WorldWideScience

Sample records for heat treated plasma

  1. Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-12-01

    In the present study, titanium di-oxide (TiO2) coating has been developed on Ti-6Al-4V substrate by plasma spray deposition. Followed by plasma spraying, heat treatment of the sprayed sample has been carried out by isothermally holding it at 823 K (550 °C) for 2 h. Microstructural analysis shows the presence of porosity and unmelted particles on the as-sprayed surface, the area fraction of which reduces after heat treatment. X-ray diffraction analysis shows the phase transformation from anatase (in precursor powder) to rutile (in as-sprayed coating and the same after heat treatment). There is an improvement in nano-hardness, "Young's modulus" and wear resistance in plasma-sprayed TiO2 coating (as-sprayed as well as post-heat-treated condition) as compared to as-received Ti-6Al-4V, though post-heat treatment offers a superior hardness, "young's modulus" and wear resistance as compared to as-sprayed coating. The corrosion behavior in "hank's solution" shows decrease in corrosion resistance after plasma spraying and post-heat treatment as compared to as-received substrate. A significant decrease in contact angle and improvement in bioactivity (in terms of apatite deposition) were observed in TiO2-coated surface as compared to as-received Ti-6Al-4V.

  2. Plasma heat pump and heat engine

    Science.gov (United States)

    Avinash, K.

    2010-08-01

    A model system where cold charged particles are locally confined in a volume VP within a warm plasma of volume V (VP≪V) is studied. Charged particles mutually repel via a shielded repulsion which is like an effective pressure, i.e., electrostatic pressure PE. The law of thermodynamics involving PE and an equation of state for PE are obtained. It is shown that the expansion/compression of electrostatic fields associated with charged particles is a new mechanism that converts mechanical work into plasma heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of PE are shown to be observable in colloidal solutions.

  3. Vacuum technology: practical heat treating and brazing

    National Research Council Canada - National Science Library

    Fabian, Roger; Flint, Veronica; Hampson, Suzanne; Levicki, Dawn

    1993-01-01

    ... in 1992, currently he is Vice Chairman of the ASM Technical Division Board, a member of the ASH Heat Treating Steel Panel and Chairman of the Immediate Needs Sub Committee; past Chairman of the ASM Heat Treat Council and Chairman of the Editorial Policy Committee for The Journal of Heat Treating; and Past Chairman of the Hartford Chapter of ASM. Als...

  4. Heat capacity of spinning plasma

    Science.gov (United States)

    Geyko, V. I.; Fisch, N. J.

    2017-10-01

    Equilibrium thermodynamics properties, such as heat capacity and adiabatic axial and radial compressibility of a rotating plasma column are studied. These properties depend on rotation speed, charge density, external magnetic field strength and electron-ion mass ratio. Plasma rotation serves as an additional energy storage, hence, yields to increased heat capacity. It also leads to charge separation that changes plasma density distribution due to electrostatic interaction and Lorentz force and therefore modifies thermodynamic properties. The obtained results can provide limits and optimal regimes for radial compression of z-pinch type structures and optimize energy deposition profile. This work was supported by NNSA DE-NA0001836 and DE-NA0002948 and by NSF Contract No. PHY-1506122.

  5. Monoclonal antibodies specific to heat-treated porcine blood.

    Science.gov (United States)

    Raja Nhari, Raja Mohd Hafidz; Hamid, Muhajir; Rasli, Nurmunirah Mohamad; Omar, Abdul Rahman; El Sheikha, Aly Farag; Mustafa, Shuhaimi

    2016-05-01

    Porcine blood is potentially being utilized in food as a binder, gelling agent, emulsifier or colorant. However, for certain communities, the usage of animal blood in food is strictly prohibited owing to religious concerns and health reasons. This study reports the development of monoclonal antibodies (MAbs) against heat-treated soluble proteins (HSPs) of autoclaved porcine blood; characterization of MAbs against blood, non-blood and plasma from different animal species using qualitative indirect non-competitive enzyme-linked immunosorbent assay (ELISA); and immunoblotting of antigenic components in HSPs of porcine blood. Fifteen MAbs are specific to heat-treated and raw porcine blood and not cross-reacted with other animal blood and non-blood proteins (meat and non-meat). Twelve MAbs are specific to porcine plasma, while three MAbs specific to porcine plasma are cross-reacted with chicken plasma. Immunoblotting revealed antigenic protein bands (∼60, ∼85-100 and ∼250 kDa) in porcine blood and plasma recognized by the MAbs. Selection of MAbs that recognized 60 kDa HSPs of porcine blood and plasma as novel monoclonal antibodies would be useful for detection of porcine plasma in processed food using the immunoassay method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Comparative Histology of Plasma Treated Tissue

    Science.gov (United States)

    Rick, Kyle

    2009-10-01

    Atmospheric plasmas applied in surgical settings have unique characteristics found in histological results from animal tissue studies. This is evident in both ex vivo bench tissue tests and in vivo fresh tissue. Examples of these histological features are presented as results of a comparative study between plasma treated, common medical argon coagulation, and electrosurgery.

  7. Plasma heating power dissipation in low temperature hydrogen plasmas

    CERN Document Server

    Komppula, J

    2015-01-01

    Theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g. electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  8. Vortex formation during rf heating of plasma

    Energy Technology Data Exchange (ETDEWEB)

    Motley, R.W.

    1980-05-01

    Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm/sup 2/. Probe measurements reveal that within 30 ..mu..s an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column.

  9. Heat flux viscosity in collisional magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C., E-mail: cliu@pppl.gov [Princeton University, Princeton, New Jersey 08544 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bhattacharjee, A. [Princeton University, Princeton, New Jersey 08544 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  10. Cytocompatibility of Plasma and Thermally Treated Biopolymers

    Directory of Open Access Journals (Sweden)

    Petr Slepička

    2013-01-01

    Full Text Available This paper is focused on the surface characterization of plasma and consequently thermally treated biocompatible polymers. PLLA (poly(L-lactide acid and PMP (poly-4-methyl-1-pentene are studied. The influence of Ar plasma treatment on the surface polarity of substrate measured immediately after treatment and during the polymer surface aging is studied. Surface roughness, morphology, wettability, and surface chemistry were determined. Plasma treatment leads to significant changes in PLLA surface morphology and chemistry, with the PMP being slightly affected. The higher resistance to plasma fluence results in smaller ablation of PMP than that of PLLA. The plasma treatment improves cell adhesion and proliferation on the PMP. Plasma treatment of PLLA influences mostly the homogeneity of adhered and proliferated VSMC.

  11. Shock heating of the solar wind plasma

    Science.gov (United States)

    Whang, Y. C.; Liu, Shaoliang; Burlaga, L. F.

    1990-01-01

    The role played by shocks in heating solar-wind plasma is investigated using data on 413 shocks which were identified from the plasma and magnetic-field data collected between 1973 and 1982 by Pioneer and Voyager spacecraft. It is found that the average shock strength increased with the heliocentric distance outside 1 AU, reaching a maximum near 5 AU, after which the shock strength decreased with the distance; the entropy of the solar wind protons also reached a maximum at 5 AU. An MHD simulation model in which shock heating is the only heating mechanism available was used to calculate the entropy changes for the November 1977 event. The calculated entropy agreed well with the value calculated from observational data, suggesting that shocks are chiefly responsible for heating solar wind plasma between 1 and 15 AU.

  12. Heat Treated Carbon Fiber Material Selection Database

    Science.gov (United States)

    Effinger, M.; Patel, B.; Koenig, J.

    2008-01-01

    Carbon fibers are used in a variety high temperature applications and materials. However, one limiting factor in their transition into additional applications is an understanding of their functional properties during component processing and function. The requirements on the fibers are governed by the nature of the materials and the environments in which they will be used. The current carbon fiber vendor literature is geared toward the polymeric composite industry and not the ceramic composite industry. Thus, selection of carbon fibers is difficult, since their properties change as a function of heat treatment, processing or component operational temperature, which ever is greatest. To enable proper decisions to be made, a program was established wherein multiple fibers were selected and heat treated at different temperatures. The fibers were then examined for their physical and mechanical properties which are reported herein.

  13. Impurity transport in ohmically heated TFTR plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B.C.; Fonck, R.J.; Hulse, R.A.; Ramsey, A.T.; Timberlake, J.; Efthimion, P.C.; Fredrickson, E.; Grek, B.; Hill, K.W.; Johnson, D.W.

    1988-11-01

    Impurity transport in ohmically heated TFTR plasmas is studied by computer modeling of VUV line emissions from impurities injected using the laser-blowoff technique. The results are sensitive to uncertainties in the ionization and recombination rates used in the modeling; as a result, only a spatially averaged diffusion coefficient and parameterized convective velocity can be measured. Measurements of these transport parameters are presented for deuterium and helium discharges with I/sub p/ = 0.8-2.5 MA, /bar n/sub e// = 0.6-6.0/times/10/sup 19/ m/sup -3/, and Z/sub eff/ = 2-6. Diffusion coefficients are found to be in the 0.5-1.5 m/sup 2//s range, considerably larger than neoclassical values. Nonzero inward convective velocities are necessary to fit the data in most cases. No dependence of the diffusion coefficient on injected element, working gas species, or plasma current is found, but at a given current, the diffusion coefficient is smaller by approximately a factor of two in plasmas near the density limit than in discharges with /bar n/sub e//<3/times/10/sup 19/ m/sup -3/. 31 refs., 9 figs., 3 tabs.

  14. A container for heat treating materials in microwave ovens

    Science.gov (United States)

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  15. Irregular spacing of heat sources for treating hydrocarbon containing formations

    Science.gov (United States)

    Miller, David Scott [Katy, TX; Uwechue, Uzo Philip [Houston, TX

    2012-06-12

    A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

  16. Protein Adsorption on Various Plasma-Treated Polyethylene Terephthalate Substrates

    Directory of Open Access Journals (Sweden)

    Karin Stana-Kleinschek

    2013-10-01

    Full Text Available Protein adhesion and cell response to plasma-treated polymer surfaces were studied. The polymer polyethylene terephthalate (PET was treated in either an oxygen plasma to make the surface hydrophilic, or a tetrafluoromethane CF4 plasma to make the surface hydrophobic. The plasma source was radiofrequency (RF discharge. The adsorption of albumin and other proteins from a cell-culture medium onto these surfaces was studied using a quartz crystal microbalance (QCM, X-ray photoelectron spectroscopy (XPS and atomic force microscopy (AFM. The cellular response to plasma-treated surfaces was studied as well using an MTT assay and scanning electron microscopy (SEM. The fastest adsorption rate was found on the hydrophilic oxygen plasma-treated sample, and the lowest was found on the pristine untreated sample. Additionally, the amount of adsorbed proteins was higher for the oxygen-plasma-treated surface, and the adsorbed layer was more viscoelastic. In addition, cell adhesion studies support this finding because the best cell adhesion was observed on oxygen-plasma-treated substrates.

  17. Mechanical Properties of Heat-treated Carbon Fibers

    Science.gov (United States)

    Effinger, Michael R.; Patel, Bhavesh; Koenig, John; Cuneo, Jaques; Neveux, Michael G.; Demos, Chrystoph G.

    2004-01-01

    Carbon fibers are selected for ceramic matrix composites (CMC) are based on their as-fabricated properties or on "that is what we have always done" technical culture while citing cost and availability when there are others with similar cost and availability. However, the information is not available for proper selection of carbon fibers since heat-treated properties are not known for the fibers on the market currently. Heat-treating changes the fiber's properties. Therefore, an effort was undertaken to establish fiber properties on 19 different types of fibers from six different manufactures for both PAN and pitch fibers. Heat-treating has been done at three different temperatures.

  18. Interfacial properties of heat-treated ovalbumin.

    Science.gov (United States)

    Croguennec, Thomas; Renault, Anne; Beaufils, Sylvie; Dubois, Jean-Jacques; Pezennec, Stéphane

    2007-11-15

    The interfacial properties (kinetics of adsorption at the air/water interface, rheology of the interfacial layer) of ovalbumin molecules, unheated or previously heat-denatured in solution (10 g L(-1), pH 7, NaCl 50 mM) under controlled conditions (up to 40 min at 80 degrees C), were investigated. Heat treatments induced the formation of covalent aggregates which surface exhibits a higher hydrophobicity and an increased exposition of sulfhydryl groups when compared to native ovalbumin (unheated). Although they have a larger hydrodynamic size, aggregates adsorb as fast as native ovalbumin at the air/water interface. However, aggregates are able to established rapid contacts in the interfacial layer as shown by the fast increase of both surface pressure and shear elastic constant. In contrast, native ovalbumin needs longer time to developed intermolecular contacts and exhibits lower foam stability even if the shear elastic constant on aging reached higher value than for ovalbumin aggregates.

  19. Versatile and Rapid Plasma Heating Device for Steel and Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, G.S.

    2006-03-14

    hardening. The RPD has a great potential for heat treating surgical knives and tools. Unavailability of the full amount of the DOE award prevented further development of this exciting technology. Significant progress was made during the 5th quarter, specially the invention of the wider-area plasma and the resultant benefits in terms of rapid melting of aluminum and thermal treatments of larger size steel parts. Coating of nickel base superalloys was demonstrated (an additional task over that proposed). Directed low cost surface enhancement of steel and the directed clean low dross energy efficient melting of aluminum are industrial needs that require new technologies. These are large volume markets which can benefit from energy savings. Estimated energy savings are very large, in the order of 1015 J/year when the equipment is universally used. Compact and directed heating technology/product market in these two sectors could potentially reach over $1B in sales. The results of the research, presented at the DOE annual Review meeting on Aluminum held at the Oak Ridge National Laboratory during the 4-5 October 2005, were very well received by the delegates and panel reviewers. Insufficient DOE funds to fully fund the project at the end of the 5th quarter necessitated some key tasks being only partially completed.

  20. Metallurgy and Heat Treating. Welding Module 7. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in metallurgy and heat treating. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles of metallurgy and heat treatment and techniques for…

  1. Technological and chemical properties of heat-treated Anatolian ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... However, 230°C for 2 h should be used in place where a physical property is preferred. Consequently ... Key words: Anatolian black pine, heat treatment, physical, mechanical, chemical properties, FT-IR, crystallinity. INTRODUCTION ..... stability of heat-treated wood during artifical weathering. Holz Roh.

  2. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    Science.gov (United States)

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  3. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  4. Binding mechanism of patulin to heat-treated yeast cell.

    Science.gov (United States)

    Guo, C; Yuan, Y; Yue, T; Hatab, S; Wang, Z

    2012-12-01

    This study aims to assess the removal mechanism of patulin using heat-treated Saccharomyces cerevisiae cells and identify the role of different cell wall components in the binding process. In order to understand the binding mechanism, viable cells, heat-treated cells, cell wall and intracellular extract were performed to assess their ability to remove patulin. Additionally, the effects of chemical and enzymatic treatments of yeast on the binding ability were tested. The results showed that there was no significant difference between viable (53·28%) and heat-treated yeast cells (51·71%) in patulin binding. In addition, the cell wall fraction decreased patulin by 35·05%, and the cell extract nearly failed to bind patulin. Treatments with protease E, methanol, formaldehyde, periodate or urea significantly decreased (P patulin. Fourier transform infrared (FTIR) analysis indicated that more functional groups were involved in the binding process of heat-treated cells. Polysaccharides and protein are important components of yeast cell wall involved in patulin removal. In addition, hydrophobic interactions play a major role in binding processes. Heat-treated S. cerevisiae cells could be used to control patulin contamination in the apple juice industry. Also, our results proof that the patulin removal process is based mainly on the adsorption not degradation. © 2012 The Society for Applied Microbiology.

  5. Glass Strengthening via High-Intensity Plasma-Arc Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Harper, David C [ORNL; Duty, Chad E [ORNL; Patel, P [U.S. Army research Laboratory, Adelphi, MD

    2010-01-01

    The use of a high-intensity plasma-arc lamp was used to irradiate the surface of soda-lime silicate glass tiles to determine if an increase in strength could be achieved. The lamp had a power density of 3500 W/cm2, a processing area of 1 cm x 10 cm, irradiated near-infrared heating at a wavelength between 0.2 1.4 m, and was controlled to unidirectionally sweep across 50-mm-square tiles at a constant speed of 8 mm/s. Ring-on-ring (RoR) equibiaxial flexure and 4 pt uni-directional flexure testings of entire tiles were used to measure and compare failure stress distributions of treated and untreated glass. Even with non-optimized processing conditions, RoR failure stress increased by approximately 25% and the 4 pt bend failure stress increased by approximately 65%. Strengthening was due to a fire-polishing-like mechanism. The arc-lamp heat-treatment caused the location of the strength-limiting flaws in the 4-pt-bend tiles to change; namely, failure initiation occurred on the gage section surface for the treated glass whereas it occurred at a gage section edge for the untreated. Arc-lamp heat-treatment is attractive not only because it provides strengthening, but because it can (non-contact) process large amounts of glass quickly and inexpensively, and is a process that either a glass manufacturer or end-user can readily employ.

  6. Minority heating scenarios in and SST-1 plasmas

    Indian Academy of Sciences (India)

    Asim Kumar Chattopadhyay

    2017-12-19

    Dec 19, 2017 ... Abstract. A numerical analysis of ion cyclotron resonance heating scenarios in two species of low ion temperature plasma has been done to elucidate the physics and possibility to achieve H-mode in tokamak plasma. The analysis is done in the steady-state superconducting tokamak, SST-1, using phase-I ...

  7. Electron Cyclotron Resonance Heating of a High-Density Plasma

    DEFF Research Database (Denmark)

    Hansen, F. Ramskov

    1986-01-01

    Various schemes for electron cyclotron resonance heating of tokamak plasmas with the ratio of electron plasma frequency to electron cyclotron frequency, "»pe/^ce* larger than 1 on axis, are investigated. In particular, a mode conversion scheme is investigated using ordinary waves at the fundamental...

  8. Design of a heating system for plasma flux simulation

    OpenAIRE

    Fallas-Chinchilla, Juan Carlos; Fallas-Agüero, Manuel; Del Valle-Gamboa, Juan Ignacio; Fonseca-Flores, Luis Diego

    2013-01-01

    VASIMR® plasma rocket and its possible applications are promoting innovations in the space propulsion area. Ad Astra Rocket Company (VASIMR® designer) constantly needs instruments to evaluate the plasma engine and its components, in order to acquire critical information to warrant a safe operation. This study describes the design and construction of a heating system, to simulate a plasma flux within a ceramic tube. This part of the engine plays a critical role, transporting a gas to ionize at...

  9. Effects of deep heating to treat osteoarthritis pain: systematic review

    OpenAIRE

    Jorge, Matheus Santos Gomes; Zanin,Caroline; Knob, Bruna; Wibelinger, Lia Mara

    2017-01-01

    ABSTRACT BACKGROUND AND OBJECTIVES: Osteoarthritis is an inflammatory and degenerative joint disease, causing pain, musculoskeletal disorders and impact on functionality, daily life activities and quality of life. The action of physical agents by means of deep heating seems to be an alternative to treat such disease. This study aimed at verifying the effects of deep heating on osteoarthritis patients. CONTENTS: A systematic review was carried out in Medline, Scielo and LILACS databases as f...

  10. Interaction of adhered metallic dust with transient plasma heat loads

    NARCIS (Netherlands)

    Ratynskaia, S.; Tolias, P.; I. Bykov,; Rudakov, D.; de Angeli, M.; Vignitchouk, L.; Ripamonti, D.; Riva, G.; Bardin, S.; van der Meiden, H.; Vernimmen, J.; Bystrov, K.; De Temmerman, G.

    2016-01-01

    The first study of the interaction of metallic dust (tungsten, aluminum) adhered on tungsten substrates with transient plasma heat loads is presented. Experiments were carried out in the Pilot-PSI linear device with transient heat fluxes up to 550 MW m −2 and in the DIII-D divertor tokamak. The

  11. Pre-treating water with non-thermal plasma

    Science.gov (United States)

    Cho, Young I.; Fridman, Alexander; Rabinovich, Alexander; Cho, Daniel J.

    2017-07-04

    The present invention consists of a method of pre-treatment of adulterated water for distillation, including adulterated water produced during hydraulic fracturing ("fracking") of shale rock during natural gas drilling. In particular, the invention is directed to a method of treating adulterated water, said adulterated water having an initial level of bicarbonate ion in a range of about 250 ppm to about 5000 ppm and an initial level of calcium ion in a range of about 500 ppm to about 50,000 ppm, said method comprising contacting the adulterated water with a non-thermal arc discharge plasma to produce plasma treated water having a level of bicarbonate ion of less than about 100 ppm. Optionally, the plasma treated water may be further distilled.

  12. Plasma heating systems planned for the Argonne experimental power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bertoncini, P.; Brooks, J.; Fasolo, J.; Mills, F.; Moretti, A.; Norem, J.

    1976-01-01

    A scoping study and conceptual design of a tokamak experimental power reactor (TEPR) have been completed. The design objectives of the TEPR are to operate for ten years at or near electrical power breakeven conditions with a duty factor of greater than or equal to 50 percent and to demonstrate the feasibility of tokamak fusion power reactor techniques. These objectives can be met by a design which has a major radius of 6.25 m and a plasma radius of 2.1 m. Parameters for this reactor are listed, and a diagram is given. This paper will describe TEPR plasma heating systems. Neutral beam heating and rf heating are described.

  13. Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas.

    Science.gov (United States)

    Green, D L; Berry, L A; Chen, G; Ryan, P M; Canik, J M; Jaeger, E F

    2011-09-30

    Observations of improved radio frequency (rf) heating efficiency in ITER relevant high-confinement (H-)mode plasmas on the National Spherical Tokamak Experiment are investigated by whole-device linear simulation. The steady-state rf electric field is calculated for various antenna spectra and the results examined for characteristics that correlate with observations of improved or reduced rf heating efficiency. We find that launching toroidal wave numbers that give fast-wave propagation in the scrape-off plasma excites large amplitude (∼kV m(-1)) coaxial standing modes between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggests that these modes are a probable cause of degraded heating efficiency.

  14. Investigation of electron heating in laser-plasma interaction

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2013-03-01

    Full Text Available  In this paper, stimulated Raman scattering (SRS and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-SRS and dominateing initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-SRS plasma waves with high phase velocities. This tow-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  15. Effect of whole cottonseed, plus lanolin heat-treated whole ...

    African Journals Online (AJOL)

    The study was conducted to determine the effect of whole cottonseed (WCS), heat-treated whole cottonseed (HWCS), ... Dry matter intakes did not differ ... treatments. Milk protein content or yield was not affected by any of the treatments. Milk fatty acid composition was altered significantly by all cottonseed treatments.

  16. Measurements of ion energies during plasma heating of the Proto-MPEX High Intensity Plasma Source

    Science.gov (United States)

    Caughman, J. B. O.; Goulding, R. H.; Biewer, T. M.; Bigelow, T. S.; Caneses, J.; Diem, S. J.; Green, D. L.; Isler, R. C.; Rapp, J.; Piotrowicz, P.; Beers, C. J.; Kafle, N.; Showers, M. A.

    2017-10-01

    The Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) is a linear high-intensity RF plasma source that combines a high-density helicon plasma generator with ion and electron heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration with the goal of delivering a plasma heat flux of 10 MW/m2 at a target. The helicon plasma is produced by coupling 13.56 MHz RF power at levels >100 kW. Additional heating is provided by ion cyclotron heating (ICH) ( 25 kW) and electron Bernstein wave (EBW) heating ( 25 kW) at 28 GHz. Measurements of the ion energy distribution with a retarding field energy analyzer (RFEA) show an increase in ion energies in the edge of the plasma when ICH is applied, which is consistent with COMSOL modeling of the power deposition from the antenna. Views of the target plate with an infrared camera show an increase in the surface temperature at large radii during ICH, and these areas map back to magnetic field lines near the antenna. The change in the power deposition at the target during ICH is compared with Thomson Scattering and RFEA measurements near the target. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  17. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    Directory of Open Access Journals (Sweden)

    Aiping Zeng

    2017-01-01

    Full Text Available The plasma treatment on commercial active carbon (AC was carried out in a capacitively coupled plasma system using Ar + 10% O2 at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp2 C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5 hours, while the capacity of the untreated AC was 1.01 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI.

  18. Effect of dichlorodimethylsilane on plasma-treated cotton fabric*

    Indian Academy of Sciences (India)

    Abstract. Cotton fabric was treated with dichlorodimethylsilane (DCDMS) solution by two methods. In the first method, the fabrics were directly dipped into DCDMS solu- tion for different time intervals and in the second method, the fabric was first subjected to radiofrequency (RF) plasma treatment for different durations and ...

  19. Heat sink effects in variable polarity plasma arc welding

    Science.gov (United States)

    Abdelmessih, Amanie N.

    1991-01-01

    The Space Shuttle External Tank is fabricated by the variable polarity plasma arc (VPPA) welding process. In VPPA welding, a noble gas, usually argon, is directed through an arc to emerge from the torch as a hot plasma jet. This jet is surrounded by a shielding gas, usually helium, to protect the weld from contamination with air. The high velocity, hot plasma jet completely penetrates the workpiece (resembling a line heat source) when operated in the 'keyhole' mode. The metal melts on touching the side of the jet, as the torch travels in the perpendicular direction to the direction of the jet, and melted metal moves around the plasma jet in the keyhole forming a puddle which solidifies behind the jet. Heat sink effects are observed when there are irregularities in the workpiece configuration, especially, if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, i.e., in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of this research is to study the effect of irregularities in workpiece configuration and fixture differences (heat sink effects) on the weld bead geometry with the ultimate objective to compensate for the heat sink effects and achieve a perfect weld. Experiments were performed on different workpiece geometries and compared to approximate models.

  20. Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Green, David L [ORNL; Jaeger, E. F. [XCEL; Berry, Lee A [ORNL; Chen, Guangye [ORNL; Ryan, Philip Michael [ORNL; Canik, John [ORNL

    2011-01-01

    Observations of improved radio frequency (RF) heating efficiency in high-confinement (H-) mode plasmas on the National Spherical Tokamak Experiment (NSTX) are investigated by whole-device linear simulation. We present the first full-wave simulation to couple kinetic physics of the well confined core plasma to the poorly confined scrape-off plasma. The new simulation is used to scan the launched fast-wave spectrum and examine the steady-state electric wave field structure for experimental scenarios corresponding to both reduced, and improved RF heating efficiency. We find that launching toroidal wave-numbers that required for fast-wave propagation excites large amplitude (kVm 1 ) coaxial standing modes in the wave electric field between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggest these modes are a probable cause of degraded heating efficiency. Also, the H-mode density pedestal and fast-wave cutoff within the confined plasma allow for the excitation of whispering gallery type eigenmodes localised to the plasma edge.

  1. Microstructure and Mechanical Properties of Heat-treated T92 Martensitic Heat Resistant Steel

    Science.gov (United States)

    Rajesh Kannan, P.; Muthupandi, V.; Arivazhagan, B.; Devakumaran, K.

    2017-09-01

    T92 samples were solutionized at 1,050 °C, 1,100 °C and 1,150 °C for 20 min and then tempered at 730 °C, 745 °C and 760 °C for 60 min. Optical microscopy studies were carried out to understand the microstructural evolution due to heat treatment. These heat-treated samples comprised of lath martensite microstructure in all the cases. Prior austenite grain size of the heat-treated samples increased with solutionizing temperature. Tensile properties were evaluated using micro-tensile samples. Hardness values of the heat-treated samples were estimated using Vickers hardness tester. Interestingly, for all the given tempering condition, the hardness values showed an increasing trend with solutionizing temperature while their tensile strength values tend to decrease. Fractograph analysis depicted that increasing the solutionizing temperature led to grain boundary decohesion.

  2. Heating of heavy plasma species by damping electron beam in beam-generated plasma

    Science.gov (United States)

    Levko, Dmitry

    2017-11-01

    The heating of heavy species (both ions and neutrals) in the beam-generated plasma by damping electron beam is analyzed using a self-consistent one-dimensional Particle-in-Cell Monte Carlo collisions model. It is observed that the damping of the electron beam leads to the excitation of a wide spectrum of electrostatic waves. These waves lead to the heating not only of the thermal plasma electrons but also of the plasma ions. The first less efficient mechanism of the ion heating is the ponderomotive force due to the generation of non-homogeneous high-frequency electric field which is excited by the damping electron beam. The second more efficient mechanism of the ion heating obtained in the simulations is the acceleration by slow plasma waves. This mechanism is responsible for the acceleration of ions to the velocities few times higher than the ion thermal velocity.

  3. PROPERTIES OF LAMINATED VENEER LUMBER MANUFACTURED FROM HEAT TREATED VENEER

    Directory of Open Access Journals (Sweden)

    Hamiyet Sahin KOL

    2016-06-01

    Full Text Available The objective of this study was to determine and compare properties of laminated veneer lumber (LVL panels manufactured from heat treated (212o C, 2h and untreated pine veneer with melamine urea formaldehyde (MUF adhesive. The results showed that, heat treatment considerably decreased all investigated physical properties of LVL. The reductions in density (D, moisture content (MC, and thickness swelling (TS were 8.33%, 33.78% and 14.03%, respectively. The findings of this study demonstrated that heat treatment resulted in adverse effect on bending strength and hardness of LVL panels. Heat treatment caused a decrease in bending strength (MOR by 31.85% and in hardness (HT by 25.44%. However, modulus of elasticity (MOE and compressive strength (CS values of LVL panels were higher than those of untreated groups. Compressive strength and modulus of elasticity (MOE of LVL panels made of heat treated veneer respectively were 11.17% and 7.46% higher than untreated LVLs

  4. Confinement and heating of a deuterium-tritium plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Ashcroft, D.; Barnes, C.W.; Barnes, G.; Batha, S.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N.L.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Cauffman, S.; Chang, Z.; Cheng, C.Z.; Collins, J.; Coward, G.; Darrow, D.S.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Fisher, R.; Fonck, R.J.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Gentile, C.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kugel, H.; Lam, N.T.; LaMarche, P.H.; Loughlin, M.J.; LeBlanc, B.; Leonard, M.; Levinton, F.M.; Machuzak, J.; Mansfield, D.K.; Martin, A.; Mazzucato, E.; Majeski, R.; Marmar, E.; McChesney, J.; McCormack, B.; McCune, D.C.; McGuire, K.M.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Muelle

    1994-05-30

    The Tomamak Fusion Test reactor has performed initial high-power experiments with the plasma fueled with nominally equal densities of deuterium and tritium. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by [similar to]20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by [alpha] particles created by the D-T fusion reactions.

  5. Baseline high heat flux and plasma facing materials for fusion

    Science.gov (United States)

    Ueda, Y.; Schmid, K.; Balden, M.; Coenen, J. W.; Loewenhoff, Th.; Ito, A.; Hasegawa, A.; Hardie, C.; Porton, M.; Gilbert, M.

    2017-09-01

    In fusion reactors, surfaces of plasma facing components (PFCs) are exposed to high heat and particle flux. Tungsten and Copper alloys are primary candidates for plasma facing materials (PFMs) and coolant tube materials, respectively, mainly due to high thermal conductivity and, in the case of tungsten, its high melting point. In this paper, recent understandings and future issues on responses of tungsten and Cu alloys to fusion environments (high particle flux (including T and He), high heat flux, and high neutron doses) are reviewed. This review paper includes; Tritium retention in tungsten (K. Schmid and M. Balden), Impact of stationary and transient heat loads on tungsten (J.W. Coenen and Th. Loewenhoff), Helium effects on surface morphology of tungsten (Y. Ueda and A. Ito), Neutron radiation effects in tungsten (A. Hasegawa), and Copper and copper alloys development for high heat flux components (C. Hardie, M. Porton, and M. Gilbert).

  6. Laser production and heating of plasma for MHD application

    Science.gov (United States)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  7. Scaling Study of Reconnection Heating in Torus Plasma Merging Experiments

    Science.gov (United States)

    Ono, Yasushi; Akimitsu, Moe; Sawada, Asuka; Cao, Qinghong; Koike, Hideya; Hatano, Hironori; Kaneda, Taishi; Tanabe, Hiroshi

    2017-10-01

    We have been investigating toroidal plasma merging and reconnection for high-power heating of spherical tokamak (ST) and field-reversed configuration (FRC), using TS-3 (ST, FRC: R =0.2m, 1985-), TS-4 (ST, FRC: R =0.5m, 2000-), UTST (ST: R =0.45m, 2008-) and MAST (ST: R =0.9m, 2000-) devices. The series of merging experiments made clear the promising scaling and characteristics of reconnection heating: (i) its ion heating energy that scales with square of the reconnecting magnetic field Brec, (ii) its energy loss lower than 10%, (iii) its ion heating energy (in the downstream) 10 time larger than its electron heating energy (at around X-point) and (iv) low dependence of ion heating on the guide (toroidal) field Bg. The Brec2-scalingwas obtained when the current sheet was compressed to the order of ion gyrodadius. When the sheet was insufficiently compressed, the measured ion temperature was lower than the scaling prediction. Based on this scaling, we realized significant ion heating up to 1.2keV in MAST after 2D elucidation of ion heating up to 250eV in TS-3 [3,4]. This promising scaling leads us to new high Brec reconnection heating experiments for future direct access to burning plasma: TS-U (2017-) in Univ. Tokyo and ST-40 in Tokamak Energy Inc. (2017-). This presentation reviews major progresses in those toroidal plasma merging experiments for physics and fusion applications of magnetic reconnection.

  8. Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, V.K.; Bora, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2004-07-01

    Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing in situ is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at 10{sup -3} mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper. (authors)

  9. Induced hydrophobic recovery of oxygen plasma-treated surfaces.

    Science.gov (United States)

    Guckenberger, David J; Berthier, Erwin; Young, Edmond W K; Beebe, David J

    2012-07-07

    Plasma treatment is a widely used method in microfabrication laboratories and the plasticware industry to functionalize surfaces for device bonding and preparation for mammalian cell culture. However, spatial control of plasma treatment is challenging because it typically requires a tedious masking step that is prone to alignment errors. Currently, there are no available methods to actively revert a surface from a treated hydrophilic state to its original hydrophobic state. Here, we describe a method that relies on physical contact treatment (PCT) to actively induce hydrophobic recovery of plasma-treated surfaces. PCT involves applying brushing and peeling processes with common wipers and tapes to reverse the wettability of hydrophilized surfaces while simultaneously preserving hydrophilicity of non-contacted surfaces. We demonstrate that PCT is a user-friendly method that allows 2D and 3D surface patterning of hydrophobic regions, and the protection of hydrophilic surfaces from unwanted PCT-induced recovery. This method will be useful in academic and industrial settings where plasma treatment is frequently used.

  10. Heat Transport Effects in Rotating Gases and Plasmas

    Science.gov (United States)

    Kolmes, Elijah; Geyko, Vasily; Fisch, Nathaniel

    2016-10-01

    In some contexts, rotating gases and plasmas exhibit heat transport effects that are substantially different from what would be found in the absence of rotation. For instance, a Ranque-Hilsch vortex tube is a device which separates an input stream of (neutral) gas into hot and cold streams by setting up a rotating flow in a specially designed cylindrical chamber. One class of vortex tube models involves radial motion that carries gas up and down the pressure gradients set up by the centrifugal potential inside the tube and which results in adiabatic heating and cooling of the radially moving material. The approach of producing heat transport in a rotating flow using pressure gradients and motion along those gradients may have applications in plasma systems. We discuss possible applications for rotational heat transport effects in plasma systems, including Z-pinch configurations. Princeton Plasma Physics Laboratory; U.S. Defense Reduction Agency Grant No. HDTRA1-11-1-0037; and the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948.

  11. Electron Heating in Microwave-Assisted Helicon Plasmas

    Science.gov (United States)

    McKee, John; Siddiqui, Umair; Jemiolo, Andrew; McIlvain, Julianne; Scime, Earl

    2016-10-01

    The use of two (or more) rf sources at different frequencies is a common technique in the plasma processing industry to control ion energy characteristics separately from plasma generation. A similar approach is presented here with the focus on modifying the electron population in argon and helium plasmas. The plasma is generated by a helicon source at a frequency f 0 = 13.56 MHz. Mcrowaves of frequency f 1 = 2.45 GHz are then injected into the helicon source chamber perpendicular to the background magnetic field. The microwaves damp on the electrons via X-mode Electron Cyclotron Heating (ECH) at the upper hybrid resonance, providing additional energy input into the electrons. The effects of this secondary-source heating on electron density, temperature, and energy distribution function are examined and compared to helicon-only single source plasmas as well as numeric models suggesting that the heating is not evenly distributed but spatially localized. Optical Emission Spectroscopy (OES) is used to examine the impact of the energetic tail of the electron distribution on ion and neutral species via collisional excitation. Large enhancements of neutral spectral lines are observed with little to no enhancement of ion lines.

  12. Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode

    Directory of Open Access Journals (Sweden)

    A. Parvazian

    2008-03-01

    Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.

  13. Process Design of Aluminum Tailor Heat Treated Blanks

    Directory of Open Access Journals (Sweden)

    Alexander Kahrimanidis

    2015-12-01

    Full Text Available In many industrials field, especially in the automotive sector, there is a trend toward lightweight constructions in order to reduce the weight and thereby the CO2 and NOx emissions of the products. An auspicious approach within this context is the substitution of conventional deep drawing steel by precipitation hardenable aluminum alloys. However, based on the low formability, the application for complex stamping parts is challenging. Therefore, at the Institute of Manufacturing Technology, an innovative technology to enhance the forming limit of these lightweight materials was invented. The key idea of the so-called Tailor Heat Treated Blanks (THTB is optimization of the mechanical properties by local heat treatment before the forming operation. An accurate description of material properties is crucial to predict the forming behavior of tailor heat treated blanks by simulation. Therefore, within in this research project, a holistic approach for the design of the THTB process in dependency of the main influencing parameters is presented and discussed in detail. The capability of the approach for the process development of complex forming operations is demonstrated by a comparison of local blank thickness of a tailgate with the corresponding results from simulation.

  14. Development of a discharge-heated plasma tube

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Jin, J. T.; Nam, S. M.; Lee, S. M.; Choi, H. L.; Ko, D. K.; Kim, S. H.; Lee, Y. B.; Choi, Y. S.; Lee, J. M.; Lee, C. K.; Lee, H. G.; Lee, H. C.; Jung, S. M.; Kim, Y. J.; Choi, G. S.; Son, N. G

    1999-12-01

    A discharge-heated type plasma tube was designed and constructed. The structure of the laser plasma tube was designed to be easy in maintenance. The inside plasma tube was made of a high purity alumina and the thermal insulator tube was made of a porous alumina. The electrode made of tungsten was chosen for the endurance of high discharge voltage. AR coated windows were used as laser windows. A proto-type laser plasma tube was tested with a pulse modulator. An average laser output power was 32 W at the discharge voltage of 28 kV, the electric input power of 4.6 kW, and the pulse repetition rates of 10 kHz. (author)

  15. Heat sterilization of ash (Fraxinus spp.) firewood : heat-treating options, temperature monitoring and thermal verification

    Science.gov (United States)

    Xiping Wang; Richard Bergman; T. Mace

    2010-01-01

    Because of the potential risk associated with moving emerald ash borer (EAB)-infested firewood, the interstate movement of all hardwood firewood in the USA is currently restricted under the Federal quarantine. Communities and firewood producers are now faced with decisions on how to treat their firewood for interstate commerce. The new US Federal regulations for heat...

  16. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    Science.gov (United States)

    Chen, X.; Yao, L.; Xue, J.; Zhao, D.; Lan, Y.; Qian, X.; Wang, C. X.; Qiu, Y.

    2008-12-01

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick.

  17. Plasma penetration depth and mechanical properties of atmospheric plasma-treated 3D aramid woven composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Yao, L.; Xue, J.; Zhao, D.; Lan, Y.; Qian, X. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China); Wang, C.X. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China); College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224003 (China); Qiu, Y. [Key Laboratory of Textile Science and Technology, Donghua University, Ministry of Education (China); Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620 (China)], E-mail: ypqiu@dhu.edu.cn

    2008-12-30

    Three-dimensional aramid woven fabrics were treated with atmospheric pressure plasmas, on one side or both sides to determine the plasma penetration depth in the 3D fabrics and the influences on final composite mechanical properties. The properties of the fibers from different layers of the single side treated fabrics, including surface morphology, chemical composition, wettability and adhesion properties were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurement and microbond tests. Meanwhile, flexural properties of the composites reinforced with the fabrics untreated and treated on both sides were compared using three-point bending tests. The results showed that the fibers from the outer most surface layer of the fabric had a significant improvement in their surface roughness, chemical bonding, wettability and adhesion properties after plasma treatment; the treatment effect gradually diminished for the fibers in the inner layers. In the third layer, the fiber properties remained approximately the same to those of the control. In addition, three-point bending tests indicated that the 3D aramid composite had an increase of 11% in flexural strength and 12% in flexural modulus after the plasma treatment. These results indicate that composite mechanical properties can be improved by the direct fabric treatment instead of fiber treatment with plasmas if the fabric is less than four layers thick.

  18. Heat flow in variable polarity plasma arc welds

    Science.gov (United States)

    Abdelmessih, Amanie N.

    1992-01-01

    The space shuttle external tank and the space station Freedom are fabricated by the variable polarity plasma arc (VPPA) welding. Heat sink effects (taper) are observed when there are irregularities in the work-piece configuration especially if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, and in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of the previous, present, and consecutive research studies is to investigate the effect of irregularities in the work-piece configuration and fixture differences on the weld bead geometry with the ultimate objective to compensate automatically for the heat sink effects and achieve a perfect weld.

  19. The Micro-hardness of Heat Treated Carbon Steel

    OpenAIRE

    Petrík, Jozef

    2014-01-01

    The aim of the submitted work is to study the influence of applied loads ranging from 0.09807 N to 0.9807 N on measured values of micro-hardness of heat treated carbon steel. The influence of applied load on measured value of micro-hardness was evaluated by Meyer’s index n, PSR method and by Analysis of Variance (ANOVA). The influence of the load on the measured value of micro-hardness is statistically significant and the relationship between applied load and micro-hardness manifests the mode...

  20. Biofouling development on plasma treated samples versus layers coated samples

    Science.gov (United States)

    Hnatiuc, B.; Exnar, P.; Sabau, A.; Spatenka, P.; Dumitrache, C. L.; Hnatiuc, M.; Ghita, S.

    2016-12-01

    Biofouling is the most important cause of naval corrosion. In order to reduce the Biofouling development on naval materials as steel or resin, different new methods have been tested. These methods could help to follow the new IMO environment reglementations and they could replace few classic operations before the painting of the small ships. The replacement of these operations means a reduction in maintenance costs. Their action must influence especially the first two steps of the Biofouling development, called Microfouling, that demand about 24 hours. This work presents the comparative results of the Biofouling development on two different classic naval materials, steel and resin, for three treated samples, immersed in sea water. Non-thermal plasma, produced by GlidArc technology, is applied to the first sample, called GD. The plasma treatment was set to 10 minutes. The last two samples, called AE9 and AE10 are covered by hydrophobic layers, prepared from a special organic-inorganic sol synthesized by sol-gel method. Theoretically, because of the hydrophobic properties, the Biofouling formation must be delayed for AE9 and AE10. The Biofouling development on each treated sample was compared with a witness non-treated sample. The microbiological analyses have been done for 24 hours by epifluorescence microscopy, available for one single layer.

  1. Study of Volumetrically Heated Ultra-High Energy Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-10-27

    Heating dense matter to millions of degrees is important for applications, but requires complex and expensive methods. The major goal of the project was to demonstrate using a compact laser the creation of a new ultra-high energy density plasma regime characterized by simultaneous extremely high temperature and high density, and to study it combining experimental measurements and advanced simulations. We have demonstrated that trapping of intense femtosecond laser pulses deep within ordered nanowire arrays can heat near solid density matter into a new ultra hot plasma regime. Extreme electron densities, and temperatures of several tens of million degrees were achieved using laser pulses of only 0.5 J energy from a compact laser. Our x-ray spectra and simulations showed that extremely highly ionized plasma volumes several micrometers in depth are generated by irradiation of gold and Nickel nanowire arrays with femtosecond laser pulses of relativistic intensities. We obtained extraordinarily high degrees of ionization (e.g. we peeled 52 electrons from gold atoms, and up to 26 electrons from nickel atoms). In the process we generated Gigabar pressures only exceeded in the central hot spot of highly compressed thermonuclear fusion plasmas.. The plasma created after the dissolved wires expand, collide, and thermalize, is computed to have a thermal energy density of 0.3 GJ cm-3 and a pressure of 1-2 Gigabar. These are pressures only exceeded in highly compressed thermonuclear fusion plasmas. Scaling these results to higher laser intensities promises to create plasmas with temperatures and pressures exceeding those in the center of the sun.

  2. Density control and plasma edge characterisation of ECRH heated plasmas in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, F.L. E-mail: tabares@ciemat.es; Tafalla, D.; Branas, B.; Cal, E. de la; Garcia-Cortes, I.; Estrada, T.; Pastor, I.; Herranz, J.; Luna, E. de la; Medina, F

    2001-03-01

    In the 1999 experimental campaign, the Spanish stellarator, TJ-II (R=1.5 m, a<0.22 m, B{sub 0}<1 T) has been operated under a broad range of parameters, including changes in the magnetic configuration, working gas (H{sub 2} vs He), microwave heating power (100-600 kW, two independent lines at 53.2 GHz, second harmonic X-mode) and plasma-wall interaction conditions (wall conditioning, poloidal vs toroidal limiter). Although a close coupling between the plasmas and the TJ-II vacuum vessel is naturally present in most conditions, a good control of central plasma values has been achieved for both atomic species even under conditions close to the highest power density (n{sub e0}<1.7x10{sup 13} cm{sup -3}, T{sub e0}<1.3 keV). For this purpose, a careful control of wall conditions has been required. In addition, the low electron density and temperature of TJ-II edge plasmas have led to a significant reduction of the expected plasma-wall interaction. In this work, the issues of plasma density control and edge characteristics for the different plasma species and heating power are addressed. Results of new edge diagnostics, as a thermal lithium beam and a supersonic helium beam, among others are presented.

  3. Fluid-induced rupture on heat-treated andesite

    Science.gov (United States)

    Li, Zhi; Nicolas, Aurelien; Fortin, Jerome; Gueguen, Yves

    2017-04-01

    The aim of this study is to investigate the mechanical behavior, the acoustic emissions (AE) and the evolution ofultrasonic wave velocities during the deformation and failure of andesite samples induced by fluid injection under triaxial stresses. The cylindrical specimens employed in these experiments are andesite samples from Guadeloupe (Geotreff project) (40mm in diameter and 80mm in length). Intact samples have a porosity of 2% and a very low permeability of 10-21 m2. Thus, samples were heat-treated to induce a pre-existing crack network. Different heat treatments were tested (from 200°C et 900°C). Our result show that a minimum heat-treatment of 800°C was necessary to induced a connected crack network (crack density of 0.1), associated with an increase in permeability (10-17 m2). In the following, mechanical experiments were performed on samples heat-treated at 930°C. Mechanical experiments were performed in a conventional triaxial cell (installed at ENS). Four axial strain gauges and four radial strain gauges were glued on the surface of the sample to measure the axial and the radial strain while 16 ultrasonic sensors were glued to measure the ultrasonic velocity and record the acoustic emission activity. A first set of triaxial experiments were performed in order to get the Mohr-Coulomb envelop. Then, the fluid-induced rupture experiment were done as follow: The sample was first saturated under 5MPa confining pressure with 2MPa fluid pressure, then the hydrostatic loading was increased up to 40MPa, followed by an increase in the differential loading to a value close to the dilation point. The sample was maintained under this stress state for 12 hours to make sure there was no creep. Finally, pore fluid was injected from the bottom of the sample at 35MPa and the fluid pressure at the top of the sample was measured (fluid could not escape at the top). Our results show that rupture occurs 1 hour after the fluid injection. A clear sequence of P wave velocity

  4. Elemental distribution inside a heat treated stainless steel weld.

    CERN Multimedia

    2017-01-01

    The video shows the elemental distribution of Molybdenum (red), Manganese (green) and Chromium (blue) within a 20 μm × 20 μm × 20 μm region of a heat treated stainless steel weld. This data has been collected using 3D Focused Ion Beam Milling and Energy Dispersive X-ray Spectroscopy, an elemental characterisation analysis technique. High resolution (75 nm voxel size) mapping is necessary to gain insight into the distribution of regions with distinct elemental composition (phases), which are shown in purple (sigma) and yellow (delta ferrite) in the video. These features have important implications for the toughness and the magnetic properties of the weld, especially at cryogenic temperatures. The video shows the individual slices which were collected in a direction perpendicular to the weld bead direction, followed by a 3D representation of the gauge volume.

  5. The Micro-hardness of Heat Treated Carbon Steel

    Directory of Open Access Journals (Sweden)

    Jozef PETRÍK

    2014-04-01

    Full Text Available The aim of the submitted work is to study the influence of applied loads ranging from 0.09807 N to 0.9807 N on measured values of micro-hardness of heat treated carbon steel. The influence of applied load on measured value of micro-hardness was evaluated by Meyer’s index n, PSR method and by Analysis of Variance (ANOVA. The influence of the load on the measured value of micro-hardness is statistically significant and the relationship between applied load and micro-hardness manifests the moderate reverse ISE. As far as the relationship between measured hardness and load independent “true hardness”, the best fit was obtained between HV0.05 and “true hardness” calculated using index a2.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.4017

  6. Heat-Flux Measurements in Laser-Produced Plasmas Using Thomson Scattering from Electron Plasma Waves

    Science.gov (United States)

    Henchen, R. J.; Goncharov, V. N.; Cao, D.; Katz, J.; Froula, D. H.; Rozmus, W.

    2017-10-01

    An experiment was designed to measure heat flux in coronal plasmas using collective Thomson scattering. Adjustments to the electron distribution function resulting from heat flux affect the shape of the collective Thomson scattering features through wave-particle resonance. The amplitude of the Spitzer-Härm electron distribution function correction term (f1) was varied to match the data and determines the value of the heat flux. Independent measurements of temperature and density obtained from Thomson scattering were used to infer the classical heat flux (q = - κ∇Te) . Time-resolved Thomson-scattering data were obtained at five locations in the corona along the target normal in a blowoff plasma formed from a planar Al target with 1.5 kJ of 351-nm laser light in a 2-ns square pulse. The flux measured through the Thomson-scattering spectra is a factor of 5 less than the κ∇Te measurements. The lack of collisions of heat-carrying electrons suggests a nonlocal model is needed to accurately describe the heat flux. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Physicochemical properties of bactericidal plasma-treated water

    Science.gov (United States)

    Ikawa, Satoshi; Tani, Atsushi; Nakashima, Yoichi; Kitano, Katsuhisa

    2016-10-01

    Plasma-treated water (PTW), i.e. distilled water (DW) exposed to low-temperature atmospheric pressure helium plasma, exhibited strong bactericidal activity against Escherichia coli in suspension even within a few minutes of preparation. This effect was enhanced under acidic conditions. The bactericidal activity of PTW was attenuated according to first-order kinetics and the half-life was highly temperature dependent. The electron spin resonance (ESR) signal of an adduct of the superoxide anion radical (\\text{O}2-\\bullet ) was detected in an aqueous solution using a spin-trapping reagent mixed with PTW, and adding superoxide dismutase to the PTW resulted in a loss of the bactericidal activity and weakening of the ESR adduct signal of \\text{O}2-\\bullet in the spin-trapping. These results suggest that \\text{O}2-\\bullet plays an important role in imparting bactericidal activity to PTW. Moreover, molecular nitrogen was required both in the ambient gas and in the DW used to prepare the PTW. We, therefore, suggest that the reactive molecule in PTW with bactericidal effects is not a free reactive oxygen species but nitrogen atom(s)-containing molecules that release \\text{O}2-\\bullet , such as peroxynitrous acid (ONOOH) or peroxynitric acid (O2NOOH). Considering the activation energy for degradation of these species, we conclude that peroxynitric acid stored in PTW induces the bactericidal effect.

  8. Secondary Electron Yield from Plasma-Treated Niobium

    Science.gov (United States)

    Basovic, Milos; Tiskumara, Rajintha; Samolov, Ana; Cuckov, Filip; Popovic, Svetozar; Vuskovic, Leposava

    2012-10-01

    Future room-size linear accelerators, incorporated in compact light sources and medical therapeutic systems, will use Superconducting Radio Frequency (SRF) cavities to achieve the required beam energy over limited distances. The inhibiting phenomena in these designs are among others resonant multipactor discharges. Present study is intended to help complex cavity surface modification leading to mitigation of multipactors. Behavior of the multipactor discharges depends on the microwave field configuration and on the Secondary Electron Yield (SEY) from the cavity surface. Contaminated surfaces show substantial increase of SEY. Our aim is to reduce SEY using in-situ surface treatment with microwave discharge. We have developed an experimental set up to study the effect of plasma surface treatment on SEY. The system is designed to measure energy distribution of SEY on coin like samples under different incident angles. Clean, contaminated, and plasma-treated samples are placed in a carousel target manifold. Samples and the manifold are manipulated by robotic arm providing multiple degrees of freedom of a whole target system. Here we are reporting our progress and preliminary results from testing the Nb surface samples.

  9. Conceptual design of NBI beamline for VEST plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.S., E-mail: tskim@kaeri.re.kr; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-11-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  10. The Hematocrit Affects the Volume of Plasma Treated With Coupled Plasma Filtration and Adsorption With Predilution.

    Science.gov (United States)

    Finazzi, Stefano; Garbero, Elena; Trussardi, Giampietro; Bertolini, Guido

    2017-05-01

    Coupled plasma filtration and adsorption (CPFA) is an extracorporeal blood purification technique proposed for the treatment of septic-shock. By removing pro- and anti-inflammatory mediators from plasma, CPFA is supposed to have a therapeutic effect on the abnormal inflammatory response seen in this condition. Recently, blood predilution with citrate solution has been adopted to prevent clotting in the CPFA circuit-one of the main problems of the technique. Taking into account the patient's hematocrit, we worked out a formula for the volume of plasma effectively treated by CPFA after predilution. Neglecting this effect, as is commonly done, introduces significant distortions in the estimation of the volume, possibly causing under-treatment. The distortion is stronger when the hematocrit and the predilution fraction are large and weaker when both values shrink. By correctly indicating the daily dose of plasma adsorption received by patients, this formula is essential for assessing the therapeutic efficacy of CPFA and, subsequently, establishing its optimal doses. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. Analysis and Interpretation of the Plasma Dynamic Response to Additional Heating Power using different Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Manini, A

    2002-07-01

    development of this work, the Electron Cyclotron Emission system (ECE) of ASDEX Upgrade is crucial since it allows local measurements of the electron temperature with high temporal and spatial resolutions. The analysis and interpretation of perturbative MECH discharges for power deposition localisation using different diagnostics, such as ECE and SXR measurements, are presented. The most important problem is related to the phase locking between the MECH and the sawtooth activity of the plasma, which disturbs both ECE and SXR measurements. Several techniques have been adopted to circumvent this difficulty. In particular, the Singular Value Decomposition (SVD) and the Generalised Singular Value Decomposition (GSVD) have been tested in both TCV and ASDEX Upgrade discharges. However, both methods are incapable of treating the problem correctly, which leads to potential misinterpretation of the results. A new method based on system identification using the SVD (SI-SVD) is developed and applied. This method, within reasonable limits induced by the assumption of linearity, is capable of simultaneously separating the MECH from the sawtooth contributions to both ECE electron temperature measurements and SXR emission measurements. Such a method is in particular applied to a NBI heated ASDEX Upgrade discharge in which MECH is added in order to analyse electron heat transport in a mostly ion-heated plasma. Since the NBI heating is also partly modulated with short pulses, which coincide with the sawtooth crashes to improve their stability, both the MECH and the NBI deposition profiles are determined. Moreover, treating the signals with the SI-SVD procedure enables a study of the plasma dynamic response also at higher MECH harmonic numbers. The procedure is then used to analyse MECH discharges in TCV using different diagnostics. The profiles determined using the ECE and soft X-ray measurements are compared and interpreted, demonstrating in particular that line integrated soft X

  12. Feasibility of Plasma Treated Clay in Clay/Polymer Nanocomposites Powders for use Laser Sintering (LS)

    Science.gov (United States)

    Almansoori, Alaa; Seabright, Ryan; Majewski, C.; Rodenburg, C.

    2017-05-01

    The addition of small quantities of nano-clay to nylon is known to improve mechanical properties of the resulting nano-composite. However, achieving a uniform dispersion and distribution of the clay within the base polymer can prove difficult. A demonstration of the fabrication and characterization of plasma-treated organoclay/Nylon12 nanocomposite was carried out with the aim of achieving better dispersion of clay platelets on the Nylon12 particle surface. Air-plasma etching was used to enhance the compatibility between clays and polymers to ensure a uniform clay dispersion in composite powders. Downward heat sintering (DHS) in a hot press is used to process neat and composite powders into tensile and XRD specimens. Morphological studies using Low Voltage Scanning Electron Microscopy (LV-SEM) were undertaken to characterize the fracture surfaces and clay dispersion in powders and final composite specimens. Thermogravimetric analysis (TGA) testing performed that the etched clay (EC) is more stable than the nonetched clay (NEC), even at higher temperatures. The influence of the clay ratio and the clay plasma treatment process on the mechanical properties of the nanocomposites was studied by tensile testing. The composite fabricated from (3% EC/N12) powder showed ~19 % improvement in elastic modulus while the composite made from (3% NEC/N12) powder was improved by only 14%). Most notably however is that the variation between tests is strongly reduced when etch clay is used in the composite. We attribute this to a more uniform distribution and better dispersion of the plasma treated clay within polymer powders and ultimately the composite.

  13. ELECTRON HEATING IN A RELATIVISTIC, WEIBEL-UNSTABLE PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul; Eichler, David; Gedalin, Michael [Physics Department, Ben-Gurion University, Be’er-Sheba 84105 (Israel)

    2015-06-20

    The dynamics of two initially unmagnetized relativistic counter-streaming homogeneous ion–electron plasma beams are simulated in two dimensions (2D) using the particle-in-cell (PIC) method. It is shown that current filaments, which form due to the Weibel instability, develop a large-scale longitudinal electric field in the direction opposite to the current carried by the filaments as predicted by theory. This field, which is partially inductive and partially electrostatic, is identified as the main source of net electron acceleration, greatly exceeding that due to magnetic field decay at later stages. The transverse electric field, although larger than the longitudinal field, is shown to play a smaller role in heating electrons, contrary to previous claims. It is found that in one dimension, the electrons become strongly magnetized and are not accelerated beyond their initial kinetic energy. Rather, the heating of the electrons is enhanced by the bending and break up of the filaments, which releases electrons that would otherwise be trapped within a single filament and slow the development of the Weibel instability (i.e., the magnetic field growth) via induction as per Lenz’s law. In 2D simulations, electrons are heated to about one quarter of the initial kinetic energy of ions. The magnetic energy at maximum is about 4%, decaying to less than 1% by the end of the simulation. The ions are found to gradually decelerate until the end of the simulation, by which time they retain a residual anisotropy of less than 10%.

  14. Zinc contamination from brass upon heat treating a superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.W.; Hassenzahl, W.V.

    1994-07-01

    Theoretical calculations predicted that zinc outgassing from brass spacers during a planned heat treatment would likely damage a lab-scale superconducting magnet. This specter was reinforced by a simulated heat treatment, the samples of which were analyzed by gravimetry, metallography, and microprobe chemical analysis. It was found that zinc escaping from the brass could diffuse 80 {mu}m into copper electrical conductors and degrade their conductivity. To avoid this, steel was temporarily substituted for the brass during the heat treatment process.

  15. Ultra-Jet Diagnosis of Heat Treated Material Microstructure

    Science.gov (United States)

    Bochkarev, S. V.; Tsaplin, A. I.; Galinovskii, A. L.; Abashin, M. I.; Barzov, A. A.

    2017-09-01

    An ultra-jet diagnosis method for studying the effect of heat treatment regimes on material structure is suggested. Results of experimental studies of hardness, depth of hydraulic cavities, and microstructure of alloy steel specimens after various heat treatment regimes are provided.

  16. Understanding Solar Coronal Heating through Atomic and Plasma Physics Experiments

    Science.gov (United States)

    Savin, Daniel Wolf; Arthanayaka, Thusitha; Bose, Sayak; Hahn, Michael; Beiersdorfer, Peter; Brown, Gregory V.; Gekelman, Walter; Vincena, Steve

    2017-08-01

    Recent solar observations suggest that the Sun's corona is heated by Alfven waves that dissipate at unexpectedly low heights in the corona. These observations raise a number of questions. Among them are the problems of accurately quantifying the energy flux of the waves and that of describing the physical mechanism that leads to the wave damping. We are performing laboratory experiments to address both of these issues.The energy flux depends on the electron density, which can be measured spectroscopically. However, spectroscopic density diagnostics have large uncertainties, because they depend sensitively on atomic collisional excitation, de-excitation, and radiative transition rates for multiple atomic levels. Essentially all of these data come from theory and have not been experimentally validated. We are conducting laboratory experiments using the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory that will provide accurate empirical calibrations for spectroscopic density diagnostics and which will also help to guide theoretical calculations.The observed rapid wave dissipation is likely due to inhomogeneities in the plasma that drive flows and currents at small length scales where energy can be more efficiently dissipated. This may take place through gradients in the Alfvén speed along the magnetic field, which causes wave reflection and generates turbulence. Alternatively, gradients in the Alfvén speed across the field can lead to dissipation through phase-mixing. Using the Large Plasma Device (LAPD) at the University of California Los Angeles, we are studying both of these dissipation mechanisms in the laboratory in order to understand their potential roles in coronal heating.

  17. Comparison of efficacy of unheated and heat-treated Sahara honey on wound healing in rabbits

    Directory of Open Access Journals (Sweden)

    Baghdad Khiati

    2015-02-01

    Full Text Available Objective: To investigate the efficacy of unheated and heat-treated Sahara honey on wound healing in rabbits on the basis of macroscopic observation changes. Methods: Eight female rabbits were used. Using aseptic surgical technique, a 3 cm incision was made on the back of each rabbit and two rabbits with injuries in each group were treated daily with a topical application of unheated and heated honey, sulfadiazine and sterile saline, respectively. Results: The unheated honey demonstrated the highest activity on the wound compared to reference ointment silver sulfadiazine, heat-treated honey and sterile saline respectively. Further the present investigation proves that unheated honey is possessing superior wound healing activity than that of heat-treated honey. Conclusions: The result of this study confirms that unheated honey had the best wound healing effect even better than heat-treated honey.

  18. Ion cyclotron resonance heating system in the RT-1 magnetospheric plasma

    Science.gov (United States)

    Nishiura, M.; Kawazura, Y.; Yoshida, Z.; Kenmochi, N.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-08-01

    We have developed an ion cyclotron resonance frequency (ICRF) heating system for the Ring Trap 1 (RT-1) magnetospheric device. We excite slow waves from the polar region of the dipole magnetic field. The target helium plasma is produced by electron cyclotron heating. The electrons comprise high-temperature (>10 keV) and low-temperature (wave electric field in the plasma.

  19. Propinquity of current and vortex structures: effects on collisionless plasma heating

    CERN Document Server

    Parashar, Tulasi N

    2016-01-01

    Intermittency of heating in weakly collisional plasma turbulence is an active subject of research, with significant potential impact on understanding of the solar wind, solar corona and astrophysical plasmas. Recent studies suggest a role of vorticity in plasma heating. In magnetohydrodynamics small scale vorticity is generated near current sheets and this effect persists in kinetic plasma, as demonstrated here with hybrid and fully kinetic Particle-In-Cell (PIC) simulations. Furthermore, vorticity enhances local kinetic effects, with a generalized resonance condition selecting sign-dependent enhancements or reductions of proton heating and thermal anisotropy. In such plasmas heating is correlated with vorticity and current density, but more strongly with vorticity. These results help explain several prior results that find kinetic effects and energization near to, but not centered on, current sheets. Evidently intermittency in kinetic plasma involves multiple physical quantities, and the associated coherent ...

  20. Thermodynamics of the interconversion of heat and work via plasma electric fields

    Science.gov (United States)

    Avinash, K.

    2010-12-01

    Thermodynamics of a system where a group of cold charged particles locally confined in a volume VP within a warm plasma of temperature T and volume V (VPthermodynamic functions of the model, e.g., Helmholtz free energy, internal energy, entropy, electrostatic pressure of charged particles, are calculated from first principles. In the homogeneous limit, an equation of state for the electrostatic (ES) pressure of charged particles is derived and the internal energy is shown to consist solely of the thermal energy of the background plasma. The interconversion of plasma heat and mechanical work via isothermal compression/expansion of plasma electric field (associated with charged particles) in a plasma heat pump and ES heat engine cycle is demonstrated. The efficiency of the plasma heat pump is discussed in terms of its power efficiency ηP and is shown to be close to unity

  1. Effects of a plasma heating procedure for inactivating Ebola virus on common chemical pathology tests.

    Science.gov (United States)

    Chong, Y K; Ng, W Y; Chen, Sammy P L; Mak, Chloe M

    2015-06-01

    The recent declaration of Ebola virus disease as epidemic by the World Health Organization indicates urgency for affected countries and their laboratories to evaluate and provide treatment to patients potentially infected by the Ebola virus. A heat inactivation procedure involving treating specimens at 60°C for 60 minutes has been suggested for inactivation of the Ebola virus. This study aimed at evaluating the effect of plasma heating on common biochemical tests. Comparative experimental study. A regional chemical pathology laboratory in Hong Kong. Forty consecutive plasma specimens for general chemistry analytes on Beckman Coulter AU5822 and another 40 plasma specimens for troponin I analysis on Access 2 Immunoassay System were obtained, anonymised, and divided into two aliquots. One aliquot was analysed directly and the other was analysed after heating at 60°C for 60 minutes. A total of 20 chemical pathology tests were evaluated. Nine tests (sodium, potassium, chloride, urea, creatinine, total calcium, phosphate, total protein, and glucose) were not significantly affected by the heat inactivation procedure and remained clinically interpretable. Results for magnesium (15% mean increase), albumin (41% mean increase), bilirubin (8% mean decrease), amylase (27% mean decrease), and troponin I (76% mean decrease) were still interpretable using regression estimation with proportional bias. However, all enzymes studied except amylase (alanine transaminase, aspartate transaminase, alkaline phosphatase, gamma-glutamyltransferase, creatine kinase, and lactate dehydrogenase) were inactivated to a significant degree. Their Pearson r or Spearman rho values ranged from no significant correlation (P≥0.05) to 0.767, and most normality was rejected. Heat inactivation results in no significant change in electrolytes, glucose, and renal function tests, but causes a significant bias for many analytes. Recognition of the relationship between pre- and post-heat inactivation

  2. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  3. Cryogenic mechanical loss measurements of heat-treated hafnium dioxide

    Science.gov (United States)

    Abernathy, M. R.; Reid, S.; Chalkley, E.; Bassiri, R.; Martin, I. W.; Evans, K.; Fejer, M. M.; Gretarsson, A.; Harry, G. M.; Hough, J.; MacLaren, I.; Markosyan, A.; Murray, P.; Nawrodt, R.; Penn, S.; Route, R.; Rowan, S.; Seidel, P.

    2011-10-01

    Low mechanical loss, high index-of-refraction thin-film coating materials are of particular interest to the gravitational wave detection community, where reduced mirror coating thermal noise in gravitational wave detectors is desirable. Current studies are focused on understanding the loss of amorphous metal oxides such as SiO2, Ta2O5 and HfO2. Here, we report recent measurements of the temperature dependence of the mechanical loss of ion-beam sputtered hafnium dioxide (HfO2) coatings that have undergone heat treatment. The results indicate that, even when partially crystallized, these coatings have lower loss than amorphous Ta2O5 films below ~100 K and that their loss exhibits some features which are heat-treatment dependent in the temperature range of ~100-200 K, with higher heat treatment yielding lower mechanical loss. The potential for using silica doping of hafnia coatings to prevent crystallization is discussed.

  4. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  5. CONVECTIVE AND RADIATIVE HEAT TRANSFER DURING MELTING WIRE IN THE FLOW OF PLASMA ARC

    Directory of Open Access Journals (Sweden)

    A. V. Yershov

    2014-07-01

    Full Text Available The features of convection and radiant heat exchange of argon plasma cross flow from the surface of the melted butt of steel wire with plasma coating on metal surface are considered. We investigated the uneven distribution of convective heat flow around the perimeter of the heating wire The main part of convective heat flux of plasma centered on its wire is shown,. The density of convective heat flow in the neighborhood of its critical point during the heating of the plasma flow in a wire coating is defined. Calculation of the heat flux density is a 3-d plasma radiation. It is shown that the spherical layer of 2 mm radius of argon plasma is optically transparent in the temperature range (8–20 103 k, since the degree of this layer blackness is considerably less than one. It is determined that the density of heat flow radiation of steel electrode surface is negligible compared with the radiation from the plasma column with the temperature 12·103 К

  6. Performance of broiler chickens served heat-treated fluted pumpkin ...

    African Journals Online (AJOL)

    The broiler starters were fed the same starter diet, while broiler finishers were equally fed the same finisher diet. Water and feeds were served ad-libitum. The FPLE is a valuable protein and mineral supplement for broiler chickens. One to five minutes heat treatment of FPLE reduced the concentrations of phytate and tannin ...

  7. Magnetic properties of heat treated bacterial ferrihydrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balaev, D.A.; Krasikov, A.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, Krasnoyarsk 660041 (Russian Federation); Dubrovskiy, A.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wroclaw (Poland); Popkov, S.I.; Stolyar, S.V. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); Siberian Federal University, Krasnoyarsk 660041 (Russian Federation); Bayukov, O.A.; Iskhakov, R.S. [Kirensky Institute of Physics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); Ladygina, V.P. [Presidium of Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk 660036 (Russian Federation); Yaroslavtsev, R.N. [Siberian Federal University, Krasnoyarsk 660041 (Russian Federation)

    2016-07-15

    The magnetic properties of ferrihydrite nanoparticles, which are products of vital functions of Klebsiella oxitoca bacteria, have been studied. The initial powder containing the nanoparticles in an organic shell was subjected to low-temperature (T=160 °C) heat treatment for up to 240 h. The bacterial ferrihydrite particles exhibit a superparamagnetic behavior. Their characteristic blocking temperature increases from 26 to 80 K with the heat treatment. Analysis of the magnetization curves with regard to the magnetic moment distribution function and antiferromagnetic contribution shows that the low-temperature heat treatment enhances the average magnetic moment of a particle; i.e., the nanoparticles coarsen, probably due to their partial agglomeration during heat treatment. It was established that the blocking temperature nonlinearly depends on the particle volume. Therefore, a model was proposed that takes into account both the bulk and surface magnetic anisotropy. Using this model, the bulk and surface magnetic anisotropy constants K{sub V}≈1.7×10{sup 5} erg/cm{sup 3} and K{sub S}≈0.055 erg/cm{sup 2} have been determined. The effect of the surface magnetic anisotropy of ferrihydrite nanoparticles on the observed magnetic hysteresis loops is discussed. - Highlights: • Ferrihydrite nanoparticles of biogenic origin are obtained. • Magnetic characterization reveals superparamagnetic behavior. • The blocking temperature increases upon the low-temperature (T=160 °C) heat treatment. • The blocking temperature nonlinearly depends on the particle volume. • The bulk and surface magnetic anisotropy constants have been determined.

  8. Minority heating scenarios in ^4He(H) and ^3He(H) SST-1 plasmas

    Science.gov (United States)

    Chattopadhyay, Asim Kumar

    2018-01-01

    A numerical analysis of ion cyclotron resonance heating scenarios in two species of low ion temperature plasma has been done to elucidate the physics and possibility to achieve H-mode in tokamak plasma. The analysis is done in the steady-state superconducting tokamak, SST-1, using phase-I plasma parameters which is basically L-mode plasma parameters having low ion temperature and magnetic field with the help of the ion cyclotron heating code TORIC combined with `steady state Fokker-Planck quasilinear' (SSFPQL) solver. As a minority species hydrogen has been used in ^3He and ^4He plasmas to make two species ^3He(H) and ^4He(H) plasmas to study the ion cyclotron wave absorption scenarios. The minority heating is predominant in ^3He(H) and ^4He(H) plasmas as minority resonance layers are not shielded by ion-ion resonance and cut-off layers in both cases, and it is better in ^4He(H) plasma due to the smooth penetration of wave through plasma-vacuum surface. In minority concentration up to 15%, it has been observed that minority ion heating is the principal heating mechanism compared to electron heating and heating due to mode conversion phenomena. Numerical analysis with the help of SSFPQL solver shows that the tail of the distribution function of the minority ion is more energetic than that of the majority ion and therefore, more anisotropic. Due to good coupling of the wave and predominance of the minority heating regime, producing energetic ions in the tail region of the distribution function, the ^4He(H) and ^3He(H) plasmas could be studied in-depth to achieve H-mode in two species of low-temperature plasma.

  9. International, prospective haemovigilance study on methylene blue-treated plasma.

    Science.gov (United States)

    Noens, L; Vilariño, Ma D; Megalou, A; Qureshi, H

    2017-05-01

    Methylene blue is a phenothiazine dye, which in combination with visible light has virucidal and bactericidal properties, disrupting the replication of a broad range of enveloped viruses and some non-enveloped viruses. The study objective was to collect data on adverse reactions occurring with methylene blue plasma administered in a routine clinical practice environment and document their characteristics and severity. This was an open label, multicentre, non-controlled, non-randomized, non-interventional study. Patients who receive a methylene blue plasma transfusion were observed for any signs and symptoms (adverse reactions) within 24 h safter the start of the transfusion, in different hospitals for a study duration of at least 1 year. A total of 19 315 methylene blue plasma units were transfused. There were eight patients with adverse reactions recorded during the study, one of them serious. Two had more than one reaction (two and four, respectively). Three patients had previous transfusions with methylene blue plasma only. Methylene blue plasma has a very acceptable safety profile with a rate of serious adverse reactions of 0·5/10 000 units. © 2017 International Society of Blood Transfusion.

  10. Numerical investigation of plasma edge transport and limiter heat fluxes in Wendelstein 7-X startup plasmas with EMC3-EIRENE

    Science.gov (United States)

    Effenberg, F.; Feng, Y.; Schmitz, O.; Frerichs, H.; Bozhenkov, S. A.; Hölbe, H.; König, R.; Krychowiak, M.; Pedersen, T. Sunn; Reiter, D.; Stephey, L.; W7-X Team

    2017-03-01

    The results of a first systematic assessment of plasma edge transport processes for the limiter startup configuration at Wendelstein 7-X are presented. This includes an investigation of transport from intrinsic and externally injected impurities and their impact on the power balance and limiter heat fluxes. The fully 3D coupled plasma fluid and kinetic neutral transport Monte Carlo code EMC3-EIRENE is used. The analysis of the magnetic topology shows that the poloidally and toroidally localized limiters cause a 3D helical scrape-off layer (SOL) consisting of magnetic flux tubes of three different connection lengths L C. The transport in the helical SOL is governed by L C as topological scale length for the parallel plasma loss channel to the limiters. A clear modulation of the plasma pressure with L C is seen. The helical flux tube topology results in counter streaming sonic plasma flows. The heterogeneous SOL plasma structure yields an uneven limiter heat load distribution with localized peaking. Assuming spatially constant anomalous transport coefficients, increasing plasma density yields a reduction of the maximum peak heat loads from 12 MWm-2 to 7.5 MWm-2 and a broadening of the deposited heat fluxes. The impact of impurities on the limiter heat loads is studied by assuming intrinsic carbon impurities eroded from the limiter surfaces with a gross chemical sputtering yield of 2 % . The resulting radiative losses account for less than 10% of the input power in the power balance with marginal impact on the limiter heat loads. It is shown that a significant mitigation of peak heat loads, 40-50%, can be achieved with controlled impurity seeding with nitrogen and neon, which is a method of particular interest for the later island divertor phase.

  11. Complementary electrowetting devices on plasma-treated fluoropolymer surfaces.

    Science.gov (United States)

    Kim, D Y; Steckl, A J

    2010-06-15

    A reversal of the normal two-fluid competitive (water vs oil) electrowetting (nEW) on dielectric has been achieved by plasma irradiation of the normally hydrophobic fluoropolymer followed by thermal annealing. This process first renders the surface hydrophilic and then returns it to its normal hydrophobic properties as measured by water droplet contact and rolling angles. In the plasma-irradiated and annealed EW device (pEW), the normal two-fluid EW action is reversed after an initial charging step, with the oil layer being displaced at zero voltage and being returned at high voltage. A possible explanation of this effect is a plasma-induced modification of the fluoropolymer, rendering it more susceptible to charge injection and trapping at high voltage. nEW and pEW devices exhibit complementary EW operation, as verified by oil movement and optical transmission. This method can lead to low-power operation of two-fluid EW devices.

  12. Experimental Electron Heat Diffusion in TJ-II ECRH Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V.I.; Lopez-Bruna, D.; Herranz, J.; Castejon, F.

    2006-07-01

    Interpretative transport has been used to revisit the global scalings of TJ-II ECRH plasmas from a local perspective. Density, rotational transform and ERCH power scans were analysed based upon Thomson Scattering data (electron density and temperature) in steady state discharges. A simple formula to obtain the thermal conductivity, assuming pure diffusion and negligible convective heat fluxes was used in a set of 161 discharges. All the analysis was performed with the ASTRA transport shell. The density scan indicates that inside n=0,4 there is no significant change of e with density in the range studied (0.4 (1019m-3) 1.0), while in 0,5 <0,8 approximately, e decreases with density. In the rotational transform scan it is found that the values of e when a low order rational of the rotational transform is present locally seem to be smaller for the corresponding range, although it is apparent a general beneficial effect of the corresponding change in magnetic structure. Finally, in the ECRH power scan, e is found to have an overall increment in 0,2

  13. Bandgap opening in oxygen plasma-treated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Nourbakhsh, Amirhasan; Cantoro, Mirco; Pourtois, Geoffrey; Clemente, Francesca; Van der Veen, Marleen H; Heyns, Marc M; De Gendt, Stefan [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Vosch, Tom; Hofkens, Johan [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f, B-3001 Leuven (Belgium); Sels, Bert F, E-mail: nourbakh@imec.be, E-mail: cantoro@imec.be [Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, B-3001 Leuven (Belgium)

    2010-10-29

    We report a change in the semimetallic nature of single-layer graphene after exposure to oxygen plasma. The resulting transition from semimetallic to semiconducting behavior appears to depend on the duration of the exposure to the plasma treatment. The observation is confirmed by electrical, photoluminescence and Raman spectroscopy measurements. We explain the opening of a bandgap in graphene in terms of functionalization of its pristine lattice with oxygen atoms. Ab initio calculations show more details about the interaction between carbon and oxygen atoms and the consequences on the optoelectronic properties, that is, on the extent of the bandgap opening upon increased functionalisation density.

  14. Silver nano particle formation on Ar plasma - treated cinnamyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, S. [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); Hochschule fuer Angewandte Wissenschaft und Kunst, Fakultaet fuer Naturwissenschaften und Technik, Von-Ossietzky-Strasse 99, 37085 Goettingen (Germany); Marschewski, M. [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); Wegewitz, L.; Maus-Friedrichs, W. [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); Clausthaler Zentrum fuer Materialtechnik, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); Vioel, W. [Hochschule fuer Angewandte Wissenschaft und Kunst, Fakultaet fuer Naturwissenschaften und Technik, Von-Ossietzky-Strasse 99, 37085 Goettingen (Germany)

    2012-02-01

    Metastable induced electron spectroscopy, ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy are employed to study the adsorption of silver on cinnamyl alcohol films prepared on Au(111) substrates by thermal evaporation. Additionally, the impact of an Ar atmosphere dielectric barrier discharge plasma applied to the cinnamyl alcohol film preliminary to the Ag adsorption is investigated. In both cases silver nano particles with an average diameter of 9 nm are formed. These particles do not interact chemically with the underlying cinnamyl alcohol film. We do not find any influence of the preliminary Ar plasma-treatment on the adsorption behavior at all.

  15. Semi-isostatic densification of heat-treated radiata pine

    OpenAIRE

    Boonstra, Michiel J; Blomberg, J

    2007-01-01

    Semi-isostatic densification is a useful method to increase the density and to improve the mechanical properties of fast-grown softwood species like radiata pine. A major disadvantage of this method is the almost complete recovery of the original dimensions when densified wood is exposed to moisture. Heat treatment improves the dimensional stability of wood and might be a useful method to prevent this shape-recovery after densification. However, no or only a limited effect on the shape-recove...

  16. High power plasma heating experiments on the Proto-MPEX facility

    Science.gov (United States)

    Bigelow, T. S.; Beers, C. J.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Diem, S. J.; Goulding, R. H.; Green, D. L.; Kafle, N.; Rapp, J.; Showers, M. A.

    2017-10-01

    Work is underway to maximize the power delivered to the plasma that is available from heating sources installed on the Prototype Materials Plasma Exposure eXperiment (Proto-MPEX) at ORNL. Proto-MPEX is a linear device that has a >100 kW, 13.56 MHz helicon plasma generator available and is intended for material sample exposure to plasmas. Additional plasma heating systems include a 10 kW 18 GHz electron cyclotron heating (ECH) system, a 25 kW 8 MHz ion cyclotron heating ICH system, and a 200 kW 28 GHz electron Bernstein wave (EBW) and ECH system. Most of the heating systems have relatively good power transmission efficiency, however, the 28 GHz EBW system has a lower efficiency owing to stringent requirements on the microwave launch characteristics for EBW coupling combined with the lower output mode purity of the early-model gyrotron in use and its compact mode converter system. A goal for the Proto-MPEX is to have a combined heating power of 200 kW injected into the plasma. Infrared emission diagnostics of the target plate combined with Thomson Scattering, Langmuir probe, and energy analyzer measurements near the target are utilized to characterize the plasmas and coupling efficiency of the heating systems. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  17. Barrier properties of heat treated starch Pickering emulsions.

    Science.gov (United States)

    Sjöö, Malin; Emek, Sinan Cem; Hall, Tina; Rayner, Marilyn; Wahlgren, Marie

    2015-07-15

    There is a recognized technological need for delivery systems encapsulating lipophilic substances in food and pharmaceutical products. Pickering emulsions can provide well-defined and highly stable systems, but may not provide good enough barrier properties. Starch granules, recently being used for Pickering stabilization, have the advantage of the ability to swell during gelatinization. Hence, this property could be used to tune and control barrier properties. Oil-in-water Pickering emulsions stabilized by starch were subject to heat treatment at different conditions. The influence of temperature, time, and storage on emulsion drop characteristics was evaluated. In order to further evaluate the barrier properties, lipolysis using the pH-stat method was applied and the effect of starch concentration, treatment temperature, and preliminary oral conditions were also investigated. A better encapsulating barrier was obtained by starch swelling at the oil drop interface. This was seen as reduced lipase activity. The internal oil drop size remained intact and the starch was kept at the interface during heat treatment. The extent of swelling could be controlled by the heating conditions and had impact on the ability to prevent lipase transport through the starch barrier layer. Addition of α-amylase simulating oral digestion only had minor impact on the barrier effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Physical properties of heat-treated rattan waste binderless particleboard

    Science.gov (United States)

    Tajuddin, Maisarah; Ahmad, Zuraida; Halim, Zahurin; Maleque, Md Abd; Ismail, Hanafi; Sarifuddin, Norshahida

    2017-07-01

    The objective of this study is to investigate the effects of heat treatment on the properties of binderless particleboard (BPB) fabricated via hot-pressing process with pressing temperature, pressing time and pressing pressure of 180°C, 5 minutes and 1 MPa, respectively. The fabricated BPB with density in the range of 0.8-0.95g cm-3 was heated in a temperature-controlled laboratory chamber at 80°C, 120°C and 160°C for period of 2 and 8 hours before underwent physical observation, mass loss measurement and thickness swelling test. The samples had remarkable color changes, mainly with samples of treatment temperature of 160˚C, where the color differences were 9.5 and 20.3. This changed the fabricated BPB samples from yellowish brown to dark brown color when treatment conditions increased. Darker color indicates greater mass loss due to severity of chemical component in the powder. Dimensional stability of fabricated BPB was improved with higher treatment temperature as more cellulose cross-linked and hemicellulose degraded that removed the hygroscopicity behavior of powder. These results revealed that heat treatment helped in improving the BPB physical properties, particularly in dimensional stability of boards.

  19. Toroidal inhomogeneity of plasma density fluctuations during ECR plasma heating in the L-2M stellarator

    Science.gov (United States)

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Stepakhin, V. D.; Kharchev, N. K.

    2017-11-01

    Correlation between short-wavelength ( k ⊥ ≈ 20-30 cm-1) and long-wavelength ( k ⊥ ≈ 1-2 cm-1) plasma density fluctuations in two poloidal cross sections of the stellarator chamber separated by 1/14 or 5/14 of the torus perimeter was studied using collective scattering of radiation of two 75-GHz gyrotrons and radiation of a 37-GHz Doppler reflectometer at an ECR heating power density of 1.6-3.2 MW/m3. It is found that excitation of turbulent fluctuations is bursty in character and that fluctuations excited in different L-2M cross sections are uncorrelated. It is shown that the energy of turbulent fluctuations is modulated by a low frequency of 5-20 kHz. An idea is put forward that anomalous transport is toroidally inhomogeneous.

  20. Germination, outgrowth and vegetative growth kinetics of dry heat-treated individual spores ofBacillusspecies.

    Science.gov (United States)

    He, Lin; Chen, Zhan; Wang, Shiwei; Wu, Muying; Setlow, Peter; Li, Yong-Qing

    2018-01-12

    DNA damage kills dry-heated spores of Bacillus subtilis , but dry heat-treatment effects on spore germination and outgrowth have not been studied. This is important, since if dry heat-killed spores germinate and undergo outgrowth, toxic proteins could be synthesized. Here, Raman spectroscopy and differential interference contrast microscopy were used to study germination and outgrowth of individual dry heat-treated B. subtilis and Bacillus megaterium spores. Major findings in this work were as follows. 1) Spores dry heat-treated at 140°C for 20 min nearly all lost viability but retained their Ca 2+ -dipicolinic acid (CaDPA) depot. 2) In most cases, dry heat treatment increased the average times of and variability in all major events in B. subtilis spore germination with nutrient germinants or CaDPA, and one nutrient germination event with B. megaterium spores. 3) B. subtilis spore germination with dodecylamine, which activates spores' CaDPA release channel, was unaffected by dry heat treatment. 4) These results indicate that dry heat treatment likely damages spore proteins important in nutrient germinant recognition and cortex peptidoglycan hydrolysis, but not CaDPA release itself. 5) Analysis of single spores incubated on nutrient-rich agar showed that while dry heat-treated spores that are dead can complete germination, they cannot proceed into outgrowth thus not to vegetative growth. The results of this study provide new information on effects of dry heat on bacterial spores, and indicate that dry heat sterilization regimens should give spores that cannot outgrow and thus cannot synthesize potentially dangerous proteins. IMPORTANCE Much research has shown that high temperature dry heat is a promising means for the inactivation of spores on medical devices and spacecraft decontamination. Dry heat is known to kill Bacillus subtilis spores by DNA damage. However, knowledge about effects of dry heat treatment on spore germination and outgrowth is limited

  1. Self-consistent plasma chemistry model for surface microdischarge in humid air including effects of ohmic heating and gas flow

    Science.gov (United States)

    Yi, Changho; Yoon, Sung-Young; Eom, Sangheum; Park, Seungil; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae

    2017-10-01

    A numerical model is presented for surface microdischarges (SMDs) in flowing humid air at atmospheric pressure, to investigate the effects of the direct ohmic heating of gases in the discharge layer, and the transports of heat and particles by gas flow. Using a simplified configuration of heat transfer and gas flow, the proposed model calculated not only the densities of neutral species but also the temperatures of gases as time dependent variables. The calculated dynamics for various reactive oxygen and nitrogen species showed reasonable agreement with the experimental results obtained by Fourier transformed infrared absorption spectroscopy, while the calculated dynamics without ohmic heating of gases in the discharge layer showed significant disagreement. These results imply that local ohmic heating of the thin discharge layer by the microdischarge itself considerably affected the rate constants of the temperature dependent chemical reactions. The dynamics of the neutral species were also affected by gas flow, both directly through particle transport, and indirectly through cooling. Accordingly, to properly simulate the dynamics of reactive neutral species in SMDs, plasma chemistry models should treat plasmas as sources of both particles and heat which can be deliberately transported by gas flow.

  2. Effect of solvent/detergent-treated pooled plasma on fibrinolysis in reconstituted whole blood.

    Science.gov (United States)

    Saadah, Nicholas H; van der Meer, Pieter F; Brinkman, Herm Jan M; de Korte, Dirk; Bontekoe, Ido J; Korsten, Herbert H; Middelburg, Rutger A; van der Bom, Johanna G; Schipperus, Martin R

    2017-10-01

    Hyperfibrinolysis has been observed in patients heavily transfused with solvent/detergent-treated pooled plasma (S/D plasma). We compared coagulation and fibrinolytic variables in blood containing S/D plasma with blood containing fresh-frozen plasma (FFP), with and without α2-antiplasmin or tranexamic acid (TXA) supplementation. Whole blood samples were reconstituted from red blood cells, platelet (PLT) concentrates, and varying mixtures of FFP and S/D plasma. Hematocrit and PLT count of reconstituted whole blood samples were varied. For a subset of runs, α2-antiplasmin or TXA was added to S/D plasma whole blood samples. Thromboelastography (TEG) analysis was performed to assess 50% clot lysis time (CLT 50% ), maximum amplitude (MA), and initial clotting time (R-time). The change in CLT 50% of whole blood as the plasma compartment transitions from FFP to S/D plasma was -52% (95% confidence interval [CI], -60% to -45%; p plasma in whole blood. α2-Antiplasmin and TXA restored clot lysis time in S/D plasma whole blood. Whole blood with S/D plasma has shorter clot lysis times in vitro compared to whole blood with FFP. α2-Antiplasmin and TXA restore clot lysis time of S/D plasma whole blood to that of FFP whole blood. Clinicians should be aware of the decreased clot lysis time associated with S/D plasma transfusion. © 2017 AABB.

  3. Dry-heat treatment process for enhancing viral safety of an antihemophilic factor VIII concentrate prepared from human plasma.

    Science.gov (United States)

    Kim, In Seop; Choi, Yong Woon; Kang, Yong; Sung, Hark Mo; Shin, Jeong Sup

    2008-05-01

    Viral safety is a prerequisite for manufacturing clinical antihemophilic factor VIII concentrates from human plasma. With particular regard to the hepatitis A virus (HAV), a terminal dry-heat treatment (100 degrees for 30 min) process, following lyophilization, was developed to improve the virus safety of a solvent/detergent-treated antihemophilic factor VIII concentrate. The loss of factor VIII activity during dry-heat treatment was of about 5%. No substantial changes were observed in the physical and biochemical characteristics of the dry-heat-treated factor VIII compared with those of the factor VIII before dry-heat treatment. The dry-heat-treated factor VIII was stable for up to 24 months at 4oC. The dry-heat treatment after lyophilization was an effective process for inactivating viruses. The HAV, murine encephalomyocarditis virus (EMCV), and human immunodeficiency virus (HIV) were completely inactivated to below detectable levels within 10 min of the dry-heat treatment. Bovine herpes virus (BHV) and bovine viral diarrhea virus (BVDV) were potentially sensitive to the treatment. However porcine parvovirus (PPV) was slightly resistant to the treatment. The log reduction factors achieved during lyophilization and dry-heat treatment were > or =5.55 for HAV, > or =5.87 for EMCV, > or =5.15 for HIV, 6.13 for BHV, 4.46 for BVDV, and 1.90 for PPV. These results indicate that dry-heat treatment improves the virus safety of factor VIII concentrates, without destroying the activity. Moreover, the treatment represents an effective measure for the inactivation of non-lipid-enveloped viruses, in particular HAV, which is resistant to solvent/detergent treatment.

  4. High Magnetic Field Processing - A Heat-Free Heat Treating Method

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kenik, Edward A [ORNL; Parish, Chad M [ORNL; Rios, Orlando [ORNL; Rogers, Hiram [ORNL; Manuel, Michele [University of Florida, Gainesville; Kisner, Roger A [ORNL; Watkins, Thomas R [ORNL; Murphy, Bart L [ORNL

    2012-08-01

    -free', heat treating technology. Lower residual stresses in HTMP treated materials are anticipated since no thermal strains are involved in inducing the transformation of retained austenite to martensite in high alloy steel. (2) The simultaneous increase of 12% in yield strength and 22% in impact energy in a bainitic alloy using HTMP processing. This is a major breakthrough in materials processing for the next generation of structural materials since conventionally processed materials show a reduction in impact toughness with an increase in yield strength. HTMP is a new paradigm to beneficially increase both yield strength and impact energy absorption simultaneously. (3) HTMP processing refined both the martensite lath population and the carbide dispersion in a bainitic steel alloy during Gausstempering. The refinement was believed to be responsible for the simultaneous increase in strength and toughness. Hence, HTMP significantly impacts nucleation and growth phenomenon. (4) HTMP processing developed comparable ultimate tensile strength and twice the impact energy in a lower cost, lower alloy content ({approx}8% alloy content) steel, compared to highly alloyed, (31% alloy elements involving Ni, Co, and Mo) 250-grade margining steel. Future low-cost HTMP alloys appear viable that will exceed the structural performance of highly alloyed materials that are conventionally processed. This economic benefit will enable U.S. industry to reduce cost (better more competitive worldwide) while maintaining or exceeding current performance. (5) EMAT processed cast iron exhibits significantly higher hardness (by 51% for a 9T condition) than a no-field processed sample. (6) EMAT produced microstructures in cast iron resulted in an unique graphite nodule morphology, a modified pearlite content, and unique carbide types, that formed during solidification and cooling. (7) EMAT processed nanoparticle dispersions in Mg resulted in a very fine, unagglomerated distribution of the nanoparticles in

  5. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    OpenAIRE

    Mboyi, Kalomba; Ren, Junxue; Liu, Yu

    2015-01-01

    A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the e...

  6. Modification of static bending strength properties of Eucalyptus grandis heat-treated wood

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Gonzalez de Cademartori

    2012-12-01

    Full Text Available The present study describes the effect of thermal rectification on physical and mechanical properties of Eucalyptus grandis wood at different levels of temperature and time. Samples of Eucalyptus grandis wood (10 × 10 × 200 mm were heat-treated at 180, 200, 220 and 240 °C during 4 and 8 hours. The mechanical properties of heat-treated and untreated samples were determined by static bending tests. The physical properties were determined by weight loss and swelling tests. The results showed that modulus of elasticity, modulus of rupture, weight loss, volumetric swelling and linear swelling were affected significantly by the thermal rectification. However, the length of exposure influenced just weight loss, while the temperature influenced all the studied properties of heat-treated wood. More significant modifications with treatments at a temperature of 200 °C or higher were found in the properties of heat-treated wood.

  7. Structural and Phase Transformations in Water-Vapour-Plasma-Treated Hydrophilic TiO 2 Films

    National Research Council Canada - National Science Library

    L. Pranevicius; M. Urbonavicius; S. Tuckute; K. Gedvilas; T. Rajackas; L. L. Pranevicius; D. Milcius

    2012-01-01

      We have investigated structural and phase transformations in water-vapor-plasma-treated 200-300 nm thick Ti films, maintained at room temperature, by injecting water vapor into radio frequency (RF...

  8. Atomic force microscopy of surface topography of nitrogen plasma treated steel

    CERN Document Server

    Mahboubi, F

    2002-01-01

    Nitriding of steels, using plasma environments has been practiced for many years. A lot of efforts have been put on developing new methods, such as plasma immersion ion implantation (Pl sup 3) and radio frequency (RF) plasma nitriding, for mass transfer of nitrogen into the surface of the work piece. This article presents the results obtained from an in depth investigation of the surface morphology of the treated samples, carried out using an atomic force microscope. Samples from a microalloyed steel, were treated by both methods for 5 hours at different temperatures ranging from 350 to 550 sup d eg sup C in 75% N sub 2 -25% H sub 2 atmosphere. It has been found that the surface of the samples treated by PI sup 3 technique, although having more favorable properties, were rougher than the surfaces treated by RF plasma nitriding.

  9. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...... LSI treatment. A subsequent spray drying was found not to affect the degree of denaturation. WPC gels were found to become softer, as function of increasing temperature during LSI treatment of WPC. Furthermore, pH and conductivity of WPC largely affected both the axial stress and the Hencky strain...

  10. Heat and Radiofrequency Plasma Glow Discharge Pretreatment of a Titanium Alloy: Eveidence for Enhanced Osteoinductive Properties

    Science.gov (United States)

    Rapuano, Bruce E.; Singh, Herman; Boskey, Adele L.; Doty, Stephen B.; MacDonald, Daniel E.

    2013-01-01

    It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone-implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium-phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium-phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X-ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium-and phosphorus-containing particles on untreated and treated disks that were more numerous on fibronectin-coated disks. These particles were observed earliest (1 week) on RFGD-pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2–4 weeks; a greater effect was observed for fibronectin-coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy. PMID:23494951

  11. Electron cyclotron resonance heating in a short cylindrical plasma ...

    Indian Academy of Sciences (India)

    produced plasmas are still not well-investigated. To study these ECR-produced plasmas ... Section 4 contains the presentation and interpretation of the main experimental results. Section 5 contains the discussion and the final conclusion. 2.

  12. Plywood made from plasma-treated veneers: Shear strength after shrinkage-swelling stress

    OpenAIRE

    Wascher, R.; Avramidis, G.; Kühn, C.; Militz, H.; Viöl, W.

    2017-01-01

    Thermally modified and unmodified beech veneers in untreated and plasma-treated state were immersed in melamine solution at different concentrations. The plasma pre-treated veneers exhibited significantly higher melamine loads than the untreated veneers at equal impregnation duration. Subsequently the veneers were manufactured into 5-layer plywood boards; the plywood samples then underwent an extreme testing procedure based on DIN-EN 314-1/2 in order to proof the bonding quality by means of s...

  13. Polymer composites prepared from heat-treated starch and styrene-butadiene latex

    Science.gov (United States)

    Thermoplastic starch/latex polymer composites were prepared using styrene–butadiene (SB) latex and heat-treated cornstarch. The composites were prepared in a compression mold at 130 °C, with starch content 20%. An amylose-free cornstarch, waxy maize, was used for this research and the heat treatment...

  14. The plasma device for the high-heat plasma testing of refractory metals and inventing of new highly porous materials

    Science.gov (United States)

    Budaev, V. P.; Fedorovich, S. D.; Martynenko, Yu V.; Lukashevsky, M. V.; Gubkin, M. K.; Lazukin, A. V.; Karpov, A. V.; Shestakov, E. A.

    2017-11-01

    A unique plasma device has been constructed at the NRU “MPEI” for the study of plasma-surface interaction and the high-heat plasma testing of refractory metals, such as tungsten, molybdenum, steel and other plasma facing materials used in fusion reactor including the ITER. This plasma device is a multi-cusp linear stationary plasma confinement system. It has power-saving characteristics as well as compactness due to the employment of the 8-pole multicusp magnetic field configuration instead of a strong axial magnetic field. Experiments are planned to develop a novel technology for highly porous surface structure of the refractory metal with a pore size and nanofibers of 50 nanometers including tungsten “fuzz”.

  15. Surface Oxide Net Charge of a Titanium Alloy; Comparison Between Effects of Treatment With Heat or Radiofrequency Plasma Glow Discharge

    Science.gov (United States)

    MacDonald, Daniel E.; Rapuano, Bruce E.; Schniepp, Hannes C.

    2010-01-01

    In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide. Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 °C, or RFGD plasma treated in pure oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength. Heat treatment also produced a surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat-treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography. PMID:20880672

  16. False-positive pregnancy test after transfusion of solvent/detergent-treated plasma.

    Science.gov (United States)

    Jilma-Stohlawetz, Petra; Wreford-Bush, Tim; Mills, Francesca; Davidson, Fiona; Kursten, Friedrich W; Jilma, Bernd; Birchall, Janet

    2017-12-01

    The transmission of pathogens, antibodies, and proteins is a possible consequence of blood product transfusion. A female patient had an unexpected positive serum β-human chorionic gonadotropin result, indicative of pregnancy, after she had received a transfusion with 1 unit of platelet concentrate, 4 units of red blood cells, and 4 units of pooled solvent/detergent-treated plasma (Octaplas). To investigate the possibility of passive transfusion of β-human chorionic gonadotropin from the plasma transfusion, one additional unit from the same batch was thawed and analyzed. To validate the β-human chorionic gonadotropin assay for use in solvent/detergent-treated plasma and to investigate any interference in the assay, dilution experiments were performed using the implicated plasma batch diluted with male and non-pregnant female sera. Also, plasma from a known pregnant woman was diluted with Octaplas (tested negative for β-human chorionic gonadotropin) and with a male serum to validate the assay for use in solvent/detergent-treated plasma. The implicated solvent/detergent-treated plasma had a mean β-human chorionic gonadotropin level of 91.5 mIU/mL. Results from the dilution experiments revealed an excellent correlation (r > 0.99) between β-human chorionic gonadotropin measurement in solvent/detergent-treated plasma and male serum and no over or under recovery of the expected results. Further measurements of β-human chorionic gonadotropin levels in the female recipient revealed an estimated half-life of 6 hours. This case demonstrates the importance of considering the possibility of passive transmission of analytes to a patient from the transfusion of blood products. Furthermore, the measurement of β-human chorionic gonadotropin is valid in solvent/detergent-treated plasma using a Roche Cobas analyzer. © 2017 AABB.

  17. Experimental study of plasma energy transfer and material erosion under ELM-like heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E., E-mail: garkusha@ipp.kharkov.u [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Makhlaj, V.A.; Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Tereshin, V.I.; Aksenov, N.N.; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2009-06-15

    Main features of plasma-surface interaction and energy transfer to tokamak plasma facing components are studied at different heat loads in ELM simulation experiments with the plasma gun QSPA Kh-50. Repetitive plasma exposures of tungsten, graphite and different combined W-C targets were performed at the pulse duration of 0.25 ms and the heat loads varied in the range 0.2-2.5 MJ/m{sup 2}. The onset of vapor shield in front of the surface was investigated. The evaporation is immediately followed by a saturation of surface heat load if further increasing the impact energy. The presence of graphite essentially decreases the heat flux to the nearby tungsten surface, which is due to the carbon vapor shield. Droplet splashing at the tungsten surface and formation of hot spots on the graphite surface are discussed.

  18. Experimental study of plasma energy transfer and material erosion under ELM-like heat loads

    Science.gov (United States)

    Garkusha, I. E.; Makhlaj, V. A.; Chebotarev, V. V.; Landman, I.; Tereshin, V. I.; Aksenov, N. N.; Bandura, A. N.

    2009-06-01

    Main features of plasma-surface interaction and energy transfer to tokamak plasma facing components are studied at different heat loads in ELM simulation experiments with the plasma gun QSPA Kh-50. Repetitive plasma exposures of tungsten, graphite and different combined W-C targets were performed at the pulse duration of 0.25 ms and the heat loads varied in the range 0.2-2.5 MJ/m 2. The onset of vapor shield in front of the surface was investigated. The evaporation is immediately followed by a saturation of surface heat load if further increasing the impact energy. The presence of graphite essentially decreases the heat flux to the nearby tungsten surface, which is due to the carbon vapor shield. Droplet splashing at the tungsten surface and formation of hot spots on the graphite surface are discussed.

  19. Characterization of atmospheric pressure plasma treated wool/cashmere textiles: Treatment in nitrogen

    Science.gov (United States)

    Zanini, Stefano; Citterio, Attilio; Leonardi, Gabriella; Riccardi, Claudia

    2018-01-01

    We performed atmospheric pressure plasma treatments of wool/cashmere (15/85%) textiles with a dielectric barrier discharge (DBD) in nitrogen. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy, X-ray photoelectron microscopy (XPS), and fatty acid gas chromatographic analysis. Changes in mechanical properties and tactile performance of textiles after the plasma treatment were determined using the KES-F system. The analyses reveal significant surface modification of the treated fabrics, which enhances their surface wettability.

  20. Comments on the dissipation of hydromagnetic surface waves. [applicable to solar coronal plasma heating

    Science.gov (United States)

    Lee, M. A.

    1980-01-01

    A recent paper by Wentzel, which claims to calculate a plasma heating rate due to dissipation of surface waves in an ideal magnetohydrodynamic (MHD) fluid, is found to be in error in interpretation. A well-established general theorem pertaining to the conservative ideal MHD fluid requires that the normal mode calculated by Wentzel be oscillatory in time. Within ideal MHD, dissipation and plasma heating are therefore impossible.

  1. Adhesion strength study between plasma treated polyester fibres and a rubber matrix

    Science.gov (United States)

    Krump, H.; Šimor, M.; Hudec, I.; Jaššo, M.; Luyt, A. S.

    2005-02-01

    In this work, the adhesion strength between poly(ethylene terephthalate) (PET) fibres and styrene-butadiene rubber (SBR) was studied. The effects of atmospheric plasma treatment, used to increase adhesion strength between PET fibres and the rubber matrix, were investigated and compared. It was confirmed that lubricants on the fibres caused a decrease in adhesion strength between the plasma treated reinforcing PET fibres and the SBR rubber matrix. These lubricants can be removed by acetone. When washed and treated in plasma, a substantial improvement in adhesion strength was observed. No ageing in air before combination with the rubber matrix was observed. This confirmed that the plasma streamers caused the creation of a new, relatively stable chemical species on the polymer surface. It suggests that the surface modification of PET fibres by plasma treatment at atmospheric gas pressure is a suitable and technologically applicable method for the improvement of adhesion strength of polyester reinforcing materials to rubber.

  2. Field electron emission from hydrogen plasma treated nano-ZnO thin films.

    Science.gov (United States)

    Wang, Xiao-Ping; Liu, Xin-Xin; Wang, Li-Jun; Li, Huai-Hui; Mei, Cui-Yu; Liu, Xiao-Fei; Can, Yang

    2012-08-01

    A nano-Zno films are deposited on the Mo film/ceramic substrates by using the electron beam vapor deposition technique. Then a hydrogen plasma treated method is used to improve the characteristics of ZnO thin films by microwave plasma chemical vapor deposition system. Effects of process parameters on morphologies and structures of the ZnO thin films are detected and analysed by field emission scanning electron microscopy, X-ray diffraction spectrum and energy dispersive spectrum. The experimental result indicates that the hydrogen plasma treated techniques can essentially reduce the surface resistance and improve the field emission current density of the nano-ZnO thin films. For the hydrogen plasma treated sample, its field emission current density can increased more than three times at 2.2 V/microm electric field condition.

  3. Heat treated 9 Cr-1 Mo steel material for high temperature application

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  4. US-Japan workshop Q-181 on high heat flux components and plasma-surface interactions for next devices: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, R.T. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Yamashina, T. [ed.] [Hokkadio Univ. (Japan)

    1994-04-01

    This report contain viewgraphs of papers from the following sessions: plasma facing components issues for future machines; recent PMI results from several tokamaks; high heat flux technology; plasma facing components design and applications; plasma facing component materials and irradiation damage; boundary layer plasma; plasma disruptions; conditioning and tritium; and erosion/redeposition.

  5. Adhesive bond performance of heat-treated wood at various conditions.

    Science.gov (United States)

    Kol, Hamiyet Sahin; Özbay, Günay

    2016-07-01

    Heat treatment of wood leads to chemical, structural and physical changes in wood constituents, which can significantly affect the bonding performance of wood in several ways depending on the adhesive type used. In the present study, fir (Abies bornmülleriana Mattf.) and beech (Fagus orientalis L.) were heat treated at 170 degrees C, 180 degrees C, 190 degrees C, 200 and 212 degrees C for 2 hours. Four different types of adhesives were used for bonding process: melamine-urea-formaldehyde (MUF), melamine formaldehyde (MF), phenol formaldehyde (PF), and polyurethane (PUR). For all the pretreatment conditions, highest shear strength of adhesive bonds of each adhesive system was observed for untreated samples and shear strength decreased with increasing heat treatment. The strength of each adhesive bond of samples which were soaked in water was much less than dry samples, approximately half of the dry strength. Generally, the shear strength of the adhesive bonds after boiling was smaller than or similar to the values obtained for soaking. The untreated samples lost more strength after soaking and boiling than heat treated samples. With increasing heat treatment severity, reduction in shear strength increased in dry samples while decreased in soaking and boiling samples. For instance, after soaking, the untreated samples lost more strength (almost 39%) than heat treated samples (almost 24% for most severely heat treated samples). The results showed that the shear strength of adhesive bonds was influenced by heat treatment and depended on pretreatment of samples prior to testing. In general, all adhesives used performed in quite a similar way for all pretreatment conditions, and the bonding performance of heat treated fir wood was less satisfactory than that of beech wood for all adhesive system and condition.

  6. Thermographic determination of the sheath heat transmission coefficient in a high density plasma

    NARCIS (Netherlands)

    van den Berg, M. A.; Bystrov, K.; Pasquet, R.; Zielinski, J. J.; De Temmerman, G.

    2013-01-01

    Experiments were performed in the Pilot-PSI linear plasma device, to determine the sheath heat transmission coefficients in a high recycling regime under various conditions of density (1–20 × 1020 m−3) and plasma composition (H2, Ar, N2) relevant for the

  7. Electron cyclotron resonance heating in a short cylindrical plasma ...

    Indian Academy of Sciences (India)

    Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the first two ...

  8. Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas

    Science.gov (United States)

    Takamura, S.; Uesugi, Y.

    2015-03-01

    Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.

  9. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.A., E-mail: mgonzalez@comimsa.com.mx [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Martinez, D.I., E-mail: dorairma@yahoo.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Perez, A., E-mail: betinperez@hotmail.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Guajardo, H., E-mail: hguajardo@frisa.com [FRISA Aerospace, S.A. de C.V., Valentin G. Rivero No. 200, Col. Los Trevino, C.P. 66150, Santa Caterina N.L. (Mexico); Garza, A., E-mail: agarza@comimsa.com [Corporacion Mexicana de Investigacion en Materiales S.A. de C.V. (COMIMSA), Ciencia y Tecnologia No.790, Saltillo 400, C.P. 25295 Saltillo Coah. (Mexico)

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  10. The effect of different wood varnishes on surface color properties of heat treated wood materials

    Directory of Open Access Journals (Sweden)

    Hüseyin Pelit

    2017-11-01

    Full Text Available This study investigates the effects of different wood varnishes on the surface color properties of heat treated wood. Samples prepared from Oriental beech (Fagus orientalis L. and Scots pine (Pinus sylvestris L. are subjected to heat treatment at 190, 200, and 210 ° C for 2 h. Sample surfaces are then covered with cellulosic (SZ, synthetic (ST, polyurethane (PU, and water-based (SB wood varnishes, and the color properties of samples are determined according to the three-dimensional CIEL*a*b* color space. Results show a decrease in the L* and b* values of samples by 64% and 70%, respectively, depending on the process temperature after heat treatment. The a* value increases by up to 96% for Scots pine samples and up to 56% for beech samples. Color values of heat treated samples change significantly after varnish is applied; L* values of all samples are reduced compared to unvarnished samples and samples are seen to darken. However, the a* value of heat treated Scots pine samples increases significantly after varnishing, while that of heat-treated beech samples at high temperatures (200 and 210 °C generally decreases. Nevertheless, the b* value decreases significantly in both wood species subjected to application of PU and ST varnishes, and the total color change (ΔE* of varnished specimens is generally higher for samples heat-treated at 200 °C. Results show that ST varnish has the largest effect on color change and SB varnish has the smallest effect. The use of SB varnishes is thus preferable when it is necessary to preserve the color of samples from either species following heat treatment.

  11. Mass Spectrometry of 3D-printed plastic parts under plasma and radiative heat environments

    Science.gov (United States)

    Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W.; Takeno, J.; Knop, S.

    2015-11-01

    We present the design and preliminary results of a mass spectrometry system used to assess vacuum compatibility of 3D-printed parts, developed at the Dusty Plasma Laboratory of the University of Maryland Baltimore County (UMBC). A decrease in outgassing was observed when electroplated parts were inserted in the test chamber vs. non electroplated ones. Outgassing will also be tested under different environments such as plasma and radiative heat. Heat will be generated by a titanium getter pump placed inside a 90 degree elbow, such that titanium does not coat the part. A mirror inside the elbow will be used to throttle the heat arriving at the part. Plasma exposure of 3D printed parts will be achieved by placing the parts in a separate chamber connected to the spectrometer by a vacuum line that is differentially pumped. The signals from the mass spectrometer will be analyzed to see how the vacuum conditions fluctuate under different plasma discharges.

  12. Qualification, commissioning and in situ monitoring of high heat flux plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)], E-mail: frederic.escourbiac@cea.fr; Durocher, A.; Grosman, A.; Cismondi, F.; Courtois, X.; Farjon, J.L.; Schlosser, J. [Association Euratom-CEA, CEA/DSM/DRFC, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France); Merola, M.; Tivey, R. [ITER Team, CEA/Cadarache, F-13108 Saint Paul Lez Durance (France)

    2007-10-15

    Up-to-date development of actively cooled high heat flux (HHF) plasma facing components (PFC) prototypes only allows reduced margins with regards to the ITER thermal requirements. Additionally, perfect quality cannot be ensured along series manufacturing: the presence of flaws which impair the heat transfer capability of the component, in particular at the interface armour/heat sink appears to be statistically unavoidable. In order to ensure a successful series production, a qualification methodology of actively cooled high heat flux plasma facing components is proposed. Secondly, advanced non-destructive techniques developed for HHF PFC commissioning are detailed with definition of acceptance criteria. Finally, innovative diagnostics for in situ monitoring during plasma operations or tokamak shutdowns are investigated in order to prevent immediate damage (safety monitoring); or evaluate component degradation (health monitoring). This work takes into account the relevance to Tore Supra, and is applied to W7X and ITER Divertor HHF PFC.

  13. Numerical Study of Particle Heating in a Plasma Jet

    Science.gov (United States)

    Essiptchouk, A.; Petraconi, G.; Caliari, F. R.; Miranda, F. S.; Yesipchuk, M.; Petraconi, A.

    2017-03-01

    The motion of particles axially injected into the plasma spray process has been studied using a one-dimensional model. The effect of the initial particle velocity and particle diameter on the final particle velocity and temperature was evaluated. The aim of the work is to optimize the spraying process by defining the favorable particle injection velocity, considering a wide range of velocity and temperature of the plasma jet.

  14. Inflammatory cytokines and plasma redox status responses in hypertensive subjects after heat exposure

    Directory of Open Access Journals (Sweden)

    S.F. Fonseca

    2016-03-01

    Full Text Available Hypertension is characterized by a pro-inflammatory status, including redox imbalance and increased levels of pro-inflammatory cytokines, which may be exacerbated after heat exposure. However, the effects of heat exposure, specifically in individuals with inflammatory chronic diseases such as hypertension, are complex and not well understood. This study compared the effects of heat exposure on plasma cytokine levels and redox status parameters in 8 hypertensive (H and 8 normotensive (N subjects (age: 46.5±1.3 and 45.6±1.4 years old, body mass index: 25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure: 98.0±2.8 and 86.0±2.3 mmHg, respectively. They remained at rest in a sitting position for 10 min in a thermoneutral environment (22°C followed by 30 min in a heated environmental chamber (38°C and 60% relative humidity. Blood samples were collected before and after heat exposure. Plasma cytokine levels were measured using sandwich ELISA kits. Plasma redox status was determined by thiobarbituric acid reactive substances (TBARS levels and ferric reducing ability of plasma (FRAP. Hypertensive subjects showed higher plasma levels of IL-10 at baseline (P<0.05, although levels of this cytokine were similar between groups after heat exposure. Moreover, after heat exposure, hypertensive individuals showed higher plasma levels of soluble TNF receptor (sTNFR1 and lower TBARS (P<0.01 and FRAP (P<0.05 levels. Controlled hypertensive subjects, who use angiotensin-converting-enzyme inhibitor (ACE inhibitors, present an anti-inflammatory status and balanced redox status. Nevertheless, exposure to a heat stress condition seems to cause an imbalance in the redox status and an unregulated inflammatory response.

  15. Compression and heating of a laser-produced plasma using single and double induction coils

    Science.gov (United States)

    Creel, J. R.; Lunney, J. G.

    2018-02-01

    The results of an experiment on magnetohydrodynamic compression and heating of a laser-produced plasma in vacuum are described. The plasma was produced by laser ablation of copper at 2 J cm-2. A pulsed magnetic field, with an amplitude of 0.3 T and a period of 2.2 µs, was produced by a three-turn spiral induction coil placed 10 mm above the ablation spot. Time-resolved imaging revealed that the magnetic field had a strong influence on both the plasma between the coil and the target, and on the plasma which flows through the aperture in the coil. The plasma flow through the coil aperture is strongly pinched due to the Lorentz interaction of the induced current and the coil magnetic field. Heating of the plasma is evidenced by strong enhancement of the overall visible light emission and the appearance of Cu+ line emission. Magnetic compression and plasma heating were also observed in a setup using two induction coils separated by 10 mm. This technique could be used to enhance the sensitivity of laser-induced breakdown spectroscopy, increase the ion yield in laser plasma ion sources, or control the ablation plume expansion in pulsed laser deposition.

  16. Effect of cladding procedures on mechanical properties of heat treated dissimilar joint

    Directory of Open Access Journals (Sweden)

    B. Mateša

    2012-10-01

    Full Text Available The specimens plated by different cladding procedures (hot rolling, submerged arc welding surfacing using strip electrode (SAW and explosion welding were heat treated by annealing (650 ºC through 2 hours. Charpy impact energy testing, as well as shear strength testing of clad joints were performed. Testing results indicated significance of cladding procedure and determined heat treatment infl uences on stated mechanical properties.

  17. Plywood made from plasma-treated veneers: Melamine uptake, dimensional stability, and mechanical properties

    OpenAIRE

    Wascher, R.; Kühn, C.; Avramidis, G.; Bicke, S.; Militz, H.; Ohms, G.; Viöl, W.

    2017-01-01

    This study investigates the dimensional stability and mechanical properties of plywood boards made of thermally modified and unmodified beech veneers that have undergone plasma pre-treatment before melamine resin impregnation. The water and melamine resin uptake and resulting weight percent gain of the veneers were investigated, whereby the air plasma pre-treated veneers showed improved liquid uptake. Five-layer plywood boards were then manufactured and tested for their dimensional stability,...

  18. Optical and structural properties of plasma-treated ZnO nanostructures.

    Science.gov (United States)

    Lee, Geon Joon; Lee, Jin Young; Uhm, Han Sup; Choi, Eun Ha; Kim, Eun-Kyung; Han, Sung-Hwan

    2014-07-01

    We studied the effect of plasma treatment on the structural and optical properties of ZnO nanostructures prepared by chemical bath deposition in an aqueous solution of Zn(NO3)2 and hexamethylenetetramine. The room-temperature photoluminescence (PL) spectrum of the as-grown ZnO nanostructures exhibited two emission bands due to exciton emission and defect emission. After treating with hydrogen plasma, the treated ZnO nanostructures exhibited stronger exciton emission than the as-grown, untreated ZnO nanostructures in their respective cathodoluminescence and PL spectra. The low-temperature PL spectrum of the hydrogen plasma-treated ZnO nanostructures showed a strong exciton emission at 3.34 eV, attributing to the bound exciton and its longitudinal optical-phonon sidebands. The strong exciton emission is thought to be due to the combined effect of exciton emission enhancement by defect passivation and optical confinement resulting from nanostructure geometry.

  19. Chemical Vapor Identification by Plasma Treated Thick Film Tin Oxide Gas Sensor Array and Pattern Recognition

    Directory of Open Access Journals (Sweden)

    J. K. Srivastava

    2011-02-01

    Full Text Available Present study deals the class recognition potential of a four element plasma treated thick film tin oxide gas sensor array exposed with volatile organic compounds (VOCs. Methanol, Ethanol and Acetone are selected as target VOCs and exposed on sensor array at different concentration in range from 100-1000 ppm. Sensor array consist of four tin oxide sensors doped with 1-4 % PbO concentrations were fabricated by thick film technology and then treated with oxygen plasma for 5-10 minute durations. Sensor signal is analyzed by principal component analysis (PCA for visual classification of VOCs. Further output of PCA is used as input for classification of VOCs by four pattern classification techniques as: linear discriminant analysis (LDA, k-nearest neighbor (KNN, back propagation neural network (BPNN and support vector machine (SVM. All the four classifier results 100 % correct classification rate of VOCs by response analysis of sensor array treated with plasma for 5 minute.

  20. Enhancement of durability properties of heat-treated oil palm shell species lightweight concrete

    Science.gov (United States)

    Yew, Ming Kun; Yew, Ming Chian; Saw, Lip Huat; Ang, Bee Chin; Lee, Min Lee; Lim, Siong Kang; Lim, Jee Hock

    2017-04-01

    Oil palm shell (OPS) are non-hazardous waste materials and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. A study on preparing the OPS species (dura and tenera) lightweight concrete (LWC) using with and without heat-treated OPS aggregate has been investigated. Two different species of OPS coarse aggregate are subjected to heat treatment at 65 and 130 °C with duration of 1 hour. The results reveal that the slump value of the OPSC increases significantly with an increase in temperature of heat treatment of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 45.6 and 47.5 MPa, respectively. Furthermore, rapid chloride penetration test (RCPT) and water absorption tests were performance to signify the effects of heat-treated on OPS species LWC. The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. Hence, the findings of this study are of primary importance as they revealed the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability of OPSLWC.

  1. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Quanyou Zhou

    2002-01-30

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters.

  2. Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung-Ha; Kwon, Junhyun [Nuclear Materials Division, Korea Atomic Energy Research Institute, 989-111 Daeduck-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Shin, Chansun, E-mail: c.shin@mju.ac.kr [Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Youngin-shi, Gyeonggi-do 449-728 (Korea, Republic of)

    2014-01-15

    The formation of radiation defects and corresponding radiation hardening in heat-treated SA508 Gr3 steel after Fe ion irradiation were investigated by means of transmission electron microscopy and a nano-indentation technique. As the residual dislocation density is increased in the matrix, the formation of radiation defects is considerably weakened. Comparison between the characteristics of the radiation defect and an evaluation of radiation hardening indicates that a large dislocation loop contributes little to the radiation hardening in the heat-treated SA508 Gr3 steel.

  3. Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel

    Science.gov (United States)

    Jin, Hyung-Ha; Kwon, Junhyun; Shin, Chansun

    2014-01-01

    The formation of radiation defects and corresponding radiation hardening in heat-treated SA508 Gr3 steel after Fe ion irradiation were investigated by means of transmission electron microscopy and a nano-indentation technique. As the residual dislocation density is increased in the matrix, the formation of radiation defects is considerably weakened. Comparison between the characteristics of the radiation defect and an evaluation of radiation hardening indicates that a large dislocation loop contributes little to the radiation hardening in the heat-treated SA508 Gr3 steel.

  4. Method of Heat Treating Aluminum-Lithium Alloy to Improve Formability

    Science.gov (United States)

    Chen, Po-Shou (Inventor); Russell, Carolyn Kurgan (Inventor)

    2016-01-01

    A method is provided for heat treating aluminum-lithium alloys to improve their formability. The alloy is heated to a first temperature, maintained at the first temperature for a first time period, heated at the conclusion of the first time period to a second temperature, maintained at the second temperature for a second time period, actively cooled at the conclusion of the second time period to a third temperature, maintained at the third temperature for a third time period, and then passively cooled at the conclusion of the third time period to room temperature.

  5. Mechanical, structural and dissolution properties of heat treated thin-film phosphate based glasses

    OpenAIRE

    Stuart, Bryan W.; Gimeno-Fabra, Miquel; Segal, Joel; Ahmed, Ifty; Grant, David M.

    2017-01-01

    Here we show the deposition of 2.7 μm thick phosphate based glass films produced by magnetron sputtering, followed by post heat treatments at 500 °C. Variations in degradation properties pre and post heat treatment were attributed to the formation of Hematite crystals within a glass matrix, iron oxidation and the depletion of hydrophilic P-O-P bonds within the surface layer. As deposited and heat treated coatings showed interfacial tensile adhesion in excess of 73.6 MPa; which surpassed ISO a...

  6. Link between von-Karman energy decay and reconnection heating in turbulent plasmas

    Science.gov (United States)

    Shay, M. A.; Parashar, T.; Haggerty, C. C.; Matthaeus, W. H.; Phan, T.; Drake, J. F.; Cassak, P.; Wu, P.

    2016-12-01

    Coherent structures such as current sheets are prevalent in many turbulent plasmas and have been shown to be correlated with dissipation and heating in observations of solar wind turbulence and dissipation in kinetic particle-in-cell (PIC) simulations. However, the role that they play in the dissipation of turbulent energy and ultimately the heating of the plasma are still not well understood. A recent study [1] using kinetic PIC simulations of turbulence found that the total heating in the plasma is consistent with a von-Karman scaling of the cascade rate, and that the proton to electron heating ratio was proportional to the total heating rate and linked to the ratio of gyroperiod to nonlinear turnover time at the ion kinetic scales. We review recent findings regarding the rate of heating in outflow jets during laminar reconnection and apply it to kinetic PIC simulations of turbulence, employing some reasonable assumptions to connect the two theories. The goal is to determine if reconnection is a primary heating mechanism or plays less of a role. Conversely, we also apply the new understanding of the von-Karman cascade to isolated reconnection events to determine if a cascade-like process is controlling the heating rate. [1] W. Matthaeus et al., ApJ Letters, 827, L7, 2016, doi:10.3847/2041-8205/827/1/L7

  7. Adsorption of uranium from aqueous solution on heat and acid treated sepiolites.

    Science.gov (United States)

    Kilislioglu, Ayben; Aras, Gozde

    2010-10-01

    In this work adsorption of uranium on natural, heat and acid treated sepiolite was studied. For acid treatment HCl and H(2)SO(4) were used separately. Heat and acid treatment caused some changes in sepiolite such as surface area, micropore volume (cm(3)/g) and average pore diameter (A). Different amounts of Mg ions were extracted from the lattice depending on the type of acid. After acid treatment with HCl, the amount of Mg left in the sepiolite changed a little. During H(2)SO(4) treatment the sepiolite structure was progressively transformed into amorphous silica. These heat and acid treatments changed adsorption capacity and mechanism of uranium on sepiolite. Data obtained from the adsorption experiments were applied to Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. Using these isotherms different adsorption capacities were found for natural and treated sepiolite samples. The capacity values were 3.58x10(-3), 3.14x10(-3), 2.78x10(-3) and 1.55x10(-3)mol/g for HCl treated, heat treated, natural and H(2)SO(4) treated sepiolite samples, respectively. In order to evaluate the adsorption mechanism adsorption energies were calculated by the D-R isotherm. According to the adsorption energy values uranium fixed to the natural and heat treated sepiolite surface with ion exchange (12.75 and 12.12 kJ/mol, respectively). Simple physical attractions were the driving force for adsorption on HCl and H(2)SO(4) treated ones (6.62 and 6.87 kJ/mol, respectively). Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    Science.gov (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  9. Charging and Heating Dynamics of Nanoparticles in Nonthermal Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kortshagen, Uwe R.

    2014-08-15

    The focus of this award was to understand the interactions of nanometer-sized particles with ionized gases, also called plasmas. Plasmas are widely used in the fabrication of electronic circuits such as microprocessors and memory devices, in plasma display panels, as well as in medical applications. Recently, these ionized gases are finding applications in the synthesis of advanced nanomaterials with novel properties, which are based on nanometer-sized particulate (nanoparticles) building blocks. As these nanoparticles grow in the plasma environment, they interact with the plasmas species such as electrons and ions which critically determines the nanoparticle properties. The University of Minnesota researchers conducting this project performed numerical simulations and developed analytical models that described the interaction of plasma-bound nanoparticles with the plasma ions. The plasma ions bombard the nanoparticle surface with substantial energy, which can result in the rearrangement of the nanoparticles’ atoms, giving them often desirable structures at the atomic scale. Being able to tune the ion energies allows to control the properties of nanoparticles produced in order to tailor their attributes for certain applications. For instance, when used in high efficiency light emitting devices, nanoparticles produced under high fluxes of highly energetic ions may show superior light emission to particles produced under low fluxes of less energetic ions. The analytical models developed by the University of Minnesota researchers enable the research community to easily determine the energy of ions bombarding the nanoparticles. The researchers extensively tested the validity of the analytical models by comparing them to sophisticated computer simulations based on stochastic particle modeling, also called Monte Carlo modeling, which simulated the motion of hundreds of thousands of ions and their interaction with the nanoparticle surfaces. Beyond the scientific

  10. Characterization of film surface treated with ECR plasma by Doppler broadening

    CERN Document Server

    Nishijima, S; Hirata, K; Kobayashi, Y; Honda, Y; Tagawa, S

    2000-01-01

    Doppler broadened positron annihilation measurements were carried out using the positron beam technique on plasma treated polyethylene films as a function of incident positron energy. In addition, surface properties of the treated films also have been measured using other conventional techniques such as FT-IR, SEM and AFM. The surface tension of the films was also determined using sessile drop method. The S-parameter is seen to decrease on the surface upon plasma treatment that introduces polar groups such as hydroxyl and carbonyl on the surface. The results are discussed.

  11. Investigation of impurity confinement in lower hybrid wave heated plasma on EAST tokamak

    Science.gov (United States)

    Xu, Z.; Wu, Z. W.; Zhang, L.; Gao, W.; Ye, Y.; Chen, K. Y.; Yuan, Y.; Zhang, W.; Yang, X. D.; Chen, Y. J.; Zhang, P. F.; Huang, J.; Wu, C. R.; Morita, S.; Oishi, T.; Zhang, J. Z.; Duan, Y. M.; Zang, Q.; Ding, S. Y.; Liu, H. Q.; Chen, J. L.; Hu, L. Q.; Xu, G. S.; Guo, H. Y.; the EAST team

    2018-01-01

    The transient perturbation method with metallic impurities such as iron (Fe, Z  =  26) and copper (Cu, Z  =  29) induced in plasma-material interaction (PMI) procedure is used to investigate the impurity confinement characters in lower hybrid wave (LHW) heated EAST sawtooth-free plasma. The dependence of metallic impurities confinement time on plasma parameters (e.g. plasma current, toroidal magnetic field, electron density and heating power) are investigated in ohmic and LHW heated plasma. It is shown that LHW heating plays an important role in the reduction of the impurity confinement time in L-mode discharges on EAST. The impurity confinement time scaling is given as 42IP0.32Bt0.2\\overline{n}e0.43Ptotal-0.4~ on EAST, which is close to the observed scaling on Tore Supra and JET. Furthermore, the LHW heated high-enhanced-recycling (HER) H-mode discharges with ~25 kHz edge coherent modes (ECM), which have lower impurity confinement time and higher energy confinement time, provide promising candidates for high performance and steady state operation on EAST.

  12. Enhanced Biological Behavior of In Vitro Human Gingival Fibroblasts on Cold Plasma-Treated Zirconia

    Science.gov (United States)

    Zheng, Miao; Yang, Yang; Liu, Xiao-Qiang; Liu, Ming-Yue; Zhang, Xiao-Fei; Wang, Xin; Li, He-Ping; Tan, Jian-Guo

    2015-01-01

    Objective To evaluate whether atmospheric-pressure dielectric-barrier-discharge plasma treatment of zirconia enhances its biocompatibility with human gingival fibroblasts. Materials and Methods The zirconia disks were divided into four groups and treated using helium atmospheric-pressure dielectric-barrier-discharge plasmas for 30, 60 or 90 s or left untreated. The surface morphology, wettability and chemical elements were analyzed. Fibroblasts density, morphology, morphometry and attachment-related genes expression were measured at different time points from 3 to 72 h. Results After plasma treatment, the surface morphology and roughness remained the same, while the contact angle decreased from 78.31° to 43.71°, and the surface C/O ratio decreased from 3.17 to 0.89. The surficial areas and perimeters of HGFs were increased two-fold in the treated groups at 3 h. Fibroblasts density increased on treated disks at all time points, especially the ones treated for 60 s. Attachment-related genes in the groups treated for 30 and 60 s were significantly higher at 3 and 24 h. Conclusion The helium atmospheric-pressure dielectric-barrier-discharge plasma treatment enhances the biological behavior of fibroblasts on zirconia by increasing the expression of attachment-related genes within 24 h and promoting the cell density during longer culture times. Wettability of zirconia, an important physicochemical property, has a vital influence on the cell behaviors. PMID:26461253

  13. Mechanism for electron cyclotron heating of collisionless plasma

    Energy Technology Data Exchange (ETDEWEB)

    Golovanivskii, K.S.; Dugard-Jabon, V.D.; Milant' ev, V.P.

    1975-01-01

    The electron distribution with respect to transverse energy is derived for electron cyclotron resonance in a constant, homogeneous magnetic field; weak relativistic effects are taken into account. After the establishment of a steady-state distribution with groups of hot and cold electrons, no energy is pumped from the rf field to the plasma. The rf electrostatic perturbations are studied on the basis of the distribution function found; it is shown that waves of two types are unstable eigenmodes of the plasma at rest and drift waves. The growth rates for the corresponding instabilities are derived. A study is also made of the stability of right-handed circularly polarized electromagnetic wave propagating along the magnetic field. Instabilities occur at frequencies which depend on the degree of anisotropy, analogous to the case of a plasma with a temperature anisotropy.

  14. Comparative study of EVA-Cloisite ® 20A and heat-treated EVA ...

    African Journals Online (AJOL)

    Heat-treated composites were produced at 400°C to 1 000°C in air and N2 atmospheres. The materials were characterised through TGA, FT-IR, contact angle and Zetasizer. Treating EVA/C20A composites with H2SO4 at 130°C reduced the contact angle from 99.73° to 30.40°. The acid-functionalised composite was tested ...

  15. Heat-treated (in single aliquot or batch) colostrum outperforms non-heat-treated colostrum in terms of quality and transfer of immunoglobulin G in neonatal Jersey calves.

    Science.gov (United States)

    Kryzer, A A; Godden, S M; Schell, R

    2015-03-01

    The objective of this randomized clinical trial was to describe the effect on colostrum characteristics and passive transfer of IgG in neonatal calves when using the Perfect Udder colostrum management system (single-aliquot treatment; Dairy Tech Inc., Greeley, CO) compared with a negative control (fresh refrigerated or fresh frozen colostrum) and a positive control (batch heat-treated colostrum). First-milking Jersey colostrum was pooled to achieve 31 unique batches with a minimum of 22.8 L per batch. The batch was then divided into 4 with 3.8 L allocated to each treatment group: (1) heat-treated in Perfect Udder bag at 60°C for 60 min and then stored at -20°C (PU); (2) heat-treated in a batch pasteurizer (Dairy Tech Inc.) at 60°C for 60 min and then stored at -20°C in Perfect Udder bag (DTB; positive control); (3) fresh frozen colostrum stored at -20°C in Perfect Udder bag (FF; negative control); and (4) fresh refrigerated colostrum stored at 4°C in Perfect Udder bag (FR; negative control). Colostrum from all treatments was sampled for analysis of IgG concentration and bacterial culture immediately after batch assembly, after processing, and before feeding. Newborn Jersey calves were randomly assigned to be fed 3.8 L of colostrum from 1 of the 4 treatment groups. A prefeeding, 0-h blood sample was collected, calves were fed by esophageal tube within 2 h of birth, and then a 24-h postfeeding blood sample was collected. Paired serum samples from 0- and 24-h blood samples were analyzed for IgG concentration (mg/mL) using radial immunodiffusion analysis. The overall mean IgG concentration in colostrum was 77.9 g/L and was not affected by treatment. Prefeeding total plate counts (log10 cfu/mL) were significantly different for all 4 treatments and were lower for heat-treated colostrum (PU=4.23, DTB=3.63) compared with fresh colostrum (FF=5.68, FR=6.53). Total coliform counts (log10 cfu/mL) were also significantly different for all 4 treatments and were lower for

  16. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    Science.gov (United States)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  17. Heat transfer modelling of first walls subject to plasma disruption

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A.; Makowitz, H.

    1981-01-01

    A brief description of the plasma disruption problem and potential thermal consequences to the first wall is given. Thermal models reviewed include: a) melting of a solid with melt layer in place; b) melting of a solid with complete removal of melt (ablation); c) melting/vaporization of a solid; and d) vaporization of a solid but no phase change affecting the temperature profile.

  18. High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Directory of Open Access Journals (Sweden)

    Yanjun Li

    2015-01-01

    Full Text Available The effect of heat-treated bamboo fibers (BFs on nonisothermal crystallization of high-density polyethylene (HDPE was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE.

  19. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood

    Science.gov (United States)

    Roger M. Rowell; Rebecca E. Ibach; James McSweeny; Thomas Nilsson

    2009-01-01

    Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in...

  20. Torsional Properties of Proprietary Heat Treated Nickel Titanium Rotary Instruments versus Conventional Nickel Titanium

    Science.gov (United States)

    2016-06-30

    rotational degrees (o) at separation were measured with a custom-built torsiometer instrument (Sabri Dental Enterprises, Inc, Downers Grove, IL) in...Torsional Properties of Proprietary Heat-Treated Nickel-Titanium Rotary Instruments versus Conventional Nickel-Titanium Principle Author...investigations at the USAF Dental Evaluation & Consultation Services (DECS) Laboratory. Responsible for calculating and analyzing all data collected during

  1. Heat treated soybeans in the nutrition of high producing dairy cows

    African Journals Online (AJOL)

    2011-05-09

    May 9, 2011 ... work, some very unfavorable effects of extruded soy- beans on fiber digestibility were observed which were more severe when compared to heat treated soybeans and raw soybeans. Eifert et al. (2006) detected a decrease in milk fat content, from 3.34 to 3.13% when soybean oil was included in the mixture ...

  2. Heat treated soybeans in the nutrition of high producing dairy cows ...

    African Journals Online (AJOL)

    The main objective of this research was to study the effect of rations containing full-fat extruded soybeans or fat-extracted heat treated soybean meal, in the nutrition of dairy cows during the period of middle lactation. The study was carried out with two groups of 15 Holstein cows. The animal's health was controlled on the ...

  3. Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFs)

    Science.gov (United States)

    Daley, M.A.; Mangun, C.L.; DeBarr, J.A.; Riha, S.; Lizzio, A.A.; Donnals, G.L.; Economy, J.

    1997-01-01

    A series of activated carbon fibers (ACFs) and heat-treated oxidized ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore surface chemistry and pore volume for the adsorption of SO2 and its catalytic conversion to H2SO4.

  4. Fibroblastic response and surface characterization of O{sub 2}-plasma-treated thermoplastic polyetherurethane

    Energy Technology Data Exchange (ETDEWEB)

    Schlicht, Henning; Wintermantel, Erich [Chair of Biomedical Engineering, Technische Universitaet Muenchen, Garching (Germany); Haugen, Haavard J; Sabetrasekh, Roya, E-mail: h.j.haugen@odont.uio.n [Department for Biomaterials, Faculty of Dentistry, University of Oslo, PO Box 1109 Blindern, 0317 Oslo (Norway)

    2010-04-15

    Injection-molded samples of thermoplastic polyetherurethane (TPU) were treated with low-temperature oxygen plasma for different processing times in order to enhance cellular attachment for a gastric implant. Its effects were investigated by contact angle measurement, surface topography, cytotoxicity and cell colonization tests. No significant changes were found in the surface roughness of plasma treatment with plasma treatment time of less than 5 min. Longer treatment showed significantly higher surface roughness. It seems that there was a link between the changes in contact angle and enhanced cell growth on the treated surface, although only for the range up to plasma treatment times of 3 min. Prolonged treatment times did not cause any major changes in the water contact angle, but strongly improved the number of growing cells on the surface. Plasma treatment for 3-7 min led to a twofold increase in the number of cells compared to untreated samples and did not significantly alter the WST-1 nor worsened the lactate dehydrogenase activity compared to the control. Thus, it appears that O{sub 2} plasma treatment is a suitable surface modification method for a gastric implant made of TPU in order to improve surface cell attachment where 3-7 min is the recommended treatment time.

  5. Walking dead: Permeabilization of heat-treated Geobacillus stearothermophilus ATCC 12980 spores under growth-preventing conditions.

    Science.gov (United States)

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2017-06-01

    Although heat treatment is probably the oldest and the most common method used to inactivate spores in food processes, the specific mechanism of heat killing of spores is still not fully understood. The purpose of this study is to investigate the evolution of the permeabilization and the viability of heat-treated spores during storage under growth-preventing conditions. Geobacillus stearothermophilus spores were heat-treated under various conditions of temperature and pH, and then stored under conditions of temperature and pH that prevent growth. Spore survival was evaluated by count plating immediately after heat treatment, and then during storage over a period of months. Flow cytometry analyses were performed to investigate the Syto 9 permeability of heat-treated spores. Sub-lethally heat-treated spores of G. stearothermophilus were physically committed to permeabilization after heat treatment. However, prolonged heat treatment may abolish the spore permeabilization and block heat-treated spores in the refractive state. However, viability loss and permeabilization during heat treatment seem to be two different mechanisms that occur independently, and the loss of permeabilization properties takes place at a much slower rate than spore killing. Under growth-preventing conditions, viable heat-treated spores presumably lose their viability due to the permeabilization phenomena, which makes them more susceptible to the action of adverse conditions precluding growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Post-transfusion purpura treated with plasma exchange by haemonetics cell separator. A case report

    DEFF Research Database (Denmark)

    Laursen, B; Morling, N; Rosenkvist, J

    1978-01-01

    A case of post-transfusion purpura in a 61-year-old, multiparous female with a platelet alloantibody (anti-Zwa) in her serum is reported. The patient was successfully treated with plasma exchange by means of a Haemonetics 30 cell separator and corticosteroids. Compared with other therapeutic meas...

  7. Comparative Analysis of Experiment Treating Benzene and CEES by Pulse Corona Plasma

    Science.gov (United States)

    Yan, Xuefeng; Hu, Zhen

    2005-08-01

    Based on an experiment treating benzene and 2-chloroethyl ethyl sulfide (CEES) by pulse corona induced-plasma, the similarities and differences found in the experimental data and analytical results are analyzed in a comparative manner in this paper. The theory applied is also discussed.

  8. Non-thermal electron populations in microwave heated plasmas investigated with X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belapure, Jaydeep Sanjay

    2013-04-15

    An investigation of the generation and dynamics of superthermal electrons in fusion plasma is carried out. A SDD+CsI(Tl) based X-ray diagnostic is constructed, characterized and installed at ASDEX Upgrade. In various plasma heating power and densities, the fraction and the energy distribution of the superthermal electrons is obtained by a bi-Maxwellian model and compared with Fokker-Planck simulations.

  9. Excitation of kinetic Alfven waves by resonant mode conversion and longitudinal heating of magnetized plasmas

    Science.gov (United States)

    Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, A.

    1989-01-01

    The excitation of the kinetic Alfven wave by resonant mode conversion and longitudinal heating of the plasma by the kinetic Alfven wave were demonstrated on the basis of a macroscale particle simulation. The longitudinal electron current was shown to be cancelled by the ions. The kinetic Alfven wave produced an ordered motion of the plasma particles in the wave propagation direction. The electrons were pushed forward along the ambient magnetic field by absorbing the kinetic Alfven wave through the Landau resonance.

  10. Minority heating scenarios in 4 He (H) and 3 He (H) SST-1 plasmas

    Indian Academy of Sciences (India)

    The minority heating is predominant in 3 H e ( H ) and 4 H e ( H ) plasmas as minority resonance layers are not shielded by ion–ion resonance and cut-off layers in both cases, and it is better in 4 H e ( H ) plasma due to the smooth penetration of wave through plasma–vacuum surface. In minority concentration up to 15%, ...

  11. Reduction of trapped ion anomalous heating by in situ surface plasma cleaning

    CERN Document Server

    McConnell, Robert; Chiaverini, John; Sage, Jeremy

    2015-01-01

    Anomalous motional heating is a major obstacle to scalable quantum information processing with trapped ions. While the source of this heating is not yet understood, several previous studies suggest that surface contaminants may be largely responsible. We demonstrate an improvement by a factor of four in the room-temperature heating rate of a niobium surface electrode trap by in situ plasma cleaning of the trap surface. This surface treatment was performed with a simple homebuilt coil assembly and commercially-available matching network and is considerably gentler than other treatments, such as ion milling or laser cleaning, that have previously been shown to improve ion heating rates. We do not see an improvement in the heating rate when the trap is operated at cryogenic temperatures, pointing to a role of thermally-activated surface contaminants in motional heating whose activity may freeze out at low temperatures.

  12. Two cases of Chest Heating Sensation treated by Hwangryunhaedok-tang Herbal-Acupuncture

    Directory of Open Access Journals (Sweden)

    Gwon-Il Cho

    2003-06-01

    Full Text Available The purpose of this study is to evaluate the clinical effect of Hwangryunhaedok-tang Herbal-Acupuncture. Hwangryunhaedok-tang is used in all heating diseases. Chest Heating Sensation is a unique concept in Oriental Medicine. So we applied Hwangryunhaedok-tang Herbal-Acupuncture to treat the Chest Heating Sensation. We used DITI(Digital Infrared Thermographic Imaging to estimate the temperatures of chest surface for the outcome assessment. We came to know that the chest surface temperatures were all reduced in both cases after Herbal-Acupuncture treatment. The reduced average temperature was 1.5℃ in case 1 and 0.9℃ in case 2. The above result indicates that Hwangryunhaedok-tang Herbal-Acupuncture treatment has an effect on Chest Heating Sensation, thus continuous Hwangryunhaedok-tang Herbal-Acupuncture study will be needed for more clinical applications.

  13. Analytical model of particle and heat flux collection by dust immersed in dense magnetized plasmas

    Science.gov (United States)

    Vignitchouk, L.; Ratynskaia, S.; Tolias, P.

    2017-10-01

    A comprehensive analytical description is presented for the particle and heat fluxes collected by dust in dense magnetized plasmas. Compared to the widely used orbital motion limited theory, the suppression of cross-field transport leads to a strong reduction of the electron fluxes, while ion collection is inhibited by thin-sheath effects and the formation of a potential overshoot along the field lines. As a result, the incoming heat flux loses its sensitivity to the floating potential, thereby diminishing the importance of electron emission processes in dust survivability. Numerical simulations implementing the new model for ITER-like detached divertor plasmas predict a drastic enhancement of the dust lifetime.

  14. Determination of the profit rate of plasma treated production in the food sector

    Science.gov (United States)

    Gok, Elif Ceren; Uygun, Emre; Eren, Esin; Oksuz, Lutfi; Uygun Oksuz, Aysegul

    2017-10-01

    Recently, plasma is one of an emerging, green processing technologies used for diverse applications especially food industry. Plasma treatment proposes diverse opportunities in food industry such as surface decontamination, modification of surface properties and improvement in mass transfer with respect for foods and food-related compounds. Sometimes manufacturers use chemical treatment to demolish pathogenic flora, but its capabilities are rather limited. New methods of food sterilization consisting of ionizing radiation, exposure to magnetic fields, high-power ultrasonic treatment are needed expensive equipment or have not yet been developed for industrial use. Plasma could be used for the above mentioned reasons. In this study, the profit rate of plasma treated production in food sector was calculated.

  15. Wettability transition of plasma-treated polystyrene micro/nano pillars-aligned patterns

    Directory of Open Access Journals (Sweden)

    2010-12-01

    Full Text Available This paper reports the wettability transition of plasma-treated polystyrene (PS micro/nano pillars-aligned patterns. The micro/nano pillars were prepared using hot embossing on silicon microporous template and alumina nanoporous template, which were fabricated by ultraviolet (UV lithography and inductive coupled plasma (ICP etching, and two-step anodic oxidation, respectively. The results indicate that the combination of micro/nano patterning and plasma irradiation can easily regulate wettabilities of PS surfaces, i.e. from hydrophilicity to hydrophobicity, or from hydrophobicity to superhydrophilicity. During the wettability transition from hydrophobicity to hydrophilicity there is only mild hydrophilicity loss. After plasma irradiation, moreover, the wettability of PS micro/nano pillars-aligned patterns is more stable than that of flat PS surfaces. The observed wettability transition and wettability stability of PS micro/nano pillars-aligned patterns are new phenomena, which may have potential in creating programmable functional polymer surfaces.

  16. Plasma-treated polyethylene film: A smart material applied for Salmonella Typhimurium detection

    Energy Technology Data Exchange (ETDEWEB)

    Peng-Ubol, Triranat [Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Phinyocheep, Pranee, E-mail: scppo@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Daniel, Philippe [Laboratoire de Physique de l' Etat Condense (LPEC-UMR CNRS 6087), Universite du Maine, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9 (France); Panbangred, Watanalai [Department of Biotechnology and Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, Rama 6 Rd, Phayathai, Bangkok 10400 (Thailand); Pilard, Jean-Francois [Unite de Chimie Organique Moleculaire et Macromoleculaire (UCO2M-UMR CNRS 6011), Universite du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9 (France); Thouand, Gerald; Durand-Thouand, Marie-Jose [Genie des Procedes Environnement et Agroalimentaire (GEPEA UMR CNRS 6144), Departement Genie Biologique, IUT de la Roche/Yon, Universite de Nantes, 18 Bd G. Defferre, 85035 La Roche sur Yon (France)

    2012-12-01

    Salmonella is a major cause of foodborne illness worldwide and is not allowed to be present in any food in all countries. The purpose of this study is to develop a simple alternative method for the detection of Salmonella based on functionalized polyethylene (PE) surfaces. Salmonella Typhimurium was used as a model bacterium. PE film was treated using dielectric plasma in order to alter the wettability of the PE surface and consequently introduce functionality on the surface. The PE film characterized by ATR-FTIR spectroscopy revealed the presence of C=O stretching of ketones, aldehydes and carboxylic acids. The antibodies against O or H antigens of Salmonella and S. Typhimurium were then respectively immobilized on the PE surface after activation of the carboxylic group using NHS/EDC followed by protein A. The evidences from ATR-FTIR, scanning electron microscopy and optical microscopy showed the presence of S. Typhimurium attached to the plasma treated PE surfaces via the two types of anti-Salmonella antibody. The plasma treated PE film developed is simple and allows efficient association of bacterial cells on the treated surfaces without the necessity of time-consuming centrifugation and washing steps for isolation of the cells. This material is considered to be a smart material applicable for S. Typhimurium detection. Highlights: Black-Right-Pointing-Pointer We developed a functionalized polyethylene film for bacterial detection. Black-Right-Pointing-Pointer We modified the surface of polyethylene film by plasma treatment. Black-Right-Pointing-Pointer ATR-FTIR spectroscopy was used to analyze the functionality on the PE surface. Black-Right-Pointing-Pointer We introduced Salmonella Typhimurium on the modified PE film. Black-Right-Pointing-Pointer SEM revealed the presence of S. Typhimurium on the plasma treated PE film.

  17. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1999-06-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  18. Plasma heating by non-linear wave-Plasma interaction | Echi ...

    African Journals Online (AJOL)

    The wave-plasma interaction has a non-conservative Hamiltonian description. The resulting system of Hamilton's equations is integrated numerically using fourth order Runge-Kutta scheme. It is found that for wave amplitude α as low as 0.01Bo the response of the plasma is remarkably different from the prediction of linear ...

  19. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-10-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter heat transfer.

  20. Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating

    DEFF Research Database (Denmark)

    Hellsten, T.; Johnson, T. J.; Van Eester, D.

    2012-01-01

    is better than with coupled power, indicating that for these types of discharges the dominating mechanism for the rotation is related to indirect effects of electron heat transport, rather than to direct effects of ICRF heating. There is no conclusive evidence that mode conversion in itself affects rotation...

  1. Detection of nanoflare-heated plasma in the solar corona by the FOXSI-2 sounding rocket

    Science.gov (United States)

    Ishikawa, Shin-nosuke; Glesener, Lindsay; Krucker, Säm; Christe, Steven; Buitrago-Casas, Juan Camilo; Narukage, Noriyuki; Vievering, Juliana

    2017-11-01

    The processes that heat the solar and stellar coronae to several million kelvins, compared with the much cooler photosphere (5,800 K for the Sun), are still not well known1. One proposed mechanism is heating via a large number of small, unresolved, impulsive heating events called nanoflares2. Each event would heat and cool quickly, and the average effect would be a broad range of temperatures including a small amount of extremely hot plasma. However, detecting these faint, hot traces in the presence of brighter, cooler emission is observationally challenging. Here we present hard X-ray data from the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2), which detected emission above 7 keV from an active region of the Sun with no obvious individual X-ray flare emission. Through differential emission measure computations, we ascribe this emission to plasma heated above 10 MK, providing evidence for the existence of solar nanoflares. The quantitative evaluation of the hot plasma strongly constrains the coronal heating models.

  2. THERMAL CONDUCTIVITY OF SOLID WOOD PANELS MADE FROM HEAT-TREATED SPRUCE AND LIME WOOD STRIPS

    Directory of Open Access Journals (Sweden)

    Cristina Marinela OLARESCU

    2015-12-01

    Full Text Available The paper presents the results of an experimental research performed with spruce (Picea abies L. and lime (Tilia cordata wood originating from the Stroesti-Arges region in Romania. Solid wood panels were manufactured from heat-treated strips, and also from untreated strips, as controls. The thermal conductivity (λ of the panels was measured on a HFM 436/6/1 Lambda equipment at a temperature difference of 30°C between the cold and the hot plate. The results showed that the panels made from heat-treated wood strips had by 13% lower values of λ in case of spruce and by 6% lower values in case of lime and thus better heat-insulating properties than the panels made from untreated wood of the same species. With λ values around 0.07-0.08 W/m⋅K, 20mm thick solid wood panels made from heat-treated spruce and lime strips are comparable to wool from the viewpoint of the thermal insulating capacity.

  3. Plasma Opioid Peptide Responses during Heat Acclimation in Humans

    Science.gov (United States)

    1987-01-01

    menstrual cycle . 154: 540-542. 1977. Physiologist 28: 368, 1985. 6. Clark. W. G. Influence of opioids on central thermoregulatory 19. Kraemer. W., B...The mine maximum oxygen consumption ( VO 2max), which was methanol eluate was evaporated to dryness at 37°C. Samples used to calculate the relative...Scientific) to intensity (71.8±2.9% VO 2max for running). Day 4 running mix plasma and /3-endorphin antibody coated Sepharose exercise was performed at Ehe

  4. Radio frequency heating induced edge plasma convection: self-consistent simulations and experiments on ASDEX Upgrade

    Science.gov (United States)

    Zhang, W.; Tierens, W.; Noterdaeme, J.-M.; Bobkov, V.; Aguiam, D.; Coster, D.; Fuenfgelder, H.; Jacquot, J.; Ochoukov, R.; Silva, A.; Colas, L.; Křivská, A.; the ASDEX Upgrade Team; the MST1 Team

    2017-11-01

    Plasma heating with waves in the ion cyclotron range of frequency (ICRF) affects the edge plasma and the edge plasma affects the ICRF heating. In simulations, these nonlinear ICRF—edge plasma interactions have been self-consistently simulated by running the EMC3-EIRENE, RAPLICASOL and SSWICH codes in an iterative way on ASDEX Upgrade for the first time. In experiments, the edge plasma convection induced by powered 3-strap antennas is measured with the antenna embedded reflectometers for the first time. Both the simulation and experimental results indicate that the ICRF induced convective cells are most significant on the top and bottom of the antennas; the edge plasma convection induced by 3-strap antennas in optimized antenna feeding configuration (dipole phasing, power ratio between the center and outer straps ~1.5) is smallest among the studied cases. The simulation results also suggest that compared to the 2-strap antennas, the 3-strap antennas can significantly reduce the plasma convection associated with the radio-frequency sheaths, even with unfavorable power balance between the straps in dipole phasing.

  5. The resistance of surfaces treated with oils and waxes to the action of dry heat

    Directory of Open Access Journals (Sweden)

    Jaić Milan

    2009-01-01

    Full Text Available Surface treatment of wood can be done with different coatings, and the choice of the appropriate system of processing depends on several factors, such as technological, aesthetic, economic and ecological. Raising awareness of the need to preserve the living and working environment has had a crucial impact on the increase in the use of natural materials for surface treatment of wood - oil and wax. The application of oils and waxes allows surface treated wood to keep the natural look, while protecting it from different influences, which can cause degradation and deterioration of the final product. The paper presents the results of testing the resistance of beech surface (Fagus silvatica L. processed with linseed oil and beeswax to the action of dry heat. In order to compare the quality of surface treated with oil and/or wax, beech wood treated with 2K-polyurethane coating is taken as a reference of surface treatment of wood. Surfaces treated with beeswax are less resistant to dry heat than those treated with linseed oil, and both showed significantly less resistance than surface treated with 2K-polyurethane coating.

  6. Apparent Surface Free Energy of Polymer/Paper Composite Material Treated by Air Plasma

    Directory of Open Access Journals (Sweden)

    Konrad Terpiłowski

    2017-01-01

    Full Text Available Surface plasma treatment consists in changes of surface properties without changing internal properties. In this paper composite polymer/paper material is used for production of packaging in cosmetic industry. There are problems with bonding this material at the time of packaging production due to its properties. Composite surface was treated by air plasma for 1, 10, 20, and 30 s. The advancing and receding contact angles of water, formamide, and diiodomethane were measured using both treated and untreated samples. Apparent surface free energy was estimated using the hysteresis (CAH and Van Oss, Good, Chaudhury approaches (LWAB. Surface roughness was investigated using optical profilometry and identification of after plasma treatment emerging chemical groups was made by means of the XPS (X-ray photoelectron spectroscopy technique. After plasma treatment the values of contact angles decreased which is particularly evident for polar liquids. Apparent surface free energy increased compared to that of untreated samples. Changes of energy value are due to the electron-donor parameter of energy. This parameter increases as a result of adding polar groups at the time of surface plasma activation. Changes of surface properties are combination of increase of polar chemical functional groups, increase on the surface, and surface roughness increase.

  7. Endothelial cells on plasma-treated segmented-polyurethane: adhesion strength, antithrombogenicity and cultivation in tubes.

    Science.gov (United States)

    Kawamoto, Y; Nakao, A; Ito, Y; Wada, N; Kaibara, M

    1997-09-01

    When the surface of segmented-polyurethane (SPU), where endothelial cells are not capable of proliferating, is modified by plasma treatment, the adhesion and proliferation of bovine aortic endothelial cells (BAECs) can be drastically improved. The cells were capable of proliferating on the inner surface of a plasma-treated SPU-coated tube (length: 50 mm; inner diameter: 1.5 mm). When a steady flow shear stress of 9 Pa was applied to the cells proliferated on the modified SPU surface for 90 min, most cells did not detach from the surface. From an in vitro evaluation test of antithrombogenicity, the cell surface can be considered to provide an inert surface against thrombus formation and blood coagulation. From analyses of the plasma-treated SPU surface, it was suggested that the improvements in BAEC proliferation and adhesion after plasma treatment were due to the change in wettability of the surface. Data suggest that the plasma treatment would be useful for developing a small-calibre hybrid vascular graft.

  8. Plasma dynamics and heating/acceleration during driven magnetic reconnection

    Science.gov (United States)

    Cheng, C. Z.; Ono, Y.; Inoue, S.; Horiuchi, R.

    2016-12-01

    Highlights of the plasma dynamics and energization during anti-parallel driven magnetic reconnection are presented. The MHD condition breaks down in the entire reconnection layer (the reconnection current layer, the separatrix region and the whole downstream), and the plasma dynamics is also significantly different from the results of the Hall-MHD model. In particular, we explain (1) how electron and ion dynamics decouple and how the charge separation and electrostatic electric field are produced in the reconnection current layer and outflow exhaust and around the separatrix regions, (2) how electrons and ions gain energy in the reconnection current layer, (3) why the electron outflow velocity in the reconnection exhaust reaches super-Alfvenic speed and the ion outflow velocity reaches Alfvenic speed and how the parallel electric field is produced around the separatrix region, (4) how electrons are accelerated by the parallel electric field to form electron beam around the separatrix region and flat-top distribution in the immediate upstream region of the current layer, and (5) how ions gain energy when they move across the separatrix region into the downstream. We will compare the simulation results with observations of MMS and Geotail satellites.

  9. NIFS joint research meeting on plasma facing components, PSI, and heat/particle control

    Energy Technology Data Exchange (ETDEWEB)

    Yamashina, T. [Hokkaido Univ., Sapporo (Japan)

    1997-10-01

    The LHD collaboration has been started in 1996. Particle and heat control is one of the categories for the collaboration, and a few programs have been nominated in these two years. A joint research meeting on PFC, PSI, heat and particle meeting was held at NIFS on June 27, 1997, in which present status of these programs were reported. This is a collection of the notes and view graphs presented in this meeting. Brief reviews and research plan of each program are included in relation to divertor erosion and sputtering, impurity generation, hydrogen recycling, edge plasma structure, edge transport and its control, heat removal, particle exhaust, wall conditioning etc. (author)

  10. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C.J.; Abrigo, G.P.; Shafer, P.J.; Merrill, R.A.

    1995-07-01

    This report provides reviews of papers and reports for three basic categories of melters: arc/plasma-heated melters, combustion-heated melters, and joule-heated melters. The literature reviewed here represents those publications which may lend insight to phase I testing of low-level waste vitrification being performed at the Hanford Site in FY 1995. For each melter category, information from those papers and reports containing enough information to determine steady-state mass balance data is tabulated at the end of each section. The tables show the composition of the feed processed, the off-gas measured via decontamination factors, gross energy consumptions, and processing rates, among other data.

  11. Fluoropolymer coated alanine films treated by atmospheric pressure plasmas − In comparison with gamma irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Bardenshtein, Alexander; Morgen, Per

    2017-01-01

    Fluoropolymer coated alanine films are treated by a dielectric barrier discharge and a gliding arc at atmospheric pressure as well as with gamma irradiation. The film surfaces and the underlying bulk materials are characterized before and after each treatment. The fluorine content decreases...... and the oxygen content increases at the fluoropolymer surfaces, while deposition of specific plasma energies in the alanine films is detected by electron paramagnetic resonance spectroscopy, indicating that not only the fluoropolymer surfaces but also the bulk alanine materials are modified. Differences...... of surface and bulk modification effects between the two plasma treatments are discussed in detail....

  12. Plasma heating, electric fields and plasma flow by electron beam ionospheric injection

    Science.gov (United States)

    Winckler, J. R.; Erickson, K. N.

    1990-01-01

    The electric fields and the floating potentials of a Plasma Diagnostics Payload (PDP) located near a powerful electron beam injected from a large sounding rocket into the auroral zone ionosphere have been studied. As the PDP drifted away from the beam laterally, it surveyed a region of hot plasma extending nearly to 60 m radius. Large polarization electric fields transverse to B were imbedded in this hot plasma, which displayed large ELF wave variations and also an average pattern which has led to a model of the plasma flow about the negative line potential of the beam resembling a hydrodynamic vortex in a uniform flow field. Most of the present results are derived from the ECHO 6 sounding rocket mission.

  13. Collisionless electron heating in periodic arrays of inductively coupled plasmas

    Science.gov (United States)

    Czarnetzki, Uwe; Tarnev, Khristo

    2015-09-01

    A novel mechanism of collisionless heating in large planar arrays of small inductive coils operated at radio frequencies is proposed. A periodic array of multiple coils provides a well-structured, dynamic electric field which allows resonant electrons moving in the plane to gain high energies. Two types of tailored periodic structures are studied. In the ortho-array currents in all coils are in phase while in the para-array currents in adjacent coils are 180° out of phase. The concept is investigated analytically by solving the Vlasov equation and by a single particle simulation combined with Monte Carlo collisions with Argon atoms. Scaling parameters, resonances, energy exchange, and distribution functions are obtained. Analytical and numerical results are in good agreement. Pressure and electric field dependences are studied. Stochastic heating is found to be most efficient when the electron mean free path exceeds the size of a single coil cell. Then the mean energy increases approximately exponentially with the electric field amplitude.

  14. Numerical Study of HHFW Heating in FRC Plasmas

    Science.gov (United States)

    Ceccherini, Francesco; Galeotti, Laura; Brambilla, Marco; Dettrick, Sean; Yang, Xiaokang; TAE Team

    2017-10-01

    The TriAlpha Energy (TAE) code RF-Pisa is a Finite Larmor Radius (FLR) full wave code developed over the years to study RF heating in the Field Reversed Configuration (FRC) in both the ion and electron cyclotron regimes. The FLR approximation is perfectly adequate to address RF propagation and absorption at the fundamental and second harmonic frequencies (as in the minority heating scheme), but it is not able to describe higher order processes such as high-harmonic fast waves (HHFW). The latter ones have frequencies lying between the ion cyclotron and lower hybrid resonances and they may represent a viable path to develop an efficient method to deposit energy inside the FRC separatrix, as suggested by recent results obtained at NSTX. A significant upgrade of RF-Pisa to include HHFW has been undertaken. In particular, the so-called ``quasi local approximation'' originally proposed for toroidal geometries has been re-derived for the cylindrical geometry and a new HHFW version of RF-Pisa concurrent to the FLR version has been developed. Here we present the first results of the application of the new code to FRC equilibria and we discuss the features of the dispersion relations and the absorption processes which characterize this novel regime.

  15. Anomalous heating of the polar E region by unstable plasma waves. II - Theory

    Science.gov (United States)

    St.-Maurice, J. P.; Schlegel, K.; Banks, P. M.

    1981-01-01

    It is found that anomalous electron temperatures in the disturbed high-latitude E region can be quantitatively explained in terms of heating by unstable plasma waves. The electron temperatures at 110 km have been measured to be as high as 1500 K instead of the expected value of about 300 K. It is shown that by using quasi-linear theory there is an ample source of heat in the unstable waves and that the measured electron temperature profiles have a shape very similar to what is expected from plasma wave heating by the modified two-stream instability. It is found that there is even more heating going to the ion gas, but that the resulting effect on the ion temperature may be difficult to measure. The best estimate of the wave heating rates leads to the conclusion that wave heating can be as much as 50% of the Joule heating for dc electric field strengths of the order of 45 mV/m or greater.

  16. Only a fraction of patients with ischaemic diseases or diabetes are treated to recommended target values for plasma lipids

    DEFF Research Database (Denmark)

    Siggaard-Andersen, Niels; Freiberg, Jacob J; Nordestgaard, Børge G

    2012-01-01

    We tested the hypothesis that individuals in the general population with and without ischaemic cardiovascular disease, or with diabetes, are treated to recommended target values for plasma lipids.......We tested the hypothesis that individuals in the general population with and without ischaemic cardiovascular disease, or with diabetes, are treated to recommended target values for plasma lipids....

  17. Mechanical, structural and dissolution properties of heat treated thin-film phosphate based glasses

    Science.gov (United States)

    Stuart, Bryan W.; Gimeno-Fabra, Miquel; Segal, Joel; Ahmed, Ifty; Grant, David M.

    2017-09-01

    Here we show the deposition of 2.7 μm thick phosphate based glass films produced by magnetron sputtering, followed by post heat treatments at 500 °C. Variations in degradation properties pre and post heat treatment were attributed to the formation of Hematite crystals within a glass matrix, iron oxidation and the depletion of hydrophilic P-O-P bonds within the surface layer. As deposited and heat treated coatings showed interfacial tensile adhesion in excess of 73.6 MPa; which surpassed ISO and FDA requirements for HA coatings. Scratch testing of coatings on polished substrates revealed brittle failure mechanisms, amplified due to heat treatment and interfacial failure occurring from 2.3 to 5.0 N. Coatings that were deposited onto sandblasted substrates to mimic commercial implant surfaces, did not suffer from tensile cracking or trackside delamination showing substantial interfacial improvements to between 8.6 and 11.3 N. An exponential dissolution rate was observed from 0 to 2 h for as deposited coatings, which was eliminated via heat treatment. From 2 to 24 h ion release rates ordered P > Na > Mg > Ca > Fe whilst all coatings exhibited linear degradation rates, which reduced by factors of 2.4-3.0 following heat treatments.

  18. Plasma nitriding of AISI 52100 ball bearing steel and effect of heat ...

    Indian Academy of Sciences (India)

    C) is much lower than the standard processing temperature (∼460–580°C) needed for the plasma nitriding treatment. To understand the mechanism, effect of heat treatment on the nitrided layer steel is investigated. Experiments are performed ...

  19. Group Velocity Measurements in Laser-Heated Capillary Discharge Waveguides for Laser-Plasma Accelerators

    Science.gov (United States)

    Pieronek, C. V.; Daniels, J.; Gonsalves, A. J.; Benedetti, C.; Leemans, W. P.

    2017-10-01

    To date, the most energetic electron beams from laser-plasma accelerators have been produced using gas-filled capillary discharge waveguides, which increase the acceleration length by mitigating diffraction of the driving laser pulse. To reach higher electron beam energies, lower plasma density is required to reduce bunch dephasing. However, confinement of the driver is reduced for lower plasma density, reducing the acceleration length. A laser-heated capillary discharge waveguide, where the discharge is heated by a coaxial laser pulse, was proposed to create a steeper density gradient at lower density. Here the first measurements of group velocity in laser-heated capillary discharges, obtained via spectral interferometry, are presented. Increase of the driver group velocity and reduction in on-axis plasma density by laser-heating are shown. Work supported by the U.S. Dept. of Energy, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231. Additional support by the National Science Foundation under Grant PHY-1415596.

  20. Plasma-treated Langmuir-Blodgett reduced graphene oxide thin film for applications in biophotovoltaics

    Science.gov (United States)

    Ibrahim, Siti Aisyah; Jaafar, Muhammad Musoddiq; Ng, Fong-Lee; Phang, Siew-Moi; Kumar, G. Ghana; Majid, Wan Haliza Abd; Periasamy, Vengadesh

    2018-01-01

    The surface optimization and structural characteristics of Langmuir-Blodgett (LB) reduced graphene oxide thin (rGO) film treated by argon plasma treatment were studied. In this work, six times deposition of rGO was deposited on a clean glass substrate using the LB method. Plasma technique involving a variation of plasma power, i.e., 20, 60, 100 and 140 W was exposed to the LB-rGO thin films under argon ambience. The plasma treatment generally improves the wettability or hydrophilicity of the film surface compared to without treatment. Maximum wettability was observed at a plasma power of 20 W, while also increasing the adhesion of the rGO film with the glass substrate. The multilayer films fabricated were characterized by means of spectroscopic, structural and electrical studies. The treatment of rGO with argon plasma was found to have improved its biocompatibility, and thus its performance as an electrode for biophotovoltaic devices has been shown to be enhanced considerably.

  1. The Structure of Plasma Heating in Gyrokinetic Alfv\\'enic Turbulence

    CERN Document Server

    Navarro, A B; Told, D; Groselj, D; Crandall, P; Jenko, F

    2016-01-01

    We analyze plasma heating in weakly collisional kinetic Alfv\\'en wave (KAW) turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e. $\\mathbf{J} \\!\\cdot\\! (\\mathbf{E} + \\mathbf{v}_e\\times\\mathbf{B})$, as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here.

  2. Experimental assessment of the performance of ablative heat shield materials from plasma wind tunnel testing

    Science.gov (United States)

    Löhle, S.; Hermann, T.; Zander, F.

    2017-12-01

    A method for assessing the performance of typical heat shield materials is presented in this paper. Three different material samples, the DLR material uc(Zuram), the Airbus material uc(Asterm) and the carbon preform uc(Calcarb) were tested in the IRS plasma wind tunnel PWK1 at the same nominal condition. State of the art diagnostic tools, i.e., surface temperature with pyrometry and thermography and boundary layer optical emission spectroscopy were completed by photogrammetric surface recession measurements. These data allow the assessment of the net heat flux for each material. The analysis shows that the three materials each have a different effect on heat flux mitigation with ASTERM showing the largest reduction in surface heat flux. The effect of pyrolysis and blowing is clearly observed and the heat flux reduction can be determined from an energy balance.

  3. Extreme Degree of Ionization in Homogenous Micro-Capillary Plasma Columns Heated by Ultrafast Current Pulses

    Science.gov (United States)

    Avaria, G.; Grisham, M.; Li, J.; Tomasel, F. G.; Shlyaptsev, V. N.; Busquet, M.; Woolston, M.; Rocca, J. J.

    2015-03-01

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520 -μ m -diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3 GA cm-2 greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe28 + , while xenon impurities in hydrogen discharges reach Xe30 + . The unique characteristics of these hot, ˜300 :1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  4. Gyrokinetic simulations of momentum transport and fluctuation spectra for ICRF-heated L-Mode plasmas

    Science.gov (United States)

    Sierchio, J. M.; White, A. E.; Howard, N. T.; Sung, C.; Ennever, P.; Porkolab, M.; Candy, J.

    2014-10-01

    We examine ICRF-heated L-mode plasmas in Alcator C-Mod, with differing momentum transport (hollow vs. peaked radial profiles of intrinsic toroidal rotation) but similar heat and particle transport. Nonlinear gyrokinetic simulations of heat and particle transport with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] have previously been compared with these experiments [White et al., Phys. Plasmas 20, 056106 (2013); Howard et al. PPCF submitted (2014)] as part of an effort to validate the gyrokinetic model for core turbulent transport in C-Mod plasmas. To further test the model for these plasmas, predicted core turbulence characteristics such as fluctuation spectra will be compared with experiment. Using synthetic diagnostics for the CECE, reflectometry, and PCI systems at C-Mod, synthetic spectra and, when applicable, fluctuation amplitudes, are generated. We compare these generated results with fluctuation measurements from the experiment. We also report the momentum transport results from simulations of these plasmas and compare them to experiment. Supported by USDoE award DE-FC02-99ER54512.

  5. Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.

    Science.gov (United States)

    Yushkov, G Yu; Vodopyanov, A V; Nikolaev, A G; Izotov, I V; Savkin, K P; Golubev, S V; Oks, E M

    2014-02-01

    The hybrid high charge metal ion source based on vacuum arc plasma heated by gyrotron radiation into simple magnetic trap has been developed. Two types of magnetic traps were used: a mirror configuration and a cusp one with inherent "minimum-B" structure. Pulsed high power (>100 kW) gyrotrons with frequency 37.5 GHz and 75 GHz were used for heating the vacuum arc plasma injected into the traps. Two different ways were used for injecting the metal plasma-axial injection by a miniature arc source located on-axis near the microwave window, and simultaneous radial injection by a number of sources mounted radially at the midplane of the traps. This article represents all data gathered for platinum ions, thus making comparison of the experimental results obtained with different traps and injections convenient and accurate.

  6. FEM-DBEM approach to analyse crack scenarios in a baffle cooling pipe undergoing heat flux from the plasma

    Directory of Open Access Journals (Sweden)

    R. Citarella

    2017-02-01

    Full Text Available Wendelstein 7-X is the world’s largest nuclear fusion experiment of stellarator type, in which a hydrogen plasma is confined by a magnet field generated with external superconducting coils, allowing the plasma to be heated up to the fusion temperature. The water-cooled Plasma Facing Components (PFC protect the Plasma Vessel (PV against radiative and convective heat from the plasma. After the assembly process of heat shields and baffles, several cracks were found in the braze and cooling pipes. Due to heat load cycles occurring during each Operational Phase (OP, thermal stresses are generated in the heat sinks, braze root and cooling pipes, capable to drive fatigue crack-growth and, possibly, a water leak through the pipe thickness. The aim of this study is to assess the most dangerous initial crack configurations in one of the most critical baffles by using numerical models based on a FEM-DBEM approach.

  7. Osteoinduction on acid and heat treated porous Ti metal samples in canine muscle.

    Science.gov (United States)

    Kawai, Toshiyuki; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Akiyama, Haruhiko; Tanaka, Masashi; Yamaguchi, Seiji; Pattanayak, Deepak K; Doi, Kenji; Matsushita, Tomiharu; Nakamura, Takashi; Kokubo, Tadashi; Matsuda, Shuichi

    2014-01-01

    Samples of porous Ti metal were subjected to different acid and heat treatments. Ectopic bone formation on specimens embedded in dog muscle was compared with the surface characteristics of the specimen. Treatment of the specimens by H2SO4/HCl and heating at 600 °C produced micrometer-scale roughness with surface layers composed of rutile phase of titanium dioxide. The acid- and heat-treated specimens induced ectopic bone formation within 6 months of implantation. A specimen treated using NaOH followed by HCl acid and then heat treatment produced nanometer-scale surface roughness with a surface layer composed of both rutile and anatase phases of titanium dioxide. These specimens also induced bone formation after 6 months of implantation. Both these specimens featured positive surface charge and good apatite-forming abilities in a simulated body fluid. The amount of the bone induced in the porous structure increased with apatite-forming ability and higher positive surface charge. Untreated porous Ti metal samples showed no bone formation even after 12 months. Specimens that were only heat treated featured a smooth surface composed of rutile. A mixed acid treatment produced specimens with micrometer-scale rough surfaces composed of titanium hydride. Both of them also showed no bone formation after 12 months. The specimens that showed no bone formation also featured almost zero surface charge and no apatite-forming ability. These results indicate that osteoinduction of these porous Ti metal samples is directly related to positive surface charge that facilitates formation of apatite on the metal surfaces in vitro.

  8. Osteoinduction on acid and heat treated porous Ti metal samples in canine muscle.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kawai

    Full Text Available Samples of porous Ti metal were subjected to different acid and heat treatments. Ectopic bone formation on specimens embedded in dog muscle was compared with the surface characteristics of the specimen. Treatment of the specimens by H2SO4/HCl and heating at 600 °C produced micrometer-scale roughness with surface layers composed of rutile phase of titanium dioxide. The acid- and heat-treated specimens induced ectopic bone formation within 6 months of implantation. A specimen treated using NaOH followed by HCl acid and then heat treatment produced nanometer-scale surface roughness with a surface layer composed of both rutile and anatase phases of titanium dioxide. These specimens also induced bone formation after 6 months of implantation. Both these specimens featured positive surface charge and good apatite-forming abilities in a simulated body fluid. The amount of the bone induced in the porous structure increased with apatite-forming ability and higher positive surface charge. Untreated porous Ti metal samples showed no bone formation even after 12 months. Specimens that were only heat treated featured a smooth surface composed of rutile. A mixed acid treatment produced specimens with micrometer-scale rough surfaces composed of titanium hydride. Both of them also showed no bone formation after 12 months. The specimens that showed no bone formation also featured almost zero surface charge and no apatite-forming ability. These results indicate that osteoinduction of these porous Ti metal samples is directly related to positive surface charge that facilitates formation of apatite on the metal surfaces in vitro.

  9. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach ~10MW m{sup −2} in the steady state of DT discharges, increasing to ~0.6–3.5 GW m{sup −2} under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production of submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma–wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.

  10. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  11. In vitro biomimetic deposition of apatite on alkaline and heat treated ...

    Indian Academy of Sciences (India)

    WINTEC

    According to above explanations, it was determined that the best treatment conditions for Ti6Al4V specimens were immersed in 5 M NaOH solution at 80°C for 3 days followed by heat treatment at 600°C for 1 h. 5. Conclusions. Titanium alloy (Ti6Al4V) treated in NaOH can form apa- tite after soaking in SBF. It was found that ...

  12. Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality

    OpenAIRE

    Francesca Melini; Valentina Melini; Francesca Luziatelli; Maurizio Ruzzi

    2017-01-01

    Consumers have recently shown a preference for natural food products and ingredients and within that framework, their interest in consuming raw drinking milk has been highlighted, claiming nutritional, organoleptic and health benefits. However, a public debate has simultaneously emerged about the actual risks and benefits of direct human consumption of raw milk. This paper compares the microbiological, nutritional and sensory profile of raw and heat-treated milk, to evaluate the real risks an...

  13. Physicochemical Characterization of a Heat Treated Calcium Alginate Dry Film Prepared with Chicken Stock.

    Science.gov (United States)

    Báez, Germán D; Piccirilli, Gisela N; Ballerini, Griselda A; Frattini, Agustín; Busti, Pablo A; Verdini, Roxana A; Delorenzi, Néstor J

    2017-04-01

    Solid sodium alginate was dissolved into chicken stock in order to give a final alginate concentration of 0.9 percent (w/v). Calcium ions present in chicken stock were enough to induce ionic gelation. After drying, Fourier transform infrared spectroscopy, thickness and mechanical properties of films obtained were determined. Calcium alginate-chicken stock films were heated at 130 °C for different times between 0 and 15 min. Mechanical and optical studies, differential scanning calorimetry, visual aspect and scanning electron microscopy were carried out to describe physicochemical properties of heat treated films. Heating developed a maroon ochre color and increased the brittleness (crispness) of the films related to the intensity of the treatment. Differential scanning thermometry and study on appearance of the films suggested that Maillard reactions may be responsible for the observed changes. Maillard reactions mainly occurred between reducing sugar monomers and free amino groups of gelatin peptides present in the chicken stock, and between alginate and gelatin peptides to a lesser extent. In addition, the plasticizing effect of fat added with chicken stock was also studied. These studies suggest a potential use of heat treated chicken stock films as a substitute of roasted chicken skin. © 2017 Institute of Food Technologists®.

  14. Hole injection enhancement in organic light emitting devices using plasma treated graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jesuraj, P. Justin; Parameshwari, R. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India); Kanthasamy, K.; Koch, J. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Pfnür, H. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Laboratorium für Nano- und Quantene$ngineering, Schneiderberg 30, D-30167, Hannover (Germany); Jeganathan, K., E-mail: kjeganathan@yahoo.com [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India)

    2017-03-01

    Graphical abstract: Plasma treated Graphene oxide for hole injection enhancement in OLEDs. - Highlights: • Oxygen (O{sub 2}) and hydrogen (H{sub 2}) plasma exposed graphene oxide (GO) sheets have been demonstrated as hole buffer layers in OLEDs. • O{sub 2} plasma exposure induces assimilation of oxygen contents in GO lattice resulting in improved work function that reduced the hole injection barrier further. Whereas, H{sub 2} plasma contrastingly reduced the GO by excluding oxygen which ensuing lower work function. • X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy investigations reveal the capricious amount of oxygen in GO lattice and its corresponding work function variations. • GO and O{sub 2} plasma treated GO significantly improves the current efficiency of OLEDs more than one order with notable reduction in turn on voltage. - Abstract: The hole injection layer (HIL) with high work function (WF) is desirable to reduce the injection barrier between anode and hole transport layer in organic light emitting devices (OLED). Here, we report a novel approach to tune the WF of graphene oxide (GO) using oxygen and hydrogen plasma treatment and its hole injection properties in OLEDs. The mild exposure of oxygen plasma on GO (O{sub 2}-GO) significantly reduces the injection barrier by increasing the WF of anode (4.98 eV) through expansion of C−O bonds. In contrast, the hole injection barrier was drastically increased for hydrogen plasma treated GO (H{sub 2}-GO) layers as the WF is lowered by the contraction of C−O bond. By employing active O{sub 2}-GO as HIL in OLEDs found to exhibit superior current efficiency of 4.2 cd/A as compared to 3.3 cd/A for pristine GO. Further, the high injection efficiency of O{sub 2}-GO infused hole only device can be attributed to the improved energy level matching. Ultraviolet and X-ray photoelectron spectroscopy were used to correlate the WF of HIL infused anode towards the enhanced performance of

  15. Plasma treated polyethylene terephthalate for increased embedment of UV-responsive microcapsules

    Science.gov (United States)

    Gorjanc, Marija; Mozetič, Miran; Primc, Gregor; Vesel, Alenka; Spasić, Kosta; Puač, Nevena; Petrović, Zoran Lj.; Kert, Mateja

    2017-10-01

    Polyethylene terephthalate (PET) fabric was treated in a late afterglow of plasma created by a microwave (MW) discharge in the surfatron mode, by using oxygen (O2) and ammonia (NH3) gases. The series of treatments using one gas or the combination of both at different treatment times were performed in order to increase the embedment of UV-responsive microcapsules that were deposited onto PET with pad-dry-cure process. Plasma in both gases was characterized by optical emission spectroscopy (OES), which showed substantial dissociation of O2 and NH3 molecules as well as formation of NHx radicals due to the partial dissociation of ammonia molecules. The chemically active species in the plasma afterglow changed the surface properties of PET that were analysed using X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water absorption analysis. The effectiveness of plasma treatment on embedment of UV-responsive microcapsules on PET was evaluated by UV-responsiveness, colour strength and colour depth using reflectance spectroscopy, add-on and air permeability, respectively. Treating PET by O2 afterglow followed by a longer treatment by NH3 afterglow increased the polymers hydrophilicity and concentration of nitrogen-rich functional groups on surface that enabled higher uptake of UV-responsive microcapsules, and consequently better responsiveness of fabric to UV radiation. The add-on of microcapsules was almost 8-times higher and the colour depth increased up to 75% for plasma treated samples.

  16. Structural and Phase Transformations in Water-Vapour-Plasma-Treated Hydrophilic TiO2 Films

    Directory of Open Access Journals (Sweden)

    L. Pranevicius

    2012-01-01

    Full Text Available We have investigated structural and phase transformations in water-vapor-plasma-treated 200–300 nm thick Ti films, maintained at room temperature, by injecting water vapor into radio frequency (RF plasma at different processing powers. Scanning electron microscopy (SEM combined with optical microscopy and surface nanotopography analysis were used to view tracks of adsorbed water layers and to detect bulges or blisters appeared on the surface of treated samples. Rough surfaces with different size of holes (5–20 μm through the entire film thickness have been observed. X-ray diffraction results show that the oxidation rate of Ti film drastically increases in the presence of an adsorbed water on the hydrophilic layer. It is assumed that the defining factor which controls oxidation kinetics is the hydroxyl radicals formation.

  17. Thermometry of the system “heat-resistant sample - incident plasma stream”

    Science.gov (United States)

    Sargsyan, M. A.; Chinnov, V. F.; Kavyrshin, D. I.; Gadzhiev, M. Kh; Khromov, M. A.; Chistolinov, A. V.; Senchenko, V. N.

    2017-11-01

    To study the interacting system “heat-resistant sample – an incident plasma stream” a setup of synchronized measurement equipment was developed and tested that recorded the main parameters of such interaction. Heat resistance tests were carried out on the samples of MPG-6 grade isotropic graphite, and samples of pyrolytic graphite that were subjected to a long (60 … 100 s) exposure to nitrogen, argon and air plasma streams at atmospheric pressure. As plasma generators a series of plasma torches with a vortex stabilization of the stream and an expanding anode channels was used. The temperature and composition of the plasma in the jet and near the sample were determined using two AvaSpec2048 and AvaSpec3648 scanning optical spectrometers and the MS5402i spectrograph with the Andor matrix at its outlet. The surface temperature of the sample was determined in real time using three independent ways: two pyrometric systems - a high-speed micro-pyrometer FMP1001 and a two-position visualization of the heated sample by high-speed Motion Pro X3 and VS-FAST cameras, and the spectral analysis of the wide-range thermal radiation of the samples. The main method for determining the rate of material loss during the action of a plasma jet on it was to analyze a two-position synchronous visualization of the “jet-sample” system. When a crater was formed on the surface of the sample under the “dagger” effect of a plasma jet, a video recording system of the crater zone was used, backlit using the “laser knife” method.

  18. Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing.

    Science.gov (United States)

    Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; Yong, Hae In; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho; Jo, Cheorun

    2015-01-01

    The interaction of plasma with liquid generates nitrogen species including nitrite (NO(-) 2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate the effect of PTW on the cured meat color, meat batters were prepared under three different conditions (control, non-cured meat batter; PTW, meat batter cured with PTW; Sodium nitrite, meat batter cured with sodium nitrite). The meat batters were vacuum-packaged and cooked in a water-bath at 80℃ for 30 min. The typical color of cured meat developed in cooked meat batter treated with sodium nitrite or PTW. The lightness (L*) and yellowness (b*) values were similar in all conditions, whereas, the redness (a*) values of cooked meat batter with PTW and sodium nitrite (pcuring process of meat without addition of other nitrite sources.

  19. Annealing temperature effect on the properties of untreated and treated copper films with oxygen plasma

    Science.gov (United States)

    Hojabri, Alireza; Hajakbari, Fatemeh; Soltanpoor, Nasrin; Hedayati, Maryam Sadat

    2014-06-01

    In this work, the copper films were deposited on quartz substrates by DC magnetron sputtering method and then, the prepared films were annealed in air atmosphere at different annealing temperatures. Before annealing, some of the copper films, treated by oxygen plasma, for comparison of the results. The structural and morphological properties of the films have been investigated using X-ray diffraction (XRD), atomic force microscopy, and four point probe techniques. XRD results exhibited that the cuprous oxide phase changes to cupric oxide by enhancing of annealing temperatures. Also, oxygen plasma treatment can cause the better crystallinity for the prepared copper oxide films. The results confirm that oxygen plasma treatment, affected the crystal size, grain size, average roughness, sheet resistivity and strain of the films. The optical characteristics of the oxygen plasma treated films, such as refractive index, extinction coefficient and absorption coefficient were calculated by straight forward method proposed by Swanepoel using transmittance measurements. Moreover it was found that annealing temperature augmentation lead to decrease the optical band gap energy calculated using Tauc's relation from 2.45 to 1.80 eV.

  20. Surface analysis of 316 stainless steel treated with cold atmospheric plasma

    Science.gov (United States)

    Williams, David F.; Kellar, Ewen J. C.; Jesson, David A.; Watts, John F.

    2017-05-01

    The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m-1 to >72 mJ m-1 after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.

  1. The physical and chemical properties of plasma treated ultra-high-molecular-weight polyethylene fibers

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Teodoru, Steluta; Hansen, Charles M.

    2011-01-01

    polymer assures maximum physical adhesion to transfer loads uniformly. Plasma treatment of ultra-high-molecular-weight polyethylene (UHMWPE) fibers is shown to significantly increase the amount of oxygen in the surface. There are two distinct types of surfaces in both the plasma treated and the untreated...... UHMWPE fibers. One type is typical of polyethylene (PE) polymers while the other is characteristic of the oxygenated surface at much higher values of HSP. The oxygenated surface of the plasma treated fibers has the HSP δD, δP, and δH equal to 16.5, 15.3, and 8.2, compared to the pure PE surface with HSP...... at 18.0, 1.2, and 1.4, all in MPa½. The dispersion parameter has been lowered somewhat by the plasma treatment, while the polar and hydrogen bonding parameters are much higher. The HSP methodology predicts enhanced adhesion is possible by skillful use of anhydride and nitrile functional groups in matrix...

  2. A Rare case of Guillain-Barré syndrome in pregnancy treated with plasma exchange

    Directory of Open Access Journals (Sweden)

    Rahul Vasudev

    2014-01-01

    Full Text Available Guillain-Barre syndromé (GBS is an autoimmune disorder. It is rare in pregnancy as there is a decrease in cell-mediated immunity. A case of 28-year-old pregnant woman who presented with acute flaccid quadriplegia suffering from GBS is discussed in this study. She was treated with plasma exchange in her immediate post-partum period. The management of GBS in pregnancy has been discussed.

  3. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  4. Controlled cytotoxicity of plasma treated water formulated by open-air hybrid mode discharge

    Science.gov (United States)

    Lu, P.; Boehm, D.; Cullen, P.; Bourke, P.

    2017-06-01

    Plasma treated liquids (PTLs) provide a means to convey a broad range of effects of relevance for food, environmental, or clinical decontamination, plant growth promotion, and therapeutic applications. Devising the reactive species ingredients and controlling the biological response of PTLs are of great interest. We demonstrate an approach by using an open-air hybrid mode discharge (HMD) to control the principal reactive species composition within plasma treated water (PTW), which is then demonstrated to regulate the cytotoxicity of PTW. The cytotoxicity of HMD produced PTW demonstrates a non-monotonic change over the discharge time. Although hydrogen peroxide and nitrite are not the sole effectors for cell death caused by PTW, using them as principal reactive species indicators, cytotoxicity can be removed and/or enhanced by formulating their concentrations and composition through adjusting the discharge mode and time on-line during PTW generation without the addition of additional working gas or chemical scavengers. This work demonstrates that a hybrid mode discharge can be employed to generate a PTW formulation to control a biological response such as cytotoxicity. This provides insights into how plasma treated liquids may be harnessed for biological applications in a specific and controllable manner.

  5. Precision of laboratory methods based on protein solubility in quality control of heat treated feedstuffs

    Directory of Open Access Journals (Sweden)

    Palić Dragan V.

    2012-01-01

    Full Text Available Some of feedstuffs used as raw materials in feed industry contain anti-nutritional factors that negatively influence their quality. One of them is soybean, which is, prior to oil extraction, referred to as full-fat soybean (FFSB. Anti-nutritional factors in raw FFSB can be destroyed by moderate heating, but both over- and under heat processing limits the availability of soybean amino acids. Among laboratory procedures that are available for assessing the degree of FFSB heat treatment, two methods, i.e. Protein dispersibility index (PDI and protein solubility in potassium hydroxide (PSKOH, are based on protein solubility, which was claimed to be the most reliable indicator of the degree of FFSB heat treatment. This paper presents the results of an inter-laboratory study conducted to establish precision of the PDI and PSKOH methods by determining their reproducibility limits. Five samples of FFSB were heat-treated at temperatures between 110 and 164 °C and analyzed by six laboratories for PDI and PSKOH. Established reproducibility limit for PDI method of 8.87 index units found in this study appeared to be too wide, indicating a low precision of this method. PSKOH method produced very good reproducibility limit of 8.56% and could be recommended as a preferred method for FFSB quality control in feed laboratories.

  6. Material erosion and erosion products under plasma heat loads typical for ITER hard disruptions

    Energy Technology Data Exchange (ETDEWEB)

    Safronov, V. E-mail: vsafr@rico.ttk.ru; Arkhipov, N.; Bakhtin, V.; Kurkin, S.; Scaffidi-Argentina, F.; Toporkov, D.; Vasenin, S.; Wuerz, H.; Zhitlukhin, A

    2001-03-01

    Plasma/material interaction has been studied in disruption simulation experiments. Candidate divertor materials were exposed to heat loads expected for tokamak-reactor disruptions. It is shown that sudden evaporation of a thin material layer produces a cloud of vapor plasma, which acts as a thermal shield protecting the surface from further excessive evaporation. In terms of evaporation reduction a shielding factor is above 100. Formation and physical properties of the shielding layer are analyzed. Target plasma converts the incoming energy flux into photon radiation. Radiation from target plasma is so intensive that it may cause erosion of nearby components. Surface damages result not solely from atomic vaporization but also from melt layer splashing for metals and brittle destruction for carbon-based materials. Erosion products are emitted as droplets (metal) and grains (carbon-based material). Melt layer splashing results in greater surface damages than vaporization. A contribution of brittle destruction to net erosion is under investigation now.

  7. Heat load and deuterium plasma effects on SPS and WSP tungsten

    Directory of Open Access Journals (Sweden)

    Vilémová Monika

    2015-06-01

    Full Text Available Tungsten is a prime choice for armor material in future nuclear fusion devices. For the realization of fusion, it is necessary to address issues related to the plasma–armor interactions. In this work, several types of tungsten material were studied, i.e. tungsten prepared by spark plasma sintering (SPS and by water stabilized plasma spraying (WSP technique. An intended surface porosity was created in the samples to model hydrogen/helium bubbles. The samples were subjected to a laser heat loading and a radiation loading of deuterium plasma to simulate edge plasma conditions of a nuclear fusion device (power density of 108 W/cm2 and 107 W/cm2, respectively, in the pulse intervals up to 200 ns. Thermally induced changes in the morphology and the damage to the studied surfaces are described. Possible consequences for the fusion device operation are pointed out.

  8. Stochastic clustering of material surface under high-heat plasma load

    Science.gov (United States)

    Budaev, Viacheslav P.

    2017-11-01

    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  9. Growth enhancement effects of radish sprouts: atmospheric pressure plasma irradiation vs. heat shock

    Science.gov (United States)

    Sarinont, T.; Amano, T.; Kitazaki, S.; Koga, K.; Uchida, G.; Shiratani, M.; Hayashi, N.

    2014-06-01

    We compare growth enhancement effects due to atmospheric air dielectric barrier discharge plasma irradiation and heat shock to seeds of radish sprouts (Raphanus sativus L.). Interactions between radicals and seeds in a short duration of 3 min. lead to the growth enhancement of radish sprouts in a long term of 7 days and the maximum average length is 3.7 times as long as that of control. The growth enhancement effects become gradually weak with time, and hence the ratio of the average length for plasma irradiation to that for control decreases from 3.7 for the first day to 1.3 for 7 day. The average length for heat shock of 60°C for 10 min. and 100°C for 3 min. is longer than that for control, and the maximum average length is 1.3 times as long as that of control. Heat shock has little contribution to the growth enhancement due to plasma irradiation, because the maximum temperature due to plasma irradiation is less than 60°C.

  10. Plasma exchange successfully treats central pontine myelinolysis after acute hypernatremia from intravenous sodium bicarbonate therapy.

    Science.gov (United States)

    Chang, Kyung Yoon; Lee, In-Hee; Kim, Gi Jun; Cho, Kangwon; Park, Hoon Suk; Kim, Hyung Wook

    2014-04-04

    Osmotic demyelination syndrome (ODS) primarily occurs after rapid correction of severe hyponatremia. There are no proven effective therapies for ODS, but we describe the first case showing the successful treatment of central pontine myelinolysis (CPM) by plasma exchange, which occurred after rapid development of hypernatremia from intravenous sodium bicarbonate therapy. A 40-year-old woman presented with general weakness, hypokalemia, and metabolic acidosis. The patient was treated with oral and intravenous potassium chloride, along with intravenous sodium bicarbonate. Although her bicarbonate deficit was 365 mEq, we treated her with an overdose of intravenous sodium bicarbonate, 480 mEq for 24 hours, due to the severity of her acidemia and her altered mental status. The next day, she developed hypernatremia with serum sodium levels rising from 142.8 mEq/L to 172.8 mEq/L. Six days after developing hypernatremia, she exhibited tetraparesis, drooling, difficulty swallowing, and dysarthria, and a brain MRI revealed high signal intensity in the central pons with sparing of the peripheral portion, suggesting CPM. We diagnosed her with CPM associated with the rapid development of hypernatremia after intravenous sodium bicarbonate therapy and treated her with plasma exchange. After two consecutive plasma exchange sessions, her neurologic symptoms were markedly improved except for mild diplopia. After the plasma exchange sessions, we examined the patient to determine the reason for her symptoms upon presentation to the hospital. She had normal anion gap metabolic acidosis, low blood bicarbonate levels, a urine pH of 6.5, and a calyceal stone in her left kidney. We performed a sodium bicarbonate loading test and diagnosed distal renal tubular acidosis (RTA). We also found that she had Sjögren's syndrome after a positive screen for anti-Lo, anti-Ra, and after the results of Schirmer's test and a lower lip biopsy. She was discharged and treated as an outpatient with

  11. Analysis of higher harmonics on bidirectional heat pulse propagation experiment in helical and tokamak plasmas

    Science.gov (United States)

    Kobayashi, T.; Ida, K.; Inagaki, S.; Tsuchiya, H.; Tamura, N.; Choe, G. H.; Yun, G. S.; Park, H. K.; Ko, W. H.; Evans, T. E.; Austin, M. E.; Shafer, M. W.; Ono, M.; López-bruna, D.; Ochando, M. A.; Estrada, T.; Hidalgo, C.; Moon, C.; Igami, H.; Yoshimura, Y.; Tsujimura, T. Ii.; Itoh, S.-I.; Itoh, K.

    2017-07-01

    In this contribution we analyze modulation electron cyclotron resonance heating (MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients. We use the bidirectional heat pulse propagation method, in which both inward propagating heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to distinguish frequency dependence of transport coefficients due to hysteresis from that due to other reasons, such as radially dependent transport coefficients, a finite damping term, or boundary effects. The method is applied to MECH experiments performed in various helical and tokamak devices, i.e. Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency dependence of transport coefficients are clearly observed, showing a possibility of existence of transport hysteresis in flux-gradient relation.

  12. Core Fueling and Edge Particle Flux Analysis in Ohmically and Auxiliary Heated NSTX Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Soukhanovskii; R. Maingi; R. Raman; H.W. Kugel; B.P. LeBlanc; L. Roquemore; C.H. Skinner; NSTX Research Team

    2002-06-12

    The Boundary Physics program of the National Spherical Torus Experiment (NSTX) is focusing on optimization of the edge power and particle flows in b * 25% L- and H-mode plasmas of t {approx} 0.8 s duration heated by up to 6 MW of high harmonic fast wave and up to 5 MW of neutral beam injection. Particle balance and core fueling efficiencies of low and high field side gas fueling of L-mode homic and NBI heated plasmas have been compared using an analytical zero dimensional particle balance model and measured ion and neutral fluxes. Gas fueling efficiencies are in the range of 0.05-0.20 and do not depend on discharge magnetic configuration, density or poloidal location of the injector. The particle balance modeling indicates that the addition of HFS fueling results in a reversal of the wall loading rate and higher wall inventories. Initial particle source estimates obtained from neutral pressure and spectroscopic measurements indicate that ion flux into the divertor greatly exceeds midplane ion flux from the main plasma, suggesting that the scrape-off cross-field transport plays a minor role in diverted plasmas. Present analysis provides the basis for detailed fluid modeling of core and edge particle flows and particle confinement properties of NSTX plasmas. This research was supported by the U.S. Department of Energy under contracts No. DE-AC02-76CH03073, DE-AC05-00OR22725, and W-7405-ENG-36.

  13. Glycine: A potential coupling agent to bond to helium plasma treated PEEK?

    Science.gov (United States)

    Schmidlin, Patrick R; Eichberger, Marlis; Stawarczyk, Bogna

    2016-02-01

    To test the tensile bond strength (TBS) between two self-adhesive resin composite cements and PEEK after helium plasma treatment and used glycine as a potential coupling agent incorporated in different adhesives. In summary, 896 air-abraded PEEK specimens were fabricated. Half of the specimens were treated with cold active inert helium plasma and the other half were left non-treated. Both groups were then split in two groups: In group 1 (n=256), 64 specimens were pre-treated with: (a) soft-liner liquid, (b) visio.link, (c) Ambarino P60 and (d) no pre-treatment (control), respectively. In group 2 (n=192), specimens were conditioned accordingly, but the adhesive materials were modified by including a commercially available glycine (Air-Flow PERIO). PEEK specimens were then luted using either RelyX Unicem or Clearfil SA Cement and TBS was measured initially and after 14 days water storage combined with 10'000 thermal cycles (16 specimens/subgroup). Fracture type analysis was performed. For statistical analyses Kolmogorov-Smirnov, Shapiro-Wilk tests, 1-, 4-way ANOVA (post hoc: Scheffé), and t-test were used (p0.348). In contrast, a combination between glycine application and Softline/Ambarino P60 allowed for significantly higher initial TBS was measured after helium plasma treatment (p=0.001). However, this effect was no evident after thermo-cycling. All groups conditioned with visio.link showed the highest TBS values. The introduction of amine groups by simple provision of amino acids in the form of glycine can improve the bond strength after helium plasma treatment using different adhesive materials. However, using this simple approach, the method cannot withstand thermal challenge yet. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Surface analysis of 316 stainless steel treated with cold atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Williams, David F., E-mail: david.williams@surrey.ac.uk [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Kellar, Ewen J.C. [TWI Ltd Granta Park Great Abington, Cambridge CB21 6AL (United Kingdom); Jesson, David A.; Watts, John F. [Department of Mechanical Engineering Sciences, University Of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2017-05-01

    Highlights: • Reduction in carbon contamination from ∼80 at.% to 40 at.% after 15 s treatment. • Associated carbon thickness reduction from 4.5 nm to 0.5 nm. • Area treated by torch has a diameter of 11 mm measured using imaging XPS. - Abstract: The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m{sup −1} to >72 mJ m{sup −1} after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.

  15. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite

    Directory of Open Access Journals (Sweden)

    Farzaneh Eskandari

    2016-01-01

    Full Text Available Background: Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. Objective: The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Materials and Methods: Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control, spermatozoa treated with silymarin (20 μM + sodium arsenite (10 μM for 180 min, spermatozoa treated with sodium arsenite (10 μM for 180 min and spermatozoa treated with silymarin (20 μM for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Results: Plasma membrane (p< 0.001 and acrosome integrity (p< 0.05 of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001 ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group showed a significant (p< 0.001 decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05 increase sperm acrosome integrity compared to the control. Conclusion: Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity.

  16. Sorption phenomena of methanol on heat treated coal; Netsushori wo hodokoshita sekitan no methanol kyuchaku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, H.; Kaiho, M.; Yamada, O.; Soneda, Y.; Kobayashi, M.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Experiments were carried out to learn methanol sorption characteristics of heat-treated coal. When Taiheiyo coal is heat-treated at 125{degree}C, performed with a first methanol adsorption at 25{degree}C, and then desorption at 25{degree}C, a site with strong interaction with methanol and a site with relatively weak interaction are generated in test samples. A small amount of methanol remains in both sites. Then, when the methanol is desorbed at as low temperature as 70{degree}C, the methanol in the site with strong interaction remains as it has existed therein, but the methanol in the site with relatively weak interaction desorbs partially, hence the adsorption amount in a second adsorption at 25{degree}C increases. However, when desorption is performed at as high temperature as 125{degree}C, the methanol in the site with strong interaction also desorbs, resulting in increased adsorption heat in the second adsorption. The adsorption velocity drops, however. Existence of methanol in a site with strong interaction affects the adsorption velocity, but no effect is given by methanol in a site with weak interaction. 3 refs., 4 figs.

  17. Correlating mode-I fracture toughness and mechanical properties of heat-treated crystalline rocks

    Directory of Open Access Journals (Sweden)

    Mayukh Talukdar

    2018-02-01

    Full Text Available For the effect of thermal treatment on the mode-I fracture toughness (FT, three crystalline rocks (two basalts and one tonalite were experimentally investigated. Semi-circular bend specimens of the rocks were prepared following the method suggested by the International Society for Rock Mechanics (ISRM and were treated at various temperatures ranging from room temperature (25 °C to 600 °C. Mode-I FT was correlated with tensile strength (TS, ultrasonic velocities, and Young's modulus (YM. Additionally, petrographic and X-ray diffraction analyses were carried out to find the chemical changes resulting from the heat treatment. Further, scanning electron microscopy (SEM was conducted to observe the micro structural changes when subjected to high temperatures. These experiments demonstrate that heat treatment has a strong negative impact on the FT and mechanical properties of the rocks. From room temperature to 600 °C, mode-I FT values of massive basalt, giant plagioclase basalt, and tonalite were reduced by nearly 52%, 68%, and 64%, respectively. Also, at all temperature levels, FT and mechanical properties are found to be exponentially correlated. However, the exact nature of the relationship mainly depends on rock type. Besides, TS was found to be a better indicator of degradation degree than the mode-I FT. SEM images show that micro crack density and structural disintegration of the mineral grains increase with temperature. These physical changes confirm the observed reduction in the stiffness of heat-treated crystalline rocks.

  18. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Directory of Open Access Journals (Sweden)

    I. Riposan

    2007-11-01

    Full Text Available As-cast and heat-treated 400-18 ductile iron (DI grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px and Antinodulizing Complex Factor (K1 have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px2.0 determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres. for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  19. The optical absorption of gamma irradiated and heat-treated natural quartz

    Directory of Open Access Journals (Sweden)

    Eduardo Henrique Martins Nunes

    2005-09-01

    Full Text Available Quartz with aluminum as impurity absorbs energy from ionizing radiation and modifies its color. Colorless quartz becomes smoky or dark smoky (morion quartz when exposed to gamma rays. By heat-treatment, smoky quartz may become successively greenish, yellowish, or brownish as the irradiation dose increases. Natural, colorless quartz is routinely colored by irradiation with gamma rays and heat-treatment for jewelry production. The color formation in natural quartz through this procedure is explained based on EPR, UV-VIS, and IR studies of irradiated and irradiated and heat-treated samples. Smoky quartz shows absorption bands in the visible region and a strong EPR signal. After heat-treatment it shows absorption bands in the near UV region with extensions into the visible region and a weak EPR signal. The intensity of the absorption bands is proportional to the irradiation dose. These changes of color are explained by the model of Itoh, Stoneham, and Stoneham. [AlSi O4 /h+]0 centers are produced by irradiation, causing the EPR signal and the absorption bands in the visible region. [AlSi O4]- centers are created from [AlSi O4 /h+]0 centers by heat-treatment. They cannot cause an EPR signal and have absorption bands in the near UV region with extensions into the visible region. The highest concentration of [AlSi O4]- centers occurs when the charge compensators have medium mobility. Lithium should give the best condition for color formation. Sodium (low mobility and hydrogen (high mobility should make smoky quartz colorless after heat-treatment.

  20. Plasma Lipidomic Profiling of Treated HIV-Positive Individuals and the Implications for Cardiovascular Risk Prediction

    Science.gov (United States)

    Wong, Gerard; Trevillyan, Janine M.; Fatou, Benoit; Cinel, Michelle; Weir, Jacquelyn M.; Hoy, Jennifer F.; Meikle, Peter J.

    2014-01-01

    Background The increased risk of coronary artery disease in human immunodeficiency virus (HIV) positive patients is collectively contributed to by the human immunodeficiency virus and antiretroviral-associated dyslipidaemia. In this study, we investigate the characterisation of the plasma lipid profiles of treated HIV patients and the relationship of 316 plasma lipid species across multiple lipid classes with the risk of future cardiovascular events in HIV- positive patients. Methods In a retrospective case-control study, we analysed plasma lipid profiles of 113 subjects. Cases (n = 23) were HIV-positive individuals with a stored blood sample available 12 months prior to their diagnosis of coronary artery disease (CAD). They were age and sex matched to HIV-positive individuals without a diagnosis of CAD (n = 45) and with healthy HIV-negative volunteers (n = 45). Results Association of plasma lipid species and classes with HIV infection and cardiovascular risk in HIV were determined. In multiple logistic regression, we identified 83 lipids species and 7 lipid classes significantly associated with HIV infection and a further identified 74 lipid species and 8 lipid classes significantly associated with future cardiovascular events in HIV-positive subjects. Risk prediction models incorporating lipid species attained an area under the receiver operator characteristic curve (AUC) of 0.78 (0.775, 0.785)) and outperformed all other tested markers and risk scores in the identification of HIV-positive subjects with increased risk of cardiovascular events. Conclusions Our results demonstrate that HIV-positive patients have significant differences in their plasma lipid profiles compared with healthy HIV-negative controls and that numerous lipid species were significantly associated with elevated cardiovascular risk. This suggests a potential novel application for plasma lipids in cardiovascular risk screening of HIV-positive patients. PMID:24733512

  1. Plasma lipidomic profiling of treated HIV-positive individuals and the implications for cardiovascular risk prediction.

    Directory of Open Access Journals (Sweden)

    Gerard Wong

    Full Text Available BACKGROUND: The increased risk of coronary artery disease in human immunodeficiency virus (HIV positive patients is collectively contributed to by the human immunodeficiency virus and antiretroviral-associated dyslipidaemia. In this study, we investigate the characterisation of the plasma lipid profiles of treated HIV patients and the relationship of 316 plasma lipid species across multiple lipid classes with the risk of future cardiovascular events in HIV-positive patients. METHODS: In a retrospective case-control study, we analysed plasma lipid profiles of 113 subjects. Cases (n = 23 were HIV-positive individuals with a stored blood sample available 12 months prior to their diagnosis of coronary artery disease (CAD. They were age and sex matched to HIV-positive individuals without a diagnosis of CAD (n = 45 and with healthy HIV-negative volunteers (n = 45. RESULTS: Association of plasma lipid species and classes with HIV infection and cardiovascular risk in HIV were determined. In multiple logistic regression, we identified 83 lipids species and 7 lipid classes significantly associated with HIV infection and a further identified 74 lipid species and 8 lipid classes significantly associated with future cardiovascular events in HIV-positive subjects. Risk prediction models incorporating lipid species attained an area under the receiver operator characteristic curve (AUC of 0.78 (0.775, 0.785 and outperformed all other tested markers and risk scores in the identification of HIV-positive subjects with increased risk of cardiovascular events. CONCLUSIONS: Our results demonstrate that HIV-positive patients have significant differences in their plasma lipid profiles compared with healthy HIV-negative controls and that numerous lipid species were significantly associated with elevated cardiovascular risk. This suggests a potential novel application for plasma lipids in cardiovascular risk screening of HIV-positive patients.

  2. Plasma lipidomic profiling of treated HIV-positive individuals and the implications for cardiovascular risk prediction.

    Science.gov (United States)

    Wong, Gerard; Trevillyan, Janine M; Fatou, Benoit; Cinel, Michelle; Weir, Jacquelyn M; Hoy, Jennifer F; Meikle, Peter J

    2014-01-01

    The increased risk of coronary artery disease in human immunodeficiency virus (HIV) positive patients is collectively contributed to by the human immunodeficiency virus and antiretroviral-associated dyslipidaemia. In this study, we investigate the characterisation of the plasma lipid profiles of treated HIV patients and the relationship of 316 plasma lipid species across multiple lipid classes with the risk of future cardiovascular events in HIV-positive patients. In a retrospective case-control study, we analysed plasma lipid profiles of 113 subjects. Cases (n = 23) were HIV-positive individuals with a stored blood sample available 12 months prior to their diagnosis of coronary artery disease (CAD). They were age and sex matched to HIV-positive individuals without a diagnosis of CAD (n = 45) and with healthy HIV-negative volunteers (n = 45). Association of plasma lipid species and classes with HIV infection and cardiovascular risk in HIV were determined. In multiple logistic regression, we identified 83 lipids species and 7 lipid classes significantly associated with HIV infection and a further identified 74 lipid species and 8 lipid classes significantly associated with future cardiovascular events in HIV-positive subjects. Risk prediction models incorporating lipid species attained an area under the receiver operator characteristic curve (AUC) of 0.78 (0.775, 0.785)) and outperformed all other tested markers and risk scores in the identification of HIV-positive subjects with increased risk of cardiovascular events. Our results demonstrate that HIV-positive patients have significant differences in their plasma lipid profiles compared with healthy HIV-negative controls and that numerous lipid species were significantly associated with elevated cardiovascular risk. This suggests a potential novel application for plasma lipids in cardiovascular risk screening of HIV-positive patients.

  3. Spatiotemporal study of gas heating mechanisms in a radio-frequency electrothermal plasma micro-thruster

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-10-01

    Full Text Available A spatiotemporal study of neutral gas temperature during the first 100 s of operation for a radio-frequency electrothermal plasma micro-thruster operating on nitrogen at 60 W and 1.5 Torr is performed to identify the heating mechanisms involved. Neutral gas temperature is estimated from rovibrational band fitting of the nitrogen second positive system. A set of baffles are used to restrict the optical image and separate the heating mechanisms occurring in the central bulk discharge region and near the thruster walls.For each spatial region there are three distinct gas heating mechanisms being fast heating from ion-neutral collisions with timescales of tens of milliseconds, intermediate heating with timescales of 10 s from ion bombardment on the inner thruster tube surface creating wall heating, and slow heating with timescales of 100 s from gradual warming of the entire thruster housing. The results are discussed in relation to optimising the thermal properties of future thruster designs.

  4. Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders.

    Science.gov (United States)

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Lin, Xi; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2015-07-01

    Heat tolerance can be improved by feed restriction in broiler chickens. It is unknown whether the same is true for broiler breeders, which are restrictedly fed. Therefore, the current study was conducted to study the effects of heat stress on plasma metabolites, hormones, and oxidative status of restricted fed broiler breeders with special emphases on the temperature and latency of heat exposure. In trial 1, 12 broiler breeders were kept either in a thermoneutral chamber (21°C, control, n = 6) or in a chamber with a step-wise increased environmental temperature from 21 to 33°C (21, 25, 29, 33°C, heat-stressed, n = 6). Changes in plasma total cholesterol, glucose, and triiodothyronine (T3) were closely related to the environmental temperature. When the temperature reached 29°C, plasma T3 (P broiler breeders were divided into 2 groups and raised under 21°C and 32°C for 8 weeks, respectively. Total cholesterol was increased in chronic heat-stressed broiler breeders after 4 weeks. Plasma lactate dehydrogenase (LDH, P = 0.047) and glutamic-oxaloacetic transaminase (GOT, P = 0.036) was up-regulated after 6 weeks of thermal treatment, whereas plasma CK (P = 0.009) was increased at the end of thermal treatment. Plasma malonaldehyde, protein carbonyl content, activity of total superoxide dismutase (SOD), and corticosterone content were not altered after acute and prolonged heat challenges. Taken together, acute heat stress primarily resulted in disturbance of plasma metabolites, whereas chronic heat stress caused tissue damage reflected by increased plasma LDA, GOT, and CK. During acute heat stress, plasma metabolites were minimally disturbed in broiler breeders until the environmental temperature reached 33°C. © 2015 Poultry Science Association Inc.

  5. Studies of the properties of heat treated rolled medium carbon steel

    Directory of Open Access Journals (Sweden)

    Daramola O. Oluyemi

    2011-01-01

    Full Text Available Investigations were carried out to study critically the effects of heat treatment on the properties of rolled medium carbon steel. Representative samples of as-rolled medium carbon steel were subjected to heat treatment processes which are; Quenching, Lamellae Formation and Tempering in the following order (Q + Q + L + T, (Q + L + T and (L + T. The steel was heated to the austenizing temperature of 830 ºC and water quenched. The quenched steel was subjected to lamellae formation by reheating it to the ferrite-austenite dual-phase region at a temperature of 745 ºC below the effective A C3 point and then rapidly quenched in water. The lamellae formed was tempered at 480 ºC to provide an alloy containing strong, tough and lath martensite in a soft and ductile ferrite matrix. Mechanical tests were carried out on the samples and the results shows that the steel developed has excellent combination of tensile strength, hardness and impact strength which is very good for structural applications. The corrosion behaviour of the samples; heat treated rolled medium carbon steel and as-rolled medium carbon steel in sodium chloride medium were also investigated from where it was also confirmed that improved corrosion resistance is achievable by the treatment.

  6. Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality

    Directory of Open Access Journals (Sweden)

    Francesca Melini

    2017-11-01

    Full Text Available Consumers have recently shown a preference for natural food products and ingredients and within that framework, their interest in consuming raw drinking milk has been highlighted, claiming nutritional, organoleptic and health benefits. However, a public debate has simultaneously emerged about the actual risks and benefits of direct human consumption of raw milk. This paper compares the microbiological, nutritional and sensory profile of raw and heat-treated milk, to evaluate the real risks and benefits of its consumption. In detail, it provides an updated overview of the main microbiological risks of raw milk consumption, especially related to the presence of pathogens and the main outputs of risk assessment models are reported. After introducing the key aspects of most commonly used milk heat-treatments, the paper also discusses the effects such technologies have on the microbiological, nutritional and sensory profile of milk. An insight into the scientific evidence behind the claimed protective effects of raw milk consumption in lactose-intolerant subjects and against the onset of asthma and allergy disorders in children is provided. The emergence of novel milk processing technologies, such as ohmic heating, microwave heating, high pressure processing, pulsed electric fields, ultrasound and microfiltration is also presented as an alternative to common thermal treatments.

  7. Effect of Microstructure on the Wear Behavior of Heat Treated SS-304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2016-12-01

    Full Text Available Sliding wear characteristics of some heat treated SS-304 stainless steel against EN-8 steel in dry condition have been studied in the present experimental work. Samples of SS-304 stainless steel have been heated in a muffle furnace in desired temperature and allowed to dwell for two hours. The heated specimen are then cooled in different media namely inside the furnace, open air, cutting grade oil (grade 44 and water at room temperature to obtain different grades of heat treatment. Microstructures and corresponding micro hardness of the samples have been measured along with Feritscopic studies. Wear characteristics have been studied in a multi tribo-tester (Ducom in dry sliding condition against EN-8 steel roller. Speed, load on job and duration of test run have been considered as the experimental parameters. The wear of the samples have been obtained directly from ‘Winducom 2006’ software. Mass loss of the samples before and after operation has also been considered as the measure of wear in the present study. All the samples have been slid against EN-8 steel roller with fixed experimental parameters. The data have been plotted, compared and analyzed. Effect of microstructures as well as micro hardness on the wear behavior has been studied and concluded accordingly.

  8. Recrudescent digoxin toxicity treated with plasma exchange: a case report and review of literature.

    Science.gov (United States)

    Rajpal, Saurabh; Beedupalli, Jagan; Reddy, Pratap

    2012-12-01

    A 53-year-old woman presented with digitalis toxicity caused by acute overdose that manifested as atrial tachycardia with block, sinus pauses, and competing AV junctional rhythm with atrial fibrillation. Patient admitted to overdosing with digoxin 15-20 h before presentation with intent to commit suicide. Serum digoxin level was 35.6 ng/ml and renal function was normal. Patient was treated with 1,040 mg of digoxin-specific antibody Fab fragment with prompt resolution of arrhythmias and restoration of sinus rhythm. Four hours after digoxin antibody administration, serum digoxin level declined to 0.2 ng/ml. Eighteen hours after treatment with Fab fragment, patient developed premature ventricular complexes, atrial tachycardia with and without atrioventricular block, and non-sustained ventricular tachycardia followed by ventricular fibrillation from which she was successfully resuscitated. Electrocardiogram showed no evidence of acute myocardial infarction, and emergent coronary angiogram did not reveal significant coronary artery disease. Repeat digoxin level was 20.4 ng/ml. A diagnosis of recrudescent digoxin toxicity was made and the patient was treated with one session of plasma exchange with resolution of arrhythmias. Immediately after plasma exchange, digoxin level decreased to 10.4 ng/ml, and after 10 h, the level further decreased to 6.6 ng/ml. The following day, digoxin level had decreased to 2.9 ng/ml. Our experience with this case would suggest that plasma exchange should be considered as a treatment modality for recrudescent digoxin toxicity.

  9. Tungsten erosion under plasma heat loads typical for ITER type I Elms and disruptions

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)]. E-mail: garkusha@ipp.kharkov.ua; Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Byrka, O.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Marchenko, A.K. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Solyakov, D.G. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Trubchaninov, S.A. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine); Tsarenko, A.V. [Institute of Plasma Physics of the NSC KIPT, 61108 Kharkov (Ukraine)

    2005-03-01

    The behavior of pure sintered tungsten under repetitive plasma heat loads of {approx}1 MJ/m{sup 2} (which is relevant to ITER ELMs) and 25 MJ/m{sup 2} (ITER disruptions) is studied with the quasi-steady-state plasma accelerator QSPA Kh-50. The ELM relevant heat loads have resulted in formation of two kinds of crack networks, with typical sizes of 10-20 {mu}m and {approx}1 mm, at the surface. Tungsten preheating to 600 deg. C indicates that fine intergranular cracks are probably caused by thermal stresses during fast resolidification of the melt, whereas large cracks are the result of ductile-to-brittle transition. For several hundreds of ELM-like exposures, causing surface melting, the melt motion does not dominate the profile of the melt spot. The disruption relevant experiments demonstrated that melt motion became the main factor of tungsten damage.

  10. Tungsten erosion under plasma heat loads typical for ITER type I ELMs and disruptions

    Science.gov (United States)

    Garkusha, I. E.; Bandura, A. N.; Byrka, O. V.; Chebotarev, V. V.; Landman, I. S.; Makhlaj, V. A.; Marchenko, A. K.; Solyakov, D. G.; Tereshin, V. I.; Trubchaninov, S. A.; Tsarenko, A. V.

    2005-03-01

    The behavior of pure sintered tungsten under repetitive plasma heat loads of ˜1 MJ/m 2 (which is relevant to ITER ELMs) and 25 MJ/m 2 (ITER disruptions) is studied with the quasi-steady-state plasma accelerator QSPA Kh-50. The ELM relevant heat loads have resulted in formation of two kinds of crack networks, with typical sizes of 10-20 μm and ˜1 mm, at the surface. Tungsten preheating to 600 °C indicates that fine intergranular cracks are probably caused by thermal stresses during fast resolidification of the melt, whereas large cracks are the result of ductile-to-brittle transition. For several hundreds of ELM-like exposures, causing surface melting, the melt motion does not dominate the profile of the melt spot. The disruption relevant experiments demonstrated that melt motion became the main factor of tungsten damage.

  11. Local structure of cobalt nanoparticles synthesized by high heat flux plasma process

    Science.gov (United States)

    Orpe, P. B.; Paris, E.; Balasubramanian, C.; Joseph, B.; Mukherjee, S.; Di Gioacchino, D.; Marcelli, A.; Saini, N. L.

    2017-08-01

    We have used high heat flux plasma synthesis process to grow Co those for the morphology, stoichiometry and the local structure as a function of plasma current. We find that the nanoparticles produced by the thermal plasma method have different shapes and size distribution with the plasma current being a key parameter in controlling the formation of composition, morphology and crystalline structure. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements at Co K-edge have revealed formation of metal and metal oxide nanoparticles with the composition mainly depending on the arc current. While low plasma current appears to produce nanoparticles solely of CoO with a small amount of Co metal, the high plasma current tends to produce nanoparticles of CoO and Co3O4 oxides with increased amount of Co metal. The results are consistent with the morphological and structural analysis, showing nanoparticles of different shapes and size depending on the arc current.

  12. Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

    Science.gov (United States)

    Kazakov, Ye. O.; Ongena, J.; Wright, J. C.; Wukitch, S. J.; Lerche, E.; Mantsinen, M. J.; van Eester, D.; Craciunescu, T.; Kiptily, V. G.; Lin, Y.; Nocente, M.; Nabais, F.; Nave, M. F. F.; Baranov, Y.; Bielecki, J.; Bilato, R.; Bobkov, V.; Crombé, K.; Czarnecka, A.; Faustin, J. M.; Felton, R.; Fitzgerald, M.; Gallart, D.; Giacomelli, L.; Golfinopoulos, T.; Hubbard, A. E.; Jacquet, Ph.; Johnson, T.; Lennholm, M.; Loarer, T.; Porkolab, M.; Sharapov, S. E.; Valcarcel, D.; van Schoor, M.; Weisen, H.; Marmar, E. S.; Baek, S. G.; Barnard, H.; Bonoli, P.; Brunner, D.; Candy, J.; Canik, J.; Churchill, R. M.; Cziegler, I.; Dekow, G.; Delgado-Aparicio, L.; Diallo, A.; Edlund, E.; Ennever, P.; Faust, I.; Fiore, C.; Gao, Chi; Golfinopoulos, T.; Greenwald, M.; Hartwig, Z. S.; Holland, C.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I. H.; Irby, J.; Labombard, B.; Lin, Yijun; Lipschultz, B.; Loarte, A.; Mumgaard, R.; Parker, R. R.; Porkolab, M.; Reinke, M. L.; Rice, J. E.; Scott, S.; Shiraiwa, S.; Snyder, P.; Sorbom, B.; Terry, D.; Terry, J. L.; Theiler, C.; Vieira, R.; Walk, J. R.; Wallace, G. M.; White, A.; Whyte, D.; Wolfe, S. M.; Wright, G. M.; Wright, J.; Wukitch, S. J.; Xu, P.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Ahn, J. H.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Albanese, R.; Aldred, V.; Alegre, D.; Alessi, E.; Aleynikov, P.; Alfier, A.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amicucci, L.; Amosov, V.; Sundén, E. Andersson; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arnichand, H.; Arshad, S.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M. D.; Ayres, C.; Bacharis, M.; Baciero, A.; Baião, D.; Bailey, S.; Baker, A.; Balboa, I.; Balden, M.; Balshaw, N.; Bament, R.; Banks, J. W.; Baranov, Y. F.; Barnard, M. A.; Barnes, D.; Barnes, M.; Barnsley, R.; Wiechec, A. Baron; Orte, L. Barrera; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baughan, R.; Bauvir, B.; Baylor, L.; Bazylev, B.; Beal, J.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Becoulet, A.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Bellinger, M.; Belonohy, É.; Ayed, N. Ben; Benterman, N. A.; Bergsåker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besliu, C.; Beurskens, M.; Bieg, B.; Bielecki, J.; Biewer, T.; Bigi, M.; Bílková, P.; Binda, F.; Bisoffi, A.; Bizarro, J. P. S.; Björkas, C.; Blackburn, J.; Blackman, K.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.; Boboc, A.; Bodnár, G.; Bogar, O.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Bonelli, F.; Boom, J.; Booth, J.; Borba, D.; Borodin, D.; Borodkina, I.; Botrugno, A.; Bottereau, C.; Boulting, P.; Bourdelle, C.; Bowden, M.; Bower, C.; Bowman, C.; Boyce, T.; Boyd, C.; Boyer, H. J.; Bradshaw, J. M. A.; Braic, V.; Bravanec, R.; Breizman, B.; Bremond, S.; Brennan, P. D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M. D. J.; Brix, M.; Broeckx, W.; Brombin, M.; Brosławski, A.; Brown, D. P. D.; Brown, M.; Bruno, E.; Bucalossi, J.; Buch, J.; Buchanan, J.; Buckley, M. A.; Budny, R.; Bufferand, H.; Bulman, M.; Bulmer, N.; Bunting, P.; Buratti, P.; Burckhart, A.; Buscarino, A.; Busse, A.; Butler, N. K.; Bykov, I.; Byrne, J.; Cahyna, P.; Calabrò, G.; Calvo, I.; Camenen, Y.; Camp, P.; Campling, D. C.; Cane, J.; Cannas, B.; Capel, A. J.; Card, P. J.; Cardinali, A.; Carman, P.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, I.; Carvalho, P.; Casson, F. J.; Castaldo, C.; Catarino, N.; Caumont, J.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavinato, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Cenedese, A.; Cesario, R.; Challis, C. D.; Chandler, M.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, S. C.; Chernyshova, M.; Chitarin, G.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, E.; Clark, M.; Clarkson, R.; Clatworthy, D.; Clements, C.; Cleverly, M.; Coad, J. P.; Coates, P. A.; Cobalt, A.; Coccorese, V.; Cocilovo, V.; Coda, S.; Coelho, R.; Coenen, J. W.; Coffey, I.; Colas, L.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Cortes, S.; Coster, D.; Couchman, A. S.; Cox, M. P.; Craciunescu, T.; Cramp, S.; Craven, R.; Crisanti, F.; Croci, G.; Croft, D.; Crombé, K.; Crowe, R.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curuia, M.; Czarnecka, A.; Dabirikhah, H.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; Davies, O.; Davis, W.; Day, C.; Day, I. E.; de Bock, M.; de Castro, A.; de La Cal, E.; de La Luna, E.; Masi, G. De; de Pablos, J. L.; de Temmerman, G.; de Tommasi, G.; de Vries, P.; Deakin, K.; Deane, J.; Agostini, F. Degli; Dejarnac, R.; Delabie, E.; den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Maio, F. Di; Siena, A. Di; Troia, C. Di; Dinca, P.; D'Inca, R.; Ding, B.; Dittmar, T.; Doerk, H.; Doerner, R. P.; Donné, T.; Dorling, S. E.; Dormido-Canto, S.; Doswon, S.; Douai, D.; Doyle, P. T.; Drenik, A.; Drewelow, P.; Drews, P.; Duckworth, Ph.; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; Ďuran, I.; Durodié, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Dzysiuk, N.; Edappala, P. V.; Edmond, J.; Edwards, A. M.; Edwards, J.; Eich, Th.; Ekedahl, A.; El-Jorf, R.; Elsmore, C. G.; Enachescu, M.; Ericsson, G.; Eriksson, F.; Eriksson, J.; Eriksson, L. G.; Esposito, B.; Esquembri, S.; Esser, H. G.; Esteve, D.; Evans, B.; Evans, G. E.; Evison, G.; Ewart, G. D.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Fasoli, A.; Faustin, J. M.; Fawlk, N.; Fazendeiro, L.; Fedorczak, N.; Felton, R. C.; Fenton, K.; Fernades, A.; Fernandes, H.; Ferreira, J.; Fessey, J. A.; Février, O.; Ficker, O.; Field, A.; Fietz, S.; Figueiredo, A.; Figueiredo, J.; Fil, A.; Finburg, P.; Firdaouss, M.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Fleming, C.; Flinders, K.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fortuna-Zalesna, E.; Fortune, M.; Foster, S.; Franke, T.; Franklin, T.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Frigione, D.; Fuchs, V.; Fuller, D.; Futatani, S.; Fyvie, J.; Gál, K.; Galassi, D.; Gałązka, K.; Galdon-Quiroga, J.; Gallagher, J.; Gallart, D.; Galvão, R.; Gao, X.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; García-Muñoz, M.; Gardarein, J.-L.; Garzotti, L.; Gaudio, P.; Gauthier, E.; Gear, D. F.; Gee, S. J.; Geiger, B.; Gelfusa, M.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Giacalone, J. C.; Giacomelli, L.; Gibson, C. S.; Giegerich, T.; Gil, C.; Gil, L.; Gilligan, S.; Gin, D.; Giovannozzi, E.; Girardo, J. B.; Giroud, C.; Giruzzi, G.; Glöggler, S.; Godwin, J.; Goff, J.; Gohil, P.; Goloborod'Ko, V.; Gomes, R.; Gonçalves, B.; Goniche, M.; Goodliffe, M.; Goodyear, A.; Gorini, G.; Gosk, M.; Goulding, R.; Goussarov, A.; Gowland, R.; Graham, B.; Graham, M. E.; Graves, J. P.; Grazier, N.; Grazier, P.; Green, N. R.; Greuner, H.; Grierson, B.; Griph, F. S.; Grisolia, C.; Grist, D.; Groth, M.; Grove, R.; Grundy, C. N.; Grzonka, J.; Guard, D.; Guérard, C.; Guillemaut, C.; Guirlet, R.; Gurl, C.; Utoh, H. H.; Hackett, L. J.; Hacquin, S.; Hagar, A.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S. J.; Cook, S. P. Hallworth; Hamlyn-Harris, C.; Hammond, K.; Harrington, C.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T. D. V.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Haydon, P. W.; Hayter, N.; Hazel, S.; Heesterman, P. J. L.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O. N.; Hender, T. C.; Henderson, M.; Henderson, S. S.; Henriques, R.; Hepple, D.; Hermon, G.; Hertout, P.; Hidalgo, C.; Highcock, E. G.; Hill, M.; Hillairet, J.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Hobirk, J.; Hodille, E.; Hogben, C. H. A.; Hogeweij, G. M. D.; Hollingsworth, A.; Hollis, S.; Homfray, D. A.; Horáček, J.; Hornung, G.; Horton, A. R.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Hough, M. R.; Howarth, P. J.; Hubbard, A.; Huber, A.; Huber, V.; Huddleston, T. M.; Hughes, M.; Huijsmans, G. T. A.; Hunter, C. L.; Huynh, P.; Hynes, A. M.; Iglesias, D.; Imazawa, N.; Imbeaux, F.; Imríšek, M.; Incelli, M.; Innocente, P.; Irishkin, M.; Ivanova-Stanik, I.; Jachmich, S.; Jacobsen, A. S.; Jacquet, P.; Jansons, J.; Jardin, A.; Järvinen, A.; Jaulmes, F.; Jednoróg, S.; Jenkins, I.; Jeong, C.; Jepu, I.; Joffrin, E.; Johnson, R.; Johnson, T.; Johnston, Jane; Joita, L.; Jones, G.; Jones, T. T. C.; Hoshino, K. K.; Kallenbach, A.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Karnowska, I.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, T.; Keep, J.; Kempenaars, M.; Kennedy, C.; Kenny, D.; Kent, J.; Kent, O. N.; Khilkevich, E.; Kim, H. T.; Kim, H. S.; Kinch, A.; King, C.; King, D.; King, R. F.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klepper, C.; Klix, A.; Knight, P.; Knipe, S. J.; Knott, S.; Kobuchi, T.; Köchl, F.; Kocsis, G.; Kodeli, I.; Kogan, L.; Kogut, D.; Koivuranta, S.; Kominis, Y.; Köppen, M.; Kos, B.; Koskela, T.; Koslowski, H. R.; Koubiti, M.; Kovari, M.; Kowalska-Strzęciwilk, E.; Krasilnikov, A.; Krasilnikov, V.; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Książek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwiatkowski, R.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lam, N.; Lambertz, H. T.; Lane, C.; Lang, P. T.; Lanthaler, S.; Lapins, J.; Lasa, A.; Last, J. R.; Łaszyńska, E.; Lawless, R.; Lawson, A.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leddy, J.; Lee, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichtle, D.; Leichuer, P.; Leipold, F.; Lengar, I.; Lennholm, M.; Lerche, E.; Lescinskis, A.; Lesnoj, S.; Letellier, E.; Leyland, M.; Leysen, W.; Li, L.; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch.; Lipschultz, B.; Litaudon, X.; Liu, G.; Liu, Y.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lobel, R. C.; Lomanowski, B.; Lomas, P. J.; Lönnroth, J.; López, J. M.; López-Razola, J.; Lorenzini, R.; Losada, U.; Lovell, J. J.; Loving, A. B.; Lowry, C.; Luce, T.; Lucock, R. M. A.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lupelli, I.; Lyssoivan, A.; MacDonald, N.; Macheta, P.; Maczewa, K.; Magesh, B.; Maget, P.; Maggi, C.; Maier, H.; Mailloux, J.; Makkonen, T.; Makwana, R.; Malaquias, A.; Malizia, A.; Manas, P.; Manning, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph.; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marinelli, M.; Marinucci, M.; Markovič, T.; Marocco, D.; Marot, L.; Marren, C. A.; Marshal, R.; Martin, A.; Martin, Y.; Martín de Aguilera, A.; Martínez, F. J.; Martín-Solís, J. R.; Martynova, Y.; Maruyama, S.; Masiello, A.; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Maviglia, F.; Mayer, M.; Mayoral, M. L.; May-Smith, T.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McIntosh, S.; McKean, R.; McKehon, J.; Meadows, R. C.; Meakins, A.; Medina, F.; Medland, M.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merrigan, I. R.; Mertens, Ph.; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Mianowski, S.; Michling, R.; Middleton-Gear, D.; Miettunen, J.; Militello, F.; Militello-Asp, E.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miyoshi, Y.; Mlynář, J.; Molina, D.; Monakhov, I.; Moneti, M.; Mooney, R.; Moradi, S.; Mordijck, S.; Moreira, L.; Moreno, R.; Moro, F.; Morris, A. W.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Murari, A.; Muraro, A.; Murphy, S.; Asakura, N. N.; Na, Y. S.; Nabais, F.; Naish, R.; Nakano, T.; Nardon, E.; Naulin, V.; Nave, M. F. F.; Nedzelski, I.; Nemtsev, G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Nicholls, K. J.; Nicolas, T.; Nielsen, A. H.; Nielsen, P.; Nilsson, E.; Nishijima, D.; Noble, C.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Nouailletas, R.; Nunes, I.; Oberkofler, M.; Odupitan, T.; Ogawa, M. T.; O'Gorman, T.; Okabayashi, M.; Olney, R.; Omolayo, O.; O'Mullane, M.; Ongena, J.; Orsitto, F.; Orszagh, J.; Oswuigwe, B. I.; Otin, R.; Owen, A.; Paccagnella, R.; Pace, N.; Pacella, D.; Packer, L. W.; Page, A.; Pajuste, E.; Palazzo, S.; Pamela, S.; Panja, S.; Papp, P.; Paprok, R.; Parail, V.; Park, M.; Diaz, F. Parra; Parsons, M.; Pasqualotto, R.; Patel, A.; Pathak, S.; Paton, D.; Patten, H.; Pau, A.; Pawelec, E.; Soldan, C. Paz; Peackoc, A.; Pearson, I. J.; Pehkonen, S.-P.; Peluso, E.; Penot, C.; Pereira, A.; Pereira, R.; Puglia, P. P. Pereira; von Thun, C. Perez; Peruzzo, S.; Peschanyi, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrella, N.; Petržilka, V.; Peysson, Y.; Pfefferlé, D.; Philipps, V.; Pillon, M.; Pintsuk, G.; Piovesan, P.; Dos Reis, A. Pires; Piron, L.; Pironti, A.; Pisano; Pitts, R.; Pizzo, F.; Plyusnin, V.; Pomaro, N.; Pompilian, O. G.; Pool, P. J.; Popovichev, S.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Powell, T.; Pozzi, J.; Prajapati, V.; Prakash, R.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Prior, P.; Proudfoot, R.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Pulley, D.; Purahoo, K.; Pütterich, Th.; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M. S. J.; Rakha, A.; Ramogida, G.; Ranjan, S.; Rapson, C. J.; Rasmussen, J. J.; Rathod, K.; Rattá, G.; Ratynskaia, S.; Ravera, G.; Rayner, C.; Rebai, M.; Reece, D.; Reed, A.; Réfy, D.; Regan, B.; Regaña, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Cortes, S. D. A. Reyes; Reynolds, S.; Riccardo, V.; Richardson, N.; Riddle, K.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Roach, C.; Robins, R. J.; Robinson, S. A.; Robinson, T.; Robson, D. W.; Roccella, R.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, V.; Romanelli, F.; Romanelli, M.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruiz, M.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Safi, E.; Sagar, P.; Saibene, G.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samaddar, D.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I. K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schlummer, T.; Schmid, K.; Schmidt, V.; Schmuck, S.; Schneider, M.; Schöpf, K.; Schwörer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Shaw, R.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, A.; Silva, C.; Simmons, P. A.; Simpson, J.; Simpson-Hutchinson, J.; Sinha, A.; Sipilä, S. K.; Sips, A. C. C.; Sirén, P.; Sirinelli, A.; Sjöstrand, H.; Skiba, M.; Skilton, R.; Slabkowska, K.; Slade, B.; Smith, N.; Smith, P. G.; Smith, R.; Smith, T. J.; Smithies, M.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sopplesa, A.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Spelzini, T.; Spineanu, F.; Stables, G.; Stamatelatos, I.; Stamp, M. F.; Staniec, P.; Stankūnas, G.; Stan-Sion, C.; Stead, M. J.; Stefanikova, E.; Stepanov, I.; Stephen, A. V.; Stephen, M.; Stevens, A.; Stevens, B. D.; Strachan, J.; Strand, P.; Strauss, H. R.; Ström, P.; Stubbs, G.; Studholme, W.; Subba, F.; Summers, H. P.; Svensson, J.; Świderski, Ł.; Szabolics, T.; Szawlowski, M.; Szepesi, G.; Suzuki, T. T.; Tál, B.; Tala, T.; Talbot, A. R.; Talebzadeh, S.; Taliercio, C.; Tamain, P.; Tame, C.; Tang, W.; Tardocchi, M.; Taroni, L.; Taylor, D.; Taylor, K. A.; Tegnered, D.; Telesca, G.; Teplova, N.; Terranova, D.; Testa, D.; Tholerus, E.; Thomas, J.; Thomas, J. D.; Thomas, P.; Thompson, A.; Thompson, C.-A.; Thompson, V. K.; Thorne, L.; Thornton, A.; Thrysøe, A. S.; Tigwell, P. A.; Tipton, N.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomeš, M.; Tonner, P.; Towndrow, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Jun, D. Tskhakaya; Turner, I.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyrrell, S. G. J.; Uccello, A.; Ul-Abidin, Z.; Uljanovs, J.; Ulyatt, D.; Urano, H.; Uytdenhouwen, I.; Vadgama, A. P.; Valcarcel, D.; Valentinuzzi, M.; Valisa, M.; Olivares, P. Vallejos; Valovic, M.; van de Mortel, M.; van Eester, D.; van Renterghem, W.; van Rooij, G. J.; Varje, J.; Varoutis, S.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vega, J.; Verdoolaege, G.; Verhoeven, R.; Verona, C.; Rinati, G. Verona; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Vondráček, P.; Vora, N.; Vu, T.; de Sa, W. W. Pires; Wakeling, B.; Waldon, C. W. F.; Walkden, N.; Walker, M.; Walker, R.; Walsh, M.; Wang, E.; Wang, N.; Warder, S.; Warren, R. J.; Waterhouse, J.; Watkins, N. W.; Watts, C.; Wauters, T.; Weckmann, A.; Weiland, J.; Weisen, H.; Weiszflog, M.; Wellstood, C.; West, A. T.; Wheatley, M. R.; Whetham, S.; Whitehead, A. M.; Whitehead, B. D.; Widdowson, A. M.; Wiesen, S.; Wilkinson, J.; Williams, J.; Williams, M.; Wilson, A. R.; Wilson, D. J.; Wilson, H. R.; Wilson, J.; Wischmeier, M.; Withenshaw, G.; Withycombe, A.; Witts, D. M.; Wood, D.; Wood, R.; Woodley, C.; Wray, S.; Wright, J.; Wright, J. C.; Wu, J.; Wukitch, S.; Wynn, A.; Xu, T.; Yadikin, D.; Yanling, W.; Yao, L.; Yavorskij, V.; Yoo, M. G.; Young, C.; Young, D.; Young, I. D.; Young, R.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zanino, R.; Zarins, A.; Zastrow, K. D.; Zerbini, M.; Zhang, W.; Zhou, Y.; Zilli, E.; Zoita, V.; Zoletnik, S.; Zychor, I.

    2017-10-01

    We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed `three-ion' scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen-deuterium mixtures. Simultaneously, effective plasma heating is observed, as a result of the slowing-down of the fast 3He ions. The developed technique is not only limited to laboratory plasmas, but can also be applied to explain observations of energetic ions in space-plasma environments, in particular, 3He-rich solar flares.

  13. Responses of Plasma Atrial Natriuretic Peptide to High Intensity Submaximal Exercise in the Heat,

    Science.gov (United States)

    1987-06-01

    been demonstrated that in the rat , cow and human adrenal tumor. ANP decreases ALDO synthesis (Atarashi et al.1984, Delean et al. . 1984, Goodfriend et al...observed in this study (Collins and Weiner. 1986). It has recently been demonstrated that hypothyroidism is characterized by decreased plasma levels of...anesthetized rats . Can J. Physiol. Pharmacol. 62: 819-826. Armstrong LE. Dziados JE (1986). Effects of heat exposure on the exercising adult. In: Bernhardt

  14. Gas heating and plasma expansion in pulsed microwave-excited microplasmas

    Science.gov (United States)

    Hoskinson, Alan R.; Yared, Alexander; Hopwood, Jeffrey

    2015-10-01

    Microwave resonators are used to generate microplasmas in atmospheric-pressure argon and helium. We present observations of the transient behavior of a microplasma after a fast increase in power, including time-resolved photography and spectroscopic gas temperature measurements. The results show that in argon both plasma filamentation and gas heating continue out to millisecond time scales, while helium microplasmas reach steady-state conditions after a few microseconds.

  15. Plasma Heating by Pedersen Current Dissipation From the Photosphere to the Upper Chromosphere

    Science.gov (United States)

    Goodman, M. L.

    2002-12-01

    An MHD model is used to estimate the contribution of Pedersen current dissipation, as a function of height z, to plasma heating from the photosphere to the upper chromosphere. The model computes the particle diffusion velocities, normalized to the local drift velocity, transverse to a vertical magnetic field for a seven species plasma of electrons, protons, a proxy heavy ion, HeI, HeII, HeIII, and H. The proxy heavy ion is a single species representation of singly ionized C, Si, Al, Mg, Fe, Na, and Ca. The temperature and particle densities as functions of z are given by VAL model C. Collisions between all unlike particle species are taken into account. The diffusion velocities are used to compute the heating rate per unit volume Q(z), normalized to the maximum possible heating rate per unit volume at height z, due to Pedersen current dissipation. Q is the fraction of energy in the current density perpendicular to the magnetic field that is dissipated by collisions. Solutions to the model suggest that: (i) The solar chromosphere above photospheric magnetic fields with strengths ~ 102 - 103 G is heated by Pedersen current dissipation; (ii) This heating mechanism first becomes effective at heights corresponding to the lower chromosphere as defined by VAL; (iii) It is the rapid increase of charged particle magnetization with height in the lower chromosphere that triggers the rapid onset of intense heating by Pedersen current dissipation, where the magnetization is the ratio of the cyclotron frequency to the total collision frequency with unlike particles; (iv) Q(z) rapidly decreases to zero for z > ~ 2100 km due to strong magnetization transforming the current perpendicular to the magnetic field into a Hall current, which is not dissipative; (v) The protons and the proxy heavy ions carry essentially all of the Pedersen current. These results suggest that network and internetwork regions of the chromosphere are heated by Pedersen current dissipation. The model does not

  16. submitter Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source

    CERN Document Server

    Shibata, T; Mochizuki, S; Mattei, S; Lettry, J; Hatayama, A; Ueno, A; Oguri, H; Ohkoshi, K; Ikegami, K; Takagi, A; Asano, H; Naito, F

    2016-01-01

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30-120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna.

  17. Characterization of SOL plasma flows and potentials in ICRF-heated plasmas in Alcator C-mod

    Science.gov (United States)

    Hong, R.; Wukitch, S. J.; Lin, Y.; Terry, J. L.; Cziegler, I.; Reinke, M. L.; Tynan, G. R.

    2017-10-01

    Gas-puff imaging techniques are employed to determine the far SOL region radial electric field and the plasma potential in ICRF heated discharges in the Alcator C-Mod tokamak. The two-dimensional velocity fields of the turbulent structures, which are advected by RF-induced {E}× {B} flows, are obtained via the time-delay estimation (TDE) techniques. Both the magnitude and radial extension of the radial electric field E r are observed to increase with the toroidal magnetic field strength B φ and the ICRF power. In particular, the RF-induced E r extends from the vicinity of the ICRF antenna to the separatrix when {B}\\varphi =7.9 {{T}} and {P}{ICRF}≳ 1 {MW}. In addition, low-Z impurity seeding near the antenna is found to substantially reduce the sheath potential associated with ICRF power. The TDE techniques have also been used to revisit and estimate ICRF-induced potentials in different antenna configurations: (1) conventional toroidally aligned (TA) antenna versus field-aligned (FA) antenna; (2) FA monopole versus FA dipole. It shows that FA and TA antennas produce similar magnitude of plasma potentials, and the FA monopole induced greater potential than the FA dipole phasing. The TDE estimations of RF-induced plasma potentials are consistent with previous results based on the poloidal phase velocity.

  18. Observations of Plasma Turbulence and Heating from the Solar Wind and Simulations

    Science.gov (United States)

    Wicks, R. T.

    2015-12-01

    The cascade of energy by plasma turbulence has been shown to occur in, and heat, the solar wind. Recent work in the study of solar wind turbulence has focussed, in the most part, on advanced data analysis techniques, such as third moment structure functions, wavelets, conditional data sampling, multi-spacecraft observations and reconstruction of 2D k-spectra with tomography, and statistical studies from long time series of spacecraft observations. These techniques are complex and contain different assumptions about the qualities of the data underpinning the measurements. Here, we will review recent advances and discoveries in the study of plasma turbulence from solar wind data analysis and discuss how benchmarking of techniques against one another could be pursued and how simulations can be used to aid in the understanding of the results of solar wind data analysis, in particular in the framework of the "Turbulence Dissipation Challenge" (Parashar et al., Journal of Plasma Physics, Volume 81, Issue 05, 905810513, 2015). We will pay particular attention to observing two different heating mechanisms: stochastic heating and resonant wave-particle interactions. The magnetic helicity of the solar wind is shown to separate into two distinct components, one originating from pseudo-Alfvenic (k may have a component parallel to the magnetic field) and one from the Alfvenic fluctuations (k is strictly perpendicular). The solar wind results are compared with "pseudo-spacecraft" data from large 3D PIC simulations.

  19. Three-species biofilm model onto plasma-treated titanium implant surface.

    Science.gov (United States)

    Matos, Adaias O; Ricomini-Filho, Antônio P; Beline, Thamara; Ogawa, Erika S; Costa-Oliveira, Bárbara E; de Almeida, Amanda B; Nociti Junior, Francisco H; Rangel, Elidiane C; da Cruz, Nilson C; Sukotjo, Cortino; Mathew, Mathew T; Barão, Valentim A R

    2017-04-01

    In this study, titanium (Ti) was modified with biofunctional and novel surface by micro-arc oxidation (MAO) and glow discharge plasma (GDP) and we tested the development of a three-species periodontopatogenic biofilm onto the treated commercially-pure titanium (cpTi) surfaces. Machined and sandblasted surfaces were used as control group. Several techniques for surface characterizations and monoculture on bone tissue cells were performed. A multispecies biofilm composed of Streptococcus sanguinis, Actinomyces naeslundii and Fusobacterium nucleatum was developed onto cpTi discs for 16.5h (early biofilm) and 64.5h (mature biofilm). The number of viable microorganisms and the composition of the extracellular matrix (proteins and carbohydrates) were determined. The biofilm organization was analyzed by scanning electron microscopy (SEM) and Confocal laser scanning microscopy (CLSM). In addition, MC3T3-E1 cells were cultured on the Ti surfaces and cell proliferation (MTT) and morphology (SEM) were assessed. MAO treatment produced oxide films rich in calcium and phosphorus with a volcano appearance while GDP treatment produced silicon-based smooth thin-film. Plasma treatments were able to increase the wettability of cpTi (pGDP had the greatest surface free energy (p0.05). Plasma treatment did not affect the viable microorganisms counts, but the counts of F. nucleatum was lower for MAO treatment at early biofilm phase. Biofilm extracellular matrix was similar among the groups, excepted for GDP that presented the lowest protein content. Moreover, cell proliferation was not significantly affected by the experimental, except for MAO at 6days that resulted in an increased cell proliferative. Together, these findings indicate that plasma treatments are a viable and promising technology to treat bone-integrated dental implants as the new surfaces displayed improved mechanical and biological properties with no increase in biofilm proliferation. Copyright © 2017 Elsevier B.V. All

  20. Fast plasma heating by anomalous and inertial resistivity effects in the solar atmosphere

    Science.gov (United States)

    Duijveman, A.; Hoyng, P.; Ionson, J. A.

    1981-01-01

    A simple model is presented to describe fast plasma heating by anomalous and inertial resistivity effects. It is noted that a small fraction of the plasma contains strong currents that run parallel to the magnetic field and are driven by an exponentiating electric field. The anomalous character of the current dissipation derives from the excitation of electrostatic ion-cyclotron and/or ion-acoustic waves. The possible role of resistivity deriving from geometrical effects ('inertial resistivity') is also considered. Using a marginal stability analysis, equations for the average electron and ion temperatures are derived and numerically solved. No loss mechanisms are taken into account. The evolution of the plasma is described as a path in the drift velocity diagram, where the drift velocity is plotted as a function of the electron to ion temperature ratio.

  1. Investigating the laser heating of underdense plasmas at conditions relevant to MagLIF

    Science.gov (United States)

    Harvey-Thompson, Adam

    2015-11-01

    The magnetized Liner Inertial Fusion (MagLIF) scheme has achieved thermonuclear fusion yields on Sandia's Z Facility by imploding a cylindrical liner filled with D2 fuel that is preheated with a multi-kJ laser and pre-magnetized with an axial field Bz = 10 T. The challenge of fuel preheating in MagLIF is to deposit several kJ's of energy into an underdense (ne/ncritdynamics of a MagLIF implosion and stagnation, but also to validate magnetized transport models and better understand the physics of laser propagation in magnetized plasmas. In this talk, we present data and analysis of several experiments conducted at OMEGA-EP and at Z to investigate laser propagation and plasma heating in underdense D2 plasmas under a range of conditions, including densities (ne = 0.05-0.1 nc) and magnetization parmaters (ωceτe ~ 0-10). The results show differences in the electron temperature of the heated plasma and the velocity of the laser burn wave with and without an applied magnetic field. We will show comparisons of these experimental results to 2D and 3D HYDRA simulations, which show that the effect of the magnetic field on the electron thermal conduction needs to be taken into account when modeling laser preheat. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  2. Microstructural Characterization Of Laser Heat Treated AISI 4140 Steel With Improved Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Oh M.C.

    2015-06-01

    Full Text Available The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.

  3. Evaluation of coagulation factors in fresh frozen plasma treated with riboflavin and ultraviolet light

    Directory of Open Access Journals (Sweden)

    Antić Ana

    2012-01-01

    Full Text Available Background/Aim. Pathogen inactivation in blood products using riboflavin and ultraviolet (UV light represents a proactive approach to blood safety, not only for known infectious agents but also for new ones or not yet recognized as threats to the blood supply. This method inactivates a virus, bacteria, fungus, or protozoan pathogen from the blood product without damaging its function or shelf-life. The aim of the study was to study the influence of photoinactivation using riboflavin on the concentration of coagulation factors and coagulation inhibitors in plasma that was treated before freezing. Methods. The examination included 30 units of plasma, separated from whole blood donated by voluntary blood donors around 6 h from the moment of collection. They were treated by riboflavin (35 mL and UV rays (6.24 J/mL, 265-370 nm on Mirasol aparature (Caridian BCT Biotechnologies, USA in approximate duration of 6 min. The samples for examining were taken before (K - control units and after illumination (I - illuminated units. Results. Comparing the middle values of coagulation factors in the control and illuminated units we noticed their statistically significant decrease in illuminated units (p < 0.001, but the activity of coagulation ones was still in the reference range. The most sensitive coagulation factors to photoinactivation were FVIII, FIX and FXI (21.99%, 20.54% and 17.26% loss, respectively. Anticoagulant factors were better preseved than coagulation factors. Conclusion. Plasma separated from whole blood donation within 6 h, treated with riboflavin and UV light within 6 h from separation and frozen at temperature below -30ºC within 24 h, shows good retention of pro- and anticoagulation activity.

  4. Non-local heat transport in Alcator C-Mod ohmic L-mode plasmas

    Science.gov (United States)

    Gao, C.; Rice, J. E.; Sun, H. J.; Reinke, M. L.; Howard, N. T.; Mikkelson, D.; Hubbard, A. E.; Chilenski, M. A.; Walk, J. R.; Hughes, J. W.; Ennever, P. C.; Porkolab, M.; White, A. E.; Sung, C.; Delgado-Aparicio, L.; Baek, S. G.; Rowan, W. L.; Brookman, M. W.; Greenwald, M. J.; Granetz, R. S.; Wolfe, S. W.; Marmar, E. S.; The Alcator C-Mod Team

    2014-08-01

    Non-local heat transport experiments were performed in Alcator C-Mod ohmic L-mode plasmas by inducing edge cooling with laser blow-off impurity (CaF2) injection. The non-local effect, a cooling of the edge electron temperature with a rapid rise of the central electron temperature, which contradicts the assumption of ‘local’ transport, was observed in low collisionality linear ohmic confinement (LOC) regime plasmas. Transport analysis shows this phenomenon can be explained either by a fast drop of the core diffusivity, or the sudden appearance of a heat pinch. In high collisionality saturated ohmic confinement (SOC) regime plasmas, the thermal transport becomes ‘local’: the central electron temperature drops on the energy confinement time scale in response to the edge cooling. Measurements from a high resolution imaging x-ray spectrometer show that the ion temperature has a similar behaviour as the electron temperature in response to edge cooling, and that the transition density of non-locality correlates with the rotation reversal critical density. This connection may indicate the possible connection between thermal and momentum transport, which is also linked to a transition in turbulence dominance between trapped electron modes (TEMs) and ion temperature gradient (ITG) modes. Experiments with repetitive cold pulses in one discharge were also performed to allow Fourier analysis and to provide details of cold front propagation. These modulation experiments showed in LOC plasmas that the electron thermal transport is not purely diffusive, while in SOC the electron thermal transport is more diffusive like. Linear gyrokinetic simulations suggest the turbulence outside r/a = 0.75 changes from TEM dominance in LOC plasmas to ITG mode dominance in SOC plasmas.

  5. The temporal behaviour of MHD waves in a partially ionized prominence-like plasma: Effect of heating and cooling

    Science.gov (United States)

    Ballester, J. L.; Carbonell, M.; Soler, R.; Terradas, J.

    2018-01-01

    Context. During heating or cooling processes in prominences, the plasma microscopic parameters are modified due to the change of temperature and ionization degree. Furthermore, if waves are excited on this non-stationary plasma, the changing physical conditions of the plasma also affect wave dynamics. Aims: Our aim is to study how temporal variation of temperature and microscopic plasma parameters modify the behaviour of magnetohydrodynamic (MHD) waves excited in a prominence-like hydrogen plasma. Methods: Assuming optically thin radiation, a constant external heating, the full expression of specific internal energy, and a suitable energy equation, we have derived the profiles for the temporal variation of the background temperature. We have computed the variation of the ionization degree using a Saha equation, and have linearized the single-fluid MHD equations to study the temporal behaviour of MHD waves. Results: For all the MHD waves considered, the period and damping time become time dependent. In the case of Alfvén waves, the cut-off wavenumbers also become time dependent and the attenuation rate is completely different in a cooling or heating process. In the case of slow waves, while it is difficult to distinguish the slow wave properties in a cooling partially ionized plasma from those in an almost fully ionized plasma, the period and damping time of these waves in both plasmas are completely different when the plasma is heated. The temporal behaviour of the Alfvén and fast wave is very similar in the cooling case, but in the heating case, an important difference appears that is related with the time damping. Conclusions: Our results point out important differences in the behaviour of MHD waves when the plasma is heated or cooled, and show that a correct interpretation of the observed prominence oscillations is very important in order to put accurate constraints on the physical situation of the prominence plasma under study, that is, to perform prominence

  6. The heat removal capability of actively cooled plasma-facing components for the ITER divertor

    Science.gov (United States)

    Missirlian, M.; Richou, M.; Riccardi, B.; Gavila, P.; Loarer, T.; Constans, S.

    2011-12-01

    Non-destructive examination followed by high-heat-flux testing was performed for different small- and medium-scale mock-ups; this included the most recent developments related to actively cooled tungsten (W) or carbon fibre composite (CFC) armoured plasma-facing components. In particular, the heat-removal capability of these mock-ups manufactured by European companies with all the main features of the ITER divertor design was investigated both after manufacturing and after thermal cycling up to 20 MW m-2. Compliance with ITER requirements was explored in terms of bonding quality, heat flux performances and operational compatibility. The main results show an overall good heat-removal capability after the manufacturing process independent of the armour-to-heat sink bonding technology and promising behaviour with respect to thermal fatigue lifetime under heat flux up to 20 MW m-2 for the CFC-armoured tiles and 15 MW m-2 for the W-armoured tiles, respectively.

  7. Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma

    Science.gov (United States)

    Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.

  8. Deposition of LDH on plasma treated polylactic acid to reduce water permeability

    KAUST Repository

    Bugatti, Valeria

    2013-04-01

    A simple and scalable deposition process was developed to prepare polylactic acid (PLA) coatings with enhanced water barrier properties for food packaging applications. This method based on electrostatic interactions between the positively charged layers of layered double hydroxides (LDHs) modified with ionic liquids (ILs) and the negatively charged plasma treated polylactic acid leads to homogeneous, stable, and highly durable coatings. Deposition of the LDH coatings increases the surface hydrophobicity of the neat PLA, which results to a decrease in water permeability by about 35%. © 2013 Elsevier Inc.

  9. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  10. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the

  11. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  12. Outcomes Related to the Use of Frozen Plasma or Pooled Solvent/Detergent-Treated Plasma in Critically Ill Children.

    Science.gov (United States)

    Camazine, Maraya N; Karam, Oliver; Colvin, Ryan; Leteurtre, Stephane; Demaret, Pierre; Tucci, Marisa; Muszynski, Jennifer A; Stanworth, Simon; Spinella, Philip C

    2017-05-01

    To determine if the use of fresh frozen plasma/frozen plasma 24 hours compared to solvent detergent plasma is associated with international normalized ratio reduction or ICU mortality in critically ill children. This is an a priori secondary analysis of a prospective, observational study. Study groups were defined as those transfused with either fresh frozen plasma/frozen plasma 24 hours or solvent detergent plasma. Outcomes were international normalized ratio reduction and ICU mortality. Multivariable logistic regression was used to determine independent associations. One hundred one PICUs in 21 countries. All critically ill children admitted to a participating unit were included if they received at least one plasma unit during six predefined 1-week (Monday to Friday) periods. All children were exclusively transfused with either fresh frozen plasma/frozen plasma 24 hours or solvent detergent plasma. None. There were 443 patients enrolled in the study. Twenty-four patients (5%) were excluded because no plasma type was recorded; the remaining 419 patients were analyzed. Fresh frozen plasma/frozen plasma 24 hours group included 357 patients, and the solvent detergent plasma group included 62 patients. The median (interquartile range) age and weight were 1 year (0.2-6.4) and 9.4 kg (4.0-21.1), respectively. There was no difference in reason for admission, severity of illness score, pretransfusion international normalized ratio, or lactate values; however, there was a difference in primary indication for plasma transfusion (p plasma/frozen plasma 24 hours and solvent detergent plasma study groups, -0.2 (-0.4 to 0) and -0.2 (-0.3 to 0), respectively (p = 0.80). ICU mortality was lower in the solvent detergent plasma versus fresh frozen plasma/frozen plasma 24 hours groups, 14.5% versus 29.1%%, respectively (p = 0.02). Upon adjusted analysis, solvent detergent plasma transfusion was independently associated with reduced ICU mortality (odds ratio, 0.40; 95% CI, 0

  13. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  14. METHODS FOR DETERMINATION REACTIVE LYSINE IN HEAT-TREATED FOODS AND FEEDS

    Directory of Open Access Journals (Sweden)

    Matej Brestenský

    2014-08-01

    Full Text Available Lysine is an essential amino acid, which is limited in foods of plant origin, especially in cereals. The heat-treatment of products containing proteins and reducing sugars results in formation of Maillard reactions during which the cross-linkages among epsilon amino groups (ε-NH2 and reducing sugars are created. Thus the protein-carbohydrate complex is formed. This complex contains an unreactive (unavailable lysine, which is bound to reducing sugars and is not available in body. Hereby, the nutritive value of feeds and foods decreases. When a standard analytical method for analyses of amino acids is used, in products containing protein-carbohydrate complexes, it is not possible to analyze the content of reactive (available and unreactive (unavailable lysine, but only the content of total lysine. Therefore, when the standard amino acid analysis is used, the content of lysine in heat-treated feeds and foods is overestimated. In order to avoid this, some methods for determination of reactive lysine were developed. Among the best known, the homoarginine and furosine methods are included. Using these methods, in evaluation of nutritive value of feeds and foods, is of great importance because they allow to determine the extent of proteins, which were damaged during the heat treatment and thus we obtain information on objective nutritional protein quality of the product.

  15. Microhardness and In Vitro Corrosion of Heat-Treated Mg–Y–Ag Biodegradable Alloy

    Science.gov (United States)

    Vlček, Marián; Lukáč, František; Kudrnová, Hana; Smola, Bohumil; Stulíková, Ivana; Luczak, Monika; Szakács, Gábor; Hort, Norbert; Willumeit-Römer, Regine

    2017-01-01

    Magnesium alloys are promising candidates for biodegradable medical implants which reduce the necessity of second surgery to remove the implants. Yttrium in solid solution is an attractive alloying element because it improves mechanical properties and exhibits suitable corrosion properties. Silver was shown to have an antibacterial effect and can also enhance the mechanical properties of magnesium alloys. Measurements of microhardness and electrical resistivity were used to study the response of Mg–4Y and Mg–4Y–1Ag alloys to isochronal or isothermal heat treatments. Hardening response and electrical resistivity annealing curves in these alloys were compared in order to investigate the effect of silver addition. Procedures for solid solution annealing and artificial aging of the Mg–4Y–1Ag alloy were developed. The corrosion rate of the as-cast and heat-treated Mg–4Y–1Ag alloy was measured by the mass loss method. It was found out that solid solution heat treatment, as well artificial aging to peak hardness, lead to substantial improvement in the corrosion properties of the Mg–4Y–1Ag alloy. PMID:28772414

  16. Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jong-Gu, E-mail: jgkwak@nfri.re.kr; Kim, H.S.; Cheon, M.S.; Oh, S.T.; Lee, Y.S.; Terzolo, L.

    2016-11-01

    Highlights: • We measured the neutron emission from KSTAR plasmas quantitatively. • We confirmed that neutron emission is coming from neutral beam-plasma interactions. • The feasibility study shows that the fast neutron from KSTAR could be used for fast neutron radiography. - Abstract: The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(β{sub N} ∼ 4) transiently and higher stored energy region is obtained by increased total heating power (∼6 MW) and plasma current (I{sub p} up to 1 MA for ∼10 s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100 keV with 4.5 MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n){sup 3}He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 10{sup 13}–10{sup 14}/s and 1 m{sup 2} at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

  17. Achievement of Sustained Net Plasma Heating in a Fusion Experiment with the Optometrist Algorithm.

    Science.gov (United States)

    Baltz, E A; Trask, E; Binderbauer, M; Dikovsky, M; Gota, H; Mendoza, R; Platt, J C; Riley, P F

    2017-07-25

    Many fields of basic and applied science require efficiently exploring complex systems with high dimensionality. An example of such a challenge is optimising the performance of plasma fusion experiments. The highly-nonlinear and temporally-varying interaction between the plasma, its environment and external controls presents a considerable complexity in these experiments. A further difficulty arises from the fact that there is no single objective metric that fully captures both plasma quality and equipment constraints. To efficiently optimise the system, we develop the Optometrist Algorithm, a stochastic perturbation method combined with human choice. Analogous to getting an eyeglass prescription, the Optometrist Algorithm confronts a human operator with two alternative experimental settings and associated outcomes. A human operator then chooses which experiment produces subjectively better results. This innovative technique led to the discovery of an unexpected record confinement regime with positive net heating power in a field-reversed configuration plasma, characterised by a >50% reduction in the energy loss rate and concomitant increase in ion temperature and total plasma energy.

  18. Hemocompatibility and cytocompatibility of pristine and plasma-treated silver-zeolite-chitosan composites

    Science.gov (United States)

    Taaca, Kathrina Lois M.; Vasquez, Magdaleno R.

    2018-02-01

    Silver-exchanged zeolite-chitosan (AgZ-Ch) composites with varying AgZ content were prepared by solvent casting and modified under argon (Ar) plasma excited by a 13.56 MHz radio frequency (RF) power source. Silver (Ag) was successfully incorporated in a natural zeolite host without losing its antibacterial activity against Escherichia coli and Staphylococcus aureus. The AgZ particles were incorporated into a chitosan matrix without making significant changes in the matrix structure. The composites also exhibited antibacterial sensitivity due to the inclusion of AgZ. Plasma treatment enhanced the surface wettability of polar and nonpolar test liquids of the composites. The average increase in total surface free energy after treatment was around 49% with the polar component having a significant change. Cytocompatibility tests showed at least 87% cell viability for pristine and plasma-treated composites comparable with supplemented RPMI as positive control. Hemocompatibility tests revealed that pristine composites does not promote hemolysis and the blood clotting ability is less than 10 min. Coupled with antibacterial property, the fabricated composites have promising biomedical applications.

  19. Selective production of reactive oxygen and nitrogen species in the plasma-treated water by using a nonthermal high-frequency plasma jet

    Science.gov (United States)

    Uchida, Giichiro; Takenaka, Kosuke; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Setsuhara, Yuichi

    2018-01-01

    We present the control of H2O2 and NO2 ‑ productions in deionized water by using a high-frequency plasma jet driven by a 60 MHz voltage. In the gas phase, the high-frequency plasma jet has a high O (3P) atom density of 8 × 1014 cm‑3, which is two orders of magnitude higher than that of the low-frequency plasma jet driven by a 5 kHz voltage. Concerning the production of reactive oxygen and nitrogen species in the liquid phase, with the direct contact of the plasma jet to the liquid surface, the H2O2 concentration is higher than the NO2 ‑ concentration. On the other hand, without the observable contact of the high-frequency plasm jet with high plasma density to the liquid surface, the NO2 ‑ concentration increases with the flow rate of N2(20%)O2(80%) gas added to the Ar discharge gas and becomes more dominant compared with H2O2 in the plasma-treated water. H2O2 and NO2 ‑ could be selectively produced in the plasma-treated water by using a nonthermal high-frequency plasma jet, which is a promising tool for biomedical applications.

  20. Edge characteristics and global confinement of electron cyclotron resonance heated plasmas in the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Tabares, F.L.; Branas, B.; Garcia-Cortes, I.; Tafalla, D.; Estrada, T.; Tribaldos, V. [Laboratorio Nacional de Fusion por Confinamiento Magnetico, Asociacion EURATOM/CIEMAT, Madrid (Spain)

    2001-08-01

    The edge parameters of electron cyclotron resonance heated plasmas in the TJ-II stellarator are reported. Data from atomic beam diagnostics and electrical probes have been used for edge and scrape-off layer characterization. Scans in heating power and plasma density for H and He plasmas have been performed, for a given magnetic configuration. A linear increase of the diffusion coefficient at the last-closed magnetic surface with the ratio of injected power to plasma density and a similar value of that parameter for the two atomic species investigated were obtained. Global particle confinement times between 3 and 15 ms have been deduced, and transition to an enhanced confinement mode in H plasmas has been observed under some conditions. The role of high-energy particle losses, due to trapping into the relatively high magnetic ripple, in the global energy balance of TJ-II plasmas is addressed. (author)

  1. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    Science.gov (United States)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  2. Circulating Plasma Micro RNAs in Patients with Major Depressive Disorder Treated with Antidepressants: A Pilot Study.

    Science.gov (United States)

    Enatescu, Virgil Radu; Papava, Ion; Enatescu, Ileana; Antonescu, Mirela; Anghel, Andrei; Seclaman, Edward; Sirbu, Ioan Ovidiu; Marian, Catalin

    2016-09-01

    Significant progress was made in the understanding etiopathogenic factors related to MDD, including through research on the role of micro RNAs (miRs). We investigated plasma miRs as potential markers for MDD in patients treated with antidepressants. At the initiation and at the end of twelve weeks of treatment, blood samples were collected and a structured diagnostic interview and a standardized depression rating scale for the presence and severity of major depression were done. The average decrease in HAMD score was 76.89%. Plasma miR expression profiling was performed by real time PCR. The lists of up-regulated (cut-off=2) and down-regulated miRs were imported into the miRWalk2.0 algorithm and used for target predictions. KEGG database pathways analysis was used to retrieve the pathways significantly targeted by at least two of the miRs. Of the 222 miRs detected in plasma samples of MDD patients, 40 were differentially expressed after treatment. Twenty-three miRs were significantly overexpressed with fold changes between 1.85 and 25.42, and 17 miRs were significantly downregulated with fold changes from 0.28 to 0.68. Pathway analysis revealed a list of 29 pathways for up-regulated miRs, and 20 pathways for down-regulated miRs. Six dysregulated miRs are common to all the top five pathways (Wnt signaling, Cancer, Endocytosis, Axon guidance, MAPK signaling): miR-146a-5p, miR-146b-5p, miR-221-3p, miR-24-3p, miR-26a-5p. Overall, our miRWalk analysis of changes in plasma microRNAs after treatment of patients with major depression might open a new avenue for the understanding of Escitalopram mode of action and for its side effects.

  3. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    Science.gov (United States)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  4. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; C.A. Gentile; A. Hassanein

    2002-01-28

    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices.

  5. Fusion performances and alpha heating in future JET D-T plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Balet, B.; Cordey, J.G.; Gibson, A.; Lomas, P.; Stubberfield, P.M.; Thomas, P. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The new pump divertor installed at JET should allow high performance pulses of a few seconds duration by both preventing the impurity influx and controlling the density evolution. The TRANSP code has been used in a predictive mode to assess the possible fusion performance of such plasmas fuelled with a 50:50 mixture of D and T, and the effect of alpha particles heating on Te and Ti. Several cases are considered: 50:50 D-T mix; 50:50 D-T mix, no C bloom; 50:50 D-T mix, VH phase, density control; 50:50 D-T mix, VH phase, density control, 6 Ma. The predictions show that if the the bloom and MHD instabilities can be controlled at higher plasma currents using a higher toroidal field to keep a reasonable beta value, then a higher fusion performance steady state plasma with Q{sub DT} superior to 2.5 should be possible. The alpha heating power of 4.9 MW would lead to a 74% increase in Te. 4 refs., 4 figs., 1 tab.

  6. Outcomes Related to the Use of Frozen Plasma or Pooled Solvent/Detergent-Treated Plasma in Critically Ill Children

    DEFF Research Database (Denmark)

    Camazine, Maraya N; Karam, Oliver; Colvin, Ryan

    2017-01-01

    OBJECTIVE: To determine if the use of fresh frozen plasma/frozen plasma 24 hours compared to solvent detergent plasma is associated with international normalized ratio reduction or ICU mortality in critically ill children. DESIGN: This is an a priori secondary analysis of a prospective, observati...

  7. Two approaches to the clinical dilemma of treating TTP with therapeutic plasma exchange in patients with a history of anaphylactic reactions to plasma.

    Science.gov (United States)

    Sidhu, Davinder; Snyder, Edward L; Tormey, Christopher A

    2017-06-01

    Thrombotic thrombocytopenic purpura (TTP) is a rare but serious disease caused by autoantibody-mediated deficiency in von Willebrand factor (VWF) cleaving protease, ADAMTS-13. The primary acute treatment is therapeutic plasma exchange (TPE). However, some patients can develop allergic/anaphylactic reactions to the replacement (i.e., donor) plasma over time. Two potential treatment strategies for patients with TTP who demonstrate severe allergic reactions to plasma used for exchange were examined. Two patients with TTP exacerbations who developed severe allergic reactions to donor plasma were identified. One patient's TPE was re-initiated with Octaplas, a lot-batched solvent and detergent treated, type-specific, pooled donor plasma product. The other patient was exchanged with primarily albumin, followed by slow incremental exposures to donor plasma to mitigate exposures and allergic risks. Both patients were assessed for anaphylaxis. Both treatment strategies were successful in preventing any further clinically significant allergic/anaphylactic reactions and facilitated both patients' TTP remissions. Based on our experience with two similar patients with TTP exacerbations and history of anaphylactic reactions to plasma during TPE, we have identified two possible treatment protocols to achieve remission in this clinical dilemma. Substituting Octaplas for standard plasma or, alternatively, using albumin with slowly increasing amounts of standard plasma may help to mitigate the risk of further anaphylactic adverse events. J. Clin. Apheresis 32:158-162, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. CONCENTRATION OF SELECTED ELEMENTS IN RAW AND ULTRA HEAT TREATED COW MILK

    Directory of Open Access Journals (Sweden)

    Lukáčová Anetta

    2012-10-01

    Full Text Available The potential presence of toxic metals in food is being recognized as a priority by standards organizations and constitutes an analytical challenge. The toxic metal content of milk and dairy products is due to several factors: environmental conditions, the manufacturing process and the possible contamination during several steps of the manufacturing processes. The aim of this study was to evaluate samples of raw milk with fat contents 3.8% obtained at randomly from animal farms in around Nitra, western Slovakia region and ultra – heat treated cow milk (UHT with fat contents 1.5% commercially available from local market in Nitra. Samples of milk were analysed for metal contents using atomic absorption spectrophotometry (AAS. UHT milk showed higher levels of cadmium, nickel and iron. Higher levels of zinc, copper were detected in raw milk. Significant differences in the concentration of copper between raw and UHT cow milk were found.

  9. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    Science.gov (United States)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  10. Performance of W/Cu FGM based plasma facing components under high heat load test

    Science.gov (United States)

    Zhou, Zhang-Jian; Song, Shu-Xiang; Du, Juan; Zhong, Zhi-Hong; Ge, Chang-Chun

    2007-06-01

    Three different methods, plasma spraying, infiltration-welding method and resistance sintering under ultra-high pressure, have been developed to fabricate W/Cu FGM based plasma facing components. SEM analysis showed that good grading composition of all FGM samples had been obtained. Water quenching and electron, or laser beam test facilities have been utilized to investigate and compare thermal shock behavior and performance under high heat load. It is found that the grading at the interface between W and Cu is very effective for the reduction of thermal stress. W/Cu FGM fabricated by infiltration-welding method has the best thermal shock resistance among these three kinds of W/Cu FGM.

  11. Continuous Transitions between Discontinuous Magnetohydrodynamic Flows of Plasma and Its Heating

    CERN Document Server

    Ledentsov, L S

    2013-01-01

    The possibility that the type of discontinuous flow changes as the conditions gradually (continuously) change is investigated in connection with the problems arising when the results of numerical simulations of magnetic reconnection in plasma are interpreted. The conservation laws at a discontinuity surface in magnetohydrodynamics admit such transitions, but the socalled transition solutions for the boundary conditions that simultaneously satisfy two types of discontinuities should exist in this case. The specific form of such solutions has been found, and a generalized scheme of permitted transitions has been constructed on their basis. An expression for the jump in internal energy at discontinuity is derived. The dependence of the plasma heating efficiency on the type of discontinuity is considered.

  12. MW-scale ICRF plasma heating using IGBT switches in a multi-pulse scheme

    Science.gov (United States)

    Be'ery, I.; Kogan, K.; Seemann, O.

    2015-06-01

    Solid-state silicon switches are cheap and reliable option for 1-10 MHz RF power sources, required for plasma ion cyclotron RF heating (ICRF). The large `on' resistance of MOSFET and similar devices limits their power delivery to a few tens of kW per switch. Low resistivity devices, such as IGBT, suffer from large `off' switching time, which limits their useful frequency range and increases the power dissipated in the switch. Here we demonstrate more than 0.8 MW circulated RF power at 2 MHz using only three high voltage IGBT switches. The circuit uses the fast `on' switching capability of the IGBTs to generate high-Q pulse train. This operation mode also simplifies the measurement of RF coupling between the antenna and the plasma.

  13. Electron residual energy due to stochastic heating in field-ionized plasma

    CERN Document Server

    Khalilzadeh, Elnaz; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-01-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is here investigated. The optical response of plasma is initially modeled by using the concept of two counter-propagating electromagnetic waves. The solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared to the case without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will significantly be changed by applying a minor change to the initial conditions. Extensive kinetic 1D-3V particle-in-cell (PIC) simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in sufficient long pulse length is high enough to act as a second counter-propagating wave for triggering the stochastic e...

  14. Upregulation of Glycolytic Enzymes, Mitochondrial Dysfunction and Increased Cytotoxicity in Glial Cells Treated with Alzheimer’s Disease Plasma

    Science.gov (United States)

    Jayasena, Tharusha; Poljak, Anne; Braidy, Nady; Smythe, George; Raftery, Mark; Hill, Mark; Brodaty, Henry; Trollor, Julian; Kochan, Nicole; Sachdev, Perminder

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder associated with increased oxidative stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxidation and reduced activities of antioxidant enzymes have been reported in AD plasma. Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including complement activation and acute phase reactions, which may also be reflected in plasma. Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We investigated the effect of pooled plasma (n = 20 each) from healthy controls, individuals with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) on cultured microglial cells. AD plasma and was found to significantly decrease cell viability and increase glycolytic flux in microglia compared to plasma from healthy controls. This effect was prevented by the heat inactivation of complement. Proteomic methods and isobaric tags (iTRAQ) found the expression level of complement and other acute phase proteins to be altered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants in AD plasma may alter the energy metabolism of glia. PMID:25785936

  15. Studies on Adhesive Wear Characteristics of Heat Treated Aluminium LM25/AlB2 Composites

    Directory of Open Access Journals (Sweden)

    K.S. Arunagiri

    2016-09-01

    Full Text Available The main aim of this study was to determine the adhesive wear characteristics of heat treated LM 25/AlB2 metal matrix composites fabricated using liquid metallurgy route. The composite samples were solutionized at 525 °C and then water quenched. Aging was done at different temperatures (160 °C, 175 °C, 200 °C and 250 °C for different aging time (4 hrs, 6 hrs, and 8 hrs. Brinell hardness tester was used to evaluate the hardness of all aged samples and maximum hardness (82 HRB was observed in the sample aged for 6 hours at 250°C . Those heat treated specimens were taken for further experimentation on wear characteristics. Pin-on-disc tribometer was used to analyse the dry sliding wear characteristics and the experiments were conducted based on Taguchi’s L16 orthogonal array by varying the process parameters of load (10 N, 20 N, 30 N and 40 N, sliding distance (400 m, 800 m, 1200 m and 1600 m and sliding velocity (1 m/s, 2 m/s, 3 m/s and 4 m/s for four levels. The dependence of wear rate on various parameters was found out using ANOVA and S/N ratio. The experimental result shows that sliding velocity (56.6 % influences more on wear rate followed by load (23.09 % and sliding distance (6.02 %. The regression equation was developed and the confirmatory result shows less error. The worn surfaces were analysed using Scanning Electron Microscope and severe delamination at the sliding velocity of 1m/s was found.

  16. Heat-treated Saccharomyces cerevisiae for antimony speciation and antimony(III) preconcentration in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Marcellino, Sebastien [Universite de Lyon, Lyon1, Laboratoire des Sciences Analytiques, CNRS UMR 5180, bat CPE, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex (France); Attar, Hossein [Universite Louis Pasteur de Strasbourg, Laboratoire de Chimie Analytique et Sciences Separatives, CNRS UMR 7178, ECPM, 25 rue Becquerel 67087 Strasbourg (France); Lievremont, Didier; Lett, Marie-Claire [Universite Louis Pasteur de Strasbourg, Laboratoire de Genetique Moleculaire, Genetique et Microbiologie, CNRS UMR 7156, 28 rue Goethe, 67000 Strasbourg (France); Barbier, Frederique [CNRS USR 59, Service Central d' Analyse, 59 Chemin du Canal BP22 69390 Vernaison (France); Lagarde, Florence [Universite de Lyon, Lyon1, Laboratoire des Sciences Analytiques, CNRS UMR 5180, bat CPE, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex (France); Universite Louis Pasteur de Strasbourg, Laboratoire de Chimie Analytique et Sciences Separatives, CNRS UMR 7178, ECPM, 25 rue Becquerel 67087 Strasbourg (France)], E-mail: florence.lagarde@univ-lyon1.fr

    2008-11-23

    An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 deg. C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L{sup -1}). 140 mg of yeast and 2 h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 {mu}g L{sup -1}. In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L{sup -1} thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100 mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L{sup -1}, respectively, using ICP-MS, 7 and 0.9 {mu}g L{sup -1} using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n = 3) were in the 2-5% range at the tenth {mu}g L{sup -1} level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 {mu}g L{sup -1}). Corrected recoveries were in all cases close to 100%.

  17. Continuous, edge localized ion heating during non-solenoidal plasma startup and sustainment in a low aspect ratio tokamak

    Science.gov (United States)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.

    2017-07-01

    Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV  ⩽  650 eV, which is in contrast to T i,OV  ⩽  70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, while {{T}\\text{i,\\parallel}} experiences little change, in agreement with two-fluid reconnection theory. This ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.

  18. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    Directory of Open Access Journals (Sweden)

    Radomila KONEČNÁ

    2012-03-01

    Full Text Available Perferritic isothermal ductile iron (IDI® is an intermediate grade between the low-strength grades of austempered ductile iron (ADI and pearlitic ductile iron (DI recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness as a result of the isothermal heat treatment. In this contribution the fatigue crack growth resistance and Kath of IDI are investigated and correlated to mechanical properties and microstructural features. The threshold Ka was determined using the load shedding technique as per ASTM Standard E-647 using CT specimens extracted from a cast block. Tensile specimens were extracted from the broken CT halves and used to determine the static mechanical properties. A metallographic investigation was carried out to correlate structural features and mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1336

  19. Enhancement of Nitrite Oxidation by Heat-Treated Cobalt Phthalocyanine Supported on High Area Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Bong Yong; Kim, Sung Hyun [Konkuk University, Seoul (Korea, Republic of); Kwag, Gwang Hoon [Kumho Chemical Laboratories, Daejeon (Korea, Republic of)

    2006-02-15

    We have shown that the higher catalytic activity of heat-treated CoPc toward the nitrite oxidation comes from both Co-N{sub x} structure and highly dispersed cobalt metal ion characteristics. This result can be compared with FePc case in which the Fe-N{sub x} structure existed even after heat-treatment at 1000 .deg. C. However, almost entire CoPc molecules were converted to metallic Co. Therefore, the best electrocatalyst could be prepared by any means to give Co-N{sub x} characteristics and high degree of dispersion of Co metal atoms. Our ongoing effort is to develop efficient electrocatalysts and sensors for nitrite detection. Nitrite is one of the major components of wastewater from nuclear power production and involved in the corrosion and bacterial process known as the nitrogen cycle. It also plays important physiological roles in the form of NO, for example, as an intra- and intercellular messenger, a neurotransmitter, and an immune system mediator. The detection of nitrite, therefore, is important from an environmental and biological point of view. We have been utilizing transition-metal (particularly Fe and Co) phthalocyanines and porphyrins for this purpose as they often display catalytic activities toward many important electrochemical reactions such as oxygen reduction and CO oxidation. We found that iron phthalocyanine (FePc) is a very effective catalyst for nitrite reduction, undergoing structural changes on the surface as a function of the redox state.

  20. Rheological and stability aspects of dry and hydrothermally heat treated aleurone-rich wheat milling fraction.

    Science.gov (United States)

    Bucsella, Blanka; Takács, Ágnes; von Reding, Walter; Schwendener, Urs; Kálmán, Franka; Tömösközi, Sándor

    2017-04-01

    Novel aleurone-rich wheat milling fraction developed and produced on industry scale is investigated. The special composition of the novel flour with high protein, dietary fiber and fat content results in a unique combination of the mixing and viscosity properties. Due to the high lipid concentration, the fraction is exposed to fast rancidity. Dry heat (100°C for 12min) and hydrothermal treatment processes (96°C for 6min with 0-20 L/h steam) were applied on the aleurone-rich flour to modify the technological properties. The chemical, structural changes; the extractability of protein, carbohydrate and phenolic components and the rheological characteristics of the flours were evaluated. The dry treated flour decreased protein and carbohydrate extractability, shortened dough development time, reduced gel strength and enhanced the gelling ability. Hydrothermal treatment caused changes in the phenolic content improved the dough stability and -resistance. Heat treatment processes were able to extend the stability of the flour. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A new ICRF scenario for bulk ion heating in D-T plasmas: How to utilize intrinsic impurities in fusion devices in our favour

    CERN Document Server

    Kazakov, Y O; Van Eester, D; Bilato, R; Dumont, R; Lerche, E; Mantsinen, M; Messiaen, A

    2015-01-01

    A fusion reactor requires plasma pre-heating before the rate of deuterium-tritium fusion reactions becomes significant. In ITER, radiofrequency (RF) heating of 3He ions, additionally puffed into the plasma, is one of the main options considered for increasing bulk ion temperature during the ramp-up phase of the pulse. In this paper, we propose an alternative scenario for bulk ion heating with RF waves, which requires no extra 3He puff and profits from the presence of intrinsic Beryllium impurities in the plasma. The discussed method to heat Be impurities in D-T plasmas is shown to provide an even larger fraction of fuel ion heating.

  2. Charging and heat collection by a positively charged dust grain in a plasma

    CERN Document Server

    Delzanno, Gian Luca

    2014-01-01

    Dust particulates immersed in a quasineutral plasma can emit electrons in several important applications. Once electron emission becomes strong enough, the dust enters the positively charged regime where the conventional Orbital-Motion-Limited (OML) theory can break down due to potential well effects on trapped electrons. A minimal modification of the trapped-passing boundary approximation in the so-called OML$^+$ approach is shown to accurately predict the dust charge and heat collection flux for a wide range of dust size and temperature.

  3. Quasi-optical theory of microwave plasma heating in open magnetic trap

    CERN Document Server

    Shalashov, A G; Gospodchikov, E D; Khusainov, T A

    2016-01-01

    Microwave heating of a high-temperature plasma confined in a large-scale open magnetic trap, including all important wave effects like diffraction, absorption, dispersion and wave beam aberrations, is described for the first time within the first-principle technique based on consistent Maxwell's equations. With this purpose, the quasi-optical approach is generalized over weakly inhomogeneous gyrotrotropic media with resonant absorption and spatial dispersion, and a new form of the integral quasi-optical equation is proposed. An effective numerical technique for this equation's solution is developed and realized in a new code QOOT, which is verified with the simulations of realistic electron cyclotron heating scenarios at the Gas Dynamic Trap at the Budker Institute of Nuclear Physics (Novosibirsk, Russia).

  4. Quasi-optical theory of microwave plasma heating in open magnetic trap

    Science.gov (United States)

    Shalashov, A. G.; Balakin, A. A.; Gospodchikov, E. D.; Khusainov, T. A.

    2016-11-01

    Microwave heating of a high-temperature plasma confined in a large-scale open magnetic trap, including all important wave effects like diffraction, absorption, dispersion, and wave beam aberrations, is described for the first time within the first-principle technique based on consistent Maxwell's equations. With this purpose, the quasi-optical approach is generalized over weakly inhomogeneous gyrotrotropic media with resonant absorption and spatial dispersion, and a new form of the integral quasi-optical equation is proposed. An effective numerical technique for this equation's solution is developed and realized in a new code QOOT, which is verified with the simulations of realistic electron cyclotron heating scenarios at the Gas Dynamic Trap at the Budker Institute of Nuclear Physics (Novosibirsk, Russia).

  5. On initial enhancement of mesospheric dust associated plasma irregularities subsequent to radiowave heating

    Directory of Open Access Journals (Sweden)

    W. A. Scales

    2008-08-01

    Full Text Available Important observational manifestations of subvisible mesospheric dust are Polar Mesospheric Summer Echoes PMSE which are produced by scattering from electron irregularities produced by dust charging. It has been observed that the PMSE strength can be artificially modified by using a ground-based ionospheric heating facility to perturb the electron irregularity source region that is believed to produce PMSE. Recently it has become evident that significant diagnostic information may be available about the dust layer from the temporal behavior of the electron irregularities during the heating process which modifies the background electron temperature. Particularly interesting and important periods of the temporal behavior are during the turn-on and turn-off of the radiowave heating. Although a number of past theoretical and experimental investigations have considered the turn-off period, the objective here is to consider futher possibilities for diagnostic information available as well as the underlying physical processes. Approximate analytical models are developed and compared to a more accurate full computational model as a reference. Then from the temporal behavior of the electron irregularities during the turn-off of the radiowave heating, the analytical models are used to obtain possible diagnostic information for various charged dust and background plasma quantities.

  6. Surface free radicals detection using molecular scavenging method on black spruce wood treated with cold, atmospheric-pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Jean-Michel [Centre de Recherches sur les Matériaux Renouvelables, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC G1V 0A6 (Canada); Levasseur, Olivier [Département de Physique, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Vlad, Mirela [FPInnovations, 319 Rue Franquet, Québec, QC G1P 4R4 (Canada); Stafford, Luc [Département de Physique, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Centre de Recherches sur les Matériaux Renouvelables, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, Québec, QC G1V 0A6 (Canada)

    2015-12-30

    Highlights: • Black spruce wood treated with plasmas at atmospheric pressure. • Detection of surface free radicals on treated wood using 2,2-diphenyl-1-picrylhydrazyl (DPPH) solution. • Helium plasma treated wood surface show higher DPPH uptake compared to untreated one. • Addition of oxygen in plasma gas reduces surface free radicals on wood. • Afterglow plasma treatment shows no significant variation of DPPH uptake due to high oxygen concentration in plasma gas. - Abstract: Formation of surface free radicals on wood surfaces during plasma treatment could be an important factor when it comes to wood coating adhesion enhancement. In order to explore this aspect, freshly sanded black spruce (Picea mariana) wood samples were exposed to either plane-to-plane atmospheric-pressure dielectric barrier discharge (AP-DBD) or the flowing afterglow of an AP-DBD and then dipped in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) solution. Wood veneers (extracted to eliminate small molecules prior to each plasma treatment) showed an increase of their reaction rate toward DPPH after treatment in the AP-DBD operated in nominally pure He; a feature ascribed to the plasma-assisted formation of free radicals on the wood surface. Addition of trace amounts (0.1%) of O{sub 2} in the He plasma produced a decrease in DPPH reactivity, suggesting that oxygen–spruce interaction during plasma treatment quenches free radicals formation. Similar experiments performed using the flowing afterglow of AP-DBD operated in either N{sub 2} or N{sub 2}/O{sub 2} showed that both treatments do not generate significant amount of surface free radicals. This partially results from oxygen–wood interactions due to the open-air configuration of the afterglow reactor.

  7. Unexpected magnetization enhancement in hydrogen plasma treated ferromagnetic (Zn,Cu)O film

    Science.gov (United States)

    Hu, Liang; Zhu, Liping; He, Haiping; Ye, Zhizhen

    2014-08-01

    The effects of H+ incorporation on oxygen vacancies (HO+) on the giant ferromagnetic behavior (moment up to 3.26 μB/Cu) in ZnO:Cu polycrystalline films have been closely examined using different microstructural and magnetic characterization tools. Fine thermal stability (up to 450 °C) and low resistivity demonstrate a significant correlation between Cu 3d-states and HO+ donor defects in H plasma treated ZnO:Cu films, analogous to dual-donor (VO and Zni) defects mediated case. These HO+ donors can delocalize their electrons to the orbits of Cu atoms and contribute to a stronger spin-orbit coupling interaction. Suitable HO+ defect concentration and matched proportion between Cu2+ and Cu+ species ensure that orbital momentum shall not be quenched. Hence, unexpected moment enhancement, less than spin-orbit coupling upper limit (3.55 μB/Cu), can be also expected in this scenario. The manipulation from spin-only to spin-orbit coupling mode, using a facile thermally-mediated H plasma exposure way, will allow achieving spin transport based diluted magnetic semiconductor device.

  8. Organic solvent wetting properties of UV and plasma treated ZnO nanorods: printed electronics approach

    Science.gov (United States)

    Sliz, Rafal; Suzuki, Yuji; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan

    2012-09-01

    Due to low manufacturing costs, printed organic solar cells are on the short-list of renewable and environmentally- friendly energy production technologies of the future. However, electrode materials and each photoactive layer require different techniques and approaches. Printing technologies have attracted considerable attention for organic electronics due to their potentially high volume and low cost processing. A case in point is the interface between the substrate and solution (ink) drop, which is a particularly critical issue for printing quality. In addition, methods such as UV, oxygen and argon plasma treatments have proven suitable to increasing the hydrophilicity of treated surfaces. Among several methods of measuring the ink-substrate interface, the simplest and most reliable is the contact angle method. In terms of nanoscale device applications, zinc oxide (ZnO) has gained popularity, owing to its physical and chemical properties. In particular, there is a growing interest in exploiting the unique properties that the so-called nanorod structure exhibits for future 1-dimensional opto-electronic devices. Applications, such as photodiodes, thin-film transistors, sensors and photo anodes in photovoltaic cells have already been demonstrated. This paper presents the wettability properties of ZnO nanorods treated with UV illumination, oxygen and argon plasma for various periods of time. Since this work concentrates on solar cell applications, four of the most common solutions used in organic solar cell manufacture were tested: P3HT:PCBM DCB, P3HT:PCBM CHB, PEDOT:PSS and water. The achieved results prove that different treatments change the contact angle differently. Moreover, solvent behaviour varied uniquely with the applied treatment.

  9. Organic solvent wetting properties of UV and plasma treated ZnO nanorods: printed electronics approach

    KAUST Repository

    Sliz, Rafal

    2012-09-13

    Due to low manufacturing costs, printed organic solar cells are on the short-list of renewable and environmentally- friendly energy production technologies of the future. However, electrode materials and each photoactive layer require different techniques and approaches. Printing technologies have attracted considerable attention for organic electronics due to their potentially high volume and low cost processing. A case in point is the interface between the substrate and solution (ink) drop, which is a particularly critical issue for printing quality. In addition, methods such as UV, oxygen and argon plasma treatments have proven suitable to increasing the hydrophilicity of treated surfaces. Among several methods of measuring the ink-substrate interface, the simplest and most reliable is the contact angle method. In terms of nanoscale device applications, zinc oxide (ZnO) has gained popularity, owing to its physical and chemical properties. In particular, there is a growing interest in exploiting the unique properties that the so-called nanorod structure exhibits for future 1-dimensional opto-electronic devices. Applications, such as photodiodes, thin-film transistors, sensors and photo anodes in photovoltaic cells have already been demonstrated. This paper presents the wettability properties of ZnO nanorods treated with UV illumination, oxygen and argon plasma for various periods of time. Since this work concentrates on solar cell applications, four of the most common solutions used in organic solar cell manufacture were tested: P3HT:PCBM DCB, P3HT:PCBM CHB, PEDOT:PSS and water. The achieved results prove that different treatments change the contact angle differently. Moreover, solvent behaviour varied uniquely with the applied treatment. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  10. Numerical simulation of an atmospheric pressure RF-driven plasma needle and heat transfer to adjacent human skin using COMSOL.

    Science.gov (United States)

    Schröder, Maximilian; Ochoa, Angel; Breitkopf, Cornelia

    2015-06-07

    Plasma medicine is an emerging field where plasma physics is used for therapeutical applications. Temperature is an important factor to take into account with respect to the applications of plasma to biological systems. During the treatment, the tissue temperature could increase to critical values. In this work, a model is presented, which is capable of predicting the skin temperature during a treatment with a radio frequency driven plasma needle. The main gas was helium. To achieve this, a discharge model was coupled to a heat transfer and fluid flow model. The results provide maximum application times for different power depositions in order to avoid reaching critical skin temperatures.

  11. Aging of oxygen and hydrogen plasma discharge treated a-C:H and ta-C coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Svenja [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); BMW Group, Hufelandstraße 4, 80788 Munich (Germany); Schulze, Marcus [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); Morasch, Jan [Institute of Materials Science, Technische Universität Darmstadt, Surface Science Division, Jovanka-Bonschits-Straße 2, 64287 Darmstadt (Germany); Hesse, Sabine [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); Hussein, Laith [Eduard-Zintl-Institut, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 12, 64287, Darmstadt (Germany); Krell, Lisa; Schnagl, Johann [BMW Group, Hufelandstraße 4, 80788 Munich (Germany); Stark, Robert W. [Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 16, 64287 Darmstadt (Germany); Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt (Germany); and others

    2016-05-15

    Highlights: • The water CA of O{sub 2} and H{sub 2} plasma treated a-C:H and ta-C changes from hydrophillic to hydrophobic on aging. • XPS study indicates that the decrease in surface energy of plasma treated a-C:H and ta-C could be due to adsorption of organic component from air. • The COFLFM of O{sub 2} and H{sub 2} plasma treated a-C:H and ta-C decreased upon aging. • The COF of glycerol lubricated ta-C showed no sign of change upon aging. - Abstract: Surface modification with gas plasma is an efficient and easy way to improve the surface energy and the tribological behavior of diamond-like carbon (DLC) coatings, e.g., in biomedical implants or as protective coatings. However, the long-term performance of the plasma treated DLC coatings is not fully clear. We thus studied the long-term stability of two kinds of DLC coatings, namely (a) hydrogenated amorphous carbon (a-C:H) and (b) tetrahedral amorphous carbon (ta-C) treated at different radio frequency (RF) power and time of oxygen (O{sub 2}) and hydrogen (H{sub 2}) plasma. Their surface properties, e.g. surface wettability, structure and tribological behavior, were studied at regular intervals for a period of two months using contact angle goniometer, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), lateral force microscopy (LFM) and ball on disc apparatus. The surface energy of both the coatings decreased upon aging. The higher the RF power and time of treatment, the higher was the hydrophobicity upon aging. XPS analysis showed that the increase in hydrophobicity could be due to adsorption of unavoidable volatile organic components in the atmosphere. The H{sub 2} plasma treated ta-C was capable of rearranging its structural bonds upon aging. The nano-friction measurements by LFM showed that the coefficient of friction of plasma treated a-C:H and ta-C decreased upon aging. The results indicate that the surface properties of plasma treated a‐C:H and ta‐C are not stable on long-term and are

  12. High-intensity interval training lowers blood pressure and improves apelin and NOx plasma levels in older treated hypertensive individuals.

    Science.gov (United States)

    Izadi, Mohammad Reza; Ghardashi Afousi, Alireza; Asvadi Fard, Maryam; Babaee Bigi, Mohammad Ali

    2018-02-01

    Hypertension is the major risk factor for cardiovascular diseases and is one of the primary causes of morbidity and mortality worldwide. Apelin levels and NO bioavailability are impaired in older hypertensive patients. Exercise is an effective intervention for treating hypertension. Our purpose was to evaluate the effect of high-intensity interval training on blood pressure, apelin, and NOx plasma levels in older treated hypertensive individuals. Thirty treated hypertensive subjects (61.70 ± 5.78 years, 17 males, 13 females) were randomly divided into 6 weeks of high-intensity interval training (n = 15) and control (n = 15). The exercise training was conducted for three 35-min sessions a week (1.5-min interval at 85-90% of heart rate reserve [HRR] and 2 min active phase at 50-55% of HRR). Assessment of plasma apelin, nitrite/nitrate (NOx), and endothelin-1 (ET-1) was performed before and after the intervention. At the end of the study, apelin, and NOx plasma levels increased significantly in the high-intensity interval training (HIIT) group (P = 0.021, P = 0.003, respectively). Conversely, ET-1 plasma levels significantly decreased in the training group after the intervention (P = 0.015). Moreover, there was a positive correlation between the change of plasma apelin and change of plasma NOx (r = 0. 771, P = 0.0008). In addition, there was a negative correlation between the change of plasma ET-1, change of plasma apelin (r = - 0.595, P = 0.019), and variation of NOx (r = - 0.572, P = 0.025). This study indicates that, by increasing of apelin and NOx plasma levels, HIIT may be effective in reducing blood pressure.

  13. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Ganesh C. [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India); Bandyopadhyay, Abhijit [Department of Polymer Science and Technology, University of Calcutta, Calcutta 700 009 (India); Neogi, Sudarsan [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Bhowmick, Anil K., E-mail: anilkb@rtc.iitkgp.ernet.in [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2011-01-15

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -C=O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  14. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    Science.gov (United States)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  15. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  16. Assessment of the healing of standardized wounds in rabbits treated serially with autologous platelet-rich plasma gel

    Directory of Open Access Journals (Sweden)

    Eliane Szücs dos Santos

    2016-12-01

    Full Text Available Recent studies have been carried out to evaluate the role of platelet-rich plasma (PRP in the cicatrization of wounds; however, the protocols for treatment have been based on a single application of PRP.To evaluate the effect of autologous platelet-rich plasma in gel form on the cicatrization of cutaneous wounds in vivo experimental model, wounds were induced in the dorsal areas of six New Zealand white rabbits with the aid of an 8-mm punch. The right side was used as a control (A and treated with 0.9% NaCl, whereas the left side (B was treated serially with the autologous platelet-rich plasma gel. Lesions were assessed over a 17-day period. At days 0, 10 and 17, the animals were evaluated and morphological and morphometric analyses of the wounds were performed. At day 17, a biopsy was performed for histopathological evaluation. Macroscopically, wounds treated with PRP showed better cicatrization and higher contraction percentages than the control wounds. Regarding the percentage of wound contraction, it was found that the average treated wound with autologous platelet-rich plasma gelwas 95% while withthecontrolwas88%. We concluded that autologous platelet-rich plasma gel is effective and accelerates cicatrization when used serially in short intervals, thus confirming its therapeutic potential in cutaneous lesions and potential as an alternative wound treatment option.

  17. Plasma and lymphocyte Hsp72 responses to exercise in athletes with prior exertional heat illness.

    Science.gov (United States)

    Ruell, Patricia A; Simar, David; Périard, Julien D; Best, Stuart; Caillaud, Corinne; Thompson, Martin W

    2014-06-01

    We investigated the effect of exercise in the heat on both intracellular and extracellular Hsp72 in athletes with a prior history of exertional heat illness (EHI). Two groups of runners, one consisting of athletes who had a previous history of EHI, and a control group (CON) of similar age (29.7 ± 1.2 and 29.1 ± 2 years CON vs. EHI) and fitness [maximal oxygen consumption [Formula: see text] 65.7 ± 2 and 64.5 ± 3 ml kg(-1) min(-1) CON vs. EHI] were recruited. Seven subjects in each group ran on a treadmill for 1 h at 72 % [Formula: see text] in warm conditions (30 °C, 40 % RH) reaching rectal temperatures of ~39.3 (CON) and ~39.2 °C (EHI). Blood was collected every 10 min during exercise and plasma was analysed for extracellular Hsp72. Intracellular Hsp72 levels were measured in both monocytes and lymphocytes before and immediately after the 60-min run, and then after 1 h recovery at an ambient temperature of 24 °C. Plasma Hsp72 increased from 1.18 ± 0.14 and 0.86 ± 0.08 ng/ml (CON vs. EHI) at rest to 4.56 ± 0.63 and 4.04 ± 0.45 ng/ml (CON vs. EHI, respectively) at the end of exercise (p difference between groups. Lymphocyte Hsp72 was lower in the EHI group at 60 min of exercise (p different between groups. The results of the present study suggest that the plasma Hsp72 response to exercise in athletes with a prior history of EHI remained similar to that of the CON group, while the lymphocyte Hsp72 response was reduced.

  18. Momentum and heat transfer from lower hybrid antennas to the tokamak edge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, V.; Goniche, M.; Gunn, J.; Petrzilka, V

    2001-02-01

    The momentum and heat transfer from the Lower Hybrid (LH) grill electric field to tokamak edge plasma are derived within the framework of quasi-linear theory. Results are supported by test electron simulations. An LH power loss of the order of 1- 5% of total radiated power is found to occur in an interaction layer of the size of about 0.3 cm in the radial direction limited by electron Landau damping of the LH slow wave. The underlying electron distribution function describing fast electrons generated in both the parallel and anti-parallel (to{sup {yields}} B{sub 0}) directions is approximated by a sum of drifting Maxwellian with and <{delta}v{sup 2}{sub II} > determined here from the test particle simulations. Non-zero momentum transfer from the antenna field not only leads to fast electron beam formation discussed earlier [V. Fuchs, et al., Phys. Plasmas 3, 4023 (1996)], but also causes charge separation in front of the antenna [V. Petrzilka et al., Czech. Journ. Phys. S3, 127 (1999)]. The resulting electric field is calculated for electrons in equilibrium with the ambient plasma an terms which are likely to modify the ion dynamics are identified. (authors)

  19. Plasma column development in the CO2 laser-heated solenoid

    Science.gov (United States)

    Tighe, W.; Offenberger, A. A.; Capjack, C. E.

    1987-08-01

    Axial and radial plasma dynamics in the CO2 laser-heated solenoid have been studied experimentally and numerically. The axial behavior is found to be well described by a self-regulated bleaching wave model. The radial expansion is found to be strongly dependent on the focusing ratio of the input laser beam. With a fast focus ( f/5), the early radial expansion rate is twice that found with a slower focusing arrangement ( f/15). The faster focusing ratio also results in a significantly wider plasma column. On the other hand, no significant dependence of f/♯ on the axial propagation was found. A finite ionization time and the rapid formation of a density minimum on axis are observed and verify earlier experimental results. Detailed comparisons are made with a 2-D magnetohydrodynamic (MHD) and laser propagation code. The axial and radial plasma behavior and, in particular, the dependence of the radial behavior on the focal ratio of the laser are reasonably well supported by the simulation results. Computational results are also in good agreement with experimental measurements of temperature and density using stimulated scattering (Brillouin, Raman) and interferometry diagnostic techniques.

  20. The heating of the thermal plasma with energetic electrons in small solar flares

    Science.gov (United States)

    Lin, H. A.; Lin, R. P.

    1986-01-01

    The energetic electrons deduced from hard X-rays in the thick target model may be responsible for heating of soft X-ray plasma in solar flares. It is shown from OSO-7 studies that if a cutoff of 10 keV is assumed, the total electron is comparable to the thermal plasma energy. However, (1) the soft X-ray emission often appears to begin before the hard X-ray burst, (2) in about one-third of flares there is no detectable hard X-ray emission, and (3) for most events the energy content (assuming constant density) of soft X-ray plasma continues to rise after the end of the hard X-ray burst. To understand these problems we have analyzed the temporal relationship between soft X-rays and hard X-rays for 20 small events observed by ISEE-3 during 1980. One example is shown. The start of soft X-ray and hard X-ray bursts is defined as the time when the counting rates of the 4.8 to 5. keV and 25.8 to 43.2 keV channels, respectively, exceed the background by one standard deviation.

  1. Modification of argon impurity transport by electron cyclotron heating in KSTAR H-mode plasmas

    Science.gov (United States)

    Hong, Joohwan; Henderson, S. S.; Kim, Kimin; Seon, C. R.; Song, Inwoo; Lee, H. Y.; Jang, Juhyeok; Park, Jae Sun; Lee, S. G.; Lee, J. H.; Lee, Seung Hun; Hong, Suk-Ho; Choe, Wonho

    2017-03-01

    Experiments with a small amount of Ar gas injection as a trace impurity were conducted in the Korea Superconducting Tokamak Advanced Research (KSTAR) H-mode plasma ({{B}\\text{T}}   =  2.8 T, {{I}\\text{P}}   =  0.6 MA, and {{P}\\text{NBI}}   =  4.0 MW). 170 GHz electron cyclotron resonance heating (ECH) at 600 and 800 kW was focused along the mid-plane with a fixed major radial position of R   =  1.66 m. The emissivity of the Ar16+ (3.949 {\\mathring{\\text{A}}} ) and Ar15+ (353.860 {\\mathring{\\text{A}}} ) spectral lines were measured by x-ray imaging crystal spectroscopy (XICS) and a vacuum UV (VUV) spectrometer, respectively. ECH reduces the peak Ar15+ emission and increases the Ar16+ emission, an effect largest with 800 kW. The ADAS-SANCO impurity transport code was used to evaluate the Ar transport coefficients. It was found that the inward convective velocity found in the plasma core without ECH was decreased with ECH, while diffusion remained approximately constant resulting in a less-peaked Ar density profile. Theoretical results from the NEO code suggest that neoclassical transport is not responsible for the change in transport, while the microstability analysis using GKW predicts a dominant ITG mode during both ECH and non-ECH plasmas.

  2. Heat-Treated Metal Phthalocyanine Complex as an Oxygen Reduction Catalyst for Non-Aqueous Electrolyte Li/air Batteries

    Science.gov (United States)

    2011-01-01

    e lec tac ta Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries Sheng S. Zhang...Oxygen reduction Electrocatalysis Metal phthalocyanine complex Air electrode Li/air battery a b s t r a c t In this work we study heat-treated FeCu... phthalocyanine (FeCuPc) complexes as the catalyst for oxygen reduction in non-aqueous electrolyte Li/air cells by supporting the catalyst on a high

  3. Modelling of combined ICRF and NBI heating in JET hybrid plasmas

    Directory of Open Access Journals (Sweden)

    Gallart Dani

    2017-01-01

    Full Text Available During the 2015-2016 JET campaigns many efforts have been devoted to the exploration of high performance plasma scenarios envisaged for ITER operation. In this paper we model the combined ICRF+NBI heating in selected key hybrid discharges using PION. The antenna frequency was tuned to match the cyclotron frequency of minority hydrogen (H at the center of the tokamak coinciding with the second harmonic cyclotron resonance of deuterium. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of deuterium beam ions which allows us to assess its impact on the neutron rate RNT. We evaluate the influence of H concentration which was varied in different discharges in order to test their role in the heating performance. According to our modelling, the ICRF enhancement of RNT increases by decreasing the H concentration which increases the ICRF power absorbed by deuterons. We find that in the recent hybrid discharges this ICRF enhancement was in the range of 10-25%. Finally, we extrapolate the results to D-T and find that the best performing hybrid discharges correspond to an equivalent fusion power of ∼7.0 MW in D-T.

  4. Solid-State Radio Frequency Plasma Heating Using a Nonlinear Transmission Line

    Science.gov (United States)

    Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia

    2015-11-01

    Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems, which typically require high power gyrotrons or klystrons, associated power supplies, waveguides and vacuum systems. The cost and complexity of these systems can potentially be reduced with a nonlinear transmission line (NLTL) based system. In the past, NLTLs have lacked a high voltage driver that could produce long duration high voltage pulses with fast rise times at high pulse repetition frequency. Eagle Harbor Technologies, Inc. (EHT) has created new high voltage nanosecond pulser, which combined with NLTL technology will produce a low-cost, fully solid-state architecture for the generation of the RF frequencies (0.5 to 10 GHz) and peak power levels (~ 10 MW) necessary for plasma heating and diagnostic systems for the validation platform experiments within the fusion science community. The proposed system does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. Design details and initial bench testing results for the new RF system will be presented. This work is supported under DOE Grant # DE-SC0013747.

  5. Development of advanced high heat flux and plasma-facing materials

    Science.gov (United States)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling

  6. Accumulation of 2H2O in plasma and eccrine sweat during exercise-heat stress.

    Science.gov (United States)

    Armstrong, Lawrence E; Klau, Jennifer F; Ganio, Matthew S; McDermott, Brendon P; Yeargin, Susan W; Lee, Elaine C; Maresh, Carl M

    2010-02-01

    The purpose of this research was to characterize the movement of ingested water through body fluids, during exercise-heat stress. Deuterium oxide ((2)H(2)O) accumulation in plasma and eccrine sweat was measured at two sites (back and forehead). The exercise of 14 males was controlled via cycle ergometry in a warm environment (60 min; 28.7 degrees C, 51%rh). Subjects consumed (2)H(2)O (0.15 mg kg(-1), 99.9% purity) mixed in flavored, non-caloric, colored water before exercise, then consumed 3.0 ml kg(-1) containing no (2)H(2)O every 15 min during exercise. We hypothesized that water transit from mouth to skin would occur before 15 min. (2)H(2)O appeared rapidly in both plasma and sweat (P deuterium accumulation (DeltaD:H min(-1)) in plasma was 14.9 and 23.7 times greater than in forehead and back sweat samples, respectively. Mean (+/-SE) whole-body sweat rate was 1.04 +/- 0.05 L h(-1) and subjects with the greatest whole-body sweat rate exhibited the greatest peak deuterium enrichment in sweat (r(2) = 0.87, exponential function); the peak (2)H(2)O enrichment in sweat was not proportional (P > 0.05) to body mass, volume of the deuterium dose, or total volume of fluid consumed. These findings clarify the time course of fluid movement from mouth to eccrine sweat glands, and demonstrate considerable differences of (2)H(2)O enrichment in plasma versus sweat.

  7. Guillain - Barre syndrome in a patient with acute myocardial infarction with ventricular septal defect repair treated with plasma exchange

    Directory of Open Access Journals (Sweden)

    Maitrey D Gajjar

    2015-01-01

    Full Text Available Guillain - Barre syndrome (GBS is an acute, frequently severe progressive illness of peripheral nervous system that is autoimmune in nature. GBS after myocardial infarction (MI with ventricular septal defect (VSD is uncommon with high mortality rate if not treated promptly. [1] We report a successful outcome of GBS post MI with VSD in a 60-year-old male patient who was on a ventilator treated successfully with therapeutic plasma exchange.

  8. Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys

    CERN Document Server

    Wanhill, Russell

    2012-01-01

    This publication reviews most of the available literature on the fatigue properties of β annealed Ti-6Al-4V and titanium alloys with similar microstructures. The focus is on β processed and β heat-treated alloys because β annealed Ti-6Al-4V has been selected for highly loaded and fatigue-critical structures, including the main wing-carry-through bulkheads and vertical tail stubs, of advanced high-performance military aircraft.   An important aspect of the review is a concise survey of fatigue life assessment methods and the required types of fatigue data. This survey provides the background to recommendations for further research, especially on the fatigue behaviour of β annealed Ti-6Al-4V under realistic fatigue load histories, including the essential topic of short/small fatigue crack growth. Such research is required for independent fatigue life assessments that conform to the aircraft manufacturer’s design requirements, and also for life reassessments that most probably will have to be made during...

  9. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Marra, S.L.; Jantzen, C.M.

    1993-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Product Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full scale DWPF canister. The glasses were characterized by X-ray diffraction and scanning electron microscopy to identify the crystalline phases present. The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCT) was used to determine the durability of the heat treated glasses.

  10. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    Energy Technology Data Exchange (ETDEWEB)

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses.

  11. Heat treated twin wire arc spray AISI 420 coatings under dry and wet abrasive wear

    Science.gov (United States)

    Rodriguez, E.; González, M. A.; Monjardín, H. R.; Jimenez, O.; Flores, M.; Ibarra, J.

    2017-11-01

    The influence of applying two different heat treatments such as: deep cryogenic and tempering on dry/wet abrasive wear resistance of twin wire arc spray martensitic AISI 420 coatings was evaluated by using a modified rubber wheel type test apparatus. A load dependency was observed on the abrasive wear rate behavior of both; dry and wet tests. Three body (rolling) and two body (sliding) wear mechanisms were identified in dry conditions, prevailing rolling at lower and higher loads. However, at higher loads, more presence of grooving and pits formation was observed. Coatings tempered at 205 °C/1 h displayed better wear resistance than cryogenic treated ones. A change in wear mechanism between dry and wet conditions was observed; two body wear mechanism predominated respect to three body. In both; dry and wet conditions the microstructure (several inter-splat oxides) as well as strain and residual stress promotes brittle material removal which was more evident in cryogenic and as-sprayed samples during dry test and at higher loads in wet conditions.

  12. Property and structure changes of myofibril protein in pork treated by high pressure combined with heat.

    Science.gov (United States)

    Huang, Yechuan; Guo, Liping; Xiong, Shuangli; Li, Anlin

    2016-10-01

    The effects of myofibril protein in pork treated by high hydrostatic pressure combined with heat were investigated. The solubility of myofibril protein significantly increased up to 400 MPa but since then began to decrease up to 600 MPa. The best solubility was shown under all pressure at 35 ℃ and the lowest solubility was observed at 55 ℃. The carbonyl group value, disulfide bond and surface hydrophobicity exhibited pressure-dependent increase in the same manner. Particle size decreased up to 400 MPa and then increased up to 600 MPa, but the turbidity always reduced. The increase of intrinsic fluorescence intensity with red shift and decrease of absorbance around 278 nm with blue shift indicated that protein unfolding and exposure of hydrophobic amino acid occurred with increase of pressure. The second derivative infrared spectra and curve fittings suggested that high pressure induced reduction of β-sheet structures, enhancement of α-helix and random coil and β-turns segments, which was opposite to the effects of temperature. Emission scanning electron microscope assay further demonstrated protein unfolding and aggregation process induced by different pressure and temperature. The data suggested that cooperative effect of moderate pressure and temperature could improve physical-chemical and processing properties of meat. © The Author(s) 2016.

  13. High heat loading properties of vacuum plasma spray tungsten coatings on reduced activation ferritic/martensitic steel

    Science.gov (United States)

    Tokunaga, K.; Hotta, T.; Araki, K.; Miyamoto, Y.; Fujiwara, T.; Hasegawa, M.; Nakamura, K.; Ezato, K.; Suzuki, S.; Enoeda, M.; Akiba, M.; Nagasaka, T.; Kasada, R.; Kimura, A.

    2013-07-01

    High density W coatings on reduced activation ferritic martensitic steel (RAF/M) have been produced by Vacuum Plasma Spraying technique (VPS) and heat flux experiments on them have been carried out to evaluate their possibility as a plasma-facing armor in a fusion device. In addition, quantitative analyses of temperature profile and thermal stress have been carried out using the finite element analysis (FEA) to evaluate its thermal properties. No cracks or exfoliation has been formed by steady state and cyclic heat loading experiments under heat loading at 700 °C of surface temperature. In addition, stress distribution and maximum stress between interface of VPS-W and RAF/M have been obtained by FEA. On the other hand, exfoliation has occurred at interlayer of VPS-W coatings near the interface between VPS-W and RAF/M at 1300 °C of surface temperature by cyclic heat loading.

  14. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law

    CERN Document Server

    Joglekar, A S; Fox, W; Bhattacharjee, A

    2015-01-01

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields.We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfv\\`enic flows. We find that this mechanism is only relevant in a high $\\beta$ plasma. However, the Hall parameter $\\omega_c \\tau_{ei}$ can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  15. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    Science.gov (United States)

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  16. The effect of pathogen reduction technology (Mirasol) on platelet quality when treated in additive solution with low plasma carryover.

    Science.gov (United States)

    Johnson, L; Winter, K M; Reid, S; Hartkopf-Theis, T; Marschner, S; Goodrich, R P; Marks, D C

    2011-10-01

    Pathogen reduction technologies (PRT) for platelets are now compatible with both plasma and platelet additive solutions (PAS). The aim of this study was to examine the effect of PRT on the platelet storage lesion, in the presence of PAS with low plasma carryover. PRT-treated (Mirasol) and untreated buffy coat-derived platelet concentrates prepared in 28% plasma/PAS-IIIM were evaluated using in vitro cell quality parameters on days 1, 2, 5, and 7 post-collection. At day 5, there were no significant differences between control and PRT treated platelets for swirl, viability, pO(2) , pCO(2) , mean platelet volume and adenosine diphosphate-induced aggregation. PRT treatment did not affect the functional integrity of the mitochondria. However, PRT resulted in a decrease in pH and enhancement of platelet glycolysis and activation, evidenced by increased glucose consumption and lactate production rates, increased expression of CD62P, CD63, annexin V staining and increased secretion of cytokines (P < 0.05). Hypotonic shock response and aggregation in response to collagen were also significantly reduced in PRT treated platelets (P < 0.05). Despite the observed differences in platelet metabolism and activation observed following PRT treatment in PAS and low plasma carryover, the results suggest that treatment and storage of platelets in PAS is no more detrimental to platelets than treatment and storage in plasma. © 2011 The Author(s). Vox Sanguinis © 2011 International Society of Blood Transfusion.

  17. Attachment of polymer chains on plasma-treated surfaces: experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, C [Dipartimento di Fisica, Universita di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Roman, H E [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden (Germany); Ziano, R, E-mail: roman@pks.mpg.d [Dipartimento di Medicina Sperimentale, Universita di Milano-Bicocca, Via Cadore 48, 20052 Monza (Italy)

    2010-07-15

    Deposition of linear polymers, such as polyethylene glycol (PEG), on a plasma-treated surface has been studied experimentally and theoretically by means of Monte Carlo (MC) simulations. Acrylic acid is deposited on a silicon wafer in the presence of argon at a pressure of 10 Pa by applying 30 W external power. Active carboxyl sites are obtained having a surface number density of {approx}2 sites nm{sup -2}. A homogeneous PEG solution is brought into contact with the treated surface (over 24 h) and a thin film of attached PEG chains is formed. Two different PEGs having molecular weights of 3000 and 5000 g mol{sup -1}, respectively, are considered. The corresponding thin film widths, W, are measured, yielding W(3000)=4.3{+-}3.1 nm and W(5000)=8.8{+-}1.8 nm. For the MC simulations, the linear polymers are modeled as an ensemble of self-avoiding walks of length N (number of monomers) on a simple cubic lattice, executing worm-like or reptation dynamics, which can become attached at an active carboxyl site on the surface. The numerical results for the film widths are in good agreement with the experimental findings. We find that less than 20% of active sites are effectively occupied by attached chains, corresponding to less than 5% of the total available surface sites. Scaling arguments predict universal power-law dependences of the film density, {rho}(N), as a function of polymer length, i.e. {rho}(N){approx}c/N{sup {nu}}, with c{approx_equal}5 g cm{sup -3} and {nu}{approx_equal}0.6. The model also predicts a dependence of the prefactor c on the density of carboxyl active sites.

  18. Relationship of cytokine levels and clinical effect on platelet-rich plasma-treated lateral epicondylitis.

    Science.gov (United States)

    Lim, Wonbong; Park, Sang H; Kim, Bora; Kang, Sin W; Lee, Jung W; Moon, Young L

    2017-08-29

    Lateral epicondylitis (LE) is difficult to manage and can result in significant patient morbidity. Currently, the clinical use of platelet-rich plasma (PRP) for painful tendons has received attention, but its efficacy remains controversial. This study aimed to investigate the clinical effects of PRP and its biological components. A total of 156 patients with LE were randomly divided into group 1, treated with a single injection of 2-ml autologous PRP, and group 2, treated with a control received only physical therapy without injection. Both groups used a tennis elbow strap and performed stretching and strengthening exercises during 24 weeks' follow-up. Pain and functional improvements were assessed using the visual analog scale (VAS), Modified Mayo Clinic Performance Index for the elbow, and magnetic resonance imaging (MRI). White blood cell count, platelet count, and levels of platelet-derived growth factor-AB (PDGF-AB), PDGF-BB, transforming growth factor-β (TGF-β), vascular endothelial growth factor, epithelial growth factor, and interleukin-1 β in PRP were measured and investigated for statistical correlation with the clinical score. At 24 weeks, all pain and functional variables, including VAS score, Mayo Clinic performance scores, and MRI grade, improved significantly in group 1 (p PRP than in whole blood. TGF-β level significantly correlated with Mayo Clinic performance score and MRI grade improvement. Thus, TGF-β level in PRP is considered to play a pivotal role in tendon healing. These results may contribute to identifying the best protocol for PRP application in tendinopathies. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Stabilization of ion fishbone activities by electron cyclotron resonance heating in a toroidal plasma

    Science.gov (United States)

    Chen, W.; Yu, L. M.; Shi, P. W.; Ma, R.; Ji, X. Q.; Jiang, M.; Zhu, X. L.; Shi, Z. B.; Yu, D. L.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Cao, J. Y.; Song, S. D.; Zhong, W. L.; He, H. D.; Dong, J. Q.; Ding, X. T.; Yan, L. W.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.

    2018-01-01

    We report an experimental result on the stabilization of the energetic–ion driven internal kink mode (ion fishbone) by electron cyclotron resonance heating (ECRH), observed for the first time in a toroidal plasma. The mode asserts itself a resistive branch close to the marginal stability point. The resulting fishbone mode depends not only on the injected power but also on the radial deposition location of ECRH, and the instability can be completely suppressed when the injected ECRH power exceeds certain threshold. Analysis by the fishbone dispersion relation, including the resistive effect, suggests that the magnetic Reynolds number plays a key role in the mode stabilization—it weakens the mode growth-rate and enhances the critical energetic–ion beta without changing the energetic–ion population. This ion fishbone stabilization mechanism can be important for future devices such as ITER, which has significant ECRH capability.

  20. Plasma amino acid profiling in major depressive disorder treated with selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Woo, Hye-In; Chun, Mi-Ryung; Yang, Jeong-Soo; Lim, Shinn-Won; Kim, Min-Ji; Kim, Seon-Woo; Myung, Woo-Jae; Kim, Doh-Kwan; Lee, Soo-Youn

    2015-05-01

    Amino acids are important body metabolites and seem to be helpful for understanding pathogenesis and predicting therapeutic response in major depressive disorder (MDD). We performed amino acid profiling to discover potential biomarkers in major depressive patients treated with selective serotonin reuptake inhibitors (SSRIs). Amino acid profiling using aTRAQ™ kits for Amino Acid Analysis in Physiological Fluids on a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system was performed on 158 specimens at baseline and at 6 weeks after the initiation of SSRI treatment for 68 patients with MDD and from 22 healthy controls. Baseline alpha-aminobutyric acid (ABA) discriminated the patients according to the therapeutic response. Plasma glutamic acid concentration and glutamine/glutamic acid ratio were different between before and after SSRI treatment only in the response group. Comparing patients with MDD with healthy controls, alterations of ten amino acids, including alanine, beta-alanine, beta-aminoisobutyric acid, cystathionine, ethanolamine, glutamic acid, homocystine, methionine, O-phospho-L-serine, and sarcosine, were observed in MDD. Metabolism of amino acids, including ABA and glutamic acid, has the potential to contribute to understandings of pathogenesis and predictions of therapeutic response in MDD. © 2015 John Wiley & Sons Ltd.

  1. Collagen quantification in rabbit dermal wounds treated with heterologous platelet-rich plasma gel

    Directory of Open Access Journals (Sweden)

    Maria Elisa Marin Marques

    2017-03-01

    Full Text Available Platelet-rich plasma (PRP has been extensively studied as a biomaterial for wound treatment, and the heterologous PRP is usefulin the event that obtaining the patient’s own blood is impossible. This study aimed to evaluate and compare wound healing in rabbits and quantify the collagen in experimentally induced wounds in a control group and in a group treated with heterologous PRP gel. We hypothesize that this gelis capable of promoting proper healing with no adverse reactions, increased collagen content. The clinical aspects of coloring, edema, hyperemia, exudation, crust, granulation, pain sensitivity, and retraction index of the wounds were measuredon days 7, 14, and 17 after the injury. Collagen quantification by Picrosirius staining and evaluation under polarized light was performed on the 17th day. Crust was present in both groups at all evaluated time points, with the absence of other clinical signs. The wound contraction rate and collagen quantity did not differ between groups. In conclusion, the suggested hypothesis was partially confirmed; the heterologous PRP gel was unable to increase the amount of collagen and accelerate the wound healing process, however, wound healing was efficient and similar in both groups and there was no local adverse reaction. Thus, despite the scarcity of studies in the literature, the heterologous PRP gel is an effective alternative treatment for wounds in the absence of other sources of PRP.

  2. Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V I [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, Karlsruhe 76021 (Germany); Makhlaj, V A [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Neklyudov, I M [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Solyakov, D G [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Tsarenko, A V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine)

    2007-05-15

    The paper presents the investigations of high power plasma interaction with material surfaces under conditions simulating the ITER disruptions and type I ELMs. Different materials were exposed to plasma with repetitive pulses of 250 {mu}s duration, the ion energy of up to 0.6 keV, and the heat loads varying in the 0.5-25 MJ m{sup -2} range. The plasma energy transfer to the material surface versus impact load has been analysed. The fraction of plasma energy that is absorbed by the target surface is rapidly decreased with the achievement of the evaporation onset for exposed targets. The distributions of evaporated material in front of the target surface and the thickness of the shielding layer are found to be strongly dependent on the target atomic mass. The surface analysis of tungsten targets exposed to quasi-steady-state plasma accelerators plasma streams is presented together with measurements of the melting onset load and evaporation threshold, and also of erosion patterns with increasing heat load and the number of plasma pulses.

  3. Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces

    Science.gov (United States)

    Tereshin, V. I.; Bandura, A. N.; Byrka, O. V.; Chebotarev, V. V.; Garkusha, I. E.; Landman, I.; Makhlaj, V. A.; Neklyudov, I. M.; Solyakov, D. G.; Tsarenko, A. V.

    2007-05-01

    The paper presents the investigations of high power plasma interaction with material surfaces under conditions simulating the ITER disruptions and type I ELMs. Different materials were exposed to plasma with repetitive pulses of 250 µs duration, the ion energy of up to 0.6 keV, and the heat loads varying in the 0.5-25 MJ m-2 range. The plasma energy transfer to the material surface versus impact load has been analysed. The fraction of plasma energy that is absorbed by the target surface is rapidly decreased with the achievement of the evaporation onset for exposed targets. The distributions of evaporated material in front of the target surface and the thickness of the shielding layer are found to be strongly dependent on the target atomic mass. The surface analysis of tungsten targets exposed to quasi-steady-state plasma accelerators plasma streams is presented together with measurements of the melting onset load and evaporation threshold, and also of erosion patterns with increasing heat load and the number of plasma pulses.

  4. Electron heating by intense short-pulse lasers propagating through near-critical plasmas

    Science.gov (United States)

    Debayle, A.; Mollica, F.; Vauzour, B.; Wan, Y.; Flacco, A.; Malka, V.; Davoine, X.; Gremillet, L.

    2017-12-01

    We investigate the electron heating induced by a relativistic-intensity laser pulse propagating through a near-critical plasma. Using particle-in-cell simulations, we show that a specific interaction regime sets in when, due to the energy depletion caused by the plasma wakefield, the laser front profile has steepened to the point of having a length scale close to the laser wavelength. Wave breaking and phase mixing have then occurred, giving rise to a relativistically hot electron population following the laser pulse. This hot electron flow is dense enough to neutralize the cold bulk electrons during their backward acceleration by the wakefield. This neutralization mechanism delays, but does not prevent the breaking of the wakefield: the resulting phase mixing converts the large kinetic energy of the backward-flowing electrons into thermal energy greatly exceeding the conventional ponderomotive scaling at laser intensities > {10}21 {{{W}}{cm}}-2 and gas densities around 10% of the critical density. We develop a semi-numerical model, based on the Akhiezer–Polovin equations, which correctly reproduces the particle-in-cell-predicted electron thermal energies over a broad parameter range. Given this good agreement, we propose a criterion for full laser absorption that includes field-induced ionization. Finally, we show that our predictions still hold in a two-dimensional geometry using a realistic gas profile.

  5. Plasma Heating During the Parametric Excitation of Acoustic Waves in Coronal Magnetic Loops

    Science.gov (United States)

    Zaitsev, V. V.; Kislyakova, K. G.

    When studying microwave emission of active regions on the Sun, an effect of parametric resonance between 5-min velocity oscillations in the solar photosphere and sound oscillations of coronal magnetic loops modulating the microwave emission has been discovered for the first time. The effect shows itself as simultaneous excitation in coronal magnetic loop oscillations with periods 5, 10, and 3 min, which correspond to the pumping frequency, subharmonic, and the first upper frequency of parametric resonance. The parametric resonance can serve as an effective channel of transporting the energy of photospheric oscillations into the upper layers of the solar atmosphere. The energy of acoustic waves excited in a coronal magnetic loop, rate of dissipation of acoustic waves, and rate of heating of the coronal plasma are determined. The maximum temperature predicted for the apex of the loop is calculated as a function of velocity of photospheric oscillations, length of the loop, and electric current in the loop. It is shown that the mechanism proposed can explain the origin of quasi-stationary X-ray loops with temperatures of 3-6 MK. The lengths of these loops are resonant for acoustic waves excited by the 5-min photospheric oscillations. The use of the proposed mechanism to explain heating of the X-ray loops expected to be on stars of late spectral types is discussed.

  6. Nitrogen-Doped Carbon Fiber Paper by Active Screen Plasma Nitriding and Its Microwave Heating Properties.

    Science.gov (United States)

    Zhu, Naishu; Ma, Shining; Sun, Xiaofeng

    2016-12-28

    In this paper, active screen plasma nitriding (ASPN) treatment was performed on polyacrylonitrile carbon fiber papers. Electric resistivity and microwave loss factor of carbon fiber were described to establish the relationship between processing parameters and fiber's ability to absorb microwaves. The surface processing effect of carbon fiber could be characterized by dynamic thermal mechanical analyzer testing on composites made of carbon fiber. When the process temperature was at 175 °C, it was conducive to obtaining good performance of dynamical mechanical properties. The treatment provided a way to change microwave heating properties of carbon fiber paper by performing different treatment conditions, such as temperature and time parameters. Atomic force microscope, scanning electron microscope, and X-ray photoelectron spectroscopy analysis showed that, during the course of ASPN treatment on carbon fiber paper, nitrogen group was introduced and silicon group was removed. The treatment of nitrogen-doped carbon fiber paper represented an alternative promising candidate for microwave curing materials used in repairing and heating technology, furthermore, an efficient dielectric layer material for radar-absorbing structure composite in metamaterial technology.

  7. Catalyst used in 1,2-epoxyalkane preparation is obtained by heating tetraalkyl ammonium salts, tetraalkyl siloxanes and amines, calcining and treating with a tetraalkoxy compound

    DEFF Research Database (Denmark)

    2001-01-01

    NOVELTY - The catalyst, used in 1,2-epoxyalkane preparation, is obtained by heat treating an aqueous composition comprising tetraalkyl ammonium salts, tetraalkyl siloxanes and amines, removing the template by calcining and treating with a tetraalkoxy compound......NOVELTY - The catalyst, used in 1,2-epoxyalkane preparation, is obtained by heat treating an aqueous composition comprising tetraalkyl ammonium salts, tetraalkyl siloxanes and amines, removing the template by calcining and treating with a tetraalkoxy compound...

  8. Main-ion temperature and plasma rotation measurements based on scattering of electron cyclotron heating waves in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Pedersen, Morten Stejner; Rasmussen, Jesper; Nielsen, Stefan Kragh

    2017-01-01

    We demonstrate measurements of spectra of O-mode electron cyclotron resonance heating (ECRH) waves scattered collectively from microscopic plasma fluctuations in ASDEX Upgrade discharges with an ITER-like ECRH scenario. The measured spectra are shown to allow determination of the main ion...

  9. Development of a hybrid gyrokinetic ion and isothermal electron fluid code and its application to turbulent heating in astrophysical plasma

    Science.gov (United States)

    Kawazura, Yohei; Barnes, Michael; Plasma theory group Team

    2017-10-01

    Understanding the ion-to-electron temperature ratio is crucial for advancing our knowledge in astrophysics. Among the possible thermalization mechanisms, we focus on the dissipation of Alfvénic turbulence. Although several theoretical studies based on linear Alfvén wave damping have estimated the dependence of heating ratio on plasma parameters, there have been no direct nonlinear simulation that has investigated the heating ratio scanning plasma parameters. Schekochihin et al. (2009) proved that the turbulent heating ratio is determined at the ion Lamor radius scale. Therefore, we do not need to resolve all the scales up to the electron dissipation scale. To investigate the ion kinetic scale effectively, we developed a new code that solves a hybrid model composed of gyrokinetic ions and an isothermal electron fluid (ITEF). The code is developed by incorporating the ITEF approximation into the gyrokinetics code type="monospace">AstroGK (Numata et al., 2010). Since electron kinetic effects are eliminated, the new hybrid code runs approximately 2√{mi /me } times faster than full gyrokinetics codes. We will present linear and nonlinear benchmark tests of the new code and our first result of the heating ratio sweeping the plasma beta and ion-to-electron temperature ratio. This work was supported by STFC Grant ST/N000919/1. The authors also acknowledge the use of ARCHER through the Plasma HEC Consortium EPSRC Grant Number EP/L000237/1 under the projects e281-gs2.

  10. Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma

    Energy Technology Data Exchange (ETDEWEB)

    Syromotina, D.S. [Department of Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Surmenev, R.A., E-mail: rsurmenev@gmail.com [Department of Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Surmeneva, M.A. [Department of Experimental Physics, National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Boyandin, A.N.; Nikolaeva, E.D. [Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk 660036 (Russian Federation); School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk (Russian Federation); Prymak, O.; Epple, M. [Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen (Germany); Ulbricht, M. [Technical Chemistry II and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen (Germany); Oehr, C. [Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Volova, T.G. [Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, 50/50 Akademgorodok, Krasnoyarsk 660036 (Russian Federation); School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk (Russian Federation)

    2016-05-01

    The surface properties of poly-3-hydroxybutyrate (P3HB) membranes were modified using oxygen and an ammonia radio-frequency (RF, 13.56 MHz) plasma. The plasma treatment procedures used in the study only affected the surface properties, including surface topography, without inducing any significant changes in the crystalline structure of the polymer, with the exception being a power level of 250 W. The wettability of the modified P3HB surfaces was significantly increased after the plasma treatment, irrespective of the treatment procedure used. It was revealed that both surface chemistry and surface roughness changes caused by the plasma treatment affected surface wettability. A treatment-induced surface aging effect was observed and resulted in an increase in the water contact angle and a decrease in the surface free energy. However, the difference in the water contact angle between the polymers that had been treated for 4 weeks and the untreated polymer surfaces was still significant. A dependence between cell adhesion and proliferation and the polar component of the surface energy was revealed. The increase in the polar component after the ammonia plasma modification significantly increased cell adhesion and proliferation on biodegradable polymer surfaces compared to the untreated P3HB and the P3HB modified using an oxygen plasma. - Highlights: • Plasma treatment affected the topography of poly(3-hydroxybutyrate) (P3HB). • Plasma treatment resulted in improvement of the surface wettability. • No alteration of the bulk properties of the polymers was observed. • The ammonia plasma treatment at 150 W improved the cell adhesion and proliferation.

  11. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2013-01-01

    Full Text Available Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment.

  12. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  13. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  14. Innovative Plasma Disinfection Technique with the Reduced-pH Method and the Plasma-Treated Water (PTW) -Safety and Powerful Disinfection with Cryopreserved PTW-

    Science.gov (United States)

    Kitano, Katsuhisa; Ikawa, Satoshi; Nakashima, Yoichi; Tani, Atsushi; Yokoyama, Takashi; Ohshima, Tomoko

    2015-09-01

    Among the applications of the plasma disinfection to human body, plasma sterilization in liquid is crucial. We found that the plasma-treated water (PTW) has strong bactericidal activity under low pH condition and the half-lives of its activity depend on temperature. Lower temperature brings longer half-life and the bactericidal activity of PTW can be kept by cryopreservation. These physicochemical properties were in accordance with Arrhenius equation both in liquid and solid states. From the experimental results of ESR (Electron Spin Resonance) measurement of O2-in liquid against PTW with spin trapping method, half-lives of PTW were also in accordance with Arrhenius equation. It suggests that high concentration PTW as integrated value can be achieved by cooling of plasma apparatus. Pure PTW has disinfection power of 22 log reduction (B. subtilis). This corresponds to 65% H2O2, 14% hypochlorous acid and 0.33% peracetic acid, which are deadly poison for human. On the other hand, PTW is deactivated soon at body temperature. This indicates that toxicity to human body seems to be low. PTW, which is a sort of indirect plasma exposure, with pH and temperature controls could be applied for safety and powerful disinfection. MEXT (15H03583, 23340176, 25108505). NCCE (23-A-15).

  15. Fasting and exercise increase plasma cannabinoid levels in THC pre-treated rats: an examination of behavioural consequences.

    Science.gov (United States)

    Wong, Alexander; Keats, Kirily; Rooney, Kieron; Hicks, Callum; Allsop, David J; Arnold, Jonathon C; McGregor, Iain S

    2014-10-01

    Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, accumulates in fat tissue where it can remain for prolonged periods. Under conditions of increased fat utilisation, blood cannabinoid concentrations can increase. However, it is unclear whether this has behavioural consequences. Here, we examined whether rats pre-treated with multiple or single doses of THC followed by a washout would show elevated plasma cannabinoids and altered behaviour following fasting or exercise manipulations designed to increase fat utilisation. Behavioural impairment was measured as an inhibition of spontaneous locomotor activity or a failure to successfully complete a treadmill exercise session. Fat utilisation was indexed by plasma free fatty acid (FFA) levels with plasma concentrations of THC and its terminal metabolite (-)-11-nor-9-carboxy-∆(9)-tetrahydrocannabinol (THC-COOH) also measured. Rats given daily THC (10 mg/kg) for 5 days followed by a 4-day washout showed elevated plasma THC-COOH when fasted for 24 h relative to non-fasted controls. Fasted rats showed lower locomotor activity than controls suggesting a behavioural effect of fat-released THC. However, rats fasted for 20 h after a single 5-mg/kg THC injection did not show locomotor suppression, despite modestly elevated plasma THC-COOH. Rats pre-treated with THC (5 mg/kg) and exercised 20 h later also showed elevated plasma THC-COOH but did not differ from controls in their likelihood of completing 30 min of treadmill exercise. These results confirm that fasting and exercise can increase plasma cannabinoid levels. Behavioural consequences are more clearly observed with pre-treatment regimes involving repeated rather than single THC dosing.

  16. Inflammatory response in chronic degenerative endometritis mares treated with platelet-rich plasma.

    Science.gov (United States)

    Reghini, Maria Fernanda S; Ramires Neto, Carlos; Segabinazzi, Lorenzo G; Castro Chaves, Maria Manoela B; Dell'Aqua, Camila de Paula F; Bussiere, Maria Clara C; Dell'Aqua, José Antonio; Papa, Frederico O; Alvarenga, Marco Antonio

    2016-07-15

    Degenerative changes of the endometrium are directly related to age and fertility in mares. Chronic degenerative endometritis (CDE) is correlated with uterine fluid retention and reduced ability to clear uterine inflammation. Recent research in the areas of equine surgery and sports medicine has shown that platelet-rich plasma (PRP) treatment acts as an immunomodulator of the inflammatory response. Therefore, the aim of this study was to determine if the uterine infusion of PRP could modulate the local inflammatory response and modify the intrauterine NO concentrations after artificial insemination (AI) in both normal mares and those with CDE. Thirteen mares with endometrium classified as grade III on the histology (mares with CDE) and eight mares with endometrial histological classification I or II-a normal mares were selected to investigate the effect of PRP therapy. The mares were inseminated with fresh semen in two consecutive cycles in a crossover study design. Thereby, each mare served as its own control and the treatment was performed with intrauterine PRP infusion four hours after AI. The percentage of neutrophils in uterine cytology (CIT, %), uterine fluid accumulation observed on ultrasonography (FLU, mm) and nitric oxide concentration of uterine fluid (NO, μM) were analyzed before and 24 hours after AI. The results reported that mares with CDE (CIT, 68.3 ± 3.27, FLU, 10.7 ± 1.61) have a higher (P  0.05) between categories of mares. In treated cycles with PRP, the intrauterine inflammatory response decrease (P PRP was effective in modulating the exacerbated uterine inflammatory response to semen in mares with CDE but did not reduce NO concentrations in intrauterine fluid. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Surface properties and hydrophobic recovery of polymers treated by atmospheric-pressure plasma

    Science.gov (United States)

    Borcia, C.; Punga, I. L.; Borcia, G.

    2014-10-01

    This paper provides an analysis on the relation between plasma effects on polymers exposed to inert gas atmospheric-pressure plasma, polymer structure characteristics and surface recovery during post-processing ageing. Polymers offering variety of structure, functionality, degree of oxidation, polarity, crystallinity are tested, using contact angle, XPS, XRD and solvent absorption measurement, thus exploring the relationship linking the surface polarity, the chemical structure and composition contribution in the combined functionalization/crosslinking surface modification mechanisms of plasma-exposed polymers. The limiting level of modification attainable, the surface stability and the factors controlling these are examined, concluding on the plasma capacity to provide operational stability for modified polymer surfaces.

  18. The structural and hydration properties of heat-treated rice studied at multiple lenght scales

    NARCIS (Netherlands)

    Witek, M.M.; Weglarz, W.; Jong, de L.; Dalen, van G.; Blonk, J.C.G.; Heussen, P.; Velzen, van E.; As, van H.; Duynhoven, van J.P.M.

    2010-01-01

    The impact of heat-treatment on structure and hydration properties of rice was studied at different length scales (µm–nm). Heat-treatment introduced micro- and macro-pores within rice kernels (µCT) and, within intact cell walls, disintegrated starch granules were observed (SEM, CSLM). In native

  19. Synthesis and optical study of heat-treated ZnO nanopowder for ...

    Indian Academy of Sciences (India)

    UV emitting ZnO nanopowder was chemically synthesized and subsequently subjected to heat treatment in oxygen atmosphere for ... toluminescence, SEM, FT-IR and XRD were performed to see the effect of high temperature heat treatment and subsequently oxygen ... The dry synthetic powders were weighed and the ...

  20. Investigation of merging/reconnection heating during solenoid-free startup of plasmas in the MAST Spherical Tokamak

    Science.gov (United States)

    Tanabe, H.; Yamada, T.; Watanabe, T.; Gi, K.; Inomoto, M.; Imazawa, R.; Gryaznevich, M.; Scannell, R.; Conway, N. J.; Michael, C.; Crowley, B.; Fitzgerald, I.; Meakins, A.; Hawkes, N.; McClements, K. G.; Harrison, J.; O'Gorman, T.; Cheng, C. Z.; Ono, Y.; The MAST Team

    2017-05-01

    We present results of recent studies of merging/reconnection heating during central solenoid (CS)-free plasma startup in the Mega Amp Spherical Tokamak (MAST). During this process, ions are heated globally in the downstream region of an outflow jet, and electrons locally around the X-point produced by the magnetic field of two internal P3 coils and of two plasma rings formed around these coils, the final temperature being proportional to the reconnecting field energy. There is an effective confinement of the downstream thermal energy, due to a thick layer of reconnected flux. The characteristic structure is sustained for longer than an ion-electron energy relaxation time, and the energy exchange between ions and electrons contributes to the bulk electron heating in the downstream region. The peak electron temperature around the X-point increases with toroidal field, but the downstream electron and ion temperatures do not change.

  1. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    Science.gov (United States)

    Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.

    2017-05-01

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.

  2. The effect of peripheral opioid block and body cooling on sensitivity to heat in capsaicin-treated skin.

    Science.gov (United States)

    Drummond, P D

    2000-04-01

    We sought to determine whether stimulation of opioid receptors during body cooling would alter sensitivity to heat in the heat-sensitized, inflamed skin of 14 healthy volunteers. To investigate the contribution of opioid receptors to nociception, the opioid antagonist naloxone was introduced into the skin by iontophoresis after the topical application of capsaicin. For comparison, the same iontophoretic dose of saline was also administered. Shortly after the iontophoreses, sensitivity to heat was greater at the naloxone and saline sites than at iontophoresis-control sites in the capsaicin-treated skin, indicating that nonspecific aspects of the iontophoreses enhanced thermal hyperalgesia. The hyperalgesic effect of saline persisted during body cooling, whereas the naloxone site was less sensitive to heat (heat pain threshold 43.6 degrees +/- 1.0 degrees C) than either the saline site (40.8 degrees +/- 0.9 degrees C) or iontophoresis-control sites (41.7 degrees +/- 1.0 degrees C) (P heat-pain in inflamed skin during body cooling. The findings suggest that endogenous opioids release substances from nerves or other cells during inflammation, which heighten pain. Thus, opioids may fine-tune pain and the inflammatory response while healing takes place.

  3. Mechanical Properties of Various Heat-treated Nickel-titanium Rotary Instruments.

    Science.gov (United States)

    Goo, Hye-Jin; Kwak, Sang Won; Ha, Jung-Hong; Pedullà, Eugenio; Kim, Hyeon-Cheol

    2017-11-01

    The purpose of this study was to compare the bending stiffness, cyclic fatigue, and torsional fracture resistances of heat-treated and conventional nickel-titanium rotary instruments. V-Taper 2 (VT2; #25/.08), V-Taper 2H (V2H; #25/.06), Hyflex CM (HCM; #25/.06), HyFlex EDM (HDM; #25/variable taper), and ProTaper Next X2 (PTN; #25/variable taper) were tested. The bending stiffness was measured with the customized device (AEndoS), and the files (n = 15) were fixed at 3 mm from the tip and bent at 45° with respect to their long axis. Cyclic fatigue resistance was tested by pecking and rotating instruments (n = 15) in artificial canal with a 7.8-mm radius and 35° angle of curvature until fracture. The ultimate torsional strength and toughness were estimated by using AEndoS. The file tip of 5 mm was fixed between resin blocks and driven clockwise at 20 rpm until fracture. The results were analyzed by using one-way analysis of variance and Duncan post hoc comparison. The fracture surfaces and longitudinal aspect of each group were examined under the scanning electron microscope. CM-wire instruments had lower bending stiffness than others. HDM showed the highest cyclic fatigue resistance, followed by VTH and HCM (P < .05). VT2 showed the highest ultimate strength, followed by HDM, VTH-PTN, and HCM. HDM and VT2 showed significantly higher toughness than VTH, HCM, and PTN (P < .05). Scanning electron microscope analysis showed typical fractographic features of cyclic fatigue and torsional fractures. CM-wire instruments showed higher flexibility and cyclic fatigue resistance than M-wire and conventional nickel-titanium instruments. Large cross-sectional area and conventional nickel-titanium showed high torsional resistance. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Heat Source Characterization In A TREAT Fuel Particle Using Coupled Neutronics Binary Collision Monte-Carlo Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram; Baker, Benjamin; Zabriskie, Adam; Ortensi, Javier; Wang, Yaqi; Gleicher, Frederick; DeHart, Mark; Martineau, Richard

    2017-04-01

    This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. The macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.

  5. Boundary plasma heat flux width measurements for poloidal magnetic fields above 1 Tesla in the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, Dan; Labombard, Brian; Kuang, Adam; Terry, Jim; Alcator C-Mod Team

    2017-10-01

    The boundary heat flux width, along with the total power flowing into the boundary, sets the power exhaust challenge for tokamaks. A multi-machine boundary heat flux width database found that the heat flux width in H-modes scaled inversely with poloidal magnetic field (Bp) and was independent of machine size. The maximum Bp in the database was 0.8 T, whereas the ITER 15 MA, Q =10 scenario will be 1.2 T. New measurements of the boundary heat flux width in Alcator C-Mod extend the international database to plasmas with Bp up to 1.3 T. C-Mod was the only experiment able to operate at ITER-level Bp. These new measurements are from over 300 plasma shots in L-, I-, and EDA H-modes spanning essentially the whole operating space in C-Mod. We find that the inverse-Bp dependence of the heat flux width in H-modes continues to ITER-level Bp, further reinforcing the empirical projection of 500 μm heat flux width for ITER. We find 50% scatter around the inverse-Bp scaling and are searching for the `hidden variables' causing this scatter. Supported by USDoE award DE-FC02-99ER54512.

  6. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    Directory of Open Access Journals (Sweden)

    Mitra Asadi-Eydivand

    Full Text Available The ability of inkjet-based 3D printing (3DP to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated

  7. Sol-gel-derived and base-heat-treated AR coatings for-high power laser systems

    Science.gov (United States)

    Tang, Jiamiao; Zhu, Congshan

    1997-12-01

    Sol-gel derived and base-heat treated antireflective (AR) coatings with good abrasive/scratch resistant performance have been investigated and developed. The comparison of abrasive/scratch resistant property of the AR coatings from this method to that from other methods demonstrated that the base-heat treated AR coatings have still more abrasive/scratch resistant ability. After more than 30 times of drag wipe and 1000 times flashlamp glow discharges of 300 microsecond(s) duration and 15 J/cm2 for each discharge, the AR- coatings indicated no visible crazing or peeling. In the mean time, more than 6% transmission gain related to the spectrum of Nd+3 absorption can be obtained and maintained.

  8. Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets

    CERN Document Server

    Lindsay, Alexander; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-01-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 $\\mu$m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results fro...

  9. Heat-induced gelation mechanism of blood plasma modulated by cysteine.

    Science.gov (United States)

    Saguer, E; Alvarez, P; Fort, N; Espigulé, E; Parés, D; Toldrà, M; Carretero, C

    2015-03-01

    This work aims to determine changes at molecular level of plasma proteins provoked by adding cysteine (Cys, 0.025% to 0.35% w/v) as a reducing agent and their relationship with the heat-induced gel properties obtained when subsequently the solutions were submitted to a thermal treatment. Results show that adding Cys to plasma solutions at concentrations ≥0.15% actually entails modifications in the secondary structure of their main proteins, that is, serum albumin-α-helix rich-and globulin fraction-β-sheet rich. Basically, a reduction of the intensity of the infrared (IR) bands assigned to both structures takes place concomitant to an increase of extended structures that seem to act as intermediates for the subsequent protein aggregation process through nonnative intermolecular β-sheets. Cleavage of disulfide bonds is also evidenced at Cys concentrations ≥0.15% by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), with the effects being directly proportional to Cys concentration. However, beneficial effects on gel hardness are gradually obtained at Cys concentrations ≤0.15%, that is, when the effects at molecular level are at most just budding, while not more improvements on this textural parameter are obtained at higher Cys concentrations. By contrast, water retention capacity is gradually diminishing as Cys concentration increases, but with a significant reduction only obtained at the highest tested concentration. These results suggest a negative effect of Cys on gel microstructure at high concentrations, which probably can be attributed to protein aggregation taking place at room temperature. © 2015 Institute of Food Technologists®

  10. The Wear Characteristics of Heat Treated Manganese Phosphate Coating Applied to AlSi D2 Steel with Oil Lubricant

    Directory of Open Access Journals (Sweden)

    Venkatesan Alankaram

    2012-12-01

    Full Text Available Today, in the area of material design conversion coatings play an important role in the applications where temperature, corrosion, oxidation and wear come in to play. Wear of metals occurs when relative motion between counter-surfaces takes place, leading to physical or chemical destruction of the original top layers. In this study, the tribological behaviour of heat treated Manganese phosphate coatings on AISI D2 steel with oil lubricant was investigated. The Surface morphology of manganese phosphate coatings was examined by Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDX .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear resistance of the coated steel was evaluated through pin on disc test using a sliding velocity of 3.0m/s under Constant loads of 40 N and 100 N with in controlled condition of temperature and humidity. The Coefficient of friction and wear rate were evaluated. Wear pattern of Manganese phosphate coated pins with oil lubricant, Heat treated Manganese phosphate coated pins with oil lubricant were captured using Scanning Electron Microscope (SEM. The results of the wear test established that the heat treated manganese phosphate coating with oil lubricant exhibited the lowest average coefficient of friction and the lowest wear loss up to 6583 m sliding distance under 40 N load and 3000 m sliding distance even under 100 N load respectively. The Wear volume and temperature rise in heat treated Manganese Phosphate coated pins with oil lubricant is lesser than the Manganese Phosphate coated pins with oil lubricant

  11. Comparison of Cyclic Fatigue Resistance Amongst Conventional and Proprietary Heat-Treated NiTi Rotary Instruments

    Science.gov (United States)

    2016-04-19

    Comparison of Cyclic Fatigue Resistance Amongst Conventional and Prop 8.       Intended  Publication...Date: 04/19/2016 Comparison of Cyclic Fatigue Resistance Amongst Conventional and Proprietary Heat-Treated NiTi Rotary... organization  offering  financial  support  or  grant  monies  for  this  research,  nor  do  I  have  a   financial

  12. Plasma-based proteomics reveals immune response, complement and coagulation cascades pathway shifts in heat-stressed lactating dairy cows.

    Science.gov (United States)

    Min, Li; Cheng, Jianbo; Zhao, Shengguo; Tian, He; Zhang, Yangdong; Li, Songli; Yang, Hongjian; Zheng, Nan; Wang, Jiaqi

    2016-09-02

    Heat stress (HS) has an enormous economic impact on the dairy industry. In recent years, many researchers have investigated changes in the gene expression and metabolomics profiles in dairy cows caused by HS. However, the proteomics profiles of heat-stressed dairy cows have not yet been completely elucidated. We compared plasma proteomics from HS-free and heat-stressed dairy cows using an iTRAQ labeling approach. After the depletion of high abundant proteins in the plasma, 1472 proteins were identified. Of these, 85 proteins were differentially abundant in cows exposed to HS relative to HS-free. Database searches combined with GO and KEGG pathway enrichment analyses revealed that many components of the complement and coagulation cascades were altered in heat-stressed cows compared with HS-free cows. Of these, many factors in the complement system (including complement components C1, C3, C5, C6, C7, C8, and C9, complement factor B, and factor H) were down-regulated by HS, while components of the coagulation system (including coagulation factors, vitamin K-dependent proteins, and fibrinogens) were up-regulated by HS. In conclusion, our results indicate that HS decreases plasma levels of complement system proteins, suggesting that immune function is impaired in dairy cows exposed to HS. Though many aspects of heat stress (HS) have been extensively researched, relatively little is known about the proteomics profile changes that occur during heat exposure. In this work, we employed a proteomics approach to investigate differential abundance of plasma proteins in HS-free and heat-stressed dairy cows. Database searches combined with GO and KEGG pathway enrichment analyses revealed that HS resulted in a decrease in complement components, suggesting that heat-stressed dairy cows have impaired immune function. In addition, through integrative analyses of proteomics and previous metabolomics, we showed enhanced glycolysis, lipid metabolic pathway shifts, and nitrogen

  13. Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase.

    Science.gov (United States)

    Kourti, Ioanna; Devaraj, Amutha Rani; Bustos, Ana Guerrero; Deegan, David; Boccaccini, Aldo R; Cheeseman, Christopher R

    2011-11-30

    Air pollution control (APC) residues have been blended with glass-forming additives and treated using DC plasma technology to produce a high calcium aluminosilicate glass (APC glass). This has been used to form geopolymer-glass composites that exhibit high strength and density, low porosity, low water absorption, low leaching and high acid resistance. The composites have a microstructure consisting of un-reacted residual APC glass particles imbedded in a complex geopolymer and C-S-H gel binder phase, and behave as particle reinforced composites. The work demonstrates that materials prepared from DC plasma treated APC residues have potential to be used to form high quality pre-cast products. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Plasma erythropoietin by high-detectability immunoradiometric assay in untreated and treated patients with polycythaemia vera and essential thrombocythaemia

    Energy Technology Data Exchange (ETDEWEB)

    Carneskog, J.; Kutti, J.; Wadenvik, H. [Univ. of Goeteborg, Sahlgrenska Univ. Hospital, Dept. of Medicine, Haematology Section (Sweden); Lundberg, P.A.; Lindstedt, G. [Univ. of Goeteborg, Sahlgrenska Univ. Hospital, Dept. of Clinical Chemistry and Transfusion Medicine (Sweden)

    1998-12-31

    By using an immunoradiometric method with a stated detection limit of {<=}1 IU/l (stated normal reference limit in adults 3.7-16 IU/l) we determined EDTA-plasma erythropoietin (EPO) in 58 patients with polycythaemia vera (PV) and 49 patients with essential thrombocythaemia (ET). At the time of blood sampling, 20 of the PV patients were newly diagnosed and untreated, 23 were treated by phlebotomy only, and 30 also received myelosuppressive treatment (with 32P, hydroxyurea of alpha-interferon). Of the ET patients 24 were untreated and 28 received myelosuppressive therapy. For comparison plasma EPO was also determined in 10 patients with pseudopolycythaemia (PP). In this latter group the results for plasma EPO agreed well with the cited normal reference limits. The majority of untreated PV patients (12/20) had undetectable plasma EPO concentration, and the remainder all had values below the lower normal reference limit. Plasma EPO in PV was not significantly influenced by phlebotomy therapy. Twelve of the 24 untreated ET patients (50%) had plasma EPO values below the reference interval (undetectable in 2 patients). The mean EPO concentration was significantly lower in PV patients receiving phlebotomy therapy than in patients with untreated ET. In the total material of PV and ET treated with myelosuppressive agents the PV patients showed significantly lower values for EPO concentration than did patients with ET. The present results support the view that EPO measurements by high-detectability methods are diagnostically useful and should be included in the panel of new criteria for the diagnosis of PV. (au) 20 refs.

  15. Numerical model to predict microstructure of the heat treated of steel elements

    Directory of Open Access Journals (Sweden)

    T. Domański

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account thermal phenomena and phase transformations. Numerical algorithm of thermal phenomena was based on the Finite Elements Methods of the heat transfer equations. In the model of phase transformations, in simulations heating process continuous heating (CHT was applied, whereas in cooling process continuous cooling (CCT of the steel at issue. The phase fraction transformed (austenite during heating and fractions during cooling of ferrite, pearlite or bainite are determined by Johnson-Mehl-Avrami formulas. The nescent fraction of martensite is determined by Koistinen and Marburger formula or modified Koistinen and Marburger formula. In the simulations of hardening was subject the fang lathe of cone (axisymmetrical object made of tool steel.

  16. Effects of Dietary Supplementation of Some Antioxidants on Liver Antioxidant Status and Plasma Biochemistry Parameters of Heat-Stressed Quail

    Directory of Open Access Journals (Sweden)

    Senay Sarıca

    2017-07-01

    Full Text Available This study aimed to compare the dietary supplementation of oleuropein (O and α-tocopherol acetate (TA alone or with organic selenium (Se on liver antioxidant status and some plasma biochemistry parameters in Japanese quails reared under heat stress (HS. A total of 800, two-weeks old quails were kept in wire cages in the temperature-controlled rooms at either 22°C or 34°C for 8 h/d and fed on a basal diet (NC or the diets supplemented with TA (TA200 or O (O200 at 200 mg/kg alone or with OSe (TA200+OSe and O200+OSe to the NC diet. HS decreased the total antioxidant status (TAS and increased the total oxidative stress (TOS and oxidative stress index (OSI of liver compared to thermoneutral temperature (TN. The TA200, O200, TA200+OSe and O200+OSe diets increased TAS and decreased TOS of liver compared to those of quails fed NC. OSI was decreased by the TA200, O200 and TA200+OSe diets compared to NC and O200+OSe diets. HS reduced plasma albumin (A and total protein (TP concentrations, on the other hand, increased plasma glucose (G, total cholesterol (CHO and triglyceride (TG levels compared to TN. The TA200, O200, TA200+OSe and O200+OSe diets reduced plasma total CHO and TG levels and increased plasma A level. The TA200 and TA200+OSe diets reduced plasma G level and increased plasma TP levels compared to those of quails fed the other diets. In conclusion, dietary supplementation of vitamin E and oleuropein alone or with organic selenium is necessary to remove the negative effects of heat stress on liver antioxidant status and some plasma parameters of quails.

  17. Shear Properties of Carbon Fiber/Phenolic Resin Composites Heat Treated at High Temperatures

    OpenAIRE

    Homero Paula Silva; Luiz Cláudio Pardini; Edison Bittencourt

    2016-01-01

    ABSTRACT Carbon fiber/phenolic resin composites have long been used as ablative materials in rocketry. Ablation is a complex multiscale problem where radiative and convective heating leads to the pyrolysis of phenolic resin matrix, resulting in the formation of a porous insulation char as thermal protection. This study investigates the shear properties evolution during the heat treatment of a carbon fiber/phenolic resin nozzle extension entrance (exit cone) which is part of an integrated nozz...

  18. Investigation on Microstructure of Heat Treated High Manganese Austenitic Cast Iron

    OpenAIRE

    Muzafar A.K.; Rashidi M.M.; Mahadzir I.; Shayfull Z.

    2016-01-01

    The effect of manganese addition and annealing heat treatment on microstructure of austenitic cast irons with high manganese content (Mn-Ni-resist) were investigated. The complex relationship between the development of the solidification microstructures and buildup of microsegregation in Mn-Ni-resist was obtained by using microstructure analysis and EDS analysis. The annealing heat treatment was applied at 700°C up to 1000°C to investigate the effect of the annealing temperature on the micros...

  19. The heating and acceleration actions of the solar plasma wave by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    solar plasma will left-right separate by Lorentz force and by the feedback mechanism of Lorentz force the positive - negative charge will left-right vibrate. The plasma on the move will accompany with up-down and left-right vibrating and become the wave. Though the frequent of the plasma wave is not high, but its heating and acceleration actions will be not less then that of the microwave and laser because of its mass and energy far large then that of the microwave and laser.

  20. Ca(2+)-independent fusion of secretory granules with phospholipase A2-treated plasma membranes in vitro.

    OpenAIRE

    Nagao, T.; Kubo, T.; Fujimoto, R.; Nishio, H; Takeuchi, T.; Hata, F.

    1995-01-01

    The fusion of secretory granules with plasma membranes prepared from rat parotid gland was studied in vitro to clarify the mechanism of exocytosis. Fusion of the granules with plasma membranes was measured by a fluorescence-dequenching assay with octadecyl rhodamine B, and release of amylase was also measured to confirm the fusion as a final step of the secretory process. Plasma membranes that had been pretreated with porcine phospholipase A2 (PLA2) in the presence of 20 microM Ca2+ fused wit...

  1. The Prognostic Value of Plasma YKL-40 in Patients With Chemotherapy-Resistant Ovarian Cancer Treated With Bevacizumab

    DEFF Research Database (Denmark)

    Boisen, Mogens K; Madsen, Christine V; Dehlendorff, Christian

    2016-01-01

    OBJECTIVE: YKL-40 is a proangiogenic glycoprotein that is secreted by cancer cells and inflammatory cells. The expression of YKL-40 is induced by vascular endothelial growth factor inhibition. We tested the hypothesis that low baseline plasma YKL-40 is associated with improved outcomes in patient...... treatment is associated with improved outcomes in patients with chemotherapy-refractory advanced ovarian cancer treated with single-agent bevacizumab.......OBJECTIVE: YKL-40 is a proangiogenic glycoprotein that is secreted by cancer cells and inflammatory cells. The expression of YKL-40 is induced by vascular endothelial growth factor inhibition. We tested the hypothesis that low baseline plasma YKL-40 is associated with improved outcomes in patients...... with ovarian cancer treated with bevacizumab. METHODS: One hundred forty patients with chemotherapy-refractory epithelian ovarian cancer were treated with single-agent bevacizumab 10 mg/kg every 3 weeks in a prospective trial. Plasma YKL-40 was determined by enzyme-linked immunosorbent assay before and during...

  2. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance

    Science.gov (United States)

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-01-01

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving. PMID:28772719

  3. Study of hydrogen ECR plasma in a simple mirror magnetic trap heated by 75 GHz pulsed gyrotron radiation

    Science.gov (United States)

    Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.; Golubev, S. V.; Razin, S. V.

    2017-03-01

    Plasma of electron cyclotron resonance (ECR) discharge sustained by millimeter wave radiation is widely used for production of ion beams of different kind. The main trend in ECR ion sources development nowadays is an increase of frequency and power of microwave heating. The most advanced systems use gyrotrons in 24-60 GHz frequency range. In previous studies at IAP RAS it was demonstrated that ECR source SMIS 37 (Simple Mirror Ion Source) with 37.5 GHz heating operating in quasigasdynamic regime of plasma confinement is able to produce proton and deuteron beams with ion current density about 700 mA/cm2. As the next step of these investigations plasma properties of the discharge sustained by 75 GHz radiation have been studied. Plasma density and electron temperature were determined using spectroscopic and Langmuir probe techniques. It was demonstrated that plasma density could reach values close to 1014 cm-3 and that is of great interest for further development of high current ion sources for various applications.

  4. Antiretroviral-treated HIV-1 patients can harbour resistant viruses in CSF despite an undetectable viral load in plasma.

    Science.gov (United States)

    Soulie, Cathia; Grudé, Maxime; Descamps, Diane; Amiel, Corinne; Morand-Joubert, Laurence; Raymond, Stéphanie; Pallier, Coralie; Bellecave, Pantxika; Reigadas, Sandrine; Trabaud, Mary-Anne; Delaugerre, Constance; Montes, Brigitte; Barin, Francis; Ferré, Virginie; Jeulin, Hélène; Alloui, Chakib; Yerly, Sabine; Signori-Schmuck, Anne; Guigon, Aurélie; Fafi-Kremer, Samira; Haïm-Boukobza, Stéphanie; Mirand, Audrey; Maillard, Anne; Vallet, Sophie; Roussel, Catherine; Assoumou, Lambert; Calvez, Vincent; Flandre, Philippe; Marcelin, Anne-Geneviève

    2017-08-01

    HIV therapy reduces the CSF HIV RNA viral load (VL) and prevents disorders related to HIV encephalitis. However, these brain disorders may persist in some cases. A large population of antiretroviral-treated patients who had a VL > 1.7 log 10 copies/mL in CSF with detectable or undetectable VL in plasma associated with cognitive impairment was studied, in order to characterize discriminatory factors of these two patient populations. Blood and CSF samples were collected at the time of neurological disorders for 227 patients in 22 centres in France and 1 centre in Switzerland. Genotypic HIV resistance tests were performed on CSF. The genotypic susceptibility score was calculated according to the last Agence Nationale de Recherche sur le Sida et les hépatites virales Action Coordonnée 11 (ANRS AC11) genotype interpretation algorithm. Among the 227 studied patients with VL > 1.7 log 10 copies/mL in CSF, 195 had VL detectable in plasma [median (IQR) HIV RNA was 3.7 (2.7-4.7) log 10 copies/mL] and 32 had discordant VL in plasma (VL plasma compared with patients with plasma VL > 1.7 log 10 copies/mL. Resistance to antiretrovirals was observed in CSF for the two groups of patients. Fourteen percent of this population of patients with cognitive impairment and detectable VL in CSF had well controlled VL in plasma. Thus, it is important to explore CSF HIV (VL and genotype) even if the HIV VL is controlled in plasma because HIV resistance may be observed.

  5. Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G., E-mail: gaelle.chevet@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Martin, E., E-mail: martin@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Camus, G., E-mail: camus@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Herb, V., E-mail: herb@lcts.u-bordeaux1.fr [LCTS, CNRS UMR 5801, Universite Bordeaux 1, Bordeaux (France); Schlosser, J., E-mail: jacques.schlosser@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Escourbiac, F., E-mail: frederic.escourbiac@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France); Missirlian, M., E-mail: marc.missirlian@cea.fr [Association EURATOM-CEA, DSM/IRFM, CEA Cadarache, F-13108 Saint Paul lez Durance (France)

    2011-10-01

    The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.

  6. Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators

    Energy Technology Data Exchange (ETDEWEB)

    Kearney-Fischer, M.; Kim, J.-H.; Samimy, M. [Department of Mechanical Engineering, Gas Dynamics and Turbulence Laboratory, Ohio State University (GDTL/OSU), 2300 West Case Road, Columbus, Ohio 43235-7531 (United States)

    2009-09-15

    The results of particle image velocimetry (PIV) measurements in a high subsonic, heated, jet forced using localized arc filament plasma actuators (LAFPAs) show that LAFPAs can consistently produce significant mixing enhancement over a wide range of temperatures. These actuators have been used successfully in high Reynolds number, high-speed unheated jets. The facility consists of an axisymmetric jet with different nozzle blocks of exit diameter of 2.54 cm and variable jet temperature in an anechoic chamber. The focus of this paper is on a high subsonic (M{sub j}=0.9) jet. Twelve experiments with various forcing azimuthal modes (m=0, 1, and {+-}1) and temperatures (T{sub o}/T{sub a}=1.0, 1.4, and 2.0) at a fixed forcing Strouhal number (St{sub DF}=0.3) have been conducted and PIV results compared with the baseline results to characterize the effectiveness of LAFPAs for mixing enhancement. Centerline velocity and turbulent kinetic energy as well as jet width are used for determining the LAFPAs' effectiveness. The characteristics of large-scale structures are analyzed through the use of Galilean streamlines and swirling strength. Across the range of temperatures collected, the effectiveness of LAFPAs improves as temperature increases. Possible reasons for the increase in effectiveness are discussed.

  7. Study of electronic heat transport in plasma through diagnosis based on modulated electron cyclotron heating; Etudes de transport de la chaleur electronique par injection modulee d'ondes a la frequence cyclotronique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Clemencon, A.; Guivarch, C

    2003-07-01

    In order to make nuclear fusion energetically profitable, it is crucial to heat and confine the plasma efficiently. Studying the behavior of the heat diffusion coefficient is a key issue in this matter. The use of modulated electron cyclotron heating as a diagnostic has suggested the existence of a transport barrier under certain plasma conditions. We have determined the solution to the heat transport equation, for several heat diffusion coefficient profiles. By comparing the analytical solutions with experimental data; we are able to study the heat diffusion coefficient profile. Thus, in certain experiments, we can confirm that the heat diffusion coefficient switches from low to high values at the radius where the electron cyclotron heat deposition is made. (authors)

  8. Heat Release Property and Fire Performance of the Nomex/Cotton Blend Fabric Treated with a Nonformaldehyde Organophosphorus System

    Directory of Open Access Journals (Sweden)

    Charles Q. Yang

    2016-09-01

    Full Text Available Blending Nomex® with cotton improves its affordability and serviceability. Because cotton is a highly flammable fiber, Nomex®/cotton blend fabrics containing more than 20% cotton require flame-retardant treatment. In this research, combination of a hydroxyl functional organophosphorus oligmer (HFPO and 1,2,3,4-butanetetracarboxylic acid (BTCA was used for flame retardant finishing of the 65/35 Nomex®/cotton blend woven fabric. The system contains HFPO as a flame retardant, BTCA as a bonding agent, and triethenolamine (TEA as a reactive additive used to enhance the performance of HFPO/BTCA. Addition of TEA improves the hydrolysis resistance of the HFPO/BTCA crosslinked polymeric network on the blend fabric. Additionally, TEA enhances HFPO’s flame retardant performance by reducing formation of calcium salts and also by providing synergistic nitrogen to the treated blend fabric. The Nomex®/cotton blend fabric treated with the HFPO/BTCA/TEA system shows high flame resistance and high laundering durability at a relatively low HFPO concentration of 8% (w/w. The heat release properties of the treated Nomex®/cotton blend fabric were measured using microscale combustion calorimetry. The functions of BTCA; HFPO and TEA on the Nomex®/cotton blend fabric were elucidated based on the heat release properties, char formation, and fire performance of the treated blend fabric.

  9. Advantages of Pure Platelet-Rich Plasma Compared with Leukocyte- and Platelet-Rich Plasma in Treating Rabbit Knee Osteoarthritis

    Science.gov (United States)

    Yin, Wen-Jing; Xu, Hai-Tao; Sheng, Jia-Gen; An, Zhi-Quan; Guo, Shang-Chun; Xie, Xue-Tao; Zhang, Chang-Qing

    2016-01-01

    Background Concentrated leukocytes in leukocyte- and platelet-rich plasma (L-PRP) may deliver increased levels of pro-inflammatory cytokines to activate the NF-κB signaling pathway, to counter the beneficial effects of growth factors on osteoarthritic cartilage. However, to date no relevant studies have substantiated that in vivo. Material/Methods Autologous L-PRP and pure platelet-rich plasma (P-PRP) were prepared, measured for componential composition, and injected intra-articularly after 4, 5, and 6 weeks post-anterior cruciate ligament transection. Caffeic acid phenethyl ester (CAPE) was injected intraperitoneally to inhibit NF-κB activation. All rabbits were sacrificed after 8 weeks postoperative. Enzyme-linked immunosorbent assays were performed to determine interleukin 1β (IL-1β) and prostaglandin E2 (PGE2) concentrations in the synovial fluid, Indian ink staining was performed for gross morphological assessment, and hematoxylin and eosin staining and toluidine blue staining were performed for histological assessment. Results Compared with L-PRP, P-PRP injections achieved better outcomes regarding the prevention of cartilage destruction, preservation of cartilaginous matrix, and reduction of IL-1β and PGE2 concentrations. CAPE injections reversed the increased IL-1β and PGE2 concentrations in the synovial fluid after L-PRP injections and improved the outcome of L-PRP injections to a level similar to P-PRP injections, while they had no influence on the therapeutic efficacy of P-PRP injections. Conclusions Concentrated leukocytes in L-PRP may release increased levels of pro-inflammatory cytokines to activate the NF-κB signaling pathway, to counter the beneficial effects of growth factors on osteoarthritic cartilage, and finally, result in a inferior efficacy of L-PRP to P-PRP for the treatment of osteoarthritis. PMID:27086145

  10. Effect of alumina nanofiller on properties of heat-treated glass composite sealants.

    Science.gov (United States)

    Lee, Dong Bok; Jang, Dong-Hoon; Kim, Bong-Su; Kim, Kwang-Joong; Park, Sung; Lee, Jong-Ho; Lee, Hae-Weon; Lee, Jae Chun

    2014-11-01

    Alkali/alkaline-earth borosilicate glass-alumina composites containing 10 vol% Al2O3 were prepared for use as solid oxide fuel cell sealants. The effect of heat treatment and Al2O3, addition on the viscosities and electrical conductivities was investigated to improve cyclic sealing performance. Upon a 48-h heat treatment, the viscosity of the glass-alumina composites at 750 degrees C was approximately four orders of magnitude higher than that of the base glass owing to the crystallization of the glass in the presence of Al2O3. Heat treatment increased the electrical conductivities of both the base glass and the glass-alumina composites. The electrical conductivities of glass-alumina composites in the range from 400 degrees C to 550 degrees C were three times higher than those of the base glass regardless of heat treatment. This increase in the conductivities and viscosities by heat treatment was attributed to the devitrification and structural densification of the sealing glass and the partial dissolution of the Al2O3 filler in alkali/alkaline-earth borosilicate sealing glass.

  11. Effect on Mechanical Properties of Heat Treated High Manganese Austenitic Cast Iron

    Directory of Open Access Journals (Sweden)

    Muzafar A.K.

    2016-01-01

    Full Text Available This work presents an attempt to study the effect of manganese addition and heat treatment on higher carbon austenitic cast iron to form high manganese austenitic cast iron with reduced nickel content (Mn-Ni-resist on mechanical properties. The combination on microstructure (microsegregation, mechanical properties and the relationship of heat treatment on the alloy were analyzed. For this purpose Mn-Ni-resist (4.50C, 2.64Si, 6.0 Mn, 10 Ni was melted and cast in the form of Y-block test pieces. Four different heat treatment procedures were applied to the as-cast to investigate the effect of alloy modifications on Mn-Ni-resist. Optical and scanning electron microscopies were used for microstructure investigation. To determine the mechanical properties tensile test and hardness test were carried out. The result indicates both composition and heat treatment affect the performance of Mn-Ni-resist intensively. Microprobe analysis shows some silicon segregation near the graphite and practically little segregation of manganese. The increase in manganese contents developed some fractions of segregated carbide structures in LTF region located at austenite eutectic cell frame, which caused the tensile properties to drop in a small range. Application of annealing heat treatment gradually changed the carbide formation, so is the material’s strength.

  12. Changes in mechanical properties and structure of electrolytic plasma treated X 12 CrNi 18 10 Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kurbanbekov, Sherzod; Baklanov, Viktor; Karakozov, Batyrzhan [Republican State Enterprise National Nuclear Center of Kazakhstan, Kurchatov (Kazakhstan). Inst. of Atomic Energy Branch; Skakov, Mazhyn [Republican State Enterprise National Nuclear Center of Kazakhstan, Kurchatov (Kazakhstan)

    2017-05-01

    The paper addresses findings regarding the influence of electrolytic plasma treatment on the mechanical properties as well as structural and phase states of X 12 CrNi 18 10 Ti steel. Electrolytic plasma treatment is based on carburizing of stainless steel heated in electrolytes. Treatment of steel samples has been performed as follows: the samples were heated up to a temperature between 850 and 950 C and then they were cured for 7 minutes in an electrolyte of an aqueous solution containing 10 % glycerol (C{sub 3}H{sub 8}O{sub 3}) and 15 % sodium carbonate (Na{sub 2}CO{sub 3}). It is found that, after plasma electrolytic treatment, the surface of X 12 CrNi 18 10 Ti steel had a modified structure and high hardness. Increasing wear resistance of X 12 CrNi 18 10 Ti steel has been observed after carburizing and the coefficient of friction has been reduced. X-ray analysis showed that retained austenite γ-Fe is a main phase, and there are some diffraction lines of orthorhombic Fe{sub 3}C phase as well as Fe{sub 3}O{sub 4} cubic phase. It has been determined, that, after plasma electrolytic treatment, a carbide phase in the modified surface layer, irrespective of the location in the steel structure has the chemical composition Fe{sub 3}C. High concentration of carbon atoms in a solid solution based on γ- and α-iron, a large dislocation density, presence of particles of carbide phase and retained austenite layers have been found.

  13. Survey of the TS-ECE Discrepancy and recent investigations in ICRF heated plasmas at Alcator C-Mod

    Directory of Open Access Journals (Sweden)

    Reinke M. L.

    2012-09-01

    Full Text Available This paper reports on a new investigation of the long-standing, unresolved discrepancy between Thomson Scattering (TS and Electron Cyclotron Emission (ECE measurements of electron temperature in high temperature tokamak plasmas. At the Alcator C-Mod tokamak, ion cyclotron range of frequency (ICRF heating is used to produce high temperature conditions where the TS- ECE discrepancy, as observed in the past at JET and TFTR, should appear. Plasmas with Te(0 up to 8 keV are obtained using three different heating scenarios: Ion Cyclotron Resonance Heating (ICRH, ICRF mode conversion heating and a combination of the two heating methods. This is done in order to explore the hypothesis that ICRH-generated fast ions may be related to the discrepancy. In all high temperature cases at C-Mod, we find no evidence for the type of discrepancy reported at JET and TFTR. Here we present the C-Mod results along with a summary of past work on the TS-ECE discrepancy.

  14. A new ion cyclotron range of frequency scenario for bulk ion heating in deuterium-tritium plasmas: How to utilize intrinsic impurities in our favour

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Ye. O.; Ongena, J.; Van Eester, D.; Lerche, E.; Messiaen, A. [Laboratory for Plasma Physics, LPP-ERM/KMS, EUROfusion Consortium Member, Brussels (Belgium); Bilato, R. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Dumont, R. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Mantsinen, M. [Catalan Institution for Research and Advanced Studies, Barcelona (Spain); Barcelona Supercomputing Center (BSC), Barcelona (Spain)

    2015-08-15

    A fusion reactor requires plasma pre-heating before the rate of deuterium-tritium fusion reactions becomes significant. In ITER, radio frequency (RF) heating of {sup 3}He ions, additionally puffed into the plasma, is one of the main options considered for increasing bulk ion temperature during the ramp-up phase of the pulse. In this paper, we propose an alternative scenario for bulk ion heating with RF waves, which requires no extra {sup 3}He puff and profits from the presence of intrinsic Beryllium impurities in the plasma. The discussed method to heat Be impurities in D-T plasmas is shown to provide an even larger fraction of fuel ion heating.

  15. [Study of the effect of heat source separation distance on plasma physical properties in laser-pulsed GMAW hybrid welding based on spectral diagnosis technique].

    Science.gov (United States)

    Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang

    2014-05-01

    In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.

  16. Wide-angle X-ray scattering study of heat-treated PEEK and PEEK composite

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn; Chung, Shirley Y.; Yavrouian, Andre; Gupta, Amitava

    1987-01-01

    Samples of poly(etheretherketone) (PEEK) neat resin and APC-2 carbon fiber composite were subjected to various heat treatments, and the effect of quenching and annealing treatments was studied by wide-angle X-ray scattering. It is found that high-temperature treatments may introduce disorder into neat resin and composite PEEK when followed by rapid cooling. The disorder is metastable and can revert to ordered state when the material is heated above its glass transition temperature and then cooled slowly. The disorder may result from residual thermal stresses.

  17. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga Arceo, L. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico) and ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Orozco, E. [Instituto de Fisica UNAM, Apdo Postal 20-364, C.P. 01000 D.F. Mexico (Mexico)]. E-mail: eorozco@fisica.unam.mx; Mendoza-Leon, H. [ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Palacios Gonzalez, E. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: epalacio@imp.mx; Leyte Guerrero, F. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: fleyte@imp.mx; Garibay Febles, V. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: vgaribay@imp.mx

    2007-05-31

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 {sup o}C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 {mu}m in length were obtained after heating at 800 {sup o}C, by means of this process.

  18. Effect on Mechanical Properties of Heat Treated High Manganese Austenitic Cast Iron

    OpenAIRE

    Muzafar A.K.; Rashidi M.M.; Mahadzir I.; Shayfull Z.

    2016-01-01

    This work presents an attempt to study the effect of manganese addition and heat treatment on higher carbon austenitic cast iron to form high manganese austenitic cast iron with reduced nickel content (Mn-Ni-resist) on mechanical properties. The combination on microstructure (microsegregation), mechanical properties and the relationship of heat treatment on the alloy were analyzed. For this purpose Mn-Ni-resist (4.50C, 2.64Si, 6.0 Mn, 10 Ni) was melted and cast in the form of Y-block test pie...

  19. Ca(2+)-independent fusion of secretory granules with phospholipase A2-treated plasma membranes in vitro.

    Science.gov (United States)

    Nagao, T; Kubo, T; Fujimoto, R; Nishio, H; Takeuchi, T; Hata, F

    1995-04-15

    The fusion of secretory granules with plasma membranes prepared from rat parotid gland was studied in vitro to clarify the mechanism of exocytosis. Fusion of the granules with plasma membranes was measured by a fluorescence-dequenching assay with octadecyl rhodamine B, and release of amylase was also measured to confirm the fusion as a final step of the secretory process. Plasma membranes that had been pretreated with porcine phospholipase A2 (PLA2) in the presence of 20 microM Ca2+ fused with the granules within 30 s, and induced amylase release by reacting with the membranes of granules, whereas without this pretreatment they had no significant effect. The fusion process accompanied by amylase release was induced in the presence of 10 mM EGTA, and therefore was apparently Ca(2+)-independent. On the other hand, the presence of EGTA or 100 microM quinacrine, an inhibitor of PLA2, during treatment of plasma membranes with PLA2 inhibited their fusogenic activity, suggesting the importance of activation of PLA2. Arachidonic acid and linoleic acid were released from the plasma membranes during the PLA2 treatment. The presence of albumin, an adsorbent of fatty acids, during the treatment also inhibited the activity. Pretreatment of the membranes with arachidonic acid or linoleic acid did not have any effect, but the presence of exogenously added arachidonic acid during PLA2 treatment enhanced the membrane-fusion-inducing effect of PLA2. Pretreatment of the membranes with lysophosphatidylcholine induced fusogenic activity. These findings suggest that the conformational change in the plasma-membrane phospholipids induced by PLA2 and the presence of arachidonic acid or linoleic acid produced by PLA2 are important in the process of fusion of secretory granules with the plasma membranes of rat parotid acinar cells and that the fusion process itself is independent of Ca2+.

  20. A study of three-half-turn and frame antennae for ion cyclotron range of frequency plasma heating in the URAGAN-3M torsatron

    Energy Technology Data Exchange (ETDEWEB)

    Lysoivan, A.I. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Moiseenko, V.E. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Plyusnin, V.V. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Kasilov, S.V. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Bondarenko, V.N. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Chechkin, V.V. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Fomin, I.P. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Grigor`eva, L.I. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Konovalov, V.G. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Koval`ov, S.V. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Litvinov, A.P. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Mironov, Yu.K. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Nazarov, N.I. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Pavlichenko, O.S. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Pavlichenko, R.O. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Shapoval, A.N. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Skibenko, A.I. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center; Volkov, E.D. [Kharkov Inst. of Phys. and Tech. (Ukraine). Nat. Sci. Center

    1995-01-01

    Numerical and experimental results of Alfven wave heating of plasmas in the frequency range below the ion cyclotron frequency ({omega}<{omega}{sub ci}) are presented. Two different types of antenna were used for plasma production and heating: a frame type antenna (FTA) conventionally used in the URAGAN-3M device and a three-half-turn antenna (THTA) proposed recently to avoid the deleterious effects of conversion of fast wave to slow wave in the plasma periphery and to perform plasma core heating more effectively. Numerical modeling of electromagnetic field excitation in the URAGAN-3M plasma by the FTA and THTA was performed using a one-dimensional code. The results of calculations showed better performance of the compact THTA compared with the FTA for the case of a high density plasma (approximately 10{sup 13}cm{sup -3}). When using the THTA, the experiments performed showed the possibility of dense plasma production (more than 2x10{sup 13}cm{sup -3}) and heating, which had not been obtained earlier in the URAGAN-3M. Shifting the power deposition profile deeper inside the plasma body with the THTA resulted in modification of the plasma density profile and an improvement in plasma confinement. ((orig.)).

  1. Shear Properties of Carbon Fiber/Phenolic Resin Composites Heat Treated at High Temperatures

    Directory of Open Access Journals (Sweden)

    Homero Paula Silva

    2016-07-01

    Full Text Available Carbon fiber/phenolic resin composites have long been used as ablative materials in rocketry. Ablation is a complex multiscale problem where radiative and convective heating leads to the pyrolysis of phenolic resin matrix, resulting in the formation of a porous insulation char as thermal protection. This study investigates the shear properties evolution during the heat treatment of a carbon fiber/phenolic resin nozzle extension entrance (exit cone which is part of an integrated nozzle of launching and sounding vehicles, developed at the Instituto de Aeronáutica e Espaço (SP, Brazil. Specimens of the material (carbon fiber/phenolic resin composite were subjected to heat treatment at 500, 1,000, 1,500 and 2,000°C, and measurements of shear strength and shear modulus were performed using the Iosipescu mode. Experimental data were compared with the results obtained theoretically. Also, morphological analysis was accomplished by optical microscopy and the observation of fractured surfaces, by scanning electron microscopy. Significant morphological changes in the microstructure after heat treatments were observed. The lowest value for shear strength obtained experimentally was 4.05 MPa, which is greater than the ultimate value obtained analytically (2.35 MPa, fulfilling its structural function during the propulsion time.

  2. Dilatometric studies of plaster sandmix in raw and heat treated state

    Directory of Open Access Journals (Sweden)

    M. Pawlak

    2008-10-01

    Full Text Available Results of dilatometric studies of bounded plaster sandmix applied in precision pressure below atmospheric casting, are presented in this paper. Sandmix composed of half-hydrate α-CaSO4·2H2O with different parts of silica SiO2 was a subject of investigations. Silica is a factor weakening the influence of phase transformations on total distortion of the mould during heating and thus influences the accuracy of prepared cast. Experimental moulders of dimensions 7x35 made of plaster sandmix with silica fraction equal 30; 40; 50; 60 and 70% were used during studies. Sandmix was tested in raw state and after heat treatment changing the α-half hydrate into anhydrite II (CaSO4. It was demonstrated that addition of the silica at level about 50% influences most advantageously on dimension changes of heated sandmix by lowering dilatations 3 times in comparison with sandmix composed of pure α-half hydrate. The transformation of plaster structure into anhydrite II is also important - the shrinkability phase disappears and expansion similar to linear-like appears. It was determined that it is possible to obtain sandmix of small, stabile distortion on the way of appropriate selection of components and heat treatment parameters what improves dimensional and shape accuracy limits of the cast and significantly limits internal stresses in the mould eliminating risk of its cracking.

  3. The protein dispersibility index in the quality control of heat-treated ...

    African Journals Online (AJOL)

    The protein despersibility index (PDI) has been claimed to have the most constant response to the heating of FFSBs. In this study, the PDI method has been subjected to an inter-laboratory test, including the participation of eight laboratories. Seven FFSB samples were processed by dry extrusion at temperatures ranging ...

  4. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  5. Investigating the Influence of Plasma-Treated SiO2 Nanofillers on the Electrical Treeing Performance of Silicone-Rubber

    Directory of Open Access Journals (Sweden)

    Fatin Nabilah Musa

    2016-11-01

    Full Text Available This study presents an investigation of electrical tree performance as well as the effect of filler concentration of silicone rubber (SiR filled with atmospheric-pressure plasma-treated silicon dioxide (SiO2 nanofiller. Atmospheric-pressure plasma was used to treat the SiO2 nanofiller surfaces to enhance compatibility with SiR matrices. A fixed AC voltage of 10 kV, 50 Hz was applied to untreated, silane-treated, and plasma-treated nanocomposites with filler concentrations of 1, 3, and 5 wt % to investigate their electrical performance during electrical treeing. The result showed that plasma-treated SiO2 nanoparticles were uniformly well dispersed and formed strong covalent bonds with the molecules of the SiR polymer matrix. The plasma-treated nanocomposites were able to resist the electrical treeing better than the untreated or silane-treated nanocomposites. The increase in filler concentration enhanced the electrical tree performances of the nanocomposites. The result from this study reveals that the plasma-treated nanocomposites exhibited the best result in inhibiting the growth of electrical treeing compared to the existing surface treatment methods used in this study.

  6. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in [Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Singh, Omveer [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Dahiya, Raj P. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Deenbandhu Chhotu Ram University of Science and Technology, Murthal–131039 (India)

    2015-08-28

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  7. Characterization of thick plasma spray tungsten coating on ferritic/martensitic steel F82H for high heat flux armor

    Science.gov (United States)

    Yahiro, Y.; Mitsuhara, M.; Tokunakga, K.; Yoshida, N.; Hirai, T.; Ezato, K.; Suzuki, S.; Akiba, M.; Nakashima, H.

    2009-04-01

    Two types of plasma spray tungsten coatings on ferritic/martensitic steel F82H made by vacuum plasma spray technique (VPS) and air plasma spray technique (APS) were examined in this study to evaluate the possibility as plasma-facing armor. The VPS-W/F82H showed superior properties. The porosity of the VPS-W coatings was about 0.6% and most of the pores were smaller than 1-2 μm and joining of W/F82H and W/W was fairly good. Thermal load tests indicated high potential of this coating as plasma-facing armor under thermal loading. In case of APS-W/F82H, however, porosity was 6% and thermal load properties were much worse than VPS-W/F82H. It is likely that surface oxidation during plasma spray process reduced joining properties. Remarkably, both coatings created soft ferrite interlayer after proper heat treatments probably due to high residual stress at the interfaces after the production. This indicates the potential function of the interlayer as stress relieve and possible high performance of such coating component under thermal loads.

  8. Prediction of heating rate controlled viscous flow activation energy during spark plasma sintering of amorphous alloy powders

    Science.gov (United States)

    Paul, Tanaji; Harimkar, Sandip P.

    2017-07-01

    The viscous flow behavior of Fe-based amorphous alloy powder during isochronal spark plasma sintering was analyzed under the integrated theoretical background of the Arrhenius and directional structural relaxation models. A relationship between viscous flow activation energy and heating rate was derived. An extension of the pertinent analysis to Ti-based amorphous alloys confirmed the broad applicability of such a relationship for predicting the activation energy for sintering below the glass transition temperature (T g) of the amorphous alloy powders.

  9. Tunable Electrical Properties of Vanadium Oxide by Hydrogen-Plasma-Treated Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Helen Hejin Park

    2017-04-01

    Full Text Available In this study, a plasma-modified process was developed to control the electrical properties of atomic layer deposition (ALD-grown vanadium dioxide (VO2, which is potentially useful for applications such as resistive switching devices, bolometers, and plasmonic metamaterials. By inserting a plasma pulse with varying H2 gas flow into each ALD cycle, the insulator-to-metal transition (IMT temperature of postdeposition-annealed crystalline VO2 films was adjusted from 63 to 78 °C. Film analyses indicate that the tunability may arise from changes in grain boundaries, morphology, and compositional variation despite hydrogen not remaining in the annealed VO2 films. This growth method, which enables a systematic variation of the electronic behavior of VO2, provides capabilities beyond those of the conventional thermal ALD and plasma-enhanced ALD.

  10. Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    NARCIS (Netherlands)

    N. den Harder,; D.C. Schram,; W. J. Goedheer,; de Blank, H. J.; M. C. M. van de Sanden,; van Rooij, G. J.

    2015-01-01

    The interaction of background molecular hydrogen with magnetized (0.4 T) high density (1–5 × 10 20  m −3 ) low temperature (∼3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center,

  11. Metallurgical and Corrosion Characterization of POST Weld Heat Treated Duplex Stainless Steel (uns S31803) Joints by Friction Welding Process

    Science.gov (United States)

    Asif M., Mohammed; Shrikrishna, Kulkarni Anup; Sathiya, P.

    2016-02-01

    The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080∘C, 1150∘C and 1200∘C with 15min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080∘C followed by water quench and at 1150∘C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov-Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100∘C and that for oil quenching was around 1140∘C. The pit depths were found to be in the range of 100nm and width of 1.5-2μm.

  12. Breakage Characteristics of Heat-Treated Limestone Determined via Kinetic Modeling

    Directory of Open Access Journals (Sweden)

    Hoon Lee

    2018-01-01

    Full Text Available In recent years, heat treatment has attracted attention as a means to improve the color sorting technology with the aim of improving the quality of low-grade limestone. The crucial stage in this technique is to evaluate the breakage characteristics of the sample materials after color sorting. In this study, the breakage characteristics of samples showing color differences after heat treatment and of the original raw material were investigated using a laboratory ball mill. The grinding was characterized using the population balance model. Specific rates of breakage and the primary breakage distribution were experimentally determined by first-order kinetic plots and the BII method. The breakage parameters were also back-calculated by employing a simplex method. Grinding of the three materials indicated first-order kinetics, and the experimental results were well described by the model with parameters obtained by back-calculating.

  13. An Experimental Investigation on Hardness and Microstructure of Heat Treated EN 9 Steel

    Science.gov (United States)

    Biswas, Palash; Kundu, Arnab; Mondal, Dhiraj

    2017-08-01

    In the modern engineering world, extensive research has led to the development of some special grades of steel, often suited for enhanced functions. EN 9 steel is one such grade, having major applications in power plants, automobile and aerospace industry. Different heat treatment processes are employed to achieve high hardness and high wear resistance, but machinability subsequently decreases. Existing literature is not sufficient to achieve a balance between hardness and machinability. The aim of this experimental work is to determine the hardness values and observe microstructural changes in EN9 steel, when it is subjected to annealing, normalizing and quenching. Finally, the effects of tempering after each of these heat treatments on hardness and microstructure have also been shown. It is seen that the tempering after normalizing the specimen achieved satisfactory results. The microstructure was also observed to be consisting of fine grains.

  14. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  15. Multi-scale structure, pasting and digestibility of heat moisture treated red adzuki bean starch.

    Science.gov (United States)

    Wang, Hongwei; Wang, Zhaoyuan; Li, Xiaoxi; Chen, Ling; Zhang, Binjia

    2017-09-01

    The pasting and digestibility of a red adzuki bean starch were simultaneously modulated by heat-moisture treatment (HMT) through altering the multi-scale structure. HMT, especially at high moisture content, could disrupt the granule integrity, semicrystalline lamellae, molecular order (crystallites) and molecular chains. Also, certain rearrangement of starch molecules occurred to form ordered structures with increased thermal stability as shown by DSC. This concomitant disordering and reassembly in the multi-scale structure converted the fractions of resistant starch (RS) and rapidly digestible starch (RDS) into that of slowly digestible starch (SDS). Furthermore, the emergence of thermally-stable orders increased the pasting temperature but suppressed the swelling of granules during heating. Hence, HMT-modified red adzuki starch may serve as a potential thickener/gelling agent with slow digestion rate for various foods. Copyright © 2017. Published by Elsevier B.V.

  16. Multiple inflammatory gastric polyps treated by endoscopic polypectomy with argon plasma coagulation in a dog.

    Science.gov (United States)

    Teshima, T; Matsumoto, H; Michishita, M; Takahashi, K; Koyama, H

    2013-05-01

    An 11-year-old spayed female miniature dachshund was evaluated for a 2-month history of chronic vomiting. Abdominal ultrasonography revealed a heterogeneous mass in the pyloric region. Contrast upper gastrointestinal radiography demonstrated impairment of gastric outflow. Endoscopic examination revealed multiple polyps at the gastric pylorus. The pyloric polyps were variable in size, sessile-shaped and pedunculated. Initially, endoscopic polypectomy was attempted, but all the polyps could not be completely resected. Thus, endoscopic polypectomy with argon plasma coagulation was performed to cauterise the lesions. The histopathological diagnosis of the lesions was inflammatory polyps, and a moderate number of Helicobacter spp. was revealed. After the argon plasma coagulation treatment, the dog did not vomit, and improvement of clinical signs was maintained for 13 months. Endoscopic polypectomy with argon plasma coagulation may be useful for mixtures of sessile and pedunculated polyps. The present report may provide a basis for further studies of argon plasma coagulation treatment for canine gastrointestinal polyps. © 2013 British Small Animal Veterinary Association.

  17. Perioperative dilutional coagulopathy treated with fresh frozen plasma and fibrinogen concentrate: a prospective randomized intervention trial.

    NARCIS (Netherlands)

    Lance, M.D.; Ninivaggi, M.; Schols, S.E.; Feijge, M.A.; Oehrl, S.K.; Kuiper, G.J.; Nikiforou, M.; Marcus, M.A.; Hamulyak, K.; Pampus, E.C.M. van; Cate, H. ten; Heemskerk, J.W.M.

    2012-01-01

    BACKGROUND AND OBJECTIVES: Treatment of dilutional coagulopathy by transfusing fresh frozen plasma (FFP) remains sub-optimal. We hypothesized that partial replacement of transfused FFP by fibrinogen concentrate results in improved coagulant activity and haemostasis. This was tested in a controlled

  18. Physiological and transcriptional response of Bacillus cereus treated with low-temperature nitrogen gas plasma

    NARCIS (Netherlands)

    Mols, J.M.; Mastwijk, H.C.; Nierop Groot, M.N.; Abee, T.

    2013-01-01

    Aims - This study was conducted to investigate the inactivation kinetics of Bacillus cereus vegetative cells upon exposure to low-temperature nitrogen gas plasma and to reveal the mode of inactivation by transcriptome profiling. Methods and Results - Exponentially growing B. cereus cells were

  19. HYDROPHOBIC RECOVERY OF REPEATEDLY PLASMA-TREATED SILICONE-RUBBER .1. STORAGE IN AIR

    NARCIS (Netherlands)

    EVERAERT, EP; VANDERMEI, HC; DEVRIES, J; BUSSCHER, HJ

    1995-01-01

    Silicone rubber is used for a wide variety of biomedical and industrial applications due to its good mechanical properties, combined with a hydrophobic surface. Frequently, however, it is desirable to alter the surface hydrophobicity of silicone rubber. Often this is done by plasma treatments but

  20. Surface characterization of plasma treated polymers for applications as biocompatible carriers

    Directory of Open Access Journals (Sweden)

    L. Bacakova

    2013-06-01

    Full Text Available The objective of this work was to determine surface properties of polymer surfaces after plasma treatment with the aim of further cytocompatibility tests. Examined polymers were poly(ethyleneterephthalate (PET, high-density polyethylene (HDPE, poly(tetrafluoro-ethylene (PTFE and poly(L-lactic acid (PLLA. Goniometry has shown that the plasma treatment was immediately followed by a sharp decrease of contact angle of the surface. In the course of ageing the contact angle increased due to the reorientation of polar groups into the surface layer of polymer. Ablation of polymer surfaces was observed during the degradation. Decrease of weight of polymer samples was measured by gravimetry. Surface morphology and roughness was studied by atomic force microscopy (AFM. The PLLA samples exhibited saturation of wettability (aged surface after approximately 100 hours, while the PET and PTFE achieved constant values of contact angle after 336 hours. Irradiation by plasma leads to polymer ablation, the highest mass loss being observed for PLLA. The changes in the surface roughness and morphology were observed, a lamellar structure being induced on PTFE. Selected polymer samples were seeded with VSMC (vascular smooth muscle cells and the adhesion and proliferation of cells was studied. It was proved that certain combination of input treatment parameters led to improvement of polymer cytocompatibility. The plasma exposure was confirmed to significantly improve the PTFE biocompatibility.

  1. Kinetics of insulin disappearance from plasma in cortisone-treated normal subjects

    DEFF Research Database (Denmark)

    Ellemann, K; Thorsteinsson, B; Fugleberg, S

    1987-01-01

    The effect of glucocorticoid excess on insulin disappearance from plasma was examined in eight normal men during cortisone treatment (50 mg orally twice daily for 4 d) and in the absence of any medication (control) in random order. Constant infusion of insulin (1-5 mU/kg/min) was used to achieve ...

  2. Nisin, Carvacrol and Their Combinations Against the Growth of Heat-Treated Listeria monocytogenes Cells

    OpenAIRE

    Esteban, María-Dolores; Palop, Alfredo

    2011-01-01

    Listeria monocytogenes is a Gram-positive microorganism responsible for one of the most serious food-borne diseases in the world, listeriosis. The aim of this study is to evaluate the combined effect of a heat pretreatment with the use of antimicrobials, nisin and carvacrol, on the growth of L. monocytogenes, and their potential uses as food preservatives. Carvacrol showed a dose-dependent inhibitory effect, while nisin did not, it decreased the growth rate of L. monocytogenes up to 20 %, and...

  3. Treated Dixiland Prunus persica Fruits: Common and Distinct Response to Heat and Cold

    OpenAIRE

    Lauxmann, Martin Alexander; Brun, Bianca; Borsani, Julia; Bustamante, Claudia Anabel; Budde, Claudio; Lara, Maria Valeria; Drincovich, Maria Fabiana

    2017-01-01

    Cold storage is extensively used to slow the rapid deterioration of peach (Prunus persica L. Batsch) fruit after harvest. However, peach fruit subjected to long periods of cold storage develop chilling injury (CI) symptoms. Post-harvest heat treatment (HT) of peach fruit prior to cold storage is effective in reducing some CI symptoms, maintaining fruit quality, preventing softening and controlling post-harvest diseases. To identify the molecular changes induced by HT, which may be associated ...

  4. Investigation on Microstructure of Heat Treated High Manganese Austenitic Cast Iron

    Directory of Open Access Journals (Sweden)

    Muzafar A.K.

    2016-01-01

    Full Text Available The effect of manganese addition and annealing heat treatment on microstructure of austenitic cast irons with high manganese content (Mn-Ni-resist were investigated. The complex relationship between the development of the solidification microstructures and buildup of microsegregation in Mn-Ni-resist was obtained by using microstructure analysis and EDS analysis. The annealing heat treatment was applied at 700°C up to 1000°C to investigate the effect of the annealing temperature on the microstructure. This experiment describes the characterization of microsegregation in Mn-Ni-reist was made by means of point counting microanalysis along the microstructure. With this method, the differences of silicon, manganese and nickel distribution in alloys solidified in the microstructure were clearly evidenced. The results show microstructure consists of flake graphite embedded in austenitic matrix and carbides. There is segregation of elements in the Late To Freeze (LTF region after solidification from melting. Manganese positively with high concentration detected in the LTF region. As for heat treatment, higher annealing temperature on the Mn-Ni-resist was reduced carbide formation. The higher annealing temperature shows carbide transformed into a smaller size and disperses through the austenitic matrix structure. The size of carbide decreased with increasing annealing temperature as observed in the microstructure.

  5. Microstructural study and numerical simulation of phase decomposition of heat treated Co–Cu alloys

    Directory of Open Access Journals (Sweden)

    A.M. Mebed

    2014-12-01

    Full Text Available The influence of heat treatment on the phase decomposition and the grain size of Co–10 at% Cu alloy were studied. Few samples were aged in a furnace for either 3 or 5 h and then quenched in iced water. The materials and phase compositions were investigated using energy dispersive spectrometry and X-ray diffraction techniques. X-ray diffraction analysis showed that the samples contained Co, Cu, CuO, CoCu2O3, CoCuO2 phases in different proportions depending on the heat treatment regimes. The formation of dendrite Co phase rendered the spinodal decomposition while the oxidations prevent the initiation of the spinodal decomposition even for a deep long aging inside the miscibility gap. Since the Bragg reflections from different phases of Co–Cu alloy significantly overlap, the crystal structural parameters were refined with FULLPROF program. The shifts in the refined lattice constants (a, b and c, the space group and the grain size were found to be phase- and heat treatment-dependant. Two-dimensional computer simulations were conducted to study the phase decomposition of Co–Cu binary alloy systems. The excess free energy as well as the strain energy, without a priori knowledge of the shape or the position of the new phase, was precisely evaluated. The results indicate that the morphology and the shape of the microstructure agree with SEM observation.

  6. Heat tolerance of CCl4-treated animals and its modification by some agents

    Science.gov (United States)

    Ahujarai, P. L.; Bhatia, B.

    1984-06-01

    The rate of rise of body temperature and the survival time on exposure to a temperature of 40°C was recorded in normal Wistar rats and those given ip injection of 1 ml/kg BW of CCl4 24 h earlier with and without administration of (a) garlic oil (0.006 ml in arachis oil) 3 days earlier, (b) Dl-α-tocopherol (450 mg/kg BW) 48 h before CCl4 (c) glucose (300 mg in 2 ml saline) 30 min before exposure to heat stress. Significant protection against the reduction in heat tolerance by CCl4 was provided by glucose and garlic but not by vitamin E. The reduction in heat tolerance by CCl4 was attributed to the hypoglycemia caused by it, followed by breakdown of the thermoregulatory centres in the hypothalamus. The protective effect of glucose was attributed to the restoration of blood glucose levels and that of the garlic oil to its protective effect on hepatocytes against CCl4 toxicity.

  7. Enhancing the radiative heat dissipation from high-temperature SF6 gas plasma by using selective absorbers

    Science.gov (United States)

    Tsuda, Shinichiro; Horinouchi, Katsuhiko; Yugami, Hiroo

    2017-09-01

    Radiative cooling accomplished by tailoring the properties of spectral thermal emission is an interesting method for energy harvesting and high-efficiency passive cooling of terrestrial structures. This strategy, however, has not been extended to cool enclosed heat sources, common in engineering applications, and heat sources in high-temperature environments where radiative transfer plays a dominant role. Here we show a radiative cooling scheme for a high-temperature gaseous medium, using radiative heat extraction with selective absorbers matched to the gas-selective emission properties. We used SF6 gas plasma as a model, because this gas is used in gas circuit breakers, which require effective cooling of the hot insulating gas. Our theoretical analysis confirms that a copper photonic absorber, matched to the ultraviolet-to-near-infrared-selective emission properties of the gas, effectively extracts heat from the high-temperature gas plasma and lowers the radiative equilibrium gas temperature by up to 1270 K, exceeding both blackbody-like and metallic surfaces in practical operating conditions.

  8. Corrosion resistance, surface mechanical properties, and cytocompatibility of plasma immersion ion implantation-treated nickel-titanium shape memory alloys.

    Science.gov (United States)

    Yeung, K W K; Poon, R W Y; Liu, X Y; Ho, J P Y; Chung, C Y; Chu, P K; Lu, W W; Chan, D; Cheung, K M C

    2005-11-01

    Nickel-titanium shape memory alloys are promising materials in orthopedic applications because of their unique properties. However, for prolonged use in a human body, deterioration of the corrosion resistance of the materials becomes a critical issue because of the increasing possibility of deleterious ions released from the substrate to living tissues. We have investigated the use of nitrogen, acetylene, and oxygen plasma immersion ion implantation (PIII) to improve the corrosion resistance and mechanical properties of the materials. Our results reveal that the corrosion resistance and mechanical properties such as hardness and elastic modulus are significantly enhanced after surface treatment. The release of nickel is drastically reduced as compared with the untreated control. In addition, our in vitro tests show that the plasma-treated surfaces are well tolerated by osteoblasts. Among the three types of samples, the best biological effects are observed on the nitrogen PIII samples.

  9. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    Directory of Open Access Journals (Sweden)

    Werner E.

    2010-06-01

    Full Text Available To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a shows the forged part and 1(b the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and

  10. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    Science.gov (United States)

    Regener, B.; Krempaszky, C.; Werner, E.

    2010-06-01

    To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a) shows the forged part and 1(b) the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and removing the alpha-case by

  11. Anti-Listeria monocytogenes activity of heat-treated lyophilized pomegranate juice in media and in ground top round beef.

    Science.gov (United States)

    Lucas, Danae L; Were, Lilian M

    2009-12-01

    Heat treatment can affect antimicrobial activity of plant by-products by altering phenolic content and composition and forming melanoidins. The antilisterial efficacy of heat-treated and unheated lyophilized pomegranate juice (LPJ) was determined. The LPJ was heated at 100 degrees C for 0, 30, 60, or 120 min and added at 2% (wt/wt) to ground top round beef, which was then cooked and inoculated with individual L. monocytogenes strains. Samples of meat stored at 5 degrees C were taken at days 1, 8, 14, and 21 and plated onto Oxford medium for enumeration of bacteria. The MIC of LPJ was determined, and agar well diffusion assays were conducted. Against five L. monocytogenes strains, LPJ had a MIC of 1.50 to 1.75% (wt/vol) and 16.8- to 20.0-mm zones of inhibition. In general, no significant differences in L. monocytogenes levels between the various treatments, including the commercial sodium lactate-sodium diacetate combination, were detected at days 1 and 8. The LPJ (0, 30, 60, and 120 min of heating) significantly inhibited growth of all five L. monocytogenes strains in refrigerated ground cooked beef by 1.80 to 4.61 log CFU/g at day 21. Heating did not negatively impact LPJ antilisterial activity. Addition of LPJ lowered pH values by 0.3 units. The L*, a*, and b* values of cooked ground beef with LPJ changed during the study by 3.4 to 4.43, 0.44 to 0.8, and 0.57 to 1.36 units, respectively, compared with the control. This is the first investigation to confirm pomegranate's antilisterial activity in vitro and in ground beef.

  12. Efavirenz Plasma Concentrations and HIV Viral Load in HIV/AIDS-tuberculosis Infection Patients Treated with Rifampicin

    Directory of Open Access Journals (Sweden)

    Nina Mariana

    2016-09-01

    Full Text Available Aim:to determine the effect of a rifampicin-containing tuberculosis regimen on efavirenz plasma concentrations and viral load in HIV/AIDS-Tuberculosis infection patients who received efavirenz-based antiretroviral therapy. Methods:plasma efavirenz concentrations and HIV viral load were measured in HIV/AIDS patients treated with 600 mg efavirenz-based antiretroviral for 3 to 6 months and in HIV/AIDS-Tuberculosis infection patients treated with similar antiretroviral regimen plus rifampicin-containing antituberculosis in Sulianti Saroso Infectious disease Hospital, Jakarta. Plasma efavirenz concentration in both groups were compared using Mann-Whitney test, while proportion of patients with viral load >40 copy/mL were analyzed with chi-square test. Results:forty five patients (27 with HIV/AIDS and 18 with HIV/AIDS-Tuberculosis infections were recruited during the period of February to May 2015. The median efavirenz plasma concentration obtained from HIV/AIDS group was 0,680 mg/L(range 0,24 to 5,67 mg/L and that obtained from HIV/AIDS-Tuberculosis group was 0.685 mg/L (0.12 -2.23 mg/L which was not significantly different statistically. The proportion of patients with viral load ≥40 copies/mL after 3-6 months of ARV treatment in the HIV/AIDS group was 51.9%, and in the HIV/AIDS-Tuberculosis group was 72.2%, which was not significantly different statistically (Chi Square test, p=0.291. Conclusion:plasma efavirenz concentration in HIV/AIDS-tuberculosis patients receiving antiretroviral and rifampicin is not significantly different from that on HIV/AIDS patients without tuberculosis. Proportion of patients with viral load of >40 copy/mL is higher in HIV/AIDS-tuberculosis patients receiving rifampicin compared to HIV/AIDS patients that not receive rifampicin. However, this difference did not reach statistical significance. Confirmatory studies with bigger sample size are needed to clarify the influence of rifampicin on plasma level ofefavirenzand and

  13. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  14. The role of parallel heat transport in the relation between upstream scrape-off layer widths and target heat flux width in H-mode plasmas of NSTX.

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, J W; Boedo, J A; Maingi, R; Soukhanovskii, V A

    2009-01-05

    The physics of parallel heat transport was tested in the Scrape-off Layer (SOL) plasma of the National Spherical Torus Experiment (NSTX) [M. Ono, et al., Nucl. Fusion 40, 557 (2000) and S. M. Kaye, et al., Nucl. Fusion 45, S168 (2005)] tokamak by comparing the upstream electron temperature (T{sub e}) and density (n{sub e}) profiles measured by the mid-plane reciprocating probe to the heat flux (q{sub {perpendicular}}) profile at the divertor plate measured by an infrared (IR) camera. It is found that electron conduction explains the near SOL width data reasonably well while the far SOL, which is in the sheath limited regime, requires an ion heat flux profile broader than the electron one to be consistent with the experimental data. The measured plasma parameters indicate that the SOL energy transport should be in the conduction-limited regime for R-R{sub sep} (radial distance from the separatrix location) < 2-3 cm. The SOL energy transport should transition to the sheath-limited regime for R-R{sub sep} > 2-3cm. The T{sub e}, n{sub e}, and q{sub {perpendicular}} profiles are better described by an offset exponential function instead of a simple exponential. The conventional relation between mid plane electron temperature decay length ({lambda}{sub Te}) and target heat flux decay length ({lambda}{sub q}) is {lambda}{sub Te} = 7/2{lambda}{sub q}, whereas the newly-derived relation, assuming offset exponential functional forms, implies {lambda}{sub Te} = (2-2.5){lambda}{sub q}. The measured values of {lambda}{sub Te}/{lambda}{sub q} differ from the new prediction by 25-30%. The measured {lambda}{sub q} values in the far SOL (R-R{sub sep} > 2-3cm) are 9-10cm, while the expected values are 2.7 < {lambda}{sub q} < 4.9 cm (for sheath-limited regime). We propose that the ion heat flux profile is substantially broader than the electron heat flux profile as an explanation for this discrepancy in the far SOL.

  15. Plasma TIMP-1 levels and treatment outcome in patients treated with XELOX for metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Frederiksen, C; Qvortrup, C; Christensen, Ib Jarle

    2011-01-01

    and oxaliplatin) as first-line treatment. PATIENTS AND METHODS: One hundred and twenty patients were included. Blood samples were collected before treatment and 3 weeks later before the next treatment cycle. Plasma TIMP-1 and serum CEA levels were correlated to treatment outcome. RESULTS: No significant...... associations between baseline TIMP-1 or CEA levels and best response to treatment or progression-free survival (PFS) could be demonstrated. In contrast, high baseline plasma TIMP-1 levels were associated with poor overall survival (OS), P = 0.008, hazard ratio (HR) = 1.80 [95% confidence interval (CI): 1.......03). Conclusions: Both high baseline and subsequent increase in TIMP-1 levels were associated with shorter OS in patients with mCRC receiving XELOX as first-line treatment, whereas baseline TIMP-1 levels were not associated with response or PFS following XELOX treatment....

  16. Overcoming technical challenges when treating atypical hemolytic uremic syndrome with therapeutic plasma exchange.

    Science.gov (United States)

    Zimbudzi, Edward

    2013-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a very rare, life-threatening, progressive disease that frequently has a genetic component and in most cases is triggered by an uncontrolled activation of the complement system. Successful treatment of aHUS with plasma infusions and therapeutic plasma exchange (TPE) is well reported. TPE has been the treatment of choice in most adult patients with aHUS. However, due to severe hemolysis, which is common among aHUS patients, there are some technical challenges that can affect TPE treatment such as the continuous activation of the blood leak alarm due to hemolysis. Our experience shows that such patients can be managed better on a centrifuge based TPE machine compared to a membrane based TPE machine.

  17. Plasma exchange successfully treats central pontine myelinolysis after acute hypernatremia from intravenous sodium bicarbonate therapy

    OpenAIRE

    Chang, Kyung Yoon; Lee, In-Hee; Kim, Gi Jun; Cho, Kangwon; Park, Hoon Suk; Kim, Hyung Wook

    2014-01-01

    Background Osmotic demyelination syndrome (ODS) primarily occurs after rapid correction of severe hyponatremia. There are no proven effective therapies for ODS, but we describe the first case showing the successful treatment of central pontine myelinolysis (CPM) by plasma exchange, which occurred after rapid development of hypernatremia from intravenous sodium bicarbonate therapy. Case presentation A 40-year-old woman presented with general weakness, hypokalemia, and metabolic acidosis. The p...

  18. Platelet-Rich-Plasma Injections in Treating Lateral Epicondylosis: a Review of the Recent Evidence.

    Science.gov (United States)

    Murray, D J; Javed, S; Jain, N; Kemp, S; Watts, A C

    2015-12-01

    Lateral epicondylosis is common, with various treatment modalities. Platelet-rich-plasma injections from autologous blood have recently been used in centres worldwide for the treatment of tennis elbow. We review and present the recent published evidence on the effectiveness of PRP injections for lateral epicondylosis. Nine studies met our inclusion criteria including 6 RCT's for the purpose of analysis. PRP injections have an important and effective role in the treatment of this debilitating pathology, in cases where physiotherapy has been unsuccessful.

  19. Behavior of divertor and first wall armour materials at plasma heat fluxes relevant to ITER ELMs and disruptions

    Directory of Open Access Journals (Sweden)

    D.V. Kovalenko

    2017-08-01

    Full Text Available The paper presents the main results of numerous experiments carried out over the past 10 years at QSPA-T and QSPA-Be plasma guns in support of ITER. Special targets made of pure W, W-1%La2O3 and two types of Be (TGP-56FW and S65-C were tested under the series of repeated plasma stream and photonic flux impact. Maximum heat load on the target surface was up to 2.5MJ/m2 in the case of plasma testing and was equal to 0.5MJ/m2 in the case of photonic flux testing. Pulse waveform was rectangular with tpulse= 0.5ms. It was found that the main erosion mechanisms of W and Be under plasma stream impact are the melt layer movement, the ejection of droplets and the cracks formation. As a result of repeated photonic fluxes a regular, “corrugated” structure are eventually formed on the Be target surface. Study of erosion products of W formed under plasma stream impact on the W target has shown that the D/W atomic ratio in the deposited W films during pulsed events may be the same or even higher than that for stationary processes.

  20. Association of Plasma Heat Shock Protein 70, Interleukin 6, and Creatine Kinase Concentrations in a Healthy, Young Adult Population

    Directory of Open Access Journals (Sweden)

    Carmen Contreras-Sesvold

    2015-01-01

    Full Text Available Variations of baseline plasma concentrations of creatine kinase (CK, heat shock protein 70 (HSP70, and interleukin 6 (IL-6 have been reported. We report categorical associations which may influence these protein levels. Methods. Blood was harvested for DNA and plasma protein analysis from 567 adults. Mean protein levels of CK, HSP70, and IL-6 were compared by sex, ethnicity, genetic variants—CKMM Nco1 (rs1803285, HSPA1B +A1538G (rs1061581, and IL6 G-174C (rs1800795—self-reported history of exercise, oral contraceptive use, and dietary supplement use. Results. SNP major allele frequencies for CKMM, HSPA1B, and IL6 were 70% A, 57% A, and 60%. Mean CK statistically differed by sex, ethnicity, oral contraceptives, and caffeine. Plasma HSP70 differed by caffeine and protein. Mean IL-6 concentration differed by sex, ethnicity, and genotype. Plasma IL-6 was significantly lower (29% in males (1.92 ± 0.08 pg/mL and higher (29% among African Americans (2.85 ± 0.50 pg/mL relative to the others. IL6 G-174C GG genotype (2.23 ± 0.14 pg/mL was 19% greater than CG or CC genotypes. Conclusion. Differences in baseline CK and IL-6 plasma protein concentrations are associated with genetics, sex, ethnicity, and the use of oral contraceptives, caffeine, and protein supplements in this young and athletic population.

  1. Hepatic heat shock protein 70 and plasma cortisol levels in rainbow trout after tagging with a passive integrated transponder

    Science.gov (United States)

    Feldhaus, J.W.; Heppell, S.A.; Mesa, M.G.; Li, H.

    2008-01-01

    This study examined the potentially stressful effects of tagging juvenile rainbow trout Oncorhynchus mykiss with passive integrated transponder (PIT) tags by measuring short-term (plasma concentrations of cortisol and hepatic heat shock protein 70 (hsp70). In a laboratory experiment, plasma cortisol levels were measured in fish before they were tagged (0 h) and at 2, 6, 24, and 120 h after being tagged. Hepatic hsp70 levels were measured at 0, 24, and 120 h. All results were compared with those for fish that were handled but not tagged. Plasma cortisol levels were significantly higher in both treatment groups (tagged and handled but not tagged) at 2 h than in the pretreatment groups (0 h). Plasma cortisol levels in the treatment groups returned to near pretreatment levels by 6 h. However, there was a significant difference in plasma cortisol levels between treatment groups at 6 h. There were no significant differences in hepatic hsp70 levels among the two treatment groups, and hepatic hsp70 levels did not change through time. Our results suggest that PIT tagging is a low-impact tagging procedure for juvenile salmonids. ?? Copyright by the American Fisheries Society 2008.

  2. Understanding and suppressing the near scrape-off layer heat flux feature in inboard-limited plasmas in TCV

    Science.gov (United States)

    Nespoli, F.; Labit, B.; Furno, I.; Horacek, J.; Tsui, C. K.; Boedo, J. A.; Maurizio, R.; Reimerdes, H.; Theiler, C.; Ricci, P.; Halpern, F. D.; Sheikh, U.; Verhaegh, K.; Pitts, R. A.; Militello, F.; The EUROfusion MST1 Team; The TCV Team

    2017-12-01

    In inboard-limited plasmas, the scrape-off layer (SOL) shows two regions: the near SOL, extending a few mm from the last closed flux surface (LCFS), characterized by a steep gradient of the parallel heat flux radial profile, and a far SOL, typically some cm wide, with flatter heat flux profiles. The physics of the near SOL is investigated in TCV with two series of experiments featuring deuterium and helium plasmas, in which the plasma current, density and elongation have been varied. The parallel heat flux profiles are measured on the limiter by means of infrared thermography. For the first time, the near SOL is reported to disappear for low plasma current or at high density, for values of the SOL collisionality ν^*_SOL corresponding to a conduction-limited regime. The power in the near SOL Δ P_SOL is shown to decrease with the normalized Spitzer resistivity ν as Δ P_SOL\\proptoν-1 . The floating potential profiles, measured at the limiter using flush-mounted Langmuir probes (LP), show the presence of non-ambipolar currents, and their relation to the presence of a velocity shear layer is discussed. The shearing rate is shown to strictly correlate with the power in the near SOL Δ P_SOL , consistently with a recent theoretical model. Measurements of the near SOL on the Low Field Side (LFS) are performed using a reciprocating Langmuir probe (RP). The near SOL is reported to vanish simultaneously at the LFS and at the limiter. The near and far SOL widths are compared with the predictions from existing theoretical models, to which empirical corrections with resistivity and elongation are proposed.

  3. Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion

    Science.gov (United States)

    Pantoja, M.; Encinas, N.; Abenojar, J.; Martínez, M. A.

    2013-09-01

    Polypropylene is one of the most used polymers due to its lightweight and recyclability properties, among others. However, its poor characteristics regarding surface energy and lack of polar functional groups have to be overcome to perform adhesion processes. The main objective of this work is to improve the adhesion behavior of polypropylene by combining atmospheric pressure plasma surface activation and silane adhesion promoter. Tetraethoxysilane hydrolysis and condensation are followed through infrared spectroscopy by attenuated total reflectance in order to set the coating conditions. Contact angle measurements and surface energy calculations as well as infrared and X-ray photoelectron spectroscopy are used to evaluate polymer chemical modifications. Morphological changes are studied through scanning electron and atomic force microscopy. Results show the ability of plasma treatment to create active oxydised functional groups on the polypropylene surface. These groups lead to a proper wetting of the polymer by the silane. Shear strength of single-lap bonding of polypropylene with a polyurethane adhesive suffers a significant improvement when the silane coating is applied on previously plasma activated samples. It has been also demonstrated that the silane curing conditions play a decisive role on the adhesion response. Finally, the stability of the silane solution is tested up to 30 days, yielding diminished but still acceptable adhesion strength values.

  4. Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics

    Science.gov (United States)

    Su, Wei-Jhih; Chang, Hsuan-Chen; Honda, Shin-ichi; Lin, Pao-Hung; Huang, Ying-Sheng; Lee, Kuei-Yi

    2017-08-01

    Chemical doping with hetero-atoms is an effective method used to change the characteristics of materials. Nitrogen doping technology plays a critical role in regulating the electronic properties of graphene. Nitrogen plasma treatment was used in this work to dope nitrogen atoms to modulate multilayer graphene electrical properties. The measured I-V multilayer graphene-base field-effect transistor characteristics (GFETs) showed a V-shaped transfer curve with the hole and electron region separated from the measured current-voltage (I-V) minimum. GFETs fabricated with multilayer graphene from chemical vapor deposition (CVD) exhibited p-type behavior because of oxygen adsorption. After using different nitrogen plasma treatment times, the minimum in I-V characteristic shifted into the negative gate voltage region with increased nitrogen concentration and the GFET channel became an n-type semiconductor. GFETs could be easily fabricated using this method with potential for various applications. The GFET transfer characteristics could be tuned precisely by adjusting the nitrogen plasma treatment time.

  5. Overcoming technical challenges when treating atypical hemolytic uremic syndrome with therapeutic plasma exchange

    Directory of Open Access Journals (Sweden)

    Zimbudzi E

    2013-11-01

    Full Text Available Edward Zimbudzi Department of Nephrology, Monash Health, Monash Medical Centre, Victoria, Australia Abstract: Atypical hemolytic uremic syndrome (aHUS is a very rare, life-threatening, progressive disease that frequently has a genetic component and in most cases is triggered by an uncontrolled activation of the complement system. Successful treatment of aHUS with plasma infusions and therapeutic plasma exchange (TPE is well reported. TPE has been the treatment of choice in most adult patients with aHUS. However, due to severe hemolysis, which is common among aHUS patients, there are some technical challenges that can affect TPE treatment such as the continuous activation of the blood leak alarm due to hemolysis. Our experience shows that such patients can be managed better on a centrifuge based TPE machine compared to a membrane based TPE machine. Keywords: atypical hemolytic uremic syndrome, aHUS, blood leak alarm, centrifuge based TPE, membrane based TPE, therapeutic plasma exchange, TPE

  6. NMR-based plasma metabolomic discrimination for male fertility assessment of rats treated with Eurycoma longifolia extracts.

    Science.gov (United States)

    Ebrahimi, Forough; Ibrahim, Baharudin; Teh, Chin-Hoe; Murugaiyah, Vikneswaran; Chan, Kit-Lam

    2017-06-01

    Male infertility is one of the leading causes of infertility which affects many couples worldwide. Semen analysis is a routine examination of male fertility status which is usually performed on semen samples obtained through masturbation that may be inconvenient to patients. Eurycoma longifolia (Tongkat Ali, TA), native to Malaysia, has been traditionally used as a remedy to boost male fertility. In our recent studies in rats, upon the administration of high-quassinoid content extracts of TA including TA water (TAW), quassinoid-rich TA (TAQR) extracts, and a low-quassinoid content extract including quassinoid-poor TA (TAQP) extract, sperm count (SC) increased in TAW- and TAQR-treated rats when compared to the TAQP-treated and control groups. Consequently, the rats were divided into normal- (control and TAQP-treated) and high- (TAW- and TAQR-treated) SC groups [Ebrahimi et al. 2016]. Post-treatment rat plasma was collected. An optimized plasma sample preparation method was developed with respect to the internal standards sodium 3- (trimethylsilyl) propionate- 2,2,3,3- d4 (TSP) and deuterated 4-dimethyl-4-silapentane-1-ammonium trifluoroacetate (DSA). Carr-Purcell-Meibum-Gill (CPMG) experiments combined with orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to evaluate plasma metabolomic changes in normal- and high-SC rats. The potential biomarkers associated with SC increase were investigated to assess fertility by capturing the metabolomic profile of plasma. DSA was selected as the optimized internal standard for plasma analysis due to its significantly smaller half-height line width (W h/2 ) compared to that of TSP. The validated OPLS-DA model clearly discriminated the CPMG profiles in regard to the SC level. Plasma profiles of the high-SC group contained higher levels of alanine, lactate, and histidine, while ethanol concentration was significantly higher in the normal-SC group. This approach might be a new alternative applicable to

  7. Biotreatment effects in films and blends of PVC/PCL previously treated with heat

    Directory of Open Access Journals (Sweden)

    Adriana de Campos

    2005-03-01

    Full Text Available Studies were carried out on biomodification and the pre-heat (130(0C influence on Poly (vinyl chloride / Poly (epsilon-caprolactone films. The results showed that heat pre-treatment improved the biomodification of PVC films, but it inhibited the biomodification of the PVC/PCL film.Poli épsilon-caprolactona é um importante polímero biodegradável e miscível com o PVC, um polímero sintético industrial, termo susceptível e não biodegradável. A blenda PVC/PCL é importante quanto a suas propriedades mecânicas e biodegradabilidade. Neste trabalho foi analisada a biomodificação da blenda PVC/PCL pré-tratada com calor (130ºC, através da espectroscopia UV-Vis. Os resultados mostraram que o pré-tratamento com calor pode facilitar a biomodificação em filmes de PVC, mas pode inibir a biomodificação nos filmes da blenda PVC/PCL.

  8. Nisin, Carvacrol and Their Combinations Against the Growth of Heat-Treated Listeria monocytogenes Cells

    Directory of Open Access Journals (Sweden)

    María-Dolores Esteban

    2011-01-01

    Full Text Available Listeria monocytogenes is a Gram-positive microorganism responsible for one of the most serious food-borne diseases in the world, listeriosis. The aim of this study is to evaluate the combined effect of a heat pretreatment with the use of antimicrobials, nisin and carvacrol, on the growth of L. monocytogenes, and their potential uses as food preservatives. Carvacrol showed a dose-dependent inhibitory effect, while nisin did not, it decreased the growth rate of L. monocytogenes up to 20 %, and it increased lag time for approx. 25 % at any of the concentrations tested (0.13–0.39 μM. When both antimicrobials were combined, a synergistic effect was observed. This effect was further increased when they were combined with a heat pretreatment for 15 min at 55 °C, where no growth was observed for at least 15 days, even at the lowest concentration tested. The effect was proved both in tryptic soy broth and in carrot juice. This study indicates the potential use of carvacrol and nisin applied simultaneously for preservation of minimally processed foods.

  9. Safe corrosion inhibitor for treating cooling water on heat power engineering plants

    Science.gov (United States)

    Nikolaeva, L. A.; Khasanova, D. I.; Mukhutdinova, E. R.; Safin, D. Kh.; Sharifullin, I. G.

    2017-08-01

    Heat power engineering (HPE) consumes significant volumes of water. There are, therefore, problems associated with corrosion, biological fouling, salt deposits, and sludge formation on functional surfaces of heat power equipment. One of the effective ways to solve these problems is the use of inhibitory protection. The development of new Russian import-substituting environmentally friendly inhibitors is very relevant. This work describes experimental results on the OPC-800 inhibitor (TU 2415-092-00206 457-2013), which was produced at Karpov Chemical Plant and designed to remove mineral deposits, scale, and biological fouling from the surfaces of water-rotation node systems on HPE objects. This reagent is successfully used as an effective corrosion inhibitor in the water recycling systems of Tatarstan petrochemical enterprises. To save fresh make-up water, the circulating system is operated in a no-blow mode, which is characterized by high evaporation and salt content coefficients. It was experimentally found that corrosion rate upon treatment of recycled water with the OPC-800 inhibitor is 0.08-0.10 mm/year. HPE mainly uses inhibitors based on oxyethylidene diphosphonic (OEDPA) and nitrilotrimethylphosphonic (NTMPA) acids. The comparative characteristic of inhibition efficiency for OPC-800 and OEDF-Zn-U2 is given. The results obtained indicate that OPC-800 can be used as an inhibitor for treatment of cooling water in HPE plants. In this case, it is necessary to take into account the features of water rotation of a thermal power plant.

  10. Characterisation of electrodeposited and heat-treated Ni-Mo-P coatings

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Regis L.; Casciano, Paulo N.S.; Correia, Adriana N.; Lima-Neto, Pedro de, E-mail: pln@ufc.br [Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, Fortaleza, CE (Brazil)

    2012-07-01

    The electrodeposition, hardness and corrosion resistance properties of Ni-Mo-P coatings were investigated. Characterisations of the electrodeposited coatings were carried out using scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis techniques. Corrosion tests were performed at room temperature in 10-1 mol dm-3 NaCl solutions and by potentiodynamic linear polarisation. Amorphous Ni-Mo-P coatings were successfully obtained by electrodeposition using direct current. The coating composition showed to be dependent on the bath composition, current density and bath temperature. Both P and Mo contents contribute for the hardness properties of the Ni-Mo-P coatings and the absence of cracks is a requirement to produce electrodeposited Ni-Mo-P coatings with good hardness properties. The hardness values increase with heat-treatment temperature due to the precipitation of Ni, Ni{sub 3}P and NiMo phases during the heat treatment. The corrosion resistance of the electrodeposited Ni-Mo-P amorphous coatings increases with P content in the layer. Among the electrodeposited Ni-Mo-P amorphous coatings, Ni{sub 78}Mo{sub 10}P{sub 12} presented the best hardness and corrosion-resistance properties. The results showed that the addition of P is beneficial for the hardness and corrosion resistance properties of the Ni-Mo-based coatings. (author)

  11. Tribological Response of Heat Treated AISI 52100 Steels Against Steel and Ceramic Counterparts

    Directory of Open Access Journals (Sweden)

    Türedi E.

    2017-09-01

    Full Text Available AISI 52100 bearing steels are commonly used in applications requiring high hardness and abrasion resistance. The bearing steels are working under dynamic loads in service conditions and their toughness properties become important. In order to provide the desired mechanical properties, various heat treatments (austenizing, quenching and tempering are usually applied. In this study, AISI 52100 bearing steel samples were austenized at 900°C for ½ h and water quenched to room temperature. Then tempering was carried out at 795°C, 400°C and 200°C for ½ h. In order to investigate the effect of heat treatment conditions on wear behavior, dry friction tests were performed according to ASTM G99-05 Standard with a ‘ball-on-disk’ type tribometer. The samples were tested against steel and ceramic counterparts using the parameters of 100 m distance and 30 N load and 0.063 m/s rotational speed. After wear test, the surface characterization was carried out using microscopy. Wear loss values were calculated using a novel optical method on both flat and counterpart specimens.

  12. Research on Heating, Instabilities, Turbulence and RF Emission from Electric Field Dominated Plasmas

    Science.gov (United States)

    1989-07-01

    plasma chemistry. September 2 Prof. J. Reece Roth, UTK: "Mysteries of Plasma Physics: Part I- Ball Lightning ". This lecture is the first in a series...designed to explore some classic unsolved problems in plasma physics. Some physical mechanisms for ball lightning will be explored in lightof available...requirements and schedule will be reviewed. Prof. J. Reece Roth, UTK: " Ball Lightning as a Route to Fusion Energy". This is a dress rehearsal fur a January 17

  13. Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates.

    Science.gov (United States)

    Farraj, Yousef; Smooha, Ariel; Kamyshny, Alexander; Magdassi, Shlomo

    2017-03-15

    The use of Cu-formate-2-amino-2-methyl-1-propanol ink and low-pressure plasma for the formation of highly conductive patterns on heat sensitive plastic substrates was studied. It was found that plasma results in decomposition of copper complex to form metallic copper without heating at high temperatures. Ink composition and plasma parameters (predrying conditions, plasma treatment duration, gas type, and flow rate) were optimized to obtain uniform conductive metallic films. The morphology and electrical characteristics of these films were evaluated. Exposing the printed copper metallo-organic decomposition (MOD) ink to 160 W plasma for 8 min yielded resistivity as low as 7.3 ± 0.2 μΩ cm, which corresponds to 23% bulk copper conductivity. These results demonstrate the applicability of MOD inks and plasma treatment to obtain highly conductive printed patterns on low-cost plastic substrates and 3D printed polymers.

  14. Determination of Viable Salmonella Typhimurium Cells in Heat Treated Milk By PMA/Real-Time PCR Method

    Directory of Open Access Journals (Sweden)

    Zülal Kesmen

    2017-06-01

    Full Text Available Applying different technological processes during the production of food has a lethal effect on the bacteria but DNA of these bacterial strains may cause false positive results when detected by real time PCR technique because they preserve their existence for a certain period of time. To overcome this shortcoming of the real time PCR technique, a new method has been developed in recent years, based on the removal of dead cell DNA from the medium by treatment with Propodium Monoazide (PMA before DNA extraction. In this study, real-time PCR method was combined with PMA application for the detection of live cells of Salmonella Typhimurium in heat treated milk samples. For this purpose, milk samples inoculated with S. Tyhimurium were heat treated at different temperatures (60, 65, 70 and 75°C and times (15, 60, 300, 900 sec and number of live bacteria was determined comparatively by direct real-time PCR, PMA/real-time PCR and conventional cultural method. As a result, unlike the direct real time PCR technique, PMA/real-time PCR method prevents to a certain extent of false positive results from dead cells at all tested temperatures and times but higher results were obtained from PMA/real-time PCR method when compared to conventional cultural results. Therefore, further studies should be carried out to optimize the conditions of the PMA application in order to eliminate the high positive results detected by the PMA / real-time PCR method

  15. Compressive strength measurements of hybrid dental composites treated with dry heat and light emitting diodes (LED post cure treatment

    Directory of Open Access Journals (Sweden)

    Jenny Krisnawaty

    2014-11-01

    Full Text Available Hybrid composites are mostly used on large cavities as restorative dental materials, whether it is used directly or indirectly. The mechanical properties of composite resin shall increase if it is treated with post cure treatment. The aim of this study is to evaluate compressive strength differences between dry heat and Light Emitting Diodes (LED treatment on the hybrid dental composite. A quasi-experimental was applied on this research with a total of 30 samples that were divided into two groups. Each sample was tested using LLOYD Universal Testing Machine with 1 mm/min speed to evaluate the compressive strength. The compressive strength results were marked when the sample was broken. The results of two groups were then analyzed using t-test statistical calculation. The results of this study show that post cure treatment on hybrid composite using LED light box (194.138 MPa was lower than dry heat treatment (227.339 MPa, which was also significantly different from statistical analysis. It can be concluded that compressive strength of LED light box was lower than dry heat post-cure treatment on the hybrid composite resin.

  16. Trace metals content (contaminants) as initial indicator in the quality of heat treated palm oil whole extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fauzi, Noor Akhmazillah bt [Chemical and Bioprocess Department, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia); Sarmidi, Mohd Roji [Chemical Engineering Pilot Plant, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2011-07-01

    An investigation was carried out on the effect of different sterilization time on the trace metals concentration of palm oil whole extract. Palm fruits were collected, cleaned and sterilized for 0, 20, 40 and 60 minutes. The kernels were then stripped from the sterilized fruits to get the pulp and later the pulp was pressed using small scale expeller. The resulting puree was centrifuge at 4000 rpm for 20 minutes. The palm oil whole extract were then collected and trace metals analysis was conducted using Inductively Couple Plasma-Mass Spectrometry (ICP-MS). The result showed that the highest yield was obtained at 40 minutes of sterilization with 19.9 {+-} 0.21 % (w/w). There was no significant different (p < 0.5) in total trace metals content between the degrees of the heat treatment. Na+ was found as the highest trace metals content in the extract with mean concentration ranging from 1.05 {+-} 0.03 ppm to 2.36 {+-} 0.01 ppm. 40 minutes of heating time was predicted to have good oil quality due to higher content in trace metals that inhibit the lipase enzyme activity.

  17. Role of Parallel and Oblique Ion-Cyclotron Waves in Heating Ions in an Inhomogeneous Expanding Solar Wind Plasma

    Science.gov (United States)

    Ofman, L.; Ozak, N. O.; Vinas, A. F.

    2014-12-01

    In-situ observations of fast solar wind streams at distances of 0.29 AU and beyond by Helios and recently by MESSENGER, and at ~1 AU by STEREO, ACE, and Wind spacecraft provide direct evidence for the presence of turbulent Alfvén wave spectrum and of left-hand polarized ion-cyclotron waves as well as He++ - proton drift in the solar wind plasma. The waves and the super-Alfvénic drift can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Measurements indicate that proton velocity distributions are generally non-Maxwellian with evidence for beams, while remote sensing observations of coronal holes have shown that heavy ions are hotter than protons with a temperature anisotropy greater than one (Ti,perp> Ti,||). In addition to the anisotropy, it is expected that the solar wind will be inhomogeneous on decreasing scales approaching the Sun. Here we use a 2.5 D hybrid code and extend previous work to study the heating of solar wind ions (H+, He+) in an inhomogeneous plasma background. We explore the effects of an initial ion drift and of a turbulent wave spectrum on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background solar wind. Using the 2D hybrid model we find that inhomogeneities in the plasma generate significant power of oblique waves in the solar wind plasma, in addition to enhanced heating compared to the homogenous solar wind case. We find that the cooling effect due to the solar wind expansion is only significant when sub-Alfvénic drifts are explored. On the other hand, the cooling is not significant in the presence of a super-Alfvénic drift, and it is even less significant when we include an inhomogeneous background density. We are able to reproduce the ion temperature anisotropy seen in observations and previous models and find that small-scale inhomogeneities in the inner heliosphere can have a significant impact on resonant wave ion

  18. Structure of AlSi20 Alloy in Heat Treated Die Casting

    Directory of Open Access Journals (Sweden)

    Władysiak R.

    2015-03-01

    Full Text Available The work is a continuation of research on the use of water mist cooling in order to increase efficiency of die-casting aluminum alloys using multipoint water mist cooling system. The paper presents results of investigation on crystallization process and microstructure of synthetic hypereutectic AlSi20 alloy. Casts were made in permanent mold cooled a with water mist stream. The study was conducted for unmodified AlSi20 alloy and a modified one with phosphorus, titanium and boron on the research station allowing sequential multipoint cooling using a dedicated program of computer control. The study demonstrated that the use of mold cooled with water mist stream and solution heat treatment allows in wide range for the formation of the microstructure of hypereutectic silumins. It leads to the growth of microstructure refinement and spheroidizing of phases in the casting.

  19. Intact and cleaved plasma soluble urokinase receptor in patients with metastatic colorectal cancer treated with oxaliplatin with or without cetuximab

    DEFF Research Database (Denmark)

    Tarpgaard, Line S; Christensen, Ib J; Høyer-Hansen, Gunilla

    2015-01-01

    Circulating forms of the urokinase plasminogen activator receptor (uPAR) are associated with prognosis in patients with colorectal cancer. Preclinical studies have shown that uPAR can influence the state of phosphorylation and signalling activity of the epidermal growth factor receptor (EGFR) in ...... with FLOX + cetuximab as compared to patients with KRAS wild-type and high levels of suPAR. These results thus support the preclinical findings and should be further tested in an independent clinical data set.......) in a ligand-independent manner. The purpose of the study was to evaluate whether plasma soluble intact and cleaved uPAR(I-III)+(II-III) levels could identify a subpopulation of patients with metastatic colorectal cancer (mCRC) where treatment with cetuximab would have a beneficial effect. Plasma samples were...... available from 453 patients treated in the NORDIC VII study. Patients were randomized between FLOX and FLOX + cetuximab. The levels of uPAR(I-III)+(II-III) were determined by time-resolved fluorescence immunoassay. We demonstrated that higher baseline plasma uPAR(I-III)+(II-III) levels were significantly...

  20. Overview on the Surface Functionalization Mechanism and Determination of Surface Functional Groups of Plasma Treated Carbon Nanotubes.

    Science.gov (United States)

    Saka, Cafer

    2018-01-02

    The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.

  1. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    Science.gov (United States)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  2. Complex of lithium and tungsten limiters for 3 MW of ECR plasma heating in T-10 tokamak. Design, first results

    Science.gov (United States)

    Lyublinski, I. E.; Vertkov, A. V.; Zharkov, M. Yu.; Mirnov, S. V.; Vershkov, V. A.; Glazyuk, Ya. V.; Notkin, G. E.; Grashin, S. A.; Kislov, A. Ya.; Komov, A. T.

    2017-06-01

    A complex of tungsten and lithium limiters is developed. It is expected that application of W as a plasma facing material will allow excluding carbon influx into the vacuum chamber. An additional Li limiter, arranged in the shadow of the W one, will be used as a Li source. The parameters and design of limiters are presented. The plasma facing surface of the Li limiter is constructed to make use of a capillary-porous system (CPS). The porous matrix of the CPS provides stability of liquid Li surface under magnetohydrodinamic force effects, and facilitates its constant renewal due to capillary forces. It is shown that the upgrade of limiters in tokamak Т-10 will allow the provision of electron cyclotron resonance (ECR) plasma heating with power up to 3 MW at reasonable Li flux. The first results on Li-W experiments with ECR heating are presented and discussed. Li limiter design and limiter arrangement configuration for a steady state operating tokamak with a closed cycle of lithium circulation are considered.

  3. Improving interfacial, mechanical and tribological properties of alumina coatings on Al alloy by plasma arc heat-treatment of substrate

    Science.gov (United States)

    Hou, Guoliang; An, Yulong; Zhao, Xiaoqin; Zhou, Huidi; Chen, Jianmin; Li, Shuangjian; Liu, Xia; Deng, Wen

    2017-07-01

    Plasma sprayed ceramic coatings can be used to improve the mechanical properties and wear resistance of aluminum alloys, but there are still some challenges to effectively increase their interfacial adhesion. Thus we conducted plasma arc-heat treatment (PA-HT) of Al alloy substrate before plasma spraying, hoping to tune the microstructure of Al2O3 coatings and improve their interfacial strength as well as mechanical and tribological properties. The influences of PA-HT on the microstructure of alumina coatings were analyzed by X-ray diffraction, transmission electron microscopy and scanning electron microscopy, while its effect on mechanical and tribological properties were evaluated by a nano-indentation tester and a friction and wear tester. Results demonstrate that a few columnar δ-Al2O3 generated on substrate surface after PA-HT at 200-250 °C can induce the epitaxial growth of γ-Al2O3 grains in Al2O3 coatings, thereby enhancing their interfacial bonding. Besides, elevating substrate temperature can help alumina droplets to melt into the interior of substrate and eliminate holes at the interface, finally increasing the interfacial anchorage force. More importantly, no interfacial holes can allow the heat of droplets to be rapidly transmitted to substrate, which is beneficial to yield smaller crystals in coatings and greatly enhance their strength, hardness and wear resistance.

  4. Alpha heating and isotopic mass effects in JET plasmas with sawteeth

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R. V. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Team, JET [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

    2016-02-09

    The alpha heating experiment in the Joint European Torus (JET) 1997 DTE1 campaign is re-examined. Several effects correlated with tritium content and thermal hydrogenic isotopic mass < A> weaken the conclusion that alpha heating was clearly observed. These effects delayed the occurrence of significant sawtooth crashes allowing the electron and ion temperatures T e and T i to achieve higher values. Under otherwise equal circumstances T e and T i were typically higher for discharges with higher < A >, and significant scaling of T i, T e, and total stored energy with < A > were observed. The higher T i led to increased ion–electron heating rates with magnitudes comparable to those computed for alpha electron heating. Rates of other heating/loss processes also had comparable magnitudes. Simulations of T e assuming the observed scaling of T i are qualitatively consistent with the measured profiles, without invoking alpha heating

  5. Ion cyclotron range of frequencies heating of plasma with small impurity production

    Science.gov (United States)

    Ohkawa, Tihiro

    1987-01-01

    Plasma including plasma ions is magnetically confined by a magnetic field. The plasma has a defined outer surface and is intersected by resonance surfaces of respective common ion cyclotron frequency of a predetermined species of plasma ions moving in the magnetic field. A radio frequency source provides radio frequency power at a radio frequency corresponding to the ion cyclotron frequency of the predetermined species of plasma ions moving in the field at a respective said resonance surface. RF launchers coupled to the radio frequency source radiate radio frequency energy at the resonance frequency onto the respective resonance surface within the plasma from a plurality of locations located outside the plasma at such respective distances from the intersections of the respective resonance surface and the defined outer surface and at such relative phases that the resulting interference pattern provides substantially null net radio frequency energy over regions near and including substantial portions of the intersections relative to the radio frequency energy provided thereby at other portions of the respective resonance surface within the plasma.

  6. Cellular fibronectin and von Willebrand factor concentrations in plasma of rats treated with monocrotaline pyrrole

    NARCIS (Netherlands)

    Schultze, A.E.; Emeis, J.J.; Roth, R.A.

    1996-01-01

    The monocrotaline pyrrole (MCTP)-treated rat is a useful model for the study of certain chronic pulmonary vascular diseases. A single, i.v. administration of a low dose of MCTP causes pneumotoxicity, pulmonary vascular remodeling, sustained increases in pulmonary arterial pressure, and right

  7. Correlations between fasting plasma C-peptide, glucagon-stimulated plasma C-peptide, and urinary C-peptide in insulin-treated diabetics

    DEFF Research Database (Denmark)

    Gjessing, H J; Matzen, L E; Frøland, A

    1987-01-01

    This study correlated fasting plasma C-peptide (CP), plasma CP 6 min after stimulation with 1 mg glucagon i.v., and the mean of three 24-h urinary excretions of C-peptide (UCP)/creatinine in 132 insulin-treated diabetics. Patients were divided into three groups: group 1, stimulated CP less than 0.......06 nM (n = 51); group 2, stimulated CP 0.06-0.60 nM (n = 48); and group 3, stimulated CP greater than 0.60 nM (n = 33). In all patients fasting CP was closely correlated to stimulated CP (r = .988, P less than .001), whereas the correlations between UCP and both fasting CP (r = .904, P less than .001......) and stimulated CP r = .902, P less than .001) were slightly less pronounced. The associations between UCP and both fasting CP (r = .716, P less than .001) and stimulated CP (r = .731, P less than .001) were modest in group 2, and even more so in group 3 (r = .557, P less than .001 and r = .641, P less than .001...

  8. CONTAMINATED PROBLEMATIC SKIN WOUNDS IN DIABETIC PATIENTS TREATED WITH AUTOLOGOUS PLATELET-RICH PLASMA (PRP: A case series study

    Directory of Open Access Journals (Sweden)

    Tsvetan Sokolov

    2016-03-01

    Full Text Available OBJECTIVE: To study the effect of platelet-rich plasma (PRP on contaminated problematic skin ulcers in patients with diabetes. MATERIAL AND METHODS: A total of 6 patients had been treated within the period from 2012 to 2014; they had various types of problematic wounds and diabetes type 2. Patients’ distribution by sex was as follows: 1 man and 5 women; mean age- 68 years. Ulcer types: acute (2 patients, hard-to-heal (2 patients and chronic (2 patients ulcers. The mean size of the skin and soft tissue defect was 9,5 cm2. Pathogenic microflora was isolated in 4 patients - S. aureus in three and Е. Coli in one. Based on a scheme developed by us, all cases were treated by administering platelet-rich plasma, derived by PRGF Endoret system. Follow-up period was within 4 – 6 months (4,5 on average. We used platelet rich plasma derived by PRGF Endoret system, applied on the wound bed on a weekly basis. RESULTS: Application of PRP allowed successful closure of all wounds. There were no complications associated with treatment of PRP. Epithelialization of the wound took 15 weeks on average for all patients. One patient presented with hyperkeratosis. Initial score of followed wounds, based on the scales are as follows: Total wound score – 10 p. Total anatomic score – 8 p. Total score – 15 p. at the initial stage. At the end of the treatment period scores were as follows - 0 p., which means excellent results CONCLUSION: We believe that the application of PRP may become optimal therapy in the treatment of contaminated problematic wounds in diabetic patients. PRP not only stimulates wound healing, but also has antimicrobial properties, which may contribute to the prevention of infections.

  9. Increased vitamin plasma levels in Swedish military personnel treated with nutrients prior to automatic weapon training

    Directory of Open Access Journals (Sweden)

    C G Le Prell

    2011-01-01

    Full Text Available Noise-induced hearing loss (NIHL is a significant clinical, social, and economic issue. The development of novel therapeutic agents to reduce NIHL will potentially benefit multiple very large noise-exposed populations. Oxidative stress has been identified as a significant contributor to noise-induced sensory cell death and NIHL, and several antioxidant strategies have now been suggested for potential translation to human subjects. One such strategy is a combination of beta-carotene, vitamins C and E, and magnesium, which has shown promise for protection against NIHL in rodent models, and is being evaluated in a series of international human clinical trials using temporary (military gunfire, audio player use and permanent (stamping factory, military airbase threshold shift models (NCT00808470. The noise exposures used in the recently completed Swedish military gunfire study described in this report did not, on average, result in measurable changes in auditory function using conventional pure-tone thresholds and distortion product otoacoustic emission (DPOAE amplitudes as metrics. However, analysis of the plasma samples confirmed significant elevations in the bloodstream 2 hours after oral consumption of active clinical supplies, indicating the dose is realistic. The plasma outcomes are encouraging, but clinical acceptance of any novel therapeutic critically depends on demonstration that the agent reduces noise-induced threshold shift in randomized, placebo-controlled, prospective human clinical trials. Although this noise insult did not induce hearing loss, the trial design and study protocol can be applied to other populations exposed to different noise insults.

  10. Variations in C-reactive protein, plasma free radicals and fibrinogen values in patients with osteoarthritis treated with Pycnogenol.

    Science.gov (United States)

    Belcaro, G; Cesarone, M R; Errichi, S; Zulli, C; Errichi, B M; Vinciguerra, G; Ledda, A; Di Renzo, A; Stuard, S; Dugall, M; Pellegrini, L; Gizzi, G; Ippolito, E; Ricci, A; Cacchio, M; Cipollone, G; Ruffini, I; Fano, F; Hosoi, M; Rohdewald, P

    2008-01-01

    In a previous, double-blind, placebo-controlled study we evaluated the efficacy of a 3-month treatment with Pycnogenol for 156 patients with osteoarthritis of the knee. Pycnogenol significantly decreased joint pain and improved joint function as evaluated using the WOMAC score and walking performance of patients on a treadmill. In this study, we further investigated the anti-inflammatory and antioxidant activity of Pycnogenol in a subset of the osteoarthritis patients presenting with elevated C-reactive protein (CRP) and plasma-free radicals. Elevated CRP levels have been suggested to be associated with disease progression in osteoarthritis. In our study, 29 subjects of the Pycnogenol group and 26 patients in the placebo group showed CRP levels higher than 3 mg/l at baseline. Comparison of blood specimens drawn at baseline and after 3-month treatment showed that Pycnogenol significantly decreased plasma free radicals to 70.1% of baseline values. Plasma CRP levels decreased from baseline 3.9 mg/l to 1.1 mg/l in the Pycnogenol group whereas the control group had initial values of 3.9 mg/l which decreased to 3.6 mg/l. The CRP decrease in the Pycnogenol was statistical significant as compared to the control group (P Pycnogenol. No significant changes for plasma free radicals, CRP and fibrinogen were found in the placebo-treated group. The decrease of systemic inflammatory markers suggests that Pycnogenol may exert anti-inflammatory activity in osteoarthritic joints and patients did not present with other ailments or infections. The nature of the anti-inflammatory effects of Pycnogenol with regard to CRP warrants further investigation.

  11. Transmission of human immunodeficiency virus Type-1 by fresh-frozen plasma treated with methylene blue and light.

    Science.gov (United States)

    Álvarez, Manuel; Luis-Hidalgo, Mar; Bracho, María Alma; Blanquer, Amando; Larrea, Luis; Villalba, José; Puig, Nieves; Planelles, Dolores; Montoro, José; González-Candelas, Fernando; Roig, Roberto

    2016-04-01

    The risk of transfusion-transmitted infection (TTI) has been minimized by introduction of nucleic acid testing (NAT) and pathogen inactivation (PI). This case report describes transmission of human immunodeficiency virus Type 1 (HIV-1) to two recipients despite these measures. In March 2009 a possible TTI of HIV-1 was identified in a patient that had received pooled buffy coat platelet concentrate (BC-PLT) in November 2005. The subsequent lookback study found two more patients who had received methylene blue (MB)-treated fresh-frozen plasma (FFP) and red blood cells (RBCs) from the same donation. In November 2005 the donor had tested negative for both HIV antibodies and HIV-1 RNA by 44 minipool (44 MP) NAT. Repository samples of this donation and samples from the recipients were used for viral load (VL) and sequence analysis. HIV-1 RNA was detectable by individual donation (ID)-NAT in the repository sample from the 2005 window period donation and a VL of 135 copies/mL was measured. HIV-1 infection was confirmed in both recipients of both BC-PLT (65 mL of plasma) and MB-FFP (261 mL of plasma), but not in the patient that had received 4-week-old RBCs (20 mL of plasma). The sequence analysis revealed a close phylogenetic relationship between the virus strains isolated from the donor and recipients, compatible with TTI. Approximately 17,600 and 4400 virions in the MB-FFP and BC-PLT were infectious, but 1350 virions in the RBCs were not. ID-NAT would have prevented this transmission, but the combination of MP-NAT and MB-PI did not. © 2015 AABB.

  12. Microbial Characterization Space Solid Wastes Treated with a Heat Melt Compactor

    Science.gov (United States)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2012-01-01

    The on going purpose of the project efforts was to characterize and determine the fate of microorganisms in space-generated solid wastes before and after processing by candidate solid waste processing. For FY 11, the candidate technology that was assessed was the Heat Melt Compactor (HMC). The scope included five HMC. product disks produced at ARC from either simulated space-generated trash or from actual space trash, Volume F compartment wet waste, returned on STS 130. This project used conventional microbiological methods to detect and enumerate microorganisms in heat melt compaction (HMC) product disks as well as surface swab samples of the HMC hardware before and after operation. In addition, biological indicators were added to the STS trash prior to compaction in order to determine if these spore-forming bacteria could survive the HMC processing conditions, i.e., high temperature (160 C) over a long duration (3 hrs). To ensure that surface dwelling microbes did not contaminate HMC product disk interiors, the disk surfaces were sanitized with 70% alcohol. Microbiological assays were run before and after sanitization and found that sanitization greatly reduced the number of identified isolates but did not totally eliminate them. To characterize the interior of the disks, ten 1.25 cm diameter core samples were aseptically obtained for each disk. These were run through the microbial characterization analyses. Low counts of bacteria, on the order of 5 to 50 per core, were found, indicating that the HMC operating conditions might not be sufficient for waste sterilization. However, the direct counts were 6 to 8 orders of magnitude greater, indicating that the vast majority of microbes present in the wastes were dead or non-cultivable. An additional indication that the HMC was sterilizing the wastes was the results from the added commercial spore test strips to the wastes prior to HMC operation. Nearly all could be recovered from the HMC disks post-operation and all

  13. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    Energy Technology Data Exchange (ETDEWEB)

    Minami, R., E-mail: minami@prc.tsukuba.ac.jp; Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2014-11-15

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  14. Plasma confinement during ECR heating with a volume power density of 3 mW/m3 at the L-2M stellarator

    Science.gov (United States)

    Meshcheryakov, A. I.; Batanov, G. M.; Borzosekov, V. D.; Grebenshchikov, S. E.; Grishina, I. A.; Kharchev, N. K.; Kholnov, Yu V.; Kolik, L. V.; Konchekov, E. M.; Kovrizhnykh, L. M.; Letunov, A. A.; Logvinenko, V. P.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Shchepetov, S. V.; Skvortsova, N. N.; Stepakhin, V. D.; Tereshchenko, M. A.; Vafin, I. Yu; Vasilkov, D. G.

    2017-10-01

    The experiments on ECR plasma heating were carried out at the L-2M stellarator at very high volume power density (up to 3.0 MW/m3). Under these conditions, non-monotonous hollow density profiles were measured. At the maximum heating power of P = 0.75 MW, the concavity in the axial region becomes drastic n e(0)/n e max = 0.5. In these experiments, plasma temperature profiles measured in the axial plasma region r/a p stellarator. The measured energy lifetime is generally consistent with that determined from the international LHD scaling.

  15. Generation of Non-Inductive H-Mode Plasmas with 30 MHz Fast Wave Heating in NSTX-U

    Science.gov (United States)

    Taylor, G.; Bertelli, N.; Gerhardt, S. P.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Poli, F. M.; Wilson, J. R.; Raman, R.

    2016-10-01

    A Fusion Nuclear Science Facility based on a spherical tokamak must generate the plasma current (Ip) with little or no central solenoid field. The NSTX-U non-inductive (NI) plasma research program is addressing this goal by developing NI start-up, ramp-up and sustainment scenarios separately. 4 MW of 30 MHz fast wave power is predicted to ramp Ip to 400 kA, a level sufficient to avoid significant shine-through of 90 keV ions from neutral beam injection. In 2010, experiments in NSTX demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a NI Ip fraction, fNI, around 0.7 at the maximum axial toroidal field (BT(0)) in NSTX of 0.55 T. NSTX-U is a major upgrade of NSTX that will eventually allow the generation of plasmas with BT(0) up to 1 T. Full wave simulations of 30 MHz HHFW heating in NSTX-U predict reduced FW power loss in the plasma edge as BT(0) is increased. HHFW experiments this year aim to couple 3 - 4 MW of 30 MHz HHFW power into an Ip = 250 - 350 kA plasma with BT(0) up to 0.75 T to generate a fNI = 1 H-mode plasma. These experiments should benefit from the improved fast wave coupling predicted at higher BT(0) in NSTX-U. Work supported by USDOE Contract No. DE-AC02-09CH11466.

  16. Heat

    CERN Document Server

    Lawrence, Ellen

    2016-01-01

    Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.

  17. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  18. Micronutrient component changes in the biogas slurry treated by a pilot solar-heated anaerobic reactor

    Science.gov (United States)

    Yang, Z. Y.; Xu, Y. B.; Li, P. F.; Wang, Y. J.; Sun, J.; Zhang, Y. P.

    2017-06-01

    A solar-heated anaerobic reactor system was applied to decompose livestock wastewater, in which cattle manure and chopped straw were mixed (CODCr 15,000∼25,000 mg·l-1), the commercial microorganisms were added to ambient acidification (about 32°C) and the acclimated sludge was inoculated. Then, the experiments were carried out on wastewater anaerobic degradation and biogas production at 40∼42°C, as fed every 10 days till stable running. The results showed that NH3-N and PO4 3- of the biogas slurry were 441 mg·l-1 and 65.0 mg·l-1 on the 35th day, respectively. The concentration of K was up to 350 mg·l-1 in the biogas slurry, rather higher than that of Mg and Fe, which indicated that the available K could contribute more in the agricultural irrigation. Total amino acids were up to 23.7 mg·l-1 after anaerobic digestion, in which Lys, Thr, Ala and Arg were prominent in the biogas slurry. These amino acids could be beneficial to seed soaking, feed adding and apply as foliar fertilizer. The major volatile organic compounds were detected in the biogas slurry, including toluene, m-cresol (up to 0.036% in the process of ambient acidification) and triethylsilane, which could be reduced to scarcely influence on agricultural application after anaerobic digestion.

  19. Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch

    Directory of Open Access Journals (Sweden)

    Ornanong S. Kittipongpatana

    2015-01-01

    Full Text Available Native jackfruit seed starch (JFS contains 30% w/w type II resistant starch (RS2 and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC, temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2% was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16. FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in Tg and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged.

  20. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated.

    Science.gov (United States)

    Chávez-Díaz, Mercedes Paulina; Escudero-Rincón, María Lorenza; Arce-Estrada, Elsa Miriam; Cabrera-Sierra, Román

    2017-04-23

    In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800) and above (Ti6Al4V1050) its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO₂ during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO₂ and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO₂ formed in discrete α-phase regions (hcp) depending on its microstructure (grains).

  1. Efficacy of intra-tendinous injection of platelet-rich plasma in treating tendinosis: comprehensive assessment of a rat model.

    Science.gov (United States)

    Dallaudière, Benjamin; Lempicki, Marta; Pesquer, Lionel; Louedec, Liliane; Preux, Pierre Marie; Meyer, Philippe; Hummel, Vincent; Larbi, Ahmed; Deschamps, Lydia; Journe, Clement; Hess, Agathe; Silvestre, Alain; Sargos, Paul; Loriaut, Philippe; Boyer, Patrick; Schouman-Claeys, Elisabeth; Michel, Jean Baptiste; Serfaty, Jean Michel

    2013-10-01

    To assess the potential of intra-tendinous injection of platelet rich plasma (PRP) to treat tendinosis (T+) in a rat model of patellar and Achilles T+, and evaluate its local toxicity. Thirty rats (120 patellar and Achilles tendons) were used. We induced T+ into 80 tendons (patellar = 40, Achilles = 40) by injecting collagenase at day 0 under ultrasound (US) guidance. Clinical examination and US at day 3, followed by US-guided intra-tendinous injection of either PRP (PRPT+, n = 40) or physiological serum (ST+, n = 40, control). Follow-up was at days 6, 13, 18 and 25 using clinical, US and histological evaluation. To study PRP toxicity, we injected PRP into 40 normal tendons (PRPT-) and compared with 40 untreated normal tendons (T-). All PRPT+ showed better joint mobilisation compared with ST+ at day 6 (P = 0.005), day 13 (P = 0.02), day 18 (P = 0.003) and day 25 (P = 0.01). Similar results were found regarding US and histology, with smaller collagen fibre diameters (day 6, P = 0.003, day 25, P ≤ 0.004), less disorganisation and fewer neovessels (day 6, P = 0.003, day 25, P = 0.0003) in PRPT+ compared with ST+. Comparison between PRPT- and T- showed no PRP toxicity (P = 0.18). Our study suggests that mono-injection of PRP in T+ improves tendon healing, with no local toxicity. • We assessed the potential of platelet rich plasma (PRP) to treat tendinosis. • We treated patellar and Achilles tendinosis in a rat model. • We evaluated clinical, imaging and histological data. • Intra-tendinous PRP injection could be useful in the treatment of tendinosis.

  2. Validation of non-local electron heat conduction model for radiation MHD simulation in magnetized laser plasma

    Science.gov (United States)

    Nagatomo, Hideo; Matsuo, Kazuki; Nicolai, Pilippe; Asahina, Takashi; Fujioka, Shinsuke

    2017-10-01

    In laser plasma physics, application of an external magnetic field is an attractive method for various research of high energy density physics including fast ignition. Meanwhile, in the high intense laser plasma the behavior of hot electron cannot be ignored. In the radiation hydrodynamic simulation, a classical electron conduction model, Spitzer-Harm model has been used in general. However the model has its limit, and modification of the model is necessary if it is used beyond the application limit. Modified SNB model, which considering the influence of magnetic field is applied to 2-D radiation magnetohydrodynamic code PINOCO. Some experiments related the non-local model are carried out at GXII, Osaka University. In this presentation, these experimental results are shown briefly. And comparison between simulation results considering the non-local electron heat conduction mode are discussed. This study was supported JSPS KAKENHI Grant No. 17K05728.

  3. Improvement in the heating efficiency of fast ignition inertial confinement fusion through suppression of the preformed plasma

    Science.gov (United States)

    Arikawa, Y.; Kojima, S.; Morace, A.; Hata, M.; Sakata, S.; Fujioka, S.; Kawashima, T.; Hironaka, Y.; Shigemori, K.; Abe, Y.; Zhang, Z.; Vaisseau, X.; Lee, S.; Gawa, T.; Matsuo, K.; Law, K. F. F.; Kato, Y.; Matsubara, S.; Tosaki, S.; Yogo, A.; Nagatomo, H.; Tokita, S.; Nakata, Y.; Jitsuno, T.; Miyanaga, N.; Kawanaka, J.; Fujimoto, Y.; Yamanoi, K.; Norimatsu, T.; Nakai, M.; Nishimura, H.; Shiraga, H.; FIREX GROUP; LFEX GROUP; Azechi, H.; Sunahara, A.; Johzaki, T.; Ozaki, T.; Sakagami, H.

    2017-06-01

    The study of fast electron spectrum optimization by suppression of preformed plasma in fast ignition targets is presented in this work. Integrated fast-electron spectra for electron energies below 3 MeV—the energy range responsible for core heating—are compared for different preformed plasma conditions. The pulse contrast (the ratio of peak-to-pedestal laser intensities) is compared for 108, 109 and 1011 conditions at constant laser energy (~500 J), pulse duration (2 ps), spot size (30% encircled energy on 50 µm diameter) and laser intensity (around 1  ×  1019 W cm-2). The best electron spectrum optimization, consisting of maximized electron number for energies below 3 MeV was obtained with 14 µm thick cone targets. The energy coupling efficiency from heating laser to core plasma, assuming typical core plasma parameters, was estimated to be 2%, although 0.37% was obtained with previous conditions with poor pulse contrast and a 7 µm thick cone target.

  4. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-11-01

    Full Text Available Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent.

  5. Heating of coronal plasma by anomalous current dissipation. [induced by solar magnetic flux

    Science.gov (United States)

    Rosner, R.; Golub, L.; Coppi, B.; Vaiana, G. S.

    1978-01-01

    It is shown that there exist heating mechanisms which connect the observed radiative properties of the inner corona in a simple way to the underlying solar magnetic field. The mechanisms considered involve the generation and consequent dissipation of coronal currents. It is argued that the spatially and temporally inhomogeneous nature of the erupting solar magnetic field is an essential element of coronal heating. Unlike heating theories conceived in the context of the 'homogeneous' corona, this class of current heating models incorporates the observed stochastic coronal structuring at the onset, and does not view it as a complication of an otherwise straightforward model. Attention is given to the generation of coronal currents, the flux-tube emergence, the gradual growth and decay of active regions, the energetics of current dissipation, current sheath geometry and heat transport, and anomalous current dissipation.

  6. 3-Dimensional density profiles in edge plasma simulations for ICRF heating

    Directory of Open Access Journals (Sweden)

    Tierens Wouter

    2017-01-01

    Full Text Available In this paper we discuss improvements made to two codes for the simulation of ICRF waves in edge plasmas: SSWICH-SW, which self-consistently models the interplay between sheath physics and radiofrequency waves (the slow wave, and RAPLICASOL, a Finite Element solver for Maxwell's equations in the cold plasma approximation. We have extended both to be able to handle 3D plasma density profiles. A comparison between a 1D and a 3D simulation reveals that the density profile dimensionality has a relatively small effect on E|| at the aperture, but a large effect on the sheath potential at the antenna limiters

  7. Applications of the SCENIC code package to the minority ion-cyclotron heating in Wendelstein 7-X plasmas

    Science.gov (United States)

    Faustin, J. M.; Cooper, W. A.; Geiger, J.; Graves, J. P.; Pfefferlé, D.

    2015-12-01

    We present SCENIC simulations of a W7X 4He plasma with 1% H minority and with an antenna model close to the design foreseen for the W7X ICRF antenna [1, 2]. A high mirror and a standard equilibrium are considered. The injected wave frequency is fixed at 33.8 MHz and 39.6MHz respectively and only fundamental minority heating is considered. Included in this calculation is a new realistic model of the antenna, where it is found that the localization of the antenna geometry tends to break the five-fold periodicity of the system. We assess the heat transfer through the toroidal periods via Coulomb collisions.

  8. Applications of the SCENIC code package to the minority ion-cyclotron heating in Wendelstein 7-X plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faustin, J. M., E-mail: jonathan.faustin@epfl.ch; Cooper, W. A.; Graves, J. P.; Pfefferlé, D. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Geiger, J. [Max-Planck Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2015-12-10

    We present SCENIC simulations of a W7X 4He plasma with 1% H minority and with an antenna model close to the design foreseen for the W7X ICRF antenna [1, 2]. A high mirror and a standard equilibrium are considered. The injected wave frequency is fixed at 33.8 MHz and 39.6MHz respectively and only fundamental minority heating is considered. Included in this calculation is a new realistic model of the antenna, where it is found that the localization of the antenna geometry tends to break the five-fold periodicity of the system. We assess the heat transfer through the toroidal periods via Coulomb collisions.

  9. Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath.

    Science.gov (United States)

    Schmidt, Christian; Piel, Alexander

    2015-10-01

    The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p(-2). The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.

  10. A modeling approach for heat conduction and radiation diffusion in plasma-photon mixture in temperature nonequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-09

    We present a simple approach for determining ion, electron, and radiation temperatures of heterogeneous plasma-photon mixtures, in which temperatures depend on both material type and morphology of the mixture. The solution technique is composed of solving ion, electron, and radiation energy equations for both mixed and pure phases of each material in zones containing random mixture and solving pure material energy equations in subdivided zones using interface reconstruction. Application of interface reconstruction is determined by the material configuration in the surrounding zones. In subdivided zones, subzonal inter-material energy exchanges are calculated by heat fluxes across the material interfaces. Inter-material energy exchange in zones with random mixtures is modeled using the length scale and contact surface area models. In those zones, inter-zonal heat flux in each material is determined using the volume fractions.

  11. The Effect of Oxygen-Plasma Treated Graphene Nanoplatelets upon the Properties of Multiwalled Carbon Nanotube and Polycarbonate Hybrid Nanocomposites Used for Electrostatic Dissipative Applications

    Directory of Open Access Journals (Sweden)

    Akkachai Poosala

    2015-01-01

    Full Text Available Oxygen-plasma treated graphene nanoplatelet (OGNP, multiwalled carbon nanotube (MWCNT and polycarbonate (PC hybrid nanocomposites were prepared via a melting process using a twin-screw extruder. The contents of the OGNPs were in the range of 0.0 to 5.0 parts per hundred resin (phr, whilst the dosage of MWCNTs was kept at a constant of 2.0 wt%. Nanocomposites containing 2.0 wt% of MWCNTs and mixtures of 2.0 wt% of MWCNTs at 1.5 to 5.0 phr of OGNPs had tribocharged voltages, surface resistivities, and decay times, all within the electrostatic discharge (ESD specification. The X-ray diffraction (XRD and scanning electron microscopy (SEM results revealed that the OGNPs slightly intercalated and distributed also within the PC matrix. The glass transition temperature Tg and heat capacity jump, at the glass transition stages of nanocomposite, slightly changed, as the contents of the OGNPs increased. The melt flow index (MFI of nanocomposites significantly decreased when MWCNTs were added to the PC resin and slightly changed as the dosage of OGNPs was increased. Tensile Young’s modulus of nanocomposites tended to increase, as the elongation at break and impact strength decreased, when OGNP concentrations were increased. This research work exhibited that OGNP/MWCNT/PC hybrid nanocomposites do indeed have the potential to be used in ESD applications.

  12. Enhanced sensing of dengue virus DNA detection using O{sub 2} plasma treated-silicon nanowire based electrical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S.F.A., E-mail: siti_fatimah0410@yahoo.com [Institute of Advanced Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Yusof, N.A., E-mail: azahy@upm.edu.my [Institute of Advanced Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Hashim, U. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Hushiarian, R. [La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086 (Australia); Nuzaihan, M.N.M. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Hamidon, M.N. [Institute of Advanced Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Zawawi, R.M. [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Fathil, M.F.M. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia)

    2016-10-26

    Dengue Virus (DENV) has become one of the most serious arthropod-borne viral diseases, causing death globally. The existing methods for DENV detection suffer from the late stage treatment due to antibodies-based detection which is feasible only after five days following the onset of the illness. Here, we demonstrated the highly effective molecular electronic based detection utilizing silicon nanowire (SiNW) integrated with standard complementary metal-oxide-semiconductor (CMOS) process as a sensing device for detecting deoxyribonucleic acid (DNA) related to DENV in an early stage diagnosis. To transform the fabricated devices as a functional sensing element, three-step procedure consist of SiNW surface modification, DNA immobilization and DNA hybridization were employed. The detection principle works by detecting the changes in current of SiNW which bridge the source and drain terminal to sense the immobilization of probe DNA and their hybridization with target DNA. The oxygen (O{sub 2}) plasma was proposed as an effective strategy for increasing the binding amounts of target DNA by modified the SiNW surface. It was found that the detection limit of the optimized O{sub 2} plasma treated-SiNW device could be reduced to 1.985 × 10{sup −14} M with a linear detection range of the sequence-specific DNA from 1.0 × 10{sup −9} M to 1.0 × 10{sup −13} M. In addition, the developed biosensor device was able to discriminate between complementary, single mismatch and non-complementary DNA sequences. This highly sensitive assay was then applied to the detection of reverse transcription-polymerase chain reaction (RT-PCR) product of DENV-DNA, making it as a potential method for disease diagnosis through electrical biosensor. - Highlights: • Molecular electronic detection of Dengue Virus (DENV) DNA using SiNW biosensor is presented. • Oxygen plasma surface treatment as an enhancer technique for device sensitivity is highlighted. • The limit of detection (Lo

  13. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    Science.gov (United States)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  14. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    Hydrogen production from desugared molasses (DM) was investigated in both batch and continuous reactors using thermophilic mixed cultures enriched from digested manure by load shock (loading with DM concentration of 50.1 g-sugar/L) to suppress methanogens. H2 gas, free of methane, was produced....... The enriched hydrogen producing mixed culture achieved from the 16.7 g-sugars/L DM batch cultivation was immobilized on heat treated anaerobic sludge granules in an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor, operated at a hydraulic retention time (HRT) of 24 h fed with 16.7 g......) and Thermoanaerobacterium thermosaccharolyticum with a relative abundance of 36%, 27%, and 10% of total microorganisms, respectively. This study shows that hydrogen production could be efficiently facilitated by using anaerobic granules as a carrier, where microbes from mixed culture enriched in the DM batch cultivation...

  15. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    CERN Document Server

    Mengucci, P; Auffray, E; Barucca, G; Cecchi, C; Chipaux, R; Cousson, A; Davì, F; Di Vara, N; Rinaldi, D; Santecchia, E

    2015-01-01

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples.