditions (e.g., Laser power, beam diameter and traveling velocity) required for desensitization of sensitized Type 304 stainless steels were calculated using additivity rule from the TTDS diagram calculated and theoretical thermal curve of laser heating derived from the heat conduction theory. After laser beam irradiated under an optimum condition predicted by calculation, the sensitized HAZ of Type 304 stainless steel restored complete resistance to intergranular corrosion.

  20. Heat Treatment and Properties of Iron and Steel

    National Research Council Canada - National Science Library

    Digges, Thomas

    1966-01-01

    .... Chemical compositions, heat treatments, and some properties and uses are presented for structural steels, tool steels, stainless and heat-resisting steels, precipitation-hardenable stainless steels...

  1. Effect of heated length on the Critical Heat Flux of subcooled flow boiling. 2. Effective heated length under axially nonuniform heating condition

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio

    1998-01-01

    Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)

  2. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.

    2008-01-01

    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  3. Transient heat transfer into superfluid helium under confined conditions

    International Nuclear Information System (INIS)

    Filippov, Yu.P.; Miklyaev, V.M.; Sergeev, I.A.

    1988-01-01

    Transient thermal processes at solid-HeII interface at input of step pulse of heat load was investigated. Particular attention is given to the study of influence of geometry of experimental specimen upon the heat transfer dynamics. Abrupt breakdown of highly efficient transfer modes caused by the developmet of superfluid turbulence under confined condition is revealed, and accompanying temperature shift is registered. Some characteristic parameters are selected, their dependence on experimental conditions is established

  4. Fabrication techniques to eliminate postweld heat treatment

    International Nuclear Information System (INIS)

    Lochhead, J.C.

    1978-01-01

    Postweld heat treatments to reduce residual stresses (stress relief operations) have been a common practice in the pressure vessel industry for a large number of years. A suitable heat treatment operation can, in particular for low alloy steels, have additional beneficial effects, i.e. a reduction in peak hardness values in the heat-affected zone, an improvement in weld metal properties, and a lowering of the adverse effects of the welding process on the mechanical properties of the parent material adjacent to the weld metal. However, continuing studies in the field of brittle fracture, improved parent materials, and more sophisticated nondestructive testing techniques have led to the elimination of such a practice in ever-increasing thickness ranges and types of material. For instance, the recently issued BS 5500 compared with BS 1113 (1969) lifts the thickness limit requiring stress relief in certain circumstances from 19 to 35mm for C steels. With respect to materials the CEGB has stated that as a result of successful operational experience it will no longer be necessary to postweld heat treat butt welds in 2 1/4 Cr-1Mo tubes of certain dimensions. Despite this trend, over a period of years a number of instances have arisen where, because of some factor, postweld heat treatment, although perhaps desirable, is not possible. This Paper describes several such examples. It must be noted that the examples quoted consist of relatively important and major items. It has been necessary within the confines of this Paper to condense the reports. It is hoped that no significant factors have been omitted. (author)

  5. Influence of silicon content and heat treatment on wear resistance of white chromium cast irons under high speed solidification conditions; Influencia del contenido de silicio y el tratamiento termico en la resistencia al desgaste de fundiciones blancas al cromo en condiciones de rapida solidificacion

    Energy Technology Data Exchange (ETDEWEB)

    Goyo, L.; Varela, A.; Verhaege, M.; Garcia, A.; Mier, J.; Moors, M.

    2012-11-01

    The influence of silicon content and heat treatment on microstructure, abrasive and dry friction wear resistance of a 3 % C, 12 % Cr cast iron, under fast solidification conditions is studied. The fast solidification condition diminishes the carbide volume and the silicon content increases their dispersion and finesses. All matrixes obtained were perlitics, whit different finesses. No intermediate transformation products were noticed. Hardness had little variation. Austenization treatment show little effectivity, with tendency to increase wear in reference to as cast and maintenance treatments. Behavior under dry friction and abrasive wear were similar under test conditions applied whit more influence of carbide morphology in the abrasive wear conditions. (Author) 32 refs.

  6. Optimum heat power cycles for specified boundary conditions

    International Nuclear Information System (INIS)

    Ibrahim, O.M.; Klein, S.A.; Mitchell, J.W.

    1991-01-01

    In this paper optimization of the power output of Carnot and closed Brayton cycles is considered for both finite and infinite thermal capacitance rates of the external fluid streams. The method of Lagrange multipliers is used to solve for working fluid temperatures that yield maximum power. Analytical expressions for the maximum power and the cycle efficiency at maximum power are obtained. A comparison of the maximum power from the two cycles for the same boundary conditions, i.e., the same heat source/sink inlet temperatures, thermal capacitance rates, and heat exchanger conductances, shows that the Brayton cycle can produce more power than the Carnot cycle. This comparison illustrates that cycles exist that can produce more power than the Carnot cycle. The optimum heat power cycle, which will provide the upper limit of power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger conductances is considered. The optimum heat power cycle is identified by optimizing the sum of the power output from a sequence of Carnot cycles. The shape of the optimum heat power cycle, the power output, and corresponding efficiency are presented. The efficiency at maximum power of all cycles investigated in this study is found to be equal to (or well approximated by) η = 1 - sq. root T L.in /φT H.in where φ is a factor relating the entropy changes during heat rejection and heat addition

  7. Liquid metal heat transfer in heat exchangers under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, Hiroyasu

    2015-01-01

    The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)

  8. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures......, the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  9. Analyzing energy consumption while heating one-layer building envelopes in conditions of intermittent heating

    Directory of Open Access Journals (Sweden)

    Vytchikov Yury

    2017-01-01

    Full Text Available This paper focuses on energy consumption for heating single layer building envelopes, used in conditions of intermittent heating in different physical and mechanical and thermophysical parameters of construction materials. The authors investigated several variants of single-layer building envelopes, used frequently in building practice, with different density and coefficients of building materials thermal conductivity. For each variant of a building envelope heat leakage and time spent on heating were calculated. Heating time was calculated by both exact and approximate analytical method. Then the researchers draw a graphic dependence of energy consumption on the density of the material taking this computational data as a basis. Further analysis showed that building envelopes made of lightweight aggregate concrete and porous concrete were the most energy efficient.This paper focuses on energy consumption for heating single layer building envelopes, used in conditions of intermittent heating in different physical and mechanical and thermophysical parameters of construction materials. The authors investigated several variants of single-layer building envelopes, used frequently in building practice, with different density and coefficients of building materials thermal conductivity. For each variant of a building envelope heat leakage and time spent on heating were calculated. Heating time was calculated by both exact and approximate analytical method. Then the researchers draw a graphic dependence of energy consumption on the density of the material taking this computational data as a basis. Further analysis showed that building envelopes made of lightweight aggregate concrete and porous concrete were the most energy efficient.

  10. Induction heat treatment of laser welds

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Sørensen, Joakim Ilsing

    2003-01-01

    of an induction coil. A number of systematic laboratory tests were then performed in order to study the effects of the coil on bead-on-plate laser welded samples. In these tests, important parameters such as coil current and distance between coil and sample were varied. Temperature measurements were made...... the laser beam as close as possible. After welding, the samples were quality assessed according to ISO 13.919-1 and tested for hardness. The metallurgical phases are analysed and briefly described. A comparison between purely laser welded samples and induction heat-treated laser welded samples is made......In this paper, a new approach based on induction heat-treatment of flat laser welded sheets is presented. With this new concept, the ductility of high strength steels GA260 with a thickness of 1.8 mm and CMn with a thickness of 2.13 mm is believed to be improved by prolonging the cooling time from...

  11. Research on Heat Exchange Process in Aircraft Air Conditioning System

    Science.gov (United States)

    Chichindaev, A. V.

    2017-11-01

    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  12. 49 CFR 179.200-11 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.200-11 Section 179.200-11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. When specified in § 179.201-1, after welding is complete, postweld heat treatment...

  13. Conjugate gradient heat bath for ill-conditioned actions.

    Science.gov (United States)

    Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele

    2007-08-01

    We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heat-bath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heat-bath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.

  14. Cooling and heating performances of a CO2 heat pump with the variations of operating conditions

    International Nuclear Information System (INIS)

    Baek, Chang Hyun; Lee, Eung Chan; Kang, Hun; Kim, Yong Chan; Cho, Hong Hyun

    2008-01-01

    Since operating conditions are significantly different for heating and cooling mode operations in a CO 2 heat pump system, it is difficult to optimize the performance of the CO 2 cycle. In addition, the performance of a CO 2 heat pump is very sensitive to outdoor temperature and gascooler pressure. In this study, the cooling and heating performances of a variable speed CO 2 heat pump with a twin-rotary compressor were measured and analyzed with the variations of EEV opening and compressor frequency. As a result, the cooling and heating COPs were 2.3 and 3.0, respectively, when the EEV opening was 22%. When the optimal EEV openings for heating and cooling were 28% and 16%, the cooling and heating COPs increased by 3.3% and 3.9%, respectively, over the COPs at the EEV opening of 22%. Beside, the heating performance was more sensitive to EEV opening than the cooling performance. As the compressor speed decreased by 5 Hz, the cooling COP increased by 2%, while the heating COP decreased by 8%

  15. Viscose liquid heat treatment using plate scraper heat exchanger

    Directory of Open Access Journals (Sweden)

    K. A. Rashkin

    2012-01-01

    Full Text Available The current work analyzes the use of different types of heat exchangers, depending on the technology of production. It is taken the detail analysis of the ways of applicability of various types of heat exchangers, depending on the viscosity of the processed product. It is posed the problem of the analytical determination of the required area of heat exchange with the use of differential equations of heat transfer in a moving liquid media, written in cylindrical coordinates, for symmetrical temperature distribution, without taking in account the energy dissipation.

  16. Simulations of Precipitate Microstructure Evolution during Heat Treatment

    Science.gov (United States)

    Wu, Kaisheng; Sterner, Gustaf; Chen, Qing; Jou, Herng-Jeng; Jeppsson, Johan; Bratberg, Johan; Engström, Anders; Mason, Paul

    Precipitation, a major solid state phase transformation during heat treatment processes, has for more than one century been intensively employed to improve the strength and toughness of various high performance alloys. Recently, sophisticated precipitation reaction models, in assistance with well-developed CALPHAD databases, provide an efficient and cost-effective way to tailor precipitate microstructures that maximize the strengthening effect via the optimization of alloy chemistries and heat treatment schedules. In this presentation, we focus on simulating precipitate microstructure evolution in Nickel-base superalloys under arbitrary heat treatment conditions. The newly-developed TC-PRISMA program has been used for these simulations, with models refined especially for non-isothermal conditions. The effect of different cooling profiles on the formation of multimodal microstructures has been thoroughly examined in order to understand the underlying thermodynamics and kinetics. Meanwhile, validations against several experimental results have been carried out. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean-field approximations, compatibility between CALPHAD databases, selection of key parameters (particularly interfacial energy and nucleation site densities), etc., are also addressed.

  17. Minimization of heat slab nodes with higher order boundary conditions

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1992-01-01

    The accuracy of a numerical solution can be limited by the numerical approximation to the boundary conditions rather than the accuracy of the equations which describe the interior. The study presented in this paper compares the results from two different numerical formulations of the convective boundary condition on the face of a heat transfer slab. The standard representation of the boundary condition in a test problem yielded an unacceptable error even when the heat transfer slab was partitioned into over 300 nodes. A higher order boundary condition representation was obtained by using a second order approximation for the first derivative at the boundary and combining it with the general equation used for inner nodes. This latter formulation produced reasonable results when as few as ten nodes were used

  18. Bayesian recovery of the initial condition for the heat equation

    NARCIS (Netherlands)

    Knapik, B.T.; Vaart, van der A.W.; Zanten, van J.H.

    2011-01-01

    We study a Bayesian approach to recovering the initial condition for the heat equation from noisy observations of the solution at a later time. We consider a class of prior distributions indexed by a parameter quantifying "smoothness" and show that the corresponding posterior distributions contract

  19. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pérez

    2012-12-01

    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  20. Lubricant depletion under various laser heating conditions in Heat Assisted Magnetic Recording (HAMR)

    Science.gov (United States)

    Xiong, Shaomin; Wu, Haoyu; Bogy, David

    2014-09-01

    Heat assisted magnetic recording (HAMR) is expected to increase the storage areal density to more than 1 Tb/in2 in hard disk drives (HDDs). In this technology, a laser is used to heat the magnetic media to the Curie point (~400-600 °C) during the writing process. The lubricant on the top of a magnetic disk could evaporate and be depleted under the laser heating. The change of the lubricant can lead to instability of the flying slider and failure of the head-disk interface (HDI). In this study, a HAMR test stage is developed to study the lubricant thermal behavior. Various heating conditions are controlled for the study of the lubricant thermal depletion. The effects of laser heating repetitions and power levels on the lubricant depletion are investigated experimentally. The lubricant reflow behavior is discussed as well.

  1. Mortality of insect life stages during simulated heat treatment

    Science.gov (United States)

    . Heat treatment for insect disinfestation uses elevated air temperatures that are lethal to stored-product insects. Heat treatment has been demonstrated in our research to offer a reduced-risk alternative to fumigation or residual pesticide use in empty bins. Heat is also compatible with organic gr...

  2. Analysis of heat transfer under high heat flux nucleate boiling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Dinh, N. [3145 Burlington Laboratories, Raleigh, NC (United States)

    2016-07-15

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  3. Analysis of heat transfer under high heat flux nucleate boiling conditions

    International Nuclear Information System (INIS)

    Liu, Y.; Dinh, N.

    2016-01-01

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  4. Reduced Urban Heat Island intensity under warmer conditions

    Science.gov (United States)

    Scott, Anna A.; Waugh, Darryn W.; Zaitchik, Ben F.

    2018-06-01

    The Urban Heat Island (UHI), the tendency for urban areas to be hotter than rural regions, represents a significant health concern in summer as urban populations are exposed to elevated temperatures. A number of studies suggest that the UHI increases during warmer conditions, however there has been no investigation of this for a large ensemble of cities. Here we compare urban and rural temperatures in 54 US cities for 2000–2015 and show that the intensity of the Urban Heat Island, measured here as the differences in daily-minimum or daily-maximum temperatures between urban and rural stations or ΔT, in fact tends to decrease with increasing temperature in most cities (38/54). This holds when investigating daily variability, heat extremes, and variability across climate zones and is primarily driven by changes in rural areas. We relate this change to large-scale or synoptic weather conditions, and find that the lowest ΔT nights occur during moist weather conditions. We also find that warming cities have not experienced an increasing Urban Heat Island effect.

  5. Dimensional analysis of boiling heat transfer burnout conditions

    International Nuclear Information System (INIS)

    El-Mitwally, E.S.; Raafat, N.M.; Darwish, M.A.

    1979-01-01

    The first criteria in boiling water systems design, such as boiling water reactors, is that no burnout in the core is allowed to exist under any conditions of the reactor operation either during steady state operation or during any of the several postulated accidental transients, such as sudden interruption of coolant flow in the reactor core (due to pump failure or blockage of fuel channel). The aim of the present work is to obtain a correlation for the critical heat flux based on a theoretical study where the mechanism of burn out and the related hydrodynamic and heat transfer equations are considered. 8 refs

  6. Heat transfer augmentation in a tube using nanofluids under constant heat flux boundary condition: A review

    International Nuclear Information System (INIS)

    Singh, Vinay; Gupta, Munish

    2016-01-01

    Highlights: • Reviews heat transfer augmentation of nanofluids in a tube with constant heat flux. • Recent advances in hybrid nanofluids are reviewed. • Identifies and compares significant results. • Scope of future research in this area is discussed. - Abstract: In the last few decades, research on nanofluids has increased rapidly. Traditional heat transfer fluids with order of nanometer sized particles (1–100 nm) suspended in them are termed as nanofluids. Nanofluids have been proved as better heat transfer fluids despite of various contradictions in results by different research groups. The aim of this article is to review and summarize the recent experimental and theoretical studies on convective heat transfer in heat exchangers using constant heat flux boundary condition. The use of different types of nanoparticles with different base fluids by different research groups has been presented and compared. Further an overview of experimental results about heat transfer abilities of hybrid nanofluids from available literature sources is also presented. Finally, the challenges and future directions in which research can be further progress are discussed.

  7. Verification of Conditions for use of Combustion Products‘ Heat

    Directory of Open Access Journals (Sweden)

    Kažimírová Viera

    2015-06-01

    Full Text Available Presented contribution deals with the verification of conditions for use of combustion products‘ heat, generated by combustion of wood in a fireplace used in a household. It is necessary to know the temperature behaviour of the fireplace to determine the adequacy of the technical solution for using combustion products‘ heat. The combustion products‘ temperature at the upper part of the chimney is 80-120 °C. The dew point value was established to be below 51 °C. The average observed value of combustion product velocity is 1.6 m s-1. The volume flow rate of combustion products is 12 m3 h-1. Measured values allow for effective solution of the use of combustion products‘ heat.

  8. Effect of heat conditions on the mechanical properties of boron nitride polycrystals

    International Nuclear Information System (INIS)

    Bochko, A.V.

    1986-01-01

    This paper examines the effect of various types of heat treatment on the mechanical and service properties of polycrystals of boron nitride. Quantitative phase analysis was carried out using the methods described when using a DRON-2.0 x-ray diffractometer. The mechanical characteristics were determined by the method of local loading using the standard nitride polycrystals in the initial state are quite high. On the basis of the results it may be concluded that the heat treatment conditions examined (annealing, hf heating, annealing and hf heating) lead to the same changes in the structural state as those taking place in thermal cycling thus causing the corresponding reduction of the level of the strength properties of the boron nitride polycrystals

  9. A THEORETICAL HEAT ANALYSIS OF BUILDINGS IN SUMMER CONDITION

    Directory of Open Access Journals (Sweden)

    R. Tuğrul OĞULATA

    1997-01-01

    Full Text Available It is possible to achive the bio-climatical comfort is buildings by setting the indoor temperature at certain level at which the people feels himself comfortable. The indoor temperature changing with the summer-winter climate conditions and with the building materials should always be around desirable level. Therefore, the variation of indoor temperature depending on the natural and artifical cooling and heating of building materials, within the range of design, is becoming so important. For this reason, in this investigation, the variation of indoor temperature has been analysed considering the variation of heat gain by convection, radiation and infiltration, the heat capacity of materials used in building including the outdoor and the temperature of outer ambient. In addition to this, the variation of indoor temperature with time has been computed under the condition that whether the cooling source exist or not. For this purpose, the heat gains, the indoor and outer temperature, the capacity of cooling system and solar radiation have been expressed analyticaly by transforming them into Fourier series.

  10. Dimensional Behavior of Matrix Graphite Compacts during Heat Treatments for HTGR Fuel Element Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung

    2015-01-01

    The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K. This carbonization step is followed by the final high temperature heat treatment where the carbonized compacts are heat treated at 2073-2173 K in vacuum for a relatively short time (about 2 hrs). In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions, which has a strong influence on the further steps and the material properties of fuel element. In this work, the dimensional changes of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed, keeping other process parameters constant, such as the binder content, carbonization time, temperature and atmosphere (two hours ant 1073K and N2 atmosphere). In this work, the dimensional variations of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed

  11. 49 CFR 179.100-10 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.100-10 Section 179...-10 Postweld heat treatment. (a) After welding is complete, steel tanks and all attachments welded... treatment is prohibited. (c) Tank and welded attachments, fabricated from ASTM A 240/A 240M (IBR, see § 171...

  12. Modelling of air-conditioned and heated spaces

    Energy Technology Data Exchange (ETDEWEB)

    Moehl, U

    1987-01-01

    A space represents a complex system involving numerous components, manipulated variables and disturbances which need to be described if dynamic behaviour of space air is to be determined. A justifiable amount of simulation input is determined by the application of adjusted modelling of the individual components. The determination of natural air exchange in heated spaces and of space-air flow in air-conditioned space are a primary source of uncertainties. (orig.).

  13. Classical conditioning in the treatment of psoriasis.

    Science.gov (United States)

    Ader, R

    2000-11-01

    It has been argued that the placebo effect represents a learned response. Research is suggested to address the utility of applying principles derived from classical (Pavlovian) conditioning to the design of drug treatment protocols. In the present instance, it is hypothesized that, by capitalizing on conditioned pharmacotherapeutic responses, it may be possible to reduce the cumulative amount of corticosteroid medication used in the treatment of psoriasis.

  14. Sensory evaluation of heating and air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Evin, F.; Siekierski, E. [Electricite de France, Research and Development Division, Les Renardieres, Moret Sur Loing (France)

    2002-07-01

    Existing standards and models, such as ISO 7730 or the work of Fanger [Thermal Comfort], are not sufficient to characterise the satisfaction and pleasantness of end-users provided by heating or air conditioning systems. For this reason Electricite de France (EDF) has initiated a project with the aim of using sensory evaluation techniques in the design of HVAC systems. Sensory evaluation has been used for more than 30 years in the food industry, and now involves the cosmetics, the phone and the automotive industries. It is based on a dual evaluation: sensation measurements carried out by a small panel of trained expert assessors; preference studies performed by a large panel of representative consumers. A correlation between the data of both studies is then used to explain the preferences in terms of sensations (preference mapping). The first experiments performed in 1999 and 2000 have provided lists of descriptors of thermal sensation and acoustic sensation associated with heating and air conditioning appliances. They show that it is possible to define discriminative descriptors, to train a panel and to reliably quantify these descriptors. It is then possible to draw the sensory profiles of different heating, ventilation and air conditioning (HVAC) systems. The future experimental laboratory that EDF has decided to build is also presented, where the trained panels and end-users will evaluate the sensations and the preferences of real systems in eight 'realistic environmental chambers' designed, furnished and decorated like offices and flats. (author)

  15. Optimization of properties of parts in the heat treatment

    International Nuclear Information System (INIS)

    Shpis, Kh.I.

    1981-01-01

    Properties of parts of the improved steel depending considerably on the structure obtained after the tempering have been investigated. It is shown that in many cases properties of steel with the structure of the tempered lower bainite are no worse than the properties of steels with the structure of tempered martensite. At certain dimensions of parts and under certain conditions of cooling tempering degree is determined with calcination. Calcination of steel is evaluated by the dispersion bands of hardness obtained using the method of end quenching. Account of the calcination when steels are selected permits to optimize part properties during heat treatment [ru

  16. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions

    DEFF Research Database (Denmark)

    Webber, Heidi; White, Jeffrey W; Kimball, Bruce

    2018-01-01

    to simulate Tc. Model performance in predicting Tc was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences...... between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions....

  17. Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Ren, Xianghao

    2016-01-01

    Highlights: • Specially designed fixed-inverter hybrid heat pump system was developed. • Hybrid operation performed better at part loads than single inverter operation. • The applied heat pump can work stably over a wide range of heat load variations. • Heat energy potential of treated effluent was better than influent. • The heat pump’s COP from the field test was 4.06 for heating and 3.64 for cooling. - Abstract: Among many options to improve energy self-sufficiency in sewage treatment plants, heat extraction using a heat pump holds great promise, since wastewater contains considerable amounts of thermal energy. The actual heat energy demand at municipal wastewater treatment plants (WWTPs) varies widely with time; however, the heat pumps typically installed in WWTPs are of the on/off controlled fixed-speed type, thus mostly run intermittently at severe part-load conditions with poor efficiency. To solve this mismatch, a specially designed, fixed-inverter hybrid heat pump system incorporating a fixed-speed compressor and an inverter-driven, variable-speed compressor was developed and tested in a real WWTP. In this hybrid configuration, to improve load response and energy efficiency, the base-heat load was covered by the fixed-speed compressor consuming relatively less energy than the variable-speed type at nominal power, and the remaining varying load was handled by the inverter compressor which exhibits a high load-match function while consuming relatively greater energy. The heat pump system developed reliably extracted heat from the treated effluent as a heat source for heating and cooling purposes throughout the year, and actively responded to the load changes with a high measured coefficient of performance (COP) of 4.06 for heating and 3.64 for cooling. Moreover, this hybrid operation yielded a performance up to 15.04% better on part loads than the single inverter operation, suggesting its effectiveness for improving annual energy saving when

  18. Experimental assessment for instantaneous temperature and heat flux measurements under Diesel motored engine conditions

    International Nuclear Information System (INIS)

    Torregrosa, A.J.; Bermúdez, V.; Olmeda, P.; Fygueroa, O.

    2012-01-01

    Higlights: ► We measured in-cylinder wall heat fluxes. ► We examine the effects of different engine parameters. ► Increasing air mass flow increase heat fluxes. ► The effect of engine speed can be masked by the effect of volumetric efficiency. ► Differences among the different walls have been found. - Abstract: The main goal of this work is to validate an innovative experimental facility and to establish a methodology to evaluate the influence of some of the engine parameters on local engine heat transfer behaviour under motored steady-state conditions. Instantaneous temperature measurements have been performed in order to estimate heat fluxes on a modified Diesel single cylinder combustion chamber. This study was divided into two main parts. The first one was the design and setting on of an experimental bench to reproduce Diesel conditions and perform local-instantaneous temperature measurements along the walls of the combustion chamber by means of fast response thermocouples. The second one was the development of a procedure for temperature signal treatment and local heat flux calculation based on one-dimensional Fourier analysis. A thermodynamic diagnosis model has been employed to characterise the modified engine with the new designed chamber. As a result of the measured data coherent findings have been obtained in order to understand local behaviour of heat transfer in an internal combustion engine, and the influence of engine parameters on local instantaneous temperature and heat flux, have been analysed.

  19. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    Science.gov (United States)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  20. Self-heating of dried industrial wastewater sludge: lab-scale investigation of supporting conditions.

    Science.gov (United States)

    Della Zassa, M; Biasin, A; Zerlottin, M; Refosco, D; Canu, P

    2013-06-01

    We studied the reactivity of dried sludge produced by treatment of wastewater, mainly from tanneries. The solids transformations have been first characterized with thermal analysis (TGA and DSC) proving that exothermic transformation takes place at fairly low temperature, before the total organic combustion that occurs in air above 400°C. The onset of low temperature reactions depends on the heating rate and it can be below 100°C at very small heating rate. Then, we reproducibly determined the conditions to trigger dried sludge self-heating at the laboratory scale, on samples in the 0.2-0.3 kg size. Thermal insulation, some aeration and addition of water are key factors. Mastering the self-heating at this scale allows more detailed investigations as well as manipulation of conditions, to understand its nature, course and remediation. Here we report proves and discussions on the role of air, water, particle size, porosity and biological activity, as well as proving that also dried sludge from similar sources lead to self-heating. Tests demonstrate that air and water are simultaneously required for significant self-heating to occur. They act in diverging directions, both triggering the onset of the reactions and damping the temperature rise, by supporting heat loss. The higher the O2 concentration, the higher the solids heating rate. More added water prolongs the exothermic phase. Further additions of water can reactivate the material. Water emphasizes the exothermic processes, but it is not sufficient to start it in an air-free atmosphere. The initial solid moisture concentration (between 8% and 15%) affects the onset of self-heating as intuitive. The sludge particles size strongly determines the strength and extent of the heat release, indicating that surface reactions are taking place. In pelletized particles, limitations to water and air permeability mitigates the reaction course. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effects of heat treatment on the radiosensitivity of Salmonellae

    International Nuclear Information System (INIS)

    Choi, E.H.; Yang, J.S.; Lee, S.R.

    1978-01-01

    When the food poisoning bacteria Salmonella enteritidis and S. typhimurium were treated with radiation (cobalt-60 γ-rays) and heat (10 minutes at 45 0 C or 50 0 C), their sterilizing effect was revealed differently depending on the order of treatments. Post-irradiation heating showed a synergistic effect whereas pre-irradiation heating revealed the opposite effect and the effects differed slightly with heating temperature. (author)

  2. Beryllium armoured target for extreme heat and neutron loading conditions

    International Nuclear Information System (INIS)

    Mazul, I.; Gervash, A.; Giniyatulin, R.

    2004-01-01

    Beryllium is a primary candidate as a target material for high-energy protons conversion into neutrons used for different applications. In order to get higher neutron flux the conversion area has to be minimized - in our case the target is limited by 1-2 liter volume. This target generates about 5·10 13 fast neutrons per second and removes of 150 kW thermal power deposited by proton beam (30 mA, 5 MeV), coming from linac. The operational condition of the converter is close to the condition of Be-armored components in fusion reactors: high thermal and neutron fluxes and active cooling. Therefore achievements in development of water-cooled high heat flux components for fusion application can be used for design of Be converter and vice versa. However for medical application the using of high-activated heat sink materials such as Cu and SS is strongly limited. So, new materials (Be, Al, Zr) and new joining technologies in comparison with the achievements in fusion area have to be used for construction of such Be converter. In order to reduce amount of heat sink materials in the target saddle-block geometry for Be armor is suggested and developed. Results of R and D works on the development of water cooled Be target for converter are presented, including data on selected materials, technological trials and mockups high heat flux testing. Preliminary design of Be neutron converter for medical applications based on R and D results is presented. (author)

  3. Effect of annealing and heat moisture conditioning on the physicochemical characteristics of bambarra groundnut (Voandzeia subterranea) starch

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Lawal, O.S.

    2002-05-01

    Isolated starch of bambarra groundnut (Voandzeia subterranea) was subjected to hydrothermal modifications through annealing and heat moisture conditioning. Both annealing and heat moisture conditioning reduced the swelling power and solubility of the starch. Water binding capacity reduced after annealing, heat moisture conditioning at 18% moisture level (HMB 18 ) and heat moisture conditioning at 21% moisture level (HMB 21 ). Both heat moisture conditioning at 24% moisture level (HMB 24 ) and heat moisture conditioning at 27% moisture level (HMB 27 ) increased the water binding capacity. Hydrothermal modifications reduced the oil absorption capacity of the raw starch. Annealing and heat moisture conditioning reduced the peak viscosity, (Pv) viscosity at 95 deg C (Hv) and viscosity at 95 deg. C after 30 minutes holding (Hv 30 ). However, viscosity increased on cooling down to 50 deg. C after annealing. Annealing and heat moisture treatments as revealed by scanning electron micrograph and light micrograph did not alter the shape and size of the raw starch. The results indicate a rearrangement within the starch granule following hydrothermal treatments. (author)

  4. Thermodynamic optimization of a coiled tube heat exchanger under constant wall heat flux condition

    International Nuclear Information System (INIS)

    Satapathy, Ashok K.

    2009-01-01

    In this paper the second law analysis of thermodynamic irreversibilities in a coiled tube heat exchanger has been carried out for both laminar and turbulent flow conditions. The expression for the scaled non-dimensional entropy generation rate for such a system is derived in terms of four dimensionless parameters: Prandtl number, heat exchanger duty parameter, Dean number and coil to tube diameter ratio. It has been observed that for a particular value of Prandtl number, Dean number and duty parameter, there exists an optimum diameter ratio where the entropy generation rate is minimum. It is also found that with increase in Dean number or Reynolds number, the optimum value of the diameter ratio decreases for a particular value of Prandtl number and heat exchanger duty parameter.

  5. Calculation of the fuel temperature field under heat release and heat conductance transient conditions

    International Nuclear Information System (INIS)

    Kazakov, E.K.; Chernukhina, G.M.

    1974-01-01

    Results of calculation of the temperature distribution in an annular fuel element at transient thermal conductivity and heat release values are given. The calculation has been carried out by the mesh technique with the third-order boundary conditions for the inner surface assumed and with heat fluxes and temperatures at the zone boundaries to be equal. Three variants of solving the problem of a stationary temperature field are considered for failed fuel elements with clad flaking or cracks. The results obtained show the nonuniformity of the fuel element temperature field to depend strongly on the perturbation parameter at transient thermal conductivity and heat release values. In case of can flaking at a short length, the core temperature rises quickly after flaking. While evaluating superheating, one should take into account the symmetry of can flaking [ru

  6. 49 CFR 179.300-10 - Postweld heat treatment.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Postweld heat treatment. 179.300-10 Section 179.300-10 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Postweld heat treatment. After welding is complete, steel tanks and all attachments welded thereto, must be...

  7. Effect of heat treatment temperature on binder thermal conductivities

    International Nuclear Information System (INIS)

    Wagner, P.

    1975-12-01

    The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature

  8. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    Science.gov (United States)

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  9. Vanadium and heat treatments effect on elastic characteristics of niobium

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Tret'yakov, V.I.; Prokoshkin, D.A.; Pustovalov, V.A.

    1975-01-01

    The effect of vanadium content and of heat treatment conditions on the elastic properties of niobium at temperatures of 20 to 800 deg C was studied. Nb-V alloys were produced by binary vacuum remelting. The Nb-V alloys have been then subjected to thermal treatment. The total degree of deformation amounts to about 95%. The specimens were tested with a view to determine their microhardness, specific electric resistance, elasticity limit and modulus of elasticity. The elastic limit of niobium rises when alloyed with vanadium. With the increase of vanadium content the elastic limit of the alloy becomes greater. Pre-crystallization annealing at 600 - 700 deg C considerably increases the elastic limit, which is explained by development of the thermally activated processes leading to a decrease of dislocation mobility and thereby to a strengthening of the alloy

  10. On a Heat Exchange Problem under Sharply Changing External Conditions

    Science.gov (United States)

    Khishchenko, K. V.; Charakhch'yan, A. A.; Shurshalov, L. V.

    2018-02-01

    The heat exchange problem between carbon particles and an external environment (water) is stated and investigated based on the equations of heat conducting compressible fluid. The environment parameters are supposed to undergo large and fast variations. In the time of about 100 μs, the temperature of the environment first increases from the normal one to 2400 K, is preserved at this level for about 60 μs, and then decreases to 300 K during approximately 50 μs. At the same periods of time, the pressure of the external environment increases from the normal one to 67 GPa, is preserved at this level, and then decreases to zero. Under such external conditions, the heating of graphite particles of various sizes, their phase transition to the diamond phase, and the subsequent unloading and cooling almost to the initial values of the pressure and temperature without the reverse transition from the diamond to the graphite phase are investigated. Conclusions about the maximal size of diamond particles that can be obtained in experiments on the shock compression of the mixture of graphite with water are drawn.

  11. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  12. Effect of ohmic heating processing conditions on color stability of fungal pigments.

    Science.gov (United States)

    Aguilar-Machado, Diederich; Morales-Oyervides, Lourdes; Contreras-Esquivel, Juan C; Aguilar, Cristóbal; Méndez-Zavala, Alejandro; Raso, Javier; Montañez, Julio

    2017-06-01

    The aim of this work was to analyze the effect of ohmic heating processing conditions on the color stability of a red pigment extract produced by Penicillium purpurogenum GH2 suspended in a buffer solution (pH 6) and in a beverage model system (pH 4). Color stability of pigmented extract was evaluated in the range of 60-90 ℃. The degradation pattern of pigments was well described by the first-order (fractional conversion) and Bigelow model. Degradation rate constants ranged between 0.009 and 0.088 min -1 in systems evaluated. Significant differences in the rate constant values of the ohmic heating-treated samples in comparison with conventional thermal treatment suggested a possible effect of the oscillating electric field generated during ohmic heating. The thermodynamic analysis also indicated differences in the color degradation mechanism during ohmic heating specifically when the pigment was suspended in the beverage model system. In general, red pigments produced by P. purpurogenum GH2 presented good thermal stability under the range of the evaluated experimental conditions, showing potential future applications in pasteurized food matrices using ohmic heating treatment.

  13. New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys

    Science.gov (United States)

    Baker, Andrew H.; Collins, Peter C.; Williams, James C.

    2017-07-01

    The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.

  14. Thermoluminescent determination of prehistoric heat treatment of chert artifacts

    International Nuclear Information System (INIS)

    Melcher, C.L.; Zimmerman, D.W.

    1977-01-01

    In recent years archeologists have become interested in the extent to which prehistoric peoples heat-treated chert prior to shaping it into tools. Thermoluminescent determination of the radiation dose accumulated by an artifact since it was formed or last heated provides a simple, reliable test for such heat treatment. This test can be applied to single artifacts without the need for raw source material for comparison. Results on 25 artifacts from four sites indicate that, for many chert sources, color and luster are not useful indicators of heat treatment by prehistoric peoples

  15. Radiation treatment of painful degenerative skeletal conditions

    International Nuclear Information System (INIS)

    Schaefer, U.; Micke, O.; Willich, N.

    1996-01-01

    The study reported was intended to present own experience with irradiation for treatment of painful degenerative skeletal conditions and examine the long-term effects of this treatment. A retrospective study was performed covering the period from 1985 until 1991, examining 157 patients suffering from painful degenerative skeletal conditions who entered information on the success of their radiation treatment in a questionnaire. 94 of the questionnaires could be used for evaluation. Pain anamnesis revealed periods of more than one year in 45% of the cases. 74% of the patients had been treated without success with drug or orthopedic therapy. Immediately after termination of the radiotherapy, 38% of the patients said to be free of pain or to feel essentially relieved, while at the time the questionnaire was distributed, the percentage was 76%. Thus in our patient material, radiotherapy for treatment of painful degenerative skeletal lesions was successful in 76% of the cases and for long post-treatment periods, including those cases whith long pain anamnesis and unsuccessful conventional pre-treatment. (orig./MG) [de

  16. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  17. A Study of Ballast Water Treatment Using Engine Waste Heat

    Science.gov (United States)

    Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin

    2018-05-01

    Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.

  18. Effect of heat treatment upon the fatigue-crack growth behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    James, L.A.; Mills, W.J.

    1981-05-01

    Gas-tungsten-arc weldments in Alloy 718 were studied in fatigue-crack growth test conducted at five temperatures over the range 24--649 degree C. In general, crack growth rates increased with increasing temperature, and weldments given the ''conventional'' post-weld heat-treatment generally exhibited crack growth rates that were higher than for weldments given the ''modified'' (INEL) heat-treatment. Limited testing in the as-welded condition revealed crack growth rates significantly lower than observed for the heat-treated cases, and this was attributed to residual stresses. Three different heats of filler wire were utilized, and no heat-to-heat variations were noted. 23 refs., 9 figs., 6 tabs

  19. Effect of heat treatment on carbon steel pipe welds

    International Nuclear Information System (INIS)

    Mohamad Harun.

    1987-01-01

    The heat treatment to improve the altered properties of carbon steel pipe welds is described. Pipe critical components in oil, gasification and nuclear reactor plants require adequate room temperature toughness and high strength at both room and moderately elevated temperatures. Microstructure and microhardness across the welds were changed markedly by the welding process and heat treatment. The presentation of hardness fluctuation in the welds can produce premature failure. A number of heat treatments are suggested to improve the properties of the welds. (author) 8 figs., 5 refs

  20. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    Science.gov (United States)

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  1. Ultrasonic evaluation of heat treatment for stress relief in steel

    International Nuclear Information System (INIS)

    Bittencourt, Marcelo de S.Q.; Lamy, Carlos A.; Goncalves Filho, Orlando J.A.; Payao Filho, Joao da C.

    2000-01-01

    Residual stresses in materials arise due to the manufacturing processes. As a consequence, in the nuclear area some components must suffer a stress relief treatment according to strict criteria. Although these treatments are carefully carried on, concern with nuclear safety is constantly growing. This work proposes a nondestructive ultrasonic method to guarantee the efficiency of the heat treatment. It was used a short peened steel plate with tensile and compressive stresses which was submitted to a stress relief treatment. The results show that the proposed ultrasonic method could be used to confirm the efficiency of the stress relief heat treatment. (author)

  2. 8th International Symposium on Heating, Ventilation and Air Conditioning

    CERN Document Server

    Zhu, Yingxin; Li, Yuguo; Vol.1 Indoor and Outdoor Environment; Vol.2 HVAC&R Component and Energy System; Vol.3 Building Simulation and Information Management

    2014-01-01

    Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning is based on the 8th International Symposium of the same name (ISHVAC2013), which took place in Xi’an on October 19-21, 2013. The conference series was initiated at Tsinghua University in 1991 and has since become the premier international HVAC conference initiated in China, playing a significant part in the development of HVAC and indoor environmental research and industry around the world. This international conference provided an exclusive opportunity for policy-makers, designers, researchers, engineers and managers to share their experience. Considering the recent attention on building energy consumption and indoor environments, ISHVAC2013 provided a global platform for discussing recent research on and developments in different aspects of HVAC systems and components, with a focus on building energy consumption, energy efficiency and indoor environments. These categories span a broad range of topics, and the proce...

  3. Heart rate variability during exertional heat stress: effects of heat production and treatment.

    Science.gov (United States)

    Flouris, Andreas D; Bravi, Andrea; Wright-Beatty, Heather E; Green, Geoffrey; Seely, Andrew J; Kenny, Glen P

    2014-04-01

    We assessed the efficacy of different treatments (i.e., treatment with ice water immersion vs. natural recovery) and the effect of exercise intensities (i.e., low vs. high) for restoring heart rate variability (HRV) indices during recovery from exertional heat stress (EHS). Nine healthy adults (26 ± 3 years, 174.2 ± 3.8 cm, 74.6 ± 4.3 kg, 17.9 ± 2.8 % body fat, 57 ± 2 mL·kg·(-1) min(-1) peak oxygen uptake) completed four EHS sessions incorporating either walking (4.0-4.5 km·h(-1), 2 % incline) or jogging (~7.0 km·h(-1), 2 % incline) on a treadmill in a hot-dry environment (40 °C, 20-30 % relative humidity) while wearing a non-permeable rain poncho for a slow or fast rate of rectal temperature (T re) increase, respectively. Upon reaching a T re of 39.5 °C, participants recovered until T re returned to 38 °C either passively or with whole-body immersion in 2 °C water. A comprehensive panel of 93 HRV measures were computed from the time, frequency, time-frequency, scale-invariant, entropy and non-linear domains. Exertional heat stress significantly affected 60/93 HRV measures analysed. Analyses during recovery demonstrated that there were no significant differences between HRV measures that had been influenced by EHS at the end of passive recovery vs. whole-body cooling treatment (p > 0.05). Nevertheless, the cooling treatment required statistically significantly less time to reduce T re (p whole-body immersion in 2 °C water results in faster cooling, there were no observed differences in restoration of autonomic heart rate modulation as measured by HRV indices with whole-body cold-water immersion compared to passive recovery in thermoneutral conditions.

  4. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots

    NARCIS (Netherlands)

    Kok, H. Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D.; Stalpers, Lukas J. A.; Crezee, Johannes

    2017-01-01

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to

  5. Zr-2.5 Nb microstructure evolution during heat treatments

    International Nuclear Information System (INIS)

    Campitelli, Emiliano N.; Banchik, Abrahan D.; Versaci, Raul A.

    1999-01-01

    This work has the following two basic objectives: 1) To gain experience in the preparation of thin layers of zirconium alloys to be used as T.E.M specimens. To construct a double jet thinning prototype able to perform this task with appropriate finishing and reproducible results to be used in a future work (point 2). To become familiar with the relevant parameters of the thinning process and to apply this experience in the prototype. The layers must have sufficient area with good transmission and mechanical support, free of deformations and defects polishing. 2) To perform T.E.M. observations and metallographies to study the microstructural evolution during heat treatments of Zr-2.5 Nb alloy samples. These samples were obtained from a pressure tube similar to those used in Candu power plants, in the as-received condition. This alloy served, in this application, to replace Zircaloy-2, for better creep and corrosion resistance. (author)

  6. Examination of heat treatments at preservation of grape must

    Directory of Open Access Journals (Sweden)

    Péter Korzenszky

    2014-02-01

    Full Text Available Heat treatment is a well-known process in food preservation. It is made to avoid and to slow down food deterioration. The process was developed by Louise Pasteur French scientist to avoid late among others wine further fermentation. The different heat treatments influence the shelf life in food production. In our article we present the process of grape must fermentation, as grape must is the base material of wine production. The treatment of harvested fresh grape juice has a big influence on end product quality. It is our experiments we examined the same grape must with four different methods in closed and in open spaces to determine CO2 concentration change. There are four different methods for treatment of grape juice: boiling, microwave treatment, treatment by water bath thermostat and a control without treatment. As a result of the comparison it can be stated that the heat treatment delays the start of fermentation, thereby increasing shelf life of grape must. However, no significant differences were found between two fermentation of heat-treated grape must by the microwave and water-bath thermostat. The different heat treatment of grape must base materials was done at the laboratory in Faculty of Mechanical Engineering of Szent István University. The origin of the table grapes used for the examination was Gödöllő-hillside. Normal 0 21 false false false HU X-NONE X-NONE

  7. Evaluation of dry heat treatment of soft wheat flour for the production of high ratio cakes.

    Science.gov (United States)

    Keppler, S; Bakalis, S; Leadley, C E; Sahi, S S; Fryer, P J

    2018-05-01

    An accurate method to heat treat flour samples has been used to quantify the effects of heat treatment on flour functionality. A variety of analytical methods has been used such as oscillatory rheology, rheomixer, solvent retention capacity tests, and Rapid Visco Analysis (RVA) in water and in aqueous solutions of sucrose, lactic acid, and sodium carbonate. This work supports the hypothesis that heat treatment facilitates the swelling of starch granules at elevated temperature. Results furthermore indicated improved swelling ability and increased interactions of flour polymers (in particular arabinoxylans) of heat treated flour at ambient conditions. The significant denaturation of the proteins was indicated by a lack of gluten network formation after severe heat treatments as shown by rheomixer traces. Results of these analyses were used to develop a possible cake flour specification. A method was developed using response surfaces of heat treated flour samples in the RVA using i) water and ii) 50% sucrose solution. This can uniquely characterise the heat treatment a flour sample has received and to establish a cake flour specification. This approach might be useful for the characterisation of processed samples, rather than by baking cakes. Hence, it may no longer be needed to bake a cake after flour heat treatment to assess the suitability of the flour for high ratio cake production, but 2 types of RVA tests suffice. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    OpenAIRE

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-01-01

    Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in ...

  9. A Study on Infrared Local Heat Treatment for AA5083 to Improve Formability and Automotive Part Forming

    Science.gov (United States)

    Lee, Eun-Ho; Yang, Dong-Yol; Ko, SeJin

    2017-10-01

    Automotive industries are increasingly employing aluminum alloys for auto parts to reduce vehicle weight. However, the low formability of aluminum alloys has been an obstacle to their application. To resolve the formability problem, some studies involving heat treatments under laboratory conditions have been reported. However, for industrial applications, the heat treatment sequence, heating energy efficiency, and a commercial part test should be studied. This work shows an infrared (IR) local heat treatment, heating only small areas where the heat treatment is required, for an aluminum alloy to improve the formability with a reduction of heating energy. The experiment shows that the formability drastically increases when the aluminum alloy is heat treated between two forming stages, referred to as intermediate heat treatment. The microstructures of the test pieces are evaluated to identify the cause of the increase in the formability. For an industrial application, an aluminum tailgate, which cannot be manufactured without heat treatment, was successfully manufactured by the IR local heat treatment with a reduction of energy. A simulation was also conducted with a stress-based forming limit diagram, which is not affected by the strain path and heat treatment histories. The simulation gives a good prediction of the formability improvement.

  10. REVIEW OF THE MAIN DIRECTIONS OF MODERNIZATION OF FURNACE BASE AND PERFECTION OF TECHNOLOGY OF HEATING AND THERMAL TREATMENT OF INGOTS AND SLUGS IN CONDITIONS OF MODERN MACHINE-BUILDING ENTERPRISE

    Directory of Open Access Journals (Sweden)

    V. I. Timoshpoiski

    2007-01-01

    Full Text Available The state of gas-furnace economy is examined, the calculation analysis of the main thermal-technical characteristics is carried out and the main ways of increase of efficiency of the heating and thermal furnaces heat working are given at the example of RUP “Minsk automobile plant”.

  11. Heat transfer in a sodium-to-sodium heat exchanger under conditions of combined force and free convection

    International Nuclear Information System (INIS)

    Jackson, J.D.; Axcell, B.P.; Johnston, S.E.

    1987-01-01

    A combined experimental and theoretical investigation of heat transfer in a vertical tube and annulus, countercurrent flow heat exchanger is reported. The working fluid was liquid sodium. Included in the range of conditions covered were those which are of interest in connection with the low flow rate operation of fast reactor intermediate heat exchanger systems. The heat transfer process ranged from that of pure forced convection to combined forced and free convection. By changing the direction of fluid flow or the direction of heat flow four different configurations were studied. In two cases the convection process was buoyancy aided and in the other two it was buoyancy opposed. Results are presented showing the influence of flow rate and temperature difference on overall heat transfer coefficient for each case. A theoretical model of turbulent flow and heat transfer incorporating influences of buoyancy was used to produce results for the range of conditions covered in the experiments. The predictions of overall heat transfer coefficient were found to be in reasonable general agreement with the measurements. It was clear from these calculations that the influence of buoyancy on heat transfer stemmed largely, under the conditions of the present experiment, from the modification of the convection process due to the distortion of the velocity field. This led to an enhancement of the heat transfer for the buoyancy-aided process and an impairment for the buoyancy-opposed process. The contribution of the turbulent diffusion of heat was relatively small. (author)

  12. Effect of Pressure and Heat Treatments on the Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Helmi Masdar

    2018-01-01

    Full Text Available This paper presents the corresponding compressive strength of RPC with variable pressure combined with heating rate, heating duration, and starting time of heating. The treatments applied were 8 MPa static pressure on fresh RPC prims and heat curing at 240 °C in an oven. The compressive strength test was conducted at 7-d and 28-d. The images of RPC morphology were captured on the surface of a fractured specimen using Scanning Electron Microscopy in Secondary Electron detector mode to describe pore filing mechanism after treatments. The results show that a heating rate at 50 °C/hr resulted in the highest compressive strength about 40 % more than those at 10 or 100 °C/hr. A heating duration of 48 hours led to the maximum compressive strength. Heat curing applied 2 days after casting resulted in the maximum compressive. Heat curing had a signicant effect on the compresssive strength due to the acceleration of both reactions (hydration and pozzolanic and the degree of transformation from tobermorite to xonotlite. It is concluded that the optimum condition of treatments is both pressure and heat curing at 2-day after casting with a rate of 50 °C/hr for 48 hours.

  13. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    Science.gov (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  14. Improved process for the treatment of bituminous materials. [two heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    1947-04-30

    A continuous process for recovering valuable hydrocarbon oils from solid minerals adapted to produce such oils upon application of heat, consists of reducing the raw minerals to a powder, suspending the powdered minerals in a gaseous medium and subjecting the suspension thus formed to heat treatment in a primary reaction zone, followed by heat treatment in a secondary reaction zone separate from the primary reaction zone. The temperature during the second of said treatments being substantially higher than that of the first.

  15. Influence of heat treatment on the microstructure and mechanical properties of Alloy 718 base metal and weldments

    International Nuclear Information System (INIS)

    Mills, W.J.

    1979-06-01

    Effect of heat treatment on the metallurgical structure and tensile properties of three heats of Alloy 718 base metal and an Alloy 718 GTA weldment were characterized. Heat treatments employed were the conventional (ASTM A637) precipitation treatment and a modified precipitation treatment designed to improve the toughness of the weldments. The GTA weldments were characterized in the as-welded condition. Light microscopy, thin foil, and surface replica electron microscopy revealed that the microstructure of this superalloy was sensitive to heat treatment and heat-to-heat variations. The modified aging treatment resulted in a larger grain size and a more homogeneous microstructure than the conventional treatments. The morphology of the primary strengthening γ phase was found to be finer and more closely spaced in the conventionally treated condition. Room and elevated temperature tensile testing revealed that the strength of the conventionally treated alloy was generally superior to that of the modified material. The conventional aging treatment resulted in greater heat-to-heat variations in tensile properties. This behavior was correlated with variations in the microstructure resulting from the precipitation heat treatments. The precipitate morphology of the GTA weldments was sensitive to heat treatment. The Laves phase was present in the interdendritic regions of both heat-treated welds. The modified aging treatment reduced the amount of Laves phase present in the weld zone. Room and elevated temperature tensile properties of the precipitation hardened weldments were relatively insensitive to heat treatment, suggesting that reduction in Laves phase from the weld zone had essentially no effect on tensile properties. As-welded GTA weldments exhibited lower strength levels and higher ductility values than heat-treated welds

  16. Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency

    Science.gov (United States)

    2016-11-21

    through water evaporation , although some cooling also occurs due to sensible heat transfer . Cooling towers are very effective heat transfer devices... evaporator coil connected to the building heating , ventilation, and air conditioning (HVAC) system. The refrigerant evaporates in the coil, removing...vapor is directed to a condensing coil, where the refrigerant vapor condenses back into a liquid, releasing its heat of vaporization. During

  17. Heat treatment of cathodic arc deposited amorphous hard carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Ager, J.W. III; Brown, I.G. [and others

    1997-02-01

    Amorphous hard carbon films of varying sp{sup 2}/sp{sup 3} fractions have been deposited on Si using filtered cathodic are deposition with pulsed biasing. The films were heat treated in air up to 550 C. Raman investigation and nanoindentation were performed to study the modification of the films caused by the heat treatment. It was found that films containing a high sp{sup 3} fraction sustain their hardness for temperatures at least up to 400 C, their structure for temperatures up to 500 C, and show a low thickness loss during heat treatment. Films containing at low sp{sup 3} fraction graphitize during the heat treatment, show changes in structure and hardness, and a considerable thickness loss.

  18. The maximum power condition of the brayton cycle with heat exchange processes

    International Nuclear Information System (INIS)

    Jung, Pyung Suk; Cha, Jin Girl; Ro, Sung Tack

    1985-01-01

    The ideal brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power of the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink. (Author)

  19. Modification of the original color of the Eucalyptus grandis wood by heat treatments

    Directory of Open Access Journals (Sweden)

    Rosilei Aparecida Garcia

    2014-09-01

    Full Text Available The objective of this study was to determine the modification of original color of Eucalyptus grandis Hill ex. Maiden wood after heat-treatment. Wood samples were heat-treated under different temperatures (180, 200, 215 and 230ºC and time conditions (15 minutes, 2 and 4 hours. Color analysis were performed on the CIE L*a*b* system by using a Color Eye XTH-X-Rite 200d spectrophotometer. All heat treatments promoted an alteration of the original color of wood. Heat-treated woods presented lower L* (lightness values than untreated wood (control, characterizing the wood darkness, mainly for more severe conditions of temperature and time. Chromatic coordinates (a* and b* showed different behaviors depending on the temperature-time combination. The modification of the original color of the wood allowed the creation of new color patterns, which can add greater value to the studied wood.

  20. Wood energy for residential heating in Alaska: current conditions, attitudes, and expected use

    Science.gov (United States)

    David L. Nicholls; Allen M. Brackley; Valerie. Barber

    2010-01-01

    This study considered three aspects of residential wood energy use in Alaska: current conditions and fuel consumption, knowledge and attitudes, and future use and conditions. We found that heating oil was the primary fuel for home heating in southeast and interior Alaska, whereas natural gas was used most often in south-central Alaska (Anchorage). Firewood heating...

  1. Effect of heat moisture treatment and annealing on physicochemical ...

    African Journals Online (AJOL)

    Red sorghum starch was physically modified by annealing and heat moisture treatment. The swelling power and solubility increased with increasing temperature range (60-90°), while annealing and heatmoisture treatment decreased swelling power and solubility of starch. Solubility and swelling were pH dependent with ...

  2. Heat transfer critical conditions in two-plase flow

    International Nuclear Information System (INIS)

    Assis, M.C.V. de.

    1980-02-01

    The critical heat flux for forced-convection flow of water inside an uniformly heated circular channel is analysed, taking into account several flow patterns usually met in this type of investigation. Comments about nomenclature, experimental methods and influence of operational parameters used in the description of this phenomenon are made. The experimental results from 187 tests of critical heat flux at low pressure are presented. One empirical correlation between the critical heat flux and the independent parameters, was developed. Some correlations developed in other laboratories in the same range of parameters are mentioned and compared with present one. (Author) [pt

  3. Preliminary study on the forgeability and heat treatment response of niobium - containing tool steels materials

    International Nuclear Information System (INIS)

    Cescon, T.; Papaleo, R.

    1981-01-01

    The forgeability and microstructure of tool steels materials based on the M-2 composition, where W and V were partially replaced by Nb, were examined. The optimum heat-treating conditions were established. The poor response to heat treatment of some of the alloys studied indicated the need of increasing the C content of the steels when Nb is used as a substitute for W and V. (Author) [pt

  4. Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions

    International Nuclear Information System (INIS)

    Shao, Liang-Liang; Yang, Liang; Zhang, Chun-Lu

    2010-01-01

    Vapor compression heat pumps are drawing more attention in energy saving applications. Microchannel heat exchangers can provide higher performance via less core volume and reduce system refrigerant charge, but little is known about their performance in heat pump systems under frosting conditions. In this study, the system performance of a commercial heat pump using microchannel heat exchangers as evaporator is compared with that using conventional finned-tube heat exchangers numerically and experimentally. The microchannel and finned-tube heat pump system models used for comparison of the microchannel and finned-tube evaporator performance under frosting conditions were developed, considering the effect of maldistribution on both refrigerant and air sides. The quasi-steady-state modeling results are in reasonable agreement with the test data under frost conditions. The refrigerant-side maldistribution is found remarkable impact on the microchannel heat pump system performance under the frost conditions. Parametric study on the fan speed and the fin density under frost conditions are conducted as well to figure out the best trade-off in the design of frost tolerant evaporators. (author)

  5. Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment

    International Nuclear Information System (INIS)

    Lee, Syung Yul; Park, Dong Hyun; Won, Jong Pil; Kim, Yun Hae; Lee, Myung Hoon; Moon, Kyung Man; Jeong, Jae Hyun

    2012-01-01

    Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold and hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at 190 .deg. C for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at 190 .deg. C for 16hrs

  6. Irradiation in combination of heat treatment of mango puree

    International Nuclear Information System (INIS)

    Noomhorm, A.; Apintanapong, M.

    1996-01-01

    The effect of irradiation with heat combination treatment on the shelf life and quality of mango puree was studied. Thermal inactivation of polyphenol oxidase enzyme at 80 degree C and 15 min. was used as a measure of adequacy of pre-heat treatment. Irradiation of mango puree after heat treatment at dosage of 0, 2, 4, 6 and 8 kGy showed no change in mc, pH, acidity, and TSS but during storage, growth of microorganisms brought changes in these values. Irradiation in combination with low temperature (5 degree C) reduced discoloration and darkening rate during storage. Irradiation dose from 0 to 8 kGy resulted in log linear reductions in microorganism levels but at 6 and 8 kGy, there was no growth of microorganisms. Products irradiated at 8 kGy showed no microorganism growth at both temperatures

  7. Treatment and conditioning of historical radioactive waste

    International Nuclear Information System (INIS)

    Dogaru, Ghe.; Dragolici, F.; Ionascu, L.; Rotarescu, Ghe.

    2009-01-01

    The paper describes the management of historical radioactive waste from the storage facility of Radioactive Waste Treatment Plant. The historical waste stored into storage facility of IFIN-HH consists of spent sealed radioactive sources, empty contaminated containers, wooden radioactive waste, low specific activity radioactive waste, contaminated waste as well as radioactive waste from operation of WWR-S research reactor. After decommissioning of temporary storage facility about 5000 packages with radioactive waste were produced and transferred to the disposal facility. A large amount of packages have been transferred and disposed of to repository but at the end of 2000 there were still about 800 packages containing cement conditioned radioactive waste in an advanced state of degradation declared by authorities as 'historical waste'. During the management of historical waste campaign there were identified: radium spent radioactive sources, containers containing other spent sealed radioactive sources, packages containing low specific activity waste consist of thorium scrap allow, 30 larger packages (316 L), packages with activity lower than activity limit for disposal, packages with activity higher than activity limit for disposal. At the end of 2008, the whole amount of historical waste which met the waste acceptance criteria has been conditioned and transferred to disposal facility. (authors)

  8. Backscatter Correction Algorithm for TBI Treatment Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Nieto, B.; Sanchez-Doblado, F.; Arrans, R.; Terron, J.A. [Dpto. Fisiología Médica y Biofísica, Universidad de Sevilla, Avda. Sánchez Pizjuán, 4. E-41009, Sevilla (Spain); Errazquin, L. [Servicio Oncología Radioterápica, Hospital Univ.V. Macarena. Dr. Fedriani, s/n. E-41009, Sevilla (Spain)

    2015-01-15

    The accuracy requirements in target dose delivery is, according to ICRU, ±5%. This is so not only in standard radiotherapy but also in total body irradiation (TBI). Physical dosimetry plays an important role in achieving this recommended level. The semi-infinite phantoms, customarily used for dosimetry purposes, give scatter conditions different to those of the finite thickness of the patient. So dose calculated in patient’s points close to beam exit surface may be overestimated. It is then necessary to quantify the backscatter factor in order to decrease the uncertainty in this dose calculation. The backward scatter has been well studied at standard distances. The present work intends to evaluate the backscatter phenomenon under our particular TBI treatment conditions. As a consequence of this study, a semi-empirical expression has been derived to calculate (within 0.3% uncertainty) the backscatter factor. This factor depends lineally on the depth and exponentially on the underlying tissue. Differences found in the qualitative behavior with respect to standard distances are due to scatter in the bunker wall close to the measurement point.

  9. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth

    Directory of Open Access Journals (Sweden)

    M. Gouma

    2015-01-01

    Full Text Available This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment to inactivate 5-Log10 cycles (performance criterion of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature that would achieve the stated performance criterion, mathematical equations based on Geeraerd’s model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min and 2.26 J/mL (2.09 min to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55°C and 60°C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60°C.

  10. Effect of heat treatment operations on the Rm tensile strength of silumins

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2010-10-01

    Full Text Available Owing to good technological properties, low weight and good corrosion resistance, aluminum-silicon alloys are widely used as a material for cast machinery components. State of macro- and microstructure of a castings manufactured from Al-Si alloys, which is determined by a shape and distribution of hardening phases, segregation of alloying constituents and impurities, as well as distribution of porosity, create conditions to obtainment of proper mechanical properties. These properties can be improved through modification of the alloy and performed heat treatment operations. The paper presents effect of modification and heat treatment process on the Rm tensile strength of a selected silumins (EN AB-AlSi9Cu3(Fe, EN AB-AlSi12CuNiMg, EN AB-AlSi17Cu1Ni1Mg. Investigated alloys were put to treatments of refining and modification, and next to heat treatment. Temperature range of the heat treatment operations was determined on base of curves from the ATD method. Obtained results illustrate registered curves of melting and solidification from the ATD method and strength tests. On base of performed initial tests one determined parameters of the heat treatment process (temperature and duration of solutionig and ageing treatments enabling obtainment of improved Rm tensile strength of the investigated alloys.

  11. Study of the Al-Si-X system by different cooling rates and heat treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Suarez

    2012-10-01

    Full Text Available The solidification behavior of the Al-12.6% Si (A1, the hypereutectic Al-20%Si (A2 and the Al-20%Si-1.5% Fe-0.5%Mn (A3 (in wt. (% alloys, at different cooling rates is reported and discussed. The cooling rates ranged between 0.93 °C/s and 190 °C/s when cast in sand and copper wedge-shaped molds, respectively. A spheroidization heat treatment was carried out to the alloys in the as-cast condition at 540 °C for 11 hours and quench in water with a subsequent heat treatment at 170 °C for 5 hours with the purpose of improving the mechanical properties. The samples were characterized by optical microscopy, scanning electron microscopy and mechanically by tensile test, in order to evaluate the response of the heat treatment on the different starting microstructures and mechanical properties. It was found that alloys cooled at rates greater than 10.8 °C/s had a smaller particle size and better distribution, also showed a greater response to spheroidization heat treatment of all silicon (Si phases. The spheroidization heat treatment caused an increase in the ultimate tensile stress (UTS and elongation when compared with the alloys in the as-cast condition. The highest UTS value of 174 MPa was obtained for the (A1 alloy.

  12. The contact heat transfer between the heating plate and granular materials in rotary heat exchanger under overloaded condition

    Directory of Open Access Journals (Sweden)

    Luanfang Duan

    2018-03-01

    Full Text Available In the present work, the contact heat transfer between the granular materials and heating plates inside plate rotary heat exchanger (PRHE was investigated. The heat transfer coefficient is dominated by the contact heat transfer coefficient at hot wall surface of the heating plates and the heat penetration inside the solid bed. A plot scale PRHE with a diameter of Do = 273 mm and a length of L = 1000 mm has been established. Quartz sand with dp = 2 mm was employed as the experimental material. The operational parameters were in the range of ω = 1 – 8 rpm, and F = 15, 20, 25, 30%, and the effect of these parameters on the time-average contact heat transfer coefficient was analyzed. The time-average contact heat transfer coefficient increases with the increase of rotary speed, but decreases with the increase of the filling degree. The measured data of time-average heat transfer coefficients were compared with theoretical calculations from Schlünder’s model, a good agreement between the measurements and the model could be achieved, especially at a lower rotary speed and filling degree level. The maximum deviation between the calculated data and the experimental data is approximate 10%. Keywords: Rotary heat exchanger, Contact heat transfer, Granular material, Heating plate, Overloaded

  13. Heat Treatment of Buckypaper for Use in Volatile Organic Compounds Sampling

    Directory of Open Access Journals (Sweden)

    Jonghwa Oh

    2016-01-01

    Full Text Available Three types of buckypapers (BPs, two of them fabricated with arc discharge (AD single-walled carbon nanotubes (SWNTs (acetone-cleaned AD BP and methanol-cleaned AD BP and one with high-pressure carbon monoxide (HiPco SWNTs (HiPco BP, were heat-treated at different conditions to find the specific conditions for each type that improve the adsorption properties. Based on thermogravimetric analysis (TGA data, three heat treatment conditions were designed for the AD BPs and another three conditions for the HiPco BPs. Also, changes in weight and physical integrity before and after the heat treatment were considered. Heating at 300°C for 90 minutes was selected for acetone-cleaned AD BP, in which the BP kept its physical integrity and yielded a relatively high Brunauer, Emmett, and Teller (BET surface area (970 ± 18 m2/g, while methanol-cleaned AD BP was excluded because of its physical change. For HiPco BP, a condition of 300°C heating for 30 minutes was chosen as a relatively higher surface area (933 ± 54 m2/g and less weight loss (5% were observed.

  14. Ideal heat transfer conditions for tubular solar receivers with different design constraints

    Science.gov (United States)

    Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez

    2017-06-01

    The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.

  15. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    Science.gov (United States)

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  16. Effect of heat treatment and artificial ageing on Al-5Mg-2Zn

    CSIR Research Space (South Africa)

    Chauke, Levy

    2017-10-01

    Full Text Available ageing of Al-5Mg-2Zn. The study showed intermetallic phases at the grain boundaries and a melting peak at about 476 °C for the F condition. Solution heat treatment at 440°C for 4 hours dissolved the intermetallic phase thus increasing the melting point...

  17. Effect of heat treatment on strength and abrasive wear behaviour of ...

    Indian Academy of Sciences (India)

    In the present investigation Al6061–SiCp composites was fabricated by liquid metallurgy route with percentages of SiCp varying from 4 wt% to 10 wt% in steps of 2 ... However, under identical heat treatment conditions, adopted Al6061–SiCp composites exhibited better microhardness and tensile strength reduced wear loss ...

  18. Effect of heat treatment on strength and abrasive wear behaviour of ...

    Indian Academy of Sciences (India)

    Administrator

    Aluminum 6061 has been used as matrix material owing to its ... Mechanical properties such as microhardness, tensile strength, and abrasive wear tests have been ... heat treatment conditions, adopted Al6061–SiCp composites exhibited better microhardness and tensile ... corrosion resistance (Ramesh et al 2005).

  19. Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources

    Science.gov (United States)

    Zhang, Renping

    2017-12-01

    A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.

  20. Impact Toughness and Heat Treatment for Cast Aluminum

    Science.gov (United States)

    Lee, Jonathan A (Inventor)

    2016-01-01

    A method for transforming a cast component made of modified aluminum alloy by increasing the impact toughness coefficient using minimal heat and energy. The aluminum alloy is modified to contain 0.55%-0.60% magnesium, 0.10%-0.15% titanium or zirconium, less than 0.07% iron, a silicon-tomagnesium product ratio of 4.0, and less than 0.15% total impurities. The shortened heat treatment requires an initial heating at 1,000deg F. for up to I hour followed by a water quench and a second heating at 350deg F. to 390deg F. for up to I hour. An optional short bake paint cycle or powder coating process further increase.

  1. EFFECT OF HEAT TREATMENT ON SOYBEAN PROTEIN SOLUBILITY

    Directory of Open Access Journals (Sweden)

    RODICA CĂPRIŢĂ

    2007-05-01

    Full Text Available The use of soybean products in animal feeds is limited due to the presence of antinutritional factors (ANF. Proper heat processing is required to destroy ANF naturally present in raw soybeans and to remove solvent remaining from the oil extraction process. Over and under toasting of soybean causes lower nutritional value. Excessive heat treatment causes Maillard reaction which affects the availability of lysine in particular and produces changes to the chemical structure of proteins resulting in a decrease of the nutritive value. The objective of this study was to evaluate the effect of heating time on the protein solubility. The investigation of the heating time on protein solubility in soybean meal (SBM revealed a negative correlation (r = -0.9596. Since the urease index is suitable only for detecting under processed SBM, the protein solubility is an important index for monitoring SBM quality.

  2. Evaporation of liquefied natural gas in conditions of compact storage containers heating

    Science.gov (United States)

    Telgozhayeva, D. S.

    2014-08-01

    Identical by its power, but located in different parts of the external surface of the tank, the heating sources are different intensity heat transfer modes is heating up, respectively, times of vapour pressure rise to critical values. Developed mathematical model and method of calculation can be used in the analysis of conditions of storage tanks for liquefied gases.

  3. Heat treatment effect on ductility of nickel-base alloys

    International Nuclear Information System (INIS)

    Burnakov, K.K.; Khasin, G.A.; Danilov, V.F.; Oshchepkov, B.V.; Listkova, A.I.

    1979-01-01

    Causes of low ductility of the KhN75MBTYu and KhN78T alloys were studied along with the heat treatment effects. Samples were tested at 20, 900, 1100, 1200 deg C. Large amount of inclusions was found in intercrystalline fractures of the above low-ductile alloys. The inclusions of two types took place: (α-Al 2 O 3 , FeO(Cr 2 O 3 xAl 2 O 3 )) dendrite-like ones and large-size laminated SiO 2 , FeO,(CrFe) 2 O 3 inclusions situated as separate colonies. Heat treatment of the alloys does not increase high-temperature impact strength and steel ductility. The heating above 1000 deg C leads to a partial dissolution and coagulation of film inclusions which results in an impact strength increase at room temperature

  4. Heat transfer in turbocharger turbines under steady, pulsating and transient conditions

    International Nuclear Information System (INIS)

    Burke, R.D.; Vagg, C.R.M.; Chalet, D.; Chesse, P.

    2015-01-01

    Highlights: • Compare turbine heat transfer correlations from different studies. • Compare heat transfer for a same turbine on-engine and on gas-stand. • Analyse heat transfer under steady and transient operating conditions. • Gas stand heat transfer correlations are transferrable to engine conditions. • Heat flows can be reversed compared to steady conditions during transients. - Abstract: Heat transfer is significant in turbochargers and a number of mathematical models have been proposed to account for the heat transfer, however these have predominantly been validated under steady flow conditions. A variable geometry turbocharger from a 2.2 L Diesel engine was studied, both on gas stand and on-engine, under steady and transient conditions. The results showed that heat transfer accounts for at least 20% of total enthalpy change in the turbine and significantly more at lower mechanical powers. A convective heat transfer correlation was derived from experimental measurements to account for heat transfer between the gases and the turbine housing and proved consistent with those published from other researchers. This relationship was subsequently shown to be consistent between engine and gas stand operation: using this correlation in a 1D gas dynamics simulation reduced the turbine outlet temperature error from 33 °C to 3 °C. Using the model under transient conditions highlighted the effect of housing thermal inertia. The peak transient heat flow was strongly linked to the dynamics of the turbine inlet temperature: for all increases, the peak heat flow was higher than under thermally stable conditions due to colder housing. For all decreases in gas temperature, the peak heat flow was lower and for temperature drops of more than 100 °C the heat flow was reversed during the transient

  5. Treatment and conditioning of radioactive organic liquids

    International Nuclear Information System (INIS)

    1992-07-01

    Liquid organic radioactive wastes are generated from the use of radioisotopes in nuclear research centres and in medical and industrial applications. The volume of these wastes is small by comparison with aqueous radioactive wastes, for example; nevertheless, a strategy for the effective management of these wastes is necessary in order to ensure their safe handling, processing, storage and disposal. A aqueous radioactive wastes may be discharged to the environment after the radioactivity has decayed or been removed. By contrast, organic radioactive wastes require management steps that not only take account of their radioactivity, but also of their chemical content. This is because both the radioactivity and the organic chemical nature can have detrimental effects on health and the environment. Liquid radioactive wastes from these applications typically include vacuum pump oil, lubricating oil and hydraulic fluids, scintillation cocktails from analytical laboratories, solvents from solvent extraction research and uranium refining, and miscellaneous organic solvents. The report describes the factors which should be considered in the development of appropriate strategies for managing this class of wastes from generation to final disposal. Waste sources and characterization, treatment and conditioning processes, packaging, interim storage and the required quality assurance are all discussed. The report is intended to provide guidance to developing Member States which do not have nuclear power generation. A range of processes and procedures is presented, though emphasis is given to simple, easy-to-operate processes requiring less sophisticated and relatively inexpensive equipment. 31 refs, 16 figs, 3 tabs

  6. Effect of heat treatment on brewer's yeast fermentation activity

    OpenAIRE

    Kharandiuk, Tetiana; Kosiv, Ruslana; Palianytsia, Liubov; Berezovska, Natalia

    2015-01-01

    The influence of temperature treatment of brewer's yeast strain Saflager W-34/70 at temperatures of -17, 20, 25, 30, 35, 40 °C on their fermentative activity was studied. It was established that the freezing of yeast leads to a decrease of fermentation activity in directly proportional to the duration way. Fermentative activity of yeast samples can be increased by 20-24% by heat treatment at 35 °C during 15-30 minutes.

  7. High heat flux tests at divertor relevant conditions on water-cooled swirl tube targets

    International Nuclear Information System (INIS)

    Schlosser, J.; Boscary, J.

    1994-01-01

    High heat flux experiments were performed to provide a technology for heat flux removal under NET/ITER relevant conditions. The water-cooled rectangular test sections were made of hardened copper with a stainless steel twisted tape installed inside a circular channel and one-side heated. The tests aimed to investigate the heat transfer and the critical heat flux in the subcooled boiling regime. A CHF data base of 63 values was established. Test results have shown the thermalhydraulic ability of swirl tubes to sustain an incident heat flux up to a 30 MW.m -2 range. (author) 10 refs.; 7 figs

  8. Heat transfer in circular ring channel under reflooding conditions

    International Nuclear Information System (INIS)

    Blaha, V.; Nikonov, S.P.

    1981-01-01

    The method and equipment are described for flooding experiments in a ring-shaped channel with an unheated external wall. The values measured during the experiment are given of tube wall temperature, the power input of the heating rod, the temperature of the flooding medium, the flow, the temperature of the envelope, pressure gradient in the measured section, pressure in the storage tank and temperature in the upper chamber. The dependence is shown of the coefficient of heat transfer on the temperature gradient between the wall and the medium which may be degasified water, CO 2 saturated water of N 2 saturated water. (J.B.)

  9. Heat treatment effect on impact strength of 40Kh steel

    International Nuclear Information System (INIS)

    Golubev, V.K.; Novikov, S.A.; Sobolev, Yu.S.; Yukina, N.A.

    1984-01-01

    The paper presents results of studies on the effect of heat treatment on strength and pattern of 40Kh steel impact failure. Loading levels corresponding to macroscopic spalling microdamage initiation in the material are determined for three initial states. Metallographic study on the spalling failure pattern for 40Kh steel in different initial states and data on microhardness measurement are presented

  10. Influence of heat treatment temperature on bonding and oxidation ...

    Indian Academy of Sciences (India)

    The effects of heat treatment temperature on the morphology, composition, chemical bonds, oxidation resistance and compressive strength of diamond particles coated with TiO2 films were characterized through scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, X-ray diffraction analysis, X-ray ...

  11. Influence of heat treatment temperature on bonding and oxidation ...

    Indian Academy of Sciences (India)

    Administrator

    Diamond; TiO2 film; heat treatment temperature; anti-oxidation; mechanical properties. 1. Introduction. Due to its ..... figure 4a, which was due to the change of chemical envi- ronment of ... graphite, diamond, diamond-like carbon and carbon.10.

  12. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... ween 450 and 660 m altitudes in Cide-Sehdagi (Gercek et al., 1998; Dogu ... changes continue as the temperature is increased in ... Heat treatment slows water uptake and wood cell wall absorbs ...... The Effect of Boiling Time.

  13. Application of microjet in heat treatment of aluminium bronzes

    Directory of Open Access Journals (Sweden)

    Z. Górny

    2011-04-01

    Full Text Available Mechanical properties of a CuAl10Fe4Ni4 bronze subjected to solution heat treatment and toughening were examined. In solution heattreatment, a microjet was used to raise the cooling rate. A slight increase of mechanical properties was observed.

  14. THE EFFECTS OF INTERCRITICAL HEAT TREATMENTS ON THE ...

    African Journals Online (AJOL)

    Effect of intercritical heat treatment on 0.14wt%C 0.56wt%Mn 0.13wt%Si struc- ... Table 1: Chemical composition of the steel used (wt. %) with its critical temperature (calculated). C. Mn. Si. Ni. S ... primary austenitic grain size hardening and.

  15. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    Effect of heat treatment (55°C/20 min) on polyphenol oxidase (PPO) and peroxidase (POD) activities and total phenolic compounds was investigated in Algerian dates (Deglet Nour variety) at Tamar (fully ripe) stage and in dates stored for 5 months at ambient temperature and in cold storage (10°C). Results obtained ...

  16. Laser heat treatment of welds for various stainless steels

    Science.gov (United States)

    Dontu, O.; Ganatsios, S.; Alexandrescu, N.; Predescu, C.

    2008-03-01

    The paper presents a study concerning the post - weld heat treatment of a duplex stainless steel. Welded joint samples were surface - treated using the same laser source adopted during welding in order to counterbalance the excess of ferrite formed in the welding process.

  17. Effects of heat treatment on density, dimensional stability and color ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate the effect of heat treatment on some physical properties and color change of Pinus nigra wood which has high industrial use potential and large growing stocks in Turkey. Wood samples which comprised the material of the study were obtained from an industrial plant. Samples were ...

  18. Performance evaluation of an integrated automotive air conditioning and heat pump system

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.

    2006-01-01

    This study deals with the performance characteristics of an R134a automotive air conditioning system capable of operating as an air-to-air heat pump using ambient air as a heat source. For this aim, an experimental analysis has been performed on a plant made up of original components from an automobile air conditioning system and some extra equipment employed to operate the system in the reverse direction. The system has been tested in the air conditioning and heat pump modes by varying the compressor speed and air temperatures at the inlets of the indoor and outdoor coils. Evaluation of the data gathered in steady state test runs has shown the effects of the operating conditions on the capacity, coefficient of performance, compressor discharge temperature and the rate of exergy destroyed by each component of the system for both operation modes. It has been observed that the heat pump operation provides adequate heating only in mild weather conditions, and the heating capacity drops sharply with decreasing outdoor temperature. However, compared with the air conditioning operation, the heat pump operation usually yields a higher coefficient of performance and a lower rate of exergy destruction per unit capacity. It is also possible to improve the heating mode performance of the system by redesigning the indoor coil, using another refrigerant with a higher heat rejection rate in the condenser and employing a better heat source such as the engine coolant or exhaust gases

  19. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    Science.gov (United States)

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  20. determining treatment levels of comorbid psychiatric conditions

    African Journals Online (AJOL)

    SITWALA COMPUTERS

    This low treatment rate may contribute to poor treatment outcomes. INTRODUCTION ... significance was set at p ≤ 0.05 for all statistical analyses. All confidence .... psychotropic effects , it is strongly associated with birth defects when used in ...

  1. Heat treatment of processing sludge of ornamental rocks: application as pozzolan in cement matrices

    Directory of Open Access Journals (Sweden)

    J.G. Uliana

    Full Text Available The sector of ornamental rocks produces significant volume of waste during the sawing of the blocks and demand to find ways to recycle, given its environmental impact. Considering the possibilities of use of industrial by-products as mineral admixtures, aiming at sustainable development in the construction industry, this paper aims to study the performance of the processing sludge of ornamental rocks and grinding after heat treatment, based on their potential application as partial substitute for cement. The residue was characterized, cast and milled to produce glassy material. Was analyzed the mechanical performance and pozzolanic activity with partial replacement of cement by waste in natural condition and after heat treatment in mortars for comparison. The results were promising, so it was possible to verify that after heat treatment, the treated waste is presented as a material with pozzolanic characteristics.

  2. Investigation of Heat Pump Operation Strategies with Thermal Storage in Heating Conditions

    Directory of Open Access Journals (Sweden)

    Wangsik Jung

    2017-12-01

    Full Text Available A heat pump with thermal storage system is a system that operates a heat pump during nighttime using inexpensive electricity; during this time, the generated thermal energy is stored in a thermal storage tank. The stored thermal energy is used by the heat pump during daytime. Based on a model of a dual latent thermal storage tank and a heat pump, this study conducts control simulations using both conventional and advanced methods for heating in a building. Conventional methods include the thermal storage priority method and the heat pump priority method, while advanced approaches include the region control method and the dynamic programming method. The heating load required for an office building is identified using TRNSYS (Transient system simulation, used for simulations of various control methods. The thermal storage priority method shows a low coefficient of performance (COP, while the heat pump priority method leads to high electricity costs due to the low use of thermal storage. In contrast, electricity costs are lower for the region control method, which operates using the optimal part load ratio of the heat pump, and for dynamic programming, which operates the system by following the minimum cost path. According to simulation results for the winter season, the electricity costs using the dynamic programming method are 17% and 9% lower than those of the heat pump priority and thermal storage priority methods, respectively. The region control method shows results similar to the dynamic programming method with respect to electricity costs. In conclusion, advanced control methods are proven to have advantages over conventional methods in terms of power consumption and electricity costs.

  3. A new paradigm for heat treatment of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ustinovshikov, Y., E-mail: ust@ftiudm.ru

    2014-11-25

    Highlights: • The sign of the ordering energy in alloys varies with the temperature. • Each temperature of heating leads to formation of its characteristic microstructure. • Quenching of alloys is a totally unnecessary and useless operation. - Abstract: The article considers the consequences in the field of heat treatment of alloys that could follow the introduction of the concept of phase transition ordering-phase separation into common use. By example of the Fe{sub 50}Cr{sub 50} alloy, industrial carbon tool steel and Ni{sub 88}Al{sub 12} alloy, it is shown that this transition occurs at a temperature, which is definite for each system, that the change of the sign of the chemical interaction between component atoms reverses the direction of diffusion fluxes in alloys, which affects changes in the type of microstructures. The discovery of this phase transition dramatically changes our understanding of the solid solution, changes the ideology of alloy heat treatment. It inevitably leads to the conclusion about the necessity of carrying out structural studies with the help of TEM in order to adjust the phase diagrams of the systems where this phase transition has been discovered. Conclusions have been made that quenching of alloys from the so-called region of the solid solution, which is usually performed before tempering (aging) is a completely unnecessary and useless operation, that the final structure of the alloy is formed during tempering (aging) no matter what the structure was before this heat treatment.

  4. Sour gas injection for use with in situ heat treatment

    Science.gov (United States)

    Fowler, Thomas David [Houston, TX

    2009-11-03

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.

  5. Novel magnetic heating probe for multimodal cancer treatment.

    Science.gov (United States)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Soboyejo, Wole

    2015-05-01

    Multifunctional materials consisting of polymers and magnetic nanoparticles (MNPs) are highly sought after in the field of biomedical engineering. These materials offer new opportunities for the development of novel cancer treatment modalities that can increase the efficacy of cancer therapy. In this paper, a novel probe for multimodal cancer treatment is proposed and analyzed. The probe is essentially a cannula with two main parts: a distal heat generating tip made of a magnetic nanocomposite and a proximal insulated shaft. A description of the concept and functional operations of the probe is presented. In an effort to assess its feasibility, the authors evaluated the ability of probe tip (made of PMMA-Fe3O4 nanocomposite) to generate heat in biological tissue using alternating magnetic field (AMF) parameters (field strength and frequency) that are acceptable for human use. Heat generation by MNPs was determined using the linear response theory. The effects of Fe3O4 volume fraction on heat generation as well as treatment time on the thermal dose were studied. The finite element method model was tested for its validity using an analytical model. Lesions were revealed to have an ellipsoidal shape and their sizes were affected by treatment time. However, their shapes remained unchanged. The comparison with the analytical model showed reasonably a good agreement to within 2%. Furthermore, the authors' numerical predictions also showed reasonable agreement with the experimental results previously reported in the literature. The authors' predictions demonstrate the feasibility of their novel probe to achieve reasonable lesion sizes, during hyperthermic or ablative heating using AMF parameters (field strength and frequency) that are acceptable for human use.

  6. Starch nanoparticles resulting from combination of dry heating under mildly acidic conditions and homogenization.

    Science.gov (United States)

    Kim, Jong Hun; Kim, Jiyeon; Park, Eun Young; Kim, Jong-Yea

    2017-07-15

    To modify starch granular structure, normal maize starch was subjected to dry heating with various amounts of 1.0M HCl (1.2, 1.4 or 1.6mL) and different treatment times (2, 4 or 8h). For all reaction conditions, at least 80% of the starch substance was recovered, and amylose and amylopectin B1 chains were preferentially cleaved. As acidic condition and/or treatment time increased, the treated granules were readily fragmented by homogenization. The treatment appeared to alter short-range crystalline structure (FT-IR), but long-range crystalline structure (XRD) remained intact. Homogenization for 60min fragmented the treated starch granules (subjected to reaction condition of 1.4mL/4h, 1.6mL/2h, and 1.6mL/4h) into nanoparticles consisting of individual platelet-like and spherical particles with diameters less than 100nm. However, the fragmentation caused obvious damage in the long-range crystalline structure of starch nanoparticles, while the short-range chain associations remained relatively intact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    Science.gov (United States)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  8. Comparative study of heat transfer and wetting behaviour of conventional and bioquenchants for industrial heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Peter; Prabhu, K. Narayan [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar 575 025 Mangalore, Karnataka State (India)

    2008-02-15

    An investigation was conducted to study the suitability of vegetable oils as bioquenchants for industrial heat treatment. The study involved the assessment of the severity of quenching and wetting behaviour of conventional and vegetable oil quench media. Quench severities of sunflower, coconut and palm oils were found to be greater than mineral oil. The quench severity of aqueous media is greater than oil media although their wettability is poor as indicated by their higher contact angles. A dimensionless contact angle parameter defined in this work is found to be a better parameter to compare the wetting behaviour with heat transfer. (author)

  9. Analysis and Choice of Optimal Heating Ventilation Air Conditioning System for a Teaching Unit

    Directory of Open Access Journals (Sweden)

    Marina Verdeş

    2007-01-01

    Full Text Available Under the conditions of present society in which providing an optimum interior comfort is confronted with the necessity of the energy consumption reduction, solving this problem depends on the factors which contribute to the achievements of this comfort. Modern buildings -- implicitly teaching unit -- may be equipped with installations which have low energy consumption, respective a heating, cooling and ventilating integrated system with heat pumps system which can assure all the required comfort conditions. This paper underlines the necessity to use the heat pump in heating system for a teaching unit, energetic and economic guides and the possibility to increase them when using cooling and heating mixed. The solution of heat pumps for heating of the teaching unit and the energetic and economic advantages of the system is made in study.

  10. Study on Heat Utilization in an Attached Sunspace in a House with a Central Heating, Ventilation, and Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Qingsong Ma

    2018-05-01

    Full Text Available Based on numerical simulations, the heating load reduction effect of an attached sunspace in winter was determined, and the effective heat utilization method and sunspace design were explored. In this paper, we studied the heating load reduction effect using heat from the sunspace and temperature fluctuation of each room at the time of heat use from the sunspace (sending air from the sunspace to the heating, ventilation, and air conditioning (HVAC machine room and taking the air to the adjacent rooms. In the case of the all-day HVAC system, it was confirmed that a larger capacity of sunspace and not sending air from the sunspace to the adjacent room demonstrated a better heating-load reduction effect. Compared with Model Iw (a house with a window on the exterior of the sunspace opened to external air, Model I (a house with an attached sunspace on the second floor could save approximately 41% of the total energy. Model II (a house with the attached sunspace both on the first and second floors could save approximately 84% of the total energy. Sending heat from the sunspace to the adjacent room led to temperature increases in the adjacent rooms. However, if the construction plan is to have the sunspace only on the second floor, the house should be carefully designed, for example, by placing a living room on the second floor.

  11. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment

    Science.gov (United States)

    Baars, Destiny L.; Pelegri, Francisco

    2016-01-01

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole duplication, this method results in a precise cell division stall during the second cell cycle. The precise one-cycle division stall, coupled to unaffected DNA duplication, results in whole genome duplication. Protocols associated with this method include egg and sperm collection, UV treatment of sperm, in vitro fertilization and heat pulse to cause a one-cell cycle division delay and ploidy duplication. A modified version of this protocol could be applied to induce ploidy changes in other animal species. PMID:28060351

  12. CHF multiplier of subcooled flow boiling for non-uniform heating conditions in swirl tube

    International Nuclear Information System (INIS)

    Inasaka, F.; Nariai, H.

    1994-01-01

    The high heat flux components of fusion reactors, such as divertor plates and beam dumps of neutral beam injectors, are estimated to be subjected to very high heat loads more than 10 MW/m 2 . Critical heat flux (CHF), which determines the upper limit of heat removal, is one of the most important problems in designing cooling systems. For practical applications in cooling systems, subcooled flow boiling in water combined with swirl-flow in tubes with internal twisted tape is thought to be the most superior for CHF characteristics in fusion reactor components, heat by irradiation comes in from one side of the wall, and cooling channel is then under circumferentially non-uniform heating condition. Authors have conducted the experiments on the CHF with internal twisted tapes under circumferentially non-uniform heating conditions and showed that when the intensity of non-uniformity increased, q cH (peak heat flux at burnout under nonuniform heating condition) in tube with internal twisted tape increased above the q c,unif (CHF under uniform heating condition), though the average qualities were the same for both cases. They also showed that this CHF enhancement was not seen in smooth tubes without tape under the same average qualities

  13. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    Directory of Open Access Journals (Sweden)

    N. V. Kolebina

    2015-01-01

    Full Text Available The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. However, taking into account the large size of the blanks for the hydro turbine parts, the thermal cycling is an advanced method of the grain refinement adaptable to streamlined production. This work experimentally studies the heat treatment influence on the microstructure of the low-carbon 01X13N04 alloy steel and proposes the optimal regime of the heat treatment to provide a significantly reduced grain size. L.M. Kleiner, N.P. Melnikov and I.N. Bogachyova’s works focused both on the microstructure of these steels and on the influence of its parameters on the mechanical properties. The paper focuses mainly on defining an optimal regime of the heat treatment for grain refinement. The phase composition of steel and temperature of phase transformation were defined by the theoretical analysis. The dilatometric experiment was done to determine the precise temperature of the phase transformations. The analysis and comparison of the experimental data with theoretical data and earlier studies have shown that the initial sample has residual stress and chemical heterogeneity. The influence of the heat treatment on the grain size was studied in detail. It is found that at temperatures above 950 ° C there is a high grain growth. It is determined that the optimal number of cycles is two. The postincreasing number of cycles does not cause further reducing grain size because of the accumulative recrystallization process. Based on the results obtained, the thermal cycling

  14. Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions

    Science.gov (United States)

    Martin, E. J.; Kueper, B. H.

    2011-11-01

    A two-dimensional experiment employing a heterogeneous sand pack incorporating two pools of trichloroethylene (TCE) was performed to assess the efficacy of electrical resistance heating (ERH) under passive venting conditions. Temperature monitoring displayed the existence of a TCE-water co-boiling plateau at 73.4 °C, followed by continued heating to 100 °C. A 5 cm thick gas accumulation formed beneath a fine-grained capillary barrier during and after co-boiling. The capillary barrier did not desaturate during the course of the experiment; the only pathway for gas escape being through perforated wells traversing the barrier. The thickness of the accumulation was dictated by the entry pressure of the perforated well. The theoretical maximum TCE soil concentration within the region of gas accumulation, following gas collapse, was estimated to be 888 mg/kg. Post-heating soil sampling revealed TCE concentrations in this region ranging from 27 mg/kg to 96.7 mg/kg, indicating removal of aqueous and gas phase TCE following co-boiling as a result of subsequent boiling of water. The equilibrium concentrations of TCE in water corresponding to the range of post-treatment concentrations in soil (6.11 mg/kg to 136 mg/kg) are calculated to range from 19.8 mg/l to 440 mg/l. The results of this experiment illustrate the importance of providing gas phase venting during the application of ERH in heterogeneous porous media.

  15. Solar power from the supermarket. Water heating, space heating and air conditioning with solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The different ways of utilizing solar energy are discussed. So far, top water heating is still the most practicable and most economical solution. Model houses with solar collectors, built by BBC and Philips, are dealt with in particular.

  16. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes

    Directory of Open Access Journals (Sweden)

    Laura D'Evoli

    2013-07-01

    Full Text Available Tomatoes and tomato products are rich sources of carotenoids—principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g. Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (−17%, while for lutein it was greater in the pulp fraction (−25%. Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (−36%. The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  17. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes.

    Science.gov (United States)

    D'Evoli, Laura; Lombardi-Boccia, Ginevra; Lucarini, Massimo

    2013-07-31

    Tomatoes and tomato products are rich sources of carotenoids-principally lycopene, followed by β-carotene and lutein. The aim of this work was to study the effect of heat treatment on carotenoid content in cherry tomatoes. Raw and canned products were sampled and analysed; furthermore whole, skin and pulp fractions of cherry tomatoes were analysed when raw and home-processed, in order to better understand heat treatment effects. Lycopene content in canned tomatoes was two-fold higher than in raw tomatoes (11.60 mg/100 g versus 5.12 mg/100 g). Lutein and β-carotene were respectively 0.15 mg/100 g and 0.75 mg/100 g in canned tomatoes versus 0.11 mg/100 g and 1.00 mg/100 g in raw tomatoes. For home-processed tomatoes, β-carotene and lutein showed a content decrease in all thermally treated products. This decrease was more evident for β-carotene in the skin fraction (-17%), while for lutein it was greater in the pulp fraction (-25%). Lycopene presented a different pattern: after heat treatment its concentration increased both in the whole and in pulp fractions, while in the skin fraction it decreased dramatically (-36%). The analysis of the isomers formed during the thermal treatment suggests that lycopene is rather stable inside the tomato matrix.

  18. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition

    Science.gov (United States)

    Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath

    2018-05-01

    This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.

  19. Heat treatments of TiAl-Cr-V casting alloy

    International Nuclear Information System (INIS)

    Pu, Z.J.; Ma, J.L.; Wu, K.H.

    1995-01-01

    The need to investigate various kinds of fine microstructure based on casting TiAl alloy led to development of a multiple-stage heat treatment procedure. The first stage required the transformation of as-cast lamellar structure into near-gamma structure, followed by required transformation of near-gamma structure into various kinds of fine microstructure. The as-cast lamellar structure can be changed into near-gamma structure by annealing the alloy at 1,200 C for at least 50 hours. During the annealing process, two mechanisms are involved in transforming the lamellar structure into a near-gamma structure. One is the discontinuous coarsening (DC) process, and the other is the continuous coarsening (CC) process. With the near-gamma structure as an initial structure, the alloy being heat-treated in the γ + α and in the α fields can produce various kinds of microstructure with fine grain size. These microstructure significantly differ from the microstructure produced by heat-treating the deformed lamellar structure. Results of the investigation show that careful control of the time of the heat-treatment process in the single a field can produce a fine fully lamellar structure

  20. Effect of the Heat Treatment on the Graphite Matrix of Fuel Element for HTGR

    International Nuclear Information System (INIS)

    Lee, Chungyong; Lee, Seungjae; Suh, Jungmin; Jo, Youngho; Lee, Youngwoo; Cho, Moonsung

    2013-01-01

    In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength for the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and Phenol as a binder were chosen and mixed with each other, formed and heated for the compressive strength test. The objective of this research is to optimize the kinds and composition of the mixed graphite and the forming process by evaluating the compressive strength before/after heat treatment (carbonization of binder). In this study, the effect of heat treatment on graphite matrix was studied in terms of the density and the compressive strength. The size (diameter and length) of pellet is increased by heat treatment. Due to additional weight reduction and swelling (length and diameter) of samples the density of graphite pellet is decreased from about 2.0 to about 1.7g/cm 3 . From the mechanical test results, the compressive strength of graphite pellets was related to the various conditions such as the contents of binder, the kinds of graphite and the heat treatment. Both the green pellet and the heat treated pellet, the compressive strength of G+S+P pellets is relatively higher than that of R+S+P pellets. To optimize fuel element matrix, the effect of Phenol and other binders, graphite composition and the heat treatment on the mechanical properties will be deeply investigated for further study

  1. The influence of heat treatments on several types of base-metal removable partial denture alloys.

    Science.gov (United States)

    Morris, H F; Asgar, K; Rowe, A P; Nasjleti, C E

    1979-04-01

    Four removable partial denture alloys, Vitallium (Co-Cr alloy), Dentillium P.D. (Fe-Cr alloy), Durallium L.G. (Co-Cr-Ni alloy), and Ticonium 100 (Ni-Cr alloy), were evaluated in the as-cast condition and after heat treatment for 15 minutes at 1,300 degrees, 1,600 degrees, 1,900 degrees, and 2,200 degrees F followed by quenching in water. The following properties were determined and compared for each alloy at each heat treatment condition: the yield strengths at 0.01%, 0.1%, and 0.2% offsets, the ultimate tensile strength, the percent elongation, the modulus of elasticity, and the Knoop microhardness. The results were statistically analyzed. Photomicrographs were examined for each alloy and test condition. The following conclusions were made: 1. The "highest values" were exhibited by the as-cast alloy. 2. Heat treatment of the partial denture alloys tested resulted in reductions in strength, while the elongations varied. This study demonstrates that, in practice, one should avoid (a) prolonged "heat-soaking" while soldering and (b) grinding or polishing of the casting until the alloy is "red hot". 3. Durallium L.G. was the least affected by the various heat treatment conditions. 4. Conventional reporting of the yield strength at 0.2% offset, the ultimate tensile strength, and percent elongation are not adequate to completely describe and compare the mechanical behavior of alloys. The reporting of the yield strength at 0.01% offset, in addition to the other reported properties, will provide a more complete description of the behavior of the dental alloys.

  2. The heat treatment of steel. A mathematical control problem

    Energy Technology Data Exchange (ETDEWEB)

    Hoemberg, Dietmar; Kern, Daniela

    2009-07-21

    The goal of this paper is to show how the heat treatment of steel can be modelled in terms of a mathematical optimal control problem. The approach is applied to laser surface hardening and the cooling of a steel slab including mechanical effects. Finally, it is shown how the results can be utilized in industrial practice by a coupling with machine-based control. (orig.)

  3. Deep heat muscle treatment: A mathematical model - I

    International Nuclear Information System (INIS)

    Ogulu, A.; Bestman, A.R.

    1992-03-01

    The flow of blood during deep heat muscle treatment is studied in this paper. We model the blood vessel as a long tube in circular section whose radius varied slowly. Under the Boussinesq approximation, we seek asymptotic series expansions for the velocity components, temperature and pressure about a small parameter, ε, characterizing the radius variation. The study reveals mathematically why physicians recommend a hot bath for cuts and physiotherapists use ice packs for bruises. (author). 5 refs, 3 figs

  4. Microwave heat treatment as a substitute for conventional treatment of palm oil fruits

    International Nuclear Information System (INIS)

    Mujahid H Al-Fayadh; Nor Azura Masabbir Ali

    1996-01-01

    Microwave energy has become a sound method of heat treatment because of its high penetration power, cleanliness and possible economic significance. In this research, microwave heat was used as a substitute for conventional blanching method of palm oil fruits. Microwave treatment at 2450 MHz and 800 watts gave very close color and frn,frying characteristics to oil of blanched fruits after one minute exposure time. However, five minutes of microwave heat gave severe husk oil discoloration after 49 hours of deep frying, compared to all oils extracted from fruits treated by either low, microwave exposure time or conventional steam treatment. Kernel oil, after five minutes of microwave treatment, was less discolored than both steam or microwave-treated fruits for one minute. More carotenes and discoloration compounds may be contributed to discoloration during microwave treatments. Oil chemical constants of both husk and kernel oils treated by microwave heat were close to those treated by conventional heat. Further research is needed to investigate detailed oil characteristics and evaluate the feasibility study for using microwave energy, as a substitute for conventional heat in palm oil industry

  5. Effects of heat treatment to the sound velocity and microstructural changes of ASTM A516 steels

    International Nuclear Information System (INIS)

    Norasiah Abdul Kasim; Azali Muhammad; Amry Amin Abas; Zaiton Selamat

    2010-01-01

    Full-text: The used of ultrasonic testing as a thickness measurement for structural components (pipeline and pressure vessel) is among the popular inspection tool widely use in the industrial power plant such as at petrochemical and nuclear power plant. Currently, there are cases where the thickness grows and the result will affect the reliability of the test. There are many factors that can affect the reliability of measurement. One of it is the material under test itself. In the Malaysian Nuclear Agency, initial efforts are underway to study the understanding on the effects of heat treatment to the sound velocity and microstructure changes of ASTM A516 steel. Few samples of thin square shaped prepared were heat treated under the following conditions: austenitization at 9800 degree Celsius - 2 hours, quenching; tempering at various temperature 4000, 5000, 6000 and 7000 degree Celsius. The results show that the microstructure changes and samples exhibit different sound velocity at different heat treatment. (author)

  6. THE HEAT TREATMENT ANALYSIS OF E110 CASE HARDENING STEEL

    Directory of Open Access Journals (Sweden)

    MAJID TOLOUEI-RAD

    2016-03-01

    Full Text Available This paper investigates mechanical and microstructural behaviour of E110 case hardening steel when subjected to different heat treatment processes including quenching, normalizing and tempering. After heat treatment samples were subjected to mechanical and metallographic analysis and the properties obtained from applying different processes were analysed. The heat treatment process had certain effects on the resultant properties and microstructures obtained for E110 steel which are described in details. Quenching produced a martensitic microstructure characterized by significant increase in material’s hardness and a significant decreased in its impact energy. Annealed specimens produced a coarse pearlitic microstructure with minimal variation in hardness and impact energy. For normalized samples, fine pearlitic microstructure was identified with a moderate increase in hardness and significant reduction in impact energy. Tempering had a significant effect on quenched specimens, with a substantial rise in material ductility and reduction of hardness with increasing tempering temperature. Furthermore, Results provide additional substantiation of temper embrittlement theory for low-carbon alloys, and indicate potential occurrence of temper embrittlement for fine pearlitic microstructures.

  7. Heat treatment trials for ITER toroidal field coils

    International Nuclear Information System (INIS)

    Matsui, Kunihiro; Hemmi, Tsutomu; Koizumi, Norikiyo; Nakajima, Hideo; Kimura, Satoshi; Nakamoto, Kazunari

    2012-01-01

    Cable-in-conduit (CIC) conductors using Nb 3 Sn strands are used in ITER toroidal fields (TF) coils. Heat treatment generates thermal strain in CIC conductors because of the difference in thermal expansion between the Nb 3 Sn strands and the stainless-steel jacket. The elongation/shrinkage of the TF conductor may make it impossible to insert a wound TF conductor into the groove of a radial plate. In addition, it is expected that the deformation of the winding due to heat treatment-based release of the residual force in the jacket may also make it impossible to insert the winding in the groove, and that correcting the winding geometry to allow insertion of the winding may influence the superconducting performance of the TF conductor. The authors performed several trials using heat treatment as the part of activities in Phase II of TF coil procurement aiming to resolve the above-mentioned technical issues, and evaluated the elongations of 0.064, 0.074 and 0.072% for the straight and curved conductors and 1/3-scale double-pancake (DP) winding, respectively. It was confirmed that correction if the deformed winding did not influence the superconducting performance of the conductor. (author)

  8. Analysis of economic and environmental benefits of a new heat pump air conditioning system with a heat recovery device

    Science.gov (United States)

    Li, lingxue

    2017-08-01

    The paper designs a new wind-water cooling and heating water conditioner system, connects cooling tower with heat recovery device, which uses cooling water to completely remove the heat that does not need heat recollection, in order to ensure that the system can work efficiently with higher performance coefficient. After the test actual engineering operation, the system’s maximum cooling coefficient of performance can reach 3.5. Its maximum comprehensive coefficient of performance can reach 6.5. After the analysis of its economic and environmental, we conclude that the new system can save 89822 kw per year. It reflects energy-saving and environmental benefits of the cold and hot water air conditioning system.

  9. Heat treatment of a direct composite resin: influence on flexural strength

    Directory of Open Access Journals (Sweden)

    Caroline Lumi Miyazaki

    2009-09-01

    Full Text Available The purpose of this study was to evaluate the flexural strength of a direct composite, for indirect application, that received heat treatment, with or without investment. One indirect composite was used for comparison. For determination of the heat treatment temperature, thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were performed, considering the initial weight loss temperature and glass transition temperature (Tg. Then, after photoactivation (600 mW/cm² - 40 s, the specimens (10 x 2 x 2 mm were heat-treated following these conditions: 170ºC for 5, 10 or 15 min, embedded or not embedded in investment. Flexural strength was assessed as a means to evaluate the influence of different heat treatment periods and investment embedding on mechanical properties. The data were analyzed by ANOVA and Tukey's test (α = 0.05. TGA showed an initial weight loss temperature of 180ºC and DSC showed a Tg value of 157°C. Heat treatment was conducted in an oven (Flli Manfredi, Italy, after 37°C storage for 48 h. Flexural strength was evaluated after 120 h at 37°C storage. The results showed that different periods and investment embedding presented similar statistical values. Nevertheless, the direct composite resin with treatments presented higher values (178.7 MPa compared to the indirect composite resin (146.0 MPa and the same direct composite submitted to photoactivation only (151.7 MPa. Within the limitations of this study, it could be concluded that the heat treatment increased the flexural strength of the direct composite studied, leading to higher mechanical strength compared to the indirect composite.

  10. Uninterrupted heat-treatment of starch raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Bronshtein, D Z

    1958-01-01

    A setup is presented, with a Rekord grinder, a Khronos scale, and other equipment of Soviet manufacture, in which oats, rye, wheat, and other grains are treated at 42 to 45 degrees prior to their use as raw materials in the ethanol industry. These materials are analyzed with respect to H/sub 2/O, starch, bulk, weight, screen analysis, and the final ethanol yields/ton of such raw materials. In a three year run in plant, this heat-treatment was advantageous, as compared to the former treatment of the starch materials.

  11. Uninterrupted heat-treatment of starch raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Bronshtein, D Z

    1958-01-01

    A setup is presented, with a Rekord grinder, a Khronos scale, and other equipment of Soviet manufacture, in which oats, rye, wheat, and other grains are treated at 42 to 45/sup 0/ prior to their use as raw materials in the ethanol industry. These materials are analyzed with respect to H/sub 2/O, starch, bulk weight, screen analysis, and the final ethanol yields/ton of such raw materials. In a three year run in a plant, this heat-treatment was advantageous, as compared to the former treatment of the starch materials.

  12. Hybrid fuzzy logic control of laser surface heat treatments

    International Nuclear Information System (INIS)

    Perez, Jose Antonio; Ocana, Jose Luis; Molpeceres, Carlos

    2007-01-01

    This paper presents an advanced hybrid fuzzy logic control system for laser surface heat treatments, which allows to increase significantly the uniformity and final quality of the obtained product, reducing the rejection rate and increasing the productivity and efficiency of the treatment. Basically, the proposed hybrid control structure combines a fuzzy logic controller, with a pure integral action, both fully decoupled, improving the performances of the process with a reasonable design cost, since the system nonlinearities are fully compensated by the fuzzy component of the controller, while the integral action contributes to eliminate the steady-state error

  13. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  14. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    International Nuclear Information System (INIS)

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed

  15. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Directory of Open Access Journals (Sweden)

    Silvia Cocchi

    2013-01-01

    Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.

  16. Investigation of the kinetics of the change in the group composition of the anthracene fraction on heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Lur' e, M.V.; Stepanenko, M.A.

    1981-01-01

    In the reported experiments, an investigation has been made of the kinetics of the change in the group composition of the anthracene fraction during heat treatment under various conditions. On the basis of the results obtained, a kinetic model of the process has been developed which permits rational conditions for obtaining a heat-treated product of the necessary group composition to be found. 6 refs.

  17. Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan (China); Wang, Xiaomin, E-mail: xmwang991011@163.com [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan (China); Chen, Hui; Hu, Jie [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan (China); Huang, Cui [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan (China); Gou, Guoqing [School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan (China)

    2016-09-05

    7N01 aluminum (Al) alloys are treated by five heat treatment methods as peak aging (T6), over aging (T74), high temperature and subsequently low temperature aging (HLA), retrogression and reaging (RRA) and double retrogression and reaging (DRRA). The strength and fracture toughness of the five samples are tested, and the microstructures are investigated by optical microscopy (OM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that 7N01 Al-alloy treated at T6 condition has high strength but low fracture toughness. Compared with T6 treatment, T74 and HLA treatments increase the fracture toughness by 67% and 90% respectively, while the strength decrease by 9% and 17%. RRA process is a proper treatment method for 7N01 which improves the fracture toughness without sacrificing strength. The fracture toughness of DRRA treated alloy is much lower than that of RRA. Quantitative analysis through TEM images shows that the heat treatment affects the mechanical properties of 7N01 Al-alloy highly through changing the precipitates in grains and on grain boundaries, which can be explained by the coherency strengthening mechanism and Orowan mechanism. - Highlights: • Five heat treatments which can change the properties of 7N01 Al alloy were designed. • Quantitative analysis of precipitates was employed to study the mechanism. • RRA treatment can make proper strength/toughness property balances for 7N01 Al alloy.

  18. Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy

    International Nuclear Information System (INIS)

    Li, Bo; Wang, Xiaomin; Chen, Hui; Hu, Jie; Huang, Cui; Gou, Guoqing

    2016-01-01

    7N01 aluminum (Al) alloys are treated by five heat treatment methods as peak aging (T6), over aging (T74), high temperature and subsequently low temperature aging (HLA), retrogression and reaging (RRA) and double retrogression and reaging (DRRA). The strength and fracture toughness of the five samples are tested, and the microstructures are investigated by optical microscopy (OM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that 7N01 Al-alloy treated at T6 condition has high strength but low fracture toughness. Compared with T6 treatment, T74 and HLA treatments increase the fracture toughness by 67% and 90% respectively, while the strength decrease by 9% and 17%. RRA process is a proper treatment method for 7N01 which improves the fracture toughness without sacrificing strength. The fracture toughness of DRRA treated alloy is much lower than that of RRA. Quantitative analysis through TEM images shows that the heat treatment affects the mechanical properties of 7N01 Al-alloy highly through changing the precipitates in grains and on grain boundaries, which can be explained by the coherency strengthening mechanism and Orowan mechanism. - Highlights: • Five heat treatments which can change the properties of 7N01 Al alloy were designed. • Quantitative analysis of precipitates was employed to study the mechanism. • RRA treatment can make proper strength/toughness property balances for 7N01 Al alloy.

  19. New method of processing heat treatment experiments with numerical simulation support

    Science.gov (United States)

    Kik, T.; Moravec, J.; Novakova, I.

    2017-08-01

    In this work, benefits of combining modern software for numerical simulations of welding processes with laboratory research was described. Proposed new method of processing heat treatment experiments leading to obtaining relevant input data for numerical simulations of heat treatment of large parts was presented. It is now possible, by using experiments on small tested samples, to simulate cooling conditions comparable with cooling of bigger parts. Results from this method of testing makes current boundary conditions during real cooling process more accurate, but also can be used for improvement of software databases and optimization of a computational models. The point is to precise the computation of temperature fields for large scale hardening parts based on new method of temperature dependence determination of the heat transfer coefficient into hardening media for the particular material, defined maximal thickness of processed part and cooling conditions. In the paper we will also present an example of the comparison standard and modified (according to newly suggested methodology) heat transfer coefficient data’s and theirs influence on the simulation results. It shows how even the small changes influence mainly on distribution of temperature, metallurgical phases, hardness and stresses distribution. By this experiment it is also possible to obtain not only input data and data enabling optimization of computational model but at the same time also verification data. The greatest advantage of described method is independence of used cooling media type.

  20. Assessment of hypervapotron heat sink performance using CFD under DEMO relevant first wall conditions

    Energy Technology Data Exchange (ETDEWEB)

    Domalapally, Phani, E-mail: p_kumar.domalapally@cvrez.cz

    2016-11-01

    Highlights: • Performance of Hypervapotron heat sink was tested for First wall limiter application. • Two different materials were tested Eurofer 97 and CuCrZr at PWR conditions. • Simulations were performed to see the effect of the different inlet conditions and materials on the maximum temperature. • It was found that CuCrZr heat sink performance is far better than Eurofer heat sink at the same operating conditions. - Abstract: Among the proposed First Wall (FW) cooling concepts for European Demonstration Fusion Power Plant (DEMO), water cooled FW is one of the options. The heat flux load distribution on the FW of the DEMO reactor is not yet precisely defined. But if the heat loads on the FW are extrapolated from ITER conditions, the numbers are quite high and have to be handled none the less. The design of the FW itself is challenging as the thermal conductivity ratio of heat sink materials in ITER (CuCrZr) and in DEMO (Eurofer 97) is ∼10–12 and the operating conditions are of Pressurized Water Reactor (PWR) in DEMO instead of 70 °C and 4 MPa as in ITER. This paper analyzes the performance of Hypervapotron (HV) heat sink for FW limiter application under DEMO conditions. Where different materials, temperatures, heat fluxes and velocities are considered to predict the performance of the HV, to establish its limits in handling the heat loads before reaching the upper limits from temperature point of view. In order to assess the performance, numerical simulations are performed using commercial CFD code, which was previously validated in predicting the thermal hydraulic performance of HV geometry. Based on the results the potential usage of HV heat sink for DEMO will be assessed.

  1. Abstracts of international symposium on heat and mass transfer under plasma conditions

    International Nuclear Information System (INIS)

    1994-01-01

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting

  2. Abstracts of international symposium on heat and mass transfer under plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting.

  3. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    1995-09-01

    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  4. Use of solar energy for heat supply under conditions of the Socialist Federated Republic of Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Savic, B.

    1981-01-01

    The characteristics of a flat solar energy collector are used to determine the specific heat productivity of the solar unit under meteorological conditions of Belgrade. The evaluation is made with regard for experimental data of year-round operation of hot water supply units and the seasonal use of heating units.

  5. Effect of heat treatment on antimycotic activity of Sahara honey

    Directory of Open Access Journals (Sweden)

    Moussa Ahmed

    2014-11-01

    Full Text Available Objective: To evaluate the influence of the temperature on honey colour, polyphenol contents and antimycotic capacity and to evaluate the correlation between these parameters. Methods: Sahara honey were heated up to 25, 50, 75 and 100 °C for 15, 30 and 60 min, and their colour intensity, polyphenol contents and antimycotic capacity. The Folin-Ciocalteu test was used to determine the total polyphenol contents (TPC. The antimycotic activity was evaluated both by agar diffusion method and micro wells dilution method against the Candida albicans (C. albicans and Candida glabrata (C. glabrata. Results: Initial values for TPC in Sahara honey ranged from 0.55 to 1.14 mg of gallic acid per kg of honey, with the average value of 0.78 mg of gallic acid per kg of honey. The TPC values after heat-treatment were 0.54 to 1.54 with the average value of 1.49 mg. The minimal inhibitory concentrations before heat-treatment of Sahara honey against C. albicans and C. glabrata ranged from 3.06%-12.5% and 50% respectively. After heat-treatment the minimal inhibitory concentrations between 12.5% and 50% for C. albicans and C. glabrata, respectively. The diameters of inhibition zones of Sahara honey with 50% concentration varied from (12.67-15.00 mm by C. albicans to (14.33-15.67 mm by C. glabrata. The diameters of inhibition zones after heat-treatment at 25 and 50 °C for 15.30 and 60 min ranged from (2.00-18.67 mm by C. albicans to (8.00-16.67 mm by C. glabrata. Statistically significant relations between the TPC and the colour intensity of Sahara honey (r=0.99, P<0.05. Furthermore, the results showed that the TPC and colour is not correlated with the antimycotic capacity. Conclusions: To our knowledge this is the first report on the antimycotic capacity of Sahara honey.

  6. A method for calorimetric analysis in variable conditions heating

    International Nuclear Information System (INIS)

    Berthier, G.

    1965-01-01

    By the analysis of the thermal transition conditions given by the quenching of a sample in a furnace maintained at a high temperature, it is possible to study the thermal diffusivity of some materials and those of solid state structure transformation on a qualitative as well as a quantitative standpoint. For instance the transformation energy of α-quartz into β-quartz and the Wigner energy stored within neutron-irradiated beryllium oxide have been measured. (author) [fr

  7. Calorimetric study on human erythrocyte glycolysis. Heat production in various metabolic conditions.

    Science.gov (United States)

    Minakami, S; de Verdier, C H

    1976-06-01

    The heat production of human erythrocytes was measured on a flow microcalorimeter with simultaneous analyses of lactate and other metabolites. The heat production connected with the lactate formation was about 17 kcal (71 kJ) per mol lactate formed which corresponded to the sum of heat production due to the formation of lactate from glucose and the heat production due to neutralization. The heat production rate increased as the pH of the suspension increased, corresponding to the increase in lactate formation. Glycolytic inhibitors such as fluoride and monoiodoacetate caused a decrease in the rate of heat production, whereas arsenate induced a large transient increase in heat production associated with a transient increase in lactate formation. Decrease in pyruvate concentration was usually associated with increase in heat production, although the decreased pyruvate concentration was coupled with formation of 2,3-bisphosphoglycerate. When inosine, dihydroxyacetone or D-glyceraldehyde was used as a substrate, an increase in the heat production rate was observed. Addition of methylene blue caused an oxygen uptake which was accompanied by a remarkable increase in heat production rate corresponding to about 160 kcal (670 kJ) per mol oxygen consumed. The value for heat production in red cells in the above-mentioned metabolic conditions was considered in relation to earlier known data on free energy and enthalpy changes of the different metabolic steps in the glycolytic pathway.

  8. Effect of heat treatment duration on tribological behavior of electroless Ni-(high)P coatings

    Science.gov (United States)

    Biswas, A.; Das, S. K.; Sahoo, P.

    2016-09-01

    Electroless nickel coating occurs through an autocatalytic chemical reaction and without the aid of electricity. From tribological perspective, it is recommended due to its high hardness, wear resistance, lubricity and corrosion resistance properties. In this paper electroless Ni-P coatings with high phosphorous weight percentages are developed on mild steel (AISI 1040) substrates. The coatings are subjected to heat treatment at 300°C and 500°C for time durations up to 4 hours. The effect of heat treatment duration on the hardness as well as tribological properties is discussed in detail. Hardness is measured in a micro hardness tester while the tribological tests are carried out on a pin-on-disc tribotester. Wear is reported in the form of wear rates of the sample subjected to the test. As expected, heat treatment of electroless Ni-P coating results in enhancement in its hardness which in turn increases its wear resistance. The present study also finds that duration of heat treatment has quite an effect on the properties of the coating. Increase in heat treatment time in general results in increase in the hardness of the coating. Coefficient of friction is also found to be lesser for the samples heat treated for longer durations (4 hour). However, in case of wear, similar trend is not observed. Instead samples heat treated for 2 to 3 hour display better wear resistance compared to the same heat treated for 4 hour duration. The microstructure of the coating is also carried out to ensure about its proper development. From scanning electron microscopy (SEM), the coating is found to possess the conventional nodular structure while energy dispersive X-ray analysis (EDX) shows that the phosphorous content in the coating to be greater than 9%. This means that the current coating belongs to the high phosphorous category. From X-ray diffraction analysis (XRD), it is found that coating is amorphous in as-deposited condition but transforms into a crystalline structure with

  9. Modeling heat and mass transfer in the heat treatment step of yerba maté processing

    Directory of Open Access Journals (Sweden)

    J. M. Peralta

    2007-03-01

    Full Text Available The aim of this research was to estimate the leaf and twig temperature and moisture content of yerba maté branches (Ilex paraguariensis Saint Hilaire during heat treatment, carried out in a rotary kiln dryer. These variables had to be estimated (modeling the heat and mass transfer due to the difficulty of experimental measurement in the dryer. For modeling, the equipment was divided into two zones: the flame or heat treatment zone and the drying zone. The model developed fit well with the experimental data when water loss took place only in leaves. In the first zone, leaf temperature increased until it reached 135°C and then it slowly decreased to 88°C at the exit, despite the gas temperature, which varied in this zone from 460°C to 120°C. Twig temperature increased in the two zones from its inlet temperature (25°C up to 75°C. A model error of about 3% was estimated based on theoretical and experimental data on leaf moisture content.

  10. Dictionary of heating and air conditioning. Woerterbuch der Heizungs- und Klimatechnik

    Energy Technology Data Exchange (ETDEWEB)

    Laege, K

    1981-01-01

    This German-English and English-German dictionary includes some 4000 technical terms of the field of heating and air conditioning engineering. It represents the latest state of this technical terminology.

  11. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  12. The effect of postproduction heat treatment on γ-TiAl alloys produced by the GTAW-based additive manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Cuiuri, Dominic; Li, Huijun; Pan, Zengxi, E-mail: zengxi@uow.edu.au; Shen, Chen

    2016-03-07

    Postproduction heat treatments were carried out on additively manufactured γ-TiAl alloys that were produced by using the gas tungsten arc welding (GTAW) process. The microstructural evolution and mechanical properties of both as-fabricated and heat-treated specimens were investigated to assess the effect of different heat treatment conditions, by using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Neutron Diffraction and tensile tests. The results indicated that heat treatment promotes the formation of the γ phase in the majority region after heat treatment at 1200 °C for 24 h, while a fully lamellar structure was formed in the near-substrate zone. The response to heat treatment at 1060 °C/24 h was markedly different, producing a fine lamellar structure with differing sizes in the majority region and near-substrate zone. These various microstructural characteristics determined the mechanical properties of the heat-treated samples. The heat-treated samples at 1200 °C/24 h exhibited lower UTS and microhardness values but higher ductility than the as-fabricated samples without heat treatment, while the 1060 °C/24 h heat treatment resulted in higher UTS and microhardness values but lower ductility. Due to the homogenous microstructure in the majority region after each postproduction heat treatment, the tensile properties were similar for both the build direction (Z) and travel direction (Y), thereby minimising the anisotropy that is exhibited by the as-fabricated alloy prior to heat treatment.

  13. Expanded heat treatment to form residual compressive hoop stress on inner surface of zirconium alloy tubing

    International Nuclear Information System (INIS)

    Megata, Masao

    1997-01-01

    A specific heat treatment process that introduces hoop stress has been developed. This technique can produce zirconium alloy tubing with a residual compressive hoop stress near the inner surface by taking advantage of the mechanical anisotropy in hexagonal close-packed zirconium crystal. Since a crystal having its basal pole parallel to the tangential direction of the tubing is easier to exhibit plastic elongation under the hoop stress than that having its basal pole parallel to the radial direction, the plastic and elastic elongation can coexist under a certain set of temperature and hoop stress conditions. The mechanical anisotropy plays a role to extend the coexistent stress range. Thus, residual compressive hoop stress is formed at the inner surface where more plastic elongation occurs during the heat treatment. This process is referred to as expanded heat treatment. Since this is a fundamental crystallographic principle, it has various applications. The application to improve PCI/SCC (pellet cladding interaction/stress corrosion cracking) properties of water reactor fuel cladding is promising. Excellent results were obtained with laboratory-scale heat treatment and an out-reactor iodine SCC test. These results included an extension of the time to SCC failure. (author)

  14. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    International Nuclear Information System (INIS)

    Martins, Marcelo; Casteletti, Luiz Carlos

    2005-01-01

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl - ). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure

  15. Influence of the boundary conditions on heat and mass transfer in spacer-filled channels

    Science.gov (United States)

    Ciofalo, M.; La Cerva, M. F.; Di Liberto, M.; Tamburini, A.

    2017-11-01

    The purpose of this study is to discuss some problems which arise in heat or mass transfer in complex channels, with special reference to the spacer-filled channels adopted in membrane processes. Among the issues addressed are the consistent definition of local and mean heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different processes involving geometrically complex channels

  16. Effects of ocean conditions upon the passive residual heat removal system (PRHRS) of ship reactor

    International Nuclear Information System (INIS)

    Su Guanghui; Zhang Jinling; Guo Yujun; Qiu Suizheng; Yu Zhenwan; Jia Dounan

    1996-01-01

    The authors investigate the influence of ocean conditions (heaving, listing, rolling) on the natural circulation flow and the ability of heat transfer of the ship reactor's PRHRS, and develops a mathematical model. A program, MISAP 02, is compiled with the structured FORTRAN 77 using the advanced Gear method. the program is used to calculate the above influence. The results show that the ocean conditions have some effects on the natural circulation flow and the ability of heat transfer

  17. Biochemical changes in full fat rice bran stabilized through microwave heating and irradiation treatment

    International Nuclear Information System (INIS)

    El-Niely, H.F.; Abaullah, M.I.

    2007-01-01

    The effect of microwave heating and irradiation treatments on proximate composition, lipoxygenase (LOX) activity, free fatty acid (FFA) and fatty acids profile of full fat rice bran were examined. Full fat raw rice bran (FRB) (82.7 g / kg moisture content) was heated in microwave oven at 850 W for up to 4 min or exposed to gamma irradiation up to 25 KGy then packed in polyethylene bags and stored at room temperature for 6 months. Water, protein, fat, ash and crude fiber contents did not change significantly in raw, microwave heated and irradiated samples before and after storage. An exception for this general observation was observed for the moisture content of FRB processed through microwave heating where heating FRB for 4 min dropped the level of moisture to 64.3 g / kg at zero time. Storage of both raw and processed samples had significant (P<0.05) effects on LOX activity. LOX activity of raw samples was significantly increased from its initial value by 43.5% after storage for six months. Microwave heat and irradiated samples showed deactivated LOX and samples exhibited significant changes in LOX activity could be due to treatment dosage. Meanwhile, significant change in LOX activity was observed in processed samples stored for six months. Minor changes were observed due to applied processing methods on FFA and fatty acids composition of full fat rice bran before and after storage. The results suggested that microwave heated or irradiated full fat rice bran packed in polyethylene bags can be stored at room temperature for six months without adverse effect on proximate, fatty acid composition quality and could prevent oxidative and hydrolytic rancidity. However, gamma irradiation treatment at 25 KGy was more effective in this respect. Therefore, it could be concluded that gamma irradiation contributed to optimal processing conditions for FRB stabilization

  18. The study on pre-heat conditions in the equivalent-dose estimation of holocene loess using the single-aliquot regenerative-dose (SAR) protocol

    International Nuclear Information System (INIS)

    Jia Yaofeng; Huang Chunchang; Pang Jiangli; Lu Xinwei; Zhang Xu

    2008-01-01

    The thermal treatment in the equivalent-dose estimation often is carried in the OSL dating, and pre-heat is a main thermal treatment. Due to which will originate the problems of thermal transfer and thermal activation, the thermal treatment and the setup of their conditions are key problems influencing the accuracy of OSL dating. The paper combined the temperature of pre-heat and cut-heat used in the routine measurement of IRSL and Post-IR OSL, and then estimated the equivalent-dose of several loess samples. The estimated result presents that the equivalent-dose depends on the heat temperature, especially depends on the cut-heat temperature, which is to say that the equivalent-dose increases with the cut-heat temperature; a plateau of equivalent-dose appears when using the 200-240 degree C cut-heat in the range of 200-300 degree C pre-heat, and the equivalent-doses estimated by IRSL and Post-IR OSL respectively are close to each other, which resulted from the similar sensitivity change direction of optical stimulated signals and its smaller change range in the measurement cycles using the combined temperature of pre- heat and cut-heat, and the incomplete calibration of sensitivity change of optical stimulated signals in the whole measurement cycles caused the variation of estimated equivalent-dose corresponding to the cut-heat temperature. (authors)

  19. Evaluation of heat treatment schedules for emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Myers, Scott W; Fraser, Ivich; Mastro, Victor C

    2009-12-01

    The thermotolerance of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), was evaluated by subjecting larvae and prepupae to a number of time-temperature regimes. Three independent experiments were conducted during 2006 and 2007 by heating emerald ash borer infested firewood in laboratory ovens. Heat treatments were established based on the internal wood temperature. Treatments ranged from 45 to 65 degrees C for 30 and 60 min, and the ability of larvae to pupate and emerge as adults was used to evaluate the success of each treatment. A fourth experiment was conducted to examine heat treatments on exposed prepupae removed from logs and subjected to ambient temperatures of 50, 55, and 60 degrees C for 15, 30, 45, and 60 min. Results from the firewood experiments were consistent in the first experiment. Emergence data showed emerald ash borer larvae were capable of surviving a temperatures-time combination up to 60 degrees C for 30 min in wood. The 65 degrees C for 30 min treatment was, however, effective in preventing emerald ash borer emergence on both dates. Conversely, in the second experiment using saturated steam heat, complete mortality was achieved at 50 and 55 degrees C for both 30 and 60 min. Results from the prepupae experiment showed emerald ash borer survivorship in temperature-time combinations up to 55 degrees C for 30 min, and at 50 degrees C for 60 min; 60 degrees C for 15 min and longer was effective in preventing pupation in exposed prepupae. Overall results suggest that emerald ash borer survival is variable depending on heating conditions, and an internal wood temperature of 60 degrees C for 60 min should be considered the minimum for safe treatment for firewood.

  20. Investigation of heat distribution during magnetic heating treatment using a polyurethane–ferrofluid phantom-model

    International Nuclear Information System (INIS)

    Henrich, F.; Rahn, H.; Odenbach, S.

    2014-01-01

    Magnetic heating treatment can be used as an adjuvant treatment for cancer therapy. In this therapy, magnetic nanoparticles are enriched inside the tumour and exposed to an alternating magnetic field. Due to magnetic losses the temperature in the tumour rises. The resulting temperature profile inside the tumour is useful for the therapeutic success. In this context heat transfer between tissue with nanoparticles and tissue without nanoparticles is a highly important feature which is actually not understood in detail. In order to investigate this, a phantom has been created which can be used to measure the temperature profile around a region enriched with magnetic nanoparticles. This phantom is composed of a material, which has similar thermal conductivity as human tissue. A tempered water bath surrounds the phantom to establish a constant surrounding temperature simulating the heat sink provided by the human body in a real therapeutic application. It has been found that even at a low concentration of magnetic nanoparticles around 13 mg/ml, sufficient heating of the enriched region can be achieved. Moreover it has been observed that the temperature drops rapidly in the material surrounding the enriched region. Corresponding numerical investigations provide a basis for future recalculations of the temperature inside the tumour using temperature data obtained in the surrounding tissue. - Highlights: • The temperature profile by magnetic hyperthermia was examined. • A model was built to get a deeper understanding of the temperature profile. • The temperature profile of the model inside magnetic fields was measured. • Based on the model a simulation of the temperature profile was performed. • The simulated temperature profile agreed well with the measured profile

  1. Core-debris quenching-heat-transfer rates under top- and bottom-reflood conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.; Klages, J.; Schwarz, C.E.; Sanborn, Y.

    1983-02-01

    This paper presents recent experimental data for the quench-heat-transfer characteristics of superheated packed beds of spheres which were cooled, in separate experiments, by top- and bottom-flooding modes. Experiments were carried out with beds of 3-mm steel spheres of 330-mm height. The initial bed temperature was 810 K. The observed heat-transfer rates are strongly dependent on the mode of water injection. The results suggest that top-flood bed quench heat transfer is limited by the rate at which water can penetrate the bed under two-phase countercurrent-flow conditions. With bottom-reflood the heat-transfer rate is an order-of-magnitude greater than under top-flood conditions and appears to be limited by particle-to-fluid film boiling heat transfer

  2. Experimental studies of solar heat pipe used to operate absorption chiller in conditions of Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Hiep, Le Chi [Ho Chi Minh City Univ. of Tech., Ho Chi Minh City (Viet Nam); Quoc, Hoang An [Ho Chi Minh City Univ. of Tech. Education, Ho Chi Minh City (Viet Nam); Hung, Hoang Duong [Danang Univ. of Tech., Danang City (Viet Nam)

    2008-07-01

    Several models of solar heat pipe have been fabricated and tested. The experiments show that the flat plate model could be used to operate absorption chiller in the climate of southern part of Vietnam. Two main advantages of the selected solar heat pipe are low cost and easy fabrication at local conditions. It is expected that the selected solar heat pipe could attract attention of the community to develop the application of solar energy in Vietnam. Based on the current demand, the paper presents the experimental studies of the first generation of low cost solar heat pipe. The paper also discusses the ability of application of solar air conditioning in Vietnam and recommends the suitable diagram mixing solar energy with other heat source to operate stably the system. (orig.)

  3. CFD heat transfer simulation of the human upper respiratory tract for oronasal breathing condition

    Directory of Open Access Journals (Sweden)

    Kambiz Farahmand

    2012-01-01

    Full Text Available Injuries due to inhalation of hot gas are commonly encountered when dealing with fire and combustible material, which is harmful and threatens human life. In the literature, various studies have been conducted to investigate heat and mass transfer characteristics in the human respiratory tract (HRT. This study focuses on assessing the injury taking place in the upper human respiratory tract and identifying acute tissue damage, based on level of exposure. A three-dimensional heat transfer simulation is performed using Computational Fluid Dynamics (CFD software to study the temperature profile through the upper HRT consisting of the nasal cavity, oral cavity, trachea, and the first two generations of bronchi. The model developed is for the simultaneous oronasal breathing during the inspiration phase with a high volumetric flow rate of 90 liters/minute and the inspired air temperature of 100 degrees Celsius. The geometric model depicting the upper HRT is generated based on the data available and literature cited. The results of the simulation give the temperature distribution along the center and the surface tissue of the respiratory tract. This temperature distribution will help to assess the level of damage induced in the upper respiratory tract and appropriate treatment for the damage. A comparison of nasal breathing, oral breathing, and oronasal breathing is performed. Temperature distribution can be utilized in the design of the respirator systems where inlet temperature is regulated favoring the human body conditions.

  4. Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) wood

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Qunying Mou; Yiqiang Wu; Yuan Liu

    2011-01-01

    In this study the effect of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) was investigated. Wood specimens were subjected to heat treatment at 160, 180, 200 and 220°C for 1, 2, 3 and 4h. The results show that heat treatment resulted in a darkened color, decreased moisture performance and increased dimensional stability of...

  5. Calculations of combined radiation and convection heat transfer in rod bundles under emergency cooling conditions

    International Nuclear Information System (INIS)

    Sun, K.H.; Gonzalez-Santalo, J.M.; Tien, C.L.

    1976-01-01

    A model has been developed to calculate the heat transfer coefficients from the fuel rods to the steam-droplet mixture typical of Boiling Water Reactors under Emergency Core Cooling System (ECCS) operation conditions during a postulated loss-of-coolant accident. The model includes the heat transfer by convection to the vapor, the radiation from the surfaces to both the water droplets and the vapor, and the effects of droplet evaporation. The combined convection and radiation heat transfer coefficient can be evaluated with respect to the characteristic droplet size. Calculations of the heat transfer coefficient based on the droplet sizes obtained from the existing literature are consistent with those determined empirically from the Full-Length-Emergency-Cooling-Heat-Transfer (FLECHT) program. The present model can also be used to assess the effects of geometrical distortions (or deviations from nominal dimensions) on the heat transfer to the cooling medium in a rod bundle

  6. The effect of ethylenediaminetetraacetic acid on heat resistance and recovery of Clostridium sporogenes PA 3679 spores treated in HTST conditions.

    Science.gov (United States)

    Silla Santos, M H; Torres Zarzo, J

    1997-03-03

    The effect of ethylenediaminetetraacetic acid (EDTA) on the heat resistance of Clostridium sporogenes PA 3679 spores was studied. EDTA was added to heating substrates and recovery media in order to establish which stage of the heat treatment registered the greatest EDTA activity. The heating substrates assayed were phosphate buffer (pH 7.0) and white asparagus purée, at natural pH (5.8) and acidified with citric acid and glucono-delta-lactone (GDL) to pH 5.5, 5.0 and 4.5. Recovery of survivors was carried out in MPA3679A medium in various conditions of acidification with citric and GDL (250 and 500 ppm), at pH 7.5 6.5 and 6.0. The results show greater activity of EDTA on spores when it was applied in recovery of heat injured spores, than during heating. The strongest influence of EDTA during heating was found in phosphate buffer (pH 7.0), with the effect being most evident at 121 and 126 degrees C, and in asparagus purée, at 121 degrees C and pH 5.8 rather than acidified. In recovery, the inhibiting activity of EDTA was more evident in spores subjected to more severe heat treatment, either by increasing the exposure time or by raising the temperature to 130 or 135 degrees C. The pH level of the recovery medium also affected the antimicrobial activity of EDTA, which had a greater inhibiting effect at pH 7.5 than at lower pH levels (6.5, 6.0).

  7. Measurement of heat stress conditions at cow level and comparison to climate conditions at stationary locations inside a dairy barn.

    Science.gov (United States)

    Schüller, Laura K; Heuwieser, Wolfgang

    2016-08-01

    The objectives of this study were to examine heat stress conditions at cow level and to investigate the relationship to the climate conditions at 5 different stationary locations inside a dairy barn. In addition, we compared the climate conditions at cow level between primiparous and multiparous cows for a period of 1 week after regrouping. The temperature-humidity index (THI) differed significantly between all stationary loggers. The lowest THI was measured at the window logger in the experimental stall and the highest THI was measured at the central logger in the experimental stall. The THI at the mobile cow loggers was 2·33 THI points higher than at the stationary loggers. Furthermore, the mean daily THI was higher at the mobile cow loggers than at the stationary loggers on all experimental days. The THI in the experimental pen was 0·44 THI points lower when the experimental cow group was located inside the milking parlour. The THI measured at the mobile cow loggers was 1·63 THI points higher when the experimental cow group was located inside the milking parlour. However, there was no significant difference for all climate variables between primiparous and multiparous cows. These results indicate, there is a wide range of climate conditions inside a dairy barn and especially areas with a great distance to a fresh air supply have an increased risk for the occurrence of heat stress conditions. Furthermore, the heat stress conditions are even higher at cow level and cows not only influence their climatic environment, but also generate microclimates within different locations inside the barn. Therefore climate conditions should be obtained at cow level to evaluate the heat stress conditions that dairy cows are actually exposed to.

  8. Numerical Investigation of the Thermal Regime of Underground Channel Heat Pipelines Under Flooding Conditions with the Use of a Conductive-Convective Heat Transfer Model

    Science.gov (United States)

    Polovnikov, V. Yu.

    2018-05-01

    This paper presents the results of numerical analysis of thermal regimes and heat losses of underground channel heating systems under flooding conditions with the use of a convective-conductive heat transfer model with the example of the configuration of the heat pipeline widely used in the Russian Federation — a nonpassage ferroconcrete channel (crawlway) and pipelines insulated with mineral wool and a protective covering layer. It has been shown that convective motion of water in the channel cavity of the heat pipeline under flooding conditions has no marked effect on the intensification of heat losses. It has been established that for the case under consideration, heat losses of the heat pipeline under flooding conditions increase from 0.75 to 52.39% due to the sharp increase in the effective thermal characteristics of the covering layer and the heat insulator caused by their moistening.

  9. COMPUTERIZED HEAT-TREATMENT IN A ZIMBABWEAN FACTORY

    Directory of Open Access Journals (Sweden)

    M. Collier

    2012-01-01

    Full Text Available In the context of Zimbabwe's current economic problems, parts of the manufacturing industry are turning their attention to the possibility of utilising local design talent in upgrading their manufacturing plants. This paper describes a project undertaken by the National University of Science and Technology to convert the heat-treatment process in a major manufacturing plant from semi -manual to a computerized one. The system comprises microcontroller connection to the furnaces and sensors, and communicates with a central computer on which software for a windowed user-interface is hosted. Experimental results for the system are presented, and a strategy for other companies in the same predicament is proposed.

  10. Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume I

    International Nuclear Information System (INIS)

    Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.

    1987-07-01

    A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for the tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperatures and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtl number for saturated liquid, saturated vapour, subcooled liquid for superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its

  11. Microcomputer based program for predicting heat transfer under reactor accident conditions. Volume II

    International Nuclear Information System (INIS)

    Cheng, S.C.; Groeneveld, D.C.; Leung, L.K.H.; Wong, Y.L.; Nguyen, C.

    1987-07-01

    A microcomputer based program called Heat Transfer Prediction Software (HTPS) has been developed. It calculates the heat transfer for tube and bundle geometries for steady state and transient conditions. This program is capable of providing the best estimated of the hot pin temperatures during slow transients for 37- and 28-element CANDU type fuel bundles. The program is designed for an IBM-PC AT/XT (or IBM-PC compatible computer) equipped with a Math Co-processor. The following input parameters are required: pressure, mass flux, hydraulic diameter, and quality. For the steady state case, the critical heat flux (CHF), the critical heat flux temperature, the minimum film boiling temperature, and the minimum film boiling heat flux are the primary outputs. With either the surface heat flux or wall temperature specified, the program determines the heat transfer regime and calculates the surface heat flux, wall temperature and heat transfer coefficient. For the slow transient case, the pressure, mass flux, quality, and volumetric heat generation rate are the time dependent input parameters are required to calculate the hot pin sheath temperatures and surface heat fluxes. A simple routine for generating properties has been developed for light water to support the above program. It contains correlations that have been verified for pressures ranging from 0.6kPa to 30 MPa, and temperatures up to 1100 degrees Celcius. The thermodynamic and transport properties that can be generated from this routine are: density, specific volume, enthalpy, specific heat capacity, conductivity, viscosity, surface tension and Prandtle number for saturated liquid, saturated vapour, subcooled liquid of superheated vapour. A software for predicting flow regime has also been developed. It determines the flow pattern at specific flow conditions, and provides a correction factor for calculating the CHF during partially stratified horizontal flow. The technical bases for the program and its structure

  12. Autolytic degradation of skipjack tuna during heating as affected by initial quality and processing conditions.

    Science.gov (United States)

    Stagg, Nicola J; Amato, Penny M; Giesbrecht, Francis; Lanier, Tyre C

    2012-02-01

    Several factors were studied as affecting protein degradation and texture of skipjack tuna muscle following ambient pressure thermal processing (precooking). These included degree of mushy tuna syndrome (MTS) evidenced in the raw meat, raw meat pH, abusive thawing/holding, and precooking temperature/time. Slurries and intact pieces from frozen skipjack tuna, either tempered for 2 h or thawed and held at 25 °C for 22 h (abusive treatment) were heated at temperatures ranging from 40 to 80 °C for up to 2 h, and also at 90 °C for 1 h, with or without prior adjustment of pH to 5 or 7 to favor cathepsin or calpain activity, respectively. Proteolysis of precooked samples was monitored by Lowry assay and SDS-PAGE; cooked texture of intact meat was measured using a Kramer shear press and by sensory profile analysis. Proteolysis maximally occurred in slurries of skipjack tuna muscle that had been abusively stored (22 h at 25 °C) and adjusted to pH 5 prior to heating at 55 °C. Intact pieces of tuna abusively thawed/held for 22 h with subsequent heating at 55 °C also evidenced the most proteolysis and were the least firm in texture. Raw fish that evidenced higher severity of MTS when raw displayed higher levels of proteolysis prior to cooking, which were further increased after cooking at 55 °C. The kinetic data presented here can be used to optimize processing conditions for skipjack tuna canning to minimize textural degradation and optimize quality. © 2012 Institute of Food Technologists®

  13. Heat treatment on keruing and light red meranti: The effect of heat exposure at different levels of temperature on bending strength properties

    Science.gov (United States)

    Noh, Nur Ilya Farhana Md; Ahmad, Zakiah

    2017-11-01

    Heat treatment on timbers is a process of applying heat to modify and equip the timbers with new improvised characteristics. It is environmental friendly compared to the common practice of treating timber by chemical preservatives. Malaysian hardwood timbers namely Keruing and Light Red Meranti which are in green condition were heat treated at temperature 150°C, 170°C, 190°C and 210°C, in a specially designed electronic furnace within one hour duration. The objectives were to determine the effect of heat treatment on bending strength properties of heat treated timbers in terms of Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) and to examine the significance changes at each temperature level. Untreated samples for each species were used as a control sample. The results indicated that the bending strength properties for both species of timbers were affected by the heat exposure. Both MOE and MOR values for heat treated Keruing were increased when subjected to the temperature levels at 150°C, 170°C and 190°C except at 210°C. Heat treated Light Red Meranti shows the same pattern of increment on its MOE and MOR values after exposure to heat at three temperature levels applied and the values dropped at 210°C. However, for both of species, even though there were decrement occurred at 210°C, the value is still higher compared to the control sample. The increments of MOE and MOR values are an indicator that heat treatment had successfully improvised the bending strength properties of these two species of hardwood timber.

  14. Hydrogenated amorphous carbon next deposit after heat treatment

    International Nuclear Information System (INIS)

    Salancon, E.; Durbeck, T.; Schwarz-Selinger, T.; Jacob, W.

    2006-01-01

    One of the main safety problems in the ITER tokamak project is the tritium adsorption in the reactor walls and in particular the deposits which appear after the plasma discharge. These deposits are amorphous hydrogenated carbon films, type polymer (soft a-C:H). The heating of these deposits with a pulse laser is a proposed solution for the tritium desorption. Meanwhile, Gibson and al show that in experimental conditions, products are deposed on the walls before entering the mass spectrometer. The authors present thermo-desorption spectra of different amorphous carbon films. (A.L.B.)

  15. Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat.

    Science.gov (United States)

    Kondjoyan, Alain; Oillic, Samuel; Portanguen, Stéphane; Gros, Jean-Bernard

    2013-10-01

    A heat transfer model was used to simulate the temperature in 3 dimensions inside the meat. This model was combined with a first-order kinetic models to predict cooking losses. Identification of the parameters of the kinetic models and first validations were performed in a water bath. Afterwards, the performance of the combined model was determined in a fan-assisted oven under different air/steam conditions. Accurate knowledge of the heat transfer coefficient values and consideration of the retraction of the meat pieces are needed for the prediction of meat temperature. This is important since the temperature at the center of the product is often used to determine the cooking time. The combined model was also able to predict cooking losses from meat pieces of different sizes and subjected to different air/steam conditions. It was found that under the studied conditions, most of the water loss comes from the juice expelled by protein denaturation and contraction and not from evaporation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Simulating conditions for combined heat and power in the Swedish district heating sector

    International Nuclear Information System (INIS)

    Knutsson, David

    2005-01-01

    The most important issues in the European energy sector today are how to increase competitiveness on the energy markets, reduce both CO2 emissions and dependence on imported fuels. These issues are also important aspects of Swedish energy policy. In Sweden, the district heating (DH) sector has commonly been used to achieve Swedish energy policy goals. However, the ongoing integration and deregulation of the energy markets in Europe now means that the Swedish DH sector can also play an important role in achieving international targets. This thesis investigates the extent to which the Swedish DH sector can contribute to compliance with current energy policy targets, both international and Swedish. The study consisted of simulations of the Swedish DH sector response to various policy instruments in a model that takes the local features of virtually all Swedish DH systems into account. The findings show, for example, that there is great potential for combined heat and power (CHP) generation in the Swedish DH sector. By exporting this CHP electricity to other European countries with less effective and fossil dependent power generation plants, the CO2 emissions from the European energy sector could be substantially reduced. This would also result in increased security of supply and competitiveness in the EU, since fuel use would be more effective. In Sweden, increased CHP generation would also be a way of maintaining an effective national security of supply of power

  17. Treatment and conditioning of radioactive solid wastes

    International Nuclear Information System (INIS)

    1992-07-01

    Radioactive materials are extensively used in industrial and research activities mainly related to medical, agricultural, environmental and other studies and applications. During the application and production of radioisotopes, significant amounts of radioactive wastes will inevitably arise, which must be managed (i.e. handled, treated, conditioned, intermediately stored and finally disposed of) with particular care. Serious efforts to minimize and appropriately segregate the waste arisings during the application of radioisotopes are the most important first step in waste management. The essential objective of the management of radioactive waste is the protection of mankind, the biosphere and the environment from the detrimental effects of nuclear radiation both now and in the future. This report deals with radioactive wastes outside the nuclear fuel cycle and it is directed primarily to countries without nuclear power programmes, e.g. countries belonging to the Groups A, B and C. Group A includes Member States which utilize radioisotopes at a few hospital locations, universities and industries. Group B includes Member States which have multi-use of radioisotopes in hospitals and other institutional areas and need a central collection and processing system. Group C includes Member States which have multi-use of radioisotopes and a nuclear research centre which is capable of indigenous production of several radioisotopes. When developing a waste management strategy, consideration should be given to the entire sequence of waste management operations from waste sources to disposal and all the related issues: every aspect of waste generation, processing, transportation, storage and disposal, including regulatory, socio-political and economic issues. The interaction of all these aspects must be analysed and understood before the entire waste management system can be properly built up and safely managed. 16 refs, 13 figs, 5 tabs

  18. Boiling heat transfer and dryout in helically coiled tubes under different pressure conditions

    International Nuclear Information System (INIS)

    Chung, Young-Jong; Bae, Kyoo-Hwan; Kim, Keung Koo; Lee, Won-Jae

    2014-01-01

    Highlights: • Heat transfer characteristics and dryout for helically coiled tube are performed. • A boiling heat transfer tends to increase with a pressure increase. • Dryout occurs at high quality test conditions investigated. • Steiner–Taborek’s correlation is predicted well based on the experimental results. - Abstract: A helically coiled once-through steam generator has been used widely during the past several decades for small nuclear power reactors. The heat transfer characteristics and dryout conditions are important to optimal design a helically coiled steam generator. Various experiments with the helically coiled tubes are performed to investigate the heat transfer characteristics and occurrence condition of a dryout. For the investigated experimental conditions, Steiner–Taborek’s correlation is predicted reasonably based on the experimental results. The pressure effect is important for the boiling heat transfer correlation. A boiling heat transfer tends to increase with a pressure increase. However, it is not affected by the pressure change at a low power and low mass flow rate. Dryout occurs at high quality test conditions investigated because a liquid film on the wall exists owing to a centrifugal force of the helical coil

  19. Frosting characteristics and heating performance of a direct-expansion solar-assisted heat pump for space heating under frosting conditions

    International Nuclear Information System (INIS)

    Huang, Wenzhu; Ji, Jie; Xu, Ning; Li, Guiqiang

    2016-01-01

    Highlights: • Frosting and heating performance of DX-SAHP under frosting conditions is investigated. • The conditions when DX-SAHP frosts are studied. • The frosting process is observed during 360 min of operating. • The effect of ambient temperature, relative humidity and solar irradiation is analyzed. - Abstract: Direct expansion solar-assisted heat pump system (DX-SAHP) is promising in energy saving applications, but the performance of DX-SAHP under frosting conditions is rarely reported in the published literatures. In this paper, a DX-SAHP system with bare solar collectors for space heating is designed and experimentally investigated in the enthalpy difference lab with a solar simulator. The system is tested under a range of frosting conditions, with the ambient temperatures from 7 °C to −3 °C, the relative humidities of 50%, 70% and 90% and the solar irradiances of 0 W/m"2, 100 W/m"2, 200 W/m"2 and 300 W/m"2. The conditions when the DX-SAHP system frosts are studied. Results show that solar irradiance as low as 100 W/m"2 can totally prevent frosting when the ambient temperature is above −3 °C and the relative humidity is 70%. Besides, the frosting process is observed to be slower than that of fin-and-tube heat exchangers. The evaporator is not seriously frosted and the system performance is not significantly influenced after 360 min of continuous operating. Moreover the effects of ambient parameters, including the ambient temperature and the relative humidity, especially solar irradiation, on the system performance are studied and analyzed. Solar irradiation can effectively prevent or retard frosting, and also improve the heating performance of the DX-SAHP system. The DX-SAHP system is proved to be applicable under frosting conditions.

  20. Microbial safety control of compost material with cow dung by heat treatment.

    Science.gov (United States)

    Gong, Chun-ming

    2007-01-01

    Various kinds of pathogenic bacteria derived from the intestinal tract of animals exist in compost material like cow dung. In order to sterilize the pathogenic bacteria completely in compost material, the cow dung was put into a heat treatment machine in pilot plan, and harmless condition in short time was examined. The results indicated, pathogenic indicator bacteria such as coliform bacteria, fecal coliform, Escherichia coli and salmonella were all 106 cfu/g dw at the beginning, died rapidly when cow dung temperature rose to above 50 degrees C, and not detected at 54-68 degrees C for 6-24 h heat treatment. Coliform bacteria and salmonella in heated cow dung were not detected by re-growth culture and enrichment culture examination. Moreover, it was hardly influenced on the fermentation ability of composting microbe, organic decomposition bacteria. During heat treatment, the mesophile decreased rapidly and the thermophile stabilized or increased, and the most of composting microbe were bacillus in cow dung by fluorescence microscope, this indicated that bacillus was dominator and composting microbe in composting process.

  1. Heat treatment of TI-6AL-4V produced by lasercusing

    Directory of Open Access Journals (Sweden)

    Becker, Thorsten

    2015-08-01

    Full Text Available LaserCUSING® is a selective laser melting (SLM process that is capable of manufacturing parts by melting powder with heat input from a laser beam. LaserCUSING demonstrates potential for producing the intricate geometries specifically required for biomedical implants and aerospace applications. One main limitation to this form of rapid prototyping is the lack of published studies on the material performance of the resulting material. Studies of the material’s performance are often complicated by dependence on several factors, including starting powder properties, laser parameters, and post-processing heat treatments. This study aims to investigate the mechanical properties of LaserCUSING-produced Ti-6Al-4V and its performance relative to the conventional wrought counterpart. A combination of conventional and LaserCUSING-tailored heat treatments is performed. The resulting microstructures are studied and linked to the properties obtained from hardness tests. The findings highlight that LaserCused Ti-6Al-4V is competitive with traditional materials, provided that optimal parameters are chosen and parts are subject to tailored post-processing. In the as-built condition, LaserCused Ti-6Al-4V displays superior strength and hardness as a result of a martensitic microstructure, and a poorer performance in ductility. However, the material performance can be improved using tailored heat treatments. Careful consideration must be given to suitable post-processing before application in critical components in the aerospace or biomedical industry can occur

  2. Decay heat removal and heat transfer under normal and accident conditions in gas cooled reactors

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was convened by the International Atomic Energy Agency on the recommendation of the IAEA's International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Poland, the Russian Federation, Switzerland, the United Kingdom and the United States of America. The meeting was chaired by Prof. Dr. K. Kugeler and Prof. Dr. E. Hicken, Directors of the Institute for Safety Research Technology of the KFA Research Center, and covered the following: Design and licensing requirements for gas cooled reactors; concepts for decay heat removal in modern gas cooled reactors; analytical methods for predictions of thermal response, accuracy of predictions; experimental data for validation of predictive methods - operational experience from gas cooled reactors and experimental data from test facilities. Refs, figs and tabs

  3. Hierarchical Cu precipitation in lamellated steel after multistage heat treatment

    Science.gov (United States)

    Liu, Qingdong; Gu, Jianfeng

    2017-09-01

    The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.

  4. Developmental acclimation to low or high humidity conditions affect starvation and heat resistance of Drosophila melanogaster.

    Science.gov (United States)

    Parkash, Ravi; Ranga, Poonam; Aggarwal, Dau Dayal

    2014-09-01

    Several Drosophila species originating from tropical humid localities are more resistant to starvation and heat stress than populations from high latitudes but mechanistic bases of such physiological changes are largely unknown. In order to test whether humidity levels affect starvation and heat resistance, we investigated developmental acclimation effects of low to high humidity conditions on the storage and utilization of energy resources, body mass, starvation survival, heat knockdown and heat survival of D. melanogaster. Isofemale lines reared under higher humidity (85% RH) stored significantly higher level of lipids and showed greater starvation survival hours but smaller in body size. In contrast, lines reared at low humidity evidenced reduced levels of body lipids and starvation resistance. Starvation resistance and lipid storage level were higher in females than males. However, the rate of utilization of lipids under starvation stress was lower for lines reared under higher humidity. Adult flies of lines reared at 65% RH and acclimated under high or low humidity condition for 200 hours also showed changes in resistance to starvation and heat but such effects were significantly lower as compared with developmental acclimation. Isofemale lines reared under higher humidity showed greater heat knockdown time and heat-shock survival. These laboratory observations on developmental and adult acclimation effects of low versus high humidity conditions have helped in explaining seasonal changes in resistance to starvation and heat of the wild-caught flies of D. melanogaster. Thus, we may suggest that wet versus drier conditions significantly affect starvation and heat resistance of D. melanogaster. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Modernization and efficiency of heat treatment and heating up plants; Modernisierung und Effizienz von Thermoprozessanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Peter [LOI Thermprocess GmbH, Essen (Germany); Kuehn, Friedhelm [Ingenieurbuero fuer Waermebehandlung, Industrieoefen und Energieberatung, Muelheim (Germany)

    2010-10-15

    A goal of this contribution is to show, using examples of the thermal heat treatment industry and the thermal processing units used there (Beltype plants, routary hearth, walking hearth, walking beam, pusher type furnaces and gas carburizing plants as well as case hardening plants), which increases in efficiency within and outside of the actual thermal treatment process and the necessary thermal processing units for the order are available today. From the possibilities of the reduction of energy employment resulting from that, a high potential for the discharge of the environment can be derived. The economic effect concerning energy employment and saving possibilities will also be considered. Concluding, examples of case-hardening show which variants of a change of process present themselves partially in the future, in order to achieve substantial production increases and thus energy cost reductions. (orig.)

  6. Effect of heat treatment oanas irradiation, and combined treatment on the shelf of fresh avocados (Persea americana L)

    International Nuclear Information System (INIS)

    Purwanto, Z.I.; Maha, Munsiah

    1987-01-01

    Effects of heat treatment, gamma irradiation, and combined treatments on the shelf-life of fresh avocados (Persea americana L.). Experiments to determine the effective irradiation conditions to prolong the shelf-life of fresh avocados were conducted at the centre for the Application of Isotopes washed and dried, then divided into 4 groups, namely for control (A), dipped in hot water at 40 0 C for 20 minutes (heat treatment, B), irradiated at a dose of 25 Gy (C), and combination of hot water dipping (40 0 C for 20 minutes) and irradiation at a 25 Gy (D). The samples were stored at room temperature. Evaluation on physical and chemical properties of the samples was done daily up to 10 days' storage. Parameters observed were texture, moisture and fat contents, percentage of weight loss, percentage of mature fruit, and subjective organoleptic evaluation. It was found that treated samples with and without combination treatment were still in good condition until 10 days of storage. It could be concluded that dipping in hot water, either alone or in combination with irradiation at a dose of 25 Gy could extend the shelf-life of fresh avocado up to 10 days at room temperature compared to only 5 days of the control. (author). 2 figs, 8 refs

  7. Study on the application of thickened welds without post weld heat treatment for containment vessels

    International Nuclear Information System (INIS)

    Takeuchi, T.; Fukaya, T.; Sato, M.; Takano, G.

    1978-01-01

    As material for containment vessels, SGV49 steel plates are mainly used. However, those used for this purpose are limited in thickness to smaller than 38 mm. This is because the present standard requires welds thicker than 38 mm to be subjected to post weld heat treatment but operation on the site is practically difficult. In the case of 3-loop containment vessels of pressurized water type reactors, use of 38 mm SGV49 brings an increase in their height and this is disadvantageous from a seismic viewpoint. Therefore, use of 45 mm-thick steel material has become necessary in order to increase design internal pressure and reduce the height of the vessels. To investigate the propriety of the use of 45 mm-thick SGV49 for this purpose without post weld heat treatment we investigated the basic performances of base metal and welded joints. We also conducted large-scale embrittlement fracture tests (CT test, deep notch test, wide plate tensile test and ESSO test) in order to examine whether welds not subjected to post weld heat treatment are safe against embrittlement fracture under the operating conditions of the vessels. The results proved that the welds of SGV49 steel plates are safe enough under the operating conditions. (author)

  8. Combined installation of electric and heat supply for climatic conditions of Iraq

    Science.gov (United States)

    Kaisi, Osama Al; Sidenkov, D. V.

    2017-11-01

    Electricity, heating and cooling are the three main components that make up the energy consumption base in residential, commercial and public buildings around the world. Demand for energy and fuel costs are constantly growing. Combined cooling, heating and power generation or trigeneration can be a promising solution to such a problem, providing an efficient, reliable, flexible, competitive and less harmful alternative to existing heat and cold supply systems. In this paper, scheme of the tri-generation plant on non-aqueous working substances is considered as an installation of a locally centralized electro-heat and cold supply of a typical residential house in a hot climate. The scheme of the combined installation of electro-heat (cold) supply consisted of the vapor power plant and heat pump system on low-boiling working substance for local consumers under the climatic conditions of Iraq is presented. The possibility of using different working substances in the thermodynamic cycles of these units, which will provide better efficiency of such tri-generation systems is shown. The calculations of steam turbine cycles and heat pump part on the selected working substances are conducted. It is proposed to use heat exchangers of plate type as the main exchangers in the combined processing. The developed method of thermal-hydraulic calculation of heat exchangers implemented in MathCad, which allows to evaluate the efficiency of plants of this type using the ε - NTU method. For the selected working substances of the steam part the optimal temperature of heat supply to the steam generator is determined. The results of thermodynamic and technical-economic analysis of the application of various working substances in the “organic” Rankine cycle of the steam turbine unit and the heat pump system of the heat and cold supply system are presented.

  9. Heating of roads. Heat consumption and heat output as a function of climate, construction, demands on surface conditions and principle of heat supply. Uppvaermning av vaegar

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, R

    1977-01-01

    In this work analytical formulas for calculation of temperatures in a heated roadbed are given. The heat flux from a heated surface has been studied. The methods for snowclearence on different types of roads have been investigated. The construction work has been studied. The analytical formulas have been evaluated by comparison between calculated temperatures and temperatures measured in field and laboratory. The heat transfer coefficients in those formulas have been developed empirically by tests in laboratory and field. Surfaces with different types of traffic are divided into three classes according to the demands for snow removal. The construction work has been divided into cost elements. This has given a basis for calculating the economic effects of alternative designs. By this work has been developed a method useful on one hand for calculation of the optimum principle of regulation of the supply of heat and on the other hand for the design of the heat installations in the road.

  10. EVALUATION OF PRECIPITATION HARDENING HEAT TREATMENT OF PH 17-7 STAINLESS STEEL SPRING

    Directory of Open Access Journals (Sweden)

    A. A. Babakoohi Ashrafi

    2016-06-01

    Full Text Available In this paper, the influence of heat treatment on PH17-7 stainless steel spring was evaluated. Precipitation hardening phenomenon of  PH 17-7 steel was evaluated in three stages. First, the spring constant changes with time and temperature was evaluated. Second, the spring constant changes with respect to its original length at constant temperature and time with blocking (spring length after compression, 18 and 21 mm were investigated.  And finally, the spring heat treatment at 480 °C for 80 min and then holding at 230 °C in oil bath for 60 min without blocking were investigated. The results showed that the use of 18 mm block have large spring constant than 21 mm block. The optimal conditions (480°C for 80 min for this spring to reaching maximum spring constant were determined.

  11. Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz Khan

    Full Text Available This paper communicates the analysis of MHD three-dimensional flow of Jeffrey nanoliquid over a stretchable surface. Flow due to a bidirectional surface is considered. Heat and mass transfer subject to volume fraction of nanoparticles, heat generation and nonlinear solar radiation are examined. Newtonian heat and mass transportation conditions are employed at surface. Concept of boundary layer is utilized to developed the mathematical problem. The boundary value problem is dictated by ten physical parameters: Deborah number, Hartman number, ratio of stretching rates, thermophoretic parameter, Brownian motion parameter, Prandtl number, temperature ratio parameter, conjugate heat and mass parameters and Lewis number. Convergent solutions are obtained using homotopic procedure. Convergence zone for obtained results is explicitly identified. The obtained solutions are interpreted physically. Keywords: Hydromagnetic flow, Viscoelastic nanofluid, Thermophoretic and Brownian moment, Nonlinear thermal radiation, Heat generation

  12. Heat treatment control of Bi-2212 coils: I. Unravelling the complex dependence of the critical current density of Bi-2212 wires on heat treatment

    Science.gov (United States)

    Shen, Tengming; Li, Pei; Ye, Liyang

    2018-01-01

    A robust and reliable heat treatment is crucial for developing superconducting magnets from several superconductors especially Bi-2212. An improper heat treatment may significantly reduce the critical current density Jc of a Bi-2212 superconducting coil, even to zero, since the Jc of Bi-2212 wires is sensitive to parameters of its heat treatment (partial melt processing). To provide an essential database for heat treating Bi-2212 coils, the dependence of Jc on heat treatment is studied systematically in 11 industrial Bi-2212 wires, revealing several common traits shared between these wires and outlier behaviors. The dependence of the Jc of Bi-2212 on heat treatment is rather complex, with many processing parameters affecting Jc, including the peak processing temperature Tp, the time at the peak temperature tp, the time in the melt tmelt, the rate at which Bi-2212 melt is initially cooled CR1, the rate at which the solidification of Bi-2212 melt occurs CR2, and the temperature Tq at which the cooling rate switches from CR1 to CR2. The role of these parameters is analyzed and clarified, in the perspective of heat treating a coil. Practical advices on heat treatment design are given. The ability of a Bi-2212 coil to follow the prescribed recipe decreases with increasing coil sizes. The size of a coil that can be properly heat treated is determined.

  13. Experimental Investigation of Mechanical Properties of PVC Polymer under Different Heating and Cooling Conditions

    Directory of Open Access Journals (Sweden)

    Sarkawt Rostam

    2016-01-01

    Full Text Available Due to a widely increasing usage of polymers in various industrial applications, there should be a continuous need in doing research investigations for better understanding of their properties. These applications require the usage of the polymer in different working environments subjecting the material to various temperature ranges. In this paper, an experimental investigation of mechanical properties of polyvinyl chloride (PVC polymer under heating and cooling conditions is presented. For this purpose standard samples are prepared and tested in laboratory using universal material testing apparatus. The samples are tested under different conditions including the room temperature environment, cooling in a refrigerator, and heating at different heating temperatures. It is observed that the strength of the tested samples decreases with the increasing of heating temperature and accordingly the material becomes softer. Meanwhile the cooling environments give a clear increasing to the strength of the material.

  14. Influence of Hot-Working Conditions on High-Temperature Properties of a Heat-Resistant Alloy

    Science.gov (United States)

    Ewing, John F; Freeman, J W

    1957-01-01

    The relationships between conditions of hot-working and properties at high temperatures and the influence of the hot-working on response to heat treatment were investigated for an alloy containing nominally 20 percent molybdenum, 2 percent tungsten, and 1 percent columbium. Commercially produced bar stock was solution-treated at 2,200 degrees F. to minimize prior-history effects and then rolled at temperatures of 2,200 degrees, 2,100 degrees, 2,000 degrees, 1,800 degrees, and 1,600 degrees F. Working was carried out at constant temperature and with incremental decreases in temperature simulating a falling temperature during hot-working. In addition, a few special repeated cyclic conditions involving a small reduction at high temperature followed by a small reduction at a low temperature were used to study the possibility of inducing very low strengths by the extensive precipitation accompanying such properties. Most of the rolling was done in open passes with a few check tests being made with closed passes. Heat treatments at both 2,050 degrees and 2,200 degrees F. subsequent to working were used to study the influence on response to heat treatment.

  15. The Effect of Heat Treatment on the chemical and color change of Black Locust (Robinia Pseudoacacia) wood flour

    Science.gov (United States)

    Yao Chen; Yongming Fan; Jianmin Gao; Nicole M. Stark

    2012-01-01

    The aim of this study was to investigate the effects of oxygen and moisture content (MC) on the chemical and color changes of black locust (Robinia pseudoacacia) wood during heat treatment. The wood flour was conditioned to different initial MCs and heated for 24 h at a constant temperature of 120°C in either oxygen or nitrogen atmosphere. The pH values and...

  16. Internal thermotopography and shifts in general thermal balance in man under special heat transfer conditions

    Science.gov (United States)

    Gorodinskiy, S. M.; Gramenitskiy, P. M.; Kuznets, Y. I.; Ozerov, O. Y.; Yakovleva, E. V.; Groza, P.; Kozlovskiy, S.; Naremski, Y.

    1974-01-01

    Thermal regulation for astronauts working in pressure suits in open space provides for protection by a system of artificial heat removal and compensation to counteract possible changes in the heat regulating function of the human body that occur under the complex effects of space flight conditions. Most important of these factors are prolonged weightlessness, prolonged limitation of motor activity, and possible deviations of microclimatic environmental parameters.

  17. Conception rate of artificially inseminated Holstein cows affected by cloudy vaginal mucus, under intense heat conditions

    OpenAIRE

    Miguel Mellado; Laura Maricela Lara; Francisco Gerardo Veliz; María Ángeles de Santiago; Leonel Avendaño-Reyes; Cesar Meza-Herrera; José Eduardo Garcia

    2015-01-01

    The objective of this work was to obtain prevalence estimates of cloudy vaginal mucus in artificially inseminated Holstein cows raised under intense heat, in order to assess the effect of meteorological conditions on its occurrence during estrus and to determine its effect on conception rate. In a first study, an association was established between the occurrence of cloudy vaginal mucus during estrus and the conception rate of inseminated cows (18,620 services), raised under intense heat (mea...

  18. Determination of initial conditions for heat exchanger placed in furnace by burning pellets

    Science.gov (United States)

    Durčanský, Peter; Jandačka, Jozef; Kapjor, Andrej

    2014-08-01

    Objective of the experimental facility and subsequent measurements is generally determine whether the expected physical properties of the verification, identification of the real behavior of the proposed system, or part thereof. For the design of heat exchanger for combined energy machine is required to identify and verify a large number of parameters. One of these are the boundary conditions of heat exchanger and pellets burner.

  19. Heat treatment effect on the texture and mechanical properties of the VT14 alloy cylinders

    International Nuclear Information System (INIS)

    Betsofen, S.Ya.; Khorev, A.I.; Babarehko, A.A.; Krasnozhon, A.I.; Kadobnova, N.V.

    1978-01-01

    The mechanical properties and the texture of cylinders made of VT14 alloy in the conditions after quenching from the temperature of 880 deg C, followed by ageing for 16 hours at the temperature of about 480 deg C, or after 20 minutes annealing at the temperature of 750 deg C, were stu--died, while taking into account the influence of intermediate preheats up to 800-1000 deg C prior to carrying into effect those kinds of heat treatment. It is shown that the texture of cylinders after heat treatment without the intermediate preheats prior to quenching is characterized by an increased density of poles in the axial and tangential directions. It is the preheating up to 1000 deg C prior to quenching that shifts the texture maxima in the axial direction and causes the appearance of component (0001). Under the effect of the intermediate preheating up to 1000 deg C, the biaxial and monoaxial strength of the cylinders decreases, whereas their tendency to brittle failure increases. The mechanical strength of all the thermally hardened cylinders, independently of the intermediate treatment, is in the tangential direction higher than in the axial direction. The proportions of the structure and texture factors have been assessed in the variation of the structural strength of the cylinders during the course of their heat treatment

  20. Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow

    International Nuclear Information System (INIS)

    Jackson, J.D.; Li, J.

    2002-01-01

    A fundamental study is reported of heat transfer from a vertical heated tube to air which is induced naturally upwards through it by the action of buoyancy. Measurements of local heat transfer coefficient were made using a specially designed computer-controlled power supply and measurement system for conditions of uniform wall temperature and uniform wall heat flux. The effectiveness of heat transfer proved to be much lower than for conditions of forced convection. It was found that the results could be correlated satisfactorily when presented in terms of dimensionless parameters similar to those used for free convection heat transfer from vertical surfaces provided that the heat transfer coefficients were evaluated using local fluid bulk temperature calculated utilising the measured values of flow rate induced through the system. Additional experiments were performed' with pumped flow. These covered the entire mixed convection region. It was found that the data for naturally-induced flow mapped onto the pumped flow data when presented in terms of Nusselt number ratio (mixed to forced) and buoyancy parameter. Computational simulations of the experiments were performed using an advanced computer code which incorporated a buoyancy-influenced, variable property, developing wall shear flow formulation and a low Reynolds number k-ε turbulence model. These reproduced observed behaviour quite well. (author)

  1. Safety studies on heat transport and afterheat removal for GCR accident conditions

    International Nuclear Information System (INIS)

    Hishida, Makoto

    1996-01-01

    The IAEA coordinated an international research program on 'Heat Transport and Afterheat Removal for GCRs under Accident Conditions (CRP-3)'. America, China, France, Germany, Japan, Netherlands and Russia participate the program. Final goal of the program is to show clearly to the world one of the most important salient features of the HTGR, that is the HTGR reactor can be cooled down by passive measures without causing any damage to the nuclear reactor system even in accidental conditions, and to make clear the boundaries (or restrictions) for the passive cooling regime. The first 5 year term of the coordinate program started in 1993 and established a goal to improve common knowledge for decay heat removal and to improve our tools, like computer codes and analytical models for the prediction of the performance of decay heat removal system. We are now performing benchmark problems for these purposes. The present efforts are concentrated on the benchmark for the passive heat removal performance outside the reactor vessel, partly because we have two different type of the HTGR in the world, the pebble bed type and the block type reactor. They have quite different heat dissipation behavior inside the reactor vessel. However, they have quite similar residual heat removal process outside the reactor vessel. For the first step of the international cooperation, we selected the common problem. After finishing the present benchmark we are planning to proceed to tackle the inside heat removal problem. (J.P.N.)

  2. A technical basis for the flux corrected local conditions critical heat flux correlation

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2008-01-01

    The so-called 'flux-corrected' local conditions CHF correlation was developed at Ontario Hydro in the 1980's and was demonstrated to successfully correlate the Onset of Intermittent Dryout (OID) CHF data for 37-element fuel with a downstream-skewed axial heat flux distribution. However, because the heat flux correction factor appeared to be an ad-hoc, albeit a successful modifying factor in the correlation, there was reluctance to accept the correlation more generally. This paper presents a thermalhydraulic basis, derived from two-phase flow considerations, that supports the appropriateness of the heat flux correction as a local effects modifying factor. (author)

  3. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  4. Physiological and subjective responses in the elderly when using floor heating and air conditioning systems.

    Science.gov (United States)

    Hashiguchi, Nobuko; Tochihara, Yutaka; Ohnaka, Tadakatsu; Tsuchida, Chiaki; Otsuki, Tamio

    2004-11-01

    The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly

  5. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    Science.gov (United States)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  6. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    International Nuclear Information System (INIS)

    Boudreault, E; Hazel, B; Côté, J; Godin, S

    2014-01-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated C A6NM . This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named S compi . This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions

  7. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2009-08-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation nearly perfectly. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy

  8. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  9. Power, heat and chilliness with natural gas - fuel cells and air conditioning

    International Nuclear Information System (INIS)

    Krein, Stephan; Ruehling, Karin

    1999-01-01

    A new and innovative concept of the supply with power, heat and chilliness will realise in the new Malteser-hospital in Kamenz. The core of this demonstration-plant are a fuel cell, an adsorption cooling machine as well as multi-solar collectors. The fuel cell has two goals. Primary it produces power for the own demand. The selected dimension guarantees, that the power will consume nearly continuously. Secondly the produced heat of the fuel cell (and the solar-heat too) will use for heating and preparation of warm water. In the summer, the heat will use for the adsorption cooling machine, which produces chilliness for air-conditioning. The advantage in the face of common concepts of combining power and heat is the high-efficiently use of the fuel-energy for electric power generation on the one hand. Fuel cells work with high efficiency also at partial load. On the other hand, with the adsorption cooling machine the produced heat of fuel cell and multi-solar collectors can be used also in the summer. First experiences with this concept show, that an optimised co-operation of the components with an adaptive, self-learning control system based on the weather forecast as well as various storages for heat and chilliness can be achieve. A continuously operation, high fuel utilisation and reduced environmental pollution can be demonstrated. (author)

  10. Effects of Heating Rate on the Dynamic Tensile Mechanical Properties of Coal Sandstone during Thermal Treatment

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available The effects of coal layered combustion and the heat injection rate on adjacent rock were examined in the process of underground coal gasification and coal-bed methane mining. Dynamic Brazilian disk tests were conducted on coal sandstone at 800°C and slow cooling from different heating rates by means of a Split Hopkinson Pressure Bar (SHPB test system. It was discovered that thermal conditions had significant effects on the physical and mechanical properties of the sandstone including longitudinal wave velocity, density, and dynamic linear tensile strength; as the heating rates increased, the thermal expansion of the sandstone was enhanced and the damage degree increased. Compared with sandstone at ambient temperature, the fracture process of heat-treated sandstone was more complicated. After thermal treatment, the specimen had a large crack in the center and cracks on both sides caused by loading; the original cracks grew and mineral particle cracks, internal pore geometry, and other defects gradually appeared. With increasing heating rates, the microscopic fracture mode transformed from ductile fracture to subbrittle fracture. It was concluded that changes in the macroscopic mechanical properties of the sandstone were result from changes in the composition and microstructure.

  11. Changes in protein and starch digestibility in sorghum flour during heat-moisture treatments.

    Science.gov (United States)

    Vu, Thanh-Hien; Bean, Scott; Hsieh, Chao-Feng; Shi, Yong-Cheng

    2017-11-01

    Heat-moisture treatment (HMT) has been used to modify properties of sorghum starches. However, information is limited on the effects of HMT on the digestibility of starch and the concurrent changes in protein in sorghum flour. The objectives of this research were to identify heat-moisture conditions to increase the resistant starch (RS) content of sorghum flour and investigate changes in sorghum proteins and starch structure. Sorghum flours with different moisture contents (0, 125, 200, and 300 g kg -1 w.b.) were heated at three temperatures (100, 120 and 140 °C) and times (1, 2 and 4 h). HMT of sorghum flour increased its RS level. The flour treated at 200 g kg -1 moisture and 100 °C for 4 h had a high RS content (221 g kg -1 vs. 56 g kg -1 for the untreated flour). Starch was not gelatinized when sorghum flours heated at moisture content of 200 g kg -1 or below. Sorghum protein digestibility and solubility decreased during HMT. The increase in RS of sorghum flour upon HMT was attributed to enhanced amylose-lipid complexes and heat induced structural changes in its protein fraction. HMT can be used to increase RS content in sorghum flour without gelatinizing its starch, thereby providing sorghum flour with unique food applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Hemodialysis Catheter Heat Transfer for Biofilm Prevention and Treatment.

    Science.gov (United States)

    Richardson, Ian P; Sturtevant, Rachael; Heung, Michael; Solomon, Michael J; Younger, John G; VanEpps, J Scott

    2016-01-01

    Central line-associated bloodstream infections (CLABSIs) are not easily treated, and many catheters (e.g., hemodialysis catheters) are not easily replaced. Biofilms (the source of infection) on catheter surfaces are notoriously difficult to eradicate. We have recently demonstrated that modest elevations of temperature lead to increased staphylococcal susceptibility to vancomycin and significantly soften the biofilm matrix. In this study, using a combination of microbiological, computational, and experimental studies, we demonstrate the efficacy, feasibility, and safety of using heat as an adjuvant treatment for infected hemodialysis catheters. Specifically, we show that treating with heat in the presence of antibiotics led to additive killing of Staphylococcus epidermidis with similar trends seen for Staphylococcus aureus and Klebsiella pneumoniae. The magnitude of temperature elevation required is relatively modest (45-50°C) and similar to that used as an adjuvant to traditional cancer therapy. Using a custom-designed benchtop model of a hemodialysis catheter, positioned with tip in the human vena cava as well as computational fluid dynamic simulations, we demonstrate that these temperature elevations are likely achievable in situ with minimal increased in overall blood temperature.

  13. Effects of the Solid Solution Heat Treatment on the Corrosion Resistance Property of SSC13 Cast Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kuk-Jin [Hi-Sten Co., Ltd., Gimhae (Korea, Republic of); Lim, Su Gun [Gyeongsang National University, Jinju (Korea, Republic of); Pak, S. J. [Gachon BioNano Research Institute, Gachon University, Sungnam (Korea, Republic of)

    2015-04-15

    Recently, Stainless steels have been increasingly selected as the fitting or the valve materials of water pipes as the human health issue is getting higher and higher. Therefore, the connectors attached at pipes to deliver water are exposed to more severe environments than the pipes because crevice or galvanic corrosion is apt to occur at the fittings or the valves. Effects of the solid solution annealing, cooling rate after this heat treatment, and passivation on the corrosion properties of the shell mold casted SSC13 (STS304 alloy equivalent) were studied. The heating and quenching treatment more or less reduced hardness but effectively improved corrosion resistance. It was explained by the reduction of delta ferrite contents. Independent of heat treatment, the chemical passivation treatment also lowered corrosion rate but the improvement of corrosion resistance depended on temperature and time for passivation treatment indicating that the optimum conditions for passivation treatment were the bath temperature of 34 .deg. C and operating time of 10 minutes. Therefore it is suggested that the corrosion resistance of SSC13 can be effectively improved with the heat treatment, where SSC13 is heated for 10 minutes at 1120 °C and quenched and passivation treatment, where SSC13 is passivated for at least 10 seconds at 34 °C nitric acid solution.

  14. Exergy analysis of heating, refrigerating and air conditioning methods and applications

    CERN Document Server

    Dincer, Ibrahim

    2015-01-01

    Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses. Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples. From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy...

  15. Prediction of critical heat flux by a new local condition hypothesis

    International Nuclear Information System (INIS)

    Im, J. H.; Jun, K. D.; Sim, J. W.; Deng, Zhijian

    1998-01-01

    Critical Heat Flux(CHF) was predicted for uniformly heated vertical round tube by a new local condition hypothesis which incorporates a local true steam quality. This model successfully overcame the difficulties in predicted the subcooled and quality CHF by the thermodynamic equilibrium quality. The local true steam quality is a dependent variable of the thermodynamic equilibrium quality at the exit and the quality at the Onset of Significant Vaporization(OSV). The exit thermodynamic equilibrium quality was obtained from the heat balance, and the quality at OSV was obtained from the Saha-Zuber correlation. In the past CHF has been predicted by the experimental correlation based on local or non-local condition hypothesis. This preliminary study showed that all the available world data on uniform CHF could be predicted by the model based on the local condition hypothesis

  16. Influence of heat treatment on corrosive resistance of concrete steels

    International Nuclear Information System (INIS)

    Woldan, A.; Suliga, I.; Kusinski, J.; Jazowy, R.

    1998-01-01

    The reinforcing bars are essential elements of ferro-concrete structures. During the building structure service the reinforcing bars should co-operate with surrounding concrete. Any bonding defects as well as corrosion induced strength reduction may result in construction failure. The reinforcing steel working environment is determined by concrete chemical and phase composition and surrounding environmental properties. The aggressive corrosive activity of the letter implies necessity of effective ways development to protect elements against corrosion. The effect of heat treatment, increased Si content in steel on corrosion resistance of reinforcing steel in concrete was studied in the current work. Corrosion tests and metallographic examinations proved a positive influence of hardening and Si enrichment on corrosion resistance of reinforcing bars in ferro-concrete structures. (author)

  17. Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots.

    Science.gov (United States)

    Kok, H Petra; Korshuize-van Straten, Linda; Bakker, Akke; de Kroon-Oldenhof, Rianne; Geijsen, Elisabeth D; Stalpers, Lukas J A; Crezee, Johannes

    2017-11-15

    Adequate tumor temperatures during hyperthermia are essential for good clinical response, but excessive heating of normal tissue should be avoided. This makes locoregional heating using phased array systems technically challenging. Online application of hyperthermia treatment planning could help to improve the heating quality. The aim of this study was to evaluate the clinical benefit of online treatment planning during treatment of pelvic tumors heated with the AMC-8 locoregional hyperthermia system. For online adaptive hyperthermia treatment planning, a graphical user interface was developed. Electric fields were calculated in a preprocessing step using our in-house-developed finite-difference-based treatment planning system. This allows instant calculation of the temperature distribution for user-selected phase-amplitude settings during treatment and projection onto the patient's computed tomographic scan for online visualization. Online treatment planning was used for 14 treatment sessions in 8 patients to reduce the patients' reports of hot spots while maintaining the same level of tumor heating. The predicted decrease in hot spot temperature should be at least 0.5°C, and the tumor temperature should decrease less than 0.2°C. These predictions were compared with clinical data: patient feedback about the hot spot and temperature measurements in the tumor region. In total, 17 hot spot reports occurred during the 14 sessions, and the alternative settings predicted the hot spot temperature to decrease by at least 0.5°C, which was confirmed by the disappearance of all 17 hot spot reports. At the same time, the average tumor temperature was predicted to change on average -0.01°C (range, -0.19°C to 0.34°C). The measured tumor temperature change was on average only -0.02°C (range, -0.26°C to 0.31°C). In only 2 cases the temperature decrease was slightly larger than 0.2°C, but at most it was 0.26°C. Online application of hyperthermia treatment planning is

  18. Characterization by transmission electron microscopy of a JRQ steel subjected to different heat treatments

    International Nuclear Information System (INIS)

    Moreno G, N.

    2014-01-01

    In this work a study was conducted on the steel Astm A-533, Grade B, Class 1 of reference JRQ, for the purpose of carrying out a study by transmission electron microscopy on the size and distribution of precipitates in steel samples JRQ previously subjected to heat treatments. This because the reactor vessels of the nuclear power plant of Laguna Verde, are made of a steel Astm A-533 Grade B, Class 1. It is known that the neutron radiation causes damage primarily embrittlement in materials that are exposed to it. However, observable damage through mechanical tests result from microstructural defects and atomic, induced by the neutron radiation. In previous studies hardening by precipitation of a JRQ steel (provided by the IAEA) was induced by heat treatments, finding that the conditions of heat treatment that reproduce the hardness and stress mechanical properties of a steel Astm A-533, Grade B, Class 1 irradiated for 8 years to a fluence of 3.5 x 10 17 neutrons/cm 2 and to a temperature of 290 grades C are achieved with annealing treatments at 550 grades C. In the studied samples it was found that the more hardening phase both the heat treatments as the neutron radiation, is the bainite, being the ferrite practically unchanged. Which it gave the tone to believe that the ferrite is the phase that provides at level macro the mechanical properties in stress, since in the irradiated samples such properties remained unchanged with respect to the non-irradiated material, however changes were observed in material ductility, which may be attributable to the change of hardness in the bainite, which opens a possibility for modeling the micromechanical behavior of this material. (Author)

  19. Effect of heat treatment of whole cottonseed on in vitro, in situ and in ...

    African Journals Online (AJOL)

    Keywords: Amino acid flow, heat treatment, protein degradation, whole cononseed. * Author to whom ... heat-treated soybearu were compared with raw soybeans, it was found that ... et al., 1985; Faldet & Sarter, 1989) while milk fat percenrage.

  20. THE EFFECT OF HEAT TREATMENT ON THE CHEMICAL AND COLOR CHANGE OF BLACK LOCUST (ROBINIA PSEUDOACACIA WOOD FLOUR

    Directory of Open Access Journals (Sweden)

    Yao Chen,

    2012-01-01

    Full Text Available The aim of this study was to investigate the effects of oxygen and moisture content (MC on the chemical and color changes of black locust (Robinia pseudoacacia wood during heat treatment. The wood flour was conditioned to different initial MCs and heated for 24 h at a constant temperature of 120ºC in either oxygen or nitrogen atmosphere. The pH values and chromaticity indexes were examined. Diffuse reflectance UV-Vis (DRUV and Fourier transform infrared (FTIR spectra were used to characterize the changes of chromophores upon heating. The study demonstrated that the pH values decreased after heat treatment, and it was lower when the heat treated was in oxygen than in nitrogen. The L* decreased significantly, while a* and b* increased. The total color difference ΔE* increased with increasing initial MC until a plateau was reached after 30% MC. The color change was greater in oxygen than in nitrogen. The hydroxyl groups decreased after heat treatment. The releases of acid and formation of quinoid compounds and carboxylic groups during heat treatment were confirmed. Discoloration of wood is due mainly to the condensation and oxidation reactions, which are accelerated by oxygen. Higher MCs are required to obtain the greatest color change of wood in inert atmosphere.

  1. Effect of potassium chloride supplementation in drinking water on broiler performance under heat stress conditions.

    Science.gov (United States)

    Ahmad, T; Khalid, T; Mushtaq, T; Mirza, M A; Nadeem, A; Babar, M E; Ahmad, G

    2008-07-01

    The effect of water supplementation of KCl on performance of heat-stressed Hubbard broilers was evaluated in the present experiment. The 3 experimental treatments (i.e., control, 0.3 and 0.6% KCl) were allocated to 3 replicates of 15 birds each. The control group was kept on dugout tap water, whereas the other 2 groups were supplied water supplemented with 0.3 and 0.6% KCl (wt/vol) by supplementing 3 and 6 g of KCl, respectively, per liter of drinking water. Broilers were provided ad libitum access to feed and water for the experimental period of 7 to 42 d of age and kept in open-sided house. The birds were reared under continuous thermostress (minimum 28.2 +/- 1.02 and maximum 37.5 +/- 0.78 degrees C) environment. Supplementing drinking water with 0.6% KCl reduced panting-phase blood pH to 7.31 and significantly increased live BW gain by 14.5 (P = 0.036) and 7.9% (P = 0.029) at 28 and 42 d of age, respectively, relative to control. An improved (P = 0.04) feed:gain and lowered body temperature were noted in groups supplemented with 0.6% KCl as compared with control and 0.3% KCl. Enhanced physiological adaptation with 0.6% KCl was evidenced by a more favorable pH during the panting phase in the present study. These findings demonstrated a possibility of better broiler live performance through KCl supplementation under conditions of severe heat stress (35 to 38 degrees C).

  2. Soil aquifer treatment of artificial wastewater under saturated conditions

    KAUST Repository

    Essandoh, H. M K; Tizaoui, Chedly; Mohamed, Mostafa H A; Amy, Gary L.; Brdjanovic, Damir

    2011-01-01

    A 2000 mm long saturated laboratory soil column was used to simulate soil aquifer treatment under saturated conditions to assess the removal of chemical and biochemical oxygen demand (COD and BOD), dissolved organic carbon (DOC), nitrogen

  3. Effects of certain burning treatments on veld condition in Giant's ...

    African Journals Online (AJOL)

    Effects of certain burning treatments on veld condition in Giant's Castle Game Reserve. ... Keywords: above-ground standing crop; basal cover; burning; composition change; giant's castle game reserve; natal ... AJOL African Journals Online.

  4. Structural steels for power generating equipment and heat and chemical heat treatments

    International Nuclear Information System (INIS)

    Astaf'ev, A.A.

    1979-01-01

    Development of structural steels for power generating equipment and for reactor engineering, in particular, is elucidated. Noted is utilization of the 15Kh2NMFA steels for the WWER-1000 reactor vessels, the 10GN2MFA steels for steam generators, pressurizers, vessels of the automatic emergency shut down and safety system; the 00Kh12N3DL steel for cast pump vessels and main locking bars. The recommendations on heat treatment of big forgings, for instance, ensuring the necessary complex of mechanical properties are given. Diffusion chromizing with subsequent nitriding of austenitic steels which increase durability of the components in BN reactors more than 4 times, is practised on a large scale

  5. Treatment and conditioning of solid and liquid raw

    International Nuclear Information System (INIS)

    Jakubec, R.

    2015-01-01

    Jadrova a vyradovacia spolocnost, a.s. (JAVYS) implements activities within the processes of treatment and conditioning of radioactive waste (RAW) at two nuclear facilities, one of them located in Bohunice - Technologies for treatment and conditioning of RAW. This nuclear facility includes: Bohunice RAW treatment centre, bituminization lines, waste water purification station and technologies for sorting, fragmentation and decontamination of metallic RAW. The Bohunice RAW treatment centre (BRTC) in Bohunice processes and conditions liquid and solid radioactive waste produced during the A1 NPP and V1 NPP decommissioning, waste from the operation of V2 NPP in Bohunice as well as from the operation of NPP EMO 1,2 in Mochovce. The BRTC includes the following technological facilities: sorting, high-pressure compaction, incineration, concentration and cementation. Treatment of radioactive wastes in the BRTC is described. (authors)

  6. Prediction technique for minimum-heat-flux (MHF)- point condition of saturated pool boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1987-01-01

    The temperature-controlled hypothesis for the minimum-heat-flux (MHF)-point condition, in which the MHF-point temperature is regarded as the controlling factor and is expected to be independent of surface configuration and dimensions, is inductively investigated for saturated pool-boiling. In this paper such features of the MHF-point condition are experimentally proved first. Secondly, a correlation of the MHF-point temperature is developed for the effect of system pressure. Finally, a simple technique based on this correlation is presented to estimate the effects of surface configuration, dimensions and system pressure on the minimum heat flux. (author)

  7. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  8. On the physical solutions to the heat equation subjected to nonlinear boundary conditions

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1990-01-01

    This work consists of a discussion on the physical solutions to the steady-state heat transfer equation, when it is subjected to nonlinear boundary conditions. It will be presented a functional, whose minimum occurs for the (unique) physical solution to the condidered heat transfer problem, suitable for a large class of typical (nonlinear) boundary conditions (representing the radiative/convective loss from the body to the environment). It will be demonstrated that these problems admit-always one, and only one, physical solution (which represents the absolute temperature). (author)

  9. Thermal performance of a spirally coiled finned tube heat exchanger under wet-surface conditions

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Naphon, Paisarn

    2006-01-01

    This paper is a continuation of the author's previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data

  10. A new wall function boundary condition including heat release effect for supersonic combustion flows

    International Nuclear Information System (INIS)

    Gao, Zhen-Xun; Jiang, Chong-Wen; Lee, Chun-Hian

    2016-01-01

    Highlights: • A new wall function including heat release effect is theoretically derived. • The new wall function is a unified form holding for flows with/without combustion. • The new wall function shows good results for a supersonic combustion case. - Abstract: A new wall function boundary condition considering combustion heat release effect (denoted as CWFBC) is proposed, for efficient predictions of skin friction and heat transfer in supersonic combustion flows. Based on a standard flow model including boundary-layer combustion, the Shvab–Zeldovich coupling parameters are introduced to derive a new velocity law-of-the-wall including the influence of combustion. For the temperature law-of-the-wall, it is proposed to use the enthalpy–velocity relation, instead of the Crocco–Busemann equation, to eliminate explicit influence of chemical reactions. The obtained velocity and temperature law-of-the-walls constitute the CWFBC, which is a unified form simultaneously holding for single-species, multi-species mixing and multi-species reactive flows. The subsequent numerical simulations using this CWFBC on an experimental case indicate that the CWFBC could accurately reflect the influences on the skin friction and heat transfer by the chemical reactions and heat release, and show large improvements compared to previous WFBC. Moreover, the CWFBC can give accurate skin friction and heat flux for a coarse mesh with y"+ up to 200 for the experimental case, except for slightly larger discrepancy of the wall heat flux around ignition position.

  11. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  12. Does low-protein diet improve broiler performance under heat stress conditions?

    Directory of Open Access Journals (Sweden)

    RL Furlan

    2004-06-01

    Full Text Available Nutrition for broilers under high temperatures is extremely important for brazilian broiler chicken industry because the amounts of consumed nutrients and environmental temperature have great effects on bird performance and carcass quality. Among diet nutrients, protein has the highest heat increment; thus, during many years, diets with low protein level were recommended in order to reduce heat production in broiler chickens under heat stress. However, reports have shown that low-protein diets have negative effects on broiler performance when environmental temperature is high, because during heat stress, low food intake associated to a low diet protein induce amino acid deficiencies. Other studies have shown that broilers fed low-protein diets increase their energy requirement for maintenance with higher heat production. Thus, with the growth of broiler industry in tropical areas more challenges need to be faced by the farmers. So, both the ambient and nutritional conditions ought to be well managed to avoid negative effects on poultry production once they can affect the metabolism (body heat production under low temperature and body heat dissipation under high temperature with consequence on poultry performance (meat and eggs.

  13. Saving energy resources during heat treatment - the most important problem of the branch

    Energy Technology Data Exchange (ETDEWEB)

    Zadernovskiy, V V; Firger, I V

    1980-01-01

    Natural gas fired thermal furnaces expend significantly less fuel than electric furnaces with an equal quality of metal heating. An important reserve in power reserve economy is the use of the forging heat in an article for heat treatment (TOB), where besides the power resources, metal is also saved as a result of the reduction in the volume of heating means and production spaces. From the experience in the progressive enterprises of the branch, in a number of cases it is possible to combine heating for plastic deformation with heating for primary or secondary heat treatment. Other measures are examined which save power resources in heat treatment: the use of thermal furnaces for aerodynamic heating, the use of local heat treatment, the reduction in the duration of the heat treatment processes, savings in the power carriers during heat treatment in furnaces with a roll out hearth. Fibrous refractory materials are being used more and more as fettling materials in the construction of thermal furnaces.

  14. Effects of Heat Treatment on SiC-SiC Ceramic Matrix Composites

    Science.gov (United States)

    Knauf, Michael W.

    Residual stresses resulting from the manufacturing process found within a silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite were thoroughly investigated through the use of high-energy X-ray diffraction and Raman microspectroscopy. The material system studied was a Rolls-Royce composite produced with Hi-Nicalon fibers woven into a five harness satin weave, coated with boron nitride and silicon carbide interphases, and subsequently infiltrated with silicon carbide particles and a silicon matrix. Constituent stress states were measured before, during, and after heat treatments ranging from 900 °C to 1300 °C for varying times between one and sixty minutes. Stress determination methods developed through these analyses can be utilized in the development of ceramic matrix composites and other materials employing boron-doped silicon. X-ray diffraction experiments were performed at the Argonne National Laboratory Advanced Photon Source to investigate the evolution of constituent stresses through heat treatment, and determine how stress states are affected at high temperature through in situ measurements during heat treatments up to 1250 °C for 30 minutes. Silicon carbide particles in the as-received condition exhibited a nearly isotropic stress state with average tensile stresses of approximately 300 MPa. The silicon matrix exhibited a complimentary average compressive stress of approximately 300 MPa. Strong X-ray diffraction evidence is presented demonstrating solid state boron diffusion and increased boron solubility found in silicon throughout heat treatment. While the constituent stress states did evolve through the heat treatment cycles, including approaching nearly stress-free conditions at temperatures close to the manufacturing temperature, no permanent relaxation of stress was observed. Raman spectroscopy was utilized to investigate stresses found within silicon carbide particles embedded within the matrix and the silicon matrix as an alternate

  15. Local total and radiative heat-transfer coefficients during the heat treatment of a workpiece in a fluidised bed

    International Nuclear Information System (INIS)

    Gao, W.M.; Kong, L.X.; Hodgson, P.D.

    2006-01-01

    The heat-transfer coefficients around a workpiece immersed in an electrically heated heat treatment fluidised bed were studied. A suspension probe designed to simulate a workpiece of complex geometry was developed to measure local total and radiative heat-transfer coefficients at a high bed temperature. The probe consisted of an energy-storage region separated by insulation from the fluidised bed, except for the measuring surface, and a multi-thermocouple measurement system. Experiments in the fluidised bed were performed for a fluidising medium of 120-mesh alumina, a wide temperature range of 110-1050 deg. C and a fluidising number range of 1.18-4.24. It was found that the workpiece surface temperature has a more significant effect on heat transfer than the bed temperature. The total heat-transfer coefficient at the upper surface of the workpiece sharply decreased at the start of heating, and then steadily increased as heating progressed, while a sharp decrease became a rapid increase and then a slow increase for the radiative heat-transfer coefficient. A great difference in the heat-transfer coefficients around the workpiece was observed

  16. Thermohydraulics in rod bundles and critical heat flux in transient conditions in a tube

    International Nuclear Information System (INIS)

    Courtaud, M.; Roumy, R.

    1975-01-01

    After the determination of the scaling factor of Stevens's similitude for the pressure range of pressurized water vectors by comparison of critical heat flux data in from and in water, some examples of studies performed with freon are shown. The efficiency of the mixing vanes of spacer grids has been determined on the mixing phenomenon in single phase on critical heat flux. A calculation performed with the code FLICA using subchannel analysis on freon data transposed in water is in good agreement with the experiment. The influence of the number of spacer grids has been also shown. Critical heat fluxes have been determined in water at 140 bar in steady state and transient conditions on two tubular test sections. During the transient tests the flow rate was reduced by half in 0.5 seconds and the reincreased heat flux and inlet temperature remaining constant. These tests have shown the validity of the method which consists in using a critical heat flux correlation determined in steady state conditions applied with local transient conditions of enthalpy and mass velocity computed with the FLICA code [fr

  17. Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions

    International Nuclear Information System (INIS)

    Wang Xiaodong; Bin An; Xu Jinliang

    2013-01-01

    Highlights: ► An inverse geometry optimization method is used to optimize heat sink structure. ► Nanofluid is used as coolant of heat sink. ► Three parameters are simultaneously optimized at various constraint conditions. ► The optimal designs of nanofluid-cooled heat sink are obtained. - Abstract: A numerical model is developed to analyze the flow and heat transfer in nanofluid-cooled microchannel heat sink (MCHS). In the MCHS model, temperature-dependent thermophysical properties are taken into account due to large temperature differences in the MCHS and strong temperature-dependent characteristics of nanofluids, the model is validated by experimental data with good agreement. The simplified conjugate-gradient method is coupled with MCHS model as optimization tool. Three geometric parameters, including channel number, channel aspect ratio, and width ratio of channel to pitch, are simultaneously optimized at fixed inlet volume flow rate, fixed pumping power, and fixed pressure drop as constraint condition, respectively. The optimal designs of MCHS are obtained for various constraint conditions and the effects of inlet volume flow rate, pumping power, and pressure drop on the optimal geometric parameters are discussed.

  18. Methods for microwave heat treatment of manufactured components

    Science.gov (United States)

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  19. Antigenicity of Anisakis simplex s.s. L3 in parasitized fish after heating conditions used in the canning processing.

    Science.gov (United States)

    Tejada, Margarita; Olivares, Fabiola; de las Heras, Cristina; Careche, Mercedes; Solas, María Teresa; García, María Luisa; Fernandez, Agustín; Mendizábal, Angel; Navas, Alfonso; Rodríguez-Mahillo, Ana Isabel; González-Muñoz, Miguel

    2015-03-30

    Some technological and food processing treatments applied to parasitized fish kill the Anisakis larvae and prevent infection and sensitization of consumers. However, residual allergenic activity of parasite allergens has been shown. The aim here was to study the effect of different heat treatments used in the fish canning processing industry on the antigen recognition of Anisakis L3. Bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) were experimentally infected with live L3 Anisakis. After 48 h at 5 ± 1 °C, brine was added to the muscle, which was then canned raw (live larvae) or heated (90 °C, 30 min) (dead larvae) and treated at 113 °C for 60 min or at 115 °C for 90 min. Anisakis antigens and Ani s 4 were detected with anti-crude extract and anti-Ani s 4 antisera respectively. Ani s 4 decreased in all lots, but the muscle retained part of the allergenicity irrespective of the canning method, as observed by immunohistochemistry. Dot blot analysis showed a high loss of Ani s 4 recognition after canning, but residual antigenicity was present. The results indicate that heat treatment for sterilization under the conditions studied produces a decrease in Ani s 4 and suggest a potential exposure risk for Anisakis-sensitized patients. © 2014 Society of Chemical Industry.

  20. Characterization of ion fluxes and heat fluxes for PMI relevant conditions on Proto-MPEX

    Science.gov (United States)

    Beers, Clyde; Shaw, Guinevere; Biewer, Theodore; Rapp, Juergen

    2016-10-01

    Plasma characterization, in particular, particle flux and electron and ion temperature distributions nearest to an exposed target, are critical to quantifying Plasma Surface Interaction (PSI). In the Proto-Material Plasma Exposure eXperiment (Proto-MPEX), the ion fluxes and heat fluxes are derived from double Langmuir Probes (DLP) and Thomson Scattering in front of the target assuming Bohm conditions at the sheath entrance. Power fluxes derived from ne and Te measurements are compared to heat fluxes measured with IR thermography. The comparison will allow conclusions on the sheath heat transmission coefficient to be made experimentally. Different experimental conditions (low and high density plasmas (0.5 - 6 x 1019 m-3) with different magnetic configuration are compared. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  1. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Wadim, E-mail: wadim.jaeger@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Sanchez Espinoza, Victor Hugo [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Hurtado, Antonio [Technical University of Dresden, Institute of Power Engineering, DE-01062 Dresden (Germany)

    2011-06-15

    Highlights: > Implementation of heat transfer correlations for supercritical water into TRACE. > Simulation of several heat transfer experiments with modified TRACE version. > Most correlations are not able to reproduce the experimental results. > Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  2. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    International Nuclear Information System (INIS)

    Jaeger, Wadim; Sanchez Espinoza, Victor Hugo; Hurtado, Antonio

    2011-01-01

    Highlights: → Implementation of heat transfer correlations for supercritical water into TRACE. → Simulation of several heat transfer experiments with modified TRACE version. → Most correlations are not able to reproduce the experimental results. → Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  3. Heat transport and afterheat removal for gas cooled reactors under accident conditions

    International Nuclear Information System (INIS)

    2001-01-01

    The Co-ordinated Research Project (CRP) on Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions was organized within the framework of the International Working Group on Gas Cooled Reactors (IWGGCR). This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs) and supports the conduct of these activities. Advanced GCR designs currently being developed are predicted to achieve a high degree of safety through reliance on inherent safety features. Such design features should permit the technical demonstration of exceptional public protection with significantly reduced emergency planning requirements. For advanced GCRs, this predicted high degree of safety largely derives from the ability of the ceramic coated fuel particles to retain the fission products under normal and accident conditions, the safe neutron physics behaviour of the core, the chemical stability of the core and the ability of the design to dissipate decay heat by natural heat transport mechanisms without reaching excessive temperatures. Prior to licensing and commercial deployment of advanced GCRs, these features must first be demonstrated under experimental conditions representing realistic reactor conditions, and the methods used to predict the performance of the fuel and reactor must be validated against these experimental data. Within this CRP, the participants addressed the inherent mechanisms for removal of decay heat from GCRs under accident conditions. The objective of this CRP was to establish sufficient experimental data at realistic conditions and validated analytical tools to confirm the predicted safe thermal response of advance gas cooled reactors during accidents. The scope includes experimental and analytical investigations of heat transport by natural convection conduction and thermal

  4. Thermal response to heat fluxes of the W7-AS divertor surface submitted to surface modification under high temperature treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, D., E-mail: dieter.hildebrandt@ipp.mpg.d [Euratom Association, Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17491 Greifswald (Germany); Duebner, A. [Euratom Association, Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, 17491 Greifswald (Germany); Greuner, H.; Wiltner, A. [Teilinstitut Garching, Boltzmannstr. 2, 85748 Garching (Germany)

    2009-06-15

    Some target tiles of the W7-AS divertor has been investigated with respect to their thermal behaviour at the surface during power loading with well-defined heat fluxes in the Gladis facility. The primary aim was to examine uncertainties in the determination of heat fluxes derived from IR-thermography during operation of W7-AS. It is found that the derived heat flux profiles are strongly influenced by the local distribution of plasma-deposited contamination analyzed by AES and SIMS. With the observed actual surface conditions characterized by redeposited contamination equivalent up to about 1 mum thickness, the heat fluxes were partially overestimated up to a factor of 4 during operation of W7-AS. This uncertainty is observed to be significantly reduced after heat treatment at temperatures beyond 700 deg. C attained at power flux densities of 10.5 MW/m{sup 2} and durations longer than 5 s.

  5. Thermal response to heat fluxes of the W7-AS divertor surface submitted to surface modification under high temperature treatment

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Duebner, A.; Greuner, H.; Wiltner, A.

    2009-01-01

    Some target tiles of the W7-AS divertor has been investigated with respect to their thermal behaviour at the surface during power loading with well-defined heat fluxes in the Gladis facility. The primary aim was to examine uncertainties in the determination of heat fluxes derived from IR-thermography during operation of W7-AS. It is found that the derived heat flux profiles are strongly influenced by the local distribution of plasma-deposited contamination analyzed by AES and SIMS. With the observed actual surface conditions characterized by redeposited contamination equivalent up to about 1 μm thickness, the heat fluxes were partially overestimated up to a factor of 4 during operation of W7-AS. This uncertainty is observed to be significantly reduced after heat treatment at temperatures beyond 700 deg. C attained at power flux densities of 10.5 MW/m 2 and durations longer than 5 s.

  6. Effects of heating energy and heating position on the conversion characteristics of the catalyst of a four-stroke motorcycle engine in cold start conditions

    International Nuclear Information System (INIS)

    Horng, R.-F.; Chou, H.-M.; Hsu, T.-C.

    2004-01-01

    The effects of heating energy and heating position on the conversion efficiency of an electrically heated catalyst of a four stroke motorcycle engine under cold start conditions were investigated in this study. In general, during cold start, the operating temperatures of a four stroke motorcycle engine and its catalyst would not be optimized. It was found in this paper that by applying heat to the catalyst however, the reaction of the catalyst could be promoted, which, consequently, improved the conversion efficiency. The experimented parameters were heating energy, heating position, heating temperature and the carbon monoxide (CO) setting level. The heating temperatures included 100, 140 and 180 deg. C, while three different heating powers and six different heating positions were used. The CO levels were set as 1.0%, 1.8% and 2.3%. The best CO conversion efficiency was obtained by applying heating at the inlet of the catalyst. It was revealed that a high heating power induced a high temperature rising rate and, consequently, a high CO conversion efficiency. In terms of energy economy efficiency, however, heating at the mid-section of the catalyst gave the best results and through a relatively low heating power

  7. The Effect of Body Weight on Heat Strain Indices in Hot and Dry Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Habibi

    2016-03-01

    Full Text Available Background Being overweight is a characteristic that may influence a person’s heat exchange. Objectives The purpose of this study was to assess the effect of body weight on heat strain indices in hot and dry climatic conditions. Materials and Methods This study was completed with a sample of 30 participants with normal weights, as well as 25 participants who were overweight. The participants were physically inactive for a period of 120 minutes in a climatic chamber with hot and dry conditions (22 - 32°C and with 40% relative humidity (RH.The physiological strain index (PSI and heat strain score index (HSSI questionnaires were used. Simultaneous measurements were completed during heat exposure for periods of five minutes. The resting periods acted as the initial measurements for 15 minutes. Results In both groups, oral temperature, heart rate, and thermal perceptual responses increased during heat exposure. The means and standard deviations of heart rate and oral temperature were gathered when participants were in hot and dry climatic conditions and were not physically active. The heart rates and oral temperatures were 79.21 ± 5.93 bpm and 36.70 ± 0.45°C, respectively, for those with normal weights. For overweight individuals, the measurements for heart rate and oral temperature reached 82.21 ± 8.9 bpm and 37.84 ± 0.37°C, respectively. Conclusions The results showed that, compared to participants with normal weights, physiological and thermal perceptual responses were higher in overweight participants. Therefore, overweight individuals should avoid hot/dry weather conditions to decrease the amount of heat strain.

  8. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    Science.gov (United States)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  9. How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems

    OpenAIRE

    Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.

    2006-01-01

    We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions.

  10. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Chang, Huajian [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhao, Yufeng, E-mail: zhaoyufeng@snptc.com.cn [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhang, Ming; Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei [State Power Investment Corporation, Beijing (China)

    2017-05-15

    Highlights: • Natural circulation tests are performed to study the effect of hypervapotron on CHF. • Hypervapotron structure improves CHF under natural circulation conditions. • Visualization data illustrate vapor blanket behavior under subcooled flow conditions. - Abstract: The enhancement of critical heat flux with a hypervapotron structure under natural circulation conditions is investigated in this study. Subcooled flow boiling CHF experiments are performed using smooth and hypervapotron surfaces at different inclination angles under natural circulation conditions. The experimental facility, TESEC (Test of External Vessel Surface with Enhanced Cooling), is designed to conduct CHF experiments in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. The two-phase flow of subcooled flow boiling on both smooth and hypervapotron heating plates is observed and analyzed by the high-speed visualization technology. The results show that both smooth surface and hypervapotron surface CHF data exhibit a similar trend against inclination angles compared with the CHF results under forced flow condition on the same facility in earlier studies. However, the CHF enhancement of the hypervapotron structure is evidently more significant than the one under forced flow conditions. The experiments also indicate that the natural flow rates are higher with hypervapotron structure. The initiation of CHF is analyzed under transient subcooling and flow rate conditions for both smooth and hypervapotron heating surfaces. An explanation is given for the significant enhancement effect caused by the hypervapotron surface under natural circulation conditions. The visualization data are exhibited to demonstrate the behavior of the vapor blanket at various inclination angles and on different surfaces. The geometric data of the vapor blanket are quantified by an image post-processing method. It is found that the thickness of the vapor blanket

  11. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    Science.gov (United States)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  12. Heat conduction in a plate-type fuel element with time-dependent boundary conditions

    International Nuclear Information System (INIS)

    Faya, A.J.G.; Maiorino, J.R.

    1981-01-01

    A method for the solution of boundary-value problems with variable boundary conditions is applied to solve a heat conduction problem in a plate-type fuel element with time dependent film coefficient. The numerical results show the feasibility of the method in the solution of this class of problems. (Author) [pt

  13. Geothermal as a heat sink application for raising air conditioning efficency

    Science.gov (United States)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  14. Critical condition for current-driven instability excited in turbulent heating of TRIAM-1 tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Y; Watanabe, T; Nagao, A; Nakamura, K; Kikuchi, M; Aoki, T; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Mitarai, O

    1982-02-01

    Critical condition for current-driven instability excited in turbulently heated TRIAM-1 tokamak plasma is investigated experimentally. Resistive hump in loop voltage, plasma density fluctuation and rapid increase of electron temperature in a skin layer are simultaneously observed at the time when the electron drift velocity amounts to the critical drift velocity for low-frequency ion acoustic instability.

  15. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…

  16. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Introduction to Construction Series. Instructor Edition.

    Science.gov (United States)

    Associated General Contractors of America, Washington, DC.

    This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…

  17. Effects of Heat-treatments on the Mechanical Strength of Coated YSZ: An Experimental Assessment

    DEFF Research Database (Denmark)

    Toftegaard, Helmuth Langmaack; Sørensen, Bent F.; Linderoth, Søren

    2009-01-01

    The mechanical strength of thin, symmetric sandwich specimens consisting of a dense yttria-stabilized zirconia (YSZ) substrate coated with a porous NiO–YSZ layer at both major faces was investigated. Specimens were loaded in uniaxial tension to failure following heat treatments at various...... temperatures. In comparison with the YSZ material, the failure strength of coated specimens was found to increase for heat treatments at 1100°C, but decreased again with further increased heat-treatment temperatures....

  18. Effect of heat treatment on microstructure and hardness of Eurofer 97, Eurofer ODS and T92 steels

    International Nuclear Information System (INIS)

    Lu, Z.; Faulkner, R.G.; Riddle, N.; Martino, F.D.; Yang, K.

    2009-01-01

    Eurofer ODS steel is a potential candidate for fusion reactor application due to its excellent swelling resistance, low thermal expansion coefficient and high temperature properties. One of the main issues is that high fluence neutron irradiation induces a significant increase of ductile-to-brittle transition temperature (DBTT) at temperatures below 400 deg. C which restricts its application. The aim of this study is to explore the methods to lower the initial DBTT of Eurofer ODS steel by heat treatment optimization. Two heats of Eurofer ODS steels with different C contents are heat-treated at different normalizing temperatures, cooling rates and tempering conditions, and are compared with Eurofer 97 and T92 steels heat-treated with similar conditions. The microstructure is characterized by optical microscopy, FEG-TEM and OIM-EBSD techniques. The effect of normalization, cooling rate and temper on grain size, precipitation, grain boundary misorientation and hardness are investigated. The influences of these properties on DBTT are discussed.

  19. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    Science.gov (United States)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  20. Effect of heat treatments on precipitate microstructure and mechanical properties of CuCrZr alloy

    OpenAIRE

    Singh, B.N; Edwards, D.J.; Tähtinen, S.

    2004-01-01

    A number of specimens of CuCrZr alloy was prime aged and then overaged at 600oC for 1, 2 and 4 hours and for 4 hours at 700 and 850oC. After different heat treatments, both the precipitate microstructure and mechanical properties were characterized.Mechanical properties were determined at 50 and 300oC. Some selected specimens in the prime aged as well as overaged conditions were irradiated in the BR-2 reactor at Mol at 60 and 300oC to a displacement dose level of ~0.3 dpa. Irradiated specimen...

  1. Performance study of desiccant coated heat exchanger air conditioning system in winter

    International Nuclear Information System (INIS)

    Ge, T.S.; Dai, Y.J.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of desiccant coated heat exchanger AC system is predicted. • Effects of main operation parameters and climatic conditions are discussed. • Regeneration temperature of 30 °C is recommended under simulation condition. • Higher ambient humidity ratio results in increased humidity ratio of supply air. • Temperature of ambient air has neglectable effect on supply air. - Abstract: Conventional air source heat pump system faces several challenges when adopted in winter season. Solid desiccant air conditioning system can provide humidification and heating power simultaneously and can be driven by low grade thermal energy; it provides a good alternative for air source heat pump systems. However, conventional solid desiccant air conditioning system adopts desiccant wheel with high cost as core component, which hinders the development of such system. Recently, desiccant coated heat exchanger (DCHE) with low initial cost and high efficiency was developed and this paper aims to investigate performance of DCHE air conditioning system adopted in Shanghai winter season. Performance of the system is predicted by a developed mathematical model where supply air states, mass of humidification and coefficient of performance (COP) are adopted as performance indices to evaluate the feasibility and energy utilization ratio of the system. Effects of regeneration water temperature on system performance are analyzed. It is found that under the simulation condition, relatively low regeneration temperature (such as 20 °C) cannot meet the designed standard and relatively high regeneration temperature (such as 40 °C) provides too much extra heating power, thus moderate regeneration temperature around 30 °C is recommended. Meanwhile, switch time is a crucial operation parameter for the system to obtain satisfied supply air, switch time from 40 s to 80 s and from 70 s to 240 s are recommended for transient and average supply air states, respectively. Both

  2. Heat transfer and pressure drop of a gasket-sealed plate heat exchanger depending on operating conditions across hot and cold sides

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Hyouck Ju [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2016-05-15

    In a gas engine based cogeneration system, heat may be recovered from two parts: Jacket water and exhaust gas. The heat from the jacket water is often recovered using a plate-type heat exchanger, and is used for room heating and/or hot water supply applications. Depending on the operating conditions of an engine and heat recovery system, there may be an imbalance in the flow rate and supply pressure between the engine side and the heat-recovery side of the heat exchanger. This imbalance causes deformation of the plate, which affects heat transfer and pressure drop characteristics. In the present study, the heat transfer and pressure drop inside a heat exchanger were investigated under varying hot-side and cold-side operating conditions. Thermal efficiency of the plate heat exchanger decreases up to 30% with an operating engine load of 50%. A correction factor for the pressure drop correlation is proposed to account for the deformation caused by an imbalance between the two sides of a heat exchanger.

  3. Water Vapor Adsorption on Biomass Based Carbons under Post-Combustion CO2 Capture Conditions: Effect of Post-Treatment

    Directory of Open Access Journals (Sweden)

    Nausika Querejeta

    2016-05-01

    Full Text Available The effect of post-treatment upon the H2O adsorption performance of biomass-based carbons was studied under post-combustion CO2 capture conditions. Oxygen surface functionalities were partially replaced through heat treatment, acid washing, and wet impregnation with amines. The surface chemistry of the final carbon is strongly affected by the type of post-treatment: acid treatment introduces a greater amount of oxygen whereas it is substantially reduced after thermal treatment. The porous texture of the carbons is also influenced by post-treatment: the wider pore volume is somewhat reduced, while narrow microporosity remains unaltered only after acid treatment. Despite heat treatment leading to a reduction in the number of oxygen surface groups, water vapor adsorption was enhanced in the higher pressure range. On the other hand acid treatment and wet impregnation with amines reduce the total water vapor uptake thus being more suitable for post-combustion CO2 capture applications.

  4. Reliability analysis of emergency decay heat removal system of nuclear ship under various accident conditions

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    1984-01-01

    A reliability analysis is given for the emergency decay heat removal system of the Nuclear Ship ''Mutsu'' and the emergency sea water cooling system of the Nuclear Ship ''Savannah'', under ten typical nuclear ship accident conditions. Basic event probabilities under these accident conditions are estimated from literature survey. These systems of Mutsu and Savannah have almost the same reliability under the normal condition. The dispersive arrangement of a system is useful to prevent the reduction of the system reliability under the condition of an accident restricted in one room. As for the reliability of these two systems under various accident conditions, it is seen that the configuration and the environmental condition of a system are two main factors which determine the reliability of the system. Furthermore, it was found that, for the evaluation of the effectiveness of safety system of a nuclear ship, it is necessary to evaluate its reliability under various accident conditions. (author)

  5. Effects of city expansion on heat stress under climate change conditions.

    Directory of Open Access Journals (Sweden)

    Daniel Argüeso

    Full Text Available We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990-2009 and future (2040-2059 simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort.

  6. Thermal Conditions in the City of Poznań (Poland during Selected Heat Waves

    Directory of Open Access Journals (Sweden)

    Marek Półrolniczak

    2018-01-01

    Full Text Available The aim of the study was to characterise the occurrence of hot days and heat waves in Poznań in the 1966–2015 period, as well as to describe the thermal conditions in the city during selected heat waves between 2008 and 2015. The basis of the study was the daily maximum and minimum air temperature values for Poznań–Ławica station from 1966–2015 and the daily values of air temperature from eight measuring points located in the city in various land types from 2008 to 2015. A hot day was defined as a day with Tmax above the 95th annual percentile (from 1966 to 2015, while a heat wave was assumed to be at least five consecutive hot days. The research study conducted shows the increase of Tmax, number of hot days and frequency of heat waves in Poznań over the last 50 years. Across the area of the city (differentiation of urban area types according to Urban Atlas 2012, there was a great diversity of thermal conditions during the heat waves analysed.

  7. A study on gap heat transfer of LWR fuel rods under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Fujishiro, Toshio

    1984-03-01

    Gap heat transfer between fuel pellet and cladding have a large influence on the LWR fuel behaviors under reactivity initiated accident (RIA) conditions. The objective of the present study is to investigate the effects of gap heat transfer on RIA fuel behaviors based on the results of the gap-gas parameter tests in NSRR and on their analysis with NSR-77 code. Through this study, transient variations of gap heat transfer, the effects of the gap heat transfer on fuel thermal behaviors and on fuel failure, effects of pellet-cladding sticking by eutectic formation, and the effects of cladding collapse under high external pressure have been clearified. The studies have also been performed on the applicability and its limit of modified Ross and Stoute equation which is extensively utilized to evaluate the gap heat transfer coefficient in the present fuel behavior codes. The method to evaluate the gap conductance to the conditions beyond the applicability limit of the Ross and Stoute equation has also been proposed. (author)

  8. Overview of Treatment and Conditioning Practices in Goesgen NPP

    International Nuclear Information System (INIS)

    Aebi, Patrick

    2008-01-01

    Radioactive waste of the Goesgen Nuclear Power Plant is collected and stored in an appropriate form for external conditioning or for direct in-house conditioning procedures. Different waste treatment and conditioning technologies have been used since plant start up in 1979. The main conditioning technology used in-house is bituminization. Reactor internal components, contaminated filter elements of cooling circuits or radioactive sludge from the liquid waste tanks have been treated by dedicated equipment and methods. These methods are under water cutting and manipulation of core components, remote dismantling and compressing of filter elements into cartridges or filtration of sludge with a one-chamber filtration system. (authors)

  9. Study on concrete cask for practical use. Heat removal test under normal condition

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Wataru, Masumi; Shirai, Koji; Saegusa, Toshiari

    2005-01-01

    In Japan, it is planed to construct interim storage facilities taking account of dry storage away form reactor in 2010. Recently, a concrete cask is noticed from the economical point of view. But data for its safety analysis have not been sufficient yet. Heat removal tests using to types of full-scale concrete casks were conducted. This paper describes the results under normal condition of spent fuel storage. In the tests, data on heat removal performance and integrity of cask components were obtained for different storage periods. The change of decay heat of spent fuel was simulated using electric heaters. Reinforced Concrete cask (RC cask) and Concrete Filled Steel cask (CFS cask) were the specimen casks. The levels of decay heat at the initial period of 60 years of storage, the intermediate period (20 years of storage), and the final period (40 years of storage) correspond to 22.6 kW, 16 kW and 10 kW, respectively. Quantitative temperature data of the cask components were obtained as compared with their limit temperature. In addition, heat balance data required for heat removal analyses were obtained. (author)

  10. Chronic Lateral Epicondylalgia Does Not Exhibit Mechanical Pain Modulation in Response to Noxious Conditioning Heat Stimulus.

    Science.gov (United States)

    Lim, Edwin Choon Wyn; Sterling, Michele; Vicenzino, Bill

    2017-10-01

    The impaired attenuation of pain by the application of a noxious conditioning stimulus at a segmentally distinct site, known as conditioned pain modulation (CPM), has been implicated in clinical pain states. Chronic lateral epicondylalgia (LE), which is characterized by lower pressure pain thresholds (PPTs) at sites remote to the affected elbow and spinal cord hyperexcitability, is a clinical pain state that might plausibly involve less efficacious CPM. This study aimed to determine whether LE exhibits a less efficacious CPM compared with that in pain-free controls. Results: Twenty participants with LE, aged 50.7 years (SD=7.05) and who had their condition for 10.2 months (range: 2 to 80 mo), were matched by age and sex to 22 pain-free participants. All participants indicated their PPT over the lateral epicondyle(s) before and during a conditioning noxious heat stimulus that was applied over the calf. A CPM score was calculated as the difference between the PPT before and during the heat pain-conditioning stimulus expressed as a percentage of PPT before the heat pain-conditioning stimulus. The condition (LE vs. control) by side (affected vs. unaffected) analysis of variance revealed a significant condition effect (P=0.001), but not side effect (P=0.192) or side-by-condition interaction effect (P=0.951). Follow-up tests for the effect of condition revealed a mean deficit in CPM of -24.5% (95% confidence interval, -38.0 to -11.0) in LE compared with that in pain-free participants. The results that suggest an impaired ability to modulate pain might be associated with the previously observed spinal cord hyperexcitability and the mechanical hyperalgesia that characterizes LE.

  11. Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhen; Ma Lijian; Li Shuqiong; Geng Junxia; Song Qiang; Liu Jun; Wang Chunli; Wang Hang; Li Juan [College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Chengdu 610064 (China); Qin Zhi [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li Shoujian, E-mail: sjli000616@scu.edu.cn [College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Chengdu 610064 (China)

    2011-08-01

    It was found that a large number of oxygen-containing functional groups (OFGs) could be created on the surface of hydrothermal carbon (HTC) by simply heating at lower temperature in air during the course of our preliminary experiments which focused on oxidation pre-treatment of pristine HTC for the purpose of grafting functionalization. Especially carboxyl groups on HTC would increase significantly, from 0.53 to 3.70 mmol/g after heat treatment at 300 deg. C. So, effects of heat-treatment on the OFGs on the carbon microsphere were deeply studied to confirm and explain the findings. Experiments involving different materials (HTC, activated carbon and glucose) were performed under varying conditions (heating temperature and time, in air or in Ar atmosphere). A reaction mechanism for newly generating carboxyl groups on HTC surface during heat-treatment process was supposed based on the results from the sample characterization using Boehm titrations, infrared spectra, X-ray photoelectron spectroscopy, energy dispersive spectrometry and elemental analysis. In addition, the as heat-treated product has excellent sorption capability for Pb{sup 2+} and Cd{sup 2+} ions.

  12. State of the art on the heat transfer experiments under supercritical pressure condition

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Song, Chul Hwa

    2003-07-01

    The SCWR(Super-Critical Water cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project which aims at the development of new reactors with enhanced economy and safety. The SCWR is considered to be a feasible concept of new nuclear power plant if the existing technologies developed in fossil fuel fired plant and LWR technologies together with additional research on several disciplines such as materials, water chemistry and safety. As KAERI takes part in the GIF(Generation IV Forum) for the Gen-IV project, domestic concerns about the SCWR have been recently increased. In order to establish a foundation for the development of SCWR, efforts should be concentrated on the conceptual design of systems and the associated key experiments as well. Heat transfer experiments, among others, under supercritical condition are required for the proper prediction of thermal hydraulic phenomena, which are essential for the thermal hydraulic designs of reactor core. Nevertheless, the experiments have not been performed in Korea yet. This report deals with fundamental surveys on the heat transfer experiments under supercritical conditions, which are required for the understanding of heat transfer characteristics for the thermal hydraulic designs of supercritical reactor core. Investigations on the physical properties of water and CO 2 showed that the physical properties such as density, specific heat, viscosity and thermal conductivity are significantly changed near the pseudo-critical points. The state of the art on the heat transfer characteristics in relation with heat transfer deterioration and heat transfer coefficient is briefly described. In addition, previous experiments with supercritical water as well as supercritical CO 2 and Freon used for an alternating fluid are presented

  13. Optimal operating conditions of a transcritical endoreversible cycle using a low enthalpy heat source

    International Nuclear Information System (INIS)

    Rachedi, Malika; Feidt, Michel; Amirat, Madjid; Merzouk, Mustapha

    2016-01-01

    Highlights: • Thermodynamics analysis of a finite size heat engine driven by a finite heat source. • Mathematical modelling of a transcritical endoreversible organic Rankine cycle. • Parametric study of the optimum operating conditions of transcritical cycle. • Choice of appropriate parameters could lead to very promising efficiencies. - Abstract: In the context of thermodynamic analysis of finite dimensions systems, we studied the optimum operating conditions of an endoreversible thermal machine. In this study, we considered a transcritical cycle, considering external irreversibilities. The hot reservoir is a low enthalpy geothermal heat source; therefore, it is assumed to be finite, whereas the cold reservoir is assumed to be infinite. The power optimisation is investigated by searching the optimum effectiveness of the heat-exchanger at the hot side of the engine. The sum of the total effectiveness and the second law of thermodynamics are used as constraints for optimisation. The optimal temperatures of the working fluid and optimum performances are evaluated based on the most significant parameters of the system: (1) the ratio of heat capacity rate of the working fluid to the heat capacity rate of the coolant and (2) the ratio of the sink temperature to the temperature of the hot source. The parametric study of the cycle and its approximation by a trilateral cycle enabled us to determine the optimum value of the effectiveness of the heat exchangers and the optimal operating temperatures of the cycle considered. The efficiencies obtained are in the range of 15–25% and was found to exceed the efficiency expected by the Curzon and Ahlborn prevision; meanwhile, the Carnot efficiency remains at a high limit.

  14. State of the art on the heat transfer experiments under supercritical pressure condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Song, Chul Hwa

    2003-07-01

    The SCWR(Super-Critical Water cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project which aims at the development of new reactors with enhanced economy and safety. The SCWR is considered to be a feasible concept of new nuclear power plant if the existing technologies developed in fossil fuel fired plant and LWR technologies together with additional research on several disciplines such as materials, water chemistry and safety. As KAERI takes part in the GIF(Generation IV Forum) for the Gen-IV project, domestic concerns about the SCWR have been recently increased. In order to establish a foundation for the development of SCWR, efforts should be concentrated on the conceptual design of systems and the associated key experiments as well. Heat transfer experiments, among others, under supercritical condition are required for the proper prediction of thermal hydraulic phenomena, which are essential for the thermal hydraulic designs of reactor core. Nevertheless, the experiments have not been performed in Korea yet. This report deals with fundamental surveys on the heat transfer experiments under supercritical conditions, which are required for the understanding of heat transfer characteristics for the thermal hydraulic designs of supercritical reactor core. Investigations on the physical properties of water and CO{sub 2} showed that the physical properties such as density, specific heat, viscosity and thermal conductivity are significantly changed near the pseudo-critical points. The state of the art on the heat transfer characteristics in relation with heat transfer deterioration and heat transfer coefficient is briefly described. In addition, previous experiments with supercritical water as well as supercritical CO{sub 2} and Freon used for an alternating fluid are presented.

  15. Responses to tonic heat pain in the ongoing EEG under conditions of controlled attention.

    Science.gov (United States)

    Giehl, Janet; Meyer-Brandis, Gesa; Kunz, Miriam; Lautenbacher, Stefan

    2014-03-01

    To confirm the existence of an ongoing electroencephalogram (EEG) pattern that is truly suggestive of pain, tonic heat pain was induced by small heat pulses at 1 °C above the pain threshold and compared to slightly less intense tonic non-painful heat pulses at 1 °C below the pain threshold. Twenty healthy subjects rated the sensation intensity during thermal stimulation. Possible confounding effects of attention were thoroughly controlled for by testing in four conditions: (1) focus of attention directed ipsilateral or (2) contralateral to the side of the stimulation, (3) control without a side preference, and (4) no control of attention at all. EEG was recorded via eight leads according to the 10/20 convention. Absolute power was computed for the frequency bands delta (0.5-4 Hz), theta (4-8 Hz), alpha1 (8-11 Hz), alpha2 (11-14 Hz), beta1 (14-25 Hz), and beta2 (25-35 Hz). Ratings were clearly distinct between the heat and pain conditions and suggestive for heat and pain sensations. Manipulation of attention proved to be successful by producing effects on the ratings and on the EEG activity (with lower ratings and lower EEG activity (theta, beta1, 2) over central areas for side-focused attention). During pain stimulation, lower central alpha1 and alpha2 activity and higher right-parietal and right-occipital delta power were observed compared to heat stimulation. This EEG pattern was not influenced by the manipulation of attention. Since the two types of stimuli (pain, heat) were subjectively felt differently although stimulation intensities were nearby, we conclude that this EEG pattern is clearly suggestive of pain.

  16. Effect of heat treatment on the elevated temperature tensile and fracture toughness behavior of Alloy 718 weldments

    International Nuclear Information System (INIS)

    Mills, W.J.

    1980-05-01

    The effect of heat treatment on the tensile and fracture toughness properties of Alloy 718 weldments was characterized at room temperature and elevated temperatures. The two heat treatments employed during this investigation were the convectional (ASTM A637) precipitation treatment and a modified treatment designed to improve the toughness of Alloy 718 welds. Weldments were also examined in the as-welded condition. The fracture toughness behavior of the Alloy 718 weldments was determined at 24, 427 and 538 degree C using both linear-elastic (K Ic ) and elastic-plastic (J Ic ) fracture mechanics concepts. Metallographic and electron fractographic examination of Alloy 718 weld fracture surfaces revealed that differences in fracture toughness behavior for the as-welded, conventional and modified conditions were associated with variations in the weld microstructure. 28 refs., 16 figs., 4 tabs

  17. Interface model conditions for a non-equilibrium heat transfer model for conjugate fluid/porous/solid domains

    International Nuclear Information System (INIS)

    Betchen, L.J.; Straatman, A.G.

    2005-01-01

    A mathematical and numerical model for the treatment of conjugate fluid flow and heat transfer problems in domains containing pure fluid, porous, and pure solid regions has been developed. The model is general and physically reasoned, and allows for local thermal non-equilibrium in the porous region. The model is developed for implementation on a simple collocated finite volume grid. Of particular novelty are the conditions implemented at the interfaces between porous regions, and those containing a pure solid or pure fluid. The model is validated by simulation of a three-dimensional porous plug problem for which experimental results are available. (author)

  18. Retrofit of heat exchanger networks with pressure recovery of process streams at sub-ambient conditions

    International Nuclear Information System (INIS)

    Onishi, Viviani C.; Ravagnani, Mauro A.S.S.; Caballero, José A.

    2015-01-01

    Highlights: • New mathematical model for heat exchanger networks retrofit with pressure recovery. • Optimal heat and work integration applied to the retrofit of sub-ambient processes. • Streams pressure manipulation is used to enhance heat integration of the system. • Compressors and turbines can act on a coupling shaft and/or as stand-alone equipment. • Use of smaller amount of cold utilities, reducing significantly the operational costs. - Abstract: This paper presents a new mathematical programming model for the retrofit of heat exchanger networks (HENs), wherein the pressure recovery of process streams is conducted to enhance heat integration. Particularly applied to cryogenic processes, HENs retrofit with combined heat and work integration is mainly aimed at reducing the use of expensive cold services. The proposed multi-stage superstructure allows the increment of the existing heat transfer area, as well as the use of new equipment for both heat exchange and pressure manipulation. The pressure recovery of streams is carried out simultaneously with the HEN design, such that the process conditions (streams pressure and temperature) are variables of optimization. The mathematical model is formulated using generalized disjunctive programming (GDP) and is optimized via mixed-integer nonlinear programming (MINLP), through the minimization of the retrofit total annualized cost, considering the turbine and compressor coupling with a helper motor. Three case studies are performed to assess the accuracy of the developed approach, including a real industrial example related to liquefied natural gas (LNG) production. The results show that the pressure recovery of streams is efficient for energy savings and, consequently, for decreasing the HEN retrofit total cost especially in sub-ambient processes

  19. Effect of heat-treatment on toughness and strength properties of C-Mn steel

    International Nuclear Information System (INIS)

    Mohd bin Harun; Goh Kian Seong; Jasmin binti Baba

    1991-01-01

    The strength and toughness of the heat-treated and tempered C-Mn are studied. Two types of heat-treatment have been carried out with the specimens in an argon gas. The variation in the fracture surfaces of the heat-treated and tempered specimens with impact test temperature is discussed also

  20. Effect of heat treatment of toughness and strength properties of C-Mn steel

    International Nuclear Information System (INIS)

    Mohamad bin Harun; Goh Kian Seong; Yasmin binti Baba

    1989-01-01

    The strength and toughness of the heat-treated and tempered C-Mn are studied. Two type of heat-treatments have been carried out with the specimens in an argon gas. The variation in the fracture surfaces of the heat-treated and tempered specimens with impact test temperatures also is discussed. (author)

  1. Calculation and Designing of Up-to-Date Gas-Flame Plants for Metal Heating and Heat Treatment

    Directory of Open Access Journals (Sweden)

    V. I. Тimoshpolsky

    2008-01-01

    Full Text Available An analysis of development trends in the CIS machine-building industry and current status of the heating and heat treatment furnaces of main machine-building enterprises of the Republic of Belarus as of the 1st quarter of 2008 is given in the paper.The paper presents the most efficient engineering solutions from technological and economic point of view that concern calculation and designing of up-to-date gas-flame plants which are to be applied for modernization of the current heating and heat treatment furnaces of the machine-building enterprises in the Republic of Belarus.A thermo-technical calculation of main indices of the up-to-date gas-flame plant has been carried out in the paper.

  2. Microstructural evolution of aluminide coatings on Eurofer during heat treatments

    International Nuclear Information System (INIS)

    Bhanumurthy, K.; Krauss, W.; Konys, J.

    2011-01-01

    Development of ceramic coatings are essential for the realization of Demo fusion reactor beyond ITER. These functional coatings have to be stable at high temperatures, provide insulating coatings to reduce MHD effects and also act as corrosion barriers to reduce tritium permeation. Some of important development of high temperature coatings are CVD process, powder slurry coatings, hot-dip aluminization and plasma detonation jet processes. Recently Galvono-Al (ECA) process is being used for depositing Al from organic electrolyte, where Al is existing as an toluol-based Al(C x H y ) complex. The deposit is performed under Ar cover gas at 100 deg C with a deposit rate of 10-12 μm/hr. This process is suitable for coating large and complex shaped assemblies and is a well established industrial process for coating Al for wide range of applications including automobile industry. In order to study the effect of high temperature on these coatings, few Al coated on Eurofer specimens were obtained from M/s. Rasant-Alcotec, Germany. The thickness of these coating is around 20 μm. The objective of the presents studies is to subject these coatings to standard heat treatment schedule of Eurofer and study the evolution of microchemistry and microstructure

  3. A test facility for heat transfer, pressure drop and stability studies under supercritical conditions

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2013-02-01

    Supercritical water (SCW) exhibits excellent heat transfer characteristics and high volumetric expansion coefficient (hence high mass flow rates in natural circulation systems) near pseudo-critical temperature. SCW is being considered as a coolant in some advanced nuclear reactor designs on account of its potential to offer high thermal efficiency, compact size, elimination of steam generator, separator and dryer, making it economically competitive. The elimination of phase change results in elimination of the Critical Heat Flux (CHF) phenomenon. Cooling a reactor at full power with natural instead of forced circulation is generally considered as enhancement of passive safety. In view of this, it is essential to study natural circulation, heat transfer and pressure drop characteristics of supercritical fluids. Carbon-dioxide can be considered to be a good simulant of water for natural circulation at supercritical conditions since the density and viscosity variation of carbon-dioxide follows a parallel curve as that of water at supercritical conditions. Hence, a supercritical pressure natural circulation loop (SPNCL) has been set up in Hall-7, BARC to investigate the heat transfer, pressure drop and stability characteristics of supercritical carbon-dioxide under natural circulation conditions. The details of the experimental facility are presented in this report. (author)

  4. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    OpenAIRE

    Xueping Du; Dongtai Han; Qiangmin Zhu

    2018-01-01

    To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to e...

  5. The improving of the heat networks operating process under the conditions of the energy efficiency providing

    Directory of Open Access Journals (Sweden)

    Blinova Tatiana

    2016-01-01

    Full Text Available Among the priorities it is important to highlight the modernization and improvement of energy efficiency of housing and communal services, as well as the transition to the principle of using the most efficient technologies used in reproduction (construction, creation of objects of municipal infrastructure and housing modernization. The main hypothesis of this study lies in the fact that in modern conditions the realization of the most important priorities of the state policy in the sphere of housing and communal services, is possible in the conditions of use of the most effective control technologies for the reproduction of thermal networks. It is possible to raise the level of information security Heat Distribution Company, and other market participants by improving business processes through the development of organizational and economic mechanism in the conditions of complex monitoring of heat network operation processes

  6. Study of new heat treatment parameters for increasing mechanical strength and stress corrosion cracking resistance of 7075 Aluminium alloy

    OpenAIRE

    Silva, G.; Rivolta, B.; Gerosa, R.; Derudi, U.

    2013-01-01

    For many years 7075 Aluminum alloys have been widely used especially in those applications for which highmechanical performances are required. It is well known that the alloy in the T6 condition is characterized bythe highest ultimate and yield strengths, but, at the same time, by poor stress corrosion cracking (SCC)resistance. For this reason, in the aeronautic applications, new heat treatments have been introduced toproduce T7X conditions, which are characterized by lower mechanical strengt...

  7. Application of heat treatment and hot extrusion processes to improve mechanical properties of the AZ91 alloy

    Directory of Open Access Journals (Sweden)

    T. Reguła

    2010-04-01

    Full Text Available The main aim of this paper is to evaluate the effects of hot working (extrusion and hest treatment on room temperature mechanical properties of magnesium-based AZ91 alloy. The results were compared with as-cast condition. The examined material had been obtained by gravity casting to permanent moulds and subsequently subjected to heat treatment and/or processed by extrusion at 648 K. Microstructural and mechanical properties of properly prepared specimens were studied. Rm, Rp02 and A5 were determined from tensile tests. Brinell hardness tests were also conducted. The research has shown that hot working of AZ91 alloy provides high mechanical properties unattainable by cast material subjected to heat-treatment. The investigated alloy subjected to hot working and subsequently heat-treated has doubled its strength and considerably improved the elongation - compared with the as-cast material.

  8. Phase separation of cesium from lead borosilicate glass by heat treatment under a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhanglian; Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Nishimura, Fumihiro; Yonezawa, Susumu

    2016-11-05

    Highlights: • Cesium was phase separated from lead borosilicate glass under a reductive atmosphere. • The phase separation occurred on the glass surface that was in contact with the gas. • The leachability of cesium was enhanced by the phase separation. • The degree of such enhancement varied depending on the heat treatment conditions. - Abstract: A phase-separation technique for removing sodium from glass using a heat-treatment method under a reducing atmosphere was previously developed for sodium recovery from waste glass. In this study, this technique was applied to cesium-containing lead borosilicate glass to concentrate the cesium in phase-separated sodium-rich materials for efficient cesium extraction. The theoretical phase-separation temperature of the sodium-rich phase was simulated by thermodynamic equilibrium calculations and was predicted to occur below 700 °C for lead borosilicate glass. Experimentally, a simulated lead borosilicate glass was melted at 1000 °C and subsequently annealed below 700 °C under a CO-containing reducing atmosphere. The phase separation of cesium was found to occur with sodium enrichment on the glass surface that was in contact with the gas phase, promoting cesium extraction from the treated glass using water. The cesium extraction efficiency was affected by the surface area of the treated glass that was in contact with water, and under the examined conditions, the cesium extraction efficiency was up to 66%. Phase separation using reductive heat treatment, combined with a water leaching technique, is suggested to be effective for extracting cesium incorporated in borosilicate glass waste.

  9. Overview of treatment and conditioning of low-level wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.

    1986-01-01

    The consideration of alternative technologies in low-level waste management is assumed to be partly a response to current demands for lower risk in waste disposal. One of the determinants of risk in waste disposal is the set of characteristics of the materials placed into disposal cells, i.e., the products of treatment and conditioning operations. The treatment and conditioning operations that have been applied to waste streams are briefly examined. Three operations are the most important determinants of the stability that will contribute to reducing risk at the disposal cell: compaction, high-integrity containers, and solidification. The status of these three operations is reviewed

  10. Effect of Pre/Post T6 Heat Treatment on the Mechanical Properties of Laser Welded SSM Cast A356 Aluminium Alloy

    CSIR Research Space (South Africa)

    Akhter, R

    2007-02-01

    Full Text Available HT) were butt welded, using an Nd: YAG laser. In another experiment, as cast welded samples were heat treated to T6 condition (post HT). The base metal and weld microstructures were presented. The effect of heat treatments on microstructure...

  11. Influence of Heat Treatment on Mercury Cavitation Resistance of Surface Hardened 316LN Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steven J [ORNL; Hsu, Julia [Massachusetts Institute of Technology (MIT)

    2010-11-01

    The cavitation-erosion resistance of carburized 316LN stainless steel was significantly degraded but not destroyed by heat treatment in the temperature range 500-800 C. The heat treatments caused rejection of some carbon from the carburized layer into an amorphous film that formed on each specimen surface. Further, the heat treatments encouraged carbide precipitation and reduced hardness within the carburized layer, but the overall change did not reduce surface hardness fully to the level of untreated material. Heat treatments as short as 10 min at 650 C substantially reduced cavitation-erosion resistance in mercury, while heat treatments at 500 and 800 C were found to be somewhat less detrimental. Overall, the results suggest that modest thermal excursions perhaps the result of a weld made at some distance to the carburized material or a brief stress relief treatment will not render the hardened layer completely ineffective but should be avoided to the greatest extent possible.

  12. Heat treatment device for extending the life of a pressure vessel, particularly a reactor pressure vessel

    International Nuclear Information System (INIS)

    Krauss, P.; Mueller, E.; Poerner, H.; Weber, R.

    1979-01-01

    A support body in the form of an insulating cylinder is tightly sealed by connected surfaces at its outer circumference to the inner wall of the pressure vessel. It forms an annular heating space. The heat treatment or tempering of the pressure vessel takes place with the reactor space empty and screened from the outside by ceiling bolts. Heating gas or an induction winding can be used as the means of heating. (DG) [de

  13. Effect of Stabilization Heat Treatment on Time-Dependent Polarization Losses in Sintered Nd-Fe-B Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Tuominen S.

    2013-01-01

    Full Text Available Some companies in the motor and generator industry utilizing sintered NdFeB magnets have adopted pre-ageing heat treatment in order to improve the stability of the magnets. The parameters of this stabilization heat treatment are based mainly on assumptions rather than on any published research results. In this work, the effects of pre-ageing treatment on the time-dependent polarization losses of two different types of commercial sintered NdFeB magnets were studied. The material showing the squarer J(H curve did not benefit from the pre-ageing treatment, since it seems to be stable under a certain critical temperature. In contrast, a stabilizing effect was observed in the material showing rounder J(H curve. After the stabilization heat treatment, the polarization of the magnets was found to be at lower level, but unchanged over a certain period of time. The length of this period depends on the temperature and the duration of the pre-ageing treatment. In addition, our analysis reveals that the stabilization heat treatment performed in an open circuit condition does not stabilize the magnet uniformly.

  14. A new model for predicting performance of fin-and-tube heat exchanger under frost condition

    International Nuclear Information System (INIS)

    Cui, J.; Li, W.Z.; Liu, Y.; Zhao, Y.S.

    2011-01-01

    Accurate prediction of frost characteristics has crucial influence on designing effective heat exchangers. In this paper, a new CFD (Computational Fluid Dynamics) model has been proposed to predict the frost behaviour. The initial period of frost formation can be predicted and the influence of surface structure can be considered. The numerical simulations have been carried out to investigate the performance of fin-and-tube heat exchanger under frost condition. The results have been validated by comparison of simulations with the data computed by empirical formulas. The transient local frost formation has been obtained. The average frost thickness, heat exchanger coefficient and pressure drop on air side has been analysed as well. In addition, the influence factors have also been discussed, such as fin pitch, relative humidity, air flow rate and evaporating temperature of refrigerant.

  15. Non-Calorimetric Determination of the Adsorption Heat of Volatile Organic Compounds under Dynamic Conditions

    Directory of Open Access Journals (Sweden)

    Abdelhamid Korrir

    2015-04-01

    Full Text Available Avoiding strong chemical bonding, as indicated by lower heat of adsorption value, is among the selection criteria for Volatile Organic Compounds adsorbents. In this work, we highlight a non-calorimetric approach to estimating the energy of adsorption and desorption based on measurement of involved amounts, under dynamic conditions, with gaseous Fourier Transform Infrared spectroscopy. The collected data were used for obtaining adsorption heat values through the application of three different methods, namely, isosteric, temperature programmed desorption (TPD, and temperature-programmed adsorption equilibrium (TPAE. The resulting values were compared and discussed with the scope of turning determination of the heat of adsorption with non-calorimetric methods into a relevant decision making tool for designing cost-effective and safe operating of adsorption facilities.

  16. Effect of heating and deformation conditions on the depth of surface defects in alloyed steel rolling

    International Nuclear Information System (INIS)

    Malygin, R.Z.; Karyakin, B.P.; Grosman, A.B.; Simovskikh, V.N.; Storozhev, V.I.

    1978-01-01

    The effect of heating and deformation conditions on the depth change of artificial defects in the 50 KhFA alloyed steel rolling on the 850 blooming and 450 section mill was studied. Quite a definite regularity in the arrangement of defects (cracks and hairlines) along the circumference of the round steel bar and obvious relation with the defect distribution on the bloom faces are established. Oxidation is shown to diminish defect depth while ingot and billet heating especially on the faces under direct firing. Blooms should be placed in the furnace with 90 deg canting in relation to the faces position while ingot heating. Round rolling must be performed with one or several 45 deg strip cantings. The defect depth for the ingots to be rolled without chipping is set up

  17. Critical heat-flux experiments under low-flow conditions in a vertical annulus

    International Nuclear Information System (INIS)

    Mishima, K.; Ishii, M.

    1982-03-01

    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF

  18. Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to revised mass flux condition

    Science.gov (United States)

    Khan, M.; Irfan, M.; Khan, W. A.

    2018-06-01

    Nanofluids retain noteworthy structure that have absorbed attentions of numerous investigators because of their exploration in nanotechnology and nanoscience. In this scrutiny a mathematical computation of 2D flows of Maxwell nanoliquid influenced by a stretched cylinder has been established. The heat transfer structure is conceded out in the manifestation of thermal radiation and heat source/sink. Moreover, the nanoparticles mass flux condition is engaged in this exploration. This newly endorsed tactic is more realistic where the conjecture is made that the nanoparticle flux is zero and nanoparticle fraction regulates itself on the restrictions consequently. By utilizing apposite conversion the governing PDEs are transformed into ODEs and then tackled analytically via HAM. The attained outcomes are plotted and deliberated in aspect for somatic parameters. It is remarked that with an intensification in the Deborah number β diminish the liquid temperature while it boosts for radiation parameter Rd . Furthermore, the concentration of Maxwell liquid has conflicting impact for Brownian motion Nb and thermophoresis parameters Nt .

  19. Effect of heat treatment on the microstructure and properties of Ni based soft magnetic alloy.

    Science.gov (United States)

    Li, Chunhong; Ruan, Hui; Chen, Dengming; Li, Kejian; Guo, Donglin; Shao, Bin

    2018-04-20

    A Ni-based alloy was heat treated by changing the temperature and ambient atmosphere of the heat treatment. Morphology, crystal structure, and physical performance of the Ni-based alloy were characterized via SEM, XRD, TEM, and PPMS. Results show that due to the heat treatment process, the grain growth of the Ni-based alloy and the removal of impurities and defects are promoted. Both the orientation and stress caused by rolling are reduced. The permeability and saturation magnetization of the alloy are improved. The hysteresis loss and coercivity are decreased. Higher heat treatment temperature leads to increased improvement of permeability and saturation magnetization. Heat treatment in hydrogen is more conducive to the removal of impurities. At the same temperature, the magnetic performance of the heat-treated alloy in hydrogen is better than that of an alloy with heat treatment in vacuum. The Ni-based alloy shows an excellent magnetic performance on 1,373 K heat treatment in hydrogen atmosphere. In this process, the µ m , B s , P u , and H c of the obtained alloy are 427 mHm -1 , 509 mT, 0.866 Jm -3 , and 0.514 Am -1 , respectively. At the same time, the resistivity of alloy decreases and its thermal conductivity increases in response to heat treatment. © 2018 Wiley Periodicals, Inc.

  20. Exertional Heat Illnesses and Environmental Conditions During High School Football Practices.

    Science.gov (United States)

    Tripp, Brady L; Eberman, Lindsey E; Smith, Michael Seth

    2015-10-01

    Guidelines for preventing exertional heat illnesses (EHIs) during extreme heat stress should be specific to regional environments, age, and sport and should be based on evidence of reducing the risk. Each year in the United States, over 1 million high school football players practice in the August heat; however, no published data describe the incidence of EHIs in these athletes. To describe the environmental conditions and incidence of EHIs during high school football practices over a 3-month period. Descriptive epidemiology study. For a 3-month period (August-October), athletic trainers at 12 high schools in North Central Florida recorded the practice time and length, environmental conditions (wet-bulb globe temperature), and incidences of EHIs in varsity football athletes. Athletes suffered 57 total EHIs during 29,759 athlete-exposures (AEs) for the 3-month data collection period (rate = 1.92/1000 AEs). August accounted for the majority of all EHIs, with 82.5% (47/57) and the highest rate (4.35/1000 AEs). Of total heat illnesses, heat cramps accounted for 70.2% (40/57), heat exhaustion 22.8% (13/57), and heat syncope 7.0% (4/57). The odds ratio indicated that athletes in August practices that lasted longer than the recommended 3 hours were 9.84 times more likely to suffer a heat illness than those in practices lasting ≤3 hours. The highest rate of EHIs was during August. Practices in August that exceeded the recommended 3 hours were associated with a greater risk of heat illnesses. The overall rate of EHIs was lower for the high school football athletes observed in the study compared with that reported for collegiate football athletes in the region. The low rates of EHIs recorded suggest that the prevention guidelines employed by sports medicine teams are appropriate for the region and population. Team physicians and athletic trainers should employ evidence-based, region- and population-specific EHI prevention guidelines. Sports medicine teams, coaches, and

  1. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L. Cultivars under Normal and Late Sowing Mediated Heat Stress Condition

    Directory of Open Access Journals (Sweden)

    Kamrun NAHAR

    2010-09-01

    Full Text Available Phenological performance in relation to yield of five modern varieties of wheat Sourav, Pradip, Sufi, Shatabdi and Bijoy were evaluated under two growing environments; one is normal growing environment (sowing at November 30 and the other is post anthesis heat stressed environment (sowing at December 30. In case of late seeding, the varieties phased a significant level of high temperature stress that also significantly affected the required days to germination, booting, anthesis, maturity of all varieties including the yield as compared to normal sowing treatment. The temperature during the grain filling or grain maturing period was near 23C in case of normal seeding and it was near about 28C to 30C and sometimes reached above this range in the later period of late seeded treatment. In the normal sowing treatment the germination period was lower than the late sowing treatment as during that time the temperature was higher as compared to late sowing condition where temperature was lower. Days to anthesis and booting decreased due to late sown heat stress condition regardless the cultivars. These phenological characteristics under heat stressed condition led the wheat cultivars to significantly lower the grain yield as compared to normal condition. Due to heat stress, the yield reduction was 69.53% in Sourav, 58.41% in Pradip, 73.01% in Sufi, 55.46% in Shatabdi and 53.42% in Bijoy.

  2. Monitoring results and analysis of thermal comfort conditions in experimental buildings for different heating systems and ventilation regimes during heating and cooling seasons

    Science.gov (United States)

    Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.

    2017-10-01

    This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems - electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.

  3. Nuclear safety inspection in treatment process for SG heat exchange tubes deficiency of unit 1, TNPS

    International Nuclear Information System (INIS)

    Zhang Chunming; Song Chenxiu; Zhao Pengyu; Hou Wei

    2006-01-01

    This paper describes treatment process for SG heat exchange tubes deficiency of Unit 1, TNPS, nuclear safety inspection of Northern Regional Office during treatment process for deficiency and further inspection after deficiency had been treated. (authors)

  4. The local heat treatment equipment and technology of the pipelines welded joints

    International Nuclear Information System (INIS)

    Korol'kov, P.M.

    1998-01-01

    The principal methods and equipment for local treatment of the pipe-lines weld joints in different industry branches is described. Recommendations about heat treatment equipment and technology application are given

  5. Study of critical dependence of stable phases in Nitinol on heat treatment using electrical resistivity probe

    International Nuclear Information System (INIS)

    Uchil, J.; Mohanchandra, K.P.; Kumara, K.G.; Mahesh, K.K.

    1998-01-01

    Phase transformations in 40% cold-worked Nitinol as a function of heat treatment have been studied using electrical resistivity variation with temperature. The stabilisation of austenitic, rhombohedral and martensitic phases is shown to critically depend on the temperatures of heat treatment by the analysis of temperature dependence of electrical resistivity in heating and cooling parts of the cycle. Characteristic values of electrical resistivity of the stable phases are determined. The R-phase has been found to form continuously with increasing heat-treatment temperature starting from room temperature and to suddenly disappear beyond heat-treatment at 683 K. The observed presence or absence of R-phase is confirmed by heat capacity measurements as a function of temperature. (orig.)

  6. Prediction of heat treatment in food processing machinery

    DEFF Research Database (Denmark)

    Karlson, Torben; Friis, Alan; Szabo, Peter

    1997-01-01

    The velocity and temperature fields of a shear thinning fluid in a co-rotating disc scraped surface heat exchanger (CDHE) are calculated using the finite element method. By tracking and timingparticles through the heat exchanger residence time and thermal time distributions are computed. The resi...

  7. Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review.

    Science.gov (United States)

    Cheison, Seronei Chelulei; Kulozik, Ulrich

    2017-01-22

    Proteins in solution are subject to myriad forces stemming from interactions with each other as well as with the solvent media. The role of the environmental conditions, namely pH, temperature, ionic strength remains under-estimated yet it impacts protein conformations and consequently its interaction with, and susceptibility to, the enzyme. Enzymes, being proteins are also amenable to the environmental conditions because they are either activated or denatured depending on the choice of the conditions. Furthermore, enzyme specificity is restricted to a narrow regime of optimal conditions while opportunities outside the optimum conditions remain untapped. In addition, the composition of protein substrate (whether mixed or single purified) have been underestimated in previous studies. In addition, protein pre-treatment methods like heat denaturation prior to hydrolysis is a complex phenomenon whose progression is influenced by the environmental conditions including the presence or absence of sugars like lactose, ionic strength, purity of the protein, and the molecular structure of the mixed proteins particularly presence of free thiol groups. In this review, we revisit protein hydrolysis with a focus on the impact of the hydrolysis environment and show that preference of peptide bonds and/or one protein over another during hydrolysis is driven by the environmental conditions. Likewise, heat-denaturing is a process which is dependent on not only the environment but the presence or absence of other proteins.

  8. Acoustoelastic evaluation of welding and heat treatment stress relieving of pressure vessel steel for Angra 3

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Bruno C. de, E-mail: bruno.cesar@nuclep.gov.br [Nuclebras Equipamentos Pesados S.A (NUCLEP), Itaguai, RJ (Brazil); Bittencourt, Marcelo de S.Q., E-mail: bruno.cesar@nuclep.gov.br, E-mail: bittenc@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Currently the knowledge of non-destructive techniques allows to evaluate the stresses on components and mechanical structures, aiming at physical security, preservation of the environment and avoid financial losses associated with the construction and operation of industrial plants. The search for new techniques, especially applied in the nuclear industry to assess status more accurately, voltage safety and to ensure structural integrity, for example, core components of the primary circuit, such as the reactor pressure vessel and steam generator has become of great importance within the community of non-destructive testing .This paper aims to contribute to the non-destructive technique development in order to ensure the structural integrity of nuclear components. One acoustoelastic evaluation of steel 20 MnMoNi 55, used in pressure vessels of nuclear power plants were performed. The acoustic birefringence technique was use to evaluate the acoustoelastic behavior of the test material in the as received condition, after welding and after the stress relief heat treatment. The constant acoustoelastic material was obtained by an uniaxial loading test. It was found a slight anisotropy in the material as received. After welding, a marked variation of acoustic birefringence in the region near the weld bead was observed. The heat treatment indicated a new change of acoustic birefringence. Obtaining the acoustoelastic constant allowed the evaluation of stress in the different conditions of the weld and treated material. (author)

  9. Acoustoelastic evaluation of welding and heat treatment stress relieving of pressure vessel steel for Angra 3

    International Nuclear Information System (INIS)

    Moraes, Bruno C. de; Bittencourt, Marcelo de S.Q.

    2015-01-01

    Currently the knowledge of non-destructive techniques allows to evaluate the stresses on components and mechanical structures, aiming at physical security, preservation of the environment and avoid financial losses associated with the construction and operation of industrial plants. The search for new techniques, especially applied in the nuclear industry to assess status more accurately, voltage safety and to ensure structural integrity, for example, core components of the primary circuit, such as the reactor pressure vessel and steam generator has become of great importance within the community of non-destructive testing .This paper aims to contribute to the non-destructive technique development in order to ensure the structural integrity of nuclear components. One acoustoelastic evaluation of steel 20 MnMoNi 55, used in pressure vessels of nuclear power plants were performed. The acoustic birefringence technique was use to evaluate the acoustoelastic behavior of the test material in the as received condition, after welding and after the stress relief heat treatment. The constant acoustoelastic material was obtained by an uniaxial loading test. It was found a slight anisotropy in the material as received. After welding, a marked variation of acoustic birefringence in the region near the weld bead was observed. The heat treatment indicated a new change of acoustic birefringence. Obtaining the acoustoelastic constant allowed the evaluation of stress in the different conditions of the weld and treated material. (author)

  10. A study on the effect of heat treatment on electrical properties of plasma sprayed YSZ

    International Nuclear Information System (INIS)

    Elshikh, S.S.M.

    2012-01-01

    Free standing samples of plasma sprayed (PS) zirconia partially stabilized with yettria (YSZ) were prepared with two machines of plasma spray deposition (Triplex gun- 100 kw, F-4 gun 64 kw) have different electrical power and spraying parameters, which produced different microstructures; contain different amounts and varieties of pores and micro-cracks.The study included heat treatment of samples at 1200 degree C for 1 h, 5 h, 10 h, 100 h and 500 h, to study the changes in macrostructure (pores and micro-cracks) which affect the electrical conductivity.The electrical properties (resistively, electrical conductivity) of plasma sprayed ZrO 2 stabilized by 8 wt. % Y 2 O 3 samples were determined by using electrical impedance spectroscopy (IS). Specimen's microstructure was examined by optical microscopy. By measuring electrical properties and connected porosity percent of the coatings obtained under various spraying conditions, it would be possible to select the optimum spraying condition to spray coatings which have high efficiency at high temperature.The results showed that the electrical conductivity of (YSZ) samples after heat treatment increased by a rate of (20%-30%) as compared to that of as sprayed.

  11. Mixed convection in inclined lid driven cavity by Lattice Boltzmann Method and heat flux boundary condition

    International Nuclear Information System (INIS)

    D'Orazio, A; Karimipour, A; Nezhad, A H; Shirani, E

    2014-01-01

    Laminar mixed convective heat transfer in two-dimensional rectangular inclined driven cavity is studied numerically by means of a double population thermal Lattice Boltzmann method. Through the top moving lid the heat flux enters the cavity whereas it leaves the system through the bottom wall; side walls are adiabatic. The counter-slip internal energy density boundary condition, able to simulate an imposed non zero heat flux at the wall, is applied, in order to demonstrate that it can be effectively used to simulate heat transfer phenomena also in case of moving walls. Results are analyzed over a range of the Richardson numbers and tilting angles of the enclosure, encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. As expected, heat transfer rate increases as increases the inclination angle, but this effect is significant for higher Richardson numbers, when buoyancy forces dominate the problem; for horizontal cavity, average Nusselt number decreases with the increase of Richardson number because of the stratified field configuration

  12. Quantifying Projected Heat Mortality Impacts under 21st-Century Warming Conditions for Selected European Countries.

    Science.gov (United States)

    Kendrovski, Vladimir; Baccini, Michela; Martinez, Gerardo Sanchez; Wolf, Tanja; Paunovic, Elizabet; Menne, Bettina

    2017-07-05

    Under future warming conditions, high ambient temperatures will have a significant impact on population health in Europe. The aim of this paper is to quantify the possible future impact of heat on population mortality in European countries, under different climate change scenarios. We combined the heat-mortality function estimated from historical data with meteorological projections for the future time laps 2035-2064 and 2071-2099, developed under the Representative Concentration Pathways (RCP) 4.5 and 8.5. We calculated attributable deaths (AD) at the country level. Overall, the expected impacts will be much larger than the impacts we would observe if apparent temperatures would remain in the future at the observed historical levels. During the period 2071-2099, an overall excess of 46,690 and 117,333 AD per year is expected under the RCP 4.5 and RCP 8.5 scenarios respectively, in addition to the 16,303 AD estimated under the historical scenario. Mediterranean and Eastern European countries will be the most affected by heat, but a non-negligible impact will be still registered in North-continental countries. Policies and plans for heat mitigation and adaptation are needed and urgent in European countries in order to prevent the expected increase of heat-related deaths in the coming decades.

  13. Simplified model for determining local heat flux boundary conditions for slagging wall

    Energy Technology Data Exchange (ETDEWEB)

    Bingzhi Li; Anders Brink; Mikko Hupa [Aabo Akademi University, Turku (Finland). Process Chemistry Centre

    2009-07-15

    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

  14. A novel laboratory scale method for studying heat treatment of cake flour

    OpenAIRE

    Chesterton, AKS; Wilson, David Ian; Sadd, PI; Moggridge, Geoffrey Dillwyn

    2014-01-01

    A lab-scale method for replicating the time–temperature history experienced by cake flours undergoing heat treatment was developed based on a packed bed configuration. The performance of heat-treated flours was compared with untreated and commercially heat-treated flour by test baking a high ratio cake formulation. Both cake volume and AACC shape measures were optimal after 15 min treatment at 130 °C, though their values varied between harvests. Separate oscillatory rheometry tests of cake ba...

  15. Heat Treatment of Gas-Atomized Powders for Cold Spray Deposition

    Science.gov (United States)

    Story, William A.; Brewer, Luke N.

    2018-02-01

    This communication demonstrates the efficacy of heat treatment on the improved deposition characteristics of aluminum alloy powders. A novel furnace was constructed for solutionizing of feedstock powders in an inert atmosphere while avoiding sintering. This furnace design achieved sufficiently high cooling rates to limit re-precipitation during powder cooling. Microscopy showed homogenization of the powder particle microstructures after heat treatment. Cold spray deposition efficiency with heat-treated powders substantially increased for the alloys AA2024, AA6061, and AA7075.

  16. Heat stroke during long-term clozapine treatment: should we be concerned about hot weather?

    OpenAIRE

    Hoffmann, Maurício Scopel; Oliveira, Lucas Mendes; Lobato, Maria Inês Rodrigues; Belmonte-de-Abreu, Paulo

    2016-01-01

    Objective To describe the case of a patient with schizophrenia on clozapine treatment who had an episode of heat stroke. Case description During a heat wave in January and February 2014, a patient with schizophrenia who was on treatment with clozapine was initially referred for differential diagnose between systemic infection and neuroleptic malignant syndrome, but was finally diagnosed with heat stroke and treated with control of body temperature and hydration. Comments This report aims to...

  17. Decay heat removal and transient analysis in accidental conditions in the EFIT reactor

    International Nuclear Information System (INIS)

    Bandini, G.; Meloni, P.; Polidori, M.; Casamirra, M.; Castiglia, F.; Giardina, M.

    2007-01-01

    The development of a conceptual design of an industrial scale transmutation facility (EFIT) of several 100 MW thermal power based on Accelerator Driven System (ADS) is addressed in the frame of the European EUROTRANS Integral Project. In normal operation, the core power of EFIT reactor is removed through steam generators by four secondary loops fed by water. A safety-related Decay Heat Removal (DHR) system provided with four independent inherently safe loops is installed in the primary vessel to remove the decay heat by natural convection circulation under accidental conditions which lead to the Loss of Heat Sink (LOHS). In order to confirm the adequacy of the adopted solution for decay heat removal in accidental conditions, some multi-D analyses have been carried out with the SIMMER-III code. The results of the SIMMER-III code have been then used to support the RELAP5 1-D representation of the natural circulation flow paths in the reactor vessel. Finally, the thermal-hydraulic RELAP5 code has been employed for the analysis of LOHS accidental scenarios. (author)

  18. Decay Heat Removal and Transient Analysis in Accidental Conditions in the EFIT Reactor

    Directory of Open Access Journals (Sweden)

    Giacomino Bandini

    2008-01-01

    Full Text Available The development of a conceptual design of an industrial-scale transmutation facility (EFIT of several 100 MW thermal power based on accelerator-driven system (ADS is addressed in the frame of the European EUROTRANS Integral Project. In normal operation, the core power of EFIT reactor is removed through steam generators by four secondary loops fed by water. A safety-related decay heat removal (DHR system provided with four independent inherently safe loops is installed in the primary vessel to remove the decay heat by natural convection circulation under accidental conditions which are caused by a loss-of-heat sink (LOHS. In order to confirm the adequacy of the adopted solution for decay heat removal in accidental conditions, some multi-D analyses have been carried out with the SIMMER-III code. The results of the SIMMER-III code have been then used to support the RELAP5 1D representation of the natural circulation flow paths in the reactor vessel. Finally, the thermal-hydraulic RELAP5 code has been employed for the analysis of LOHS accidental scenarios.

  19. Effect of heat treatment duration on phase separation of sodium borosilicate glass, containing copper

    International Nuclear Information System (INIS)

    Shejnina, T.G.; Gutner, S.Kh.; Anan'in, N.I.

    1989-01-01

    The effect of heat treatment duration on phase separation of sodium borosilicate (SBS) glass, containing copper is studied. It is stated that phase separation close to equilibrium one is attained under 12 hours of heat treatment of SBS glass containing copper

  20. Industrial heat treatment of R-HPDC A356 automotive brake callipers

    CSIR Research Space (South Africa)

    Chauke, L

    2012-10-01

    Full Text Available Heat treatment of rheo-high pressure die cast (R-HPDC) A356 brake callipers has produced good mechanical properties on the laboratory scale. An industrial heat treatment is required to evaluate the applicability and conformance of the R-HPDC A356...

  1. Relaxation of residual stress in MMC after combined plastic deformation and heat treatment

    International Nuclear Information System (INIS)

    Bruno, G.; Ceretti, M.; Girardin, E.; Giuliani, A.; Manescu, A.

    2004-01-01

    Neutron Diffraction shows that plastic pre-deformation and heat treatments have opposite effects on the residual stress in Al-SiC p composites. The thermal micro residual stress is relaxed or even reversed by pre-strains above 0.2%, but restored by heat treatments. The sense of relaxation changes above 400 deg. C (the mixing temperature)

  2. Influence of heat treatment on magnesium alloys meant to automotive industry

    NARCIS (Netherlands)

    Popescu, G.; Moldovan, P.; Bojin, D.; Sillekens, W.H.

    2009-01-01

    The paper presents a study concerning the heat treatment realized on magnesium alloys, from AZ80 and ZK60 class. These alloys are destined to replace the conventional ferrous and aluminum alloys in automotive industry. It was realized the heat treatment, T5 - artificially aging, and it were

  3. A laboratory assessment of various treatment conditions affecting ...

    African Journals Online (AJOL)

    conditions affecting the ammoniation of wheat straw by urea. 1. The effect of temperature, moisture level ... levels of 250 and 375 g/kg wheat straw and treatment periods of 0;. 1; 2; 4; 6 and 8 weeks. Dependent variables .... chloride solution containing 5 mg phenyl mercury acetate per litre. In vitro organic matter digestibility ...

  4. Osteoarthritis treatment using autologous conditioned serum after placebo

    NARCIS (Netherlands)

    Rutgers, Marijn; Creemers, Laura B; Auw Yang, Kiem Gie; Raijmakers, Natasja J H; Dhert, Wouter J A; Saris, Daniel B F

    BACKGROUND AND PURPOSE: Autologous conditioned serum (ACS) is a disease-modifying drug for treatment of knee osteoarthritis, and modest superiority over placebo was reported in an earlier randomized controlled trial (RCT). We hypothesized that when given the opportunity, placebo-treated patients

  5. Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows.

    Science.gov (United States)

    De Rensis, F; Garcia-Ispierto, I; López-Gatius, F

    2015-09-15

    Heat stress has consequences on both the physiology and reproductive performance of cows, but the most dramatic effect for dairy producers is the decrease produced in fertility. The effects of heat stress on fertility include an increased number of days open, reduced conception rate, and larger number of cows suffering different types of anestrus. Once becomes pregnant, heat stress affects also the reproductive success of the cow through its direct effects on the ovary, uterus, gametes, embryo, and early fetus. This article reviews current knowledge of the effects of heat stress on fertility in dairy cows and the hormonal strategies used to mitigate these effects at the farm level. Administration of GnRH at the moment of artificial insemination can improve the conception rate. Breeding synchronization protocols for fixed-time insemination may reduce the calving conception interval and the number of services per conception. Progesterone-based protocols seem resolve better the reproductive disorders related to a hot environment (anestrus) than GnRH-based protocols. The use of combinations of GnRH, eCG, and hCG in progesterone-based protocols can improve results. Progesterone supplementation during the late embryonic and/or early fetal period would be useful in curtailing pregnancy losses, mainly in single pregnancies, whereas a more positive effect of treatment with GnRH than progesterone has been found in twin pregnancies. Melatonin therapy is emerging as a promising strategy to improve the natural reproductive performance of cows suffering conditions of heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effects of heat treatment on the mechanical properties of kenaf fiber

    Energy Technology Data Exchange (ETDEWEB)

    Carada, Paulo Teodoro D. L. [Master’s student in the Graduate School of Science and Engineering, Mechanical Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan); Fujii, Toru; Okubo, Kazuya [Professor in the Faculty of Science and Engineering, Department of Mechanical and Systems Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan)

    2016-05-18

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  7. Study of the thermal behavior of a latent heat cold storage unit operating under frosting conditions

    International Nuclear Information System (INIS)

    Simard, A.P.; Lacroix, M.

    2003-01-01

    A study is performed of the thermal behavior of a latent heat cold storage unit operating under frosting conditions. This unit is employed to maintain the temperature inside the refrigerated compartment of a truck below 265 K. The system consists of parallel plates filled with a phase change material (PCM) that absorbs heat from the flow of warm moist air. A mathematical model for the system is first presented and, next, validated with numerical and experimental data. It is then exploited to assess the effects of design parameters and operating conditions on the performance of the system. The recommended thickness and distance separating the PCM plates are found to be 50x10 -3 and 30x10 -3 m, respectively. The results indicate that the performance of the unit is enhanced by turbulent air flow in spite of the increased pressure loss and accentuated frost growth. The unit also performs well even when the surrounding relative humidity is 100%

  8. Study of heat treatment parameters for large-scale hydraulic steel gate track

    Directory of Open Access Journals (Sweden)

    Ping-zhou Cao

    2013-10-01

    Full Text Available In order to enhance external hardness and strength, a large-scale hydraulic gate track should go through heat treatment. The current design method of hydraulic gate wheels and tracks is based on Hertz contact linear elastic theory, and does not take into account the changes in mechanical properties of materials caused by heat treatment. In this study, the heat treatment parameters were designed and analyzed according to the bearing mechanisms of the wheel and track. The quenching process of the track was simulated by the ANSYS program, and the temperature variation, residual stress, and deformation were obtained and analyzed. The metallurgical structure field after heat treatment was predicted by the method based on time-temperature-transformation (TTT curves. The results show that the analysis method and designed track heat treatment process are feasible, and can provide a reference for practical projects.

  9. Heat treatment evaluation of steel ASTM A-131 grade A by X-Ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Francisco; Feio, Luciana Gaspar; Costa, Ednelson Silva; Rodrigues, Lino Alberto Soares; Braga, Eduardo Magalhaes, E-mail: juniorferrer93@gmail.com [Universidade Federal do Pará (UFPA), Belém, PA (Brazil)

    2016-07-01

    Full text: This study evaluates the residual stress of naval steel ASTM A-131 grade A before and after heat treatment. Residual stresses were determined by the technique of X-ray diffraction (XRD). Before heat treatment the residual stress measurements were made at 36 (thirty six) points distributed in a specimen with dimensions of 400 mm long, 200 mm wide and 95 mm thick, then the plate under analysis was brought to the oven for the implementation of heat treatment. To check the performance of the heat treatment, the plate was again subjected to XRD measurements of the same points previously measured in order to compare the residual stresses. As result, there was a reduction of residual stresses with the application of heat treatment. References: [1] COLPAERT, H. Metalografia dos Produtos Siderurgicos Comuns. 4 Edição. Editora Blucher. Saõ Paulo, SP, 2008. [2] HILL, R. Princípios de Metalurgia Física, 1992. (author)

  10. Effect of heat treatment on corrosion behavior of duplex stainless steel in orthodontic applications

    Science.gov (United States)

    Sabea Hammood, Ali; Faraj Noor, Ahmed; Talib Alkhafagy, Mohammed

    2017-12-01

    Heat treatment is necessary for duplex stainless steel (DSS) to remove or dissolve intermetallic phases, to remove segregation and to relieve any residual thermal stress in DSS, which may be formed during production processes. In the present study, the corrosion resistance of a DSS in artificial saliva was studied by potentiodynamic measurements. The microstructure was investigated by scanning electron microscopy (SEM),x-ray diffraction (XRD) and Vickers hardness (HV). The properties were tested in as-received and in thermally treated conditions (800-900 °C, 2-8 min). The research aims to evaluate the capability of DSS for orthodontic applications, in order to substitute the austenitic grades. The results indicate that the corrosion resistance is mainly affected by the ferrite/austenite ratio. The best result was obtained with a treatment at 900 °C for 2 min.

  11. Experimental research on single-phase heat transfer characteristics in a vertical circular tube under marine conditions

    International Nuclear Information System (INIS)

    Du Sijia; Zhang Hong; Jia Baoshan

    2011-01-01

    Experiments have been conducted to study the heat transfer characteristics of single-phase forced circulation when the test tube was under different marine conditions. The experiments measured the wall temperature of test tube to calculate the heat transfer coefficients at different circumferential places. When the test tube was under inclined conditions, the heat transfer coefficient increased at downside and decreased at upside of test tube because of buoyancy effect. When the test tube was under rolling conditions, the heat transfer coefficients fluctuated with the rolling motions, and the Coriolis force dominated the heat transfer fluctuation during the rolling motion. CFD method was used to simulate the heat transfer phenomena under marine conditions, and the results were accord to the experimental phenomena. (authors)

  12. Approximate method for calculating heat conditions in the magnetic circuits of transformers and betatrons

    International Nuclear Information System (INIS)

    Loginov, V.S.

    1986-01-01

    A technique for engineering design of two-dimensional stationary temperature field of rectangular cross section blending pile with inner heat release under nonsymmetrical cooling conditions is suggested. Area of its practical application is determined on the basis of experimental data known in literature. Different methods for calculating temperature distribution in betatron magnetic circuit are compared. Graph of maximum temperature calculation error on the basis of approximated expressions with respect to exact solution is given

  13. Alloying and heat treatment optimization of Fe/Cr/C steels for improved mechanical properties

    International Nuclear Information System (INIS)

    Sarikaya, M.

    1979-06-01

    The effects of alloying elements and heat treatments on the microstructural changes and strength-toughness properties were investigated in optimization of vacuum melted Fe/Cr/C base steels. The structure of the steels in the as-quenched conditions consisted of highly dislocated autotempered lath martensite (strong phase) and thin continuous interlath films of retained austenite (tough phase). It has been emphasized again that the mechanical properties of the steels are sensitive to the amount and the stability of retained austenite. To increase the stability of retained austenite in the as-quenched condition 2 w/o Mn or 2 w/o Ni was added to the base steel, viz., Fe/3Cr/0.3C. Partial replacement of Cr by about 0.5 w/o Mo did not alter the beneficial microstructure

  14. Investigation of floor Nusselt number in floor heating system for insulated ceiling conditions

    International Nuclear Information System (INIS)

    Karadag, Refet; Teke, Ismail

    2007-01-01

    In this study, in a floor heated room, natural convection heat transfer over the floor is analysed numerically for different thermal conditions. An equation relevant to Nusselt number over the floor has been obtained by using the numerical data. Different equations are given in the literature. They consider the effect of floor Rayleigh number while neglecting the effect of wall and ceiling thermal conditions. Numerical data obtained in this study show that the Nusselt number over the floor depends on not only the floor Rayleigh number but also the wall Rayleigh number (for insulated ceiling conditions). The equations given in the literature are different from each other due to their not considering the effect of wall and ceiling Rayleigh numbers. This difference between the equations may be eliminated by obtaining an equation containing the effect of floor, wall and ceiling Rayleigh numbers. In this new approach, an equation relevant to the floor Nusselt number that depends on the floor and wall Rayleigh numbers has been obtained in the floor heating system for insulated ceiling conditions. The equation obtained in this study has been compared with the equations given in the literature. It has been seen that the equation obtained in this study matches the numerical values under more extensive thermal conditions than the equations given in the literature. The maximum deviation for the equations given in the literature is 35%, but in the current study, the maximum deviation has been found to be 10%. As a result, it is more convenient to use the equation found in the new approach as a function of Rayleigh number over the floor and wall for insulated ceiling conditions

  15. Comparisons of urban and rural heat stress conditions in a hot–humid tropical city

    Directory of Open Access Journals (Sweden)

    Ahmed A. Balogun

    2010-11-01

    Full Text Available Background: In recent years the developing world, much of which is located in the tropical countries, has seen dramatic growth of its urban population associated with serious degradation of environmental quality. Climate change is producing major impacts including increasing temperatures in these countries that are considered to be most vulnerable to the impact of climate change due to inadequate public health infrastructure and low income status. However, relevant information and data for informed decision making on human health and comfort are lacking in these countries. Objective: The aim of this paper is to study and compare heat stress conditions in an urban (city centre and rural (airport environments in Akure, a medium-sized tropical city in south-western Nigeria during the dry harmattan season (January–March of 2009. Materials and methods: We analysed heat stress conditions in terms of the mean hourly values of the thermohygrometric index (THI, defined by simultaneous in situ air temperature and relative humidity measurements at both sites. Results: The urban heat island (UHI exists in Akure as the city centre is warmer than the rural airport throughout the day. However, the maximum UHI intensity occurs at night between 1900 and 2200 hours local time. Hot conditions were predominant at both sites, comfortable conditions were only experienced in the morning and evenings of January at both sites, but the rural area has more pleasant morning and evenings and less of very hot and torrid conditions. January has the lowest frequency of hot and torrid conditions at both sites, while March and February has the highest at the city centre and the airport, respectively. The higher frequencies of high temperatures in the city centre suggest a significant heat stress and health risk in this hot humid environment of Akure. Conclusions: More research is needed to achieve better understanding of the seasonal variation of indoor and outdoor heat stress

  16. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    GREGO

    2006-12-18

    Dec 18, 2006 ... enzymes in plant and its resistance to heat has been reported by a ... sintered glass funnel and washed with cold acetone under low vacuum ... Peroxidase activity was determined by measuring the colour deve- lopment at ...

  17. Ploidy Manipulation of Zebrafish Embryos with Heat Shock 2 Treatment

    OpenAIRE

    Baars, Destiny L.; Takle, Kendra A.; Heier, Jonathon; Pelegri, Francisco

    2016-01-01

    Manipulation of ploidy allows for useful transformations, such as diploids to tetraploids, or haploids to diploids. In the zebrafish Danio rerio, specifically the generation of homozygous gynogenetic diploids is useful in genetic analysis because it allows the direct production of homozygotes from a single heterozygous mother. This article describes a modified protocol for ploidy duplication based on a heat pulse during the first cell cycle, Heat Shock 2 (HS2). Through inhibition of centriole...

  18. Interactions between goethite particles subjected to heat treatment

    DEFF Research Database (Denmark)

    Madsen, Daniel Esmarch; Hansen, Mikkel Fougt; Koch, C.B.

    2008-01-01

    We have studied the effect of heating on the magnetic properties of particles of nanocrystalline goethite by use of Mossbauer spectroscopy. Heating at 150 degrees C for 24 h leads to a change in the quadrupole shift in the low-temperature spectra, indicating a rotation of the sublattice...... magnetization directions. Fitting of quantiles, derived from the asymmetrically broadened spectra between 80 and 300 K, to the superferromagnetism model indicates that this change is due to a stronger magnetic coupling between the particles....

  19. Analysis of genetic diversity among the maize inbred lines (Zea mays L. under heat stress condition

    Directory of Open Access Journals (Sweden)

    Manoj Kandel

    2017-12-01

    Full Text Available High temperature adversely affects the plant physiological processes: limits plant growth and reduction in grain yield. Heat stress is often encountered to spring sowing of maize in spring season. Twenty maize inbred lines were studied for days to 50 % anthesis and silking, anthesis–silking interval, leaf firing, tassel blast, SPAD reading and leaf senescence, plant and ear height, leaf area index, ear per plant, cob length and diameter, number of kernel/ear, number of kernel row/ear, number of kernel row, silk receptivity, shelling percentage, thousand kernel weight and grain yield in alpha lattice design at National Maize Research Program at Rampur, Chitwan,Nepal with the objective to identify superior heat stress tolerant lines. Analysis of variance showed significant difference for all the traits. Result of multivariable analysis revealed that twenty inbred lines formed four clusters. The resistance inbred lines and susceptible inbred lines formed different clusters. The members of cluster 4 were found to be tolerant to heat stress due to they had lowest value of tassel blast, leaf firing, and leaf area index with highest value of cob diameter and length, ear per plant, number of kernel row/ear, number of kernel/ear, number of kernel row, shelling percentage, silk receptivity and grain yield whereas as members of cluster 1were found most susceptible due to they had longer anthesis silking interval, with maximum tassel blast and leaf firing along with no grain yield under heat stress condition. From this study inbred lines RL-140, RML-76, RML-91 and RML-40 were found most tolerant to heat stress. These inbred lines belonging to superior cluster could be considered very useful in developing heat tolerant variety and other breeding activities.

  20. Influence of the heat treatment on the Moessbauer spectrum of a simulated nuclear-waste glass

    International Nuclear Information System (INIS)

    Grave, E. de; Alboom, A. van; Stalios, A.D.

    1990-01-01

    The crystallization behaviour of a reference glass for the conditioning of α-contaminated waste is studied by means of 57 Fe Moessbauer spectroscopy at 80 K and at room temperature. The parent glass and three, nearly fully crystallized samples, produced by heating at 620, 700 and 800degC respectively, the latter temperature being above the glass' crystallization temperature T c , have been considered. All spectra have been analysed by both a superposition of two ferrous and two ferric doublets and by a superposition of a ferrous and a ferric quadrupole splitting distribution. It is concluded that the latter method is to be preferred for the spectra of those samples which have not been heated above T c . The change in the crystallites' morphology of the glass samples as a function of the heat-treatment temperature, i.e. from nearly equiaxed crystallites at 620degC to plate-like ones at 700degC seems to have no significant effect on the Moessbauer parameters. For all spectra, a linear correlation between quadrupole splitting and isomer shift is derived. The results are discussed in terms of different iron coordinations and geometrical deformations theoreof. (orig.)

  1. Gas Furnace with Pulsed Feeding of the Heating Agent for Volume Precision Heat Treatment of CCM Rolls

    Science.gov (United States)

    Moroz, V. I.; Egorova, V. M.; Gusev, S. V.

    2001-05-01

    A standard chamber batch furnace of the Severstal' plant has been modified for precision heat treatment of CCM rolls. The certification tests of a charge of rolls from steel 24KhM1F have shown the technical and economical advantages of the new design.

  2. Experimental investigation of nucleate boiling on heated surfaces under subcooled conditions

    International Nuclear Information System (INIS)

    Schneider, C.; Hampel, R.; Traichel, A.; Hurtado, A.; Meissner, S.; Koch, E.

    2011-01-01

    In case of an accident at pressurized water reactors (PWR), critical boiling conditions can appear at the transition from bubble- to film boiling. During full power operation, heat transfer phenomena of sub cooled nucleate boiling occur on the surface of the fuel rods. To investigate the microscopic processes in nucleate boiling, a test facility with optical measuring methods was constructed. This allows analyzing the effects on a single bubble system at different parameters. For the generation of nucleate boiling, an optically transparent, electrically conductive coating was applied as a heating surface on a borosilicate substrate. The so-called ITO (Indium-Tin-Oxide) coating with a sheet resistance of 20 ohms enables an electrical heating at an optical transparent surface. These properties are prerequisites for the study of microscopic phenomena in the bubble formation with optical coherence tomography (OCT). OCT, generally used in medical diagnostics, is an imaging modality providing cross sectional and volumetric high resolution images. To make sure that the bubble formation takes place at a specific site, artificial nucleation sites in form of micro cavity will be inserted into the surface. Furthermore a small test facility was constructed to dedicate the wall temperature of a heated metal foil during subcooled boiling in non degassed water, which is the content of this paper. (author)

  3. Condition monitoring of steam generator by estimating the overall heat transfer coefficient

    International Nuclear Information System (INIS)

    Furusawa, Hiroaki; Gofuku, Akio

    2013-01-01

    This study develops a technique for monitoring in on-line the state of the steam generator of the fast-breeder reactor (FBR) “Monju”. Because the FBR uses liquid sodium as coolant, it is necessary to handle liquid sodium with caution due to its chemical characteristics. The steam generator generates steam by the heat of secondary sodium coolant. The sodium-water reaction may happen if a pinhole or crack occurs at the thin metal tube wall that separates the secondary sodium coolant and water/steam. Therefore, it is very important to detect an anomaly of the wall of heat transfer tubes at an early stage. This study aims at developing an on-line condition monitoring technique of the steam generator by estimating overall heat transfer coefficient from process signals. This paper describes simplified mathematical models of superheater and evaporator to estimate the overall heat transfer coefficient and a technique to diagnose the state of the steam generator. The applicability of the technique is confirmed by several estimations using simulated process signals with artificial noises. The results of the estimations show that the developed technique can detect the occurrence of an anomaly. (author)

  4. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.

    Science.gov (United States)

    Ramesh, Gopalan; Prabhu, Narayan Kotekar

    2011-04-14

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  5. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    Directory of Open Access Journals (Sweden)

    Ramesh Gopalan

    2011-01-01

    Full Text Available Abstract The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  6. Effect of constant and uniform heat generation on the thermal behaviour of porous solids with asymmetric boundary conditions

    International Nuclear Information System (INIS)

    Heggs, P.J.; Dare, J.

    2007-01-01

    The generation of heat due to chemical reaction will have a significant effect on the temperature profile and heat transfer within a porous body. Most forms of analysis only consider the symmetric situation or else make use of various assumptions that greatly simplify the analysis, for example: the Semenov or the Frak-kamenetskii models. The objective of this paper is to develop an improved understanding of the thermal behaviour of a porous body with uniform internal heat generation, which is in contact with two fluids at different temperatures and with different heat transfer coefficients. The mathematical representation is a one dimensional Poisson equation with asymmetric boundary conditions. The analytical solution reveals four regimes for heat flow: (a) purely conduction at zero heat generation, (b) a combination of heat flow by conduction through the body between the hot and cold fluids and all heat generated passing to the colder fluid, (c) no heat flow by conduction between the two fluids and all heat generated passing the cold flow - the so-called critical heat generation, and (d) the heat generated passes to both the cold and hot fluids and there is a maximum temperature within the body greater than that of the hot fluid, the so-called supercritical region. Expressions are developed to allow predictions of the conditions pertaining to each regime. This new representation covers the Semenov and Frank-Kamenetskii models and all possible solutions intermediate of the them. (authors)

  7. Equal treatment for new renewable heating and power; Likebehandling av ny fornybar varme og kraft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-20

    If a system of electric certificates is established in Norway, adjustments in the conditions of competition will need to be made for green heating production, assuring that green heating does not lose in the competition with green electricity (el). To ensure that the terms of competition are as equal as possible the most efficient policy instrument is to include heating in a common certificate system for el and heating. If it is not possible to establish a common system of certificates, the best policy instrument will be to ensure equal conditions of competition.

  8. Dynamical Treatment of Virialization Heating in Galaxy Formation

    Science.gov (United States)

    Wang, Peng; Abel, Tom

    2008-01-01

    In a hierarchical picture of galaxy formation virialization continually transforms gravitational potential energy into kinetic energies of the baryonic and dark matter. For the gaseous component the kinetic, turbulent energy is transformed eventually into internal thermal energy through shocks and viscous dissipation. Traditionally this virialization and shock heating has been assumed to occur instantaneously, allowing an estimate of the gas temperature to be derived from the virial temperature defined from the embedding dark matter halo velocity dispersion. As the mass grows the virial temperature of a halo grows. Mass accretion hence can be translated into a heating term. We derive this heating rate from the extended Press Schechter formalism and demonstrate its usefulness in semianalytical models of galaxy formation. Our method explicitly conserves energy, unlike the previous impulsive heating assumptions. Our formalism can trivially be applied in all current semianalytical models as the heating term can be computed directly from the underlying merger trees. Our analytic results for the first cooling halos and the transition from cold to hot accretion are in agreement with numerical simulations.

  9. Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Zhejiang Vocational College of Commerce, Hangzhou, Binwen Road 470 (China); Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States); Hrnjak, P.S. [Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States)

    2009-08-15

    The performances of three types of heat exchangers that use the louver fin geometry: (1) parallel flow parallel fin with extruded flat tubes heat exchanger (PF{sup 2}), (2) parallel flow serpentine fin with extruded flat tubes heat exchanger (PFSF) and (3) round tube wave plate fin heat exchanger (RTPF) have been experimentally studied under dry, wet and frost conditions and results are presented. The parameters quantified include air-side pressure drop, water retention on the surface of the heat exchanger, capacity and overall heat transfer coefficient for air face velocity 0.9, 2 and 3 m/s, air humidity 70% and 80% and different orientations. The performances of three types of heat exchanger are compared and the results obtained are presented. The condensate drainage behavior of the air-side surface of these three heat exchanger types was studied using both the dip testing method and wind tunnel experiment. (author)

  10. Heat Treatment of a Casting Element of a Through Clamp to Suspension of Electric Cables on Line Post Insulators

    Directory of Open Access Journals (Sweden)

    Pezda J.

    2016-09-01

    Full Text Available Heat treatment of a casting elements poured from silumins belongs to technological processes aimed mainly at change of their mechanical properties in solid state, inducing predetermined structural changes, which are based on precipitation processes (structural strengthening of the material, being a derivative of temperature and duration of solutioning and ageing operations. The subject-matter of this paper is the issue concerning implementation of a heat treatment process, basing on selection of dispersion hardening parameters to assure improvement of technological quality in terms of mechanical properties of a clamping element of energy network suspension, poured from hypoeutectic silumin of the LM25 brand; performed on the basis of experimental research program with use of the ATD method, serving to determination of temperature range of solutioning and ageing treatments. The heat treatment performed in laboratory conditions on a component of energy network suspension has enabled increase of the tensile strength Rm and the hardness HB with about 60-70% comparing to the casting without the heat treatment, when the casting was solutioned at temperature 520 °C for 1 hour and aged at temperature 165 °C during 3 hours.

  11. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  12. Performance Analysis of Window Type Air Conditioning with Addition of Heat Exchanger Equipment

    Directory of Open Access Journals (Sweden)

    I Ketut Gede Wirawan

    2012-11-01

    Full Text Available One manner to be used to increase refregration effect is by flowing hot refrigerant out from condensor, it is then touched with the refrigerant out from evaporator on a heat exchanger of counterflow type. Experiment was done by taking samples of pressure at suction (p1 and discharge (p2 of compressor and box temperature (Tr1, Tr2, Tr3, Tr4. By knowing of pressure at suction (p1, the enthalpy into compressor is known. By assuming the process is isentropic (compressor, isobar (condenser and evaporator, and isenthalpy (expansion valve, the enthalpy into condensor, expansion valve and evaporator were known. In 60 minutes, compression work of air conditioning with heat exchanger is 31,588 kJ/kg, and without heat exchanger is 33,796 kJ/kg. Effect refrigeration average with modification is 155,55 kJ/kg and without modification was 153,40 kJ/kg so that coefficient of performance with modification more than without modification. Air conditioning with modification had initial refrigration rate was 67,193 J/s and 0,043 J/s at the end minute, meanwhile, refrigeration without modification had cooling rate at start 66,538 J/s and 0,935 J/s at the end.

  13. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Xueping Du

    2018-04-01

    Full Text Available To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to evaluate cooling performance. Rotating wind deflectors are adopted to reduce the influence of crosswind on the cooling tower performance. The effects of the rotating wind deflectors on the thermal-hydraulic characteristics of the air-cooling tower under different environmental crosswind speeds are studied. Results indicate that the wind direction in the tower reverses as the rotating speed of the wind deflectors increases. The thermal performance of an air-cooling tower under crosswind conditions can be improved by using rotating wind deflectors. The heat transfer rate of a cooling tower with eight wind deflectors begins to increase when the rotating speed exceeds 2 r/min.

  14. RELAP5/MOD2 benchmarking study: Critical heat flux under low-flow conditions

    International Nuclear Information System (INIS)

    Ruggles, E.; Williams, P.T.

    1990-01-01

    Experimental studies by Mishima and Ishii performed at Argonne National Laboratory and subsequent experimental studies performed by Mishima and Nishihara have investigated the critical heat flux (CHF) for low-pressure low-mass flux situations where low-quality burnout may occur. These flow situations are relevant to long-term decay heat removal after a loss of forced flow. The transition from burnout at high quality to burnout at low quality causes very low burnout heat flux values. Mishima and Ishii postulated a model for the low-quality burnout based on flow regime transition from churn turbulent to annular flow. This model was validated by both flow visualization and burnout measurements. Griffith et al. also studied CHF in low mass flux, low-pressure situations and correlated data for upflows, counter-current flows, and downflows with the local fluid conditions. A RELAP5/MOD2 CHF benchmarking study was carried out investigating the performance of the code for low-flow conditions. Data from the experimental study by Mishima and Ishii were the basis for the benchmark comparisons

  15. Effect of preliminary thermal treatment of EhP-56 on resistivity to cold cracks formation in the joint heat affected zone

    International Nuclear Information System (INIS)

    Fedorov, V.G.; Shubin, V.I.; Belov, Yu.M.

    1975-01-01

    Data are given on the influence of the conditions of prior heat treatment on the resistance of steel EP56 to cold cracking in the joint heat affected zone /HAZ/. Other things being equal, the resistance of steel EP56 to cold cracking in the HAZ increases with reduction of hardness and increase of austenite content. Conditions for welding steel EP56, preventing cracking in the HAZ, have been determined

  16. Improvement of impact toughness by modified hot working and heat treatment in 13%Cr martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Srivatsa, Kulkarni, E-mail: srivatsa.kulkarni@kcssl.com; Srinivas, Perla; Balachandran, G.; Balasubramanian, V.

    2016-11-20

    Improvement of the general mechanical properties and in particular sub-zero impact toughness in a 0.2%C-13%Cr martensitic stainless steel has been explored by varying the hot deformation and heat treatment conditions. The deformation conditions include hot rolling an ingot in one case and cogging the ingot to a semis followed by hot rolling in another case. The bars made from both routes were subjected to a single hardening heat treatment at 980 °C and 1040 °C oil quenched and a double hardening heat treatment at 1040 °C followed by 980 °C oil quenched. The hardened steels were subjected to a standard two stage tempering at 710 °C followed by 680 °C. The impact toughness was found to be doubled in the cogged and rolled steel in double hardened condition. Other processing conditions show varying impact toughness levels. The toughness observed was correlated to the grain size and the carbide distribution in the matrix and the fractography features.

  17. Heat treatment effects on structure and proerties of the alloy type KhN73MBNYu (EhJ 698)

    International Nuclear Information System (INIS)

    Maslenkov, S.B.; Maslenkova, E.A.; Solov'ev, Yu.V.; Zryumov, V.P.

    1994-01-01

    Influence of quenching temperature and various ageing conditions on tensile properties and impact strength of wrought alloy type KhN73MBTYu has been investigated at room temperature and in the range of 500-850 deg C. Two-step quenching followed by ageing at 700-750 deg C. Two-step quenching followed by ageing at 700-750 deg C is shown to assure needed heat resistance of the alloy. Due to the whole complex of structural changes during heat treatments mechanical properties of the alloy preserv high level up to 750 deg C. This temperature is limiting value in the case of long-term operation

  18. Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-02-17

    "Modern, energy efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.

  19. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, Mehdi [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad, E-mail: m_azadi@ip-co.com [Fatigue and Wear Workgroup, Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of); Hossein Farrahi, Gholam [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Winter, Gerhard; Eichlseder, Wilfred [Chair of Mechanical Engineering, University of Leoben, Leoben (Austria)

    2013-12-20

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests.

  20. Improvement of high temperature fatigue lifetime in AZ91 magnesium alloy by heat treatment

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, Mehdi; Azadi, Mohammad; Hossein Farrahi, Gholam; Winter, Gerhard; Eichlseder, Wilfred

    2013-01-01

    In the present paper, an improvement in high temperature fatigue properties of the AZ91 magnesium alloy with rare earth elements has been obtained by a typical heat treatment, denoted by T6. For this objective, out-of-phase thermo-mechanical fatigue, room temperature and high temperature low cycle fatigue tests are performed to compare lifetimes. Several rare earth elements are initially added to the AZ91 alloy during a gravity casting process in permanent molds. Also, the type of the heat treatment is examined. Results of specimens with only the solution (the T4 heat treatment) and the solution with the ageing process (the T6 heat treatment) are compared under isothermal fatigue loadings. Microstructural investigations are carried out, before and after fatigue experiments to demonstrate the heat treatment effect. Results showed that both low cycle fatigue and thermo-mechanical fatigue of the alloy at high temperatures increases tremendously after the T6 heat treatment. This behavior attributes to the variation of the ductility, which was a result of microstructural changes during the heat treatment and the varying temperature in fatigue tests

  1. Improvement of corrosion resistance of Ni−Mo alloy coatings: Effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, R., E-mail: mousavi@scu.ac.ir [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bahrololoom, M.E. [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Deflorian, F.; Ecco, L. [Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento (Italy)

    2016-02-28

    Graphical abstract: - Highlights: • Conjunction between SEM, EIS, and Tafel measurements to obtain a coat with dense morphology and without crack. • An inverse Hall-Petch effect is observed after annealing the coatings, i.e. the coatings get harder as the grain size is increased by increasing annealing temperature up to 600 {sup o}C. • Heat treatment can improve the mechanical and corrosion properties of coatings. - Abstract: In this paper, Ni−Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 {sup o}C, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 {sup o}C for 25 min. The results showed that the coatings obtained at temperature 40 {sup o}C, pH 9, and annealing at 600 {sup o}C has the highest corrosion resistance and microhardness.

  2. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  3. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  4. Influence of heat treatment on hardness and kinetics of growth of intermetallic compound interlayer in titanium-steel composite material

    International Nuclear Information System (INIS)

    Shmorgun, V.G.; Slaustin, O.V.; Trykov, Yu.P.

    2005-01-01

    The effect of heat treatment conditions on microhardness and diffusion interlayer thickness is studied for composite material of titanium VT1-O + steel 08kp + titanium VT1-O. Heat treatments are carried out at temperatures of 800-1000 deg C and holding at heat for 3 h in a vacuum furnace (1 x 10 -4 mmHg) as well as in an electric furnace with coating a dual protective layer. It is stated that the hardness and the thickness of the interlayer are higher after heat treatment in an ordinary electric furnaces as compared to vacuum heating. all other things being equal. Annealed in electric furnace specimens are water quenched from temperatures of 600-950 deg C. It is shown that the hardness of the interlayer increases sharply when hardening from 650 deg C comparing with annealed specimens (from 4.5-5.2 to 7-9 GPa). The quenching from 700 and 800 deg C results in an interlayer hardness decrease down to 4.8-5.4 and 3.1-3 GPa respectively. A quenching temperature increase up to 800-900 deg C is accompanied by a monotonic enhancement of hardness from 3.5-4.8 up to 5.1-6.8 GPa [ru

  5. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions.

    Science.gov (United States)

    Gruntenko, Nataly Е; Ilinsky, Yury Yu; Adonyeva, Natalya V; Burdina, Elena V; Bykov, Roman A; Menshanov, Petr N; Rauschenbach, Inga Yu

    2017-12-28

    One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults. To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups. The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host

  6. Heat tolerance in Field Grown Tomatoes (Lycopersicon esculentum Mill.) under Semi Arid Conditions of West Africa

    DEFF Research Database (Denmark)

    Kugblenu, Y O; Oppong Danso, E; Ofori, K

    2013-01-01

    One major reason for extremely low production of tomato in Ghana is that the length of the growing season last only for a few months due to the high temperature influx during the remaining months. The temperatures recorded during these months are above the optimum for tomato flowering and fruiting...... and this consequently affects yield. To solve this problem a number management practices may be undertaken such has growing heat tolerant tomato varieties or providing shade to mitigate the devastating effect of high temperatures. Therefore the present study was conducted outside the normal growing season from June...... to October, which has a mean temperature of 23°C. Heat tolerant tomato cultivars were grown from April to July with a mean temperature of 25°C to evaluate their performance under these conditions and to assess the effect of shading on the production of one of the genotypes. Fruiting percentage...

  7. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling

    International Nuclear Information System (INIS)

    Efimova, Anastasia; Pinnau, Sebastian; Mischke, Matthias; Breitkopf, Cornelia; Ruck, Michael; Schmidt, Peer

    2014-01-01

    Graphical abstract: - Highlights: • Inorganic salt hydrates. • Latent heat thermal energy storage. • Thermal behavior of melting and crystallization. • Cycling stability. • Nucleation. - Abstract: Sustainable air conditioning systems require heat reservoirs that operate between 4 and 20 °C. A systematic search for binary and ternary eutectics of inorganic salts and salt hydrates with melting temperatures in this temperature regime and with high enthalpies of fusion has been performed by means of differential scanning calorimetry (DSC). Promising results were obtained for the pseudo-ternary system Zn(NO 3 ) 2 ·6H 2 O, Mn(NO 3 ) 2 ·4H 2 O, and KNO 3 with the melting temperature range 18–21 °C and the enthalpy of fusion of about 110 kJ kg −1 . Suitable nucleating and thickening agents have been found and tested to prevent the mixture from supercooling and phase separation

  8. Development of experimental data bank on heat transfer crisis under stationary conditions

    International Nuclear Information System (INIS)

    Koshtyalek, Ya.

    1982-01-01

    The development of an experimental data bank on heat transfer orisis under stationary conditions is discussed. The work is being carried out under the auspices of CMEA in compliance with the resolution of CMEA countries experts meetinq in January 1981 held in Moscow. The data bank is supposed to be formed as a sequential set of available experimental data on the regimes with heat-transfer crisis, recorded on a standard magnetic tape for ES or IBM comuter family. All operations with the bank are to be performed via the computer. Recommendations are given to what the record structure should be used and an example of a code is suggested for a user to extract data from the bank in accordance with various criteria. At the present time parameters of more than 12000 experimental regimes are prepared for the bank and some 3000 more are being processed [ru

  9. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    Science.gov (United States)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  10. Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions.

    Science.gov (United States)

    Kjellerup, B V; Kjeldsen, K U; Lopes, F; Abildgaard, L; Ingvorsen, K; Frølund, B; Sowers, K R; Nielsen, P H

    2009-11-01

    Severe biofilm formation and biocorrosion have been observed in heating systems even when the water quality complied with existing standards. The coupling between water chemistry, biofilm formation, species composition, and biocorrosion in a heating system was investigated by adding low concentrations of nutrients and oxygen under continuous and alternating dosing regimes. Molecular analysis of 16S rRNA gene fragments demonstrated that the amendments did not cause changes in the overall bacterial community composition. The combined alternating dosing of nutrients and oxygen caused increased rates of pitting (bio-) corrosion. Detection of bacteria involved in sulfide production and oxidation by retrieval of the functional dsrAB and apsA genes revealed the presence of Gram-positive sulfate- and sulfite-reducers and an unknown sulfur-oxidizer. Therefore, to control biocorrosion, sources of oxygen and nutrients must be limited, since the effect of the alternating operational conditions apparently is more important than the presence of potentially corrosive biofilm bacteria.

  11. Technical, economic and legal boundary conditions of district heating. Pt. 2; Technische, wirtschaftliche und rechtliche Rahmenbedingungen der Fernwaermewirtschaft. T. 2. Besondere Rechtslage

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Norman [AGFW - Der Energieeffizienzverband fuer Waerme, Kaelte und KWK e.V., Frankfurt am Main (Germany)

    2011-04-15

    It is a common misconception that legal regulations of the electricity and gas industry can also be applied to district heating. However, the technical, economic and legal boundary conditions of district heating are quite different. The first part of this article explained the concept of district heating and analyzed its economic boundary conditions. This contribution explains the heat market and its legal boundary conditions.

  12. Heat transfer characteristics of horizontal steam generators under natural circulation conditions

    International Nuclear Information System (INIS)

    Hyvaerinen, J.

    1996-01-01

    This paper deals with the heat transfer characteristics of horizontal steam generators, particularly under natural circulation (decay heat removal) conditions on the primary side. Special emphasis is on the inherent features of horizontal steam generator behaviour. A mathematical model of the horizontal steam generator primary side is developed and qualitative results are obtained analytically. A computer code, called HSG, is developed to solve the model numerically, and its predictions are compared with experimental data. The code is employed to obtain for VVER 440 steam generators quantitative results concerning the dependence of primary-to-secondary heat transfer efficiency on the primary side flow rate, temperature and secondary level. It turns out that the depletion of the secondary inventory leads to an inherent limitation of the decay energy removal in VVER steam generators. The limitation arises as a consequence of the steam generator tube bundle geometry. As an example, it is shown that the grace period associated with pressurizer safety valve opening during a station black-out is 2 1/2-3 hours instead of the 5-6 hours reported in several earlier studies. (However, the change in core heat-up timing is much less-about 1 h at most.) The heat transfer limitation explains the fact that, in the Greifswald VVER 440 station black-out accident in 1975, the steam generators never boiled dry. In addition, the stability of single-phase natural circulation is discussed and insights on the modelling of horizontal steam generators with general-purpose thermal-hydraulic system codes are also presented. (orig.)

  13. Operant conditioning of enhanced pain sensitivity by heat-pain titration.

    Science.gov (United States)

    Becker, Susanne; Kleinböhl, Dieter; Klossika, Iris; Hölzl, Rupert

    2008-11-15

    Operant conditioning mechanisms have been demonstrated to be important in the development of chronic pain. Most experimental studies have investigated the operant modulation of verbal pain reports with extrinsic reinforcement, such as verbal reinforcement. Whether this reflects actual changes in the subjective experience of the nociceptive stimulus remained unclear. This study replicates and extends our previous demonstration that enhanced pain sensitivity to prolonged heat-pain stimulation could be learned in healthy participants through intrinsic reinforcement (contingent changes in nociceptive input) independent of verbal pain reports. In addition, we examine whether different magnitudes of reinforcement differentially enhance pain sensitivity using an operant heat-pain titration paradigm. It is based on the previously developed non-verbal behavioral discrimination task for the assessment of sensitization, which uses discriminative down- or up-regulation of stimulus temperatures in response to changes in subjective intensity. In operant heat-pain titration, this discriminative behavior and not verbal pain report was contingently reinforced or punished by acute decreases or increases in heat-pain intensity. The magnitude of reinforcement was varied between three groups: low (N1=13), medium (N2=11) and high reinforcement (N3=12). Continuous reinforcement was applied to acquire and train the operant behavior, followed by partial reinforcement to analyze the underlying learning mechanisms. Results demonstrated that sensitization to prolonged heat-pain stimulation was enhanced by operant learning within 1h. The extent of sensitization was directly dependent on the received magnitude of reinforcement. Thus, operant learning mechanisms based on intrinsic reinforcement may provide an explanation for the gradual development of sustained hypersensitivity during pain that is becoming chronic.

  14. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  15. Effect of modification melt treatment on casting/chill interfacial heat transfer and electrical conductivity of Al-13% Si alloy

    International Nuclear Information System (INIS)

    Narayan Prabhu, K.; Ravishankar, B.N.

    2003-01-01

    For successful modelling of the solidification process, a reliable heat transfer boundary condition data is required. These boundary conditions are significantly influenced by the casting and mould parameters. In the present work, the effect of sodium modification melt treatment on casting/chill interfacial heat transfer during upward solidification of an Al-13% Si alloy against metallic chills is investigated using thermal analysis and inverse modelling techniques. In the presence of chills, modification melt treatment resulted in an increase in the cooling rate of the solidifying casting near the casting/chill interfacial region. The corresponding interfacial heat flux transients and electrical conductivities are also found to be higher. This is attributed to (i) improvement in the casting/chill interfacial thermal contact condition brought about by the decrease in the surface tension of the liquid metal on addition of sodium and (ii) increase in the electronic heat conduction in the initial solidified shell due to change in the morphology of silicon from a acicular type to a fine fibrous structure and increase in the ratio of the modification rating to the secondary dendrite arm spacing

  16. Splenic Trapping of Heat-Treated Erythrocytes in Leukaemia and Allied Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Badrawi, H. S.; Razzak, M. A.; Guirgis, B. [Department of Medicine and Division of Nuclear Medicine, Faculty of Medicine, Cairo University, Cairo, United Arab Republic (Egypt)

    1971-02-15

    In a trial to find whether or not the enlarged spleen plays a role in the production of the form of anaemia commonly encountered in leukaemias and allied conditions, 44 patients suffering from these disease states were studied using {sup 51}Cr-labelled erythrocytes heated at 50 Degree-Sign C for 60 min. Cells altered in this manner have been shown by various workers to be selectively sequestered by the spleen. As a control, the test was performed on 24 normal subjects. In these normals, the disappearance half-time of radioactivity from the circulation (T{sub Vulgar-Fraction-One-Half} amounted to 172 {+-} 69 min (mean {+-} 1 S.D.), the lowest limit being 74 min. Accordingly, patients with less than 74 min were considered to have an abnormally rapid disappearance of heat-treated erythrocytes from the circulation and consequently exaggerated splenic sequestration of these altered cells. Splenic trapping of heat-treated erythrocytes was most marked in acute leukaemia (four out of six patients). However, three had associated normoblastic hypoplasia of the sternal marrow. Corticosteroids induced a remission with reversion of both processes responsible for the anaemia in two out of the four patients. In chronic myeloid leukaemia, exaggerated splenic sequestration of altered cells was seen in four of the 15 cases examined. This condition was of extra-erythrocytic origin, since repetition of the test using normal donor heat-treated erythrocytes did not significantly alter the disappearance half-time. However, there was no correlation between the size of the spleen and its avidity for trapping the altered cells. Follow-up studies showed that therapy caused prolongation of the half-time of heat-treated erythrocytes, the effect being more apparent after corticosteroids than with X-rays or Endoxan, In Hodgkin's disease, increased red cell trapping was observed in two out of the seven patients studied. In contrast, five cases of chronic lymphatic leukaemia, six lymphosarcoma and

  17. Efficiency analysis of solar facilities for building heating and household water heating under conditions in the Czech Republic

    OpenAIRE

    Pivko, Michal; Jursová, Simona; Turjak, Juraj

    2012-01-01

    The paper studies the efficiency of solar facilities applied for the heating of buildings and household water heating in the Czech Republic. The Czech Republic is situated in the temperate zone characterized by changeable weather. It is respected in the assessment of a solar facility installation. The efficiency of solar facilities is evaluated according to energy and economic balances. It is analyzed for solar facilities heating both household water and buildings. The main problems relating ...

  18. Optimisation of the T6 heat treatment of rheocast alloy A356

    CSIR Research Space (South Africa)

    Moller, H

    2007-11-01

    Full Text Available popular solution heat treatment employed for SSM processed A356 is 6 hours at 540oC (i.e. similar to that used for permanent mould cast A356)6,7,9. Only limited work has been performed on the optimisation of the solution heat treatment of SSM processed... was not adequately studied by either Dewhirst8 or Rosso and Actis Grande5. The optimum artificial aging heat treatment proposed in both papers5,8 is 180oC for 4 hours. This was also confirmed in this work, but importantly, this applies only when natural aging...

  19. EFFECT OF HEAT TREATMENT ON THE SURVIVAL OF ...

    African Journals Online (AJOL)

    BARTH EKWUEME

    seconds at temperatures ranging from 69OC to 73OC. E. coli O157:H7 ... inoculum was added to 90ml of sterile raw milk (heated in water bath ..... the high temperature short time (HTST) pasteurization technique .... I. The use of selective media.

  20. Influence of heat treatment on microstructure and passivity of Cu ...

    Indian Academy of Sciences (India)

    200 ◦C for 20 h in salt bath and air cooled), B (heating up to 800 ◦C for 20 h and water ... chloride ions on passivity was associated with the formation of copper oxides/hydroxide and ... passive layer inhibits copper redeposition and/or preferen-.

  1. Radioactive sodium waste treatment and conditioning. Review of main aspects

    International Nuclear Information System (INIS)

    2007-01-01

    This publication reviews the main aspects relating to the treatment and conditioning of radioactive sodium waste. This waste arises from the operation of liquid metal fast reactors (LMFRs). In this type of reactor, sodium (Na) or sodium-potassium alloys (NaK) are used as a low-effect neutron moderating coolant medium for extracting and transferring thermal energy from the core and they represent a significant technical and safety challenge during operation and decommissioning. This publication provides the reader with technologically oriented information on the present status of sodium waste management approaches and recent achievements related to treatment and conditioning, with the objective of facilitating planning and preparatory work for the decommissioning of LMFRs. This publication provides a comprehensive review of the hazards associated with sodium waste management. Given the large quantities of sodium waste arising during decommissioning or reactor refurbishment, as well as the challenges and varied techniques associated with removal of 100% of all sodium and NaK bulk quantities and residues during decommissioning, a hazards review and analysis is a critical component in planning the dismantling and waste management activities. Roughly half of this publication focuses on sodium waste generating, handling and treatment processes. This includes draining sodium and NaK from plant systems; in situ treatment of residual sodium; cutting techniques for pumps, valves, piping and other components; cleaning of components; potential reuse of sodium; and removal of selected radionuclides from sodium waste with the objective of reducing the waste classification or converting it to exempt waste. The focus is on proven techniques and technologies, and each discussed method includes a review of the associated principle or theory, practical applications, advantages and disadvantages, limitations, industry experience, and final waste products. A review is provided of final

  2. Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions

    Science.gov (United States)

    Faseleh Jahromi, Mohammad; Wesam Altaher, Yassir; Shokryazdan, Parisa; Ebrahimi, Roohollah; Ebrahimi, Mahdi; Idrus, Zulkifli; Tufarelli, Vincenzo; Liang, Juan Boo

    2016-07-01

    High ambient temperature is a major problem in commercial broiler production in the humid tropics because high producing broiler birds consume more feed, have higher metabolic activity, and thus higher body heat production. To evaluate the effects of two previously isolated potential probiotic strains ( Lactobacillus pentosus ITA23 and Lactobacillus acidophilus ITA44) on broilers growing under heat stress condition, a total of 192 chicks were randomly allocated into four treatment groups of 48 chickens each as follows: CL, birds fed with basal diet raised in 24 °C; PL, birds fed with basal diet plus 0.1 % probiotic mixture raised in 24 °C; CH, birds fed with basal diet raised in 35 °C; and PH, birds fed with basal diet plus 0.1 % probiotic mixture raised in 35 °C. The effects of probiotic mixture on the performance, expression of nutrient absorption genes of the small intestine, volatile fatty acids (VFA) and microbial population of cecal contents, antioxidant capacity of liver, and fatty acid composition of breast muscle were investigated. Results showed that probiotic positively affected the final body weight under both temperature conditions (PL and PH groups) compared to their respective control groups (CL and CH). Probiotic supplementation numerically improved the average daily gain (ADG) under lower temperature, but significantly improved ADG under the higher temperature ( P < 0.05) by sustaining high feed intake. Under the lower temperature environment, supplementation of the two Lactobacillus strains significantly increased the expression of the four sugar transporter genes tested (GLUT2, GLUT5, SGLT1, and SGLT4) indicating probiotic enhances the absorption of this nutrient. Similar but less pronounced effect was also observed under higher temperature (35 °C) condition. In addition, the probiotic mixture improved bacterial population of the cecal contents, by increasing beneficial bacteria and decreasing Escherichia coli population, which could be

  3. Effects of heat treatment on the gel properties of the body wall of sea cucumber (Apostichopus japonicus).

    Science.gov (United States)

    Zhang, Kai; Hou, Hu; Bu, Lin; Li, Bafang; Xue, Changhu; Peng, Zhe; Su, Shiwei

    2017-03-01

    The sensory texture of sea cucumber ( Apostichopus japonicus ) was dramatically affected by heat treatment. In this study, sea cucumbers were heated under different thermal conditions (HSC), and divided into five groups (HSC-80, HSC-90, HSC-100, HSC-110, and HSC-120) according to the heating temperature (from 80 to 120 °C). The changes in texture, moisture, gel structure, and biochemical parameters of the HSC were investigated. With increasing heating time (from 10 to 80 min), the hardness and gel structure changed slightly, and the water activity decreased as the proportion of T 21 increased by 133.33, 55.56, and 59.09% in the HSC-80, HSC-90, and HSC-100 groups, respectively. This indicated that moderate heating conditions (below 100 °C) caused gelation of sea cucumbers in HSC-80, HSC-90, and HSC-100 groups. However, as the water activity increased, the hardness declined rapidly by 2.56 and 2.7% in the HSC-110 and HSC-120 groups, with heating time increased from 10 to 80 min. Meanwhile, free hydroxyproline and ammonia nitrogen contents increased by 81.24 and 63.16% in the HSC-110 group; and by 63.09 and 54.99% in the HSC-120 group, as the gel structure of the sea cucumbers decomposed in these two groups. These results demonstrated that, severe heat treatment (above 100 °C) destroyed the chemical bonds, triggered the disintegration of collagen fibers and the gel structure of sea cucumbers, and transformed the migration and distribution of moisture, finally causing the deterioration of the sensory texture of the sea cucumbers.

  4. Heat treatment regularity for viscose products in plate scrapers heat exchanger

    Directory of Open Access Journals (Sweden)

    K. A. Rashkin

    2012-01-01

    Full Text Available The current work describesthe construction of scraperplate-typeheat exchangerscurrently usedin industryand thetraffic patternof the productin it. Ananalytical model is represented and it is also posed the problemofthe analyticaldetermination ofthe requiredarea of heat exchangewith the use ofdifferential equations ofheat transfer in amovingliquid media, written in cylindrical coordinates, for symmetrical temperature distribution,without taking into accountthe energy dissipation.

  5. Milk protein-gum tragacanth mixed gels: effect of heat-treatment sequence.

    Science.gov (United States)

    Hatami, Masoud; Nejatian, Mohammad; Mohammadifar, Mohammad Amin; Pourmand, Hanieh

    2014-01-30

    The aim of this study was to investigate the role of the heat-treatment sequence of biopolymer mixtures as a formulation parameter on the acid-induced gelation of tri-polymeric systems composed of sodium caseinate (Na-caseinate), whey protein concentrate (WPC), and gum tragacanth (GT). This was studied by applying four sequences of heat treatment: (A) co-heating all three biopolymers; (B) heating the milk-protein dispersion and the GT dispersion separately; (C) heating the dispersion containing Na-caseinate and GT together and heating whey protein alone; and (D) co-heating whey protein with GT and heating Na-caseinate alone. According to small-deformation rheological measurements, the strength of the mixed-gel network decreased in the order: C>B>D>A samples. SEM micrographs show that the network of sample C is much more homogenous, coarse and dense than sample A, while the networks of samples B and D are of intermediate density. The heat-treatment sequence of the biopolymer mixtures as a formulation parameter thus offers an opportunity to control the microstructure and rheological properties of mixed gels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Physical activity, pain responses to heat stimuli, and conditioned pain modulation in postmenopausal women.

    Science.gov (United States)

    Adrian, Amanda L; O'Connor, Patrick J; Ward-Ritacco, Christie L; Evans, Ellen M

    2015-08-01

    Postmenopausal women (PMW) are at high risk for disabling pain and physical inactivity. This study sought to enhance the understanding of relationships between physical activity (PA) and pain among PMW using heat pain sensitivity test and conditioned pain modulation test. We hypothesized that, compared with active women, (i) inactive women would report higher pain intensity and pain unpleasantness ratings; (ii) inactive women in disabling pain would report higher pain intensity and pain unpleasantness at high, but not low, stimulus intensities; and (iii) inactive women would have less modulation. Sixty-eight PMW rated the pain intensity and pain unpleasantness of hot stimuli presented to the thenar eminence of the hand. A subset of 31 women rated the pain intensity of a test stimulus (noxious heat) and a conditioning stimulus (cold water) as part of the conditioned pain modulation task. PA was assessed objectively with accelerometry. Mixed-model analysis of variance (2 × 4 × 2; PA × Temperature × Pain Status) showed that inactive women in disabling pain rated pain unpleasantness higher than active women in disabling pain (F3,192 = 3.526, ∂η = 0.052, P = 0.016). Significantly lower pain unpleasantness ratings were found at the highest stimulus intensity (49°C) only for active women in disabling pain compared with inactive women in disabling pain (t11 = 2.523, P = 0.028). The other hypotheses were not supported. PA is associated with a reduced sensitivity to the unpleasantness of painful high-intensity heat stimuli among women in disabling pain.

  7. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    Science.gov (United States)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at

  8. Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification.

    Directory of Open Access Journals (Sweden)

    Patrick Schmidt

    Full Text Available The Early Mesolithic of southwestern Germany, the so-called Beuronian (9600-7100 BC, is a period of important transformations in the way people lived, in their subsistence and in the stone tools they produced. One of the perhaps most spectacular re-inventions of that time is heat treatment of stones prior to their manufacture into tools. Although heat treatment has been understood as one of the defining characteristics of the Beuronian of southwestern Germany, and although its existence has been known for almost 30 years now, relatively few systematic studies on it are available. In this paper, we present such a study, aiming to shed light on two questions: (1 what technique and heating parameters were used in the Beuronian and (2 how reliable are the macroscopic proxies traditionally used to identify heat treatment in this context? We investigate these questions using a non-destructive archaeometric technique for measuring past heating temperatures of heat-treated stones and a quantitative surface roughness analysis aiming to understand the relations between surface aspect and heat treatment. These methods are applied to 46 Jurassic chert artefacts from the site Helga-Abri located in the Swabian Alb region of southwestern Germany. Our results document that an opportunistic low-investment procedure was used to heat stone, probably relying on the use of the above-ground part of regular camp-fires. We also found that the traditionally used macroscopic criteria, such as colour and surface gloss, cannot be unambiguously used to identify heat treatment in assemblages made from Jurassic chert. These findings have important implications for our understanding of the Beuronian lithic chaîne opératoire in terms of the investment in time and resources necessary, and for the refinement of archaeological techniques used to identify heat treatment in the Mesolithic of the Swabian Alb.

  9. Stone heat treatment in the Early Mesolithic of southwestern Germany: Interpretation and identification.

    Science.gov (United States)

    Schmidt, Patrick; Spinelli Sanchez, Océane; Kind, Claus-Joachim

    2017-01-01

    The Early Mesolithic of southwestern Germany, the so-called Beuronian (9600-7100 BC), is a period of important transformations in the way people lived, in their subsistence and in the stone tools they produced. One of the perhaps most spectacular re-inventions of that time is heat treatment of stones prior to their manufacture into tools. Although heat treatment has been understood as one of the defining characteristics of the Beuronian of southwestern Germany, and although its existence has been known for almost 30 years now, relatively few systematic studies on it are available. In this paper, we present such a study, aiming to shed light on two questions: (1) what technique and heating parameters were used in the Beuronian and (2) how reliable are the macroscopic proxies traditionally used to identify heat treatment in this context? We investigate these questions using a non-destructive archaeometric technique for measuring past heating temperatures of heat-treated stones and a quantitative surface roughness analysis aiming to understand the relations between surface aspect and heat treatment. These methods are applied to 46 Jurassic chert artefacts from the site Helga-Abri located in the Swabian Alb region of southwestern Germany. Our results document that an opportunistic low-investment procedure was used to heat stone, probably relying on the use of the above-ground part of regular camp-fires. We also found that the traditionally used macroscopic criteria, such as colour and surface gloss, cannot be unambiguously used to identify heat treatment in assemblages made from Jurassic chert. These findings have important implications for our understanding of the Beuronian lithic chaîne opératoire in terms of the investment in time and resources necessary, and for the refinement of archaeological techniques used to identify heat treatment in the Mesolithic of the Swabian Alb.

  10. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Eatherly, W.S.

    1997-01-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle (∼1 degrees C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle (∼100 degrees C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475 degrees C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to ∼65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500 degrees C on one of these new heats of CuNiBe, similar to that observed in other heats

  11. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle ({approximately}1{degrees}C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle ({approximately}100{degrees}C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475{degrees}C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to {approximately}65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500{degrees}C on one of these new heats of CuNiBe, similar to that observed in other heats.

  12. Influence of heat treatment on microstructure and properties of bainitic cast steel used for frogs in railway crossovers

    Directory of Open Access Journals (Sweden)

    E. Tasak

    2010-01-01

    Full Text Available This work deals with influence of heat treatment on microstructure and properties of sample cast assigned as a material used for frogs in railway crossover. Materials used in railway industry for frogs (manganese cast steel and forged pearlitic steel do not fulfil strict conditions of exploitation of railway. One of the solutions is using cast steel with bainitic or bainite-martensite microstructure, what allows to gain high resistance properties (Rm = 1400 MPa, Rp0,2 = 900 MPa, hardness to 400 HBW. The cooling rates of rail type UIC60 shows that it is possible to reach the bainitic microstructure in cast of frog. The microstructure of lower banite should have an advantageous influence on cracking resistance. In order to set the parameters of heat treatment, the critical temperatures were determined by dilatometric methods determined. This heat treatment consisted of normalizing that prepared it to the farther process of resistance welding. Moreover, the CCT diagram of proposed bainitic cast steel was prepared. The exams were done that can be used to evaluate the influence of heat treatment on microstructure and properties of the sample cast.

  13. The effect of heat treatment on the internal structure of nanostructured block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Sepe, A; Hoppe, E T; Jaksch, S; Magerl, D; Zhong, Q; Papadakis, C M [Technische Universitaet Muenchen, Physikdepartment, Fachgebiet Physik weicher Materie/Lehrstuhl fuer funktionelle Materialien, James-Franck-Strasse 1, 85747 Garching (Germany); Perlich, J [HASYLAB at DESY, Notkestrasse 85, 22603 Hamburg (Germany); Posselt, D [IMFUFA, Department of Science, Systems and Models, Roskilde University, PO Box 260, 4000 Roskilde (Denmark); Smilgies, D-M, E-mail: papadakis@tum.de [Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States)

    2011-06-29

    We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular to the substrate. In situ GISAXS measurements elucidate the structural changes during heat treatment at temperatures between 60 and 130 {sup 0}C. Thermal treatment below 100 {sup 0}C does not destroy the perpendicular lamellar order. In contrast, treatment between 105 and 120 {sup 0}C leads to a broad distribution of lamellar orientations which only partially recovers upon subsequent cooling. Treatment at 130 {sup 0}C leads to severe changes of the film structure. We attribute the change of behavior at 100 {sup 0}C to the onset of the glass transition of the polystyrene block and the related increase of long-range mobility. Our results indicate that the perpendicular lamellar orientation for high molar mass samples is not stable under all conditions.

  14. Treatment of bovine cancer-eye (and other animal tumors) with heat

    International Nuclear Information System (INIS)

    Doss, J.D.

    1980-01-01

    Hyperthermia appears to be an excellent technique for the treatment of a variety of animal tumors. While this report has emphasized the application of hyperthermia to bovine cancer-eye, there cannot be serious doubt about the potential for wider applications of the technique. We have collaborated with the Animal Resource Facility at the University of New Mexico in the successful treatment of a variety of tumors in small animals which would not be a particular interest to stockmen, but the program included the successful treatment of a number of sarcoids in horses. This investigation involving heat effects on sarcoids will continue, but early results appear to be promising. Other veterinarians are using the commercial hyperthermia instruments to treat a variety of small-animal tumors; these practitioners are enthusiastic about the results but no data have been published to date. We have treated an equine lid tumor with good results, and others are pursuing investigations in this area. Use of commercial hyperthermia instruments for treatment of any condition other than bovine cancer-eye or similar small tumors on animals cannot be justified. Like other therapeutic techniques, hyperthermia must be applied to appropriate cases and retreatment will be necessary in some instances

  15. Natural convection heat transfer from a long heated vertical cylinder to an adjacent air gap of concentric and eccentric conditions

    DEFF Research Database (Denmark)

    Hosseini, R.; Kolaei, Alireza Rezania; Alipour, M.

    2012-01-01

    In this work, the natural convection heat transfer from a long vertical electrically heated cylinder to an adjacent air gap is experimentally studied. The aspect and diameter ratios of the cylinder are 55.56 and 6.33, respectively. The experimental measurements were obtained for a concentric cond...

  16. Physical and Theoretical Models of Heat Pollution Applied to Cramped Conditions Welding Taking into Account the Different Types of Heat

    Science.gov (United States)

    Bulygin, Y. I.; Koronchik, D. A.; Legkonogikh, A. N.; Zharkova, M. G.; Azimova, N. N.

    2017-05-01

    The standard k-epsilon turbulence model, adapted for welding workshops, equipped with fixed workstations with sources of pollution took into account only the convective component of heat transfer, which is quite reasonable for large-volume rooms (with low density distribution of sources of pollution) especially the results of model calculations taking into account only the convective component correlated well with experimental data. For the purposes of this study, when we are dealing with a small confined space where necessary to take account of the body heated to a high temperature (for welding), located next to each other as additional sources of heat, it can no longer be neglected radiative heat exchange. In the task - to experimentally investigate the various types of heat transfer in a limited closed space for welding and behavior of a mathematical model, describing the contribution of the various components of the heat exchange, including radiation, influencing the formation of fields of concentration, temperature, air movement and thermal stress in the test environment. Conducted field experiments to model cubic body, allowing you to configure and debug the model of heat and mass transfer processes with the help of the developed approaches, comparing the measurement results of air flow velocity and temperature with the calculated data showed qualitative and quantitative agreement between process parameters, that is an indicator of the adequacy of heat and mass transfer model.

  17. Reactions of lactose during heat treatment of milk : a quantitative study

    NARCIS (Netherlands)

    Berg, H.E.

    1993-01-01

    The kinetics of the chemical reactions of lactose during heat treatment of milk were studied. Skim milk and model solutions resembling milk were heated. Reaction products were determined and the influence of varying lactose, casein and fat concentration on the formation of these products

  18. Preparation, heat treatment, and mechanical properties of the uranium-5 weight percent chromium eutectic alloy

    International Nuclear Information System (INIS)

    Townsend, A.B.

    1980-10-01

    The eutectic alloy of uranium-5 wt % chromium (U-5Cr) was prepared from high-purity materials and cast into 1-in.-thick ingots. This material was given several simple heat treatments, the mechanical properties of these heat-treated samples were determined; and the microstructure was examined. Some data on the melting point and transformation temperatures were obtained

  19. Effect of Heat Treatment on the Lycopene Content of Tomato Puree ...

    African Journals Online (AJOL)

    Effect of Heat Treatment on the Lycopene Content of Tomato Puree. MI Mohammed, DI Malami. Abstract. Lycopene is a powerful antioxidant. Epidemiological studies have associated its consumption with numerous health benefits. In this study the effects of heating on lycopene were investigated by exposing tomato ...

  20. Improved corrosion resistance of aluminum brazing sheet by a post-brazing heat treatment

    NARCIS (Netherlands)

    Norouzi Afshar, F.; Tichelaar, F.D.; Glenn, A. M.; Taheri, P.; Sababi, M.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    This work studies the influence of the microstructure on the corrosion mechanism and susceptibility of as-brazed aluminum sheet. Various microstructures are obtained using postbrazing heat treatments developed to enhance the corrosion resistance of an AA4xxx/AA3xxx brazing sheet. The heat