WorldWideScience

Sample records for heat treated molybdenum

  1. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    International Nuclear Information System (INIS)

    Diaz Barriga Arceo, L.; Orozco, E.; Mendoza-Leon, H.; Palacios Gonzalez, E.; Leyte Guerrero, F.; Garibay Febles, V.

    2007-01-01

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 o C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 μm in length were obtained after heating at 800 o C, by means of this process

  2. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga Arceo, L. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico) and ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Orozco, E. [Instituto de Fisica UNAM, Apdo Postal 20-364, C.P. 01000 D.F. Mexico (Mexico)]. E-mail: eorozco@fisica.unam.mx; Mendoza-Leon, H. [ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Palacios Gonzalez, E. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: epalacio@imp.mx; Leyte Guerrero, F. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: fleyte@imp.mx; Garibay Febles, V. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: vgaribay@imp.mx

    2007-05-31

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 {sup o}C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 {mu}m in length were obtained after heating at 800 {sup o}C, by means of this process.

  3. Low-temperature heat capacity of molybdenum borides

    International Nuclear Information System (INIS)

    Bolgar, A.S.; Klinder, A.V.; Novoseletskaya, L.M.; Turov, V.P.; Klochkov, L.A.; Lyashchenko, A.B.

    1988-01-01

    Heat capacity of molybdenum borides Mo 2 B, MoB, Mo 2 B 5 is studied for the first time in the 60-300 K range using the adiabatic method. Standard (at 298.15 K) thermodynamic functions (enthalpy, heat capacity, entropy, reduced Gibbs energy) of molybdenum borides are calculated

  4. High heat flux testing of TiC coated molybdenum with a tungsten intermediate layer

    International Nuclear Information System (INIS)

    Fujitsuka, Masakazu; Fukutomi, Masao; Okada, Masatoshi

    1988-01-01

    The use of low atomic number (Z) material coatings for fusion reactor first-wall components has proved to be a valuable technique to reduce the plasma radiation losses. Molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. An interfacial reaction between the TiC film and the molybdenum substrate, however, causes a severe deterioration of the film at elevated temperatures. In order to solve this problem a TiC coated molybdenum with an intermediate tungsten layer was developed. High temperature properties of this material was evaluated by a newly devised electron beam heating apparatus. TiC coatings prepared on a vacuum-heat-treated molybdenum with a tungsten intermediate layer showed good high temperature stability and survived 2.0 s pulses of heating at a power density as high as 53 MW/m 2 . The melt area of the TiC coatings in high heat flux testings also markedly decreased when a tungsten intermediate layer was applied. The melting mechanism of the TiC coatings with and without a tungsten intermediate layer was discussed by EPMA measurements. (author)

  5. Critical evaluation of molybdenum and its alloys for use in space reactor core heat pipes

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is examined, and the advantages and disadvantages of this material are brought into focus. Even though pure molybdenum heat pipes have been built and tested, this metal's high ductile-brittle transition temperature and modest creep strength place significant design restrictions on a core heat pipe made from it. Molybdenum alloys are examined with regard to their promise as potential replacements for pure molybdenum. The properties of TZM and molybdenum-rhenium alloys are examined, and it appears that Mo-Re alloys with 10 to 15 wt % rhenium offer the most advantage as an alternative to pure molybdenum in space reactor core heat pipes

  6. Change of mechanical properties of molybdenum after chemical heat treatment

    International Nuclear Information System (INIS)

    Skuratov, L.P.; Yatsimirskij, V.K.; Kirillova, N.V.

    1987-01-01

    Gaseous media (argon, ammonia, nitrogen-hydrogen-ammonia mixture) are studied for their effect on mechanical characteristics of molybdenum at temperatures up to 1000 deg C. It is established that the highest hardening occurs when molybdenum is esposed in the nitrogen-hydrogen medium, while the highest lost of strength takes place in the ammonia medium. An increase of the ammonia concentration in nitrogen-hydrogen-ammonia mixture promotes regular increasing of the deformation rate. With ammonia concentration of 33.3% the gaseous mixture acts the same as pure ammonia. Change of physical-and-mechanical properties of molybdenum under the action of nitrogen-containing gaseous media is associated with formation of molybdenum compounds with nitrogen. During nitriding in ammonia an internal (volume) nitriding proceeds while in the medium of nitrogen-hydrogen mixture surface nitride layers form

  7. Surface analyses of TiC coated molybdenum limiter material exposed to high heat flux electron beam

    International Nuclear Information System (INIS)

    Onozuka, M.; Uchikawa, T.; Yamao, H.; Kawai, H.; Kousaku, A.; Nakamura, H.; Niikura, S.

    1986-01-01

    Observation and surface analyses of TiC coated molybdenum exposed to high heat flux have been performed to study thermal damage resistance of TiC coated molybdenum limiter material. High heat loads were provided by a 120 kW electron beam facility. (author)

  8. Surface analyses of TiC coated molybdenum limiter material exposed to high heat flux electron beam

    International Nuclear Information System (INIS)

    Onozuka, M.; Uchikawa, T.; Yamao, H.; Kawai, H.; Kousaku, A.; Nakamura, H.; Niikura, S.

    1987-01-01

    Observation and surface analyses of TiC coated molybdenum exposed to high heat flux have been performed to study thermal damage resistance of TiC coated molybdenum limiter material. High heat loads were provided by a 120 kW electron beam facility. SEM, AES and EPMA have been applied to the surface analyses

  9. Nitrogen fixation in soybean treated with nitrogen dioxide and molybdenum

    International Nuclear Information System (INIS)

    Gupta, G.; Narayanan, R.

    1992-01-01

    Soybean plants were treated with Mo (0.0 or 2.0 mg kg -1 , soil dry wt.) and exposed to NO 2 (0.0, 0.05, or 0.1 μmol mol -1 ) at flowering stage. Specific root nodule activity (SNA), chlorophyll-a (Ch-a), chlorophyll-b (Ch-b), leaf N, number of pods, seeds per pod, weight of seeds, and shoot dry weight were measured. Compared with control, SNA did not change on the addition of 2 mg Mo to the soil, but increased by 65% on exposure to 0.1 μmol -1 NO 2 and by 106% on treatment with both NO 2 and Mo. Both Ch-a and Ch-b increased significantly on exposure to 0.1 μmol -1 NO 2 and 2 mg MO was almost the same as with 0.1 μmol mol -1 NO 2 alone. Leaf-N increased by 46% on exposure to NO 2 but did not change on the addition of Mo. Pod number, seed number and weight, and shoot dry weights showed significantly higher values on exposure to 0.1 μmol mol -1 NO 2 and 2 mg Mo

  10. Influence of Mo/MoSe{sub 2} microstructure on the damp heat stability of the Cu(In,Ga)Se{sub 2} back contact molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Theelen, Mirjam, E-mail: mirjam.theelen@tno.nl [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Delft University of Technology, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft (Netherlands); Harel, Sylvie [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Verschuren, Melvin [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Tomassini, Mathieu [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Hovestad, Arjan [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Barreau, Nicolas [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Berkum, Jurgen van [Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Vroon, Zeger [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Zeman, Miro [Delft University of Technology, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft (Netherlands)

    2016-08-01

    The degradation behavior of Mo/MoSe{sub 2} layers have been investigated using damp heat exposure. The two studied molybdenum based films with different densities and microstructures were obtained by lifting off Cu(In,Ga)Se{sub 2} layers from a bilayer molybdenum stack on soda lime glass. Hereby, a glass/Mo/MoSe{sub 2} was obtained, which resembles the back contact as present in Cu(In,Ga)Se{sub 2} solar cells. The samples were degraded for 150 h under standard damp heat conditions and analyzed before, during and after degradation. It was observed that the degradation resulted in the formation of needles and molybdenum oxide layers near the glass/Mo and the Mo/Cu(In,Ga)Se{sub 2} interfaces. X-ray Photoelectron Spectroscopy measurements have shown that the sodium was also present at the surface of the degraded material and it is proposed that the degraded material consists mostly of MoO{sub 3} with intercalated Na{sup +}. This element has likely migrated from the soda lime glass. This intercalation process could have led to the formation of Na{sub x}MoO{sub 3} ‘molybdenum bronze’ following this redox reaction: xNa{sup +} + MoO{sub 3} + xe{sup −} ↔ Na{sub x}MoO{sub 3} It is proposed that the formed oxide layer contains Na{sub x}MoO{sub 3} with different Na{sup +} contents and different grades of conductivity. This intercalation process can also explain the high mobility of Na{sup +} via the grain boundaries in molybdenum. It was also observed that the molybdenum film with a top layer deposited at a high pressure is more susceptible for damp heat degradation. - Highlights: • SLG/high pressure Mo/low pressure Mo/MoSe{sub 2} stacks were exposed to damp heat. • Molybdenum deposited at low pressure retained the best reflectivity and conductivity. • Damp heat exposure leads to a Na{sub x}MoO{sub 3}/Mo multilayer structure. • The Na{sub x}MoO{sub 3} probably consists of Na{sup +} intercalated in a (reduced) MoO{sub 3} matrix. • Intercalation can explain the

  11. Robust, heat-resistant and multifunctional superhydrophobic coating of carbon microflowers with molybdenum trioxide nanoparticles.

    Science.gov (United States)

    Wu, Yang; Zhao, Meiyun; Guo, Zhiguang

    2017-11-15

    Superhydrophobic materials have triggered large interest due to their widespread applications, such as self-cleaning, corrosion resistance, anti-icing, and oil/water separation. However, suffering from weak mechanical strength, plenty of superhydrophobic materials are limited in practical application. Herein, we prepared hierarchical carbon microflowers (CMF) dispersed with molybdenum trioxide (MoO 3 ) nanoparticles (MoO 3 /CMF) via a two-step preparation method. Taking advantage of high-adhesion epoxy resin and the modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES), the modified MoO 3 /CMF (PDES-MoO 3 /CMF) coating on various substrates shows great waterproof ability, excellent chemical stability, good mechanical durability, and self-cleaning property. More significantly, the prepared PDES-MoO 3 /CMF powder with high thermal stability (250°C) can be used for oil/water separation due to its special flower-like structure and superhydrophobicity/superoleophilicity. All of these advantages endow the superhydrophobic powders with huge potential in the practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Development of TiC and TiN coated molybdenum limiter system and initial results of the thermal testing in neutral beam heated JFT-2 tokamak

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Sengoku, Seio; Maeno, Masaki; Yamamoto, Shin; Seki, Masahiro; Kazawa, Minoru

    1982-06-01

    This paper describes the limiter drive system for TiC and TiN coated molybdenum limiters and the thermal testing results of the TiC coated limiter in the JFT-2 tokamak using neutral beam injection (0.7 MW). To investigate the influence of TiC coated limiter on plasma behavior and adhesion property under tokamak plasma, a full scale limiter test has been performed in the JFT-2. Reproducible plasma was obtained after the plasma conditioning. Maximum heat flux to the limiter, measured by IR camera, was 1.5 -- 6.5 kW/cm 2 in 25 msec. Cracking, exfoliation and melting on TiC coated limiter were not observed, except for a number of arc tracks. Finally, the permissible heat fluxes of TiC coated molybdenum first wall are discussed. (author)

  13. Effect of whole cottonseed, plus lanolin heat-treated whole ...

    African Journals Online (AJOL)

    Milk protein content or yield was not affected by any of the treatments. ... The higher (P < 0.01) C18:2 content of milk fat on the HWCS Eeatment indicated that heat fteatment ... where heat-treated soybeans were compared with raw soy- beans ...

  14. Metallurgy and Heat Treating. Welding Module 7. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in metallurgy and heat treating. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles of metallurgy and heat treatment and techniques for…

  15. Influence of heating temperature on bainite transformation proceeding in chromium-nickel-molybdenum steels

    International Nuclear Information System (INIS)

    Kaletin, Yu.M.; Kaletin, A.Yu.

    1983-01-01

    The purpose of the present paper is to investigate the effect of heating and cooling from austenization temperature on development of bainite transformation in 37KhN3MFA and 18Kh2N4MA structural alloyed steels. The metallographical analysis of specimens has revealed that first crystals of bainite under slow heating up to 770-790 deg C appear at the temperature of about 500 deg C and at 475 deg C there has been much bainite over the whole cross section of the specimen. It is revealed that an increase of heating temperature and cooling rate replace the starting point of bainite transformation upwards. The strongest displacement of the point Bsub(S) into hogh-temperature range takes place after heating steel with the initial bainite structure in intercritical temperature range

  16. The effect of molybdenum content with changes in phase and heat capacity of UMo alloy

    International Nuclear Information System (INIS)

    Aslina Br Ginting; Supardjo; Agoeng Kadarjono; Dian Anggraini

    2011-01-01

    Has done the analysis of phase and heat capacity change of the UMo alloy by variation of 7% Mo, 8% and 9% Mo. Analysis performed using phase change Differential Thermal Analysis (DTA) at a temperature between 30°C until 1400°C with heating rate 10°C/minute and heat capacity analysis carried out using Differential Scanning Calorimetry (DSC) at a temperature between 30°C to 450°C with heating rate 5°C/minute. The purpose of this study was to determine the character of the UMo alloy include phase change and heat capacity variation with Mo content due to higher content of Mo is expected to change both the character U-7% Mo alloy, U-8% Mo and U-9% Mo. The analysis showed that of 7% Mo, 8% Mo and 9% Mo the combination experiencing α+ δ a phase change becomes α + β phase at temperatures of 578.63°C to 580.16°C. At the temperature 606.50°C to 627.58°C having a phase change of α+ β to β + γ be followed by the endothermic reaction in the content of 9% Mo with the enthalpy ΔH = 6.5989 J / g. At temperatures 1075.45°C up to 1160.51°C phase change β + γ into γ phase. The increase in Mo content to heating at a temperature 1100°C not cause a significant phase change. At temperatures above 1177.21°C, the increase in Mo content leads to changes in the γ phase of forming L + γ phase which followed the reaction of uranium with Mo to form γ phase - solid solution. The higher content of Mo, the reaction heat is needed and released the greater. The results of the analysis of the heat capacity is obtained that the increase in Mo content in the U-7% Mo, U-8% Mo, and U-9% Mo alloy does not give a significant difference in heat capacity. This is attested by doing different test (F test) at 95% degree of confidence. This data is expected to be as a first step to study the manufacture of UMo alloy as a fuel of high uranium density for research reactor. (author)

  17. Evaluation of molybdenum and its alloys

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is critically examined. Pure molybdenum's high ductile-brittle transition temperature appears to be its major disadvantage. The candidate materials examined in detail for this application include low carbon arc-cast molybdenum, TZM-molybdenum alloy, and molybdenum-rhenium alloys. Published engineering properties are collected and compared, and it appears that Mo-Re alloys with 10 to 15% rhenium offer the best combination. Hardware is presently being made from electron beam melted Mo-13Re to test this conclusion

  18. Characterization and processing of heat treated aluminium matrix composite

    Science.gov (United States)

    Doifode, Yogesh; Kulkarni, S. G.

    2018-05-01

    The present study is carried out to determine density and porosity of Aluminium bagasse ash reinforced composite produced by powder metallurgy method. Bagasse ash is used as reinforcement material having high silica and alumina contents and varied from 5 weight % to 40 weight%. The manufactured composite is heat treated, the main objective of heat treatment is to prepare the material structurally and physically fit for engineering application. The results showed that the density decreases with percentage increase in reinforcement of bagasse ash from 2.6618 gm/cm3 to 1.9830 gm/cm3 with the minimum value at 40 weight% bagasse ash without heat treatment whereas after heat treatment density of composite increases due filling up of voids and porous holes. Heat treatment processing is the key to this improvement, with the T6 heat treated composite to convene the reduced porosity of composite. Consequently aluminium metal matrix composite combines the strength of the reinforcement to achieve a combination of desirable properties not available in any single material. It may observe that porosity in case of powder metallurgy samples showed more porosity portions compare to the casting samples. In order to achieve optimality in structure and properties of Bagasse ash-reinforcement heat treatment techniques have evolved. Generally, the ceramic reinforcements increase the density of the base alloy during fabrication of composites. However, the addition of lightweight reinforcements reduces the density of the hybrid composites. The results also showed that, the density varies from to with minimum value at 40 wt. % BA. The results of the statistical analysis showed that there are significant differences among the means of each property of the composites at various levels of BA replacement .It was concluded that bagasse ash can be used as reinforcement and the produced composites have low density and heat treatment reduces porosity which could be used in automobile industry for

  19. Adsorption characteristics of heat-treated fullerene nano-whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z-M [Energy Storage Materials Group, Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Kato, R; Hotta, K; Miyazawa, K [Fullerene Engineering Group, Advanced Nano Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)], E-mail: zm-wang@aist.go.jp

    2009-04-01

    Fullerene nanowhiskers (FNWs) were synthesized by the liquid-liquid interfacial precipitation method and the adsorption properties of their heat-treated samples were characterized. It was found that vacuum-annealed FNWs at a high temperature are of microporous materials and, especially, ultramicropores are highly developed in these materials. Porosities even remain in samples after heat treatment at a temperature higher than 2273 K. The presence of ultramicroporosity is indicative of the molecular sieving properties of the vacuum-annealed FNW materials, suggesting the possibilities of their application as new materials for gas separation and gas storage.

  20. Influence of iron and beryllium additions on heat resistance of silicide coatings on TsMB-30 molybdenum alloy

    International Nuclear Information System (INIS)

    Zajtseva, A.L.; Fedorchuk, N.M.; Lazarev, Eh.M.; Korotkov, N.A.

    1985-01-01

    Alloying of titanium modified silicide coatings on TsMB-30 molybdenum alloy with iron or beryllium is stated to improve their protective properties. Coatings with low content of alloying elements have the best protective properties. Service life of coatings is determined by the formed oxide film and phase transformations taking place in the coating

  1. Raman microprobe study of heat-treated pitches

    Energy Technology Data Exchange (ETDEWEB)

    Cottinet, D.; Couderc, P.; Saint Romain, J.L.; Dhamelincourt, P.

    1988-01-01

    A series of heat-treated pitches from the same coal-tar precursor is investigated by means of a Raman microprobe. Separated Raman spectra are obtained for the isotropic phase and the mesophase. The evolutions observed are characteristic of the structural rearrangement change in the two phases. They correlate well with the observations reported in literature and obtained by using different methods of structural investigations.

  2. Optical technique to measure distortion on heat treated parts

    Science.gov (United States)

    Sciammarella, Federico Mariano

    The use of aluminum for structural applications grows with the continual improvement of their physical properties. Through the various amounts of heat treatments that are available, aluminum can vary in properties for all different types of applications. The automotive industry has benefited the most from the use of aluminum and they continue to seek more uses. The heat treatments of these parts are very vital in providing the properties needed for their particular applications. Moreover understanding the effects of heat treatments that may cause distortion to a part is critical. Most of the work carried out in this field is a pre and post measurement after part has experienced its treatment. In this study, we carry out in-situ measurements of the distortions that a heat-treated part undergoes when subjected to temperatures near melting followed by a slow cooling. In order to confirm the experimental measurements we used HOTPOINT to simulate the experiment and compare results. This study will provide much needed insight to the complex occurrences that aluminum parts undergo during heat treatment.

  3. Process Design of Aluminum Tailor Heat Treated Blanks

    Directory of Open Access Journals (Sweden)

    Alexander Kahrimanidis

    2015-12-01

    Full Text Available In many industrials field, especially in the automotive sector, there is a trend toward lightweight constructions in order to reduce the weight and thereby the CO2 and NOx emissions of the products. An auspicious approach within this context is the substitution of conventional deep drawing steel by precipitation hardenable aluminum alloys. However, based on the low formability, the application for complex stamping parts is challenging. Therefore, at the Institute of Manufacturing Technology, an innovative technology to enhance the forming limit of these lightweight materials was invented. The key idea of the so-called Tailor Heat Treated Blanks (THTB is optimization of the mechanical properties by local heat treatment before the forming operation. An accurate description of material properties is crucial to predict the forming behavior of tailor heat treated blanks by simulation. Therefore, within in this research project, a holistic approach for the design of the THTB process in dependency of the main influencing parameters is presented and discussed in detail. The capability of the approach for the process development of complex forming operations is demonstrated by a comparison of local blank thickness of a tailgate with the corresponding results from simulation.

  4. Heat sterilization of ash (Fraxinus spp.) firewood : heat-treating options, temperature monitoring and thermal verification

    Science.gov (United States)

    Xiping Wang; Richard Bergman; T. Mace

    2010-01-01

    Because of the potential risk associated with moving emerald ash borer (EAB)-infested firewood, the interstate movement of all hardwood firewood in the USA is currently restricted under the Federal quarantine. Communities and firewood producers are now faced with decisions on how to treat their firewood for interstate commerce. The new US Federal regulations for heat...

  5. Erosion of heat-treated AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C. (Materials and Components Tech. Div., Argonne National Lab., IL (United States)); Thompson, A.C. (Materials and Components Tech. Div., Argonne National Lab., IL (United States)); Routbort, J.L. (Materials Science Div., Argonne National Lab., IL (United States))

    1993-03-15

    Solid-particle erosion was studied on AISI 4140 steel heat treated to have a Vickers hardness (Hv) of 288-650 kg mm[sup -2]. The experiments were conducted in vacuum with 143 [mu]m Al[sub 2]O[sub 3] abrasive impacting at 50-100 m s[sup -1] at an angle of 30 or 90 . Erosion rates were nearly independent of hardness for Hv[<=]365 kg mm[sup -2], but increased with hardness for Hv>365 kg mm[sup -2]. The improved erosion resistances of the softer alloys were attributed to increased ductilities. (orig.). Letter-to-the-editor

  6. Characterisation of chemically lithiated heat-treated electrolytic manganese dioxide

    International Nuclear Information System (INIS)

    Dose, Wesley M.; Lehr, Joshua; Donne, Scott W.

    2012-01-01

    Highlights: ► Manganese oxides are a promising cathode material for lithium ion batteries. Here we examine the structural and morphological changes that occur upon reduction, and assess its impact on material performance. ► Upon reduction, MnO 2 transforms into LiMn 2 O 4 , which is subsequently reduced to Li 2 Mn 2 O 4 . ► Significant morphological changes occur, particularly to the material porosity. ► This transformation for MnO 2 has not been reported previously. -- Abstract: Heat treated manganese dioxide is partially lithiated using butyl-lithium to determine the changes in crystal structure, chemical composition and morphology upon reduction, as a means of simulating its discharge behaviour in a non-aqueous battery cathode. As reduction proceeds, and lithium ions are inserted into the heat treated electrolytic manganese dioxide (EMD) structure, the material undergoes a phase transition to LiMn 2 O 4 . This new phase is further reduced to Li 2 Mn 2 O 4 . Reduction initially results in a 56% decrease in the surface area of the material; however, at higher degrees of reduction a slight increase in this value is observed, as a consequence of the strain placed on the lattice through continued lithium insertion.

  7. Monoclonal antibodies specific to heat-treated porcine blood.

    Science.gov (United States)

    Raja Nhari, Raja Mohd Hafidz; Hamid, Muhajir; Rasli, Nurmunirah Mohamad; Omar, Abdul Rahman; El Sheikha, Aly Farag; Mustafa, Shuhaimi

    2016-05-01

    Porcine blood is potentially being utilized in food as a binder, gelling agent, emulsifier or colorant. However, for certain communities, the usage of animal blood in food is strictly prohibited owing to religious concerns and health reasons. This study reports the development of monoclonal antibodies (MAbs) against heat-treated soluble proteins (HSPs) of autoclaved porcine blood; characterization of MAbs against blood, non-blood and plasma from different animal species using qualitative indirect non-competitive enzyme-linked immunosorbent assay (ELISA); and immunoblotting of antigenic components in HSPs of porcine blood. Fifteen MAbs are specific to heat-treated and raw porcine blood and not cross-reacted with other animal blood and non-blood proteins (meat and non-meat). Twelve MAbs are specific to porcine plasma, while three MAbs specific to porcine plasma are cross-reacted with chicken plasma. Immunoblotting revealed antigenic protein bands (∼60, ∼85-100 and ∼250 kDa) in porcine blood and plasma recognized by the MAbs. Selection of MAbs that recognized 60 kDa HSPs of porcine blood and plasma as novel monoclonal antibodies would be useful for detection of porcine plasma in processed food using the immunoassay method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Structural transformations of heat-treated bacterial iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki, E-mail: hideki-h@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan); Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Nakanishi, Koji [Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji 611-0011 (Japan); Yogi, Chihiro [SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Peterlik, Herwig [Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Takada, Jun [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2015-04-01

    A bacterial siliceous iron oxide microtubule (diameter: ca. 1 μm, 15Fe{sub 2}O{sub 3}·8SiO{sub 2}·P{sub 2}O{sub 5}·30H{sub 2}O) produced by Leptothrix ochracea was heat treated in air and its structural transformation was investigated in detail by microscopy, diffractometry, and spectroscopy. Although the heat-treated bacterial iron oxide retained its original microtubular structure, its nanoscopic, middle-range, and local structures changed drastically. Upon heat treatment, nanosized pores were formed and their size changed depending on temperature. The Fe–O–Si linkages were gradually cleaved with increasing temperature, causing the progressive separation of Fe and Si ions into iron oxide and amorphous silicate phases, respectively. Concomitantly, global connectivity and local structure of FeO{sub 6} octahedra in the iron oxide nanoparticles systematically changed depending on temperature. These comprehensive investigations clearly revealed various structural changes of the bacterial iron oxide which is an important guideline for the future exploration of novel bio-inspired materials. - Highlights: • Structural transformation of a bacterial iron oxide microtubule was investigated. • Si–O–Fe was cleaved with increasing temperature to form α-Fe{sub 2}O{sub 3}/silicate composite. • Crystallization to 2Fh started at 500 °C to give α-Fe{sub 2}O{sub 3} >700 °C. • FeO{sub 6} octahedra were highly distorted <500 °C. • Formation of face-sharing FeO{sub 6} was promoted >500 °C, releasing the local strain of FeO{sub 6}.

  9. Method of producing oxidation resistant coatings for molybdenum

    International Nuclear Information System (INIS)

    Timmons, G.A.

    1989-01-01

    A method is described for producing a molybdenum element having adherently bonded thereto a thermally self-healing plasma-sprayed coating consisting essentially of a composite of molybdenum and a refactory oxide material capable of reacting with molybdenum oxide under oxidizing conditions to form a substantially thermally stable refractory compound of molybdenum, the method comprising plasma-spraying a coating formed by the step-wise application of a plurality of interbonded plasma-sprayed layers of a composite of molybdenum/refractory oxide material produced from a particulate mixture thereof. The coating comprises a first layer of molybdenum plasma-sprayed bonded to the substrate of the molybdenum element, a second layer of plasma-sprayed mixture of particulate molybdenum/refactory oxide consisting essentially of predominantly molybdenum bonded to the first layer, and succeeding layers of this mixture. The next step is heating the coated molybdenum element under oxidizing conditions to an elevated temperature sufficient to cause oxygen to diffuse into the surface of the multi-layered coating to react with dispersed molybdenum therein to form molybdenum oxide and effect healing of the coating by reaction of the molybdenum oxide with the contained refractory oxide and thereby protect the substrate of the molybdenum element against oxidation

  10. Technological and chemical properties of heat-treated Anatolian ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... heat treatment temperature and time justifies these re- sults. Cellulose ..... properties of light-irradiated wood with heat treatment: Part 1. Effect ... Norway spruce (Picea abies) and birch (Betula pubescens) subjected to heat ...

  11. Surface properties of activated carbon treated by cold plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Norikazu, Kurano [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yamada, Hiroshi [Shigematsu works Co. Ltd., 267 Yashita, Iwatsuki 3390046 (Japan); Yajima, Tatsuhiko [Faculty of Engineering, Saitama Institute of Technology, 1690 Fusoiji, Okabe 3690293 (Japan); Sugiyama, Kazuo [Faculty of Engineering, Saitama University, 255 Shimo-okubo, Sakura-Ku, Saitama 3388570 (Japan)]. E-mail: sugi@apc.saitama-u.ac.jp

    2007-03-12

    To modify the surface properties of activated carbon powders, we have applied the cold plasma treatment method. The cold plasma was used to be generated in the evacuated reactor vessel by 2.45 GHz microwave irradiation. In this paper, changes of surface properties such as distribution of acidic functional groups and roughness morphology were examined. By the cold plasma treatment, activated carbons with large specific surface area of ca. 2000 m{sup 2}/g or more could be prepared in a minute. The amount of every gaseous organic compound adsorbed on the unit gram of treated activated carbons was more increased that on the unit gram of untreated carbons. Especially, the adsorbed amount of carbon disulfide was remarkably increased even if it was compared by the amount per unit surface area. These results suggest that the surface property of the sample was modified by the plasma treatment. It became apparent by observing SEM photographs that dust and impure particles in macropores of activated carbons were far more reduced by the plasma treatment than by the conventional heating in an electric furnace under vacuum. In addition, a bubble-like surface morphology of the sample was observed by AEM measurement. The amount of acidic functional groups at the surface was determined by using the Boehm's titration method. Consequently, the increase of lactone groups and the decrease of carboxyl groups were also observed.

  12. Features of soldering of molybdenum a lols

    International Nuclear Information System (INIS)

    Grishin, V.L.; Rybkin, B.V.; Cherkasov, A.F.

    1980-01-01

    Soldering features of complex-alloy molybdenum alloys were investigated in comparison with alloys based on solid solutions. Soldering features of heterogeneous molybdenum base alloys were investigated using samples of 0.5-1.O mm sheets with the strain of about 95% made of ingots which had been smelted in arc vacuum furnaces. The soldering of samples was carried out in 5x1O -5 mm Hg vacuum using different sources of heating: radiation, electron-ray and contact. It was shown that heat-resisting soldered joints of heterogeneous molybdenum alloys could be produced using zirconium and niobium base solders containing the most effective hardeners of the parent material (titanum, vanadium, tantalum, molybdenum, tungsten). To preserve high mechanical properties of heterogeneous alloys it was expedient to use for welding local heating sources which permitted to decrease considerably temperature- time conditions of the process

  13. Elevated-temperature tensile properties of three heats of commercially heat-treated Alloy 718

    International Nuclear Information System (INIS)

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    Three heats of commercially heat-treated alloy 718 were tensile tested over the temperature range from room temperature to 816 degree C and at nominal strain rates from 6.7 x 10 -6 to 6.7 x 10 -3 /s. We examined data for yield strength, ultimate tensile strength, uniform elongation, total elongation, and reduction in area and also inspected tensile stress-strain behavior. Yield and ultimate tensile strengths for commercially heat-treated alloy 718 decrease very gradually with temperature from room temperature up to about 600 degree C for a strain rate of 6.7 x 10 -5 /s or to about 700 degree C for a strain rate of 6.7 x 10 -4 /s. Above these temperatures the strength drops off fairly rapidly. Reduction in area and total elongation data show minimum around 700 degree C, with each ductility measure falling to 10% or less at the minimum. This minimum is more pranced and occurs at lower temperatures as strain rate decreases. Up to about 600 degree C the ductility is typically around 30%. As the temperature reaches 816 degree C the ductility again increases to perhaps 60%. The uniform elongation (plastic strain at peak load) decreases only slightly with temperature to about 500 degree C then drops off rapidly and monotonically with temperature, reaching values less than 1% at 816 degree C. At the highest test temperatures the load maximum may result, not from necking of the specimen, but from overaging of the precipitation-hardened microstructure. Stress-strain curves showed serrated deformations in the temperature range from 316 to 649 degree C, although they occur only for the faster strain rates at the supper end of this temperature range. The serrations can be quite large, involving load drops of perhaps 40 to 80 MPa. The serrations typically begin within the first 2% of deformation and continue until fracture, although exceptions were noted. 16 refs., 14 figs., 3 tabs

  14. Frictional property of glass-like carbon heat-treated at 1000-3000 deg. C

    International Nuclear Information System (INIS)

    Nakamura, Kazumasa; Sano, Takanori; Shindo, Hitoshi

    2008-01-01

    Frictional coefficient 'f' was measured in the air and in water at glass-like carbon (GLC) surfaces heat-treated between 1000 and 3000 deg. C. GLCs heat-treated at higher temperature had smoother and more hydrophobic faces, and lower f. The f was smaller than 0.10 for GLCs heat-treated at and above 2000 deg. C, which indicates their applicability as a solid lubricant or a self-lubricating material. The f = 0.06 observed for GLC heat-treated at 3000 deg. C was nearly the same as that of pyrolytic graphite (PG). Slightly lower f's were obtained in water than in the air

  15. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...

  16. Structure and properties of heat-treated Ti-(40-4X)%Nb-X%Mo alloys with IE (SME)

    International Nuclear Information System (INIS)

    Silva, Marcia Almeida; Matlakhova, Lioudmila Aleksandrovna; Matlakhov, Anatoliy Nikolaevich; Paes Junior, Herval Ramos; Goncharenko, Boris Andreevich

    2010-01-01

    Whereas the inelastic effects (IE) are related with reversible martensitic transformation, in this work, was analyzed the structure and properties of heat treated Ti-(40-4x)%Nb-x%Mo alloys, where the contents of niobium and molybdenum are between 24-40%Nb and 0-4%Mo (% weight). The structural and phase analysis were done through optical microscopy and X-rays diffraction. The properties measured in this study were electrical resistivity and density. The Ti-40%Nb alloy shows a structure consisting of the β phase and αα’’ martensite with a minor participation of the α’ and ω. The alloys with 1 to 4%Mo have similar structures consisting of the β phase and traces of the α’’ phase. Thus, was observed greater capacity of Mo as a β stabilizer. The increase in Mo content in the composition of the alloys causes an increase in electrical resistivity of these. The samples may have undergone change in volume, caused by phase transformation, what possibly caused the difference between the density values calculated (theoretical) and experimental. (author)

  17. Quality assurance: recommended guidelines for safe heating by capacitive-type heating technique to treat patients with metallic implants.

    Science.gov (United States)

    Kato, Hirokazu; Kondo, Motoharu; Imada, Hajime; Kuroda, Masahiro; Kamimura, Yoshitsugu; Saito, Kazuyuki; Kuroda, Kagayaki; Ito, Koichi; Takahashi, Hideaki; Matsuki, Hidetoshi

    2013-05-01

    This article is a redissemination of the previous Japanese Quality Assurance Guide guidelines. Specific absorption rate and temperature distribution were investigated with respect to various aspects including metallic implant size and shape, insertion site, insertion direction, blood flow and heating power, and simulated results were compared with adverse reactions of patients treated by radio frequency capacitive-type heating. Recommended guidelines for safe heating methods for patients with metallic implants are presented based on our findings.

  18. Comparison of efficacy of unheated and heat-treated Sahara honey on wound healing in rabbits

    Directory of Open Access Journals (Sweden)

    Baghdad Khiati

    2015-02-01

    Full Text Available Objective: To investigate the efficacy of unheated and heat-treated Sahara honey on wound healing in rabbits on the basis of macroscopic observation changes. Methods: Eight female rabbits were used. Using aseptic surgical technique, a 3 cm incision was made on the back of each rabbit and two rabbits with injuries in each group were treated daily with a topical application of unheated and heated honey, sulfadiazine and sterile saline, respectively. Results: The unheated honey demonstrated the highest activity on the wound compared to reference ointment silver sulfadiazine, heat-treated honey and sterile saline respectively. Further the present investigation proves that unheated honey is possessing superior wound healing activity than that of heat-treated honey. Conclusions: The result of this study confirms that unheated honey had the best wound healing effect even better than heat-treated honey.

  19. Molybdenum extraction from copper-molybdenum ores

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1982-01-01

    Molybdenum extraction from copper-molybdenum ores as practised in different countries is reviewed. In world practice the production process including depression of copper and iron sulfides and flotation of molybdenite is widely spread. At two USA factories the process of a selective flotation with molybdenite depression by dextrin is used

  20. Structural analysis of heat-treated birch (Betule papyrifera) surface during artificial weathering

    International Nuclear Information System (INIS)

    Huang Xianai; Kocaefe, Duygu; Kocaefe, Yasar; Boluk, Yaman; Krause, Cornélia

    2013-01-01

    Highlights: ► Investigate detailed structural changes of heat-treated wood due to weathering. ► Identify connection between physical structural changes and chemical degradation. ► Study effect of heat treatment conditions on weathering degradation process. - Abstract: Effect of artificial weathering on the surface structural changes of birch (Betule papyrifera) wood, heat-treated to different temperatures, was studied using the fluorescence microscopy and the scanning electron microscopy (SEM). Changes in the chemical structure of wood components were analyzed by FTIR in order to understand the mechanism of degradation taking place due to heat treatment and artificial weathering. The results are compared with those of the untreated (kiln-dried) birch. The SEM analysis results show that the effect of weathering on the cell wall of the untreated birch surface is more than that of heat-treated samples. The FTIR spectroscopy results indicate that lignin is the most sensitive component of heat-treated birch to the weathering degradation process. Elimination of the amorphous and highly crystallised cellulose is observed for both heat-treated and untreated wood during weathering. It is also observed that heat treatment increases the lignin and crystallised cellulose contents, which to some extent protects heat-treated birch against degradation due to weathering.

  1. Magnetic properties of heat treated bacterial ferrihydrite nanoparticles

    International Nuclear Information System (INIS)

    Balaev, D.A.; Krasikov, A.A.; Dubrovskiy, A.A.; Popkov, S.I.; Stolyar, S.V.; Bayukov, O.A.; Iskhakov, R.S.; Ladygina, V.P.; Yaroslavtsev, R.N.

    2016-01-01

    The magnetic properties of ferrihydrite nanoparticles, which are products of vital functions of Klebsiella oxitoca bacteria, have been studied. The initial powder containing the nanoparticles in an organic shell was subjected to low-temperature (T=160 °C) heat treatment for up to 240 h. The bacterial ferrihydrite particles exhibit a superparamagnetic behavior. Their characteristic blocking temperature increases from 26 to 80 K with the heat treatment. Analysis of the magnetization curves with regard to the magnetic moment distribution function and antiferromagnetic contribution shows that the low-temperature heat treatment enhances the average magnetic moment of a particle; i.e., the nanoparticles coarsen, probably due to their partial agglomeration during heat treatment. It was established that the blocking temperature nonlinearly depends on the particle volume. Therefore, a model was proposed that takes into account both the bulk and surface magnetic anisotropy. Using this model, the bulk and surface magnetic anisotropy constants K V ≈1.7×10 5 erg/cm 3 and K S ≈0.055 erg/cm 2 have been determined. The effect of the surface magnetic anisotropy of ferrihydrite nanoparticles on the observed magnetic hysteresis loops is discussed. - Highlights: • Ferrihydrite nanoparticles of biogenic origin are obtained. • Magnetic characterization reveals superparamagnetic behavior. • The blocking temperature increases upon the low-temperature (T=160 °C) heat treatment. • The blocking temperature nonlinearly depends on the particle volume. • The bulk and surface magnetic anisotropy constants have been determined.

  2. Effect of Microstructure on the Wear Behavior of Heat Treated SS-304 Stainless Steel

    OpenAIRE

    S. Kumar

    2016-01-01

    Sliding wear characteristics of some heat treated SS-304 stainless steel against EN-8 steel in dry condition have been studied in the present experimental work. Samples of SS-304 stainless steel have been heated in a muffle furnace in desired temperature and allowed to dwell for two hours. The heated specimen are then cooled in different media namely inside the furnace, open air, cutting grade oil (grade 44) and water at room temperature to obtain different grades of heat treatment. Microstr...

  3. Performance of broiler chickens served heat-treated fluted pumpkin ...

    African Journals Online (AJOL)

    One hundred and twenty five day-old chicks of Anak 2000 were weighed and randomly distributed to five dietary treatments A, B, C, D and E which contained no FPLE (control), fluted pumpkin leaves (FPL) no heat treatment, FPL immersed in hot water (100°C) for 1, 3 and 5 min, respectively. Each treatment was replicated 3 ...

  4. Nanosize boride particles in heat-treated nickel base superalloys

    International Nuclear Information System (INIS)

    Zhang, H.R.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    Grain boundary microconstituents in aged nickel-based superalloys were studied by transmission electron microscopy techniques. A nanosized M 5 B 3 boride phase, possibly formed by intergranular solute desegregation-induced precipitation, was positively identified. The presence of these intergranular nanoborides provides reasonable clarification of a previously reported reduction of grain boundary liquation temperature during the weld heat affected zone thermal cycle

  5. Molybdenum, molybdenum oxides, and their electrochemistry.

    Science.gov (United States)

    Saji, Viswanathan S; Lee, Chi-Woo

    2012-07-01

    The electrochemical behaviors of molybdenum and its oxides, both in bulk and thin film dimensions, are critical because of their widespread applications in steels, electrocatalysts, electrochromic materials, batteries, sensors, and solar cells. An important area of current interest is electrodeposited CIGS-based solar cells where a molybdenum/glass electrode forms the back contact. Surprisingly, the basic electrochemistry of molybdenum and its oxides has not been reviewed with due attention. In this Review, we assess the scattered information. The potential and pH dependent active, passive, and transpassive behaviors of molybdenum in aqueous media are explained. The major surface oxide species observed, reversible redox transitions of the surface oxides, pseudocapacitance and catalytic reduction are discussed along with carefully conducted experimental results on a typical molybdenum glass back contact employed in CIGS-based solar cells. The applications of molybdenum oxides and the electrodeposition of molybdenum are briefly reviewed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Physical properties of heat-treated rattan waste binderless particleboard

    Science.gov (United States)

    Tajuddin, Maisarah; Ahmad, Zuraida; Halim, Zahurin; Maleque, Md Abd; Ismail, Hanafi; Sarifuddin, Norshahida

    2017-07-01

    The objective of this study is to investigate the effects of heat treatment on the properties of binderless particleboard (BPB) fabricated via hot-pressing process with pressing temperature, pressing time and pressing pressure of 180°C, 5 minutes and 1 MPa, respectively. The fabricated BPB with density in the range of 0.8-0.95g cm-3 was heated in a temperature-controlled laboratory chamber at 80°C, 120°C and 160°C for period of 2 and 8 hours before underwent physical observation, mass loss measurement and thickness swelling test. The samples had remarkable color changes, mainly with samples of treatment temperature of 160˚C, where the color differences were 9.5 and 20.3. This changed the fabricated BPB samples from yellowish brown to dark brown color when treatment conditions increased. Darker color indicates greater mass loss due to severity of chemical component in the powder. Dimensional stability of fabricated BPB was improved with higher treatment temperature as more cellulose cross-linked and hemicellulose degraded that removed the hygroscopicity behavior of powder. These results revealed that heat treatment helped in improving the BPB physical properties, particularly in dimensional stability of boards.

  7. Heat treated tube for cladding nuclear fuel element

    International Nuclear Information System (INIS)

    Eddens, F.C.; White, D.W.; Harmon, J.L.

    1983-01-01

    The zirconium alloy tube comprises a metallurgical gradient across the width of the tube wall wherein the tube has a more corrosion-resistant metallurgical condition at the outer circumference and a less corrosion-resistant metallurgical condition at the inner circumference. The metallurgical gradient can be generated by heating an outer circumferential portion of the tube to the high alpha or mixed alpha plus beta range while maintaining the inner surface at a lower temperature, followed by cooling of the tube. Preferably the tube is made of Zircaloy. (author)

  8. High Magnetic Field Processing - A Heat-Free Heat Treating Method

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kenik, Edward A [ORNL; Parish, Chad M [ORNL; Rios, Orlando [ORNL; Rogers, Hiram [ORNL; Manuel, Michele [University of Florida, Gainesville; Kisner, Roger A [ORNL; Watkins, Thomas R [ORNL; Murphy, Bart L [ORNL

    2012-08-01

    -free', heat treating technology. Lower residual stresses in HTMP treated materials are anticipated since no thermal strains are involved in inducing the transformation of retained austenite to martensite in high alloy steel. (2) The simultaneous increase of 12% in yield strength and 22% in impact energy in a bainitic alloy using HTMP processing. This is a major breakthrough in materials processing for the next generation of structural materials since conventionally processed materials show a reduction in impact toughness with an increase in yield strength. HTMP is a new paradigm to beneficially increase both yield strength and impact energy absorption simultaneously. (3) HTMP processing refined both the martensite lath population and the carbide dispersion in a bainitic steel alloy during Gausstempering. The refinement was believed to be responsible for the simultaneous increase in strength and toughness. Hence, HTMP significantly impacts nucleation and growth phenomenon. (4) HTMP processing developed comparable ultimate tensile strength and twice the impact energy in a lower cost, lower alloy content ({approx}8% alloy content) steel, compared to highly alloyed, (31% alloy elements involving Ni, Co, and Mo) 250-grade margining steel. Future low-cost HTMP alloys appear viable that will exceed the structural performance of highly alloyed materials that are conventionally processed. This economic benefit will enable U.S. industry to reduce cost (better more competitive worldwide) while maintaining or exceeding current performance. (5) EMAT processed cast iron exhibits significantly higher hardness (by 51% for a 9T condition) than a no-field processed sample. (6) EMAT produced microstructures in cast iron resulted in an unique graphite nodule morphology, a modified pearlite content, and unique carbide types, that formed during solidification and cooling. (7) EMAT processed nanoparticle dispersions in Mg resulted in a very fine, unagglomerated distribution of the nanoparticles in

  9. Comparison of efficacy of unheated and heat-treated Sahara honey on wound healing in rabbits

    OpenAIRE

    Baghdad Khiati; Moussa Ahmed

    2015-01-01

    Objective: To investigate the efficacy of unheated and heat-treated Sahara honey on wound healing in rabbits on the basis of macroscopic observation changes. Methods: Eight female rabbits were used. Using aseptic surgical technique, a 3 cm incision was made on the back of each rabbit and two rabbits with injuries in each group were treated daily with a topical application of unheated and heated honey, sulfadiazine and sterile saline, respectively. Results: The unheated...

  10. Analytic chemistry of molybdenum

    International Nuclear Information System (INIS)

    Parker, G.A.

    1983-01-01

    Electrochemical, colorimetric, gravimetric, spectroscopic, and radiochemical methods for the determination of molybdenum are summarized in this book. Some laboratory procedures are described in detail while literature citations are given for others. The reader is also referred to older comprehensive reviews of the analytical chemistry of molybdenum. Contents, abridged: Gravimetric methods. Titrimetric methods. Colorimetric methods. X-ray fluorescence. Voltammetry. Catalytic methods. Molybdenum in non-ferrous alloys. Molydbenum compounds

  11. Molybdenum from uranium solutions

    International Nuclear Information System (INIS)

    Gardner, H.E.

    1981-01-01

    A method of removing molybdenum from a uranium bearing solution is claimed. It comprises adding sufficient reactive lead compound to supply at least 90 percent of the stoichiometric quantity of lead ion required to fully react with the molybdenum present to form insoluble lead molybdate and continuing the reaction with agitation until the desired percentage of the molybdenum present has reacted with the lead ion

  12. Potentiometric determination of molybdenum

    International Nuclear Information System (INIS)

    Rusina, O.N.; Gorbatkova, B.Kh.

    1977-01-01

    Potentiometric titration by lead acetate is used to determine molybdenum in the form of molybdate ions. The behaviour of bimetallic electrode couples, i.e. tungsten-lead, platinum-lead, lead-carbon electrode, molybdenum-carbon electrode platinum-molibdenum has been investigated. The greatest jump of the potential in the finite point is observed for platinum-molybdenum electrode couple (150 mV/ml at pH 4.0-5.5). The limiting concentration of molybdenum in potentiometric titration by lead acetate is 2.8x10 -4 M. The measurements are accurate to within +-0.1%

  13. Technological and Thermal Properties of Thermoplastic Composites Filled with Heat-treated Alder Wood

    Directory of Open Access Journals (Sweden)

    Mürşit Tufan

    2016-02-01

    Full Text Available This study investigated the effect of heat-treated wood content on the water absorption, mechanical, and thermal properties of wood plastic composites (WPCs. The WPCs were produced from various loadings (30, 40, and 50 wt% of heat-treated and untreated alder wood flours (Alnus glutinosa L. using high-density polyethylene (HDPE with 3 wt% maleated polyethylene (MAPE coupling agent. All WPC formulations were compression molded into a hot press for 3 min at 170 ºC. The WPCs were evaluated using mechanical testing, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and differential scanning calorimetry (DSC. The mechanical property values of the WPC specimens decreased with increasing amounts of the heat-treated wood flour, except for the tensile modulus values. The heat treatment of alder wood slightly increased the thermal stability of the WPCs compared with the reference WPCs. The crystallization degree (Xc and the enthalpy of crystallization of the WPCs slightly decreased with increasing content of the heat-treated wood flour. However, all WPCs containing the heat-treated alder wood flour showed a higher crystallinity degree than that of the virgin HDPE.

  14. Heat treated 9 Cr-1 Mo steel material for high temperature application

    Science.gov (United States)

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  15. Molybdenum market in transition

    International Nuclear Information System (INIS)

    Sutulov, A.

    1980-01-01

    Since the beginning of 1980 - after seven years of constant unbalance between supply and demand of molybdenum, characterized by a demand overhang and after two years of unprecedented spot market prices - clear signals for a consolidation of the molybdenum market can be recognized. (orig.) [de

  16. An optical technique to measure distortion in heat-treated parts in-situ

    Science.gov (United States)

    Sciammarella, Federico; Nash, Phillip

    2005-05-01

    Improvements in the properties of aluminum alloys have made them more popular for structural applications. Using the different heat treatments that are available, aluminum alloys can have a wide variation in properties for different types of applications. The appropriate heat treatments of these alloys are vital in providing the properties needed for their particular applications. Moreover, understanding the effects of heat treatments that may cause distortion to a part is critical. Most of the work carried out in this field is in the form of pre- and post-treatment analysis of a part. In this study, in-situ measurements of the distortions that a heat-treated part undergoes when subjected to rapid heating to temperatures near melting followed by slow cooling were carried out. A numerical model was built to simulate the experiment and the results are compared. This study will provide much-needed insight into the complex occurrences that aluminum parts undergo during heat treatment.

  17. Microstructural response to heat affected zone cracking of prewelding heat-treated Inconel 939 superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.A., E-mail: mgonzalez@comimsa.com.mx [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Martinez, D.I., E-mail: dorairma@yahoo.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Perez, A., E-mail: betinperez@hotmail.com [Facultad de Ingenieria Mecanica y Electrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolas de los Garza, N.L. (Mexico); Guajardo, H., E-mail: hguajardo@frisa.com [FRISA Aerospace, S.A. de C.V., Valentin G. Rivero No. 200, Col. Los Trevino, C.P. 66150, Santa Caterina N.L. (Mexico); Garza, A., E-mail: agarza@comimsa.com [Corporacion Mexicana de Investigacion en Materiales S.A. de C.V. (COMIMSA), Ciencia y Tecnologia No.790, Saltillo 400, C.P. 25295 Saltillo Coah. (Mexico)

    2011-12-15

    The microstructural response to cracking in the heat-affected zone (HAZ) of a nickel-based IN 939 superalloy after prewelding heat treatments (PWHT) was investigated. The PWHT specimens showed two different microstructures: 1) spherical ordered {gamma} Prime precipitates (357-442 nm), with blocky MC and discreet M{sub 23}C{sub 6} carbides dispersed within the coarse dendrites and in the interdendritic regions; and 2) ordered {gamma} Prime precipitates in 'ogdoadically' diced cube shapes and coarse MC carbides within the dendrites and in the interdendritic regions. After being tungsten inert gas welded (TIG) applying low heat input, welding speed and using a more ductile filler alloy, specimens with microstructures consisting of spherical {gamma} Prime precipitate particles and dispersed discreet MC carbides along the grain boundaries, displayed a considerably improved weldability due to a strong reduction of the intergranular HAZ cracking associated with the liquation microfissuring phenomena. - Highlights: Black-Right-Pointing-Pointer Homogeneous microstructures of {gamma} Prime spheroids and discreet MC carbides of Ni base superalloys through preweld heat treatments. Black-Right-Pointing-Pointer {gamma} Prime spheroids and discreet MC carbides reduce the intergranular HAZ liquation and microfissuring of Nickel base superalloys. Black-Right-Pointing-Pointer Microstructure {gamma} Prime spheroids and discreet blocky type MC carbides, capable to relax the stress generated during weld cooling. Black-Right-Pointing-Pointer Low welding heat input welding speeds and ductile filler alloys reduce the HAZ cracking susceptibility.

  18. Thermodynamic Properties of Manganese and Molybdenum

    International Nuclear Information System (INIS)

    Desai, P.D.

    1987-01-01

    This work reviews and discusses the data on the various thermodynamic properties of manganese and molybdenum available through March 1985. These include heat capacity, enthalpy, enthalpy of transitions and melting, vapor pressure, and enthalpy of vaporization. The existing data have been critically evaluated and analyzed. The recommended values for the heat capacity, enthalpy, entropy, and Gibbs energy function from 0.5 to 2400 K for manganese and from 0.4 to 5000 K for molybdenum have been generated, as have heat capacity values for supercooled β-Mn and for γ-Mn below 298.15 K. The recommended values for vapor pressure cover the temperature range from 298.15 to 2400 K for manganese and from 298.15 to 5000 K for molybdenum. These values are referred to temperatures based on IPTS-1968. The uncertainties in the recommended values of the heat capacity range from +-3% to +-5% for manganese and from +-1.5% to +-3% for molybdenum

  19. Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (Al-Mg-Si-Cu

    Directory of Open Access Journals (Sweden)

    JongBeom Kim

    2013-01-01

    Full Text Available The nonlinear ultrasonic technique has been known to be more sensitive to minute variation of elastic properties in material than the conventional linear ultrasonic method. In this study, the ultrasonic nonlinear characteristics in the heat-treated aluminum alloy (Al-Mg-Si-Cu have been evaluated. For this, the specimens were heat treated for various heating period up to 50 hours at three different heating temperatures: 250°C, 300°C, and 350°C. The ultrasonic nonlinear characteristics of each specimen were evaluated by measuring the ultrasonic nonlinear parameter β from the amplitudes of fundamental and second harmonic frequency components in the transmitted ultrasonic wave. After the ultrasonic test, tensile strengths and elongations were obtained by the tensile test to compare with the parameter β. The heating time showing a peak in the parameter β was identical to that showing critical change in the tensile strength and elongation, and such peak appeared at the earlier heating time in the higher heating temperature. These results suggest that the ultrasonic nonlinear parameter β can be used for monitoring the variations in elastic properties of aluminum alloys according to the heat treatment.

  20. The Impact of One Heat Treated Contact Element on the Coefficient of Static Friction

    Directory of Open Access Journals (Sweden)

    P. Todorović, , , , , ,

    2013-12-01

    Full Text Available The subject of the paper includes theoretical considerations, the conducting of experimental tests, and the analysis of exposed test results related to determination of the coefficient of static friction of previously heat-treated contact pairs. One contact element is previously, before the procedure of determining the coefficient of static friction, heated at temperatures in the range of ambient temperature to 280°C and then cooled down to ambient temperature. The results of experimental tests of five different materials show that depending on the heat treatment of one contact element, there is a significant decrease in the coefficient of static friction. The authors of the paper consider that the reasons for the decreasing coefficient of static friction are related to oxide formation and changes in the surface layer of the contact element which is previously heat-treated.

  1. Combustion of environmentally altered molybdenum trioxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Pantoya, Michelle L. [Mechanical Engineering Department, Texas Tech University, 2500 Broadway, Lubbock, TX 79409 (United States)

    2006-06-15

    Nanocomposite thermite mixtures are currently under development for many primer applications due to their high energy densities, high ignition sensitivity, and low release of toxins into the environment. However, variability and inconsistencies in combustion performance have not been sufficiently investigated. Environmental interactions with the reactants are thought to be a contributing factor to these variabilities. Combustion velocity experiments were conducted on aluminum (Al) and molybdenum trioxide (MoO{sub 3}) mixtures to investigate the role of environmental interactions such as light exposure and humidity. While the Al particles were maintained in an ambient, constant environment, the MoO{sub 3} particles were exposed to UV or fluorescent light, and highly humid environments. Results show that UV and fluorescent lighting over a period of days does not significantly contribute to performance deterioration. However, a humid environment severely decreases combustion performance if the oxidizer particles are not heat-treated. Heat treatment of the MoO{sub 3} greatly increases the material's ability to resist water absorption, yielding more repeatable combustion performance. This work further quantifies the role of the environment in the decrease of combustion performance of nanocomposites over time. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Enhancement of durability properties of heat-treated oil palm shell species lightweight concrete

    Science.gov (United States)

    Yew, Ming Kun; Yew, Ming Chian; Saw, Lip Huat; Ang, Bee Chin; Lee, Min Lee; Lim, Siong Kang; Lim, Jee Hock

    2017-04-01

    Oil palm shell (OPS) are non-hazardous waste materials and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. A study on preparing the OPS species (dura and tenera) lightweight concrete (LWC) using with and without heat-treated OPS aggregate has been investigated. Two different species of OPS coarse aggregate are subjected to heat treatment at 65 and 130 °C with duration of 1 hour. The results reveal that the slump value of the OPSC increases significantly with an increase in temperature of heat treatment of the tenera OPS aggregates. It is found that the maximum achievable 28-days and 180-days compressive strength is 45.6 and 47.5 MPa, respectively. Furthermore, rapid chloride penetration test (RCPT) and water absorption tests were performance to signify the effects of heat-treated on OPS species LWC. The use of heat-treated OPS LWC induced the advantageous of reducing the permeability and capillary porosity as well as water absorption. Hence, the findings of this study are of primary importance as they revealed the heat treatment on OPS species LWC can be used as a new environmentally friendly method to enhance the durability of OPSLWC.

  3. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime; FINAL

    International Nuclear Information System (INIS)

    David Schwam; John F, Wallace; Quanyou Zhou

    2002-01-01

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters

  4. Method of Heat Treating Aluminum-Lithium Alloy to Improve Formability

    Science.gov (United States)

    Chen, Po-Shou (Inventor); Russell, Carolyn Kurgan (Inventor)

    2016-01-01

    A method is provided for heat treating aluminum-lithium alloys to improve their formability. The alloy is heated to a first temperature, maintained at the first temperature for a first time period, heated at the conclusion of the first time period to a second temperature, maintained at the second temperature for a second time period, actively cooled at the conclusion of the second time period to a third temperature, maintained at the third temperature for a third time period, and then passively cooled at the conclusion of the third time period to room temperature.

  5. Steel heat treating: mathematical modelling and numerical simulation of a problem arising in the automotive industry

    Directory of Open Access Journals (Sweden)

    Jose Manuel Diaz Moreno

    2017-12-01

    Full Text Available We describe a mathematical model for the industrial heating and cooling processes of a steel workpiece representing the steering rack of an automobile. The goal of steel heat treating is to provide a hardened surface on critical parts of the workpiece while keeping the rest soft and ductile in order to reduce fatigue. The high hardness is due to the phase transformation of steel accompanying the rapid cooling. This work takes into account both heating-cooling stage and viscoplastic model. Once the general mathematical formulation is derived, we can perform some numerical simulations.

  6. Nutritional evaluation of heat treated sunflower meal on the performance of broiler chicks

    International Nuclear Information System (INIS)

    Ali, S.; Kausar, T.; Shah, W.H.

    2004-01-01

    Pre-pressed and solvent extracted sunflower meal (SFM) was heated to 90 degree, 100 degree, 110 degree and 120 degree C. Lysine content of SFM decreased from 2.25 to 1.60%. The untreated and heat treated SFM was incorporated in broiler's ration. Maximum weight gain (1525g) and feed efficiency (2.24) were shown by the ration containing SFM heated to 90 degree, which was better than the control ration (weight gain 1454g, feed efficiency 2038). Processing of SFM at higher temperature (100 - 120 degree C) adversely affected weight gain (1388 - 1315g) and feed efficiency (2.46-251). (author)

  7. Fungistatic activity of heat-treated flaxseed determined by response surface methodology.

    Science.gov (United States)

    Xu, Y; Hall, C; Wolf-Hall, C

    2008-08-01

    The objective of this study was to evaluate the effect of heat treatment on the fungistatic activity of flaxseed (Linum usitatissimum) in potato dextrose agar (PDA) medium and a fresh noodle system. The radial growth of Penicilliumn chrysogenum, Aspergillus flavus, and a Penicillium sp. isolated from moldy noodles, as well as the mold count of fresh noodle enriched with heat treated flaxseed, were used to assess antifungal activity. A central composite design in the response surface methodology was used to predict the effect of heating temperature and time on antifungal activity of flaxseed flour (FF). Statistical analysis determined that the linear terms of both variables (that is, heating temperature and time) and the quadratic terms of the heating temperature had significant (P<0.05) effects on the radial growth of all 3 test fungi and the mold count log-cycle reduction of fresh noodle. The interactions between the temperature and time were significant for all dependent variables (P<0.05). Significant reductions in antifungal activities were found when FF was subjected to high temperatures, regardless of heating time. In contrast, prolonging the heating time did not substantially affect the antifungal activities of FF at low temperature. However, 60% of the antifungal activity was retained after FF was heated at 100 degrees C for 15 min, which suggests a potential use of FF as an antifungal additive in food products subjected to low to mild heat treatments.

  8. Heat-treated (in single aliquot or batch) colostrum outperforms non-heat-treated colostrum in terms of quality and transfer of immunoglobulin G in neonatal Jersey calves.

    Science.gov (United States)

    Kryzer, A A; Godden, S M; Schell, R

    2015-03-01

    The objective of this randomized clinical trial was to describe the effect on colostrum characteristics and passive transfer of IgG in neonatal calves when using the Perfect Udder colostrum management system (single-aliquot treatment; Dairy Tech Inc., Greeley, CO) compared with a negative control (fresh refrigerated or fresh frozen colostrum) and a positive control (batch heat-treated colostrum). First-milking Jersey colostrum was pooled to achieve 31 unique batches with a minimum of 22.8 L per batch. The batch was then divided into 4 with 3.8 L allocated to each treatment group: (1) heat-treated in Perfect Udder bag at 60°C for 60 min and then stored at -20°C (PU); (2) heat-treated in a batch pasteurizer (Dairy Tech Inc.) at 60°C for 60 min and then stored at -20°C in Perfect Udder bag (DTB; positive control); (3) fresh frozen colostrum stored at -20°C in Perfect Udder bag (FF; negative control); and (4) fresh refrigerated colostrum stored at 4°C in Perfect Udder bag (FR; negative control). Colostrum from all treatments was sampled for analysis of IgG concentration and bacterial culture immediately after batch assembly, after processing, and before feeding. Newborn Jersey calves were randomly assigned to be fed 3.8 L of colostrum from 1 of the 4 treatment groups. A prefeeding, 0-h blood sample was collected, calves were fed by esophageal tube within 2 h of birth, and then a 24-h postfeeding blood sample was collected. Paired serum samples from 0- and 24-h blood samples were analyzed for IgG concentration (mg/mL) using radial immunodiffusion analysis. The overall mean IgG concentration in colostrum was 77.9 g/L and was not affected by treatment. Prefeeding total plate counts (log10 cfu/mL) were significantly different for all 4 treatments and were lower for heat-treated colostrum (PU=4.23, DTB=3.63) compared with fresh colostrum (FF=5.68, FR=6.53). Total coliform counts (log10 cfu/mL) were also significantly different for all 4 treatments and were lower for

  9. High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Directory of Open Access Journals (Sweden)

    Yanjun Li

    2015-01-01

    Full Text Available The effect of heat-treated bamboo fibers (BFs on nonisothermal crystallization of high-density polyethylene (HDPE was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE.

  10. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood

    Science.gov (United States)

    Roger M. Rowell; Rebecca E. Ibach; James McSweeny; Thomas Nilsson

    2009-01-01

    Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in...

  11. Method of treating organic material. [addition of formate, heating under pressure, and distilling the mass

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, H O.V.; Cederquist, K N

    1932-02-08

    A method is given of treating organic material such as wood, peat, shale, etc. It is characterized by the addition of formate to the material, before, during, or after heating it under pressure with alkalis, earth alkalis, et cetera, and by the mass thus produced undergoing dry distillation. The patent has three more claims.

  12. Process for purifying molybdenum

    International Nuclear Information System (INIS)

    Cheresnowsky, J.

    1989-01-01

    This patent describes a process for purifying molybdenum containing arsenic and phosphorus. The process comprising: adding to an acidic slurry of molybdenum trioxide, a source of magnesium ions in a solid form, with the amount of magnesium and the magnesium ion concentration in the subsequently formed ammonium molybdate solution being sufficient to subsequently form insoluble compounds containing greater than about 80% by weight of the arsenic and greater than about 80% by weight of the phosphorus, and ammonia in an amount sufficient to subsequently dissolve the molybdenum and subsequently form the insoluble compounds, with the source of magnesium ions being added prior to the addition of the ammonia; digesting the resulting ammoniated slurry at a temperature sufficient to dissolve the molybdenum and form an ammonium molybdate solution while the pH is maintained at from bout 9 to about 10 to form a solid containing the insoluble compounds; and separating the solid from the ammonium molybdate solution

  13. Two cases of Chest Heating Sensation treated by Hwangryunhaedok-tang Herbal-Acupuncture

    Directory of Open Access Journals (Sweden)

    Gwon-Il Cho

    2003-06-01

    Full Text Available The purpose of this study is to evaluate the clinical effect of Hwangryunhaedok-tang Herbal-Acupuncture. Hwangryunhaedok-tang is used in all heating diseases. Chest Heating Sensation is a unique concept in Oriental Medicine. So we applied Hwangryunhaedok-tang Herbal-Acupuncture to treat the Chest Heating Sensation. We used DITI(Digital Infrared Thermographic Imaging to estimate the temperatures of chest surface for the outcome assessment. We came to know that the chest surface temperatures were all reduced in both cases after Herbal-Acupuncture treatment. The reduced average temperature was 1.5℃ in case 1 and 0.9℃ in case 2. The above result indicates that Hwangryunhaedok-tang Herbal-Acupuncture treatment has an effect on Chest Heating Sensation, thus continuous Hwangryunhaedok-tang Herbal-Acupuncture study will be needed for more clinical applications.

  14. DAMAGE IN MOLYBDENUM ASSOCIATED WITH NEUTRON IRRADIATION AND SUBSEQUENT POST-IRRADIATION ANNEALING

    Energy Technology Data Exchange (ETDEWEB)

    Mastel, B.

    1963-07-23

    Molybdemum containing carbon was studied in an attempt to establish the combined effect of impurity content and neutron irradiation on the properties and structure of specific metals. Molybdenum foils were punched into discs and heat treated in vacuum. They were then slow-cooled and irradiated. After irradiation and subsequent decay of radioactivity to a low level the foils were subjected to x-ray diffraction measurements. Cold-worked foils with less than 10 ppm carbon showed no change in microstructure due to irradiation. Molybdenum foils that were annealed prior to irradiation showed spot defects. In foils containing up to 500 ppm carbon, it was concluded that the small loops present after irradiation are due to the clustering of point defects at interstitial carbon atoms, followed by collapse to form a dislocation loop. The amount of lattice expansion after irradiation was strongly dependent on impurity content. Neutron irradiation was found to reduce the number of active slip systems. (M.C.G.)

  15. Preparation of Heat Treated Titanium Dioxide (TiO2) Nanoparticles for Water Purification

    Science.gov (United States)

    Araoyinbo, A. O.; Abdullah, M. M. A. B.; Rahmat, A.; Azmi, A. I.; Vizureanu, P.; Rahim, W. M. F. Wan Abd

    2018-06-01

    Photocatalysis using the semiconductor titanium dioxide (TiO2) has proven to be a successful technology for waste water purification. The photocatalytic treatment is an alternative method for the removal of soluble organic compounds in waste water. In this research, titanium dioxide nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor. The sol was dried in the oven at 120°C after aging for 24 hours. The dried powder was then calcined at 400°C and 700°C with a heating rate of 10°C/min. The phase transformation of the heat treated titanium dioxide nanoparticles were characterized by X-Ray Diffraction (XRD, and the surface morphology by Scanning Electron Microscopy (SEM). The photocatalytic activity of the heat treated titanium dioxide nanoparticles in the degradation of methyl orange (MO) dye under ultraviolet (UV) light irradiation has been studied. At calcination temperature of 400°C, only anatase phase was observed, as the calcination temperature increases to 700°C, the rutile phase was present. The SEM images show the irregular shape of titanium dioxide particles and the agglomeration which tends to be more significant at calcined temperature of 700°C. Degradation of methyl orange by 5 mg heat treated titanium dioxide nanoparticles gives the highest percentage of degradation after irradiation by UV lamp for 4 hours.

  16. Heat-treated stainless steel felt as scalable anode material for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Soeriyadi, Alexander H; Feng, Huajun; Prévoteau, Antonin; Patil, Sunil A; Gooding, J Justin; Rabaey, Korneel

    2015-11-01

    This work reports a simple and scalable method to convert stainless steel (SS) felt into an effective anode for bioelectrochemical systems (BESs) by means of heat treatment. X-ray photoelectron spectroscopy and cyclic voltammetry elucidated that the heat treatment generated an iron oxide rich layer on the SS felt surface. The iron oxide layer dramatically enhanced the electroactive biofilm formation on SS felt surface in BESs. Consequently, the sustained current densities achieved on the treated electrodes (1 cm(2)) were around 1.5±0.13 mA/cm(2), which was seven times higher than the untreated electrodes (0.22±0.04 mA/cm(2)). To test the scalability of this material, the heat-treated SS felt was scaled up to 150 cm(2) and similar current density (1.5 mA/cm(2)) was achieved on the larger electrode. The low cost, straightforwardness of the treatment, high conductivity and high bioelectrocatalytic performance make heat-treated SS felt a scalable anodic material for BESs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Process of heat-treating fuels of a bituminous nature, such as shale

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1927-11-25

    A process is described of heat treating any kind of material of a bituminous nature usable as fuel, like shale, mineral coal, peat, etc., whereby the fuel undergoes in a retort or the like a distillation for recovering from it the total amount or the greatest part of gaseous or vaporous distillation products. The warm distillation residue is burned, characterized by the retorts, containing the fuel going through, being wholly or partly surrounded by materials to be heated. These materials and the warm distillation residue resulting from the distillation during the burning are moved forward independently one of the other.

  18. Study of secondary recrystallization in grain-oriented steel treated under dynamical heat treatment conditions

    Directory of Open Access Journals (Sweden)

    V. Stoyka

    2009-04-01

    Full Text Available The present study was made to investigate secondary recrystallization in grain-oriented steels annealed at short time temperature exposures with application of dynamical heating. The investigated GO steels for experiments were taken from one industrial line after final cold rolling reduction and subsequent box annealing. It was shown that application of short time heat treatment conditions could lead to complete abnormal grain growth in the investigated GO steel. The texture and microstructure obtained in the laboratory treated material is similar to that observed in the same GO steel taken after industrial final box-annealing. However, some “parasitic” grains were observed in the secondary recrystallized matrix of the laboratory treated GO steel. These “parasitic” grains possess the unwanted from magnetic properties point of view {111} orientation components.

  19. Splenic Trapping of Heat-Treated Erythrocytes in Leukaemia and Allied Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Badrawi, H. S.; Razzak, M. A.; Guirgis, B. [Department of Medicine and Division of Nuclear Medicine, Faculty of Medicine, Cairo University, Cairo, United Arab Republic (Egypt)

    1971-02-15

    In a trial to find whether or not the enlarged spleen plays a role in the production of the form of anaemia commonly encountered in leukaemias and allied conditions, 44 patients suffering from these disease states were studied using {sup 51}Cr-labelled erythrocytes heated at 50 Degree-Sign C for 60 min. Cells altered in this manner have been shown by various workers to be selectively sequestered by the spleen. As a control, the test was performed on 24 normal subjects. In these normals, the disappearance half-time of radioactivity from the circulation (T{sub Vulgar-Fraction-One-Half} amounted to 172 {+-} 69 min (mean {+-} 1 S.D.), the lowest limit being 74 min. Accordingly, patients with less than 74 min were considered to have an abnormally rapid disappearance of heat-treated erythrocytes from the circulation and consequently exaggerated splenic sequestration of these altered cells. Splenic trapping of heat-treated erythrocytes was most marked in acute leukaemia (four out of six patients). However, three had associated normoblastic hypoplasia of the sternal marrow. Corticosteroids induced a remission with reversion of both processes responsible for the anaemia in two out of the four patients. In chronic myeloid leukaemia, exaggerated splenic sequestration of altered cells was seen in four of the 15 cases examined. This condition was of extra-erythrocytic origin, since repetition of the test using normal donor heat-treated erythrocytes did not significantly alter the disappearance half-time. However, there was no correlation between the size of the spleen and its avidity for trapping the altered cells. Follow-up studies showed that therapy caused prolongation of the half-time of heat-treated erythrocytes, the effect being more apparent after corticosteroids than with X-rays or Endoxan, In Hodgkin's disease, increased red cell trapping was observed in two out of the seven patients studied. In contrast, five cases of chronic lymphatic leukaemia, six lymphosarcoma and

  20. Osteoinduction on acid and heat treated porous Ti metal samples in canine muscle.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Kawai

    Full Text Available Samples of porous Ti metal were subjected to different acid and heat treatments. Ectopic bone formation on specimens embedded in dog muscle was compared with the surface characteristics of the specimen. Treatment of the specimens by H2SO4/HCl and heating at 600 °C produced micrometer-scale roughness with surface layers composed of rutile phase of titanium dioxide. The acid- and heat-treated specimens induced ectopic bone formation within 6 months of implantation. A specimen treated using NaOH followed by HCl acid and then heat treatment produced nanometer-scale surface roughness with a surface layer composed of both rutile and anatase phases of titanium dioxide. These specimens also induced bone formation after 6 months of implantation. Both these specimens featured positive surface charge and good apatite-forming abilities in a simulated body fluid. The amount of the bone induced in the porous structure increased with apatite-forming ability and higher positive surface charge. Untreated porous Ti metal samples showed no bone formation even after 12 months. Specimens that were only heat treated featured a smooth surface composed of rutile. A mixed acid treatment produced specimens with micrometer-scale rough surfaces composed of titanium hydride. Both of them also showed no bone formation after 12 months. The specimens that showed no bone formation also featured almost zero surface charge and no apatite-forming ability. These results indicate that osteoinduction of these porous Ti metal samples is directly related to positive surface charge that facilitates formation of apatite on the metal surfaces in vitro.

  1. Acoustic emission of heat treated compared graphite iron under 873-1173 K

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Woo; Lee, Soo Chul [Pukyong National University, Busan (Korea, Republic of); Ahn, Byung Kun [Korea Polytechnic, Busan Campus, Busan (Korea, Republic of)

    2013-10-15

    CGI is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently, compacted graphite iron has been used for diesel engine blocks, turbo housings and exhaust manifolds. This paper were assessed acoustic emission characteristics according to the mechanical properties change of degraded CGI340 during 1-24 hours at 873-1173 K. In results of pencil lead fracture test, the dominant frequency and the velocity of base metal were 97 kHz and 5490 m/sec, respectively. The base metal in a tensile test was obtained relatively high dominant frequency. However, the heat treated materials, the longer the heat treatment time, the higher the heat treatment temperature, were obtained in the area of lower frequencies. This phenomenon appears by long-term use.

  2. Acoustic emission of heat treated compared graphite iron under 873-1173 K

    International Nuclear Information System (INIS)

    Nam, Ki Woo; Lee, Soo Chul; Ahn, Byung Kun

    2013-01-01

    CGI is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently, compacted graphite iron has been used for diesel engine blocks, turbo housings and exhaust manifolds. This paper were assessed acoustic emission characteristics according to the mechanical properties change of degraded CGI340 during 1-24 hours at 873-1173 K. In results of pencil lead fracture test, the dominant frequency and the velocity of base metal were 97 kHz and 5490 m/sec, respectively. The base metal in a tensile test was obtained relatively high dominant frequency. However, the heat treated materials, the longer the heat treatment time, the higher the heat treatment temperature, were obtained in the area of lower frequencies. This phenomenon appears by long-term use.

  3. Raw and heat-treated culban ( Vicia peregrina ) seed as protein ...

    African Journals Online (AJOL)

    Vicia peregrina seed was included in the diets at different levels, viz. 100, 200, 300 g heat-treated and 100, 200, 300 g raw seed in experimental diets designated A1, B1, C1, A2, B2 and C2, respectively. Growth parameters of the fish fed these diets were compared to fish receiving a fish meal and soyabean meal based ...

  4. Bibliographic study on molybdenum biokinetics

    International Nuclear Information System (INIS)

    Erzberger, A.

    1988-05-01

    This bibliographical study compiles and analyzes findings about the metabolism and resorption of molybdenum. Besides including studies on the physiology of molybdenum 99, a general survey is given on molybdenum in the environment and on its physiological behaviour. In particular, information on the dependence of molybdenum resorption on various factors, such as the chemical form, antagonisms etc., are gathered from literature. These factors have to be considered for sensibly carrying out necessary experiments. (orig./MG) [de

  5. Physicochemical Characterization of a Heat Treated Calcium Alginate Dry Film Prepared with Chicken Stock.

    Science.gov (United States)

    Báez, Germán D; Piccirilli, Gisela N; Ballerini, Griselda A; Frattini, Agustín; Busti, Pablo A; Verdini, Roxana A; Delorenzi, Néstor J

    2017-04-01

    Solid sodium alginate was dissolved into chicken stock in order to give a final alginate concentration of 0.9 percent (w/v). Calcium ions present in chicken stock were enough to induce ionic gelation. After drying, Fourier transform infrared spectroscopy, thickness and mechanical properties of films obtained were determined. Calcium alginate-chicken stock films were heated at 130 °C for different times between 0 and 15 min. Mechanical and optical studies, differential scanning calorimetry, visual aspect and scanning electron microscopy were carried out to describe physicochemical properties of heat treated films. Heating developed a maroon ochre color and increased the brittleness (crispness) of the films related to the intensity of the treatment. Differential scanning thermometry and study on appearance of the films suggested that Maillard reactions may be responsible for the observed changes. Maillard reactions mainly occurred between reducing sugar monomers and free amino groups of gelatin peptides present in the chicken stock, and between alginate and gelatin peptides to a lesser extent. In addition, the plasticizing effect of fat added with chicken stock was also studied. These studies suggest a potential use of heat treated chicken stock films as a substitute of roasted chicken skin. © 2017 Institute of Food Technologists®.

  6. Evaluation of magnetite nanoparticles as molybdenum ions adsorbent

    International Nuclear Information System (INIS)

    Holland, Helber; Yamaura, Mitiko; Sousa, Jose Silva; Freitas, Antonio Alves

    2011-01-01

    Molybdenum-99 is the generator radionuclide of the most used radioisotope for preparation of radiopharmaceuticals with diagnostic purposes in nuclear medicine, technetium-99m (Tc-99m). One way of Mo-99 obtaining is as fission product of irradiated uranium targets in reactor. In this work, the potential application of magnetite particles in the separation of Mo-99 from a dissolution solution of U targets was evaluated. Synthetic magnetite nanoparticles were prepared by alkaline precipitation method from Fe 2+ ions and heat-treated via microwave irradiation in a conventional household oven. Adsorption kinetics was studied. It was observed that the adsorption of Mo by magnetite nanoparticles is fast and followed the model of pseudo-second order. (author)

  7. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Cowan, G.A.; Bryant, E.A.

    1984-01-01

    The goal of the molybdenum solar neutrino experiment is to deduce the 8 B solar neutrino flux, averaged over the past several million years, from the concentration of 98 Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8 B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98 Tc (4.2 Myr), also produced by 8 B neutrinos, and possibly 97 Tc (2.6 Myr), produced by lower energy neutrinos

  8. Method of producing molybdenum-99

    Science.gov (United States)

    Pitcher, Eric John

    2013-05-28

    Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.

  9. Recovery of uranium and molybdenum elements from gebel gattar raw material, eastern desert, Egypt. Vol. 3

    International Nuclear Information System (INIS)

    El-Hazek, N.T.; Mahdy, M.A.; Mahmoud, H.M.K.

    1996-01-01

    G. Gatter uranium mineralizations are located along the faults and fracture zones crossing G.Gattar granitic pluton and long the contact of the pluton with the hammamat sediments. Also, molybdenum id presented in more than one mode of occurrence. The molybdenum mineralization treated in this work is the dessimenated type. The uranium and molybdenum raw material was subjected to series of leaching experiments including acid and alkaline agitation, alkaline percolation, and acid heap leaching techniques. Recovery of uranium and molybdenum was achieved by anion-exchange method followed by their elution by acidified sodium chloride. Uranium precipitation was performed in the form of ammonium diuranate (Yellow Cake). On the other hand molybdenum was precipitated in the form of molybdenum oxide. A tentative flowsheet for the extraction of both uranium and molybdenum is proposed and discussed. 13 figs., 3 tabs

  10. Recovery of uranium and molybdenum elements from gebel gattar raw material, eastern desert, Egypt. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Hazek, N T; Mahdy, M A; Mahmoud, H M.K. [Nuclear Materials Authority, Cairo, (Egypt)

    1996-03-01

    G. Gatter uranium mineralizations are located along the faults and fracture zones crossing G.Gattar granitic pluton and long the contact of the pluton with the hammamat sediments. Also, molybdenum id presented in more than one mode of occurrence. The molybdenum mineralization treated in this work is the dessimenated type. The uranium and molybdenum raw material was subjected to series of leaching experiments including acid and alkaline agitation, alkaline percolation, and acid heap leaching techniques. Recovery of uranium and molybdenum was achieved by anion-exchange method followed by their elution by acidified sodium chloride. Uranium precipitation was performed in the form of ammonium diuranate (Yellow Cake). On the other hand molybdenum was precipitated in the form of molybdenum oxide. A tentative flowsheet for the extraction of both uranium and molybdenum is proposed and discussed. 13 figs., 3 tabs.

  11. Molybdenum silicide based materials and their properties

    International Nuclear Information System (INIS)

    Yao, Z.; Stiglich, J.; Sudarshan, T.S.

    1999-01-01

    Molybdenum disilicide (MoSi 2 ) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm 3 ). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi 2 composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi 2 -based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed

  12. Sorption phenomena of methanol on heat treated coal; Netsushori wo hodokoshita sekitan no methanol kyuchaku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, H.; Kaiho, M.; Yamada, O.; Soneda, Y.; Kobayashi, M.; Makino, M. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Experiments were carried out to learn methanol sorption characteristics of heat-treated coal. When Taiheiyo coal is heat-treated at 125{degree}C, performed with a first methanol adsorption at 25{degree}C, and then desorption at 25{degree}C, a site with strong interaction with methanol and a site with relatively weak interaction are generated in test samples. A small amount of methanol remains in both sites. Then, when the methanol is desorbed at as low temperature as 70{degree}C, the methanol in the site with strong interaction remains as it has existed therein, but the methanol in the site with relatively weak interaction desorbs partially, hence the adsorption amount in a second adsorption at 25{degree}C increases. However, when desorption is performed at as high temperature as 125{degree}C, the methanol in the site with strong interaction also desorbs, resulting in increased adsorption heat in the second adsorption. The adsorption velocity drops, however. Existence of methanol in a site with strong interaction affects the adsorption velocity, but no effect is given by methanol in a site with weak interaction. 3 refs., 4 figs.

  13. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Directory of Open Access Journals (Sweden)

    I. Riposan

    2007-11-01

    Full Text Available As-cast and heat-treated 400-18 ductile iron (DI grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px and Antinodulizing Complex Factor (K1 have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px2.0 determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres. for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  14. Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation

    Science.gov (United States)

    Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.

    2017-12-01

    Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.

  15. Behavior of molybdenum in mixed-oxide fuel

    International Nuclear Information System (INIS)

    Giacchetti, G.; Sari, C.

    1976-01-01

    Metallic molybdenum, Mo--Ru--Rh--Pd alloys, barium, zirconium, and tungsten were added to uranium and uranium--plutonium oxides by coprecipitation and mechanical mixture techniques. This material was treated in a thermal gradient similar to that existing in fuel during irradiation to study the behavior of molybdenum in an oxide matrix as a function of the O/(U + Pu) ratio and some added elements. Result of ceramographic and microprobe analysis shows that when the overall O/(U + Pu) ratio is less than 2, molybdenum and Mo--Ru--Rh--Pd alloy inclusions are present in the uranium--plutonium oxide matrix. If the O/(U + Pu) ratio is greater than 2, molybdenum oxidizes to MoO 2 , which is gaseous at a temperature approximately 1000 0 C. Molybdenum oxide vapor reacts with barium oxide and forms a compound that exists as a liquid phase in the columnar grain region. Molybdenum oxide also reacts with tungsten oxide (tungsten is often present as an impurity in the fuel) and forms a compound that contains approximately 40 wt percent of actinide metals. The apparent solubility of molybdenum in uranium and uranium--plutonium oxides, determined by electron microprobe, was found to be less than 250 ppM both for hypo- and hyperstoichiometric fuels

  16. Raw and Heat-Treated Milk: From Public Health Risks to Nutritional Quality

    Directory of Open Access Journals (Sweden)

    Francesca Melini

    2017-11-01

    Full Text Available Consumers have recently shown a preference for natural food products and ingredients and within that framework, their interest in consuming raw drinking milk has been highlighted, claiming nutritional, organoleptic and health benefits. However, a public debate has simultaneously emerged about the actual risks and benefits of direct human consumption of raw milk. This paper compares the microbiological, nutritional and sensory profile of raw and heat-treated milk, to evaluate the real risks and benefits of its consumption. In detail, it provides an updated overview of the main microbiological risks of raw milk consumption, especially related to the presence of pathogens and the main outputs of risk assessment models are reported. After introducing the key aspects of most commonly used milk heat-treatments, the paper also discusses the effects such technologies have on the microbiological, nutritional and sensory profile of milk. An insight into the scientific evidence behind the claimed protective effects of raw milk consumption in lactose-intolerant subjects and against the onset of asthma and allergy disorders in children is provided. The emergence of novel milk processing technologies, such as ohmic heating, microwave heating, high pressure processing, pulsed electric fields, ultrasound and microfiltration is also presented as an alternative to common thermal treatments.

  17. Effect of Microstructure on the Wear Behavior of Heat Treated SS-304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    S. Kumar

    2016-12-01

    Full Text Available Sliding wear characteristics of some heat treated SS-304 stainless steel against EN-8 steel in dry condition have been studied in the present experimental work. Samples of SS-304 stainless steel have been heated in a muffle furnace in desired temperature and allowed to dwell for two hours. The heated specimen are then cooled in different media namely inside the furnace, open air, cutting grade oil (grade 44 and water at room temperature to obtain different grades of heat treatment. Microstructures and corresponding micro hardness of the samples have been measured along with Feritscopic studies. Wear characteristics have been studied in a multi tribo-tester (Ducom in dry sliding condition against EN-8 steel roller. Speed, load on job and duration of test run have been considered as the experimental parameters. The wear of the samples have been obtained directly from ‘Winducom 2006’ software. Mass loss of the samples before and after operation has also been considered as the measure of wear in the present study. All the samples have been slid against EN-8 steel roller with fixed experimental parameters. The data have been plotted, compared and analyzed. Effect of microstructures as well as micro hardness on the wear behavior has been studied and concluded accordingly.

  18. Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, W.R.; Peixoto, L.C.; Garcia, L.R.; Garcia, A. [Department of Materials Engineering, State University of Campinas, SP (Brazil)

    2009-10-15

    Dual-phase (DP) steels are produced from a specific heat treatment procedure and have recently emerged as a potential class of engineering materials for a number of structural and automobile applications. Such steels have high strength-to-weight ratio and reasonable formability. The present study aims to investigate the effects of four different and conventional heat treatments (i.e., hot rolling, normalizing, annealing, and intercritical annealing) on the resulting microstructural patterns and on the electrochemical corrosion behavior. Electrochemical impedance spectroscopy (EIS) and Tafel plots were carried out on heat treated steel samples in a 0.5 M NaCl solution at 25 C with neutral pH. An equivalent circuit analysis was also used to provide quantitative support for the discussions. The normalizing and the annealing heat treatments have provided the highest and the lowest corrosion resistances, respectively. The intercritical annealing and as-received (hot rolled) low carbon steel samples have shown similar corrosion behavior. Although a deleterious effect on the corrosion resistance has been verified for DP steel due to the residual stress from the martensite formation, it combines good mechanical properties with intermediate electrochemical corrosion resistance. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Molybdenum-UO2 cermet irradiation at 1145 K.

    Science.gov (United States)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-uranium dioxide cermet fuel pins with molybdenum clad were fission-heated in a forced-convection helium coolant for sufficient time to achieve 5.3% burnup. The cermet core contained 20 wt % of 93.2% enriched uranium dioxide. The results were as follows: there was no visible change in the appearance of the molybdenum clad during irradiation; the maximum increase in diameter of the fuel pins was 0.8%; there was no migration of uranium dioxide along grain boundaries and no evident interaction between molybdenum and uranium dioxide; and, finally, approximately 12% of the fission gas formed was released from the cermet core into the gas plenum.

  20. Sintering of cermets on the base of corundum and molybdenum

    International Nuclear Information System (INIS)

    Fedotov, A.V.

    1987-01-01

    Liquid-phase sintering of cermets has been studied to develop rational technology allowing to produce a dense material at lower temperatures. Molybdenum of the MPCh mark with the specific surface ranged from 1900 to 4000 cm 2 /g and the corundum powder of the VK-94-1 mark with the specific surface of 6000 cm 2 /g containing upto 10% of the glass-phase have been used as initial materials. It is shown that application of the VK-94-1 ceramics powder for molybdenum content cermets allows to decrease the temperature of dense material production (∼ upto 100 deg C). To produce dense materials, it is necessary to restrict the initial porosity of compaction and to correspond it to the sintering conditions. The increase of molybdenum dispersion allows to produce material with the more homogeneous structure, higher density and strength. Molybdenum presence decreases recrystallization of corundum crystals and causes structure production resistant to high-temperature heating

  1. Molybdenum-A Key Component of Metal Alloys

    Science.gov (United States)

    Kropschot, S.J.

    2010-01-01

    Molybdenum, whose chemical symbol is Mo, was first recognized as an element in 1778. Until that time, the mineral molybdenite-the most important source of molybdenum-was believed to be a lead mineral because of its metallic gray color, greasy feel, and softness. In the late 19th century, French metallurgists discovered that molybdenum, when alloyed (mixed) with steel in small quantities, creates a substance that is remarkably tougher than steel alone and is highly resistant to heat. The alloy was found to be ideal for making tools and armor plate. Today, the most common use of molybdenum is as an alloying agent in stainless steel, alloy steels, and superalloys to enhance hardness, strength, and resistance to corrosion.

  2. Development of oxidised and heat-moisture treated potato starch film.

    Science.gov (United States)

    Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra

    2012-05-01

    This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Electron spin resonance and its application to heat treated carbonaceous materials

    International Nuclear Information System (INIS)

    Emmerich, Francisco Guilherme

    1993-01-01

    This work presents the basic characteristics of the electron spin resonance technique, also called paramagnetic resonance, being discussed its application to heat treated carbonaceous materials. In the low heat treatment temperature (HTT) range (below 700 deg C) the organic free radical are the predominant unpaired spin center, which play a key role in the process of carbonization and meso phase formation. At higher temperatures, it is possible to make correlations between the low H T T range and the high HTT range (above 130 deg C), where the predominant unpaired spin center are the free charge carriers (free electrons) of the graphite like crystallites of the material, which are formed by the carbonization process. (author)

  4. Effect of Cr Contents and Heat Treating on Reverted Austenite in Maraging Steel Weldments

    Science.gov (United States)

    Kim, S. W.; Lee, H. W.

    2018-05-01

    By conducting flux cored arc welding (FCAW) on maraging steels with Cr contents of 1.4 and 5.2 wt%, this study observed the effects of Cr content and heat treating on reverted austenite formation in welded maraging steel. Aging treatment was carried out at the temperatures of 450, 480 and 530 °C for 3 h in each condition. As the aging temperature increased, reverted austenite was formed along the interdendritic and intercellular grain boundaries, and the proportion of reverted austenite increased with increasing Cr addition. The aging process led to the segregation of Ti and Mo along the interdendritic and intercellular grain boundaries. Some of the welded specimens were subjected to solution heat treatment at 820 and 1250 °C for 1 h after welding, resulting in a decrease in reverted austenite fraction.

  5. Microstructural Characterization Of Laser Heat Treated AISI 4140 Steel With Improved Fatigue Behavior

    Directory of Open Access Journals (Sweden)

    Oh M.C.

    2015-06-01

    Full Text Available The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.

  6. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the

  7. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  8. Development of heat treated Zr-2.5% Nb alloy tubes for pressure tubes

    International Nuclear Information System (INIS)

    Saibaba, N.; Jha, S.K.; Tonpe, S.

    2011-01-01

    Zr-2.5% Nb alloy is the candidate material for pressure tubes of Pressurized Heavy Water Reactors (PHWR), and are manufactured in cold working condition while heat treated pressure tubes are used in RBMK and FUGEN type of reactors. The diametral creep of these tubes is the life limiting factor. This paper presents the extensive work carried out for the optimization of process parameters to manufacture heat treated Zr-2.5% Nb pressure tubes. Extensive dilactometry study was carried out to establish the transus temperature for the alloy and the effect of soaking temperature and cooling rate on the microstructure was characterized. On the basis of the study, water quenching (at 883 deg C) in the a b region with 20-25% primary a phase was selected, further cold worked, aged and finally autoclaved. Mechanical properties of the finished tubes were found to be comparable to the cold worked route. Large number of full sized tubes of about 700 - 800 mm long was produced to establish the repeatability. (author)

  9. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  10. Structural transformations of heat treated Co-less high entropy alloys

    Science.gov (United States)

    Mitrica, D.; Tudor, A.; Rinaldi, A.; Soare, V.; Predescu, C.; Berbecaru, A.; Stoiciu, F.; Badilita, V.

    2018-03-01

    Co is considered to be one of the main ingredients in superalloys. Co is considered a critical element and its substitution is difficult due to its unique ability to form high temperature stable structures with high mechanical and corrosion/oxidation resistance. High entropy alloys (HEA) represent a relatively new concept in material design. HEA are characterised by a high number of alloying elements, in unusually high proportion. Due to their specific particularities, high entropy alloys tend to form predominant solid solution structures that develop potentially high chemical, physical and mechanical properties. Present paper is studying Co-less high entropy alloys with high potential in severe environment applications. The high entropy alloys based on Al-Cr-Fe-Mn-Ni system were prepared by induction melting and casting under protective atmosphere. The as-cast specimens were heat treated at various temperatures to determine the structure and property behaviour. Samples taken before and after heat treatment were investigated for chemical, physical, structural and mechanical characteristics. Sigma phase composition and heat treatment parameters had major influence over the resulted alloy structure and properties.

  11. METHODS FOR DETERMINATION REACTIVE LYSINE IN HEAT-TREATED FOODS AND FEEDS

    Directory of Open Access Journals (Sweden)

    Matej Brestenský

    2014-08-01

    Full Text Available Lysine is an essential amino acid, which is limited in foods of plant origin, especially in cereals. The heat-treatment of products containing proteins and reducing sugars results in formation of Maillard reactions during which the cross-linkages among epsilon amino groups (ε-NH2 and reducing sugars are created. Thus the protein-carbohydrate complex is formed. This complex contains an unreactive (unavailable lysine, which is bound to reducing sugars and is not available in body. Hereby, the nutritive value of feeds and foods decreases. When a standard analytical method for analyses of amino acids is used, in products containing protein-carbohydrate complexes, it is not possible to analyze the content of reactive (available and unreactive (unavailable lysine, but only the content of total lysine. Therefore, when the standard amino acid analysis is used, the content of lysine in heat-treated feeds and foods is overestimated. In order to avoid this, some methods for determination of reactive lysine were developed. Among the best known, the homoarginine and furosine methods are included. Using these methods, in evaluation of nutritive value of feeds and foods, is of great importance because they allow to determine the extent of proteins, which were damaged during the heat treatment and thus we obtain information on objective nutritional protein quality of the product.

  12. Molybdenum dioxide-molybdenite roasting

    International Nuclear Information System (INIS)

    Sabacky, B.J.; Hepworth, M.T.

    1984-01-01

    A process is disclosed for roasting molybdenite concentrates directly to molybdenum dioxide. The process comprises establishing a roasting zone having a temperature of about 700 0 C. to about 800 0 C., introducing into the roasting zone particulate molybdenum dioxide and molybdenite in a weight ratio of at least about 2:1 along with an oxygen-containing gas in amount sufficient to oxidize the sulfur content of the molybdenite to molybdenum dioxide

  13. Microstructure and Mechanical Properties of Heat-Treated B319 Alloy Diesel Cylinder Heads

    Science.gov (United States)

    Chaudhury, S. K.; Apelian, D.; Meyer, P.; Massinon, D.; Morichon, J.

    2015-07-01

    Microstructure and mechanical properties of B319 alloy diesel cylinder heads were investigated in this study. Cylinder heads were heat treated to T5, T6, and T7 tempers using fluidized bed technology. Three different fluidized beds were used, each to solutionize, quench, and age the castings. For comparative purposes, castings were also aged using conventional forced-air circulation electric-resistance furnace. Effects of processing parameters such as temperature, time, and heating rate on microstructural evolution and mechanical properties namely tensile properties and hardness of B319 alloy castings were studied. The number density and size range of precipitates were measured. Results show that the T5 temper has no effect on eutectic phases such as Si- and Fe-rich intermetallic, and Al2Cu. On contrary, both T6 and T7 tempers result in spherodization of the eutectic Si and partial dissolution of the Al2Cu phase. Prolonged solution heat treatment for 8 hours in fluidized bed results in limited dissolution of the secondary eutectic Al2Cu phase. Aging (T6, T7, and T5) results in precipitation of Al5Cu2Mg8Si6 and Al2Cu phases in B319 alloy. The number density of precipitates in T6 temper is greater than in T7 and T5 tempers. The number density of precipitates is also affected by the duration of solution heat treatment. In general, long solution heat treatment (8 hours) results in greater precipitate density than short solution treatment (2 hours). The distribution of precipitates is inhomogeneous and varied across the dendritic structure. In general, precipitation rate of Al5Cu2Mg8Si6 phase is greater near the periphery of the dendrite as compared to the center. This is because Al5Cu2Mg8Si6 nucleates on Si particle, grain boundaries, and triple junction between recrystallized Al grains and Si particles. Similarly, heterogeneous sites such as grain boundaries and Al/Si interface also act as nucleating sites for the precipitation of Al2Cu phase. In general, the

  14. Microstructures define melting of molybdenum at high pressures

    Science.gov (United States)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  15. CONCENTRATION OF SELECTED ELEMENTS IN RAW AND ULTRA HEAT TREATED COW MILK

    Directory of Open Access Journals (Sweden)

    Lukáčová Anetta

    2012-10-01

    Full Text Available The potential presence of toxic metals in food is being recognized as a priority by standards organizations and constitutes an analytical challenge. The toxic metal content of milk and dairy products is due to several factors: environmental conditions, the manufacturing process and the possible contamination during several steps of the manufacturing processes. The aim of this study was to evaluate samples of raw milk with fat contents 3.8% obtained at randomly from animal farms in around Nitra, western Slovakia region and ultra – heat treated cow milk (UHT with fat contents 1.5% commercially available from local market in Nitra. Samples of milk were analysed for metal contents using atomic absorption spectrophotometry (AAS. UHT milk showed higher levels of cadmium, nickel and iron. Higher levels of zinc, copper were detected in raw milk. Significant differences in the concentration of copper between raw and UHT cow milk were found.

  16. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    Science.gov (United States)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  17. Sliding wear and friction behavior of zirconium alloy with heat-treated Inconel718

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H., E-mail: kimjhoon@cnu.ac.kr [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.M. [Dept. of Mechanical Design Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, J.K.; Jeon, K.L. [Nuclear Fuel Technology Department, Korea Nuclear Fuel, 1047 Daedukdae-ro, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    In water-cooled nuclear reactors, the sliding of fuel rod can lead to severe wear and it is an important issue to sustain the structural integrity of nuclear reactor. In the present study, sliding wear behavior of zirconium alloy in dry and water environment using Pin-On-Disk sliding wear tester was investigated. Wear resistance of zirconium alloy against heat-treated Inconel718 pin was examined at room temperature. Sliding wear tests were carried out at different sliding distance, axial load and sliding speed based on ASTM (G99-05). The results of these experiments were verified with specific wear rate and coefficient of friction. The micro-mechanisms responsible for wear in zirconium alloy were identified to be microcutting and microcracking in dry environment. Moreover, micropitting and delamination were observed in water environment.

  18. Characterization of Heat Treated Titanium-Based Implants by Nondestructive Eddy Current and Ultrasonic Tests

    Science.gov (United States)

    Mutlu, Ilven; Ekinci, Sinasi; Oktay, Enver

    2014-06-01

    This study presents nondestructive characterization of microstructure and mechanical properties of heat treated Ti, Ti-Cu, and Ti-6Al-4V titanium-based alloys and 17-4 PH stainless steel alloy for biomedical implant applications. Ti, Ti-Cu, and 17-4 PH stainless steel based implants were produced by powder metallurgy. Ti-6Al-4V alloy was investigated as bulk wrought specimens. Effects of sintering temperature, aging, and grain size on mechanical properties were investigated by nondestructive and destructive tests comparatively. Ultrasonic velocity in specimens was measured by using pulse-echo and transmission methods. Electrical conductivity of specimens was determined by eddy current tests. Determination of Young's modulus and strength is important in biomedical implants. Young's modulus of specimens was calculated by using ultrasonic velocities. Calculated Young's modulus values were compared and correlated with experimental values.

  19. Test results for a heat-treated 4-cell 805 MHz superconducting cavity

    International Nuclear Information System (INIS)

    Rusnak, B.; Shapiro, A.H.

    1995-01-01

    Assessing superconducting technology for potential upgrades to existing proton accelerators as well as applications to future high-current machines necessitates developing expertise in the processing and handling of multicell cavities at useful frequencies. In order to address some of these technological issues, Los Alamos has purchased a 4-cell 805-MHz superconducting cavity from Siemens AG. The individual cavity cells were double-sided titanium heat-treated after equatorial welding, then the irises were welded to complete the cavity assembly. The resulting high RRR (residual resistance ratio) in the cells enables stable operation at higher cavity field levels than are possible with lower RRR material. Additionally, the high thermal conductivity of the material is conducive to rf and high peak power processing. The cavity was also cleaned at Los Alamos with high-pressure water rinsing. Results from the initial cavity tests, utilizing various processing techniques, are presented

  20. Effect of natural aging on the properties of heat-treated A356 aluminum alloy

    International Nuclear Information System (INIS)

    Hernandez-Paz, J.F.; Paray, F.; Gruzleski, J.E.; Emadi, D.

    2002-01-01

    During the heat treatment of aluminum alloys, there is usually a delay time between quenching and the final artificial aging. This delay is called natural aging or preaging at room temperature. This research was conducted in order to study the effect of various natural aging times (0, 6, 12 and 20 hours) on the properties of unmodified and strontium modified A356 aluminum alloys solution heat-treated 4 hours at 540 o C, water quenched and artificially aged 6 hours at 155 o C and 170 o C. The samples were tested for electrical conductivity, microhardness, and tensile properties. In the case of the samples artificially aged at 155 o C from the results it can be seen a decrease in the microhardness and yield strength with natural aging. Regarding the samples aged at 170 o C it is noticed that natural aging at 12 hours will result in the lowest electrical conductivity, yield strength and microhardness. However, there is evidence of recovery of those properties at 20 hours of natural aging. Regarding the elongation, natural aging seems to have a positive effect when artificial aging is carried out at 155 o C, but at 170 o C an optimum elongation is obtained only at 12 hours. (author)

  1. Mechanical stability of heat-treated nanoporous anodic alumina subjected to repetitive mechanical deformation

    Science.gov (United States)

    Bankova, A.; Videkov, V.; Tzaneva, B.; Mitov, M.

    2018-03-01

    We report studies on the mechanical response and deformation behavior of heat-treated nanoporous anodic alumina using a micro-balance test and experimental test equipment especially designed for this purpose. AAO samples were characterized mechanically by a three-point bending test using a micro-analytical balance. The deformation behavior was studied by repetitive mechanical bending of the AAO membranes using an electronically controlled system. The nanoporous AAO structures were prepared electrochemically from Al sheet substrates using a two-step anodizing technique in oxalic acid followed by heat treatment at 700 °C in air. The morphological study of the aluminum oxide layer after the mechanical tests and mechanical deformation was conducted using scanning electron and optical microscopy, respectively. The experimental results showed that the techniques proposed are simple and accurate; they could, therefore, be combined to constitute a method for mechanical stability assessment of nanostructured AAO films, which are important structural components in the design of MEMS devices and sensors.

  2. Water Absorption Properties of Heat-Treated Bamboo Fiber and High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Lanxing Du

    2014-01-01

    Full Text Available To modify water absorption properties of bamboo fiber (BF and high density polyethylene (HDPE composites, heat treatment of BFs was performed prior to compounding them with HDPE to form the composites. The moisture sorption property of the composites was measured and their diffusion coefficients (Dm were evaluated using a one-dimensional diffusion model. Moisture diffusion coefficient values of all composites were in the range of 0.115x10-8 to 1.267x10-8 cm2/s. The values of Dm decreased with increasing BF heat-treatment temperature, and increased with increasing BF loading level. The Dm value of 40 wt% bamboo fiber/HDPE composites with BFs treated with 100 oC was the greatest (i.e., 1.267x10-8cm2/s. Morphology analysis showed increased fiber-matrix interfacial bonding damage due to fiber swelling and shrinking from water uptaking and drying. The mechanism of water absorption of the composite, indicated a general Fickian diffusion process.

  3. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    Directory of Open Access Journals (Sweden)

    Radomila KONEČNÁ

    2012-03-01

    Full Text Available Perferritic isothermal ductile iron (IDI® is an intermediate grade between the low-strength grades of austempered ductile iron (ADI and pearlitic ductile iron (DI recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness as a result of the isothermal heat treatment. In this contribution the fatigue crack growth resistance and Kath of IDI are investigated and correlated to mechanical properties and microstructural features. The threshold Ka was determined using the load shedding technique as per ASTM Standard E-647 using CT specimens extracted from a cast block. Tensile specimens were extracted from the broken CT halves and used to determine the static mechanical properties. A metallographic investigation was carried out to correlate structural features and mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1336

  4. Standard test method for measurement of roll wave optical distortion in heat-treated flat glass

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method is applicable to the determination of the peak-to-valley depth and peak-to-peak distances of the out-of-plane deformation referred to as roll wave which occurs in flat, heat-treated architectural glass substrates processed in a heat processing continuous or oscillating conveyance oven. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This test method does not address other flatness issues like edge kink, ream, pocket distortion, bow, or other distortions outside of roll wave as defined in this test method. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. The freezing point of raw and heat treated sheep milk and its variation during lactation

    Directory of Open Access Journals (Sweden)

    Bohumíra Janštová

    2013-01-01

    Full Text Available The freezing point of milk is an important indicator of the adulteration of the milk with water, but heat treatment may also affect its value. The aim of this study was determine freezing point of raw and heat treated sheep milk and its variation during lactation. The freezing point was determined in 42 bulk tank raw sheep milk samples and 42 pasteurized milk samples collected during lactation of sheep at one ecofarm in Moravian Walachia (Valašsko in the Czech Republic. The freezing point was determined in accordance with the standard ČSN 57 0538 using a thermistor cryoscope. The average freezing point of raw milk was -0.617 ± 0.052 °C, with a range from -0.560 to -0.875 °C. The freezing point was lower in the first months of lactation and increased at the end of lactation. The freezing point correlated (r = 0.8967 with the content of total non-fat solids. The average freezing point of sheep milk pasteurized at 65 °C for 30 min was -0.614 ± 0.053 °C, with a range from -0.564 to -0.702 °C. The median of freezing point differences between raw and pasteurized milk was 0.004 °C. Our study extends data about physico-chemical properties of sheep milk and registers for the first time specific changes in the freezing point value of sheep milk by heating.

  6. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  7. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    Science.gov (United States)

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heatedheatedheated. The cytotoxicity evaluation revealed that none of the alkaline heat treated Mg-Ca alloy samples induced toxicity to L-929 cells during 7days culture.

  8. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  9. Microstructure and mechanical properties of reactor pressure vessel mock-up material treated by intercritical heat treatment

    International Nuclear Information System (INIS)

    Kim, M. C.; Lee, B. S.; Hong, J. H.; Lee, H. J.; Park, S. D.; Kim, K. B.; Yoon, J. H.; Kim, J. S.; Oh, J. M.

    2003-12-01

    The mechanical properties and microstructures of base metal and weld HAZ (Heat-Affected Zone) of a Mn-Mo-Ni low alloy steels treated by intercritical heat treatment were investigated to evaluate effects of intercritical heat treatment on mechanical properties. In order to clarify the effects of intercritical heat treatment, two types of specimen were prepared by CHT(Conventional Heat Treatment) and IHT(CHT+Intercritical Heat Treatment). Tensile test, charpy impact test and vickers hardness test were carried out to evaluate the mechanical properties. It is found that impact toughness and hardness were improved by intercritical heat treatment. Mean size of precipitates and effective grain were quantitatively analysed as microstructural factors. It is found that precipitate size was decreased and shape of precipitate was spherodized by intercritical heat treatment and grain size was also decreased. So, it is thought that these microstructural changes cause the improvement of mechanical properties by intercritical heat treatment. The simulated specimen using a Gleeble thermal simulator system was used to evaluate the mechanical properties of HAZ. It is well known that IRHAZ and SRHAZ have lower toughness than base metal. However, in the case of IHT, impact toughness of IRHAZ and SRHAZ were slightly higher than that of base metal. It is obvious that this improvement of fracture toughness in IRHAZ and SRHAZ region was closely related to the microstructural changes, such as spheroidization of precipitate and decreases of precipitate size and grain size

  10. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects.

    Science.gov (United States)

    Ito, Tomohiro; Maeda, Takahiro; Goto, Kazunori; Miura, Takehito; Wakame, Koji; Nishioka, Hiroshi; Sato, Atsuya

    2014-03-01

    A novel enzyme-treated asparagus extract (ETAS) has been developed as a functional material produced from asparagus stem. Studies were conducted to determine the effect of ETAS on heat shock protein 70 (HSP70) expression and alleviation of stress. HeLa cells were treated with ETAS, and HSP70 mRNA and protein levels were measured using a reverse transcription-polymerase chain reaction (RT-PCR) assay and an enzyme-linked immunosorbent assay (ELISA), respectively. ETAS showed significant increases in HSP70 mRNA at more than 0.125 mg/mL and the protein at more than 1.0 mg/mL. The antistress effect was evaluated in a murine sleep-deprivation model. A sleep-deprivation stress load resulted in elevation of blood corticosterone and lipid peroxide concentrations, while supplementation with ETAS at 200 and 1000 mg/kg body weight was associated with significantly reduced levels of both stress markers, which were in the normal range. The HSP70 protein expression level in mice subjected to sleep-deprivation stress and supplemented with ETAS was significantly enhanced in stomach, liver, and kidney, compared to ETAS-untreated mice. A preliminary and small-sized human study was conducted among healthy volunteers consuming up to 150 mg/d of ETAS daily for 7 d. The mRNA expression of HSP70 in peripheral leukocytes was significantly elevated at intakes of 100 or 150 mg/d, compared to their baseline levels. Since HSP70 is known to be a stress-related protein and its induction leads to cytoprotection, the present results suggest that ETAS might exert antistress effects under stressful conditions, resulting from enhancement of HSP70 expression. © 2014 Institute of Food Technologists®

  11. Heat-treated mineral-yeast as a potent post-irradiation radioprotector

    International Nuclear Information System (INIS)

    Anzai, Kazunori; Ueno, Megumi; Nyui, Minako; Ikota, Nobuo; Kagiya, Tsutomu V.

    2008-01-01

    In vivo radioprotection of C3H mice by i.p. administration of Zn-, Mn-, Cu-, or Se-containing heat-treated Saccharomyces serevisiae yeast sample was examined. The 30-day survival of the group treated 30 min before 7.5 Gy whole-body X-irradiation with mineral-containing yeast powders suspended in 0.5% methylcellulose was significantly higher than that of control group. When mineral-yeast was administered immediately after irradiation, the survival rate was even higher and Zn- or Cu-yeast showed the highest rate (more than 90%). Although treatment with simple yeast showed a high survival rate (73%), it was significantly lower than that obtained by the Zn-yeast treatment. The effects of Zn-yeast were studied further. When the interval between irradiation and administration was varied, the protective activity of Zn-yeast decreased gradually by increasing the interval but was still significantly high for the administration at 10 h post-irradiation. The dose reduction factor of Zn-yeast (100 mg/kg, i.p. administration immediately after irradiation) was about 1.2. When the suspension of Zn-yeast was fractionated by centrifugation, the insoluble fraction showed a potent effect, while the soluble fraction had only a moderate effect. In conclusion, mineral-yeast, especially Zn-yeast, provides remarkable post-irradiation protection against lethal whole body X-irradiation. The activity is mainly attributable to the insoluble fraction, whereas some soluble components might contribute to the additional protective activity. (author)

  12. Heat-treated hull flour does not affect iron bioavailability in rats.

    Science.gov (United States)

    Martino, Hércia Stampini Duarte; Carvalho, Ariela Werneck de; Silva, Cassiano Oliveira da; Dantas, Maria Inês de Souza; Natal, Dorina Isabel Gomes; Ribeiro, Sônia Machado Rocha; Costa, Neuza Maria Brunoro

    2011-06-01

    In this study the chemical composition and iron bioavailability of hull and hull-less soybean flour from the new cultivar UFVTN 105AP was evaluated. The hemoglobin depletion-repletion method was used in Wistar rats. Soybean hull flour presented 37% more total dietary fiber and higher content of iron than hull-less soybean flour. The phytate:iron molar ratio, however, was 2-fold lower in the soybean hull flour in compared to the hull-less soybean flour. Animals fed soybean hull flour presented hemoglobin gains similar to those of the control diet group (p > 0.05). The Relative Biological Values of hull and hull-less soybean flour were 68.5% and 67.1%, respectively, compared to the control group. Heat-treated soybean hull flour (150 degrees C/30 minutes) showed high content of iron and low phytate, which favors the iron bioavailability. Thus, the soybean hull flour is a better source of dietary fiber and iron than hull-less soybean flour at comparable bioavailabilities.

  13. Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys

    CERN Document Server

    Wanhill, Russell

    2012-01-01

    This publication reviews most of the available literature on the fatigue properties of β annealed Ti-6Al-4V and titanium alloys with similar microstructures. The focus is on β processed and β heat-treated alloys because β annealed Ti-6Al-4V has been selected for highly loaded and fatigue-critical structures, including the main wing-carry-through bulkheads and vertical tail stubs, of advanced high-performance military aircraft.   An important aspect of the review is a concise survey of fatigue life assessment methods and the required types of fatigue data. This survey provides the background to recommendations for further research, especially on the fatigue behaviour of β annealed Ti-6Al-4V under realistic fatigue load histories, including the essential topic of short/small fatigue crack growth. Such research is required for independent fatigue life assessments that conform to the aircraft manufacturer’s design requirements, and also for life reassessments that most probably will have to be made during...

  14. Residual stress distribution analysis of heat treated APS TBC using image based modelling.

    Science.gov (United States)

    Li, Chun; Zhang, Xun; Chen, Ying; Carr, James; Jacques, Simon; Behnsen, Julia; di Michiel, Marco; Xiao, Ping; Cernik, Robert

    2017-08-01

    We carried out a residual stress distribution analysis in a APS TBC throughout the depth of the coatings. The samples were heat treated at 1150 °C for 190 h and the data analysis used image based modelling based on the real 3D images measured by Computed Tomography (CT). The stress distribution in several 2D slices from the 3D model is included in this paper as well as the stress distribution along several paths shown on the slices. Our analysis can explain the occurrence of the "jump" features near the interface between the top coat and the bond coat. These features in the residual stress distribution trend were measured (as a function of depth) by high-energy synchrotron XRD (as shown in our related research article entitled 'Understanding the Residual Stress Distribution through the Thickness of Atmosphere Plasma Sprayed (APS) Thermal Barrier Coatings (TBCs) by high energy Synchrotron XRD; Digital Image Correlation (DIC) and Image Based Modelling') (Li et al., 2017) [1].

  15. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses

  16. On molybdenum (6) alcoholates

    International Nuclear Information System (INIS)

    Turova, N.Ya.; Kessler, V.G.

    1990-01-01

    Synthesis techniques for molybdenum (6) alcoholates of MoO(OR) 4 (1) and MoO 2 (OR) 2 (2) series by means of exchange interaction of corresponding oxychloride with MOR (M=Li, Na) are obtained. These techniques have allowed to prepare 1(R=Me, Et, i-Pr) and 2(R=Me, Et) with 70-98 % yield. Methylates are also prepared at ether interchange of ethylates by methyl alcohol. Metal anode oxidation in corresponding alcohol may be used for 1 synthesis. Physicochemical properties of both series alcoholates, solubility in alcohols in particular, depend on their formation conditions coordination polymerism. Alcoholates of 1 are rather unstable and tend to decomposition up to 2 and ether. It is suggested to introduce NaOR microquantities to stabilize those alcoholates

  17. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  18. Reduction and immobilization of molybdenum by Desulfovibrio desulfuricans

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M.D.; Barton, L.L.; Thomson, B.M. [Sandia National Laboratories, Albuquerque, NM (United States)

    1997-07-01

    Molybdenum contamination of groundwater occurs through activities such as molybdenum and copper mining and processing, shale oil production and power generation from coal-fired power plants. The mobility of Mo in the environment is strongly dependent on its chemical oxidation state. Under oxidizing conditions, Mo occurs as highly soluble and mobile Mo(VI) and Mo(V) compounds. However, under reducing conditions Mo usually forms insoluble Mo(IV) phases. The objective of this study was to demonstrate the ability of the sulfate-reducing bacterium, Desulfovibrio desulfuricans, to reduce Mo(IV) to Mo(IV) in anaerobic environments. Molybdenum-VI was reduced to Mo(IV) by washed cells of D. desulfuricans suspended in bicarbonate buffer solution with either lactate or H{sub 2} as the electron donor and Mo(VI) as the electron acceptor. Molybdenum-VIi reduction by D. desulfuricans in the presence of sulfide resulted in the extracelluar precipitation of the mineral molybdenite. Molybdenum-VI reduction did not occur in the absence of an electron donor or in the presence of heat-killed cells of D. desulfuricans. The results indicate that enzymatic reduction of Mo(VI) by sulfate-reducing bacteria may contribute to the accumulation of Mo(IV) in anaerobic environments and that there organisms may be useful for removing soluble Mo from contaminated water. 20 refs., 6 figs., 4 tabs.

  19. Diffusion in molybdenum disilicide

    International Nuclear Information System (INIS)

    Salamon, M.; Mehrer, H.

    2005-01-01

    The diffusion behaviour of the high-temperature material molybdenum disilicide (MoSi 2 ) was completely unknown until recently. In this paper we present studies of Mo self-diffusion and compare our present results with our already published studies of Si and Ge diffusion in MoSi 2 . Self-diffusion of molybdenum in monocrystalline MoSi 2 was studied by the radiotracer technique using the radioisotope 99 Mo. Deposition of the radiotracer and serial sectioning after the diffusion anneals to determine the concentration-depth profiles was performed using a sputtering device. Diffusion of Mo is a very slow process. In the entire temperature region investigated (1437 to 2173 K), the 99 Mo diffusivities in both principal directions of the tetragonal MoSi 2 crystals obey Arrhenius laws, where the diffusion perpendicular to the tetragonal axis is faster by two to three orders of magnitude than parallel to it. The activation enthalpies for diffusion perpendicular and parallel to the tetragonal axis are Q perpendicular to = 468 kJ mol -1 (4.85 eV) and Q parallel = 586 kJ mol -1 (6.07 eV), respectively. Diffusion of Si and its homologous element Ge is fast and is mediated by thermal vacancies of the Si sublattice of MoSi 2 . The diffusion of Mo is by several orders of magnitude slower than the diffusion of Si and Ge. This large difference suggests that Si and Mo diffusion are decoupled and that the diffusion of Mo likely takes place via vacancies on the Mo sublattice. (orig.)

  20. Corrosion Behavior of Heat-Treated AlSi10Mg Manufactured by Laser Powder Bed Fusion

    Directory of Open Access Journals (Sweden)

    Marina Cabrini

    2018-06-01

    Full Text Available This experimental work is aimed at studying the effect of microstructural modifications induced by post-processing heat treatments on the corrosion behavior of silicon-aluminum alloys produced by means of laser powder bed fusion (LPBF. The manufacturing technique leads to microstructures characterized by the presence of melt pools, which are quite different compared to casting alloys. In this study, the behavior of an AlSi10Mg alloy was evaluated by means of intergranular corrosion tests according to ISO 11846 standard on heat-treated samples ranging from 200 to 500 °C as well as on untreated samples. We found that temperatures above 200 °C reduced microhardness of the alloy, and different corrosion morphologies occurred due to the modification of both size and distribution of silicon precipitates. Selective penetrating attacks occurred at melt pool borders. The intergranular corrosion phenomena were less intense for as-produced specimens without heat treatments compared to the heat-treated specimens at 200 and 300 °C. General corrosion morphologies were noticed for specimens heat treated at temperatures exceeding 400 °C.

  1. A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases.

    Science.gov (United States)

    Birlouez-Aragon, Inès; Saavedra, Giselle; Tessier, Frédéric J; Galinier, Anne; Ait-Ameur, Lamia; Lacoste, Florence; Niamba, Claude-Narcisse; Alt, Nadja; Somoza, Veronika; Lecerf, Jean-Michel

    2010-05-01

    The modern Western lifestyle is characterized by the consumption of high-heat-treated foods because of their characteristic taste and flavor. However, it has been shown that treating food at high temperatures can generate potentially harmful compounds that promote inflammation and cardiovascular disease in subjects with diabetes. The aim of this study was to determine whether high-heat-treated foods also pose a risk for healthy subjects. A randomized, crossover, diet-controlled intervention trial with 62 volunteers was designed to compare the potential metabolic effects of 2 diets, one that was based on mild steam cooking and another that was based on high-temperature cooking. These 2 diets differed mainly in their contents of Maillard reaction products (MRPs). MRPs were assessed in the diet and in subjects' feces, blood, and urine samples, with N(epsilon)-carboxymethyllysine as an indicator of MRPs. Biological indicators of glucose and lipid metabolism as well as oxidative stress were analyzed in subjects after 1 mo on each diet. In comparison with the steamed diet, 1 mo of consuming the high-heat-treated diet induced significantly lower insulin sensitivity and plasma concentrations of long-chain n-3 (omega-3) fatty acids and vitamins C and E [-17% (P markers associated with an enhanced risk of type 2 diabetes and cardiovascular diseases in healthy people. Replacing high-heat-treatment techniques by mild cooking techniques may help to positively modulate biomarkers associated with an increased risk of diabetes mellitus and cardiovascular diseases.

  2. High-strength chromium--molybdenum rails

    International Nuclear Information System (INIS)

    Smith, Y.E.; Sawhill, J.M. Jr.; Cias, W.W.; Eldis, G.T.

    1976-01-01

    A laboratory study was conducted with the aim of developing an as-rolled rail of over 100 ksi (689 N/mm 2 ) yield strength. A series of compositions providing both pearlitic and bainitic microstructures was evaluated. A fine pearlitic structure was developed in a 0.73 percent C -- 0.83 percent Mn -- 0.16 percent Si -- 0.75 percent Cr -- 0.21 percent Mo steel by simulating the mill cooling rate of 132-lb/yd (65.5-kg/m) rail. Two 100-ton commercial heats were made of this approximate composition and processed into 132-lb/yd (65.5-kg/m) rail. Samples tested in the laboratory ranged from 109 to 125 ksi (750 to 860 N/mm 2 ) in yield strength. The chromium-molybdenum rails also exhibited excellent fracture toughness and fatigue properties. Sections of the rail were joined by both flash-butt welding and thermite welding. The hardness peaks produced in the flash-butt welds could be reduced by applying either a postweld current or an induction heating cycle. The high-strength chromium-molybdenum rails have been in service for over eight months in curved sections of an ore railway that carries over 55 million gross long tons per year. 7 tables, 18 figs

  3. Antioxidant activity of protein hydrolysates from raw and heat-treated yellow string beans (Phaseolus vulgaris L.).

    Science.gov (United States)

    Karaś, Monika; Jakubczyk, Anna; Szymanowska, Urszula; Materska, Małgorzata; Zielińska, Ewelina

    2014-01-01

    Nowadays, legume plants have been considered not only a source of valuable proteins necessary for the proper functioning and growth of the body but also a source of bioactive compounds such as bioactive peptides, that may be beneficial to human health and protect against negative change in food. The aim of this study was to investigate the effect of heat treatment on the release of antioxidant peptides obtained by hydrolysis of the yellow string beans protein. The antioxidant properties of the hydrolysates were evaluated through free radical scavenging activities (DPPH and ABTS) and inhibition of iron activities (chelation of Fe2+). The results show that the heat treatment had influence on both increased peptides content and antioxidant activity after pepsin hydrolysis of string bean protein. The peptides content after protein hydrolysis derived from raw and heat treated beans were noted 2.10 and 2.50 mg·ml-1, respectively. The hydrolysates obtained from raw (PHR) and heat treated (PHT) beans showed better antioxidant properties than protein isolates (PIR and PIT). Moreover, the hydrolysates obtained from heat treated beans showed the higher ability to scavenge DPPH• (46.12%) and ABTS+• (92.32%) than obtained from raw beans (38.02% and 88.24%, correspondingly). The IC50 value for Fe2+ chelating ability for pepsin hydrolysates obtained from raw and heat treatment beans were noted 0.81 and 0.19 mg·ml-1, respectively. In conclusion, the results of this study showed that the heat treatment string beans caused increase in the antioxidant activities of peptide-rich hydrolysates.

  4. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    Farah, Alessandro Fraga

    1997-01-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  5. PDS 1-5. Divertor heat sink materials pre- and post-neutron irradiation. Tensile and fatigue tests of brazed joints of molybdenum alloys and 316L stainless steel

    International Nuclear Information System (INIS)

    Lind, Anders.

    1994-01-01

    Tensile specimens from brazed joints of molybdenum alloys (TZM or Mo-5%Re) and Type 316L austenitic stainless steel tubes have been tested at ambient temperature and 127 degrees C before and after neutron irradiation at about 40 degrees C to approximately 0.2 dpa. The unirradiated specimens showed generally ductile behaviour, but the irradiated specimens were notch sensitive and failed in a brittle manner with zero elongation; in all cases the fracture occurred in the molybdenum alloy. The brittle behaviour is consistent with previously published data and results from the increase in strength (radiation hardening) and the associated increase in the ductile-brittle transition temperature (radiation embrittlement) induced in the body-centered-cubic (BCC) molybdenum alloys by irradiation to relatively low displacement doses. The same type of irradiated specimens were also used in fatigue tests. However, the results from the fatigue tests are too limited and complementary studies are needed. During exposure to water locally up to 25% of the wall thickness of the Mo-alloys has corroded away. These observations cast serious doubts on the viability of the molybdenum alloys for divertor applications in fusion systems. 8 refs, 29 figs

  6. Preliminary comparative study of anti-inflmmatory effect of unheated and heat-treated Sahara honey: In vivo approach

    Directory of Open Access Journals (Sweden)

    Moussa Ahmed

    2015-11-01

    Full Text Available Objective: To investigate the effect of unheated and heat-treated of Sahara honey. Methods: A total of 24 Swiss albino mice weighing 25–35 g were divided into four groups (n = 6. Anti-inflammatory effect was assessed at 1, 2, 3, 4, 5 and 6 h after subplantar injection of carrageenan (0.5 mL of a 1% solution in normal saline. In addition, total phenolic content was determined by modified Folin-Ciocalteu method. Results: The total phenolic content capacity of the Sahara honey before and after heat treatment was between 72 and 97.9 mg of gallic acid equivalents/100 g of honey respectively. Administration of unheated honey (oral administration reduced significantly (P < 0.05. The carrageenan induced mice paw edema model at 1, 3 and 6 h for 21.85%, 5.43% and 80.43%, respectively. Administration of heat-treated honey showed insignificant inhibition of carrageenan and induced paw edema at 1 h (31.16%, 3 h (0.25% and 6 h (34.19%. The 50 mg/kg diclofenac exhibited percent reduction in paw volume 16.12%, 8.90% and 15.32% after 1 h, 3 h and 6 h, respectively, when compared with control animals. No toxicity was identified. Conclusions: Our results suggest that unheated Sahara honey has anti-inflammatory effects by reducing the mice paw edema size while heat-treated Sahara honey decreases the antiinflammatory activity.

  7. Analysing the Friction Stir Welded Joints of AA2219 Al-Cu Alloy in Different Heat-Treated-State

    Science.gov (United States)

    Venkateswarlu, D.; Cheepu, Muralimohan; Kranthi kumar, B.; Mahapatra, M. M.

    2018-03-01

    Aluminium alloy AA2219 is widely used in light weight structural applications where the good corrosion resistance and specific weight required. The fabrication of this alloy using friction stir welding process is gaining interest towards finding the characteristics of the weld metal properties, since this process involved in the welded materials does not melt and recast. In the present investigation, friction stir welding process was used for different heat treated conditions of 2219-T87 and 2219-T62 aluminium alloys to find the influence of base metal on characteristics of the joints. The experimental output results exhibited that, mechanical properties, weld metal characteristics and joint failure locations are significantly affected by the different heat treatment conditions of the substrate. The joints tensile and yield strength of the 2219-T87 welds was higher than the 2219-T62 welds. Hardness distribution in the stir zone was significantly varied between two different heat treaded material conditions. The microstructural features of the 2219-T62 welds reveal the coarse grains formation in the thermo-mechanically affected zone and heat affected zone. The joint efficiency of the 2219- T82 welds is 59.87%, while that of 2219-T62 welds is 39.10%. In addition, the elongation of the joint also varied and the joints failure location characteristics are different for two different types heat treated condition joints.

  8. Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids

    International Nuclear Information System (INIS)

    Teng, K.H.; Amiri, Ahmad; Kazi, S.N.; Bakar, M.A.; Chew, B.T.; Al-Shamma’a, A.; Shaw, A.

    2017-01-01

    Highlights: • Decoration EDTA on MWCNT surface to retard the rate of fouling. • Preparation of DTPA-treated MWCNT/water nanofluid. • Evaluating the mitigation of DTPA-treated MWCNT-based water nanofluids. • Retarding of calcium carbonate crystals by MWCNT-DTPA additives. • The effect of additive on the rate of fouling. - Abstract: Mineral scale deposition on heat exchanging surfaces increases the thermal resistance and reduces the operating service life. The effect is usually intensified at higher temperatures due to the inverse temperature solubility characteristics of some minerals in the cooling water. Scale formation build up when dissolved salt crystallize from solution onto the heated surface, forming an adherent deposit. It is very important for heat transfer applications to cope with the fouling problems in industry. In this present study, a set of fouling experiments was conducted to evaluate the mitigation of calcium carbonate scaling by applying DTPA-treated MWCNT-based water nanofluids on heat exchanger surfaces. Investigation of additive DTPA-treated MWCNT-based water nanofluids (benign to the environment) on fouling rate of deposition was performed. 300 mg L −1 of artificially-hardened calcium carbonate solution was prepared as a fouling solution for deposit analysis. Assessment of the deposition of calcium carbonate on the heat exchanger surface with respect to the inhibition of crystal growth was conducted by Scanning Electron Microscope (SEM). The results showed that the formation of calcium carbonate crystals can be retarded significantly by adding MWCNT-DTPA additives as inhibition in the solution.

  9. Purification of molybdenum

    International Nuclear Information System (INIS)

    Cheresnowsky, M.J.; Brunelli, T.A.; Kim, T.K.

    1987-01-01

    A method for purifying molybdenum is described comprising: (a) adding to an ammoniacal ammonium molybdate solution which is at a pH of from about 8.5 to about 11 and which contains the impurities of phosphorus and arsenic with the phosphorus concentration being from about 0.01 to about 0.12 g/l, a soluble magnesium salt to form a precipitate comprising magnesium ammonium salts of the phosphorus and the arsenic, and to form a purified ammonium molybdate solution, with the amount of the magnesium salt being added in an amount sufficient to result in a concentration of from about 0.005 to about 0.04 moles Mg/l in the ammoniacal ammonium molybdate solution, and the purified solution containing no greater than about 0.01 g P/l; (b) separating the precipitate from the purified ammonium molybdate solution; and (c) contacting the purified ammonium molybdate solution with a chelating cation exchange resin supplying a sufficient amount of ammonium as the cation to remove the major portion of the magnesium ions from the purified solution and form a further purified ammonium molybdate solution

  10. Hardness survey of cold-worked and heat-treated JBK-75 stainless steel alloy

    International Nuclear Information System (INIS)

    Jackson, R.J.; Lucas, R.L.

    1977-01-01

    The alloy JBK-75, an age-hardenable austenitic stainless steel, is similar to commercial A-286, but has certain chemistry modifications to improve weldability and hydrogen compatibility. The principal changes are an increase in nickel and a decrease in manganese with lower limits on carbon, phosphorus, sulfur, silicon, and boron. In this study, the effects of solutionizing time and temperature, quench rate, cold working, and the effects of cold working on precipitation kinetics were examined. Findings show that the solutionizing temperature has a moderate effect on the as-quenched hardness, while times greater than that required for solutionizing do not significantly affect hardness. Quench rate was found to have a small effect on as-quenched hardness, however, hardness gradients did not develop in small bars. It was found that JBK-75 can be significantly strengthened by cold working. Cold working alone produced hardness increases from Rockwell-A 49 to R/sub A/ 68. A recovery-related hardness change was noted on heat treating at 300 and 400 0 C for both as-quenched and as-worked JBK-75. Significant age-hardening was observed at temperatures as low as 500 0 C for as-worked metal. Aging at 600 0 C resulted in maximum hardness in the 75 percent worked sample at about 6 hours (R/sub A/ 73.5) while the 50 percent worked sample was near maximum hardness (R/sub A 72.5) after seven days. THE 25 and 0 percent worked samples were considerably underaged after seven days. Similar type kinetic data were obtained for worked and nonworked metal at 650, 700, 800, 850, 900, 1000, and 1100 0 C for times from 10 minutes to 10,000 minutes (6.7 days). The overall purpose of the hardness survey was to better define the effects of cold work on the stress-relieving range, coherent precipitation range, incoherent precipitation range, recrystallization range, solutionizing range, and grain-growth range

  11. Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2017-12-01

    In the present study, titanium di-oxide (TiO2) coating has been developed on Ti-6Al-4V substrate by plasma spray deposition. Followed by plasma spraying, heat treatment of the sprayed sample has been carried out by isothermally holding it at 823 K (550 °C) for 2 h. Microstructural analysis shows the presence of porosity and unmelted particles on the as-sprayed surface, the area fraction of which reduces after heat treatment. X-ray diffraction analysis shows the phase transformation from anatase (in precursor powder) to rutile (in as-sprayed coating and the same after heat treatment). There is an improvement in nano-hardness, "Young's modulus" and wear resistance in plasma-sprayed TiO2 coating (as-sprayed as well as post-heat-treated condition) as compared to as-received Ti-6Al-4V, though post-heat treatment offers a superior hardness, "young's modulus" and wear resistance as compared to as-sprayed coating. The corrosion behavior in "hank's solution" shows decrease in corrosion resistance after plasma spraying and post-heat treatment as compared to as-received substrate. A significant decrease in contact angle and improvement in bioactivity (in terms of apatite deposition) were observed in TiO2-coated surface as compared to as-received Ti-6Al-4V.

  12. Heat Source Characterization In A TREAT Fuel Particle Using Coupled Neutronics Binary Collision Monte-Carlo Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram; Baker, Benjamin; Zabriskie, Adam; Ortensi, Javier; Wang, Yaqi; Gleicher, Frederick; DeHart, Mark; Martineau, Richard

    2017-04-01

    This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. The macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.

  13. Nitrogen reduction: Molybdenum does it again

    Science.gov (United States)

    Schrock, Richard R.

    2011-02-01

    Nature reduces dinitrogen under mild conditions using nitrogenases, the most active of which contains molybdenum and iron. The only abiological dinitrogen reduction catalyst that avoids the harsh conditions of the Haber-Bosch process contains just molybdenum.

  14. Enhanced inhibition of Aspergillus niger on sedge (Lepironia articulata) treated with heat-cured lime oil.

    Science.gov (United States)

    Matan, N; Matan, N; Ketsa, S

    2013-08-01

    This study aimed to examine heat curing effect (30-100°C) on antifungal activities of lime oil and its components (limonene, p-cymene, β-pinene and α-pinene) at concentrations ranging from 100 to 300 μl ml(-1) against Aspergillus niger in microbiological medium and to optimize heat curing of lime oil for efficient mould control on sedge (Lepironia articulata). Broth dilution method was employed to determine lime oil minimum inhibitory concentration, which was at 90 μl ml(-1) with heat curing at 70°C. Limonene, a main component of lime oil, was an agent responsible for temperature dependencies of lime oil activities observed. Response surface methodology was used to construct the mathematical model describing a time period of zero mould growth on sedge as functions of heat curing temperature and lime oil concentration. Heat curing of 90 μl ml(-1) lime oil at 70°C extended a period of zero mould growth on sedge to 18 weeks under moist conditions. Heat curing at 70°C best enhanced antifungal activity of lime oil against A. niger both in medium and on sedge. Heat curing of lime oil has potential to be used to enhance the antifungal safety of sedge products. © 2013 The Society for Applied Microbiology.

  15. Using heat-treated starch to modify the surface of biochar and improve the tensile properties of biochar-filled stryene-butadiene rubber composites

    Science.gov (United States)

    Heat-treated starch is a renewable material that can be used to modify the surface chemistry of small particles. In this work, heat-treated starch was used to coat hydrophilic biochar particles in order to make them more hydrophobic. Then when added as filler to hydrophobic styrene-butadiene rubber,...

  16. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    Directory of Open Access Journals (Sweden)

    Mitra Asadi-Eydivand

    Full Text Available The ability of inkjet-based 3D printing (3DP to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated

  17. The Wear Characteristics of Heat Treated Manganese Phosphate Coating Applied to AlSi D2 Steel with Oil Lubricant

    Directory of Open Access Journals (Sweden)

    Venkatesan Alankaram

    2012-12-01

    Full Text Available Today, in the area of material design conversion coatings play an important role in the applications where temperature, corrosion, oxidation and wear come in to play. Wear of metals occurs when relative motion between counter-surfaces takes place, leading to physical or chemical destruction of the original top layers. In this study, the tribological behaviour of heat treated Manganese phosphate coatings on AISI D2 steel with oil lubricant was investigated. The Surface morphology of manganese phosphate coatings was examined by Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDX .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear resistance of the coated steel was evaluated through pin on disc test using a sliding velocity of 3.0m/s under Constant loads of 40 N and 100 N with in controlled condition of temperature and humidity. The Coefficient of friction and wear rate were evaluated. Wear pattern of Manganese phosphate coated pins with oil lubricant, Heat treated Manganese phosphate coated pins with oil lubricant were captured using Scanning Electron Microscope (SEM. The results of the wear test established that the heat treated manganese phosphate coating with oil lubricant exhibited the lowest average coefficient of friction and the lowest wear loss up to 6583 m sliding distance under 40 N load and 3000 m sliding distance even under 100 N load respectively. The Wear volume and temperature rise in heat treated Manganese Phosphate coated pins with oil lubricant is lesser than the Manganese Phosphate coated pins with oil lubricant

  18. Numerical model to predict microstructure of the heat treated of steel elements

    Directory of Open Access Journals (Sweden)

    T. Domański

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account thermal phenomena and phase transformations. Numerical algorithm of thermal phenomena was based on the Finite Elements Methods of the heat transfer equations. In the model of phase transformations, in simulations heating process continuous heating (CHT was applied, whereas in cooling process continuous cooling (CCT of the steel at issue. The phase fraction transformed (austenite during heating and fractions during cooling of ferrite, pearlite or bainite are determined by Johnson-Mehl-Avrami formulas. The nescent fraction of martensite is determined by Koistinen and Marburger formula or modified Koistinen and Marburger formula. In the simulations of hardening was subject the fang lathe of cone (axisymmetrical object made of tool steel.

  19. Heat response of mouse tumor cells treated with 5-thio-D-glucose and Rhodamine-123

    International Nuclear Information System (INIS)

    Rhee, J.G.; Lyons, J.C.; Song, C.W.

    1987-01-01

    Cellular heat-sensitivity has been known to depend on intracellular energy. The authors studied the thermal response of cultured SCK mammary carcinoma cells in vitro, following glycolytic inhibition with 5-thio-D-glucose (TG) and mitochondrial inactivation with Rhodamine-123 (Rh). The cells in exponential growth phase in RPMI 1640 medium supplemented with serum and antibiotics were exposed to medium containing Rh and/or TG, heated in a prewarmed water bath, and the clonogenic survivals of the heated cells were determined. Thermal cell killing by the 30 min. heating was increased, when 10 and 20 μg/ml Rh were present in the medium at temperatures above 42 0 and 40 0 C, respectively. The slope of the heat survival curve for 43 0 C heating became steeper in the presence of 10 and 20 μg/ml Rh, and the initial shoulder of the survival curve was unaltered at the dose of 10 μg/ml Rh, but disappeared at 20 μg/ml. A TG dose of 3 mg/ml, which is about 10 times that necessary to kill 90% of cells in 5 hrs. under hypoxic condition, was ineffective in altering any parameters of the heat survival curve of aerobic cells. The combined effect of TG and Rh on the thermal cell killing in aerobic condition did not exceed the effect of Rh alone. The above results indicate that the energy supply derived by mitochondria is an important determinant for the shape of heat survival curve of the proliferating and aerobic SCK tumor cells

  20. Method of molybdenum kinetic determination

    International Nuclear Information System (INIS)

    Krejngol'd, S.U.; Dzotsenidze, N.E.; Ruseishviyai, T.G.; Nelen', I.M.

    1980-01-01

    The method molybdenum kinetic determination according to oxidation of pyrogallol with bromate in the medium of 0.05-0.15 M perchloric or sulphuric acids is presented. 1 mg of Ni, Co, Mn, Mg, Zn, Cr(3); 100 μg of Ca, Al, Cu, 10 μg of Cr(4), W; 10 μg of Fe in the presence of 22x10 - 4 M solution of EDTA, as well as 10 - 4 M solutions of chlorides and fluorides, 10 - 5 M solutions of bromides do not interfere with molybdenum determination using the given method. The method is rather simple, it takes 30 min to carry out the analysis. Determination limit of molybdenum constitutes 0.01 μg/ml

  1. Comparing the energy required for fine grinding torrefied and fast heat treated pine

    International Nuclear Information System (INIS)

    Kokko, Lauri; Tolvanen, Henrik; Hämäläinen, Kai; Raiko, Risto

    2012-01-01

    The purpose of the study was to compare torrefaction to partial pyrolysis conducted with a fast heat treatment process. Both torrefaction and the fast heat treatment tests were performed in a bubbling fluidized bed reactor. The study investigated the anhydrous weight losses, the fine grinding energy requirements, and the lower heating values of the samples produced with the two methods i.e. torrefaction and the fast heat treatment. The effect of particle size to these quantities was also investigated. The measurements demonstrated that the fine grinding energy requirement decreased rapidly as a function of anhydrous weight loss. The overall energy content remaining in the solid product decreased linearly as a function of anhydrous weight loss. The study shows that there is only little difference in the final products of the two processes when using particle sizes less than 4 mm. This means that it is possible to get similar products from the fast heat treatment process that takes only seconds compared to the slower torrefaction process that takes minutes. -- Highlights: ► Fine grinding energy requirement is dependent on anhydrous weight loss. ► A fast heat treatment process of only 10 s is possible for pine wood. ► A particle size of less than 4 mm is required for the fast process.

  2. Isotope analysis of molybdenum in selected minerals

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1980-01-01

    An analytical method is described for the mass spectrometric determination of molybdenum abundance values. The results of analyses of three molybdenum mineral samples are presented and compared with the results of other authors. It is shown that the fine variations of molybdenum in natural minerals cannot be analysed with currently available mass spectrometers

  3. Chemistry and heat-treatment effects on mechanical and microstructural properties of heat-treated, beta-extruded Ti--6A1--6V--2Sn

    International Nuclear Information System (INIS)

    Ulitchny, M.G.; Rack, H.J.; Dawson, D.B.

    1979-04-01

    The mechanical behavior of beta-extruded Ti--6A1--6V--2Sn was examined after a variety of sub-transus heat treatments. The microstructural variations resulting from the range of heat treatments studied also were examined. A range of alloy chemistries, within commercial limits, was used to evaluate the effect of this variable on mechanical properties. The strength--toughness combinations obtained in beta-extruded Ti--6A1--6V--2Sn ranged from about 895 MPa and 82.5 MPa√m for duplex annealed material to 1200 MPa and 54.9 MPa√m for solution treated and peak aged material. Chemistry variations had less effect on mechanical properties than would have been the case with alpha--beta processing

  4. Heat Release Property and Fire Performance of the Nomex/Cotton Blend Fabric Treated with a Nonformaldehyde Organophosphorus System

    Directory of Open Access Journals (Sweden)

    Charles Q. Yang

    2016-09-01

    Full Text Available Blending Nomex® with cotton improves its affordability and serviceability. Because cotton is a highly flammable fiber, Nomex®/cotton blend fabrics containing more than 20% cotton require flame-retardant treatment. In this research, combination of a hydroxyl functional organophosphorus oligmer (HFPO and 1,2,3,4-butanetetracarboxylic acid (BTCA was used for flame retardant finishing of the 65/35 Nomex®/cotton blend woven fabric. The system contains HFPO as a flame retardant, BTCA as a bonding agent, and triethenolamine (TEA as a reactive additive used to enhance the performance of HFPO/BTCA. Addition of TEA improves the hydrolysis resistance of the HFPO/BTCA crosslinked polymeric network on the blend fabric. Additionally, TEA enhances HFPO’s flame retardant performance by reducing formation of calcium salts and also by providing synergistic nitrogen to the treated blend fabric. The Nomex®/cotton blend fabric treated with the HFPO/BTCA/TEA system shows high flame resistance and high laundering durability at a relatively low HFPO concentration of 8% (w/w. The heat release properties of the treated Nomex®/cotton blend fabric were measured using microscale combustion calorimetry. The functions of BTCA; HFPO and TEA on the Nomex®/cotton blend fabric were elucidated based on the heat release properties, char formation, and fire performance of the treated blend fabric.

  5. Experimental determination of critical data of liquid molybdenum

    International Nuclear Information System (INIS)

    Seydel, U.; Fucke, W.

    1978-01-01

    The submicrosecond resistive pulse heating of wire-shaped metallic samples in a highly incompressible medium leads to a thermodynamic state very close to the critical point of the liquid metal. The additional application of a static pressure may result in a critical or supercritical transition. First results on the critical data of molybdenum are reported: Tsub(c) = (11 150 +- 550) K, psub(c) = (5460 +- 1160) bar, vsub(c) = (36.5 +- 3.5) cm 3 mol -1 . (author)

  6. Brazing molybdenum and tungsten for high temperature service

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Turner, W.C.; Hoffman, C.G.

    1978-01-01

    Investigations were conducted to develop vacuum brazes for molybdenum and tungsten which can be used in seal joint applications up to 1870 K (1597 C, 2907 F). Joints were attempted in molybdenum, tungsten and tungsten--molybdenum. The braze materials included: Ti--10Cr powder, Ti--30V wire, Ti--65V wire, V wire, Ni electroplate, MoB--50MoC powder mixture, V--50Mo powder mixture, Mo--15MoB 2 powder mixture and Mo--49V--15MoB 2 powder mixture. Braze temperature ranged from 1900 K (1627 C, 2961 F) to 2530 K, (2257 C, 4095 F), and leak-tight joints were made with all braze materials except Ti--10Cr. After heat treatments up to 1870 K (1597 C, 2907 F) Kirkendall voiding was found to cause leakage of some of the joints made with only substitutional alloying elements. However, adding base metal powders to the braze or narrowing the root opening eliminated this problem. Kirkendall voiding was not a problem when interstitial elements were a major ingredient in the braze material. Shear testing of Ti--65V, V, MoB--50MoC and V--50Mo brazed molybdenum at 1670 K (1397 C, 2547 F) indicated strengths equal to or better than the base metal. Ti--65V, V--50Mo and MoB--50MoC brazed joints were exposed to basalt at 1670 K (1397 C, 2547 F) for 3 h without developing leaks

  7. Wide-angle X-ray scattering study of heat-treated PEEK and PEEK composite

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn; Chung, Shirley Y.; Yavrouian, Andre; Gupta, Amitava

    1987-01-01

    Samples of poly(etheretherketone) (PEEK) neat resin and APC-2 carbon fiber composite were subjected to various heat treatments, and the effect of quenching and annealing treatments was studied by wide-angle X-ray scattering. It is found that high-temperature treatments may introduce disorder into neat resin and composite PEEK when followed by rapid cooling. The disorder is metastable and can revert to ordered state when the material is heated above its glass transition temperature and then cooled slowly. The disorder may result from residual thermal stresses.

  8. Adsorption and release of ofloxacin from acid- and heat-treated halloysite.

    Science.gov (United States)

    Wang, Qin; Zhang, Junping; Zheng, Yue; Wang, Aiqin

    2014-01-01

    Halloysite nanotube is an ideal vehicle of the controlled release of drugs. In this study, we systematically investigated the effects of acid- and heat-treatments on the physicochemical properties, structure and morphology of halloysite by XRD, FTIR, SEM and TEM. Afterwards, the adsorption and in vitro release properties of halloysite for cationic ofloxacin (OFL) were evaluated. The results indicate that HCl treatment has no influence on the crystal structure of halloysite, whereas it becomes amorphous after calcined at temperature higher than 500 °C. Both acid- and heat-treatments have no evident influence on the tubular structure of halloysite. OFL was adsorbed onto halloysite via electrostatic interaction between protonated OFL and negative halloysite surface, cation exchange as well as electrostatic interaction between the OFL-Al(3+) complexes and the negative halloysite surface. Acid-treatment facilitates the release of the adsorbed OFL compared with the natural halloysite in spite of a slight decrease of adsorption capacity. However, heat-treatment results in a sharp decrease of adsorption capacity for OFL owning to the OFL-promoted dissolution of aluminum and the disappearance of the porous structure. Although heat-treatment also facilitates release of the adsorbed OFL, the amount of OFL released is in fact less than the natural halloysite owing to the very low adsorption capacity. Thus, acid-activation is an effective protocol to improve the adsorption and release of halloysite for cationic drug molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin–Shtrikman model due to the theoretical model’s inability to consider the thermal resistance at interfaces between the meat constituents.

  10. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    Science.gov (United States)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin-Shtrikman model due to the theoretical model's inability to consider the thermal resistance at interfaces between the meat constituents.

  11. Elastic and Strength Properties of Heat-Treated Beech and Birch Wood

    Directory of Open Access Journals (Sweden)

    Vlastimil Borůvka

    2018-04-01

    Full Text Available This paper deals with the impact of heat treatment on the elastic and strength properties of two diffuse porous hardwoods, namely Fagus sylvatica and Betula pendula. Two degrees of the heat treatment were used at temperatures of 165 °C and 210 °C. The dynamic and static elasticity modulus, bending strength, impact toughness, hardness, and density were tested. It is already known that an increase in treatment temperature decreases the mechanical properties and, on the other hand, leads to a better shape and dimensional stability. Higher temperatures of the heat treatment correlated with lower elastic and strength properties. In the case of higher temperature treatments, the decline of tested properties was noticeable as a result of serious changes in the chemical composition of wood. It was confirmed that at higher temperature stages of treatment, there was a more pronounced decrease in beech properties compared to those of the birch, which was the most evident in their bending strength and hardness. Our research confirmed that there is no reason to consider birch wood to be of a lesser quality, although it is regarded by foresters as an inferior tree species. After the heat treatment, the wood properties are almost the same as in the case of beech wood.

  12. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  13. Gel Fabrication of Molybdenum “Beads”

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-11-01

    Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however, the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.

  14. HYDROGEN VACANCY INTERACTION IN MOLYBDENUM

    NARCIS (Netherlands)

    Abd El Keriem, M.S.; van der Werf, D.P.; Pleiter, F

    1993-01-01

    Vacancy-hydrogen interaction in molybdenum was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. The complex InV2 turned out to trap up to two hydrogen atoms: trapping of a single hydrogen atom gives rise to a decrease of the quadrupole

  15. Thermodynamic analysis of as-cast and heat-treated microstructures of Mg-Ce-Nd alloys

    International Nuclear Information System (INIS)

    Groebner, Joachim; Kozlov, Artem; Schmid-Fetzer, Rainer; Easton, Mark A.; Zhu Suming; Gibson, Mark A.; Nie, Jian-Feng

    2011-01-01

    Alloys based on Mg-rare earth (RE) systems are of increasing technical interest in automotive powertrain applications due to their superior elevated temperature creep resistance. However, there is a deficiency in the literature of phase diagrams of multi-component RE systems that could assist alloy development and composition refinement for enhanced property optimization. The phase relationships in the Mg-rich corner of the Mg-Ce-Nd system have been investigated through the evaluation of selected compositions in the as-cast and heat-treated condition. Consistent thermodynamic CALPHAD-type assessments have also been generated for the Mg-Ce-Nd system. It is shown that this system reveals a significant degree of metastability under technologically significant solidification conditions (i.e. permanent-mould or high-pressure die casting). This is simulated in thermodynamic calculations by suppression of the RE 5 Mg 41 phase and reasonable agreement is found with the as-cast microstructures. After heat treatment these microstructures transform, depending on the alloy composition, into phase assemblies consistent with the calculated stable equilibrium phase diagram. It is the elucidation of such metastable phase formation and the subsequent transformation from the as-cast to the heat-treated state that is a particular strength of the thermodynamic approach and which makes it a powerful tool for alloy development.

  16. Non-heat-treated frozen raspberries the most likely vehicle of a norovirus outbreak in Oslo, Norway, November 2013.

    Science.gov (United States)

    Einöder-Moreno, M; Lange, H; Grepp, M; Osborg, E; Vainio, K; Vold, L

    2016-10-01

    In November 2013, the Norwegian Institute of Public Health was notified of a gastroenteritis outbreak following two meetings held at a conference centre. Identical food and beverages were served during the meetings. We investigated in order to identify the vehicle of infection and implement control measures. Meeting participants completed an online questionnaire on consumption of foods and beverages. We asked symptomatic participants to provide a stool sample. We defined a case as diarrhoea and/or vomiting in a participant who became ill within 3 days after the meeting. We calculated attack rates (AR) and adjusted risk ratios (aRR) with 95% confidence intervals (CI) using binomial regression. We conducted environmental investigations. Overall, 147/168 (88%) participants responded, of which 74 (50%) met the case definition. All five stool samples provided were norovirus positive. No kitchen staff reported being sick. Risk of illness was higher in those who consumed raspberry mousse (aRR 3·4, 95% CI 1·4-8·2) and sliced fresh fruit (aRR 1·9, 95% CI 1·3-2·8). Seventy cases (95%) ate raspberry mousse. Frozen raspberries used for the mousse were imported and not heat-treated before consumption. Non-heat-treated frozen raspberries were the most likely outbreak vehicle. Contamination by a food handler could not be excluded. We recommend heat-treatment of imported frozen berries before consumption.

  17. Thermodynamic analysis of as-cast and heat-treated microstructures of Mg-Ce-Nd alloys

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, Joachim; Kozlov, Artem [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer, E-mail: schmid-fetzer@tu-clausthal.de [Institute of Metallurgy, Clausthal University of Technology, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Easton, Mark A.; Zhu Suming [CAST CRC, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Gibson, Mark A. [CAST CRC, CSIRO Process Science and Engineering, Clayton, Victoria 3169 (Australia); Nie, Jian-Feng [CAST CRC, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)

    2011-01-15

    Alloys based on Mg-rare earth (RE) systems are of increasing technical interest in automotive powertrain applications due to their superior elevated temperature creep resistance. However, there is a deficiency in the literature of phase diagrams of multi-component RE systems that could assist alloy development and composition refinement for enhanced property optimization. The phase relationships in the Mg-rich corner of the Mg-Ce-Nd system have been investigated through the evaluation of selected compositions in the as-cast and heat-treated condition. Consistent thermodynamic CALPHAD-type assessments have also been generated for the Mg-Ce-Nd system. It is shown that this system reveals a significant degree of metastability under technologically significant solidification conditions (i.e. permanent-mould or high-pressure die casting). This is simulated in thermodynamic calculations by suppression of the RE{sub 5}Mg{sub 41} phase and reasonable agreement is found with the as-cast microstructures. After heat treatment these microstructures transform, depending on the alloy composition, into phase assemblies consistent with the calculated stable equilibrium phase diagram. It is the elucidation of such metastable phase formation and the subsequent transformation from the as-cast to the heat-treated state that is a particular strength of the thermodynamic approach and which makes it a powerful tool for alloy development.

  18. Magnetic force microscopy characterization of heat and current treated Fe40Ni38Mo4B18 amorphous ribbons

    International Nuclear Information System (INIS)

    Garcia, Ignacio; Iturriza, Nuria; Jose del Val, Juan; Grande, Hans; Pomposo, Jose A.; Gonzalez, Julian

    2010-01-01

    The domain structure of a magnetostrictive Fe 40 Ni 38 Mo 4 B 18 amorphous ribbon has been studied using magnetic force microscopy (MFM) at room temperature. First, the evolution of the magnetic domain patterns as a function of the annealing temperature has been investigated. In samples heat treated at 250 and 450 deg. C for 1 h, a transformation from 90 deg. to 180 deg. domain wall has been clearly observed, while the sample heat treated at 700 deg. C for 1 h showed a magnetic phase fixed by the crystalline anisotropy. Additionally, the evolution of the magnetic domain structure by applying a DC current was recorded by the MFM technique. For current annealed samples at 1 A for 1, 30 and 60 min, a transformation between different domain patterns has been observed. Finally, in samples treated by the current annealing method under simultaneous stress, an increase of the annealing time gives rise to a different magnetic structure arising from the development of transverse magnetic anisotropy.

  19. Metallurgical and Corrosion Characterization of POST Weld Heat Treated Duplex Stainless Steel (uns S31803) Joints by Friction Welding Process

    Science.gov (United States)

    Asif M., Mohammed; Shrikrishna, Kulkarni Anup; Sathiya, P.

    2016-02-01

    The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080∘C, 1150∘C and 1200∘C with 15min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080∘C followed by water quench and at 1150∘C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov-Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100∘C and that for oil quenching was around 1140∘C. The pit depths were found to be in the range of 100nm and width of 1.5-2μm.

  20. Prototyping Energy Efficient Thermo-Magnetic & Induction Hardening for Heat Treat & Net Shape Forming Applications

    Energy Technology Data Exchange (ETDEWEB)

    Aquil Ahmad

    2012-08-03

    Within this project, Eaton undertook the task of bringing about significant impact with respect to sustainability. One of the major goals for the Department of Energy is to achieve energy savings with a corresponding reduction in carbon foot print. The use of a coupled induction heat treatment with high magnetic field heat treatment makes possible not only improved performance alloys, but with faster processing times and lower processing energy, as well. With this technology, substitution of lower cost alloys for more exotic alloys became a possibility; microstructure could be tailored for improved magnetic properties or wear resistance or mechanical performance, as needed. A prototype commercial unit has been developed to conduct processing of materials. Testing of this equipment has been conducted and results demonstrate the feasibility for industrial commercialization.

  1. An Experimental Investigation on Hardness and Microstructure of Heat Treated EN 9 Steel

    Science.gov (United States)

    Biswas, Palash; Kundu, Arnab; Mondal, Dhiraj

    2017-08-01

    In the modern engineering world, extensive research has led to the development of some special grades of steel, often suited for enhanced functions. EN 9 steel is one such grade, having major applications in power plants, automobile and aerospace industry. Different heat treatment processes are employed to achieve high hardness and high wear resistance, but machinability subsequently decreases. Existing literature is not sufficient to achieve a balance between hardness and machinability. The aim of this experimental work is to determine the hardness values and observe microstructural changes in EN9 steel, when it is subjected to annealing, normalizing and quenching. Finally, the effects of tempering after each of these heat treatments on hardness and microstructure have also been shown. It is seen that the tempering after normalizing the specimen achieved satisfactory results. The microstructure was also observed to be consisting of fine grains.

  2. Structural characterization of heat treated pitch by solid state /sup 13/C nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sfihi, H.; Tougne, P.; Legrand, A.P.; Couderc, P.; Saint-Romain, J.L.

    1988-12-01

    The objective of this paper is to determine structural parameters (aromaticity factor, fractions of protonated and non-protonated aromatic carbons) of some pitches, and to follow their evolution as a function of the heat treatment duration. For such a determination, /sup 13/C-/sup 1/H cross polarization combined with magic angle spinning and dipolar dephasing (CP/MAS/DD) NMR was used. 15 refs., 4 figs., 1 tab.

  3. Microstructural study and numerical simulation of phase decomposition of heat treated Co–Cu alloys

    Directory of Open Access Journals (Sweden)

    A.M. Mebed

    2014-12-01

    Full Text Available The influence of heat treatment on the phase decomposition and the grain size of Co–10 at% Cu alloy were studied. Few samples were aged in a furnace for either 3 or 5 h and then quenched in iced water. The materials and phase compositions were investigated using energy dispersive spectrometry and X-ray diffraction techniques. X-ray diffraction analysis showed that the samples contained Co, Cu, CuO, CoCu2O3, CoCuO2 phases in different proportions depending on the heat treatment regimes. The formation of dendrite Co phase rendered the spinodal decomposition while the oxidations prevent the initiation of the spinodal decomposition even for a deep long aging inside the miscibility gap. Since the Bragg reflections from different phases of Co–Cu alloy significantly overlap, the crystal structural parameters were refined with FULLPROF program. The shifts in the refined lattice constants (a, b and c, the space group and the grain size were found to be phase- and heat treatment-dependant. Two-dimensional computer simulations were conducted to study the phase decomposition of Co–Cu binary alloy systems. The excess free energy as well as the strain energy, without a priori knowledge of the shape or the position of the new phase, was precisely evaluated. The results indicate that the morphology and the shape of the microstructure agree with SEM observation.

  4. Phase assemblage study and cytocompatibility property of heat treated potassium magnesium phosphate-silicate ceramics.

    Science.gov (United States)

    Kumar, Ravi; Kalmodia, Sushma; Nath, Shekhar; Singh, Dileep; Basu, Bikramjit

    2009-08-01

    This article reports the study on a new generation bioactive ceramic, based on MgKPO(4) (Magnesium Potassium Phosphate, abbreviated as MKP) for biomedical applications. A series of heat treatment experiments on the slip cast silica (SiO(2)) containing MKP ceramics were carried out at 900, 1,000 and 1,100 degrees C for 4 h in air. The density of the slip cast ceramic increases to 2.5 gm/cm(3) upon heat treatment at 900 degrees C. However, no significant change in density is measured upon heat treatment to higher temperature of 1,000 and 1,100 degrees C. On the basis of XRD results, the presence of K(2)MgSi(5)O(12) and dehydrated MgKPO(4) were confirmed and complementary information has also been obtained using FT-IR and Raman spectroscopy. In order to confirm the in vitro cytocompatibility property, the cell culture tests were carried out on selected samples and the results reveal good cell adhesion and spreading of L929 mouse fibroblast cells. MTT assay analysis with L929 cells confirmed non-cytotoxic behavior of MKP containing ceramics and the results are comparable with sintered HAp ceramics. It is expected that the newly developed MKP based materials could be a good substitute for hydroxyapatite (HAp or HA) based bioceramics.

  5. Time course of surface characteristics of alkali- and heat-treated titanium dental implants during vacuum storage.

    Science.gov (United States)

    Kamo, Michimasa; Kyomoto, Masayuki; Miyaji, Fumiaki

    2017-08-01

    Current efforts to shorten the healing times of life-long dental implants and prevent their fouling by organic impurities have focused on using surface-modification treatments and alternative packaging, respectively. In this study, we investigated the time course of the surface characteristics, including the wettability, a protein-adsorption and apatite-formation abilities, of alkali- and heat-treated (AH-treated) Ti samples during storage in vacuum over a period of 52 weeks. The AH treatment resulted in the formation of a nanometer-scale needle-like rougher surface of the Ti samples. Although the water contact angle of the AH-treated Ti sample increased slightly, it remained as low as approximately 10° even after storage in vacuum for 52 weeks. There was no significant difference in the protein-adsorption and apatite-formation abilities of the AH-treated Ti sample before and after storage. Further, the AH-treated Ti sample exhibited greater protein-adsorption and apatite-formation abilities compared with the untreated one; regardless of the samples stored in vacuum or not. Apatite formed only on the AH-treated Ti surface. Therefore, subjecting Ti dental implants to the AH treatment and storing them in vacuum should help prevent their surfaces from getting contaminated. Further, it is expected that AH-treated Ti dental implants controllably aged during a shelf storage will exhibit high stability and bone-bonding bioactivity. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1453-1460, 2017. © 2016 Wiley Periodicals, Inc.

  6. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  7. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    Directory of Open Access Journals (Sweden)

    Werner E.

    2010-06-01

    Full Text Available To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a shows the forged part and 1(b the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and

  8. Method to treat a product infested with microorganisms with ionizing radiation and heat

    International Nuclear Information System (INIS)

    Gruenewald, T.

    1977-01-01

    The method applies to the reduction of the number of germs in infected products by combined treatment of the microorganisms with ionizing radiation and raised temperatures. In this process, at least part of the energy lost in the irradiation unit (e.g. electron linear accelerator or X-ray unit), which is not converted into ionizing radiation is used to heat the product. The invention can be used in the field of food and animal food treatment, for the sterilisation of medical equipment, or for the pasteurisation of waste water and fertilizers. (VJ) [de

  9. Tribological Response of Heat Treated AISI 52100 Steels Against Steel and Ceramic Counterparts

    Directory of Open Access Journals (Sweden)

    Türedi E.

    2017-09-01

    Full Text Available AISI 52100 bearing steels are commonly used in applications requiring high hardness and abrasion resistance. The bearing steels are working under dynamic loads in service conditions and their toughness properties become important. In order to provide the desired mechanical properties, various heat treatments (austenizing, quenching and tempering are usually applied. In this study, AISI 52100 bearing steel samples were austenized at 900°C for ½ h and water quenched to room temperature. Then tempering was carried out at 795°C, 400°C and 200°C for ½ h. In order to investigate the effect of heat treatment conditions on wear behavior, dry friction tests were performed according to ASTM G99-05 Standard with a ‘ball-on-disk’ type tribometer. The samples were tested against steel and ceramic counterparts using the parameters of 100 m distance and 30 N load and 0.063 m/s rotational speed. After wear test, the surface characterization was carried out using microscopy. Wear loss values were calculated using a novel optical method on both flat and counterpart specimens.

  10. Safe corrosion inhibitor for treating cooling water on heat power engineering plants

    Science.gov (United States)

    Nikolaeva, L. A.; Khasanova, D. I.; Mukhutdinova, E. R.; Safin, D. Kh.; Sharifullin, I. G.

    2017-08-01

    Heat power engineering (HPE) consumes significant volumes of water. There are, therefore, problems associated with corrosion, biological fouling, salt deposits, and sludge formation on functional surfaces of heat power equipment. One of the effective ways to solve these problems is the use of inhibitory protection. The development of new Russian import-substituting environmentally friendly inhibitors is very relevant. This work describes experimental results on the OPC-800 inhibitor (TU 2415-092-00206 457-2013), which was produced at Karpov Chemical Plant and designed to remove mineral deposits, scale, and biological fouling from the surfaces of water-rotation node systems on HPE objects. This reagent is successfully used as an effective corrosion inhibitor in the water recycling systems of Tatarstan petrochemical enterprises. To save fresh make-up water, the circulating system is operated in a no-blow mode, which is characterized by high evaporation and salt content coefficients. It was experimentally found that corrosion rate upon treatment of recycled water with the OPC-800 inhibitor is 0.08-0.10 mm/year. HPE mainly uses inhibitors based on oxyethylidene diphosphonic (OEDPA) and nitrilotrimethylphosphonic (NTMPA) acids. The comparative characteristic of inhibition efficiency for OPC-800 and OEDF-Zn-U2 is given. The results obtained indicate that OPC-800 can be used as an inhibitor for treatment of cooling water in HPE plants. In this case, it is necessary to take into account the features of water rotation of a thermal power plant.

  11. Characterisation of electrodeposited and heat-treated Ni-Mo-P coatings

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Regis L.; Casciano, Paulo N.S.; Correia, Adriana N.; Lima-Neto, Pedro de, E-mail: pln@ufc.br [Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, Fortaleza, CE (Brazil)

    2012-07-01

    The electrodeposition, hardness and corrosion resistance properties of Ni-Mo-P coatings were investigated. Characterisations of the electrodeposited coatings were carried out using scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis techniques. Corrosion tests were performed at room temperature in 10-1 mol dm-3 NaCl solutions and by potentiodynamic linear polarisation. Amorphous Ni-Mo-P coatings were successfully obtained by electrodeposition using direct current. The coating composition showed to be dependent on the bath composition, current density and bath temperature. Both P and Mo contents contribute for the hardness properties of the Ni-Mo-P coatings and the absence of cracks is a requirement to produce electrodeposited Ni-Mo-P coatings with good hardness properties. The hardness values increase with heat-treatment temperature due to the precipitation of Ni, Ni{sub 3}P and NiMo phases during the heat treatment. The corrosion resistance of the electrodeposited Ni-Mo-P amorphous coatings increases with P content in the layer. Among the electrodeposited Ni-Mo-P amorphous coatings, Ni{sub 78}Mo{sub 10}P{sub 12} presented the best hardness and corrosion-resistance properties. The results showed that the addition of P is beneficial for the hardness and corrosion resistance properties of the Ni-Mo-based coatings. (author)

  12. Study of the distribution of alloying elements between the phases of a heat treated steel

    International Nuclear Information System (INIS)

    Lambert, N.; Greday, T.

    1977-01-01

    The behavior of some low-alloy steels during industrial heat treatments is systematically studied. Firstly, the influence of the chemical analysis of the steel, the shape and size of carbides on the kinetics of the dissolution of these carbides at high temperature is pointed out in the case of steels with a relatively simple chemical analysis. Secondly, the effect of tempering treatments on the mechanical properties and characteristic parameters of the microstructure is studied in the case of three low-alloy steels. Bainitic microstructure appears to be the less disturbed one after a tempering treatment. Against, martensitic microstructures undergo an important softening and the mechanical properties of the pearlite lie as a very low level whatever their heat treatment. Peculiar conditions of tempering promotes a fine precipitation and its combined secondary hardening. These conditions are related to both chemical analysis and initial microstructure of the steel. Besides, some chemical identifications were performed in the scanning electron microscope on alloyed carbides precipitated in the steel during very long time tempering treatments

  13. Residual stress measurements by X-ray and neutron diffractions in heat-treated SiCw/A2014 composites

    International Nuclear Information System (INIS)

    Ohnuki, Takahisa; Fujita, Motoo; Tomota, Yo; Ono, Masayoshi

    1998-01-01

    Residual stresses due to various heat treatments in a 22 volume percent SiC whisker/A2014 metal matrix composite (MMC) were measured by using X-ray and neutron diffractions. Micro residual stresses generated from the differences in thermal expansion coefficients of the constituents and macro residual stresses associated with different cooling rates in the outer and inner regions of an MMC specimen must be distinguished in X-ray stress measurements. The conventional sin 2 ψ method under an assumption of plane stress condition has been found not to be applicable to the present MMC, because interactions among whiskers in the X-ray penetrating area yields σ 33 where the x 3 -axis is normal with respect to specimen's surface. An average value of σ 33 can be measured by X-ray diffraction technique, but does not seem enough to evaluate micro residual stresses. It is found that neutron diffraction is the most powerful method to measure micro residual stresses in the constituents. Elastic residual strains obtained by neutron diffraction in solution treated or T6 heat treated samples show good agreements with predictions calculated by using Eshelby inclusion theory coupled with the Mori-Tanaka mean field concept, indicating that the influence of stress relaxation is negligible. In addition, internal stresses relaxations during holding at room temperature, slow cooling from solution treatment temperature, or subzero cooling are discussed. (author)

  14. Properties of an irradiated heat-treated Zr-2.5Nb pressure tube removed from the NPD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chow, C.K. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada); Coleman, C.E. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Koike, M.H. [Power Reactor and Nuclear Fuel Development Corp., O-Arai Engineering Centre, O-Arai (Japan); Causey, A.R.; Ells, C.E.; Hosbons, R.R.; Sagat, S.; Urbanic, V.F.; Rodgers, D.K

    1997-07-01

    Some pressure tubes in reactors moderated by heavy water have been made from heat-treated (HT) Zr-2.5Nb. One such tube was removed from the NPD nuclear reactor after 20 years of operation. An extensive program was carried out jointly by AECL and PNC to evaluate the condition and properties of this pressure tube. The investigations include irradiation creep, tensile, corrosion, delayed hydride cracking (DHC), fatigue, and fracture properties. Results show that: (I) the in-reactor elongation rate is much lower and the transverse strain rates are slightly larger than in cold-worked (CW) Zr-2.5Nb tubes; (2) the tensile properties, hydrogen pickup, threshold stress intensity factor for DHC initiation, DHC velocity, and fatigue crack growth rates were similar to those of the CW Zr-2.5Nb material; (3) the fracture toughness of this tube, as measured by curved compact toughness specimens and burst tests, is slightly higher than the CW tubes. The results were also compared with other heat-treated Zr-2.5Nb materials irradiated in the Fugen reactor. The tube was in excellent condition when removed from the reactor and would have been satisfactory for further service. (author)

  15. Molybdenum-UO2 cerment irradiation at 1145 K

    Science.gov (United States)

    Mcdonald, G.

    1971-01-01

    Two molybdenum-UO2 cermet fuel pins were fission heated in a helium-cooled loop at a temperature of 1145 K and to a total burnup of 5.3 % of the U-235. After irradiation the fuel pins were measured to check dimensional stability, punctured at the plenums to determine fission gas release, and examined metallographically to determine the effect of irradiation. Burnup was determined in several sections of the fuel pin. The results of the postirradiation examination indicated: (1) There was no visible change in the fuel pins on irradiation under the above conditions. (2) The maximum swelling of the fuel pins was less than 1%. (3) There was no migration of UO2 and no visible interaction between the molybdenum and the UO2. (4) Approximately 12% of the fission gas formed was released from the cermet cone into the gas plenum.

  16. On the mechanism of dispersion hardening in molybdenum-carbide alloy systems

    International Nuclear Information System (INIS)

    Shulepov, V.I.; Yudkovskij, S.I.; Batenina, O.I. et al.

    1975-01-01

    The effect of heat treatment of the forming alloys of the Mo-Ti-C and Mo-Ti-Zr-C systems (at the temperatures below the recrystallization temperature) on the structure, distribution of carbon and mechanical properties of the alloys is studied. It is shown that the dispersion-strengthened state of the molybdenum alloys may be obtained on the account of the deformation ageing effect, rather than through the use of the standard heat-treatment procedure (hardening plus ageing). On the basis of the experimental results a theoretical explanation of strengthening of the high-alloy molybdenum-titanum-carbon system is given

  17. Influence of macroscopic shear deformation on polygonization and recrystallization of molybdenum crystals

    International Nuclear Information System (INIS)

    Larikov, L.N.; Belyakova, M.N.; Maksimenko, E.A.; Mudruk, P.V.

    1984-01-01

    The effect of shear bands on polygonization and recrystallization is studied on molybdenum monocrystals deformed by compression. A sharp bend of the lattice is shown to be a structural condition necessary for arising the shear step. Internal stress relaxation strongly changes kinetics of softening processes in compressed molybdenum crystals: it slows down polygonization under low-temperature heating (below 700 deg C) and accelerates it under high-temperature heating (higher 1000 deg C). Under the effect of relaxation of internal streses recrystallization in the investigated crystals is similar to dynamical: recrystallized grains are distorted and they have a developed substructure

  18. Neutron scattering and models: molybdenum

    International Nuclear Information System (INIS)

    Smith, A.B.

    1999-01-01

    A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of le 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 r a rrow 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made

  19. Compressive strength measurements of hybrid dental composites treated with dry heat and light emitting diodes (LED post cure treatment

    Directory of Open Access Journals (Sweden)

    Jenny Krisnawaty

    2014-11-01

    Full Text Available Hybrid composites are mostly used on large cavities as restorative dental materials, whether it is used directly or indirectly. The mechanical properties of composite resin shall increase if it is treated with post cure treatment. The aim of this study is to evaluate compressive strength differences between dry heat and Light Emitting Diodes (LED treatment on the hybrid dental composite. A quasi-experimental was applied on this research with a total of 30 samples that were divided into two groups. Each sample was tested using LLOYD Universal Testing Machine with 1 mm/min speed to evaluate the compressive strength. The compressive strength results were marked when the sample was broken. The results of two groups were then analyzed using t-test statistical calculation. The results of this study show that post cure treatment on hybrid composite using LED light box (194.138 MPa was lower than dry heat treatment (227.339 MPa, which was also significantly different from statistical analysis. It can be concluded that compressive strength of LED light box was lower than dry heat post-cure treatment on the hybrid composite resin.

  20. Proteomic analysis of heat treated bitter gourd (Momordica charantia L. var. Hong Kong Green) using 2D-DIGE.

    Science.gov (United States)

    Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani

    2014-04-01

    This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. CVD molybdenum films of high infrared reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Carver, G. E.

    1979-01-01

    Molybdenum thin films of high infrared reflectance have been deposited by pyrolytic decomposition of molybdenum carbonyl (Mo(CO)/sub 6/), and by hydrogen reduction of molybdenum pentachloride (MoCl/sub 5/). Reflectance values within 0.7% of the reflectance of supersmooth bulk molybdenum have been attained by annealing films of lower reflectance in both reducing and non-reducing atmospheres. All depositions and anneals proceed at atmospheric pressure, facilitating a continuous, flow-through fabrication. These reflectors combine the high temperature stability of molybdenum thin films with the infrared reflectance of a material such as aluminum. Deposition from Mo(CO)/sub 6/ under oxidizing conditions, and subsequent anneal in a reducing atmosphere, results in films that combine high solar absorptance with low thermal emittance. If anti-reflected, black molybdenum films can serve as highly selective single layer photothermal converters. Structural, compositional, and crystallographic properties have been measured after both deposition and anneal.

  2. An investigation of the microstructures of heat-treated zircaloy-4

    International Nuclear Information System (INIS)

    Bangaru, N.V.

    1985-01-01

    A TEM/STEM investigation of the microstructure and microchemistry of commercial Zircaloy-4 samples subjected to three different final heat treatments in the laboratory has been conducted to understand the processing-microstructure-corrosion relationships in these alloys. Pronounced differences in the volume fraction, morphology, and chemistry of the intermetallic particles as well as in the α phase microstructure have been observed among the beta-quenched, as-received (stress-relieved) and alpha-annealed samples. The beta-quenched sample exhibits the most uniform microstructure consisting of acicular α phase with lath boundary Sn enrichment and fine intermetallic particle formation. The as-received sample has the most inhomogeneous microstructure made up of annealed and deformed α phase. The relevance of the observed microstructural features to the nodular corrosion susceptibility is discussed in the light of some existing models of modular corrosion. (orig.)

  3. Electrochemical reversibility of reticulated vitreous carbon electrodes heat treated at different carbonization temperatures

    Directory of Open Access Journals (Sweden)

    Emerson Sarmento Gonçalves

    2006-06-01

    Full Text Available Electrochemical response of ferri/ferrocyanide redox couple is discussed for a system that uses reticulated vitreous carbon (RVC three dimensional electrodes prepared at five different Heat Treatment Temperatures (HTT in the range of 700 °C to 1100 °C. Electrical resistivity, scanning electron microscopy and X ray Diffraction analyses were performed for all prepared samples. It was observed that the HTT increasing promotes an electrical conductivity increasing while the Bragg distance d002 decreases. The correlation between reversibility behavior of ferri/ferrocyanide redox couple and both surface morphology and chemical properties of the RVC electrodes demonstrated a strong dependence on the HTT used to prepare the RVC.

  4. Ge nanoclusters in PECVD-deposited glass after heat treating and electron irradiation

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten

    2007-01-01

    This paper reports the formation of Ge nanoclusters in silica glass thin films deposited by plasma-enhanced chemical vapor deposition (PECVD). We studied the samples by transmission electron microscopy (TEM) and Raman spectroscopy after annealing. TEM investigation shows that the Ge nanoclusters...... at two areaswere formed by different mechanisms. The Ge nanoclusters formed in a single row along the interface of a silicon substrate and the silica glass film by annealing during high-temperature heat treatment. Ge nanoclusters did not initially form in the bulk of the film but could be subsequently...... formed by the electron-beam irradiation. The interface between the silicon substrate and the silica glass film was investigated by Raman spectroscopy. The shift of the Raman peaks around 286.8 cm−1 and 495 cm−1 suggests that the interface is a Si1−xGex alloy film and that the composition x varies along...

  5. Dry sliding wear behavior of heat treated hybrid metal matrix composite using Taguchi techniques

    International Nuclear Information System (INIS)

    Kiran, T.S.; Prasanna Kumar, M.; Basavarajappa, S.; Viswanatha, B.M.

    2014-01-01

    Highlights: • ZA-27 alloy is used as matrix material and reinforced with SiC and Gr particles. • Heat treatment was carried out for all specimen. • Dry sliding wear test was done on pin-on-disc apparatus by Taguchi technique. • ZA-27/9SiC–3Gr showed superior wear resistance over the base alloy. • Ceramic mixed mechanical layer on contact surface of composite was formed. - Abstract: Dry sliding wear behavior of zinc based alloy and composite reinforced with SiCp (9 wt%) and Gr (3 wt%) fabricated by stir casting method was investigated. Heat treatment (HT) and aging of the specimen were carried out, followed by water quenching. Wear behavior was evaluated using pin on disc apparatus. Taguchi technique was used to estimate the parameters affecting the wear significantly. The effect of HT was that it reduced the microcracks, residual stresses and improved the distribution of microconstituents. The influence of various parameters like applied load, sliding speed and sliding distance on wear behavior was investigated by means and analysis of variance (ANOVA). Further, correlation between the parameters was determined by multiple linear regression equation for each response. It was observed that the applied load significantly influenced the wear volume loss (WVL), followed by sliding speed implying that increase in either applied load or sliding speed increases the WVL. Whereas for composites, sliding distance showed a negative influence on wear indicating that increase in sliding distance reduces WVL due to the presence of reinforcements. The wear mechanism of the worn out specimen was analyzed using scanning electron microscopy. The analysis shows that the formation and retention of ceramic mixed mechanical layer (CMML) plays a major role in the dry sliding wear resistance

  6. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    Science.gov (United States)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  7. Carbon, chromium and molybdenum contents

    International Nuclear Information System (INIS)

    Sinatora, A; Goldenstein, H.; Mei, P.R.; Albertin, E.; Fuoco, R.; Mariotto, C.L.

    1992-01-01

    This work describes solidification experiments on white cast iron, with 15 and 20% of chromium, 2.3, 3.0 and 3.6 % of carbon and 0.0, 1.5 and 2.5 % of molybdenum in test de samples with 30 mm diameter. Measurements were performed on the austenite and eutectic formation arrests, the number of the eutectic carbide particles relative to the total and the eutectic volumes, and the volume fraction of the primary austenite

  8. Development of heat treated Zr-2.5 Wt% Nb pressure tube and its microstructural characterization using electron microscopy techniques

    International Nuclear Information System (INIS)

    Saibaba, N.

    2010-01-01

    Two phase Zr-2.5 wt % Nb alloy is widely used for manufacture of pressure tubes for pressurized heavy water reactors (PHWRs). These tubes are used in cold worked and stress relieved (CWSRs) condition and are manufactured by cold drawing or pilgering routes. The microstructure of the CWSR tube is characterized with presence of discontinuous β phase stringers sandwiched between elongated α-phase. Pressure tube undergoes dimensional changes and micro structural deterioration under the reactor operating conditions of temperature, pressure and neutron flux. This limits the life of the component and the availability of the power reactors. There is renewed interest in increasing the life of the pressure tube by bringing about a change in the microstructure of Zr-2.5 Nb material using various thermo mechanical processes during its manufacturing. Heat treatment of this two-phase alloy has been understood to uniquely stabilize the microstructure, which prevents degradation, under in-reactor service condition. This paper illustrates various heat treatment cycles carried out at intermediate cold working stage. Heat treatment involves solutionization of the Zr-2.5 wt % Nb tube from different temperatures followed by two types of quenching process viz, gas quenching and water quenching. The OIM-TEM studies were carried out for characterization of final tube. The technique confirmed the presence of β-phase relatively enriched in Nb content. The resulting SEM microstructures after ageing treatment at different soaking temperatures and time have been presented. Mechanical properties of heat treated pressure tubes, both at room temperature and elevated temperature have been compared with conventional CWSR pressure tube used in PHWRs. (author)

  9. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk.

    Science.gov (United States)

    Khan, Imran Taj; Nadeem, Muhammad; Imran, Muhammad; Ayaz, Muhammad; Ajmal, Muhammad; Ellahi, Muhammad Yaqoob; Khalique, Anjum

    2017-08-24

    Antioxidant capacity of milk is largely due to vitamins A, E, carotenoids, zinc, selenium, superoxide dismutase, catalase, glutathione peroxidase and enzyme systems. Cow milk has antioxidant capacity while the antioxidant capacity of buffalo milk has been studied in a limited way. The information regarding the effect of pasteurization and boiling on antioxidant capacity of cow and buffalo milk is also scared. Cow and buffalo milk was exposed to two different heat treatments i.e. 65 °C for 30 min and boiling for 1 min. After heat treatments, milk samples were cooled down to 4 °C packaged in transparent 250 ml polyethylene PET bottles and stored at 4 °C for 6 days. Milk composition, total flavonoid content, total antioxidant capacity, reducing power, DPPH free radical scavenging activity, antioxidant activity in linoleic acid, vitamin C, A, E, selenium, Zinc, fatty acid profile, peroxide value and sensory characteristics were studied in raw, pasteurized and boiled cow and buffalo milk at 0, 3 and 6 days of storage period. Total antioxidant capacity (TAC) of raw, pasteurized and boiled milk for cow (42.1, 41.3 and 40.7%) and buffalo (58.4, 57.6 and 56.5%) samples was found, respectively. Reducing power (RP) of raw cow and buffalo milk was 6.74 and 13.7 while pasteurization and boiling did not showed significant effect on RP of both cow and buffalo milk. DPPH activity of raw, pasteurized and boiled milk for cow (24.3, 23.8 and 23.6%) and buffalo (31.8, 31.5 and 30.4%) samples was noted, respectively. Storage period up to 3 days was non-significant while DPPH assay after 6 days of storage period indicated significant decline in antioxidant activity of milk samples. Antioxidant activity in linoleic acid (AALA) of buffalo and cow milk were recorded 11.7 and 17.4%, respectively. Pasteurization and boiling did not showed any impact on antioxidant capacity of cow and buffalo milk. The Loss of vitamin C in pasteurization (40 and 42%) and boiling (82 and 61%) of

  10. Parametric optimisation of heat treated recycling aluminium (AA6061) by response surface methodology

    Science.gov (United States)

    Ahmad, A.; Lajis, M. A.; Yusuf, N. K.; Shamsudin, S.; Zhong, Z. W.

    2017-09-01

    Alternating typical primary aluminium production with recycling route should benefit various parties, including the environment since the need of high cost and massive energy consumption will be ruled out. At present, hot extrusion is preferred as the effective solid-state recycling process compared to the typical method of melting the swarf at high temperature. However, the ideal properties of extruded product can only be achieved through a controlled process used to alter the microstructure to impart properties which benefit the working life of a component, which also known as heat treatment process. To that extent, this work ought to investigate the effect of extrusion temperature and ageing time on the hardness of the recycled aluminium chips. By employing Analysis of Variance (ANOVA) for full factorial design with centre point, a total of 11 runs were carried out randomly. Three dissimilar extrusion temperatures were used to obtain gear-shape billet. Extruded billets were cut and ground before entering the treatment phase at three different ageing times. Ageing time was found as the influential factor to affect the material hardness, rather than the extrusion temperature. Sufficient ageing time allows the impurity atoms to interfere the dislocation phenomena and yield great hardness. Yet, the extrusion temperatures still act to assist the bonding activities via interparticle diffusion transport matter.

  11. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  12. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels

    International Nuclear Information System (INIS)

    Koutsoukis, T.; Redjaïmia, A.; Fourlaris, G.

    2013-01-01

    A microstructure–properties relationship study in two superaustenitic stainless steels (S31254 and S32654) was carried out, following exposure at elevated temperatures for various ageing times. Due to high temperature ageing, most stainless steel grades suffer the formation of various precipitates, directly affecting their properties. The full characterization of those precipitates and the correlation with the mechanical behavior of the steels is the primary aim of this study. Samples of the steel grades studied, were exposed to isothermal heat treatments within the temperature range of 650–950 °C, for ageing times varying between 0.5 h and 3000 h, followed by water quenching at room temperature. Microstructural examination indicated the formation of four different secondary phases, sigma phase (σ), chi phase (χ), Laves phase and β-Cr 2 N nitride, which were characterized by transmission electron microscopy (TEM) and electron diffraction. The results obtained permitted the construction of the time–temperature–precipitation (TTP) plots. In addition, tensile and Vickers hardness testing were utilized and the modulus of toughness was calculated. The kinetics of the formation of various precipitates with increasing temperature and aging duration was also observed. It was found that various precipitates had a significant effect on all mechanical properties studied.

  13. ANTIOXIDANT STATUS AND EXPRESSION OF HEAT SHOCK PROTEIN OF COBALT-TREATED PORCINE OVARIAN GRANULOSA CELLS

    Directory of Open Access Journals (Sweden)

    Marcela Capcarová

    2013-02-01

    Full Text Available The aim of this study was to determine the activity of superoxide dismutase (SOD, total antioxidant status (TAS and expression of heat shock protein 70 (Hsp70 of porcine ovarian granulosa cells cultured in vitro after cobalt (Co administrations. Ovarian granulosa cells were incubated with cobalt sulphate administrations as follows: group E1 (0.09 mg.ml-1, group E2 (0.13 mg.ml-1, group E3 (0.17 mg.ml-1, group E4 (0.33 mg.ml-1, group E5 (0.5 mg.ml-1 and the control group without any additions for 18 h. Co administration developed stress reaction and promoted accumulation of Hsp70 what resulted in increasing activity of SOD. TAS of granulosa cells increased with higher doses of Co whereas low doses had no effect on this parameter. Trace elements can adversely affect animal female reproductive system and its functions, through either direct or indirect effects on oxidative stress induction.

  14. Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch

    Directory of Open Access Journals (Sweden)

    Ornanong S. Kittipongpatana

    2015-01-01

    Full Text Available Native jackfruit seed starch (JFS contains 30% w/w type II resistant starch (RS2 and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC, temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2% was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16. FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in Tg and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged.

  15. Physical, chemical, microbiological and sensorial behaviour evolution of non cooked pressed cheese paste while in refrigerated storage, made with red chilli powder, treated by heat or ionization

    International Nuclear Information System (INIS)

    Iben El Hadj Mohamed, A.

    1998-01-01

    The evolution of different physical, chemical, microbiological and sensorial characteristics of a Tunisian manufactured cheese made of non cooked pressed cheese paste with red chilli powder treated by heat, was measured while in refrigerated storage and compared to the one treated by ionization (author)

  16. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); Redington, W. [Materials and Surface Science Institute, University of Limerick (Ireland)

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  17. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    CERN Document Server

    Mengucci, P; Auffray, E; Barucca, G; Cecchi, C; Chipaux, R; Cousson, A; Davì, F; Di Vara, N; Rinaldi, D; Santecchia, E

    2015-01-01

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples. On the contrary, the thermal treatment could induce the formation of coherent spherical particles (size 10 to 15 nm), not unifo...

  18. STATISTICAL APPROACH FOR MULTI CRITERIA OPTIMIZATION OF CUTTING PARAMETERS OF TURNING ON HEAT TREATED BERYLLIUM COPPER ALLOY

    Directory of Open Access Journals (Sweden)

    K. DEVAKI DEVI

    2017-08-01

    Full Text Available In machining operations, achieving desired performance features of the machined product, is really a challenging job. Because, these quality features are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects. This paper presents effective method and to determine optimal machining parameters in a turning operation on heat treated Beryllium copper alloy to minimize the surface roughness, cutting forces and work tool interface temperature along with the maximization of metal removal rate. The scope of this work is extended to Multi Objective Optimization. Response Surface Methodology is opted for preparing the design matrix, generating ANOVA, and optimization. A powerful model would be obtained with high accuracy to analyse the effect of each parameter on the output. The input parameters considered in this work are cutting speed, feed, depth of cut, work material (Annealed and Hardened and tool material (CBN and HSS.

  19. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    Hydrogen production from desugared molasses (DM) was investigated in both batch and continuous reactors using thermophilic mixed cultures enriched from digested manure by load shock (loading with DM concentration of 50.1 g-sugar/L) to suppress methanogens. H2 gas, free of methane, was produced......) and Thermoanaerobacterium thermosaccharolyticum with a relative abundance of 36%, 27%, and 10% of total microorganisms, respectively. This study shows that hydrogen production could be efficiently facilitated by using anaerobic granules as a carrier, where microbes from mixed culture enriched in the DM batch cultivation....... The enriched hydrogen producing mixed culture achieved from the 16.7 g-sugars/L DM batch cultivation was immobilized on heat treated anaerobic sludge granules in an up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor, operated at a hydraulic retention time (HRT) of 24 h fed with 16.7 g...

  20. Mechanical Properties Analysis of 4340 Steel Specimen Heat Treated in Oven and Quenching in Three Different Fluids

    Science.gov (United States)

    Fakir, Rachid; Barka, Noureddine; Brousseau, Jean

    2018-03-01

    This paper proposes a statistical approach to analyze the mechanical properties of a standard test specimen, of cylindrical geometry and in steel 4340, with a diameter of 6 mm, heat-treated and quenched in three different fluids. Samples were evaluated in standard tensile test to access their characteristic quantities: hardness, modulus of elasticity, yield strength, tensile strength and ultimate deformation. The proposed approach is gradually being built (a) by a presentation of the experimental device, (b) a presentation of the experimental plan and the results of the mechanical tests, (c) anova analysis of variance and a representation of the output responses using the RSM response surface method, and (d) an analysis of the results and discussion. The feasibility and effectiveness of the proposed approach leads to a precise and reliable model capable of predicting the variation of mechanical properties, depending on the tempering temperature, the tempering time and the cooling capacity of the quenching medium.

  1. Detection of gastrointestinal blood loss with 99mTc-labeled, heat-treated red blood cells

    International Nuclear Information System (INIS)

    Som, P.; Oster, Z.H.; Atkins, H.L.; Goldman, A.G.; Sacker, D.F.; Harold, W.H.; Fairchild, R.G.; Richards, P.; Brill, A.B.

    1981-01-01

    Studies in dogs showed that heat-treated 99mTc-labeled red blood cells (HT/RBC) afford a highly sensitive means of detecting gastrointetinal bleeding as low as 0.12 ml/min., which could not be seen with unheated 99mTc-RBC, 99mTc-sulfur colloid, or 99mTc-DTPA. In addition, as the right upper quadrant and epigastrium remained free of activity, only one fifth to one tenth of the dose of 99mTc was needed. The safety of HT/RBC in humans has been documented, and the experiments in dogs suggest that it may have advantages over other agents in detecting gastrointestinal bleeding

  2. Detection of gastrointestinal blood loss with /sup 99m/Tc-labeled, heat-treated red blood cells

    International Nuclear Information System (INIS)

    Som, P.; Oster, Z.H.; Atkins, H.L.; Goldman, A.G.; Sacker, D.F.; Harold, W.H.; Fairchild, R.G.; Richards, P.; Brill, A.B.

    1981-01-01

    Studies in dogs showed that heat-treated /sup 99m/Tc-labeled red blood cells (HT/RBC) afford a highly sensitive means of detecting gastrointestinal bleeding as low as 0.12 ml/min, which could not be seen with unheated /sup 99m/Tc-RBC, /sup 99m/Tc-sulfur colloid, or /sup 99m/Tc-DTPA. In addition, as the right upper quadrant and epigastrium remained free of activity, only one fifth to one tenth of the dose of /sup 99m/Tc was needed. The safety of HT/RBC in humans has been documented, and the experiments in dogs suggest that it may have advantages over other agents in detecting gastrointestinal bleeding

  3. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Mengucci, P., E-mail: p.mengucci@univpm.it [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); André, G. [Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif sur Yvette cedex (France); Auffray, E. [Department PH-CMX CERN, Route de Meyrin, 1211 Geneva 23 (Switzerland); Barucca, G. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Cecchi, C. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, 06123 Perugia (Italy); Chipaux, R. [CEA DSM/IRFU/SEDI, CE-Saclay, 91191 Gif sur Yvette cedex (France); Cousson, A. [Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif sur Yvette cedex (France); Davì, F. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Di Vara, N. [Department PH-CMX CERN, Route de Meyrin, 1211 Geneva 23 (Switzerland); Rinaldi, D.; Santecchia, E. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2015-06-11

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples. On the contrary, the thermal treatment could induce the formation of coherent spherical particles (size 10 to 15 nm), not uniformly distributed inside the sample, that strongly reduce the UTS and YM values, but it does not affect the optical response of the crystal. This latter result was attributed to the low value of the heating temperature (300 °C) that is not sufficiently high to induce annealing of the oxygen vacancies traps that are responsible of the deterioration of the scintillation properties of the LYSO:Ce crystals. This study was carried out in the framework of the Crystal Clear Collaboration (CCC)

  4. Comparative Studies on Microstructure, Mechanical and Pitting Corrosion of Post Weld Heat Treated IN718 Superalloy GTA and EB Welds

    Science.gov (United States)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    In the present study, an attempt has been made to weld Inconel 718 nickel-base superalloy (IN718 alloy) using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Both the weldments were subjected to post-weld heat treatment condition as follows -980°C / 20 min followed by direct aging condition (DA) as 720°C/8 h/FC followed by 620°C/8 h/AC. The GTA and EB welds of IN718 alloy were compared in two conditions as-received and 980STA conditions. Welds were characterized to observe mechanical properties, pitting corrosion resistance by correlating with observed microstructures. The rate of higher cooling ranges, the fusion zone of EBW exhibited discrete and relative finer lave phases whereas the higher niobium existed laves with coarser structure were observed in GTAW. The significant dissolution of laves were observed at 980STA of EBW. Due to these effects, the EBW of IN718 alloy showed the higher mechanical properties than GTAW. The electrochemical potentiostatic etch test was carried out in 3.5wt% sodium chloride (NaCl) solution to study the pitting corrosion behaviour of the welds. Results of the present investigation established that mechanical properties and pitting corrosion behaviour are significantly better in post weld heat treated condition. The comparative studies showed that the better combination of mechanical properties and pitting corrosion resistance were obtained in 980STA condition of EBW than GTAW.

  5. On the abrasion of heat-treated 2.8C21Cr1Mo white cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rubaie, Kassim S.; Preti, Orlando [Centro Universitario SOCIESC, Joinville (Brazil). Engenharia Mecanica; Pohl, Michael [Bochum Univ. (Germany). Inst. fuer Werkstoffe

    2016-09-15

    The abrasion behaviour of heat-treated 2.8C21Cr1Mo cast iron was studied. The specimens were destabilised at two temperatures, 980 and 1050 C, for 4 h, air hardened, and then tempered at five temperatures, 220, 320, 400, 500, and 620 C, for 2 h followed by air cooling. Using a pin-on-plate abrasion apparatus, the specimens were abraded on four types of bonded abrasives (silicon carbide, corundum, flint, and glass). The effect of work hardening on the abrasion resistance was investigated. It was found that the increase in alloy hardness produced by heat treatment had little effect on the abrasion resistance against silicon carbide or corundum; the inverse was true against flint or glass. The as-hardened structure containing 40% retained austenite gave the best abrasion resistance, whereas the hardened and tempered at 620 C showed the worst. Both bulk hardness and matrix hardness before wear correlated poorly with the abrasion resistance. Therefore, a general model ''equivalent hardness'' was developed, in which the hardness of the abraded matrix was considered. With this model, the abrasion behaviour can be clearly analysed.

  6. Molybdenum: the element and aqueous solution chemistry

    International Nuclear Information System (INIS)

    Sykes, A.G.

    1987-01-01

    This chapter on the chemistry of the coordination compounds of molybdenum concentrates on the element itself, its recovery from ores and its use in the manufacture of steels. Most of the chapter is devoted to the aqueous solution chemistry of molybdenum in oxidation states II, III and IV. (UK)

  7. Investigation of pressing of molybdenum powder compacts

    International Nuclear Information System (INIS)

    Mymrin, S.A.; Kuznetsov, V.Eh.; Yampol'skij, M.L.; Leonov, S.A.; Mikhridinov, R.M.; Korzukhin, V.A.

    1990-01-01

    Results of an experimental investigation into pressing of compacts of MCh type molybdenum powders using the industrial equipment are presented. To measure the density of powder molybdenum billets a radioisotopic density meter with cesium-137 is used as radioactive gamma radiation source. The dependence of the produced billet density on the specific compacting pressure at different values of the powder bulk density is ascertained

  8. Extraction of molybdenum VI by alpha benzoinoxime

    International Nuclear Information System (INIS)

    Achache, M.; Meklati, M.

    1990-06-01

    The concentration of molybdenum, was studied using alpha benzoinoxime dissolved in chloroform. Several acids and salt at different levels of concentration were investigated as well as other parameters such as (mixing time, extractant to metal ratio, temperature etc.) The molybdenum stippling was also studied in alkaline medium with the subsequent recovery of the extractant and solvent

  9. Molybdenum sealing glass-ceramic composition

    International Nuclear Information System (INIS)

    Eagan, R.J.

    1976-01-01

    A glass-ceramic composition is described having low hydrogen and helium permeability properties, along with high fracture strength, and a thermal coefficient of expansion similar to that of molybdenum. The composition is adaptable for hermetically sealing to molybdenum at temperatures between 900 and about 950 0 C to form a hermetically sealed insulator body

  10. Materials for Molybdenum 99 purification

    International Nuclear Information System (INIS)

    Wilkinson, M. Victoria; Mondino, Angel V.; Manzini, Alberto C.

    2003-01-01

    The National Atomic Energy Commission (CNEA) produces fission Mo 99, an isotope of wide use in nuclear medicine. In order to simplify the current Mo 99 production process, to shorten its duration and reduce impurities in the final product, alternative methods for purification steps were looked for. In this work a variety of new materials for the purification columns were designed, all of them with carbon. These materials were studied and a material which contribute with the best results for molybdenum retention, was selected. The preparation procedure and the working conditions were determined. (author)

  11. Molybdenum Oxides - From Fundamentals to Functionality.

    Science.gov (United States)

    de Castro, Isabela Alves; Datta, Robi Shankar; Ou, Jian Zhen; Castellanos-Gomez, Andres; Sriram, Sharath; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-10-01

    The properties and applications of molybdenum oxides are reviewed in depth. Molybdenum is found in various oxide stoichiometries, which have been employed for different high-value research and commercial applications. The great chemical and physical characteristics of molybdenum oxides make them versatile and highly tunable for incorporation in optical, electronic, catalytic, bio, and energy systems. Variations in the oxidation states allow manipulation of the crystal structure, morphology, oxygen vacancies, and dopants, to control and engineer electronic states. Despite this overwhelming functionality and potential, a definitive resource on molybdenum oxide is still unavailable. The aim here is to provide such a resource, while presenting an insightful outlook into future prospective applications for molybdenum oxides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  13. Thermal cycling behaviour and thermal stability of uranium-molybdenum alloys of low molybdenum content

    International Nuclear Information System (INIS)

    Decours, J.; Fabrique, B.; Peault, O.

    1963-01-01

    We have studied the behaviour during thermal cycling of as-cast U-Mo alloys whose molybdenum content varies from 0.5 to 3 per cent; results are given concerning grain stability during extended heat treatments and the effect of treatments combining protracted heating with thermal cycling. The thermal cycling treatments were carried out at 550, 575, 600 and 625 deg C for 1000 cycles; the protracted heating experiments were done at 550, 575, 600 and 625 deg C for 2000 hours (4000 hrs at 625 deg C). The 0.5 per cent alloy resists much better to the thermal cycling than does the non-alloyed uranium. This resistance is, however, much lower than that of alloys containing over l per cent, even at 550 deg C it improves after a heat treatment for grain-refining. Alloys of over 1.1 per cent have a very good resistance to a cycling treatment even at 625 deg C, and this behaviour improves with increasing concentrations up to 3 per cent. An increase in the temperature up to the γ-phase has few disadvantages provided that it is followed by rapid cooling (50 to 100 deg C/min). The α grain is fine, the γ-phase is of the modular form, and the behaviour during a thermal cycling treatment is satisfactory. If this cooling is slow (15 deg /hr) the α-grain is coarse and cycling treatment behaviour is identical to that of the 0.5 per cent alloy. The protracted heat treatments showed that the α-grain exhibits satisfactory stability after 2000 hours at 575, 600 and 625 deg C, and after 4000 hours at 625 deg C. A heat cycling treatment carried out after these tests affects only very little the behaviour of these alloys during cycling. (authors) [fr

  14. Vapor deposition of molybdenum oxide using bis(ethylbenzene) molybdenum and water

    International Nuclear Information System (INIS)

    Drake, Tasha L.; Stair, Peter C.

    2016-01-01

    Three molybdenum precursors—bis(acetylacetonate) dioxomolybdenum, molybdenum isopropoxide, and bis(ethylbenzene) molybdenum—were tested for molybdenum oxide vapor deposition. Quartz crystal microbalance studies were performed to monitor growth. Molybdenum isopropoxide and bis(ethylbenzene) molybdenum achieved linear growth rates 0.01 and 0.08 Å/cycle, respectively, using atomic layer deposition techniques. Negligible MoO_x growth was observed on alumina powder using molybdenum isopropoxide, as determined by inductively coupled plasma optical emission spectroscopy. Bis(ethylbenzene) molybdenum achieved loadings of 0.5, 1.1, and 1.9 Mo/nm"2 on alumina powder after one, two, and five cycles, respectively, using atomic layer deposition techniques. The growth window for bis(ethylbenzene) molybdenum is 135–150 °C. An alternative pulsing strategy was also developed for bis(ethylbenzene) molybdenum that results in higher growth rates in less time compared to atomic layer deposition techniques. The outlined process serves as a methodology for depositing molybdenum oxide for catalytic applications. All as-deposited materials undergo further calcination prior to characterization and testing.

  15. Amplitude dependent damping in single crystalline high purity molybdenum

    International Nuclear Information System (INIS)

    Zelada-Lambri, G.I; Lambri, O.A; Garcia, J.A; Lomer, J.N

    2004-01-01

    Amplitude dependent damping measurements were performed on high purity single crystalline molybdenum at several different constant temperatures between room temperature and 1273K. The employed samples were single crystals with the orientation, having a residual resistivity ratio of about 8000. Previously to the amplitude dependent damping tests, the samples were subjected to different thermomechanical histories. Amplitude dependent damping effects appear only during the first heating run in temperature where the samples have the thermomechanical state of the deformation process at room temperature. In the subsequent run-ups in temperature, i.e, after subsequent annealings, amplitude dependent damping effects were not detected (au)

  16. Chalcogenhalide cluster rhenium- and molybdenum complexes

    International Nuclear Information System (INIS)

    Fedin, V.P.; Gubin, S.P.; Mishchenko, A.V.; Fedorov, V.E.

    1984-01-01

    The interaction of rhenium- and molybdenum chalcogenhalides with n-donor ligands (L) is studied. At heating Re 3 X 2 Hal 5 complexes up to 100 deg in DMSO in the L presence obtained are the complexes of the 1-6 composition Re 3 X 2 Hal 5 -x Lx DMSO (X=Se, Hal=Cl, L=Et 3 N(1); X=Se, Hal=Cl, L=Bipy(2); X=Se, Hal=Br, L=Et 3 N(3); X=Se, Hal=Br, L=Bipy(4); X=Te, Hal=Br, L=Et 3 N(5); X=Te, Hal=Br, L=(Me 2 NCH 2 ) 2 (6). In the course of boiling of Mo 3 S 7 Hal 4 with PPh 3 in MeCN the Mo 3 S 7 Hal 4 2PPh 3 complexes (Hal=Cl(7); Br(8)) are obtained. For 1 through 8 complexes the chemical analysis data and IR spectra are given. For 4 and 8 complexes the molecular mass is measured. A possible method of obtaining molecular trinuclear clusters from polymer clusters is discussed

  17. Influence of heat treated microstructures on the dynamic deformation characteristics of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Seo, Yong Seok; Lee, Yong Shin; Woo, Sung Choong; Kim, Tae Won

    2015-01-01

    We investigated the influence of heat treated microstructures, namely, equiaxed, bimodal and lamella types of Ti-6Al-4V alloy on the dynamic deformation characteristics. Four different heat treatment conditions were employed for the development of the microstructures. Static tensile and compressive deformation tests were preliminarily performed with hydraulic test equipment. Dynamic deformation tests at a high level of strain rate, 2700 s"-"1 ∼ 6400 s"-"1, together with high velocity impact tests were, respectively, conducted on the specimens through a compressive Split Hopkinson pressure bar (SHPB) and a high pressure gas gun system. The dependence of flow stress on the strain rate associated with the corresponding microstructure was examined. The microstructural factors on the dynamic fracture characteristics were analyzed by scanning electron microscopy. The static compressive tests showed that the flow stress was greatest in the lamella microstructure and decreased in the order of lamella, bimodal and equiaxed microstructures, whereas the ductility was largest in the bimodal microstructure and smallest in the lamellar microstructure. In dynamic compressive tests, a similar dependency of the flow stress on microstructures was observed: highest in the lamellar microstructure and lowest in the equiaxed microstructure. The ductility, such as strain at maximum stress or at failure, was highest in the equiaxed microstructure and lowest in the lamellar structure. In addition, the ductility for individual microstructure decreased as the strain rate increased. Every microstructure exhibited ductile fracture surfaces, and it seems that a large shear crack on the lateral surface in the specimen was the main factor inducing the final failure. The result of high velocity impact test exhibited that the resistance to fracture of equiaxed microstructure with superior dynamic toughness was much higher than that of lamella microstructure with inferior dynamic toughness. The

  18. Influence of heat treated microstructures on the dynamic deformation characteristics of Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yong Seok; Lee, Yong Shin [Chungnam National University, Daejeon (Korea, Republic of); Woo, Sung Choong; Kim, Tae Won [Hanyang University, Seoul (Korea, Republic of)

    2015-11-15

    We investigated the influence of heat treated microstructures, namely, equiaxed, bimodal and lamella types of Ti-6Al-4V alloy on the dynamic deformation characteristics. Four different heat treatment conditions were employed for the development of the microstructures. Static tensile and compressive deformation tests were preliminarily performed with hydraulic test equipment. Dynamic deformation tests at a high level of strain rate, 2700 s{sup -1} ∼ 6400 s{sup -1}, together with high velocity impact tests were, respectively, conducted on the specimens through a compressive Split Hopkinson pressure bar (SHPB) and a high pressure gas gun system. The dependence of flow stress on the strain rate associated with the corresponding microstructure was examined. The microstructural factors on the dynamic fracture characteristics were analyzed by scanning electron microscopy. The static compressive tests showed that the flow stress was greatest in the lamella microstructure and decreased in the order of lamella, bimodal and equiaxed microstructures, whereas the ductility was largest in the bimodal microstructure and smallest in the lamellar microstructure. In dynamic compressive tests, a similar dependency of the flow stress on microstructures was observed: highest in the lamellar microstructure and lowest in the equiaxed microstructure. The ductility, such as strain at maximum stress or at failure, was highest in the equiaxed microstructure and lowest in the lamellar structure. In addition, the ductility for individual microstructure decreased as the strain rate increased. Every microstructure exhibited ductile fracture surfaces, and it seems that a large shear crack on the lateral surface in the specimen was the main factor inducing the final failure. The result of high velocity impact test exhibited that the resistance to fracture of equiaxed microstructure with superior dynamic toughness was much higher than that of lamella microstructure with inferior dynamic toughness

  19. Vickers Microhardness and Hyperfine Magnetic Field Variations of Heat Treated Amorphous Fe{sub 78}Si{sub 9}B{sub 13} Alloy Ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Cabral-Prieto, A., E-mail: acpr@nuclear.inin.mx [Instituto Nacional de Investigaciones Nucleares, Department of Chemistry (Mexico); Garcia-Santibanez, F.; Lopez, A.; Lopez-Castanares, R.; Olea Cardoso, O. [Universidad Autonoma del Estado de Mexico, El Cerrillo Piedras Blancas, Facultad de Ciencias (Mexico)

    2005-02-15

    Amorphous Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were heat treated between 296 and 763 K, using heating rates between 1 and 4.5 K/min. Whereas one ribbon partially crystallized at T{sub x} = 722 K, the other one partially crystallized at T{sub x} = 763 K. The partially crystallized ribbon at 722 K, heat treated using a triangular form for the heating and cooling rates, was substantially less fragile than the partially crystallized at 763 K where a tooth saw form for the heating and cooling rates was used. Vickers microhardness and hyperfine magnetic field values behaved almost concomitantly between 296 and 673 K. The Moessbauer spectral line widths of the heat-treated ribbons decreased continuously from 296 to 500 K, suggesting stress relief in this temperature range where the Vickers microhardness did not increase. At 523 K the line width decreased further but the microhardness increased substantially. After 523 K the line width behave in an oscillating form as well as the microhardness, indicating other structural changes in addition to the stress relief. Finally, positron lifetime data showed that both inner part and surface of Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were affected distinctly. Variations on the surface may be the cause of some of the high Vickers microhardness values measured in the amorphous state.

  20. Promotion of Pt-Ru/C catalysts driven by heat treated induced surface segregation for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Wei Yuchen; Liu Chenwei; Chang Weijung; Wang Kuanwen

    2011-01-01

    Research highlights: → Thermal treatments on the Pt-Ru/C induce different extents of surface segregation. → O 2 treatment results in obvious Ru segregation and formation of RuO 2 . → Catalysts treated in H 2 have the excellent CO de-poisoning ability. → N 2 treatment suppresses the surface Pt depletion and hence promotes the MOR. - Abstract: Carbon supported Pt-Ru/C (1:1) alloy catalysts supplied by E-TEK are widely used for fuel cell research. Heat treatments in various atmospheres are conducted for the promotion of the methanol oxidation reaction (MOR) and the investigation of the structure-activity relationship (SAR) of the catalysts. The alloy structures, surface compositions, surface species, and electro-catalytic activities of the alloy catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV), respectively. The as-received Pt-Ru/C catalysts have a Ru rich in the inner core and Pt rich on the outer shell structure. Thermal treatments on the catalysts induce Ru surface segregation in different extents and thereby lead to their alteration of the alloying degrees. O 2 treatment results in obvious Ru segregation and formation of RuO 2 . Catalysts treated in H 2 have the highest I f /I b value in the CV scans among all samples, indicating the catalysts have the excellent CO de-poisoning ability as evidenced by anodic CO stripping experiments. N 2 treatment may serve as an adjustment process for the surface composition and structure of the catalysts, which can suppress the surface Pt depletion (∼60% Pt on the surface), make the components stable and hence promote the MOR significantly.

  1. Promotion of Pt-Ru/C catalysts driven by heat treated induced surface segregation for methanol oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yuchen; Liu Chenwei; Chang Weijung [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wang Kuanwen, E-mail: kuanwen.wang@gmail.com [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China)

    2011-01-12

    Research highlights: > Thermal treatments on the Pt-Ru/C induce different extents of surface segregation. > O{sub 2} treatment results in obvious Ru segregation and formation of RuO{sub 2}. > Catalysts treated in H{sub 2} have the excellent CO de-poisoning ability. > N{sub 2} treatment suppresses the surface Pt depletion and hence promotes the MOR. - Abstract: Carbon supported Pt-Ru/C (1:1) alloy catalysts supplied by E-TEK are widely used for fuel cell research. Heat treatments in various atmospheres are conducted for the promotion of the methanol oxidation reaction (MOR) and the investigation of the structure-activity relationship (SAR) of the catalysts. The alloy structures, surface compositions, surface species, and electro-catalytic activities of the alloy catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV), respectively. The as-received Pt-Ru/C catalysts have a Ru rich in the inner core and Pt rich on the outer shell structure. Thermal treatments on the catalysts induce Ru surface segregation in different extents and thereby lead to their alteration of the alloying degrees. O{sub 2} treatment results in obvious Ru segregation and formation of RuO{sub 2}. Catalysts treated in H{sub 2} have the highest I{sub f}/I{sub b} value in the CV scans among all samples, indicating the catalysts have the excellent CO de-poisoning ability as evidenced by anodic CO stripping experiments. N{sub 2} treatment may serve as an adjustment process for the surface composition and structure of the catalysts, which can suppress the surface Pt depletion ({approx}60% Pt on the surface), make the components stable and hence promote the MOR significantly.

  2. molybdenum

    African Journals Online (AJOL)

    A [13]). However, the larger size leads to an enhanced Si-C bond length (1.868 A [13]) relative to that of the C-C bond (1.527 Á [13]). This leads to a net cancellation of effects. Consequently the data suggest that the SiMe, and 'Bu appear of similar size when viewed from the centroid of the substituted cyclopentadienyl ligand ...

  3. Effect of an intermediate tungsten layer on thermal properties of TiC coatings ion plated onto molybdenum

    International Nuclear Information System (INIS)

    Fukutomi, M.; Fujitsuka, M.; Shikama, T.; Okada, M.

    1985-01-01

    Among the various low-Z coating-substrate systems proposed for fusion reactor first-wall applications, molybdenum coated with titanium carbide is considered very promising since it has a good capability of receiving heat from the plasma. The thermal stabilities of TiC layers ion plated onto the molybdenum substrate are discussed with particular reference to the interfacial reaction between the TiC coating and molybdenum. The deposition of an intermediate tungsten layer was found to be very effective in suppressing the formation of reaction layers, resulting in a marked improvement in thermal stabilities of TiC--Mo systems. Thermal shock test using a pulsed electron beam showed that the TiC coatings remained adherent to the molybdenum substrates during energy depositions high enough to melt the substrates within the area of beam deposition. The melt area of the TiC coatings apparently decreased when a tungsten intermediate layer was applied

  4. Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K

    Science.gov (United States)

    Ueki, Kosuke; Ueda, Kyosuke; Nakai, Masaaki; Nakano, Takayoshi; Narushima, Takayuki

    2018-06-01

    Microstructural changes were observed during the plastic deformation of ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy heat-treated at 873 K (600 °C) for 14.4 ks, and analyzed by electron backscatter diffraction and in situ X-ray diffraction techniques. The obtained results revealed that the area fraction of the ɛ-phase ( f ɛ ) in the as-received alloy was higher than that in the heat-treated alloy in the low-to-middle strain region (≤ 50 pct), whereas the f ɛ of the heat-treated alloy was higher than that of the as-received alloy at the fracture point. During plastic deformation, the ɛ-phase was preferentially formed at the twin boundaries of the heat-treated alloy rather than at the grain boundaries. According to the transmission electron microscopy observations, the thin ɛ-phase layer formed due to the alloy heat treatment acted as the origin of deformation twinning, which decreased the stress concentration at the grain boundaries. The results of anodic polarization testing showed that neither the heat treatment at 873 K (600 °C) nor plastic deformation affected the alloy corrosion properties. To the best of our knowledge, this is the first study proving that the formation of a thin ɛ-phase layer during the low-temperature heat treatment of the studied alloy represents an effective method for the enhancement of the alloy ductility without sacrificing its strength and corrosion properties.

  5. Microstructural Changes During Plastic Deformation and Corrosion Properties of Biomedical Co-20Cr-15W-10Ni Alloy Heat-Treated at 873 K

    Science.gov (United States)

    Ueki, Kosuke; Ueda, Kyosuke; Nakai, Masaaki; Nakano, Takayoshi; Narushima, Takayuki

    2018-04-01

    Microstructural changes were observed during the plastic deformation of ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy heat-treated at 873 K (600 °C) for 14.4 ks, and analyzed by electron backscatter diffraction and in situ X-ray diffraction techniques. The obtained results revealed that the area fraction of the ɛ-phase (f ɛ ) in the as-received alloy was higher than that in the heat-treated alloy in the low-to-middle strain region (≤ 50 pct), whereas the f ɛ of the heat-treated alloy was higher than that of the as-received alloy at the fracture point. During plastic deformation, the ɛ-phase was preferentially formed at the twin boundaries of the heat-treated alloy rather than at the grain boundaries. According to the transmission electron microscopy observations, the thin ɛ-phase layer formed due to the alloy heat treatment acted as the origin of deformation twinning, which decreased the stress concentration at the grain boundaries. The results of anodic polarization testing showed that neither the heat treatment at 873 K (600 °C) nor plastic deformation affected the alloy corrosion properties. To the best of our knowledge, this is the first study proving that the formation of a thin ɛ-phase layer during the low-temperature heat treatment of the studied alloy represents an effective method for the enhancement of the alloy ductility without sacrificing its strength and corrosion properties.

  6. Effect of Morphological Differences on the Cold Formability of an Isothermally Heat-Treated Advanced High-Strength Steel

    Science.gov (United States)

    Weißensteiner, Irmgard; Suppan, Clemens; Hebesberger, Thomas; Winkelhofer, Florian; Clemens, Helmut; Maier-Kiener, Verena

    2018-04-01

    Steel sheets of Fe-0.2C-2Mn-0.2Si-0.03Ti-0.003B (m%) for the automotive industry were isothermally heat-treated, comprising austenitizing and subsequent isothermal annealing at temperatures between 300°C and 500°C. As a consequence, microstructures ranging from granular bainite over lower bainite to auto-tempered and untempered martensite were obtained. In tensile, hole expansion and bending tests, the performances in different forming conditions were compared and the changes of microstructure and texture were studied by complementary electron backscatter diffraction (EBSD) analyses. Samples with granular bainitic microstructures exhibited high total elongations but lower hole expansion ratios; in subsequent EBSD and texture analyses, evidence for inhomogeneous deformation was found. In contrast, the lath-like bainitic/martensitic microstructure showed higher strength and lower elongation to fracture. This results in a reduced bendability, but also in a high tolerance against damage induced by the shearing of edges, and, thus, allows homogeneous deformation to higher strains in the hole expansion test.

  7. Modeling the recovery of heat-treated Bacillus licheniformis Ad978 and Bacillus weihenstephanensis KBAB4 spores at suboptimal temperature and pH using growth limits.

    Science.gov (United States)

    Trunet, C; Mtimet, N; Mathot, A-G; Postollec, F; Leguerinel, I; Sohier, D; Couvert, O; Carlin, F; Coroller, L

    2015-01-01

    The apparent heat resistance of spores of Bacillus weihenstephanensis and Bacillus licheniformis was measured and expressed as the time to first decimal reduction (δ value) at a given recovery temperature and pH. Spores of B. weihenstephanensis were produced at 30°C and 12°C, and spores of B. licheniformis were produced at 45°C and 20°C. B. weihenstephanensis spores were then heat treated at 85°C, 90°C, and 95°C, and B. licheniformis spores were heat treated at 95°C, 100°C, and 105°C. Heat-treated spores were grown on nutrient agar at a range of temperatures (4°C to 40°C for B. weihenstephanensis and 15°C to 60°C for B. licheniformis) or a range of pHs (between pH 4.5 and pH 9.5 for both strains). The recovery temperature had a slight effect on the apparent heat resistance, except very near recovery boundaries. In contrast, a decrease in the recovery pH had a progressive impact on apparent heat resistance. A model describing the heat resistance and the ability to recover according to the sporulation temperature, temperature of treatment, and recovery temperature and pH was proposed. This model derived from secondary mathematical models for growth prediction. Previously published cardinal temperature and pH values were used as input parameters. The fitting of the model with apparent heat resistance data obtained for a wide range of spore treatment and recovery conditions was highly satisfactory. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Manufacture of good-weldable low oxygen molybdenum by powder metallurgy

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Akiyama, Takashi; Yamafuchi, Yasuo.

    1984-01-01

    In general most of commercial molybdenum is produced by the powder metallurgy method and is utilized as a superior heat-resisting material in many fields. Moreover, molybdenum is expected to be used as the first-wall components of JT-60 (JAERI Tokamak-60). However, one of major problems on molybdenum, particularly on powder metallurgy molybdenum, is that any sound welded joint is hard to be obtainable. In many cases weld pores are formed on welding and, therefore, ductility of the welded joint is severely degraded. The object of the present work is to get a sound welded joint without any weld pores by reducing impurity levels in the material. The materials were produced by modifying one or several parts in the ordinary manufacturing process of powder metallurgy molybdenum. Oxygen, nitrogen, carbon and other principal metallic impurities were chemically analysed. The above materials were then subjected to electron-beam-welding by using a melt-run technique, and the soundness of the welded joints was examined by optical microscopy. (author)

  9. High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution

    KAUST Repository

    Lu, Ang-Yu

    2016-08-31

    The remote hydrogen plasma is able to create abundant S-vacancies on amorphous molybdenum sulfide (a-MoSx) as active sites for hydrogen evolution. The results demonstrate that the plasma-treated a-MoSx exhibits superior performance and higher stability than Pt in a proton exchange membrane based electrolyzers measurement as a proof-of-concept of industrial application.

  10. Recovery of molybdenum in froth flotation

    International Nuclear Information System (INIS)

    Parlman, R.M.; Bresson, C.R.

    1981-01-01

    Beta-mercaptoethanol has been found to be an effective suppressant for such minerals as copper, iron and lead in a molybdenum sulfide ore froth flotation operation. The recovery process and a suppressant utilizing said compound are claimed

  11. Large-Batch Reduction of Molybdenum Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kiggans, Jr, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menchhofer, Paul A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Unconverted, isotopically-enriched molybdenum metal must be recovered from the spent radiopharmaceutical solution used in NorthStar’s Technetium-99m generator and reused. The recycle process begins by recovering the metal from the aqueous potassium molybdate (K2MoO4) solutions as molybdenum trioxide (MoO3) employing a process developed at Argonne National Laboratory. The MoO3 powder is subsequently reduced to molybdenum metal powder which can be blended with new powder and further processed into a flowable form to be used to produce target disks for irradiation. The molybdenum oxide reduction process has been examined and scaled to produce kilogram quantities of metal powder suitable for processing into a useable form employing spray drying or similar technique and ultimately used for target fabrication.

  12. Development and characterization of high collapse boron alloys heat treated pipes for oil wells; Tubos de aco TiB para aplicacao em revestimento de pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Fabio A.; Silva, Ronaldo; Chad, Luis [Tenaris Confab, Pindamonhangaba SP (Brazil); Fritz, Marcelo C. [Tenaris Confab, Pindamonhangaba SP (Brazil). Dept. de Engenharia do Produto

    2008-07-01

    The utilization of OCTG (Oil Country Tubular Goods) pipes will increase with the discovery of new oil wells in ultra deep waters. This study aims to evaluate the mechanical and microstructural performance of welded and heat treated pipes through quenching and tempering using a steel project based in titanium/boron for casing pipes. The objective of this development is to present a set of techniques used during the manufacturing of heated treated ERW pipes boron allowing, discussing mechanical and metallurgical aspects of the steel project, coil conformation, heat treatment and test procedures. The results are within the limits set by the API 5CT standard. It was found that the pipes obtained good geometry and uniformity of mechanical properties, showing that this product can be applied safely and reliability as wells' casing. (author)

  13. Molybdenum solubility in aluminium nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Heres, X.; Sans, D.; Bertrand, M.; Eysseric, C. [CEA, Centre de Marcoule, Nuclear Energy Division, DRCP, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Brackx, E.; Domenger, R.; Excoffier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, DTEC, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Valery, J.F. [AREVA-NC, DOR/RDP, Paris - La Defense (France)

    2016-07-01

    For over 60 years, research reactors (RR or RTR for research testing reactors) have been used as neutron sources for research, radioisotope production ({sup 99}Mo/{sup 99m}Tc), nuclear medicine, materials characterization, etc... Currently, over 240 of these reactors are in operation in 56 countries. They are simpler than power reactors and operate at lower temperature (cooled to below 100 C. degrees). The fuel assemblies are typically plates or cylinders of uranium alloy and aluminium (U-Al) coated with pure aluminium. These fuels can be processed in AREVA La Hague plant after batch dissolution in concentrated nitric acid and mixing with UOX fuel streams. The aim of this study is to accurately measure the solubility of molybdenum in nitric acid solution containing high concentrations of aluminium. The higher the molybdenum solubility is, the more flexible reprocessing operations are, especially when the spent fuels contain high amounts of molybdenum. To be most representative of the dissolution process, uranium-molybdenum alloy and molybdenum metal powder were dissolved in solutions of aluminium nitrate at the nominal dissolution temperature. The experiments showed complete dissolution of metallic elements after 30 minutes long stirring, even if molybdenum metal was added in excess. After an induction period, a slow precipitation of molybdic acid occurs for about 15 hours. The data obtained show the molybdenum solubility decreases with increasing aluminium concentration. The solubility law follows an exponential relation around 40 g/L of aluminium with a high determination coefficient. Molybdenum solubility is not impacted by the presence of gadolinium, or by an increasing concentration of uranium. (authors)

  14. The structure and function of supported molybdenum nitride and molybdenum carbide hydrotreating catalysts

    Science.gov (United States)

    Dolce, Gregory Martin

    1997-11-01

    A series of gamma-Alsb2Osb3 supported molybdenum nitrides and carbides were prepared by the temperature programmed reaction of supported molybdates with ammonia and methane/hydrogen mixtures, respectively. In the first part of this research, the effects of synthesis heating rates and molybdenum loading on the catalytic properties of the materials were examined. A significant amount of excess carbon was deposited on the surface of the carbides during synthesis. The materials consisted of small particles which were very highly dispersed. Oxygen chemisorption indicated that the nitride particles may have been two-dimensional. The dispersion of the carbides, however, appeared to decrease as the loading increased. The catalysts were evaluated for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). The molybdenum loading had the largest effect on the activity of the materials. For the nitrides, the HDN and HDS activities were inverse functions of the loading. This suggested that the most active HDN and HDS sites were located at the perimeter of the two-dimensional particles. The HDN and HDS activities of the carbides followed the same trend as the oxygen uptake. This result suggested that oxygen titrated the active sites on the supported carbides. Selected catalysts were evaluated for methylcarbazole HDN, dibenzothiophene HDS, and dibenzofuran HDO. The activity and selectivity of the nitrides and carbides were competitive with a presulfided commercial catalyst. In the second part of this work, a series of supported nitrides and carbides were prepared using a wider range of loadings (5-30 wt% Mo). Thermogravimetric analysis was used to determine the temperature at which excess carbon was deposited on the carbides. By modifying the synthesis parameters, the deposition of excess carbon was effectively inhibited. The dispersions of the supported nitrides and carbides were constant and suggested that the materials consisted of two

  15. Elimination of excess molybdenum by cattle

    Energy Technology Data Exchange (ETDEWEB)

    Toelgyesi, G.; Elmoty, I.A.

    1967-01-01

    It was found that cattle would ingest spontaneously 5-15 g of molybdenum on one occasion. The uptake of this quantity caused but moderate loss of appetite and mild enteritis, both normalizing in one week. The occurrence of a severe acute molybdenum poisoning can be practically excluded, owing to refusal of the poisoned feed. Spontaneously ingested molybdenum caused on the first day a 30-100 fold rise of ruminal Mo-level, decreasing to the order of the normal value in about one week. But in the urine and faeces, Mo-level was at least 10 fold, in the blood and milk about 4 fold of the normal one, even one or two weeks after ingestion. During this period at least 90% of ingested Mo was eliminated with the faeces, urine and milk. One week after the ingestion of molybdenum, the rumen content showed no evidence on poisoning and no trace of molybdenum. Oral administration of ammonium molybdenate in an amount equivalent to 40 g molybdenum caused no fatality. In fact, cattle would never ingest spontaneously such a large dose.

  16. High-Flow, Heated, Humidified Air Via Nasal Cannula Treats CPAP-Intolerant Children With Obstructive Sleep Apnea

    Science.gov (United States)

    Hawkins, Stephen; Huston, Stephanie; Campbell, Kristen; Halbower, Ann

    2017-01-01

    Study Objectives: Continuous positive airway pressure (CPAP) is effective but challenging for children with obstructive sleep apnea (OSA). High-flow air via open nasal cannula (HFNC) as treatment in children remains controversial. We report the efficacy of HFNC in children with OSA and CPAP intolerance, a titration protocol, and a discussion of potential mechanisms. Methods: Patients aged 1 to 18 years with OSA (defined by obstructive apnea-hypopnea index [OAHI] greater than 1 event/h) and CPAP intolerance were enrolled. Routine polysomnography data obtained during 1 night wearing HFNC was compared with diagnostic data by Wilcoxon rank-sum test. Results: Ten school-age subjects (representing all patients attempting HFNC at our institution to date) with varied medical conditions, moderate to severe OSA, and CPAP intolerance wore HFNC from 10 to 50 L/min of room air with oxygen supplementation if needed (room air alone for 6 of the 10). HFNC reduced median OAHI from 11.1 events/h (interquartile range 8.7–18.8 events/h) to 2.1 events/h (1.7–2.2 events/h; P = .002); increased oxyhemoglobin saturation (SpO2) mean from 91.3% (89.6% to 93.5%) to 94.9% (92.4% to 96.0%; P Hawkins S, Huston S, Campbell K, Halbower A. High-flow, heated, humidified air via nasal cannula treats CPAP-intolerant children with obstructive sleep apnea. J Clin Sleep Med. 2017;13(8):981–989. PMID:28728621

  17. Antigenic profile of heat-killed versus thimerosal-treated Leishmania major using sodium dodecyl sulfate-polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Reza Arjmand

    2015-01-01

    Full Text Available Background: Leishmania is a parasitic protozoan of trypanosomatidae family which causes a wide spectrum of diseases ranging from self-healing cutaneous lesions to deadly visceral forms. In endemic areas, field trials of different preparations of Leishmania total antigen were tested as leishmaniasis vaccine. Two preparations of killed Leishmania major were produced In Iran, which were heat-killed vaccine called autoclaved L. major (ALM and thimerosal-treated freeze-thawed vaccine called killed L. major (KLM. In this study, the protein content of both ALM and KLM were compared with that of freshly harvested intact L. major promastigotes using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Materials and Methods: L. major (MRHO/IR/75/ER from pre-infected Balb/c mice was isolated with modified Novy-MacNeal-Nicolle (NNN medium and then subcultured in liquid RPMI 1640 medium supplemented with fetal calf serum (FCS 20% for mass production. Two preparations of KLM and ALM were produced by Razi Vaccine and Serum Research Institute, Iran, under WHO/TDR supervision. Electrophoresis was performed by SDS-PAGE method and the gel was stained by Coomassie brilliant blue dye. The resultant unit bands were compared using standard molecular proteins. Results: Electrophoresis of the two preparations produced many bands from 10 kDa to 100 kDa. KLM bands were much like those of freshly harvested intact L. major. Conclusion: It is concluded that although there are similar bands in the three forms of Leishmania antigens, there are some variations which might be considered for identification and purification of protective immunogens in a total crude antigen, and detection of their stability is essential for the production and marketing of a putative vaccine.

  18. Determination of molybdenum by the gravimetric plumbate method (with the molybdenum content from 50 % and above)

    International Nuclear Information System (INIS)

    Stepin, V.V.; Kurbatova, V.I.; Fedorova, N.D.

    1980-01-01

    A gravimetric method of molybdenum determination in ferromolybdenum (Mo content from 50% and higher) after its dissolving in HNO 3 is developed. The method is based on Mo deposition in acetic acid solution in the form of molybdenum oxide lead after separation of Fe and other interfering elements with sodium hydroxide [ru

  19. Synthesis of borides in molybdenum implanted by B+ ions under thermal and electron annealing

    International Nuclear Information System (INIS)

    Kazdaev, Kh.R.; Akchulakov, M.T.; Bayadilov, E.M.; Ehngel'ko, V.I.; Lazarenko, A.V.; Chebukov, E.S.

    1989-01-01

    The possibility of formation of borides in the near surface layers of monocrystalline molybdenum implanted by boron ions at 35 keV energy under thermal and pulsed electron annealing by an electon beam at 140 keV energy is investigated. It is found that implantation of boron ions into molybdenum with subsequent thermal annealing permits to produce both molybdenum monoboride (α-MoB) and boride (γ-Mo 2 B) with rather different formation mechanisms. Formation of the α-MoB phase occurs with the temperature elevation from the centers appeared during implantation, while the γ-Mo 2 B phase appears only on heating the implanted layers up to definite temperature as a result of the phase transformation of the solid solution into a chemical compound. Pulsed electron annealing instead of thermal annealing results mainly in formation of molybdenum boride (γ-Mo 2 B), the state of structure is determined by the degree of heating of implanted layers and their durable stay at temperatures exceeding the threshold values

  20. Rapid analysis of molybdenum contents in molybdenum master alloys by X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Tongkong, P.

    1985-01-01

    Determination of molybdenum contents in molybdenum master alloy had been performed using energy dispersive x-ray fluorescence (EDX) technique where analysis were made via standard additions and calibration curves. Comparison of EDX technique with other analyzing techniques, i.e., wavelength dispersive x-ray fluorescence, neutron activation analysis and inductive coupled plasma spectrometry, showed consistency in the results. This technique was found to yield reliable results when molybdenum contents in master alloys were in the range of 13 to 50 percent using HPGe detector or proportional counter. When the required error was set at 1%, the minimum analyzing time was found to be 30 and 60 seconds for Fe-Mo master alloys with molybdenum content of 13.54 and 49.09 percent respectively. For Al-Mo master alloys, the minimum times required were 120 and 300 seconds with molybdenum content of 15.22 and 47.26 percent respectively

  1. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods

    International Nuclear Information System (INIS)

    Kahrobaee, Saeed; Hejazi, Taha-Hossein

    2017-01-01

    Highlights: • A statistical relationship between NDE inputs and heat treating outputs was provided. • Predicting austenitizing/tempering temperatures at unknown heat treating conditions. • An optimization model that achieves minimum error in prediction was developed. • Applying two simultaneous magnetic NDE methods led to better measuring reliability. - Abstract: Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025–1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.

  2. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods

    Energy Technology Data Exchange (ETDEWEB)

    Kahrobaee, Saeed, E-mail: kahrobaee@sadjad.ac.ir [Department of Mechanical and Materials Engineering, Sadjad University of Technology, P.O. Box 91881-48848, Mashhad (Iran, Islamic Republic of); Hejazi, Taha-Hossein [Department of Industrial Engineering and Management, Sadjad University of Technology, P.O. Box 91881-48848, Mashhad (Iran, Islamic Republic of)

    2017-07-01

    Highlights: • A statistical relationship between NDE inputs and heat treating outputs was provided. • Predicting austenitizing/tempering temperatures at unknown heat treating conditions. • An optimization model that achieves minimum error in prediction was developed. • Applying two simultaneous magnetic NDE methods led to better measuring reliability. - Abstract: Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025–1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.

  3. Molybdenum reduction to molybdenum blue in Serratia sp. Strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme.

    Science.gov (United States)

    Shukor, M Y; Halmi, M I E; Rahman, M F A; Shamaan, N A; Syed, M A

    2014-01-01

    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  4. Molybdenum Reduction to Molybdenum Blue in Serratia sp. Strain DRY5 Is Catalyzed by a Novel Molybdenum-Reducing Enzyme

    Directory of Open Access Journals (Sweden)

    M. Y. Shukor

    2014-01-01

    Full Text Available The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C. A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a Vmax for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent Km for NADH was 0.79 mM. At 5 mM NADH, the apparent Vmax and apparent Km values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (kcat/Km of the Mo-reducing enzyme was 5.47 M-1 s-1. The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.

  5. Differential effect of gamma-irradiated and heat-treated lymphocytes on T cell activation, and interleukin-2 and interleukin-3 release in the human mixed lymphocyte reaction

    International Nuclear Information System (INIS)

    Loertscher, R.; Abbud-Filho, M.; Leichtman, A.B.; Ythier, A.A.; Williams, J.M.; Carpenter, C.B.; Strom, T.B.

    1987-01-01

    Heat-inactivated (45 degrees C/1 hr) lymphocytes selectively activate suppressor T cells in the mixed lymphocyte reaction (MLR), while no significant proliferation and cytotoxic T lymphocyte activation can be detected. It is not well understood why hyperthermic treatment abolishes the stimulatory capacity of lymphocytes since HLA-DR molecules remain detectable immediately following heat exposure. In order to further characterize the requirements for Ts activation we studied the effects of hyperthermic treatment on cellular protein and DNA synthesis and cell surface protein expression in proliferating T and B cells; interleukin (IL)-1, IL-2, and IL-3 release following allogeneic stimulation with heat treated cells (HMLR); and IL-2 receptor expression as an indicator of T cell activation in the HMLR. Hyperthermic treatment reduced cellular protein synthesis as estimated by 14 C-leucine uptake to about 15%, and DNA synthesis ( 3 H-thymidine incorporation) to about 5% of untreated control cells. In contrast to y-irradiated cells, viability of heated cells rapidly declined within the first 24 hr. Hyperthermic treatment doubled binding of mouse immunoglobulin paralleled by an increased expression of IL-2 and transferrin receptors, while expression of HLA-DR and 4F2 proteins appeared unchanged. Stimulation with heated cells triggered the release of IL-1- and an IL-3-like bioactivity but did not induce IL-2 synthesis and/or release, thus explaining the lack of proliferation in the HMLR. Addition of exogenous IL-2 but not IL-1 restored HMLR proliferation. A comparison of allostimulation with y-irradiated and heat-treated cells revealed that significantly fewer T cells were induced to express IL-2 receptors at day 3 (14% vs. 8%, P less than 0.001) and at day 6 (42% vs. 21%, P less than 0.05) with heat-inactivated stimulators

  6. Mechanical properties of depleted uranium-2 w/o molybdenum alloy

    International Nuclear Information System (INIS)

    Deel, O.L.; Burian, R.J.

    1979-01-01

    The primary objective of this program is to develop data and techniques for determining the dynamic impact response of radioactive-material shipping-container systems for environmental control and safety overview and assessment. One phase of this program is the dynamic testing of 1/8-, 1/4-, and 1/2-scale models of uranium-shielded truck casks. These linearly scaled models are fabricated from the same materials typically used in full-size prototype casks. In order to analytically evaluate the results of dynamic tests, it is necessary to know the mechanical properties of the materials of construction. Since the properties of cast uranium--molybdenum alloys vary significantly with casting and heat-treating techniques, it is necessary to fully characterize the mechanical properties of the uranium used in the model tests. This report presents the results of these studies. The uranium alloy exhibited a tensile strength equal to or greater than that reported by others. As indicated by the percentage of elongation and reduction in area, the ductility was lower. Comparative data for the other mechanical properties measured were not found in the literature

  7. Preparation of selective molybdenum concentrate from collective coppermolybdenum concentrate

    Directory of Open Access Journals (Sweden)

    N. Tusupbaev

    2016-06-01

    Full Text Available The paper considers possibilities of selective separation of the concentrate of copper and molybdenum from a collective copper-molybdenum concentrate of Aktogay deposit using regrinding and conventional flotation reagents. In the case of conventional flotoreagents, the content of molybdenum in a molybdenum concentrate was 8.0% at extraction effectiveness 83.12%. At 27.96% extraction degree of copper, it’s content in the concentrate equaled to 21.3%. After regrinding, molybdenum content in the concentrate was 24.0% at the extraction effectiveness 59.63%, and copper content in the concentrate was 21.9% at the recovery of 61.23%. Thus, the regrinding of a collective copper-molybdenum concentrate resulted in an increase in the content of molybdenum in molybdenum concentrate by 16%, and the copper concentration increased by 0.6%.

  8. Uranium-molybdenum alloys containing 0,5 to 3 per cent by weight of molybdenum

    International Nuclear Information System (INIS)

    Lehmann, J.

    1959-01-01

    The following properties have been determined in the new cast state of uranium alloys containing 0.5-1-1.8-2 and 3.5 per cent of molybdenum: micro-graphical aspect, crystalline structure, thermal expansion, the mechanical characteristics, behaviour when subjected to cyclic temperature variations, and heat treatment. The transformation curves have been established for continuous cooling at rates varying between 2.5 and 200 deg. C per minute, using a dilatation method for the alloys containing 1.0, 2.0 and 3.0 per cent Mo. T.T.T. curves have been traced for 0.5 and 1.0 per cent Mo alloys and the Ms points determined for alloys containing 2.0 and 3.0 par cent Mo. In this way it has been possible to show the different results of transformation, brought about either by nucleation and diffusion or by shear - the alloy containing 1 per cent Mo, give two martensites α' and α'' and the alloys containing 2 and 3 per cent Mo give one martensite with a band structure. (author) [fr

  9. Bibliographic study on molybdenum biokinetics. Literaturstudie zur Biokinetik von Molybdaen

    Energy Technology Data Exchange (ETDEWEB)

    Erzberger, A.

    1988-05-01

    This bibliographical study compiles and analyzes findings about the metabolism and resorption of molybdenum. Besides including studies on the physiology of molybdenum 99, a general survey is given on molybdenum in the environment and on its physiological behaviour. In particular, information on the dependence of molybdenum resorption on various factors, such as the chemical form, antagonisms etc., are gathered from literature. These factors have to be considered for sensibly carrying out necessary experiments.

  10. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: Kinetics and sorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lin-Na; Wang, Bing [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Li, Gang [Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, 325006 Wenzhou, Zhejiang Province (China); Wang, Sheng [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Crowley, David E., E-mail: crowley@ucr.edu [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Zhao, Yu-Hua, E-mail: yhzhao225@zju.edu.cn [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer The maximum amount of Acid Black 172 sorption was about 2.98 mmol/g biomass. Black-Right-Pointing-Pointer Amine groups played a major role in the biosorption of Acid Black 172. Black-Right-Pointing-Pointer The reasons of increased dye sorption by heat-treated biomass were proposed. - Abstract: The ability of Pseudomonas sp. strain DY1 to adsorb Acid Black 172 was studied to determine the kinetics and mechanisms involved in biosorption of the dye. Kinetic data for adsorption fit a pseudo-second-order model. Increased initial dye concentration could significantly enhance the amount of dye adsorbed by heat-treated biomass in which the maximum amount of dye adsorbed was as high as 2.98 mmol/g biomass, whereas it had no significant influence on dye sorption by live biomass. As treated temperature increased, the biomass showed gradual increase of dye sorption ability. Experiments using potentiometric titration and Fourier transform infrared spectroscopy (FTIR) indicated that amine groups (NH{sub 2}) played a prominent role in biosorption of Acid Black 172. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) analysis indicated that heat treatment of the biomass increased the permeability of the cell walls and denatured the intracellular proteins. The results of biosorption experiments by different cell components confirmed that intracellular proteins contributed to the increased biosorption of Acid Black 172 by heat-treated biomass. The data suggest that biomass produced by this strain may have application for removal of metal-complex dyes from wastewater streams generated from the dye products industry.

  11. Change in the color of heat-treated, vacuum-packed broccoli stems and florets during storage: effects of process conditions and modeling by an artificial neural network.

    Science.gov (United States)

    Pero, Milad; Askari, Gholamreza; Skåra, Torstein; Skipnes, Dagbjørn; Kiani, Hossein

    2018-02-08

    Vacuum-packed broccoli stems and florets were subjected to heat treatment (60-99 °C) for various time intervals. The activity of peroxidase was measured after processing. Thermally processed samples were then stored at 4 °C for 35 days, and the color of the samples was measured every 7 days. Effects of parameters (heating temperature and duration, storage time) on the color of broccoli were modeled and simulated by an artificial neural network (ANN). Simulations confirmed that stems were predicted to be more prone to changes than florets. More color loss was observed with longer processing or storage combinations. The simulations also confirmed that higher temperatures during heat processing could retard color changes during storage. For stems treated at 80 °C for short durations, color loss was more predominant than both 65 and 99 °C, probably due to the incomplete inactivation of enzymes besides more tissue damage, with increased enzyme access to the substrate. The greenness of both stems and florets during storage can be better preserved at higher temperatures (99 °C) and short times. The simulation results revealed that the ANN method could be used as an effective tool for predicting and analyzing the color values of heat-treated broccoli. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  12. The effect of ethylenediaminetetraacetic acid on heat resistance and recovery of Clostridium sporogenes PA 3679 spores treated in HTST conditions.

    Science.gov (United States)

    Silla Santos, M H; Torres Zarzo, J

    1997-03-03

    The effect of ethylenediaminetetraacetic acid (EDTA) on the heat resistance of Clostridium sporogenes PA 3679 spores was studied. EDTA was added to heating substrates and recovery media in order to establish which stage of the heat treatment registered the greatest EDTA activity. The heating substrates assayed were phosphate buffer (pH 7.0) and white asparagus purée, at natural pH (5.8) and acidified with citric acid and glucono-delta-lactone (GDL) to pH 5.5, 5.0 and 4.5. Recovery of survivors was carried out in MPA3679A medium in various conditions of acidification with citric and GDL (250 and 500 ppm), at pH 7.5 6.5 and 6.0. The results show greater activity of EDTA on spores when it was applied in recovery of heat injured spores, than during heating. The strongest influence of EDTA during heating was found in phosphate buffer (pH 7.0), with the effect being most evident at 121 and 126 degrees C, and in asparagus purée, at 121 degrees C and pH 5.8 rather than acidified. In recovery, the inhibiting activity of EDTA was more evident in spores subjected to more severe heat treatment, either by increasing the exposure time or by raising the temperature to 130 or 135 degrees C. The pH level of the recovery medium also affected the antimicrobial activity of EDTA, which had a greater inhibiting effect at pH 7.5 than at lower pH levels (6.5, 6.0).

  13. The XUV spectra of highly ionised molybdenum

    International Nuclear Information System (INIS)

    Mansfield, M.W.D.; Peacock, N.J.; Smith, C.C.; Hobby, M.G.; Cowan, R.D.

    1978-01-01

    The spectra of molybdenum ions produced in Tokamaks in the wavelength range 10-200 A have been reproduced in a plasma formed by laser beam irradiation of solid molybdenum targets. Lines from highly ionised stages of molybdenum (Mo XXX to Mo XXXII) have been distinguished by varying the laser beam intensity. Detailed analyses of the simpler ions, Mo XV (Ni-like), Mo XVI (Co-like), Mo XXXII (Na-like), and to a lesser extent Mo XXXI (Mg-like) and Mo XVII (Fe-like), have been achieved by comparison with ab initio calculations. A general interpretation of intermediate ion stages is also given but it is shown that most of these spectra are so complex, as a result of inner-subshell excitation, that detailed term-scheme analyses are nearly impossible. (author)

  14. XUV spectra of highly ionised molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, M W.D.; Peacock, N J; Smith, C C; Hobby, M G [UKAEA, Abingdon. Culham Lab.; Cowan, R D

    1978-05-14

    The spectra of molybdenum ions produced in Tokamaks in the wavelength range 10-200 A have been reproduced in a plasma formed by laser beam irradiation of solid molybdenum targets. Lines from highly ionised stages of molybdenum (Mo XXX to Mo XXXII) have been distinguished by varying the laser beam intensity. Detailed analyses of the simpler ions, Mo XV (Ni-like), Mo XVI (Co-like), Mo XXXII (Na-like), and to a lesser extent Mo XXXI (Mg-like) and Mo XVII (Fe-like), have been achieved by comparison with ab initio calculations. A general interpretation of intermediate ion stages is also given but it is shown that most of these spectra are so complex, as a result of inner-subshell excitation, that detailed term-scheme analyses are nearly impossible.

  15. Molybdenum peroxo complex. Structure and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Koichi; Ooga, Katsumi; Kurusu, Yasuhiko

    1984-10-01

    The molybdenum peroxide (Mo-y) prepared by oxidation of molybdenum metal with hydrogen peroxide has been studied to determine its structure and thermal behavior. Temperature programmed decomposition has been used to study the thermal stability of Mo-y. Two distinct peaks, I and II, of decomposition processes are discernible in Mo-y. Peak I corresponds to the elimination of water of crystallization and peak II to the decomposition of a peroxide ion of Mo-y. IR and UV examinations support the results of the thermal analysis. The IR band at 931 cm/sup -1/ and the UV band at 381 nm show the same thermal behavior. Both bands are attributable to the peroxide ion of Mo-y. Spectroscopic studies show that Mo-y has the tetrahedral coordination derived from the single molybdenum complex, which has double bond oxygens attached to Mo atom and has a symmetric type of peroxide ion with one water of crystallization.

  16. Separation and selective determination of molybdenum with sodiumthiosulfate and ethylacetate

    International Nuclear Information System (INIS)

    Hainberger, L.; de Oliveira Andrade, W.

    1982-01-01

    A sensitive and selective method of spectrophotometric determination of molybdenum is described. Molybdenum is extracted to more than 97%. Lambert-Beer's law is obeyed between 0.35 and 30μg/10ml of the used aqueous solution. 43 ions concerning their interference are studied. The method was used to determine the content of molybdenum in black beans. (Author)

  17. Recovery of uranium and molybdenum from a carbonate type uranium-molybdenum ore

    International Nuclear Information System (INIS)

    Zhou Genmao; Zeng Yijun; Tang Baobin; Meng Shu; Xu Guolong

    2014-01-01

    Based on the results of process mineralogical research of a carbonate type uranium-molybdenum ore, leaching behaviors of the uranium-molybdenum ore were studied by alkali agitation leaching, conventional alkali column leaching and alkali curing column leaching processes. The results showed that using the alkali curing column leaching process, the leaching rate of molybdenum increased to more than 90%, and the leaching rate of uranium was about 85%, Compared with the conventional alkali column leaching process, the leaching time of the alkali curing column leaching process decreased by 60 days. (authors)

  18. Evaluation of SinoRhizobium meliloti Efficiency and Qualitative Traits of Alfalfa under Application of Molybdenum

    Directory of Open Access Journals (Sweden)

    F Ahmadi Dana

    2017-12-01

    meaningful difference from non-inoculated. Concentration of molybdenum in shoot and root increased, this increase in S. Rhizobium inoculated case was more than non-inoculated cases. Conclusions The use of molybdenum and Rhizobium bacteria increase the production yield and also nitrogen-fixing nodules. The increase in the use of treatments with molybdenum, resulting biological nitrogen fixation leading to conversion of molecular nitrogen (N2 in the atmosphere into ammonium (NH3 in nodules on the roots of plants. Studies have showed that molybdenum important role in nitrogen fixation in legume family of plants, and adding this element increased growth by increasing the efficiency of nitrogen fixation and nitrogenase enzyme in the node structure, which ultimately will lead to increased yield and higher quality in alfalfa. Thus, molybdenum increased the number of branches of the fertile and increase the number of stem and leaf. Molybdenum is essential to plant growth as a component of the enzymes nitrogenase. Legumes need more molybdenum than other crops, such as grass or corn, because the symbiotic bacteria living in the root nodules of legumes require molybdenum for the fixation of atmospheric nitrogen. If sufficient molybdenum is not available, nodulation will be retarded and the amount of nitrogen fixed by the plant will be limited. If other factors are not limiting, the amount of molybdenum will determine the amount of nitrogen fixed by the plant. Increasingly vigorous plant growth, higher protein contents and greater buildup of nitrogen in the plant and soil accompany nodulation and symbiotic microbial activity. Therefore, due to less absorption of molybdenum in the shoot and the highest yield obtained from treated seeds inoculated with the first level of molybdenum, the amount kg ha-1. Molybdenum is suitable for growing of alfalfa. It is important to obtain maximum yield in just one stage (before the first two weeks of growth for the supply of nitrogen for growth

  19. A study on the alkali leaching of complex compound for molybdenum trioxide and ferric oxide

    International Nuclear Information System (INIS)

    Kim, C.G.; Whang, Y.K.

    1981-01-01

    This study is to determine the alkali-leaching meachanism by which complex compound by the reaction made between molybdenite (MoS 2 ) and ferric oxide (Fe 2 O 3 ) in the roasted are when molybdenum trioxide (MoO 3 ) is formed by the roasting reaction of molybdenite concentrate. The results obtained from this experiment are summarized as follows: The heating reaction analysis shows that the complex compound of iron molybdates (Fe 2 O 3 .3-4 MoO 3 ) is formed by the reaction of molybdenum trioxide and ferric oxide at temperatures of above 500 0 C. It is shown that at various reaction temperature below 400 0 C molybdenum trioxide is almost completely leached by caustic soda irrespective of the mole ratio of two chemical samples used for the experiment, whereas at temperature above 400 0 C the leaching rate of molybdenum trioxide decreases except that it varies from 70.77% at a temperature of 900 0 C at which the mole ratio is 1 to 1 to 84.08% at a temperature of 1000 0 C. The x-ray diffraction analysis has shown that the complex compound reacted at a temperature of 1000 0 C produces a complex compound with the crystal structure of iron molybdates, and the alkali-leached residues even with 19.0% of molybdenum trioxide, however, contain only α-Fe 2 O 3 , without showing iron molybdates. The crystalline compound of iron molybdates obtained as a result of heating reaction was leached by using caustic soda, while MoO 3 and Fe 2 O 3 in the leaching residue was found to contain other compounds unable to be leached by caustic soda. (author)

  20. Spectrographic analysis of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Roca, M.

    1967-01-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO 3 . Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO 3 . (Author) 5 refs

  1. Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy.

    Science.gov (United States)

    Zhou, Jian-da; Luo, Cheng-qun; Xie, Hui-qing; Nie, Xin-min; Zhao, Yan-zhong; Wang, Shao-hua; Xu, Yi; Pokharel, Pashupati Babu; Xu, Dan

    2008-07-20

    Chronic dermal ulcers are also referred to as refractory ulcers. This study was conducted to elucidate the therapeutic effect of laser on chronic dermal ulcers and the induced expression of heat shock factor 1 (HSF1) and heat shock protein 70 (HSP70) in wound tissues. Sixty patients with 84 chronic dermal ulcers were randomly divided into traditional therapy and laser therapy groups. Laser treatment was performed in addition to traditional therapy in the laser therapy group. The treatment efficacy was evaluated after three weeks. Five tissue sections of healing wounds were randomly collected along with five normal skin sections as controls. HSP70-positive cells from HSP70 immunohistochemical staining were counted and the gray scale of positive cells was measured for statistical analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the mRNA and protein expressions of HSF1 and HSP70. The cure rate of the wounds and the total efficacy in the laser therapy group were significantly higher than those in the traditional therapy group (P ulcers plays a facilitating role in healing due to the mechanism of laser-activated endogenous heat shock protection in cells in wound surfaces.

  2. A Microstructural Evaluation of Friction Stir Welded 7075 Aluminum Rolled Plate Heat Treated to the Semi-Solid State

    Directory of Open Access Journals (Sweden)

    Ava Azadi Chegeni

    2018-01-01

    Full Text Available Two rolled plates of 7075 aluminum alloy were used as starting material. The plates were welded using a simultaneous double-sided friction stir welding (FSW process. One way of obtaining feedstock materials for Semi-solid processing or thixoforming is via deformation routes followed by partial melting in the semi-solid state. As both the base plate materials and the friction weld area have undergone extensive deformation specimens were subjected to a post welding heat-treatment in the semi-solid range at a temperature of 628 °C, for 3 min in order to observe the induced microstructural changes. A comparison between the microstructural evolution and mechanical properties of friction stir welded plates was performed before and after the heat-treatment in the Base Metal (BM, the Heat Affected Zone (HAZ, the Thermomechanically Affected Zone (TMAZ and the Nugget Zone (NZ using optical microscopy, Scanning Electron microscopy (SEM and Vickers hardness tests. The results revealed that an extremely fine-grained structure, obtained in the NZ after FSW, resulted in a rise of hardness from the BM to the NZ. Furthermore, post welding heat-treatment in the semi-solid state gave rise to a consistent morphology throughout the material which was similar to microstructures obtained by the thixoforming process. Moreover, a drop of hardness was observed after heat treatment in all regions as compared to that in the welded microstructure.

  3. Why Was Silcrete Heat-Treated in the Middle Stone Age? An Early Transformative Technology in the Context of Raw Material Use at Mertenhof Rock Shelter, South Africa.

    Directory of Open Access Journals (Sweden)

    Patrick Schmidt

    Full Text Available People heat treated silcrete during the Middle Stone Age (MSA in southern Africa but the spatial and temporal variability of this practice remains poorly documented. This paucity of data in turn makes it difficult to interrogate the motive factors underlying the application of this technique. In this paper we present data on heat treatment of silcrete through the Howiesons Poort and post-Howiesons Poort of the rock shelter site Mertenhof, located in the Western Cape of South Africa. In contrast to other sites where heat treatment has been documented, distance to rock source at Mertenhof can be reasonably well estimated, and the site is known to contain high proportions of a diversity of fine grained rocks including silcrete, hornfels and chert at various points through the sequence. Our results suggest the prevalence of heat treatment is variable through the sequence but that it is largely unaffected by the relative abundance of silcrete prevalence. Instead there is a strong inverse correlation between frequency of heat treatment in silcrete and prevalence of chert in the assemblage, and a generally positive correlation with the proportion of locally available rock. While it is difficult to separate individual factors we suggest that, at Mertenhof at least, heat treatment may have been used to improve the fracture properties of silcrete at times when other finer grained rocks were less readily available. As such, heat treatment appears to have been a component of the MSA behavioural repertoire that was flexibly deployed in ways sensitive to other elements of technological organisation.

  4. Epigallocatechin Gallate-Modified Gelatin Sponges Treated by Vacuum Heating as a Novel Scaffold for Bone Tissue Engineering.

    Science.gov (United States)

    Honda, Yoshitomo; Takeda, Yoshihiro; Li, Peiqi; Huang, Anqi; Sasayama, Satoshi; Hara, Eiki; Uemura, Naoya; Ueda, Mamoru; Hashimoto, Masanori; Arita, Kenji; Matsumoto, Naoyuki; Hashimoto, Yoshiya; Baba, Shunsuke; Tanaka, Tomonari

    2018-04-11

    Chemical modification of gelatin using epigallocatechin gallate (EGCG) promotes bone formation in vivo. However, further improvements are required to increase the mechanical strength and bone-forming ability of fabricated EGCG-modified gelatin sponges (EGCG-GS) for practical applications in regenerative therapy. In the present study, we investigated whether vacuum heating-induced dehydrothermal cross-linking of EGCG-GS enhances bone formation in critical-sized rat calvarial defects. The bone-forming ability of vacuum-heated EGCG-GS (vhEGCG-GS) and other sponges was evaluated by micro-computed tomography and histological staining. The degradation of sponges was assessed using protein assays, and cell morphology and proliferation were verified by scanning electron microscopy and immunostaining using osteoblastic UMR106 cells in vitro. Four weeks after the implantation of sponges, greater bone formation was detected for vhEGCG-GS than for EGCG-GS or vacuum-heated gelatin sponges (dehydrothermal cross-linked sponges without EGCG). In vitro experiments revealed that the relatively low degradability of vhEGCG-GS supports cell attachment, proliferation, and cell-cell communication on the matrix. These findings suggest that vacuum heating enhanced the bone forming ability of EGCG-GS, possibly via the dehydrothermal cross-linking of EGCG-GS, which provides a scaffold for cells, and by maintaining the pharmacological effect of EGCG.

  5. Analysis of micro-structure in raw and heat treated meat emulsions from multimodal X-ray microtomography

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Nielsen, Mikkel Schou; Miklos, Rikke

    2014-01-01

    This study presents a novel non-destructive X-ray technique for analyzing meat emulsions before and after heat treatment. The method is based on X-ray grating-interferometry where three complementary imaging modalities are obtained simultaneously measuring the absorption, refraction and scatterin...

  6. Numerical investigation of vessel heating using a copper vapor laser and a pulsed dye laser in treating vascular skin lesions

    Science.gov (United States)

    Pushkareva, A. E.; Ponomarev, I. V.; Isaev, A. A.; Klyuchareva, S. V.

    2018-02-01

    A computer simulation technique was employed to study the selective heating of a tissue vessel using emission from a pulsed copper vapor laser and a pulsed dye laser. The depth and size of vessels that could be selectively and safely removed were determined for the lasers under examination.

  7. Denaturation and in Vitro Gastric Digestion of Heat-Treated Quinoa Protein Isolates Obtained at Various Extraction pH

    NARCIS (Netherlands)

    Ruiz, Geraldine Avila; Opazo-Navarrete, Mauricio; Meurs, Marlon; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Stieger, Markus; Janssen, Anja E.M.

    2016-01-01

    The aim of this study was to determine the influence of heat processing on denaturation and digestibility properties of protein isolates obtained from sweet quinoa (Chenopodium quinoa Willd) at various extraction pH values (8, 9, 10 and 11). Pretreatment of suspensions of protein isolates at 60,

  8. Process for separation of tungsten and molybdenum by extraction

    International Nuclear Information System (INIS)

    Zelikman, A.N.; Voldman, G.M.; Rumyantsev, V.K.; Ziberov, G.N.; Kagermanian, V.S.

    1976-01-01

    A process for the separation of tungsten and molybdenum by extraction involves the addition of HCl or HNO 3 to an aqueous solution containing tungsten and molybdenum to obtain a pH from 0.5 to 4.3, and introduction of a stabilizer comprising water-soluble phosphorus salts and a complexing agent, hydrogen peroxide, in an amount from 1.5 to 2 mole per 1 g-atom of the total content of tungsten and molybdenum. Then molybdenum is selectively extracted from the resulting aqueous solution with tri-n-butylphosphate with equal volumetric proportioning of the aqueous and organic solutions. Re-extraction of molybdenum and partially tungsten is carried out from the organic extracting agent with an alkali or soda solution. The process makes possible the preparation of tungsten solution containing no more than 0.001 g/l of molybdenum, and an increase in the degree of extraction of tungsten and molybdenum

  9. Recent situation and future of molybdenum mineral resources; Molybdenum shigen no genjo to shorai

    Energy Technology Data Exchange (ETDEWEB)

    Ono, K.; Nishiyama, T. [Kyoto University, Kyoto (Japan)

    1997-05-05

    Molybdenum is produced mainly from molybdenite, and the majority of this ore is exploited from the porphyry deposit. The reserve is estimated at 5.5-million ton. A total of 118-thousand ton was produced across the world in 1995, in the U.S., China, Chile, and Canada, the countries named in the order of quantities they exploited. Molybdenite is first refined by flotation for the production of a sulphide. It is subjected to oxidizing roasting for conversion into crude molybdenum trioxide, which is next subjected to extraction in warmed-up aqueous ammonia and then to evaporation for the crystallization of ammonium paramolybdate. The crystals are baked for conversion into molybdenum trioxide of the ordinary purity, to be further processed into ferromolybdenum, molybdenum compounds, molybdenum powder, etc. In view of the magnitude of demand, the metal is used mostly for the manufacture of special steels and special alloys. The demand for this metal, though small in size, involves important articles, such as line materials for semiconductors in the power industry, catalysts in the chemical industry, and lubricants. Japan`s stockpile includes molybdenum, but the U.S. has been stockpiling none since 1977. 9 refs., 4 figs., 1 tab.

  10. Paraelasticity in electron-irradiated molybdenum

    International Nuclear Information System (INIS)

    Beuneu, Brigitte; Quere, Yves.

    1981-11-01

    The relaxation of a radiation-induced point defect-most probably the rotation of a dumbell-is observed during isothermal anneals of irradiated molybdenum by resistivity measurements. The recovery of close pairs is not affected, in first analysis, by the presence of a uniaxial stress

  11. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  12. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  13. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  14. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods

    Science.gov (United States)

    Kahrobaee, Saeed; Hejazi, Taha-Hossein

    2017-07-01

    Austenitizing and tempering temperatures are the effective characteristics in heat treating process of AISI D2 tool steel. Therefore, controlling them enables the heat treatment process to be designed more accurately which results in more balanced mechanical properties. The aim of this work is to develop a multiresponse predictive model that enables finding these characteristics based on nondestructive tests by a set of parameters of the magnetic Barkhausen noise technique and hysteresis loop method. To produce various microstructural changes, identical specimens from the AISI D2 steel sheet were austenitized in the range 1025-1130 °C, for 30 min, oil-quenched and finally tempered at various temperatures between 200 °C and 650 °C. A set of nondestructive data have been gathered based on general factorial design of experiments and used for training and testing the multiple response surface model. Finally, an optimization model has been proposed to achieve minimal error prediction. Results revealed that applying Barkhausen and hysteresis loop methods, simultaneously, coupling to the multiresponse model, has a potential to be used as a reliable and accurate nondestructive tool for predicting austenitizing and tempering temperatures (which, in turn, led to characterizing the microstructural changes) of the parts with unknown heat treating conditions.

  15. The Development of Molybdenum Speciation as a Paleoredox Tool

    Science.gov (United States)

    Rodley, J.; Peacock, C.; Mosselmans, J. F. W.; Poulton, S.

    2017-12-01

    The redox state of the oceans has changed throughout geological time and an understanding of these changes is essential to elucidate links between ocean chemistry, climate and life. Due to its abundance in seawater and redox-sensitive nature, molybdenum has enormous potential as a paleoredox proxy. Although a significant amount of research has been done on molybdenum in ancient and modern sediments in terms of its concentrations and isotopic ratios there remains a limited understanding of the drawdown mechanisms of molybdenum under different redox conditions restricting its use in identifying a range of redox states. In order to address these uncertainties, we have developed a novel sequential extraction technique to examine molybdenum concentrations in six sediment fractions from modern samples that represent oxic, nitrogenous, ferruginous and euxinic environments. In addition we use µ-XRF and µ-XANES synchrotron spectroscopy to examine the molybdenum speciation within these fractions and environments. To interpret our µ-XANES data we have developed an extensive library of molybdenum XANES standards that represent molybdenum sequestration by the sediment fractions identified from the sequential extraction. To further verify our synchrotron results we developed a series of µ-XANES micro-column experiments to examine preferential uptake pathways of molybdenum to different sediment phases under a euxinic water column. The initial data from both the sequential extraction and µ-XANES methods indicate that molybdenum is not limited to a single burial pathway in any of the redox environments. We find that each of the redox environments can be characterised by a limited set of molybdenum phase associations, with molybdenum adsorption to pyrite likely the dominant burial pathway. These findings agree with existing research for molybdenum speciation in euxinic environments suggesting that both pyrite and sulphidised organic matter act as important molybdenum sinks. Our

  16. FDG uptake in cold and heat treated MCF-7 cells, comparison with cell viability, apoptosis, and tumor marker changes

    International Nuclear Information System (INIS)

    Zhang, C.; Sun, X.; Huang, G.; Liu, J.

    2007-01-01

    Full text: Objectives-To investigate the FDG uptake changes in cold and hyperthermia therapy and its correlation with cell viability, apoptosis and tumor marker changes. Methods: An in vitro cultured breast adenocarcinoma cell line, MCF- 7, was divided into 5 groups. Hyperthermia group: cell was treated in 43 degree centigrade 30 min. Hypothermia group: cell was treated in 0 degree centigrade 30 min. Hypo- and hyperthermia group: cell was treated in 0 degree centigrade 30 min and 43 degree centigrade 30 min. chemotherapy group: cell was treated with 21 microgram Cisplatin for 6 hours. And Control group: cell was untreated. The levels 18F-labelled FDG uptake, a 3-(4, 5-dimethylthiazol-2-yl)- 2, 5-diphenyltetrazoliumbromide viability assay, flow cytometry assay and tumor markers (CA153, CA125) were detected at 24 hour and 48 hour. Results: The change of 18F- FDG uptake (which came out at the 24h) is early than tumor marker (which came out at the 48h) under our study conditions. In treated MCF-7 cells, the levels of 18F-labelled FDG uptake were significantly lower than control group. The levels of 18F-FDG uptake depression were well correlated with cell viability and apoptosis data. Conclusion: FDG uptake is sensitive and well correlated with cell viability and apoptosis assay, and can be used for early response monitoring in hypo- and hyperthermia therapy. (author)

  17. Influence of Chemical Composition on Rupture Properties at 1200 Degrees F. of Forged Chromium-Cobalt-Nickel-Iron Base Alloys in Solution-Treated and Aged Condition

    Science.gov (United States)

    Reynolds, E E; Freeman, J W; White, A E

    1951-01-01

    The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.

  18. Chemical state analysis of heat-treated 6, 13-bis(triisopropylsilylethynyl) pentacene investigated by XPS valence band spectra, XANES spectra and first-principles calculation

    International Nuclear Information System (INIS)

    Muro, Maiko; Natsume, Yutaka; Kikuma, Jun; Setoyama, Hiroyuki

    2014-01-01

    X-ray photoelectron spectroscopy (XPS) valence band spectra reflect the chemical bonding states. To take this advantage, we tried to interpret experimental spectra by the occupied density of states (DOS) based on first principles calculation. In this work, we discussed XPS and X-ray Absorption Near Edge Structure (XANES) spectra of 6, 13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pen), which is well known as an organic semiconductor. We studied chemical structure change of TIPS-Pen caused by heat-treatment at 300degC under nitrogen and under the air. It has been suggested that the structural change of pentacene skeleton by Diels-Alder type reaction occurs in both cases. In addition, the sample heat-treated under the air showed desorption of the isopropyl group and increase of oxygen concentration. (author)

  19. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption.

    Science.gov (United States)

    Wibowo, N; Setyadhi, L; Wibowo, D; Setiawan, J; Ismadji, S

    2007-07-19

    The influence of surface chemistry and solution pH on the adsorption of benzene and toluene on activated carbon and its acid and heat treated forms were studied. A commercial coal-based activated carbon F-400 was chosen as carbon parent. The carbon samples were obtained by modification of F-400 by means of chemical treatment with HNO3 and thermal treatment under nitrogen flow. The treatment with nitric acid caused the introduction of a significant number of oxygenated acidic surface groups onto the carbon surface, while the heat treatment increases the basicity of carbon. The pore characteristics were not significantly changed after these modifications. The dispersive interactions are the most important factor in this adsorption process. Activated carbon with low oxygenated acidic surface groups (F-400Tox) has the best adsorption capacity.

  20. Electron spin resonance and its application to heat treated carbonaceous materials; A ressonancia de spin eletronico e sua aplicacao aos materiais carbonosos tratados termicamente

    Energy Technology Data Exchange (ETDEWEB)

    Emmerich, Francisco Guilherme [Espirito Santo Univ., Vitoria, ES (Brazil). Laboratorio de Materiais Carbonosos e Plasma Termico

    1994-12-31

    This work presents the basic characteristics of the electron spin resonance technique, also called paramagnetic resonance, being discussed its application to heat treated carbonaceous materials. In the low heat treatment temperature (HTT) range (below 700 deg C) the organic free radical are the predominant unpaired spin center, which play a key role in the process of carbonization and meso phase formation. At higher temperatures, it is possible to make correlations between the low H T T range and the high HTT range (above 130 deg C), where the predominant unpaired spin center are the free charge carriers (free electrons) of the graphite like crystallites of the material, which are formed by the carbonization process. (author) 10 refs., 3 figs.

  1. Dry sliding wear behaviour of heat treated iron based powder metallurgy steels with 0.3% Graphite + 2% Ni additions

    International Nuclear Information System (INIS)

    Tekeli, S.; Gueral, A.

    2007-01-01

    To determine the effect of various heat treatments on the microstructure and dry sliding wear behaviour of iron based powder metallurgy (PM) steels, atomized iron powder was mixed with 0.3% graphite + 2% Ni. The mixed powders were cold pressed at 700 MPa and sintered at 1200 deg. C for 30 min under pure Ar gas atmosphere. One of the sintered specimens was quenched from 890 deg. C and then tempered at 200 deg. C for 1 h. The other sintered specimens were annealed at different intercritical heat treatment temperatures of 728 and 790 deg. C and water quenched. Through this intercritical annealing heat treatment, the specimens with various ferrite + martensite volume fractions were produced. Wear tests were carried out on the quenched + tempered and intercritically annealed specimens under dry sliding conditions using a pin-on-disk type machine at constant load and speed and the results were compared in terms of microstructure, hardness and wear strength. It was seen that hardness and wear strength in intercritically annealed specimens were higher than that of quenched + tempered specimen

  2. Granular model, percolation-resistivity, ESR and elastic modulus of carbonaceous materials application to the babassu endocarp heat treated up to 22000C

    International Nuclear Information System (INIS)

    Emmerich, F.G.

    1987-01-01

    A microscopic model (granular model) is presented to study heat treated carbons. A granular structure is defined in the carbon matrix, composed of turbostratic graphite-like microcrystallites, cross-linkings and micropores. A general expression is developed to calculate the volume fraction X of the conducting phase of the granular structure as a function of structural parameters obtained from X-ray diffraction small angle X-ray scattering. The granular model and the percolation theory are used to explain the electrical resistivity behaviour with the heat treatment temperature (HTT), where X is the fundamental parameter. An electron spin resonance (ESR) study of the low and high HTT ranges is presented, including the transition range (700-1300 0 C). The elucitation of the spin center nature in this range and the liking with the two adjacent ranges has been pursued. An expression to calculate the elastic modulus (Young's modulus), based on the microscopic granular model with the fundamental participation of the cross-linkings, is derived to account for the behavior of the modulus with the HTT. The granular model with the expression of X, the percolation-resistivity theory, the ESR study, and the expression of the elastic modulus are applied to the babassu endocarp carbon heat treated up to 2200 0 C. This material can be classified as a tipical non-graphitic carbon, being useful to search the validity of the model and the proposed expressions. It is observed that the theoretical expressions describe with reasonable accuracy the respective experimental behaviours. The measurements of physical and chemical parameters of the babassu endocarp treated up to 2200 0 C area also included. (author) [pt

  3. Carbon diffusion behavior in molybdenum at relatively low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Yutaka, E-mail: hiraoka@dap.ous.ac.j [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Imamura, Kyosuke [Graduate School of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Kadokura, Takanori; Yamamoto, Yoshiharu [Materials Research Department, A.L.M.T. Corp., 2 Iwasekoshi-machi, Toyama 931-8543 (Japan)

    2010-01-07

    Purpose of this study is to investigate the carbon diffusion behavior in pure molybdenum at relatively low temperatures by means of fracture surface observation. Carbon addition was performed at a temperature of 1273-1373 K with the heating time being changed. Fracture surface of the specimen after carbon addition was examined using SEM and the carbon diffusion distance was estimated from the change of fracture mode as a function of the distance from the surface. Results are summarized as follows. First, the carbon diffusion distance increased approximately linearly with the increase of heating time from 1.2 to 10.8 ks. This relationship does not agree with that obtained at much higher temperatures. From Arrhenius plots of the slope of the straight line and the temperature, activation energy was calculated (155 kJ/mol). Secondly, the carbon diffusion distance estimated in this study was generally larger than that simulated using the data of Rudman, particularly at a longer heating time.

  4. Scientific Opinion on the safety of ‘heat-treated milk products fermented with Bacteroides xylanisolvens DSM 23964’ as a novel food

    DEFF Research Database (Denmark)

    Tetens, Inge; Poulsen, Morten

    2015-01-01

    Following a request from the European Commission, the EFSA NDA Panel was asked to carry out the additional assessment for ‘pasteurised milk products fermented with Bacteroides xylanisolvens DSM 23964’ as a novel food (NF) in the context of Regulation (EC) No 258/97. Pasteurised or ultra-high-temp......Following a request from the European Commission, the EFSA NDA Panel was asked to carry out the additional assessment for ‘pasteurised milk products fermented with Bacteroides xylanisolvens DSM 23964’ as a novel food (NF) in the context of Regulation (EC) No 258/97. Pasteurised or ultra......-high-temperature-treated milk is used for the fermentation process with B. xylanisolvens DSM 23964. After fermentation the product is heat treated for one hour at 75 °C to ensure the absence of viable B. xylanisolvens DSM 23964. The Panel considers the information provided on the identity and characterisation of B...

  5. Molybdenum distribution and sensitivity in tomatoes, sunflowers and beans

    Energy Technology Data Exchange (ETDEWEB)

    Hecht-Buchholz, C

    1973-01-01

    The influence of increasing levels of molybdenum on the growth, molybdenum uptake and distribution in individual plant organs was investigated in tomatoes, beans and sunflowers in a 9 day trial. With tomatoes, which showed marked damage with high molybdenum levels, the molybdenum content of dry matter was highest in the leaf and lowest in the stem. On the other hand, beans, insensitive towards the high molybdenum level, dry matter molybdenum content was appreciably higher in the stem than in the leaf. It is supposed that in plant species, insensitive to high molybdenum levels, molybdenum is held less firmly in this tissue and can attain damaging levels in the cytoplasm of the youngest leaf tissue cells. It is supposed, on the basis of the reactions which were carried out with expressed root juice and on the basis of the yellow coloration attainable in vitro in the tissue caused by the addition of molybdate solution, that the yellow coloration appearing in the cells and plant organs of various plant species, here tomatoes and sunflowers, with high molybdenum levels is due to a reaction between molybdenum and polyvalent phenols in cellsap.

  6. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  7. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  8. Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing

    Energy Technology Data Exchange (ETDEWEB)

    Touihri, S., E-mail: s_touihri@yahoo.fr [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Arfaoui, A.; Tarchouna, Y. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Labidi, A. [Laboratoire Matériaux, Molécules et Applications, IPEST, BP 51 La Marsa 2070, Tunis (Tunisia); Amlouk, M. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Bernede, J.C. [LUNAM, Universite de Nantes, Moltech Anjou, CNRS, UMR 6200, FSTN, 2 Rue de la houssiniere, BP 92208, Nantes F-44322 (France)

    2017-02-01

    Highlights: • Thermally grown molybdenum oxide films are amorphous, oxygen deficient and gas sensing. • Air or vacuum annealing transforms them into a sub-stoichiometric MoO{sub 3−x} phase. • The samples annealed at 500 °C in oxygen were crystallized and identified as pure orthorhombic MoO{sub 3} phase. • The conduction process and sensing mechanism of MoO{sub 3-x} to ethanol have been studied. - Abstract: This paper deals with some physical investigations on molybdenum oxide thin films growing on glass substrates by the thermal evaporation method. These films have been subjected to an annealing process under vacuum, air and oxygen at various temperatures 673, 723 and 773 K. First, the physical properties of these layers were analyzed by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM) and optical measurements. These techniques have been used to investigate the oxygen index in MoO{sub x} properties during the heat treatment. Second, from the reflectance and transmittance optical measurements, it was found that the direct band gap energy value increased from 3.16 to 3.90 eV. Finally, the heat treatments reveal that the oxygen index varies in such molybdenum oxides showing noticeably sensitivity toward ethanol gas.

  9. Shock compaction of molybdenum powder

    Science.gov (United States)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  10. Trace metals content (contaminants) as initial indicator in the quality of heat treated palm oil whole extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Fauzi, Noor Akhmazillah bt [Chemical and Bioprocess Department, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia); Sarmidi, Mohd Roji [Chemical Engineering Pilot Plant, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2011-07-01

    An investigation was carried out on the effect of different sterilization time on the trace metals concentration of palm oil whole extract. Palm fruits were collected, cleaned and sterilized for 0, 20, 40 and 60 minutes. The kernels were then stripped from the sterilized fruits to get the pulp and later the pulp was pressed using small scale expeller. The resulting puree was centrifuge at 4000 rpm for 20 minutes. The palm oil whole extract were then collected and trace metals analysis was conducted using Inductively Couple Plasma-Mass Spectrometry (ICP-MS). The result showed that the highest yield was obtained at 40 minutes of sterilization with 19.9 {+-} 0.21 % (w/w). There was no significant different (p < 0.5) in total trace metals content between the degrees of the heat treatment. Na+ was found as the highest trace metals content in the extract with mean concentration ranging from 1.05 {+-} 0.03 ppm to 2.36 {+-} 0.01 ppm. 40 minutes of heating time was predicted to have good oil quality due to higher content in trace metals that inhibit the lipase enzyme activity.

  11. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  12. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi.

    Science.gov (United States)

    Othman, A R; Bakar, N A; Halmi, M I E; Johari, W L W; Ahmad, S A; Jirangon, H; Syed, M A; Shukor, M Y

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.

  13. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum-rhenium alloys

    International Nuclear Information System (INIS)

    Mueller, A.J.; Bianco, R.; Buckman, R.W. Jr.

    1999-01-01

    Oxide dispersion strengthened (ODS) molybdenum alloys being developed for high temperature applications possess excellent high temperature strength and creep resistance. In addition they exhibit a ductile-to-brittle transition temperature (DBIT) in the worked and stress-relieved condition under longitudinal tensile load well below room temperature. However, in the recrystallized condition, the DBTT maybe near or above room temperature, depending on the volume fraction of oxide dispersion and the amount of prior work. Dilute rhenium additions (7 and 14 wt.%) to ODS molybdenum were evaluated to determine their effect on low temperature ductility. The addition of 7 wt.% rhenium to the ODS molybdenum did not significantly enhance the mechanical properties. However, the addition of 14 wt.% rhenium to the ODS molybdenum resulted in a DBTT well below room temperature in both the stress-relieved and recrystallized condition. Additionally, the tensile strength of ODS Mo-14Re is greater than the base ODS molybdenum at 1,000 to 1,250 C

  14. Nitrides and carbides of molybdenum and tungsten with high specific-surface area: their synthesis, structure, and catalytic properties

    International Nuclear Information System (INIS)

    Volpe, L.

    1985-01-01

    Temperature-programmed reactions between trioxides of molybdenum or tungsten and ammonia provide a new method to synthesize dimolybdenum and ditungsten nitrides with specific surface areas to two-hundred-and-twenty and ninety-one square meters per gram, respectively. These are the highest values on record for any unsupported metallic powders. They correspond to three-four nonometer particles. The reaction of molybdenum trioxide with ammonia is topotactic in the sense that one-zero-zero planes of dimolybdenum nitride are parallel to zero-one-zero planes of molybdenum trioxide. As the trioxide transforms, it passes through an oxynitride intermediate with changing bulk structure and increasing surface area and extent of reduction. The nitride product consists of platelets, pseudomorphous with the original trioxide, which can be regarded as highly porous defect single crystals. By treating small particles of dimolybdenum or ditungsten nitride with methane-dihydrogen mixtures it is possible to replace interstitial nitrogen atoms by carbon atoms, without sintering, and thus to prepare carbides of molybdenum and tungsten with very high specific surface areas. Molybdenum nitride powders catalyze ammonia synthesis. A pronounced increase in the catalytic activity with increasing particle size confirms the structure-sensitive character of this reaction

  15. Development and tests of molybdenum armored copper components for MITICA ion source

    Science.gov (United States)

    Pavei, Mauro; Böswirth, Bernd; Greuner, Henri; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo

    2016-02-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  16. Development and tests of molybdenum armored copper components for MITICA ion source

    International Nuclear Information System (INIS)

    Pavei, Mauro; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo; Böswirth, Bernd; Greuner, Henri

    2016-01-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results

  17. Effect of low fatigue on the ductile-brittle transition of molybdenum

    International Nuclear Information System (INIS)

    Furuya, K.; Nagata, N.; Watanabe, R.; Yoshida, H.

    1982-01-01

    An explicit ductile-brittle transition of molybdenum occurring in both tensile and low cycle fatigue tests was investigated. Tests were performed on several sorts of molybdenum and its alloy TZM, and effects of heat treatment, fabrication method and alloying on the transition behavior and fracture mode are described in detail. All the materials exhibited a brittle failure with degraded fatigue behavior at room temperature, while they became ductile as temperature increased up to 573 K. The tendency of fatigue results was qualitatively in accordance with that of reduction of area in tensile tests. Differences among the materials were minor on the ductile-brittle transition temperature (DBTT), but major on the fatigue life for the embrittled materials. (orig.)

  18. Development and tests of molybdenum armored copper components for MITICA ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Böswirth, Bernd; Greuner, Henri [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-02-15

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  19. Influence of plastic deformation on nitriding of a molybdenum-hafnium alloy

    International Nuclear Information System (INIS)

    Lakhtin, Yu.M.; Kogan, Ya.D.; Shashkov, D.P.; Likhacheva, T.E.

    1982-01-01

    The influence of a preliminary plastic strain on the structure and properties of molybdenum alloy with 0.2 wt.% Hf upon nitriding in the ammonia medium at 900-1200 deg C during 1-6 h is investigated. The study of microhardness distribution across the nitrided layer thickness has shown that with increase of the degree of preliminary plastic strain up to 50 % the nitrided layer hardness decreases and with further reduction growth up to 90 % - increases. Nitriding sharply (hundred times) increases wear resistance of molybdenum alloy with hafnium addition. At the reduction degree 25 % the wear resistance is less than at other values of percentage reduction in area owing to the minimum thickness of the nitride zone. The alloy strained before nitriding by 25 % has shown the best results during heat resistance testing

  20. Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders

    International Nuclear Information System (INIS)

    Mostafaei, Amir; Toman, Jakub; Stevens, Erica L.; Hughes, Eamonn T.; Krimer, Yuval L.; Chmielus, Markus

    2017-01-01

    In this study, we investigate the effect of powders resulting from different atomization methods on properties of binder jet printed and heat-treated samples. Air-melted gas atomized (GA) and water atomized (WA) nickel-based alloy 625 powders were used to binder jet print samples for a detailed comparative study on microstructural evolution and mechanical properties. GA printed samples achieved higher sintering density (99.2%) than WA samples (95.0%) due to differences in powder morphology and chemistry. Grain sizes of GA and WA samples at their highest density were 89 ± 21 μm and 88 ± 26 μm, respectively. Mechanical tests were conducted on optimally sintered samples and sintered plus aged samples; aging further improved microstructure and mechanical properties. This study shows that microstructural evolution (densification, and carbide, oxide and intermetallic phase formation) is very different for GA and WA binder jet printed and heat-treated samples. This difference in microstructural evolution results in different mechanical properties with the superior sintered and aged GA specimen reaching a hardness of 327 ± 7 HV_0_._1, yield strength of 394 ± 15 MPa, and ultimate tensile strength of 718 ± 14 MPa which are higher than cast alloy 625 values.

  1. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity

    Science.gov (United States)

    Lee, Ayoung; Lee, Young Ju; Yoo, Hye Jin; Kim, Minkyung; Chang, Yeeun; Lee, Dong Seog; Lee, Jong Ho

    2017-01-01

    The aim of this study was to investigate the impact of consuming dairy yogurt containing Lactobacillus paracasei ssp. paracasei (L. paracasei), Bifidobacterium animalis ssp. lactis (B. lactis) and heat-treated Lactobacillus plantarum (L. plantarum) on immune function. A randomized, open-label, placebo-controlled study was conducted on 200 nondiabetic subjects. Over a twelve-week period, the test group consumed dairy yogurt containing probiotics each day, whereas the placebo group consumed milk. Natural killer (NK) cell activity, interleukin (IL)-12 and immunoglobulin (Ig) G1 levels were significantly increased in the test group at twelve weeks compared to baseline. Additionally, the test group had significantly greater increases in serum NK cell activity and interferon (IFN)-γ and IgG1 than placebo group. Daily consumption of dairy yogurt containing L. paracasei, B. lactis and heat-treated L. plantarum could be an effective option to improve immune function by enhancing NK cell function and IFN-γ concentration (ClinicalTrials.gov: NCT03051425). PMID:28561762

  2. Elucidating of the microstructure of ZrO2 ceramics with additions of 1200 deg. C heat treated ultrafine MgO powders: Aging at 1420 deg. C

    International Nuclear Information System (INIS)

    Brito-Chaparro, J.A.; Reyes-Rojas, A.; Bocanegra-Bernal, M.H.; Aguilar-Elguezabal, A.; Echeberria, J.

    2007-01-01

    The microstructure and phase transformations in the pressureless sintered composite ZrO 2 with additions of 3.11 wt% high purity and ultrafine MgO powder (9.25 mol% Mg-PSZ) heat treated at 1200 deg. C were investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction, before and after of eutectoid aging treatment at 1420 deg. C during 4 h. The phases in the as-sintered ceramics were t, c, and m, and was not evident under the experimental conditions of this work, the formation of typical disk-like shape tetragonal precipitates aligned at right angles, meanwhile the microstructure resulting in aged samples was majority monoclinic stable phase showing a banded structure which appear to be twin related. When is used MgO previously heat treated as stabilizer of ZrO 2 , strong differences in SEM microstructures compared to the shown by other investigators in very similar compositions have been found

  3. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity

    Directory of Open Access Journals (Sweden)

    Ayoung Lee

    2017-05-01

    Full Text Available The aim of this study was to investigate the impact of consuming dairy yogurt containing Lactobacillus paracasei ssp. paracasei (L. paracasei, Bifidobacterium animalis ssp. lactis (B. lactis and heat-treated Lactobacillus plantarum (L. plantarum on immune function. A randomized, open-label, placebo-controlled study was conducted on 200 nondiabetic subjects. Over a twelve-week period, the test group consumed dairy yogurt containing probiotics each day, whereas the placebo group consumed milk. Natural killer (NK cell activity, interleukin (IL-12 and immunoglobulin (Ig G1 levels were significantly increased in the test group at twelve weeks compared to baseline. Additionally, the test group had significantly greater increases in serum NK cell activity and interferon (IFN-γ and IgG1 than placebo group. Daily consumption of dairy yogurt containing L. paracasei, B. lactis and heat-treated L. plantarum could be an effective option to improve immune function by enhancing NK cell function and IFN-γ concentration (ClinicalTrials.gov: NCT03051425.

  4. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity.

    Science.gov (United States)

    Lee, Ayoung; Lee, Young Ju; Yoo, Hye Jin; Kim, Minkyung; Chang, Yeeun; Lee, Dong Seog; Lee, Jong Ho

    2017-05-31

    The aim of this study was to investigate the impact of consuming dairy yogurt containing Lactobacillus paracasei ssp. paracasei ( L. paracasei ), Bifidobacterium animalis ssp. lactis ( B. lactis ) and heat-treated Lactobacillus plantarum ( L. plantarum ) on immune function. A randomized, open-label, placebo-controlled study was conducted on 200 nondiabetic subjects. Over a twelve-week period, the test group consumed dairy yogurt containing probiotics each day, whereas the placebo group consumed milk. Natural killer (NK) cell activity, interleukin (IL)-12 and immunoglobulin (Ig) G1 levels were significantly increased in the test group at twelve weeks compared to baseline. Additionally, the test group had significantly greater increases in serum NK cell activity and interferon (IFN)-γ and IgG1 than placebo group. Daily consumption of dairy yogurt containing L. paracasei , B. lactis and heat-treated L. plantarum could be an effective option to improve immune function by enhancing NK cell function and IFN-γ concentration (ClinicalTrials.gov: NCT03051425).

  5. Study of the molybdenum retention in alumina

    International Nuclear Information System (INIS)

    Wilkinson, Maria V.; Mondino, Angel V.; Manzini, Alberto

    2002-01-01

    The Argentine National Atomic Energy Commission routinely produces 99 Mo by fission of highly enriched uranium contained in targets irradiated in RA-3 reactor. The current process begins with the dissolution of the irradiated target in a basic media, considering the possibility of changing the targets, it could be convenient to dissolve them in acid media. The use of alumina as a first separation step in acid dissolution processes is already known although it is necessary to determine both the type of alumina to be used and the separation conditions. The study of molybdenum retention in alumina was performed at laboratory scale, using Mo-99 as radiotracer. Different kinds of alumina were tried, varying charge solution acidity. Influence of uranium concentration in the loading solution on molybdenum retention was also studied. (author)

  6. Evaluation of a molybdenum assay canister

    International Nuclear Information System (INIS)

    Yoshizumi, T.T.; Keener, S.J.

    1988-01-01

    The performance characteristics of a commercial molybdenum assay canister were evaluated. The geometrical variation of the technetium-99m (/sup 99m/Tc) activity reading was studied as a function of the elution volume for the standard vials. It was found that the /sup 99m/Tc canister activity reading was ∼ 5% lower than that of the standard method. This is due to attenuation by the canister wall. However, the effect of the geometric variation on the clinical dose preparation was found to be insignificant. The molybdenum-99 ( 99 Mo) contamination level was compared by two methods: (1) the commercial canister and (2) the standard assay kit. The 99 Mo contamination measurements with the canister indicated consistently lower readings than those with the standard 99 Mo assay kit. The authors conclude that the canister may be used in the clinical settings. However, the user must be aware of the problems and the limitations associated with this canister

  7. Electrical resistivity of sputtered molybdenum films

    International Nuclear Information System (INIS)

    Nagano, J.

    1980-01-01

    The electrical resistivity of r.f. sputtered molybdenum films of thickness 5-150 nm deposited on oxidized silicon substrates was resolved into the three electron scattering components: isotropic background scattering, scattering at grain boundaries and scattering at surfaces. It was concluded that the isotropic background scattering is almost equal to that of bulk molybdenum and is not influenced by sputtering and annealing conditions. When the film thickness is sufficient that surface scattering can be ignored, the decrease in film resistivity after annealing is caused by the decrease in scattering at the grain boundaries for zero bias sputtered films, and is caused by an increase of the grain diameter for r.f. bias sputtered films. (Auth.)

  8. Investigation of molybdenum pentachloride interaction with chlorine

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Vovkotrub, Eh.G.; Strekalovskij, V.N.

    1993-01-01

    In Raman spectra of molybdenum pentachloride solutions in liquid chlorine lines were recorded in case of 397, 312, 410, 217 and 180 cm - 1 vibrations of ν 1 (A 1 '), ν 2 (A 1 '), ν 5 (E'), ν 6 (E') and ν 8 (E'') monomer (symmetry D 3h ) molecules of MoCl 5 . Interaction of molten molybdenum pentachloride with chlorine at increased (up to 6 MPa) pressures of Cl 2 was studied. In Raman spectra of its vapour distillation in liquid chlorine alongside with MoCl 5 lines appearance of new lines at 363 and 272 cm -1 , similar in their frequency to the ones calculated for the vibrations ν 1 (A 1g ) and ν 2 (E g ) of MoCl 6 molecules (symmetry O h ), was observed

  9. Microstructural and mechanical properties characterization of heat treated and overaged cast A354 alloy with various SDAS at room and elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ceschini, Lorella; Morri, Alessandro [Department of Industrial Engineering (DIN), Alma Mater Studiorum – University of Bologna, Viale Risorgimento 4, 40136 Bologna (Italy); Industrial Research Centre for Advanced Mechanics and Materials (CIRI-MAM) Alma Mater Studiorum – University of Bologna, Viale Risorgimento 4, 40136 Bologna (Italy); Toschi, Stefania, E-mail: stefania.toschi3@unibo.it [Department of Industrial Engineering (DIN), Alma Mater Studiorum – University of Bologna, Viale Risorgimento 4, 40136 Bologna (Italy); Johansson, Sten [Department of Management & Engineering, Division of Engineering Materials, Linköping University, SE-581 83 Linköping (Sweden); Seifeddine, Salem [Department of Materials and Manufacturing, School of Engineering – Jönköping University (Sweden)

    2015-11-11

    The aim of the present study was to carry out a microstructural and mechanical characterization of the A354 (Al–Si–Cu–Mg) cast aluminum alloy. The effect of microstructure on the tensile behavior was evaluated by testing samples with different Secondary Dendrite Arm Spacing, (SDAS) values (20–25 μm and 50–70 μm for fine and coarse microstructure, respectively), which were produced through controlled casting conditions. The tensile behavior of the alloy was evaluated both at room and elevated temperature (200 °C), in the heat treated and overaged (exposure at 210 °C for 41 h, after heat treatment) conditions. Optical, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) were used for microstructural investigations. Experimental data confirmed the significant role of microstructural coarseness on the tensile behavior of A354 alloy. Ultimate tensile strength and elongation to failure strongly increased with the decrease of SDAS. Moreover, solidification rate influenced other microstructural features, such as the eutectic silicon morphology as well as the size of the intermetallic phases, which in turn also influenced elongation to failure. Coarsening of the strengthening precipitates was induced by overaging, as observed by STEM analyses, thus leading to a strong reduction of the tensile strength of the alloy, regardless of SDAS. Tensile properties of the alloy sensibly decrease at elevated temperature (200 °C) in all the investigated heat treatment conditions.

  10. Discovering a Reliable Heat-Shock Factor-1 Inhibitor to Treat Human Cancers: Potential Opportunity for Phytochemists

    Directory of Open Access Journals (Sweden)

    Murugesan Velayutham

    2018-04-01

    Full Text Available Heat-shock factor-1 (HSF-1 is an important transcription factor that regulates pathogenesis of many human diseases through its extensive transcriptional regulation. Especially, it shows pleiotropic effects in human cancer, and hence it has recently received increased attention of cancer researchers. After myriad investigations on HSF-1, the field has advanced to the phase where there is consensus that finding a potent and selective pharmacological inhibitor for this transcription factor will be a major break-through in the treatment of various human cancers. Presently, all reported inhibitors have their limitations, made evident at different stages of clinical trials. This brief account summarizes the advances with tested natural products as HSF-1 inhibitors and highlights the necessity of phytochemistry in this endeavor of discovering a potent pharmacological HSF-1 inhibitor.

  11. Fireproofing and heat insulating performance improvement of EG/ATH modified intumescent flame retardant coating treated under Co-60 radiation

    Science.gov (United States)

    Zhang, Yuehong; Luan, Weiling; Jiang, Tao

    2017-12-01

    New intumescent flame retardant (IFR) coatings with different fire retardants were prepared in this paper. Expandable graphite (EG) and Aluminium hydroxide (ATH) were respectively added into the conventional IFR coating system, which included ammonium polyphosphate (APP) / pentaerythritol (PER) / melamine (MEL). The fireproofing time and heat insulating properties of the additives acted as fire retardants were investigated via thermogravimetry analysis (TGA) and fire resistance test of homemade big panel test. The morphology of the char layer structure was achieved by scanning electron microscopy (SEM). The highlight of the paper was that the coating samples were pretreated under Co-60 radiation. The influence of radiation on the fire resistance time and char layer height was investigated. The results showed that the prepared IFR coatings can be used in Co-60 radiation for more than 90 min when encountering fire. It would be a reference for radiation shielding in nuclear environment.

  12. Molybdenum-99 supply: a global issue

    International Nuclear Information System (INIS)

    Cote, R.V.

    2011-01-01

    This article discusses the global supply of Molybdenum 99 used in nuclear medicine. Following a disruption in supplies of isotopes in the last few years, a Canadian expert panel assessed the most viable options for securing a sustainable supply of Technitium 99 over the medium to long term. The general recommendations were to strive for diversity and redundancy throughout the supply chain, leverage multi-use infrastructure, continue with international coordination and seek processing standardization within North America.

  13. Reaction between molybdenum hexafluoride and carboxylic acids

    International Nuclear Information System (INIS)

    Shustov, L.D.; Nikolenko, L.N.; Senchenkova, T.M.

    1983-01-01

    Trifluoromethyl derivatives of pyridine, imidazole and difluoromethane are synthesized during interaction of MoF 6 surplUs (190-210 deg) with nicotine-isomicotine-, 2,6-pyridinedicarboxylic-, 4,5-imidazoledicarboxyclic- and diffluoroacetic acids. The yield of trifluoromethyl derivatives attains 84%. Molybdenum hexafluoride offers some advantages in comparisoo with toxic SF 4 . MoF 6 toxicity is low; leakage of MoF 6 vapors is easily detected

  14. Statistics of grain misorientations in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Rybin, V V; Titovets, Yu F; Teplitskij, D M; Zolotorevskij, N Yu

    1982-03-01

    Sets of misorientations between neighbouring grains for three recrystallized molybdenum polycrystals differing in purity, phase composition and prehistory are experimentally determined. The data obtained are analyzed according to modern representations of intergrain boundary structure. In the two materials among the three mentioned above the share of boundaries close to special boundaries with high density of coinciding points turned to be 1.5 times higher than in the polycrystal with chaotic distribution of grains by orientations.

  15. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    International Nuclear Information System (INIS)

    Zhang, Weiwen; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-01-01

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al 7 Cu 2 Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al m Fe, α-Fe or Al 6 (FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al 7 Cu 2 Fe or Al 7 Cu 2 (FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al 20 Cu 2 Mn 3 ), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively

  16. Biomass as biosorbent for molybdenum ions

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Mitiko; Santos, Jacinete L. dos; Damasceno, Marcos O.; Egute, Nayara dos S.; Moraes, Adeniane A.N.; Santos, Bruno Z., E-mail: myamaura@ipen.br, E-mail: jlsantos@ipen.br, E-mail: molidam@ipen.br, E-mail: nayara.egute@usp.br, E-mail: adenianemrs@ig.com.br, E-mail: bzsantos@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Biosorbents have been focused as renewable materials of low cost, and have been used for metal removal from the wastewater by adsorption phenomenon. Biosorbents are prepared of biomass, whose reactive sites in its chemical structure have affinity to bind to metal ions. In this work, performance of corn husk, sugarcane bagasse, coir, banana peel, fish scale, chitin and chitosan as biosorbents of molybdenum (VI) ions in aqueous medium was evaluated. The adsorption experiments were investigated in a batch system varying the pH solution from 0.5 to 12 and the contact time between the phases from 2 min to 70 min. {sup 99}Mo radioisotope was used as radioactive tracer for analysis of molybdenum ions by gamma spectroscopy using a HPGe detector. Results revealed that acidity of the solution favored the adsorption of Mo (VI) ions on the all biosorbents. Adsorption values higher than 85% were found on sugarcane bagasse, coir, corn husk, chitin and chitosan at pH 2.0. Only the chitosan was dissolved at pH 0.5 and a gel was formed. The models of pseudo-second order and external film diffusion described the kinetics of adsorption of Mo ions on the coir. This work showed that the studied biomass has high potential to be used as biosorbent of molybdenum ions from acidic wastewater, and the kinetics of Mo adsorption on the coir suggested high-affinity adsorption governed by chemisorption. (author)

  17. Biomass as biosorbent for molybdenum ions

    International Nuclear Information System (INIS)

    Yamaura, Mitiko; Santos, Jacinete L. dos; Damasceno, Marcos O.; Egute, Nayara dos S.; Moraes, Adeniane A.N.; Santos, Bruno Z.

    2013-01-01

    Biosorbents have been focused as renewable materials of low cost, and have been used for metal removal from the wastewater by adsorption phenomenon. Biosorbents are prepared of biomass, whose reactive sites in its chemical structure have affinity to bind to metal ions. In this work, performance of corn husk, sugarcane bagasse, coir, banana peel, fish scale, chitin and chitosan as biosorbents of molybdenum (VI) ions in aqueous medium was evaluated. The adsorption experiments were investigated in a batch system varying the pH solution from 0.5 to 12 and the contact time between the phases from 2 min to 70 min. 99 Mo radioisotope was used as radioactive tracer for analysis of molybdenum ions by gamma spectroscopy using a HPGe detector. Results revealed that acidity of the solution favored the adsorption of Mo (VI) ions on the all biosorbents. Adsorption values higher than 85% were found on sugarcane bagasse, coir, corn husk, chitin and chitosan at pH 2.0. Only the chitosan was dissolved at pH 0.5 and a gel was formed. The models of pseudo-second order and external film diffusion described the kinetics of adsorption of Mo ions on the coir. This work showed that the studied biomass has high potential to be used as biosorbent of molybdenum ions from acidic wastewater, and the kinetics of Mo adsorption on the coir suggested high-affinity adsorption governed by chemisorption. (author)

  18. Preparation of single phase molybdenum boride

    International Nuclear Information System (INIS)

    Camurlu, Hasan Erdem

    2011-01-01

    Highlights: → Formation of Mo and a mixture of molybdenum boride phases take place in preparation of molybdenum borides. → It is intricate to prepare single phase molybdenum borides. → Formation of single phase MoB from MoO 3 + B 2 O 3 + Mg mixtures has not been reported previously. → Single phase MoB was successfully prepared through a combination of mechanochemical synthesis and annealing process. - Abstract: The formation of MoB through volume combustion synthesis (VCS), and through mechanochemical synthesis (MCS) followed by annealing has been investigated. MoO 3 , B 2 O 3 and Mg were used as reactants while MgO and NaCl were introduced as diluents. Products were leached in dilute HCl solution and were subjected to X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) examinations. Mo was the major phase component in the VCS products under all the experimental conditions. Mo 2 B, MoB, MoB 2 and Mo 2 B 5 were found as minor phases. Products of MCS contained a mixture of Mo 2 B, MoB, MoB 2 and Mo. After annealing the MCS product at 1400 deg. C for 3 h, single phase α-MoB was obtained.

  19. Weldability of powder-metallurgy molybdenum with low oxygen content

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi

    1987-01-01

    Relationships between the formation of weld pores and the chemical compositions in powder-metallurgy molybdenum were investigated. It is suggested that almost 100% of Ca and Mg form oxides. In contrast, Fe, Ni, Cr and Al, Si only partly form oxides. A powder-metallurgy molybdenum containing less than 84 at.ppm oxygen did not show any large weld pores. The reduction of the oxygen content was achieved by purifying the molybdenum powder. (orig.) [de

  20. Molybdenum(6) complexing with ethylenediaminedisuccinic acid from PMR spectroscopy data

    International Nuclear Information System (INIS)

    Larchenko, V.E.; Kovaleva, I.B.; Mitrofanova, N.D.; Martynenko, L.I.

    1989-01-01

    Methods of high resolution PMR spectroscopy and pH potentiometry are used to study molybdenum(6) complexing with ethylenediaminedisuccinic acid in aqueous solutions. It is shown that molybdenum(6) interacts with ethylenediaminedisuccinic acid in the narrow range of pH values 4.0-6.5, where MoO 3 H 2 L 2 - and MoO 3 HL 3- complexes with asymmetrical structure are formed. Composition and structure of molybdenum(6) ethylenediaminedisuccinates and ethylenediaminetetraacetates are compared

  1. Deformation localization and cyclic strength in polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  2. Sorption of molybdenum by cellulose polyphosphate from acid solutions

    International Nuclear Information System (INIS)

    Luneva, N.K.; Oputina, A.G.; Ermolenko, I.N.

    1985-01-01

    The sorption of molybdenum on cellulose polyphosphate from acid solutions of ammonium molybdate depending on the phosphorus content in samples, concentration and pH of the solution, sorption time is studied. It is shown that a maximum molybdenum content on the cellulose samples with different phosphorus content is pointed out at an ammonium molybdate concentration 0.02 M. Saturation of the sorption curve is attained at molar ratio of adsrbed molybdenum to phosphorus 1:4. In case of small fillings the compound with molybdenum to phosphorus ratio 1:10 is formed

  3. Separation of uranium from molybdenum by alkyl phosphoric acid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zhongshi, Li

    1986-08-01

    The regularities of separation of uranium from molybdenum by alkyl phosphoric acid extraction are described. Two parameters, i.e., density ratio of uranium to molybdenum in organic phase at first stage and density of uranium in raffinate at last stage are presented. The relationship between these parameters and purity of molybdenum and uranium products is given. The method of adjusting and controlling these parameters in experiments and production is worked out. The technical key problem in comprehensive utilization of sedimentary type uranium ore containing molybdenum with close concentration of these to elements has been solved.

  4. High strength tungsten heavy alloys with molybdenum additions

    International Nuclear Information System (INIS)

    Bose, A.; Sims, D.M.; German, R.M.

    1987-01-01

    Tungsten heavy alloys are candidates for numerous applications based on the unique combination of high density, high strength, and high ductility coupled with excellent machinability. Though there has been considerable research on heavy alloys, the primary focus has been on the ductility. These alloys are well suited for ballistic uses due to their high densities and it is expected that for superior ballistic performance, a high hardness, high strength and moderate ductility alloy would be ideal. The major goal of this investigation was to obtain heavy alloys with hardness greater than HRA 72. It is evident from the phase diagrams that molybdenum, which goes into solution in tungsten, nickel and iron, could act as a potential strengthening addition. With this in view, tungsten heavy alloys with molybdenum additions were fabricated from mixed elemental powders. A baseline composition of 90W-7Ni-3Fe was chosen to its good elongation and moderate strength. The molybdenum additions were made by replacing the tungsten. Compared to the baseline properties with no molybdenum addition, the strength and hardness showed a continuous increase with molybdenum addition. The ductility of the alloy continued to decrease with increasing molybdenum content, but even with 16% wt. % molybdenum of the elongation was still around 6%. An interesting facet of these alloying additions is the grain refinement that is brought about by adding to molybdenum to the system. The grain refinement is related to the lower solubility of tunbsten in the matrix due to partial displacement by molybdenum

  5. The measurement of the intrinsic impurities of molybdenum and carbon in the Alcator C-Mod tokamak plasma using low resolution spectroscopy

    International Nuclear Information System (INIS)

    May, M.J.; Finkenthal, M.; Regan, S.P.

    1997-01-01

    The intrinsic impurity content of molybdenum and carbon was measured in the Alcator C-Mod tokamak using low resolution, multilayer mirror (MLM) spectroscopy (Δλ ∼ 1-10 A). Molybdenum was the dominant high-Z impurity and originated from the molybdenum armour tiles covering all the plasma facing surfaces (including the inner column, the poloidal divertor plates and the ion cyclotron resonant frequency (ICRF) limiter) at Alcator C-Mod. Soft X ray extreme ultraviolet (XUV) emission, lines of charge states, ranging from hydrogen-like to helium-like lines of carbon (radius/minor radius, r/a ∼ 1) at the plasma edge to potassium- to chlorine-like (0.4 eff value, and the power losses through line radiation were estimated. For the diverted ohmically heated plasma examined, the intrinsic molybdenum and carbon concentrations in the core plasma were found to be ∼ 1.2 x 10 10 and ∼ 1.7 x 10 12 cm -3 , respectively. These measurements were obtained before the plasma facing components were boronized. The calculated radiated power from molybdenum was 170 kW; for carbon it was 45 kW. The contribution to the measured Z eff - 1 value of ∼ 0.8 was ∼ 0.11 for molybdenum and ∼ 0.5 for carbon. (author). 36 refs, 11 figs, 3 tabs

  6. Magnetic inductive heating of organs of mouse models treated by copolymer coated Fe3O4 nanoparticles

    Science.gov (United States)

    Pham, Hong Nam; Giang Pham, Thi Ha; Nguyen, Dac Tu; Thong Phan, Quoc; Thu Huong Le, Thi; Thu Ha, Phuong; Do, Hung Manh; Nhung Hoang, Thi My; Phuc Nguyen, Xuan

    2017-06-01

    Biodistribution studies provide basic information to design and perform various applications of superparamagnetic iron oxide magnetic nanoparticles (SPIOs) in biomedicine such as drug delivery, MRI as well as hyperthermia. Recently, several quantitative measurements as well as new imaging methods have been used to characterize the SPIOs distribution in organs and in tissues of animal model. In this report we used the fabricated iron oxide nanoparticles coated with two block copolymers of polystyrene-co-polyacrylic acid (St-co-PAA) and polylactic acid-co-polyethylene glycol (PLA-PEG). The biodistributions were investigated ex-vivo for several organs of both healthy and Sarcoma transplanted Swiss mice. The SPIOs concentrations were verified mainly by magnetic inductive heating (MIH) measurement with a combination with atomic absorption spectroscopy (AAS). The results indicated the density detected highest in liver and lowest in kidney. The SPIOs concentration increased significantly up to 24 h after the injection. The observations by our two methods not only are in agreement with each other but also consistent with the tendency reported by other techniques. Discussion will also concern injection strategy for various aspects of hyperthermia applications. Invited talk at 8th Int. Workshop on Advanced Materials Science and Nanotechnology (Ha Long City, Vietnam, 8-12 November 2016).

  7. Intergranular Corrosion Behavior of 304LN Stainless Steel Heat Treated at 623 K (350 °C)

    Science.gov (United States)

    Singh, Raghuvir; Kumar, Mukesh; Ghosh, Mainak; Das, Gautam; Singh, P. K.; Chattoraj, I.

    2013-01-01

    Low temperature sensitization of 304LN stainless steel from the two pipes, differing slightly in chemical composition, has been investigated; specimens were aged at 623 K (350 °C) for 20,000 hours and evaluated for intergranular corrosion and degree of sensitization. The base and heat-affected zone (HAZ) of the 304LN-1 appear resistant to sensitization, while 304LN-2 revealed a "dual" type microstructure at the transverse section and HAZ. The microstructure at 5.0-mm distance from the fusion line indicates qualitatively less sensitization as compared to that at 2.0 mm. The 304LN-2 base alloy shows overall lower degree of sensitization values as compared to the 304LN-1. A similar trend of degree of sensitization was observed in the HAZ where it was higher in the 304LN-1 as compared to the 304LN-2. The weld zone of both the stainless steels suffered from cracking during ASTM A262 practice E, while the parent metals and HAZs did not show such fissures. A mottled image within the ferrite lamella showed spinodal decomposition. The practice E test and transmission electron microscopy results indicate that the interdendritic regions may suffer from failure due to carbide precipitation and due to the evolution of brittle phase from spinodal decomposition.

  8. Corrosion Behaviour of Heat - Treated Al-6063/ SiCp Composites Immersed in 5 wt% NaCl Solution

    Directory of Open Access Journals (Sweden)

    Kenneth ALANEME

    2011-06-01

    Full Text Available The influence of SiC volume percent and temper conditions (namely, as-cast, solutionized, and artificial age hardening at 180°C and 195°C on the corrosion behaviour of Al (6063 composites and its monolithic alloy immersed in 5wt% NaCl solution has been investigated. Al (6063 - SiC particulate composites containing 6, 12 and 15 volume percent SiC were produced by premixing the SiC particles with borax additive and then adopting two step stir casting. Mass loss and corrosion rate measurements were utilized as criteria for evaluating the corrosion behaviour of the composites. The results show that the corrosion susceptibility of the Al (6063 - SiCp composites was higher than that of the monolithic alloy, and for most cases the corrosion rate of the composites increased with increase in volume percent of SiC. However, it was discovered that the nature of the passive films formed on the composites was sufficiently stable to reduce significantly the corrosion rate of the composites after 13days of immersion. This trend was observed to be consistent for all heat-treatment conditions utilized.

  9. Effect of molybdenum and iron supply on molybdenum (99Mo) and iron (59Fe) uptake and activity of certain enzymes in tomato plants grown in sand culture

    International Nuclear Information System (INIS)

    Chatterjee, C.; Agarwala, S.C.

    1979-01-01

    Tomato (Lycopersicon esculentum Mill. var. Marglobe) plants were raised under controlled sand culture to study the interaction of molybdenum and iron supply on the uptake of molybdenum and iron and activity of certain enzymes affected by iron and/or molybdenum supply. Iron deficiency caused a decrease in the molybdenum uptake and accentuated the effect of molybdenum deficiency in reducing the uptake and more so the translocation of molybdenum from roots to shoots, thus inducing more severe molybdenum deficiency. The deficiency of iron and molybdenum decreased the activity of catalase, succinate dehydrogenase and nitrate reductase, the most marked decrease being found in plants supplied with both iron and molybdenum at low levels. Changes in the activities of nitrate reductase and catalase can be attributed to the interaction of iron and molybdenum supply in their absorption and translocation. (auth.)

  10. Evaluation of brazing joint of graphites and molybdenum

    International Nuclear Information System (INIS)

    Ishiyama, Shintarou; Kodaira, Tsuneo; Oku, Tatsuo

    1991-01-01

    Bonding test of six kinds of graphites to molybdenum was performed in the following conditions: Brazing elements was obtained by mixing of titanium nickel and copper in the range of 90∼51w%, 40∼10w%, 31∼0w%, respectively. Nonpressed brazing was performed at maximum temperature 1,000degC in a vacuum. Strength tests of these brazed joints were done in the conditions of at high temperature up to, 1,100degC in a vacuum, after 200 heat cycles from room temperature to about 900degC. Optical observation were performed before and after electron beam tests at 3.0 kW/cm 2 ·0.1 s·5 shots. The following results were derived: (1) The good mixing condition was found for titanium, nickel and copper brazing material at 64, 23 and 13w%, respectively. (2) Bending strengths of the brazed joints at room temperature were found to be proportional to the bending strengths of the graphite. (3) Bending strengths of the brazed joints shows no change until tested temperature reached 900degC in a vacuum. (4) Bending strength of the brazed joints showed no change after 200 heat cycles in the temperature range of room ∼ about 900degC and the electron beam tests. (author)

  11. On the effect of interaction of molybdenum trioxide and magnesium oxide in water

    International Nuclear Information System (INIS)

    Bunin, V.M.; Karelin, A.I.; Solov'eva, L.N.

    1992-01-01

    Interaction of molybdenum trioxide and magnesium oxide in water was studied. It is shown that molybdenum trioxide forms consecutively magnesium molybdate, dimolybdate and magnesium polymolybdates with magnesium oxide

  12. Research And Practice: Quantification Of Raw And Heat-Treated Cow Milk in Sheep Milk, Cheese And Bryndza By ELISA Method

    Directory of Open Access Journals (Sweden)

    Lucia Zeleňáková

    2016-01-01

    Full Text Available The aim of this study was to test the reliability of commercial ELISA tests (RC-bovino within raw and heat treated cow milk detection in sheep milk and cheese in order to obtain a high-quality, reliable and economically beneficial method suitable for routine application in practice. These tests were subsequently used for quantification of cow milk in commercial "Bryndza". Raw sheep milk, cow milk and heat-treated cow milk (pasteurisation at 72 °C for 15 sec or at 85 °C for 3 sec were mixed in precisely defined proportions (0 - 100% cow milk in sheep milk. The milk mixtures were sampled to detect adulteration and subsequently cheese was made. By ELISA tests was possible to determine these amounts of raw cow milk in sheep milk: 0.5% (0.2%, 5 % (4.81%, 50% (42.08% and 75% (56.52%. The pasteurized samples in different combinations gave lower optical density responses than those prepared from raw milk (by approximately 60%. In context with the above mentioned, the relationship between the real and detected amount of cow milk (% in different production stages (milk, cheese using a regression analysis was examined. However, a lower reliability of the detection was indicated by R2 values, which ranged from 0.4058 (cheese to 0.5175 (milk. In practice this means that although individual percentage (% of cow milk in the sample can be detected, but in the unknown sample it can not be clearly confirm whether the cow milk was raw or heat-treated. In this context, the results can be inaccurate and may not correspond to the real situation. Within monitoring phase of this research, 9 samples of bryndza were analysed with the results of detected cow milk ranged from 11.56% to 14.3%. The obtained results confirm that the appropriate selection of ELISA tests can become an important factor in the setting of analytical capabilities for the detection of milk and cheese adulteration.

  13. Determination of hafnium, molybdenum, and vanadium in niobium and niobium-based alloys by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ide, Kunikazu; Kobayashi, Takeshi; Sudo, Emiko.

    1985-01-01

    The analytical procedure is as follows: Weigh 1 g of a sample and put it into a 100 cm 3 PTFE beaker. Add 5 ml of distilled water and 5 ml of hydrofluoric acid, and then heat the solution on a hot plate, adding 3 ml of nitric acid dropwise. Dilute the solution to 100 cm 3 with distilled water. When hafnium is determined, add 2 g of diammonium titanium hexafluoride ((NH 4 ) 2 TiF 6 )) before dilution. Working standard solutions are prepared by adding the stock standard solutions of hafnium, molybdenum, and vanadium into niobium solutions. When hafnium is determined, add 2 g of (NH 4 ) 2 TiF 6 and the alloying elements in amounts corresponding to those in sample solutions into the working standard solutions. The tolerable amounts of hydrofluoric acid were 2.9 M, 2.1 M, and 3.1 M and those of nitric acid were 1.0 M, 1.6 M, and 1.6 M for hafnium, molybdenum, and vanadium, respectively. It was found that (NH 4 ) 2 TiF 6 greatly increased the sensitivity for hafnium determination. Niobium showed minus effect for hafnium and plus effect for molybdenum and vanadium. The atomic absorption of molybdenum and vanadium were not influenced by the presence of 20 % of each alloying element, while the atomic absorption of hafnium was given plus effect by 20 % of zirconium, iron, cobalt, nickel, manganese, chromium or vanadium and minus effect by 20 % tungsten. The analytical values of hafnium, molybdenum, and vanadium in niobium-based alloys by this method showed a good agreement with those by X-ray fluorescence analysis. The lower limits of determination (S/N=2) were 0.05, 0.001, and 0.002 % and the relative standard deviation were 3, 1, and 1.5 % for hafnium, molybdenum, and vanadium, respectively. (author)

  14. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    Science.gov (United States)

    Domnick, Claudia; Hauck, Michael; Casey, Kenneth L; Engel, Andreas K; Lorenz, Jürgen

    2009-01-01

    Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG) data. Comparison of phase-locked (evoked) and non-phase-locked (total) EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage. PMID:21197293

  15. Vascular homeostasis regulators, Edn1 and Agpt2, are upregulated as a protective effect of heat-treated zinc yeast in irradiated murine bone marrow

    International Nuclear Information System (INIS)

    Ueno, Megumi; Imadome, Kaori; Iwakawa, Mayumi; Anzai, Kazunori; Ikota, Nobuo; Imai, Takashi

    2010-01-01

    The purpose of this study was to elucidate the mechanism underlying the in vivo radioprotection activity by Zn-containing, heat-treated Saccharomyces cerevisiae yeast (Zn-yeast). Zn-yeast suspension was administered into C3H/He mice immediately after whole body irradiation (WBI) at 7.5 Gy. Bone marrow was extracted from the mice 6 hours after irradiation and analyzed on a microarray. Expression changes in the candidate responsive genes differentially expressed in treated mice were re-examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The bone marrow was also examined pathologically at 6 h, 3, 7, and 14 days postirradiation. Thirty-six genes, including Edn1 and Agpt2, were identified as candidate responsive genes in irradiated mouse bone marrow treated with Zn-yeast by showing a greater than three-fold change compared with control (no irradiation and no Zn-yeast) mice. The expressions of Cdkn1a, Bax, and Ccng, which are well known as radioresponsive genes, were upregulated in WBI mice and Zn-yeast treated WBI mice. Pathological examination showed the newly formed microvessels lined with endothelial cells, and small round hematopoietic cells around vessels in bone marrow matrix of mice administered with Zn-yeast after WBI, while whole-body irradiated mice developed fatty bone marrow within 2 weeks after irradiation. This study identified a possible mechanism for the postirradiation protection conferred by Zn-yeast. The protective effect of Zn-yeast against WBI is related to maintaining the bone marrow microenvironment, including targeting endothelial cells and cytokine release. (author)

  16. Microstructural characteristics of spray formed and heat treated Al–(Y, La)–Ni–Co system

    International Nuclear Information System (INIS)

    Srivastava, V.C.; Surreddi, K.B.; Scudino, S.; Schowalter, M.; Uhlenwinkel, V.; Schulz, A.; Eckert, J.; Rosenauer, A.; Zoch, H.-W.

    2013-01-01

    Highlights: •Al–(La, Y)–Ni–Co based alloys are spray formed to thickness 10–12 mm. •XRD and DSC confirms the presence of large fraction of amorphous phase. •Optical, SEM and TEM studies corroborated the observations made. Mechanism of microstructural evolution brought out. •Heat treatment of spray deposited materials showed increased hardness which decreased at high temperature annealing. •La containing system showed better thermal stability than that without La. -- Abstract: Recent studies on the synthesis of bulk Al–RE (Rare Earth)-TM (Transition Metal) based materials, from melt spun ribbons and gas atomized powders, have shown that partially amorphous or nano-crystalline structures lead to a high specific strength. In the present study, therefore, spray atomization and deposition process has been used to produce plates of Al 85 Y 8 Ni 5 Co 2 (deposit D1) and Al 83 Y 5 La 5 Ni 5 Co 2 (deposit D2) systems so as to synthesize bulk deposit of nano-crystalline and/or partially amorphous materials in a single step. The rapid solidification and high undercooling of droplets during atomization and the chilling effect on undercooled liquid upon deposition give rise to the above microstructural features. The microstructural features of deposits as well as overspray powders were studied using optical, scanning and transmission electron microscope. The alloys invariably showed a large fraction of nano-crystalline structure and amorphous features, characterized by featureless regions at optical resolution, along with distribution of primary equilibrium phases. The differential scanning calorimetric (DSC) analysis of the deposits showed similar crystallization features as observed during crystallization of fully amorphous melt spun ribbons of respective compositions. The transmission electron microscopy of deposit D1 showed the presence of 50–100 nm size fcc-Al precipitates in an amorphous matrix decorated with 5–20 nm fcc-Al crystallites. The

  17. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    Directory of Open Access Journals (Sweden)

    Claudia Domnick

    2009-03-01

    Full Text Available Claudia Domnick1, Michael Hauck1,2,3, Kenneth L Casey3, Andreas K Engel1, Jürgen Lorenz1,3,41Department of Neurophysiology and Pathophysiology; 2Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 3Department of Neurology, University of Michigan, Ann Arbor, MI, USA; 4Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, GermanyAbstract: Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG data. Comparison of phase-locked (evoked and non-phase-locked (total EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage.Keywords: C-fibers, oscillations, EEG, laser, capsaicin, inflammatory pain

  18. A study on the delayed hydride cracking mechanism in cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and zircaloy-2 pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang Sik

    1992-02-15

    Cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and Zircaloy-2 pressure tubes were hydrided to the hydrogen concentration of 68 ppm, 49 ppm and 242-411 ppm, respectively, and compact tension specimens were machined from the hydrided materials. The crack growth rate by delayed hydride cracking was measured by potential drop method at various temperatures on the above mentioned three types of specimens. The activation energy obtained were 43 KJ/mol for cold worked Zr-2.5Nb and 37 KJ/mol for heat treated Zr-2.5Nb, which were in good agreements with that of Coleman (1977), while they were lower than the activation energy of 65.5 KJ/mol obtained by Simpson-puls (1979) and 71.5 KJ/mol by Ambler (1984). The DHC growth rate in Zircaloy-2 were about one fifth of that of Zr-2.5Nb, which is due to the texture and material strength effects. Striations which indicate stepwise DHC growth were observed at fracture surface by scanning electron microscope and unsymmetric crack tunnellings were also observed, which seems to be due to the difference in hydrogen diffusion rate caused by the difference in stress fields between inner and outer surface. The comparison of test results with the DHC growth rate calculated by Simpson-puls model showed good agreement at high temperatures, whereas at the lower temperatures the crack growth rates were 2.5 times higher than the calculated values.

  19. A study on the delayed hydride cracking mechanism in cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and zircaloy-2 pressure tubes

    International Nuclear Information System (INIS)

    Choi, Kwang Sik

    1992-02-01

    Cold worked Zr-2.5Nb, heat treated Zr-2.5Nb and Zircaloy-2 pressure tubes were hydrided to the hydrogen concentration of 68 ppm, 49 ppm and 242-411 ppm, respectively, and compact tension specimens were machined from the hydrided materials. The crack growth rate by delayed hydride cracking was measured by potential drop method at various temperatures on the above mentioned three types of specimens. The activation energy obtained were 43 KJ/mol for cold worked Zr-2.5Nb and 37 KJ/mol for heat treated Zr-2.5Nb, which were in good agreements with that of Coleman (1977), while they were lower than the activation energy of 65.5 KJ/mol obtained by Simpson-puls (1979) and 71.5 KJ/mol by Ambler (1984). The DHC growth rate in Zircaloy-2 were about one fifth of that of Zr-2.5Nb, which is due to the texture and material strength effects. Striations which indicate stepwise DHC growth were observed at fracture surface by scanning electron microscope and unsymmetric crack tunnellings were also observed, which seems to be due to the difference in hydrogen diffusion rate caused by the difference in stress fields between inner and outer surface. The comparison of test results with the DHC growth rate calculated by Simpson-puls model showed good agreement at high temperatures, whereas at the lower temperatures the crack growth rates were 2.5 times higher than the calculated values

  20. Research of the technology of obtaining pure and disperse molybdenum disulfide from molybdenum concentrate

    International Nuclear Information System (INIS)

    Hovsepyan, A.H.; Israyelyan, S.M.

    2009-01-01

    The technology of obtaining pure and disperse molybdenum disulfide is worked out. The processes of refinement from the flotation reagents and deslimation by means of decantation, refinement of molybdenite concentrate from impurities by selective leaching methods are studied. The optimal regime of technological process is chosen

  1. EFFECTS OF HEAT STRESS ON BLOOD ACID-BASE BALANCE AND MINERAL CONTENT IN GUINEA FOWLS WHEN DRINKING WATER TREATED WITH MAGNETIC FIELD WAS USED

    Directory of Open Access Journals (Sweden)

    Beata GŁOWIŃSKA

    2011-01-01

    Full Text Available The purpose of the study was to examine the effect of 24-hour heat stress on blood acid-base balance parameters and mineral content in guinea fowls when drinking water treated with magnetic field was used. The maximum environmental temperature at the end of the present experiment was 32oC. The relative humidity was maintained at 55% (±2. Blood samples were collected from birds three times: in the 1st, 12th and 24th hour of stress. Exposure to heat stress significantly increased blood bicarbonate ion concentration (HCO3 -, content of buffer alkali (BB and decreased shortage of alkali (BE but only in the 12th hour of stress. In the level of oxygen pressure (pO2 and percentage of oxygen content (O2sat in the 12th and 24th hour of the experiment statistically high significant decrease occurred. In consequence of high environmental temperature the statistically significant decrease of sodium was found. No changes in the level of potassium and chlorine ions in guinea fowls watered magnetized water occurred.

  2. Microstructure and emission ability of rare earth oxides doped molybdenum cathodes

    International Nuclear Information System (INIS)

    Yang Jiancan; Nie Zuoren; Wang Yiman

    2003-01-01

    We adopted high-resolution transmission electron microscopy (TEM) and scanning electron microscopy (SAM) to observe and analyze the microstructure of rare earth oxide (La 2 O 3 , Sc 2 O 3 ) doped molybdenum cathodes. The results show that there are many nanometer particles in the molybdenum matrix besides some sub-micrometer particles in the crystal interfaces. All these particles are rare earth oxides as determined through calculating the electron diffraction pattern. Then we determined the electron work function and the zero-field emission current of molybdenum cathodes by the electron emission measurement. To correlate the emission data with surface composition, we use Auger electron spectroscopy (AES) to analyze the elements on the activated cathode surface and their depth profiles. We found that there were about 20 nm thick layers on an activated cathode surface, which have a high content of rare earth elements. We also use AES to analyze the elements diffusion to the cathode surface from cathode body during heating up to its operating temperature to find out which element positively affects the electron emission

  3. Finite Element Analysis and Optimization for the Multi-stage Deep Drawing of Molybdenum Sheet

    International Nuclear Information System (INIS)

    Kim, Heung-Kyu; Hong, Seok Kwan; Kang, Jeong Jin; Heo, Young-moo; Lee, Jong-Kil; Jeon, Byung-Hee

    2005-01-01

    Molybdenum, a bcc refractory metal with a melting point of about 2600 deg. C, has a high heat and electrical conductivity. In addition, it remains strong mechanically at high temperatures as well as at low temperatures. Therefore it is a technologically very important material for the applications operating at high temperatures. However, a multi-stage process is required due to the low drawability for making a deep drawn part from the molybdenum sheet. In this study, a multi-stage deep drawing process for a molybdenum circular cup was designed by combining the drawing with the ironing, which was effective for the low drawability materials. A parametric study by FE analysis for the multi-stage deep drawing was conducted for evaluation of the design variables effect. Based on the FE analysis result, the multi-stage deep drawing process was parameterized by the design variables, and an optimum process design was obtained by the process optimization based on the FE simulation at each stage

  4. Liquid phase sintering of carbides using a nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Barranco, J.M.; Warenchak, R.A.

    1987-01-01

    Liquid phase vacuum sintering was used to densify four carbide groups. These were titanium carbide, tungsten carbide, vanadium carbide, and zirconium carbide. The liquid phase consisted of nickel with additions of molybdenum of from 6.25 to 50.0 weight percent at doubling increments. The liquid phase or binder comprised 10, 20, and 40 percent by weight of the pressed powders. The specimens were tested using 3 point bending. Tungsten carbide showed the greatest improvement in bend rupture strength, flexural modulus, fracture energy and hardness using 20 percent binder with lesser amounts of molybdenum (6.25 or 12.5 wt %) added to nickel compared to pure nickel. A refinement in the carbide microstructure and/or a reduction in porosity was seen for both the titanium and tungsten carbides when the alloy binder was used compared to using the nickel alone. Curves depicting the above properties are shown for increasing amounts of molybdenum in nickel for each carbide examined. Loss of binder phase due to evaporation was experienced during heating in vacuum at sintering temperatures. In an effort to reduce porosity, identical specimens were HIP processed at 15 ksi and temperatures averaging 110 C below the sintering g temperature. The tungsten carbide and titanium carbide series containing 80 and 90 weight percent carbide phase respectively showed improvement properties after HIP while properties decreased for most other compositions

  5. Interaction of dislocations and point defects in high-purity molybdenum single crystals

    International Nuclear Information System (INIS)

    Polotskij, I.G.; Benieva, T.Ya.; Golub, T.V.

    1975-01-01

    The effect of the interstitial atoms distribution on dislocations mobility in extra pure molybdenum is studied. The amplitude relationships of the internal fraction were measured, which makes it possible to record energy dissipation associated with dislocation mobility in conditions of microdeformation. It was established that single crystals of extra pure molybdenum subjected to minor plastic deformation (1%) are characterized by high internal friction, which depends on the degree of crystall purification with regard to interstitial admixtures. Annealing at temperatures of 200 - 500 deg reduces the total level of damping and causes appearance of a sharp amplitude relationship. In this case, the reduction of damping is associated with diffusion of the interstitial atoms towards the dislocation line and its fixation. The irreversible nature of the internal friction amplitude relationship after development of high deformation amplitudes is explained by micro-plastic deformation processes. The amplitude. of deformation, after which the internal friction becomes irreversible, increases with the increase of the annealing temperature. The damping-deformation hysteresis reaches its maximum value after heat treatment at middle tempetatures. With the increase of the annealing temperature, the hysteresis becomes less. Thermal activation causes displacement of the critical amplitude corresponding to production of the delta-epsilon hysteresis to the region of lower values. Using the Pagen, Pare and Goben theory the amplitude-dependent internal friction data have been employed for calculation of the activation volume values which characterize the initial stages of plastic flow in extra pure single crystals of molybdenum

  6. The Effect of Molybdenum Fertilization on Arachis Glabrata Biomass ...

    African Journals Online (AJOL)

    The effect of molybdenum fertilization on biomass and the number of nodules of Arachis glabrata was assessed at the Teaching and Research Farm of the University of Dschang in 2011 at different periods of mowing. A factorial design comparing four doses of molybdenum as ammonium molybdate (0, 0.75, 1.5 and 2.25 ...

  7. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    International Nuclear Information System (INIS)

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-01-01

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities

  8. Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils

    Science.gov (United States)

    Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...

  9. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

    Directory of Open Access Journals (Sweden)

    A. R. Othman

    2013-01-01

    Full Text Available Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v glucose, 50 mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong’s constants pmax, Ks, Sm, and n was 5.88 μmole Mo-blue hr−1, 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.

  10. Behaviour of helium after implantation in molybdenum

    International Nuclear Information System (INIS)

    Viaud, C.; Maillard, S.; Carlot, G.; Valot, C.; Gilabert, E.; Sauvage, T.; Peaucelle, C.; Moncoffre, N.

    2009-01-01

    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature

  11. Spectra from foil-excited molybdenum ions

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Cecchi, J.L.; Kruse, T.H.

    1978-01-01

    The extreme-ultraviolet spectra (5 to 55 nm) for foil-excited molybdenum ions have been measured using 22 to 200 MeV beams from the Brookhaven National Laboratory MP tandem Van de Graaff accelerator facility, 20 μg/cm 2 C stripping foils, and a grazing incidence spectrometer. The mean ion charge states (13 to 28) and the narrow distribution widths (about 2 charge states) were accurately predictable from experimental parameters. Where possible, comparisons are given with Mo radiation from tokamaks, vacuum sparks, and laser-excited plasmas

  12. Molybdenum protective coatings adhesion to steel substrate

    Science.gov (United States)

    Blesman, A. I.; Postnikov, D. V.; Polonyankin, D. A.; Teplouhov, A. A.; Tyukin, A. V.; Tkachenko, E. A.

    2017-06-01

    Protection of the critical parts, components and assemblies from corrosion is an urgent engineering problem and many other industries. Protective coatings’ forming on surface of metal products is a promising way of corrosionprevention. The adhesion force is one of the main characteristics of coatings’ durability. The paper presents theoretical and experimental adhesion force assessment for coatings formed by molybdenum magnetron sputtering ontoa steel substrate. Validity and reliability of results obtained by simulation and sclerometry method allow applying the developed model for adhesion force evaluation in binary «steel-coating» systems.

  13. MHD simulations of molybdenum X-pinches

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.; Stepnevski, V.

    2002-01-01

    One investigates into compression of molybdenum X-pinches applying numerical MHD-models with parabolic and conical initial geometry. The second model describing plasma axial motion in greater detail offers a real geometry of a discharge and is applicable to loads characterized by higher masses in contrast to the first one. Both models enabled to describe all basic phases of compression including origination of a minidiode, occurrence of a narrow neck, microexplosion of a hot point and origination of shock waves followed by sausage instability [ru

  14. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  15. Electrochemical ammonia production on molybdenum nitride nanoclusters

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2013-01-01

    Theoretical investigations of electrochemical production of ammonia at ambient temperature and pressure on nitrogen covered molybdenum nanoparticles are presented. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free...... energy profile for electrochemical protonation of N2 and N adatoms on cuboctahedral Mo13 nanoparticles. Pathways for electrochemical ammonia production via direct protonation of N adatoms and N2 admolecules with an onset potential as low as -0.5 V and generally lower than -0.8 V on both a nitrogen...

  16. Simulations of intergranular fracture in nanocrystalline molybdenum

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2004-01-01

    Using molecular dynamics simulations we investigate the plastic deformation of nanocrystalline molybdenum with a grain size of 12 nm at high strain rates. The simulations are performed with an interatomic potential which is obtained through matching of atomic forces to a database generated...... with density-functional calculations. The simulations show the plastic deformation to involve both grain boundary processes and dislocation migration which in some cases lead to twin boundary formation. A large component of the strain is accommodated through the formation of cracks in the grain boundaries...

  17. Molybdenum Dichalcogenides for Environmental Chemical Sensing

    Directory of Open Access Journals (Sweden)

    Dario Zappa

    2017-12-01

    Full Text Available 2D transition metal dichalcogenides are attracting a strong interest following the popularity of graphene and other carbon-based materials. In the field of chemical sensors, they offer some interesting features that could potentially overcome the limitation of graphene and metal oxides, such as the possibility of operating at room temperature. Molybdenum-based dichalcogenides in particular are among the most studied materials, thanks to their facile preparation techniques and promising performances. The present review summarizes the advances in the exploitation of these MoX2 materials as chemical sensors for the detection of typical environmental pollutants, such as NO2, NH3, CO and volatile organic compounds.

  18. Molybdenum oxide nanocubes: Synthesis and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Muthamizh, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V., E-mail: vnnara@yahoo.co.in [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai -600025 (India); Stephen, A. [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai-600025 (India)

    2015-06-24

    Molybdenum oxide nanoparticles were prepared by Solid state synthesis. The MoO{sub 3} nanoparticles were synthesized by using commercially available ammonium heptamolybdate. The XRD pattern reveals that the synthesized MoO{sub 3} has orthorhombic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MoO{sub 3} nanoparticles. DRS-UV analysis shows that MoO{sub 3} has a band gap of 2.89 eV. FE-SEM analysis confirms the material morphology in cubes with nano scale.

  19. Microstructures and mechanical properties of heat-treated Al–5.0Cu–0.5Fe squeeze cast alloys with different Mn/Fe ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwen, E-mail: mewzhang@scut.edu.cn; Lin, Bo; Fan, Jianlei; Zhang, Datong; Li, Yuanyuan

    2013-12-20

    The Al–5.0 wt% Cu–0.5 wt% Fe alloys with different Mn/Fe ratio were prepared by squeeze casting. Various test techniques, including tensile test, image analysis, scanning electron microscope (SEM), X-ray diffraction (XRD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM) were used to examine the microstructures and mechanical properties of the alloys in T5 heat-treated condition. The results show that the β-Fe (Al{sub 7}Cu{sub 2}Fe) is stable and its needle-like morphology is maintained after T5 heat treatment. However, the Chinese script Al{sub m}Fe, α-Fe or Al{sub 6}(FeMn) partially transform to a new Chinese script Cu-rich α(CuFe) (Al{sub 7}Cu{sub 2}Fe or Al{sub 7}Cu{sub 2}(FeMn)), which is harmful to the mechanical properties of the alloys due to the decrease of the Cu content in α(Al) matrix. The optimal Mn/Fe ratio is determined by the morphology of Fe-rich intermetallics, volume fraction of θ′ and T (Al{sub 20}Cu{sub 2}Mn{sub 3}), size of α(Al) dendrite and porosity. Excessive Mn/Fe ratio will deteriorate the mechanical properties of the alloys due to the increase of the total amount of porosity and the Fe-rich intermetallics. When the Mn/Fe ratio is 1.6 and 1.2 for the applied pressure of 0 MPa and 75 MPa, respectively, the needle-like β-Fe phase is completely converted to the Chinese script Fe-rich intermetallics. The ultimate tensile strength, yield strength and elongation of the T5 heat-treated alloy with the Mn/Fe ratio of 1.2 and applied pressure of 75 MPa reach 395 MPa, 335 MPa and 14%, respectively.

  20. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  1. Thermal cyclic strength of molybdenum monocrystal at high temperatures

    International Nuclear Information System (INIS)

    Strizhalo, V.A.; Uskov, E.I.

    1975-01-01

    The results of the investigation of the thermocyclic creep and low-cycle fatigue of a molybdenum single crystal are discussed. The strength of a molybdenum single crystal under nonisothermal stressing has been investigated by using two different regimes of temperature and load variation. The temperature limits of the cycle were the same for the two testing regimes, the maximum temperature being 1700degC and the minimum 350degC. At higher temperatures (above 1500degC) the short-term strength of single-crystal molybdenum is comparable with that of commercial molybdenum and the refractory alloys, while the ductility is considerably higher. It should be noted that the failure of single-crystal molybdenum under rigid alternating loading is preceded by intensive distortion of the specimen, owing to directional cyclic creep of the metal in zones of bulging and thinning

  2. Synthesis of molybdenum borides and molybdenum silicides in molten salts and their oxidation behavior in an air-water mixture

    NARCIS (Netherlands)

    Kuznetsov, S.A.; Kuznetsova, S.V.; Rebrov, E.V.; Mies, M.J.M.; Croon, de M.H.J.M.; Schouten, J.C.

    2005-01-01

    The formation of various coatings in molybdenum-boron and molybdenum-silicon systems was investigated. Boronizing and siliciding treatments were conducted in molten salts under inert gas atm. in the 850-1050 DegC temp. range for 7 h. The presence of boride (e.g. Mo2B, MoB, Mo2B5) and silicide

  3. Chinese herbal Pulian ointment in treating psoriasis vulgaris of blood-heat syndrome: a multi-center, double-blind, randomized, placebo-controlled trial.

    Science.gov (United States)

    Li, Nuo; Zhao, Wenbin; Xing, Jianmin; Liu, Jianping; Zhang, Guangzhong; Zhang, Yunbi; Li, Yuanwen; Liu, Wali; Shi, Fei; Bai, Yanping

    2017-05-15

    Traditional Chinese medicine (TCM) has a long history in the treatment of psoriasis vulgaris. We aimed to evaluate the clinical efficacy and safety of Chinese herbal Pulian ointment in treating psoriasis vulgaris of blood-heat syndrome. A multicenter, randomized, double-blind, placebo-controlled trial was conducted. Participants with psoriasis vulgaris of blood-heat syndrome were blinded and randomized to receive Pulian ointment or placebo ointment twice daily for 4 weeks, with follow-up 8 weeks after treatment. Psoriasis Area Severity Index (PASI) scores, severity of each symptom and area of skin lesion and quality of life were assessed at baseline, 2 weeks, and 4 weeks. Adverse events were recorded during the study. SAS 9.4 software and SPSS 17.0 software was applied for data analysis. A total of 300 participants with psoriasis vulgaris of blood-heat syndrome were assessed for eligibility, and 294 were randomly assigned to the Pulian ointment and placebo group from six study centers. Full analysis set (FAS): after 4 weeks of treatment, there were significant differences between groups in PASI score and the separate score of skin lesion area, favoring Pulian ointment group (P  0.05). Per protocol set (PPS): There was no statistically significant difference in PASI score and separate score of each symptom and area of skin lesion between two groups (P > 0.05). Quality of life measured by Hamilton Anxiety Rating Scale (HAMA) and 36-Item Short Form Health Survey (SF-36) improved after treatment in both groups, but there was no significant difference between the two groups (P > 0.05). After being followed up for 8 weeks, the total relapse rates of the Pulian Ointment group and placebo group were 5.88 and 8.45%, respectively, and the difference was not statistically significant between the two groups (P > 0.05). No adverse event was observed in both groups throughout the study. Pulian Ointment seems effective and well tolerated in improving the

  4. Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

    CERN Document Server

    SAE Aerospace Standards. London

    2012-01-01

    Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

  5. The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box

    Energy Technology Data Exchange (ETDEWEB)

    Nagul, Edward A. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010 (Australia); McKelvie, Ian D. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL48AA (United Kingdom); Worsfold, Paul [School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth PL48AA (United Kingdom); Kolev, Spas D., E-mail: s.kolev@unimelb.edu.au [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia); Centre for Aquatic Pollution Identification and Management (CAPIM), The University of Melbourne, Victoria 3010 (Australia)

    2015-08-26

    The molybdenum blue reaction, used predominantly for the determination of orthophosphate in environmental waters, has been perpetually modified and re-optimised over the years, but this important reaction in analytical chemistry is usually treated as something of a 'black box' in the analytical literature. A large number of papers describe a wide variety of reaction conditions and apparently different products (as determined by UV–visible spectroscopy) but a discussion of the chemistry underlying this behaviour is often addressed superficially or not at all. This review aims to rationalise the findings of the many 'optimised' molybdenum blue methods in the literature, mainly for environmental waters, in terms of the underlying polyoxometallate chemistry and offers suggestions for the further enhancement of this time-honoured analytical reaction. - Highlights: • Molybdenum blue chemistry for orthophosphate determination is discussed. • The choice of reductant determines the blue product(s) obtained. • Mechanisms are described for various additive and subtractive interferents. • The choice of strong mineral acid for the reaction should be considered. • Detailed recommendations are made for method optimisation.

  6. The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box

    International Nuclear Information System (INIS)

    Nagul, Edward A.; McKelvie, Ian D.; Worsfold, Paul; Kolev, Spas D.

    2015-01-01

    The molybdenum blue reaction, used predominantly for the determination of orthophosphate in environmental waters, has been perpetually modified and re-optimised over the years, but this important reaction in analytical chemistry is usually treated as something of a 'black box' in the analytical literature. A large number of papers describe a wide variety of reaction conditions and apparently different products (as determined by UV–visible spectroscopy) but a discussion of the chemistry underlying this behaviour is often addressed superficially or not at all. This review aims to rationalise the findings of the many 'optimised' molybdenum blue methods in the literature, mainly for environmental waters, in terms of the underlying polyoxometallate chemistry and offers suggestions for the further enhancement of this time-honoured analytical reaction. - Highlights: • Molybdenum blue chemistry for orthophosphate determination is discussed. • The choice of reductant determines the blue product(s) obtained. • Mechanisms are described for various additive and subtractive interferents. • The choice of strong mineral acid for the reaction should be considered. • Detailed recommendations are made for method optimisation

  7. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  8. Climax-Type Porphyry Molybdenum Deposits

    Science.gov (United States)

    Ludington, Steve; Plumlee, Geoffrey S.

    2009-01-01

    Climax-type porphyry molybdenum deposits, as defined here, are extremely rare; thirteen deposits are known, all in western North America and ranging in age from Late Cretaceous to mainly Tertiary. They are consistently found in a postsubduction, extensional tectonic setting and are invariably associated with A-type granites that formed after peak activity of a magmatic cycle. The deposits consist of ore shells of quartz-molybdenite stockwork veins that lie above and surrounding the apices of cupola-like, highly evolved, calc-alkaline granite and subvolcanic rhyolite-porphyry bodies. These plutons are invariably enriched in fluorine (commonly >1 percent), rubidium (commonly >500 parts per million), and niobium-tantalum (Nb commonly >50 parts per million). The deposits are relatively high grade (typically 0.1-0.3 percent Mo) and may be very large (typically 100-1,000 million tons). Molybdenum, as MoS2, is the primary commodity in all known deposits. The effect on surface-water quality owing to natural influx of water or sediment from a Climax-type mineralized area can extend many kilometers downstream from the mineralized area. Waste piles composed of quartz-silica-pyrite altered rocks will likely produce acidic drainage waters. The potential exists for concentrations of fluorine or rare metals in surface water and groundwater to exceed recommended limits for human consumption near both mined and unmined Climax-type deposits.

  9. Neutron activation determination of impurities in molybdenum

    International Nuclear Information System (INIS)

    Usmanova, M.M.; Mukhamedshina, N.M.; Obraztsova, T.V.; Saidakhmedov, K.Kh.

    1984-01-01

    Instrumental neutron-activation techniques of impurity element determination in molybdenum and MoO 3 (solid and powdered samples) have been developed. When determining impurities of Na, K, Mn, Cu, W, Re molybdenum has been irradiated by thermal neutrons in reactor for 20 min, the sample mass constituted 200-300 mg, sample cooling time after irradiation - 2.5-3.5 h. It is shown that in the process of Cr, Fe, Co, Zn determination the samples should be irradiated with thermal neutrons, and in the process of Sb, Ta and Ni determination - with resonance and fast neutrons. Simultaneous determination of the elements during irradiation with neutrons with reactor spectrum is possible. When determining P and S the samples are irradiated with thermal and epithermal neutrons and β-activity of samples and comparison samples are measured using β-spectrometer with anthracene crystal. The techniques developed permit to determine impurities in Mo with a relative standard deviation 0.07-0.15 and lower boundaries of contents determined - 10 -4 - 10 -7 %

  10. Experience in melting of high-quality chromium-nickel-molybdenum steel in oxygen converter

    Energy Technology Data Exchange (ETDEWEB)

    Kosoi, L F; Yaburov, S I; Shul' kin, M L; Vedernikov, G G; Bragin, E D; Filork' yan, B K

    1978-10-01

    Technology of melting high-quality medium-carbon constructional chromium-nickel-molybdenum steel has been developed and tested in 130-t converters. The technology envisages metal refinement in a casting laddle using synthetic lime-aluminous slag and argon blowing, as well as liquid ferroallys (master alloys) for steel deoxidation and alloying. Due to a smaller content of sulfur, phosphorus, arsenic and sulphide inclusions, and to a smaller grain size (N 11-12), the steel, produced according to this technology possesses higher plastic properties and impact strength than conventional open-hearth furnace metal after heat treatment for the same strength.

  11. Experimental evaluation of brazed molybdenum-graphite bonds for the divertor of the NET/ITER nuclear fusion device

    International Nuclear Information System (INIS)

    Smid, I.; Linke, J.; Nickel, H.; Kny, E.; Reheis, N.; Kneringer, G.; Bolt, H.

    1995-01-01

    Composites consisting of plasma-facing carbon material brazed to molybdenum (TZM) substrates are a promising system for the divertor of the Next European Torus (NET) and the International Thermonuclear Experimental Reactor (ITER). Isotropic graphite and a refractory metal (molybdenum or TZM, a high temperature alloy of molybdenum), two dissimilar substrate materials, yet closely matched in their thermal expansivities, were joined with the use of four different high-temperature brazes: Zr, 90Ni-10Ti, 90Cu- 10Ti, and 70Ag-27Cu-3Ti (compositions in wt%). A summary is given of experiments on mechanical strength, heat transfer capability, structural changes, and failure modes under high heat loads of brazed bonds. Tensile-strength tests on the brazing interface prove the suitability of the brazes up to their melting point. The expected enhancement in thermal contact compared with graphite is confirmed. Passively cooled tiles of dimensions 25 mm x 25 mm were subjected to thermal cycling in electron-beam simulations. Heat fluxes of up to 10 MW m -2 were applied. (author)

  12. Experimental evaluation of brazed molybdenum-graphite bonds for the divertor of the NET/ITER nuclear fusion device

    International Nuclear Information System (INIS)

    Smid, Ivica; Linke, Jochen; Nickel, Hubertus; Kny, Erich; Reheis, Nikolaus; Kneringer, Guenther; Bolt, Harald

    1990-01-01

    Composites consisting of plasma-facing carbon material brazed to molybdenum (TZM) substrates are a promising system for the divertor of the Next European Torus (NET) and the International Thermonuclear Experimental Reactor (ITER). Isotropic graphite and a refractory metal (molybdenum or TZM, a high temperature alloy of molybdenum), two dissimilar substrate materials, yet closely matched in their thermal expansivities, were joined with the use of four different high-temperature brazes: Zr,90Ni-10Ti,90Cu-10Ti, and 70Ag-27Cu-3Ti(compositions in wt%). A summary is given of experiments on mechanical strength, heat transfer capability, structural changes, and failure modes under high heat loads of brazed bonds. Tensile-strength tests on the brazing interface prove the suitability of the brazes up to their melting point. The expected enhancement in thermal contact compared with graphite is confirmed. Passively cooled tiles of dimensions 25 mm x 25 mm were subjected to thermal cycling in electron-beam simulations. Heat fluxes of up to 10 MW m -2 were applied. (author)

  13. Synthesis of low oxygen concentration molybdenum nitride films

    International Nuclear Information System (INIS)

    Roberson, S.L.; Davis, R.F.; Finello, D.

    1998-01-01

    Polycrystalline, small grain size, 15 μm thick Mo x N (x = 1 and 2) films containing ∼60 at.% γ-Mo 2 N and ∼40 at.% δ-MoN and void of Auger detectable concentrations of molybdenum oxides, have been prepared on 50-μm thick nitrided Ti substrates via programmed reaction and subsequent anneal at 750 C for 2 h of the precursor MoO 3 films with NH 3 . The latter films were prepared via liquid spray pyrolysis of an MoCl 5 /methanol mixture in air at 500 C. By contrast, residual MoO 2 occurred near the film-substrate interface in Mo x N films produced using the same programmed reaction but where MoO 3 had been deposited on bare Ti substrates. The change in density of MoO 3 (ρ = 4.69 gcm -3 ) to γ-Mo 2 N (ρ = 9.50 gcm -3 ) and δ-MoN (ρ = 9.05 gcm -3 ), as well as the nature of the topotactic conversion, produced grains which had a calculated average size of 10 nm and which exhibited good adhesion to the substrate. Variations in the conversion heating rates and the NH 3 flow rates also affected both the phase composition and the average grain size of the intermediate and the final reaction products. Scanning electron microscopy (SEM) of the Mo x N films revealed a highly porous surface morphology. (orig.)

  14. Wetting of molybdenum with molten Cu-O alloys

    International Nuclear Information System (INIS)

    Yupko, V.L.; Garbuz, V.V.; Kryuchkova, N.I.

    1992-01-01

    The Cu-O alloys were prepared from type MOb copper (GOST 859-78) with an oxygen content of 0.001 wt.% and type ChDA cuprous oxide (MRTU 6-09-1451-64), the powder of which was first pressed into briquettes. The weighted portions of Cu 2 O were weighed on an Elektrobalans scale having an absolute error of ±5 · 10 -7 g. The relative error in weighing an approximately 1 · 10 -4 g weighed portion of Cu 2 O for preparation of the alloy with the minimum oxygen content of 0.002% was, therefore, ± 0.5% and consequently for the alloys with a higher oxygen content the accuracy was higher. The alloys were prepared on a ZrO 2 + 5% Y 2 O 3 ceramic at 1,420 K in a vacuum of 6.7 · 10 -3 Pa,d their weight was 1.0-1.5 g, and the melting time 30 sec. The pure type MOb copper was remelted in the same manner. The time relationships of the angle of wetting of molybdenum by molten Cu-O alloys under conditions of combined heating are given. With an increase in oxygen content from 0.004 to 0.005%, wetting drops sharply

  15. Metallic molybdenum disulfide nanosheet-based electrochemical actuators

    Science.gov (United States)

    Acerce, Muharrem; Akdoğan, E. Koray; Chhowalla, Manish

    2017-09-01

    Actuators that convert electrical energy to mechanical energy are useful in a wide variety of electromechanical systems and in robotics, with applications such as steerable catheters, adaptive wings for aircraft and drag-reducing wind turbines. Actuation systems can be based on various stimuli, such as heat, solvent adsorption/desorption, or electrochemical action (in systems such as carbon nanotube electrodes, graphite electrodes, polymer electrodes and metals). Here we demonstrate that the dynamic expansion and contraction of electrode films formed by restacking chemically exfoliated nanosheets of two-dimensional metallic molybdenum disulfide (MoS2) on thin plastic substrates can generate substantial mechanical forces. These films are capable of lifting masses that are more than 150 times that of the electrode over several millimetres and for hundreds of cycles. Specifically, the MoS2 films are able to generate mechanical stresses of about 17 megapascals—higher than mammalian muscle (about 0.3 megapascals) and comparable to ceramic piezoelectric actuators (about 40 megapascals)—and strains of about 0.6 per cent, operating at frequencies up to 1 hertz. The actuation performance is attributed to the high electrical conductivity of the metallic 1T phase of MoS2 nanosheets, the elastic modulus of restacked MoS2 layers (2 to 4 gigapascals) and fast proton diffusion between the nanosheets. These results could lead to new electrochemical actuators for high-strain and high-frequency applications.

  16. Effect of feeding heat-treated colostrum on risk for infection with Mycobacterium avium ssp. paratuberculosis, milk production, and longevity in Holstein dairy cows.

    Science.gov (United States)

    Godden, S M; Wells, S; Donahue, M; Stabel, J; Oakes, J M; Sreevatsan, S; Fetrow, J

    2015-08-01

    In summer 2007, a randomized controlled field trial was initiated on 6 large Midwest commercial dairy farms to investigate the effect of feeding heat-treated (HT) colostrum on transmission of Mycobacterium avium ssp. paratuberculosis (MAP) and on future milk production and longevity within the herd. On each farm, colostrum was collected daily from fresh cows, pooled, divided into 2 aliquots, and then 1 aliquot was heat-treated in a commercial batch pasteurizer at 60°C for 60min. A sample from each batch of colostrum was collected for PCR testing (MAP-positive vs. MAP-negative). Newborn heifer calves were removed from the dam within 30 to 60min of birth and systematically assigned to be fed 3.8 L of either fresh (FR; n=434) or heat-treated (HT; n=490) colostrum within 2h of birth. After reaching adulthood (>2 yr old), study animals were tested once annually for 3 yr (2010, 2011, 2012) for infection with MAP using serum ELISA and fecal culture. Lactation records describing milk production data and death or culling events were collected during the 3-yr testing period. Multivariable model logistic and linear regression was used to investigate the effect of feeding HT colostrum on risk for testing positive to MAP during the 3-yr testing period (positive/negative; logistic regression) and on first and second lactation milk yield (kg/cow; linear regression), respectively. Cox proportional hazards regression was used to investigate the effect of feeding HT colostrum on risk and time to removal from the herd. Fifteen percent of all study animals were fed PCR-positive colostrum. By the end of the 3-yr testing period, no difference was noted in the proportion of animals testing positive for MAP, with either serum ELISA or fecal culture, when comparing the HT group (10.5%) versus the FR group (8.1%). There was no effect of treatment on first- (HT=11.797kg; FR=11,671kg) or second-lactation (HT=11,013kg; FR=11,235kg) milk production. The proportion of cows leaving the herd by

  17. Micromechanics-based modeling of stress–strain and fracture behavior of heat-treated boron steels for hot stamping process

    Energy Technology Data Exchange (ETDEWEB)

    Srithananan, P.; Kaewtatip, P.; Uthaisangsuk, V., E-mail: vitoon.uth@kmutt.ac.th

    2016-06-14

    In the automotive industry, hot stamped parts with tailored properties have shown advantageous safety performance. Such components are produced by applying different heat treatment conditions after forming for different zones in order to obtain various combinations of hard and soft microstructures. In this work, pure martensitic, pure bainitic, and three martensitic/bainitic phase microstructures were initially generated from the boron steel grade 22MnB5 by a two-step quenching procedure in which different holding times in the bainitic temperature range were varied. Increased phase fraction of bainite due to longer holding time led to decreased yield and tensile strength; however, elongation and resulting energy absorbability became significantly higher. To describe mechanical properties and failure behavior of hot stamped parts containing multiphase microstructures, influences of microstructure characteristics should be considered on the micro-scale. Using modeling, 2-D representative volume elements (RVE) were generated from observed real microstructures and flow curves of the individual single phases were defined, taking into account a dislocation theory based model and local chemical compositions. Then, effective stress–strain curves of the heat-treated boron steels were calculated by using the isostrain and non-isostrain methods and compared with tensile test results. Regarding fracture behavior, damage curves of fully martensitic and bainitic structures were determined by means of tensile tests of different notched samples and a hybrid digital image correlation (DIC)–finite element (FE) approach. 2-D RVE simulations of a martensite/bainite mixture were carried out under various states of stress, in which the obtained damage curves were individually applied for each phase. The predicted damage curve from RVE simulations for two-phase boron steel fairly agreed with experimental fracture strains. Moreover, correspondingly normalized Lode angle could be

  18. Physiochemical properties, microstructure, and probiotic survivability of nonfat goats' milk yogurt using heat-treated whey protein concentrate as fat replacer.

    Science.gov (United States)

    Zhang, Tiehua; McCarthy, James; Wang, Guorong; Liu, Yanyan; Guo, Mingruo

    2015-04-01

    There is a market demand for nonfat fermented goats' milk products. A nonfat goats' milk yogurt containing probiotics (Lactobacillus acidophilus, and Bifidobacterium spp.) was developed using heat-treated whey protein concentrate (HWPC) as a fat replacer and pectin as a thickening agent. Yogurts containing untreated whey protein concentrate (WPC) and pectin, and the one with only pectin were also prepared. Skim cows' milk yogurt with pectin was also made as a control. The yogurts were analyzed for chemical composition, water holding capacity (syneresis), microstructure, changes in pH and viscosity, mold, yeast and coliform counts, and probiotic survivability during storage at 4 °C for 10 wk. The results showed that the nonfat goats' milk yogurt made with 1.2% HWPC (WPC solution heated at 85 °C for 30 min at pH 8.5) and 0.35% pectin had significantly higher viscosity (P yogurts and lower syneresis than the goats' yogurt with only pectin (P yogurt samples did not change much throughout storage. Bifidobacterium spp. remained stable and was above 10(6) CFU g(-1) during the 10-wk storage. However, the population of Lactobacillus acidophilus dropped to below 10(6) CFU g(-1) after 2 wk of storage. Microstructure analysis of the nonfat goats' milk yogurt by scanning electron microscopy revealed that HWPC interacted with casein micelles to form a relatively compact network in the yogurt gel. The results indicated that HWPC could be used as a fat replacer for improving the consistency of nonfat goats' milk yogurt and other similar products. © 2015 Institute of Food Technologists®

  19. Preparation of molybdenum oxide thin films by MOCVD

    International Nuclear Information System (INIS)

    Guerrero, R. Martinez; Garcia, J.R. Vargas; Santes, V.; Gomez, E.

    2007-01-01

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 o C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 o C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of α-MoO 3 phase at deposition temperatures ranging from 400 to 560 o C (673-833 K). Crystalline α-MoO 3 films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 o C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance

  20. Preparation of molybdenum oxide thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, R. Martinez [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico); Garcia, J.R. Vargas [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico)]. E-mail: rvargasga@ipn.mx; Santes, V. [CIIEMAD-IPN, Miguel Othon de Mendizabal 485, Mexico 07700, D.F. (Mexico); Gomez, E. [Instituto de Quimica-UNAM, Circuito Exterior-Ciudad Universitaria, Mexico 04510, D.F. (Mexico)

    2007-05-31

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 {sup o}C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 {sup o}C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of {alpha}-MoO{sub 3} phase at deposition temperatures ranging from 400 to 560 {sup o}C (673-833 K). Crystalline {alpha}-MoO{sub 3} films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 {sup o}C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance.

  1. Spheroidization of molybdenum powder by radio frequency thermal plasma

    Science.gov (United States)

    Liu, Xiao-ping; Wang, Kuai-she; Hu, Ping; Chen, Qiang; Volinsky, Alex A.

    2015-11-01

    To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.

  2. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Directory of Open Access Journals (Sweden)

    Teng-Chun Yang

    2017-03-01

    Full Text Available This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP, and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.

  3. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    Science.gov (United States)

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-01-01

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726

  4. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  5. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B

    2003-04-15

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T{sub S}=450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal {beta}-MoSi{sub 2} could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet.

  6. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    International Nuclear Information System (INIS)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B.

    2003-01-01

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T S =450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal β-MoSi 2 could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet

  7. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy.

    Science.gov (United States)

    Al Jabbari, Youssef S; Zinelis, Spiros; Al Taweel, Sara M; Nagy, William W

    2016-01-01

    The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours' storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn's post hoc test at the α = 0.05. The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling.

  8. Molybdenum plasma spray powder, process for producing said powder, and coating made therefrom

    International Nuclear Information System (INIS)

    Lafferty, W.D.; Cheney, R.F.; Pierce, R.H.

    1979-01-01

    Plasma spray powders of molybdenum particles containing 0.5 to 15 weight percent oxygen and obtained by reacting molybdenum particles with oxygen or oxides in a plasma, form plasma spray coatings exhibiting hardness comparable to flame sprayed coatings formed from molybdenum wire and plasma coatings of molybdenum powders. Such oxygen rich molybdenum powders may be used to form wear resistant coatings, such as for piston rings. (author)

  9. The extended family of hexagonal molybdenum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hartl, Monika [Los Alamos National Laboratory; Daemen, Luke [Los Alamos National Laboratory; Lunk, J H [NON LANL; Hartl, H [NON LANL; Frisk, A T [NON LANL; Shendervich, I [NON LANL; Mauder, D [NON LANL; Feist, M [NON LANL; Eckelt, R [NON LANL

    2009-01-01

    Over the last 40 years, a large number of isostructural compounds in the system MoO{sub 3}-NH{sub 3}-H{sub 2}O have been published. The reported molecular formulae of 'hexagonal molybdenum oxide' (HEMO) varied from MoO{sub 3}, MoO{sub 3} {center_dot} 0.33NH{sub 3}, MoO{sub 3} {center_dot} nH{sub 2}O (0.09 {le} n {le} 0.69) to MoO{sub 3} {center_dot} mNH{sub 3} {center_dot} nH{sub 2}O (0.09 {le} m {le} 0.20; 0.18 {le} n {le} 0.60). Samples, prepared by the acidification route, were investigated using thermal analysis coupled on-line to a mass spectrometer for evolved gas analysis; X-ray powder diffraction; Fourier Transform Infrared, Raman and Magic-Angle-Spinning {sup 1}H-NMR spectroscopy; Incoherent Inelastic Neutron Scattering. The X-ray study of a selected monocrystal confirmed the presence of the well-known framework of edge-sharing MoO{sub 6} octahedra: Space group P6{sub 3}/m, a = 10.527(1), c =3.7245(7) {angstrom}, {gamma} = 120{sup o}. The structure of the synthesized samples can best be described by the structural formula (NH{sub 4})[Mo{sub x}{open_square}{sub 1/2+p/2}(O{sub 3x + 1/2-p/2})(OH){sub p}] {center_dot} yH{sub 2}O (x 5.9-7.1; p {approx} 0.1; y = 1.2-2.6), which is consistent with the existence of one vacancy for 12-15 molybdenum sites. The 'chimie douce' reaction of MoO{sub 3} {center_dot} 0.155NH{sub 3} {center_dot} 0.440H{sub 2}O with a 1:1 mixture of NO/NO{sub 2} at 100 C resulted in the synthesis of MoO{sub 3} {center_dot} 0.539H{sub 2}O. Tailored nano-sized molybdenum powders can be produced using HEMO as precursor.

  10. Low cycle fatigue behavior of titanium carbide coated molybdenum

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Oku, Tatsuo; Kodaira, Tsuneo; Kikuyama, Toshihiko

    1985-09-01

    Sintered molybdenum coated by TiC is used for the first wall such as a troidal fixed limiter and a magnetic limiter plate in JT-60, that is being operated at JAERI presently. This report describes the low cycle fatigue behavior of sintered molybdenum and the influence of TiC coating on fatigue strength. The low cycle fatigue test was conducted at room temperature and 500 0 C. The test results was also analyzed by fractographic observation, metallography and element analysis using EPMA. The low cycle fatigue strength of the molybdenum coated by TiC at 500 0 C is decreased compared with the one at room temperature. (author)

  11. Development of silicide coating over molybdenum based refractory alloy and its characterization

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Banerjee, S.; Sharma, I.G.; Suri, A.K.

    2010-01-01

    Molybdenum based refractory alloys are potential candidate materials for structural applications in high temperature compact nuclear reactors and fusion reactors. However, these alloys being highly susceptible to oxidation in air or oxygen at elevated temperature, undergoes severe losses from highly volatile molybdenum trioxide species. Present investigation, therefore, examines the feasibility of development of silicide type of coating over molybdenum base TZM alloy shape (Mo > 99 wt.%) using pack cementation coating technique. TZM alloy was synthesized in this laboratory from oxide intermediates of MoO 2 , TiO 2 and ZrO 2 in presence of requisite amount of carbon, by alumino-thermic reduction smelting technique. The arc melted and homogenized samples of TZM alloy substrate was then embedded in the chosen and intimately mixed pack composition consisting of inert matrix (Al 2 O 3 ), coating powder (Si) and activator (NH 4 Cl) taken in the judicious proportion. The sealed charge packs contained in an alumina crucible were heated at temperatures of 1000 o C for 8-16 h heating cycle to develop the coating. The coating phase was confirmed to be of made of MoSi 2 by XRD analysis. The morphology of the coating was studied by SEM characterization. It had revealed that the coating was diffusion bonded where Si from coating diffused inward and Mo from TZM substrate diffused outward to form the coating. The coating was found to be resistant to oxidation when tested in air up to 1200 o C. A maximum 100 μm of coating thickness was achieved on each side of the substrate.

  12. Some elevated temperature tensile and strain-controlled fatigue properties for a 9%Cr1Mo steel heat treated to simulate thick section material

    International Nuclear Information System (INIS)

    Sanderson, S.J.; Jacques, S.

    Current interest has been expressed in the usage of thick section 9%Cr1%Mo steel, particularly for UK Commercial Demonstration Fast Reactor (CDFR) steam generator tubeplates. This paper presents the results of some preliminary mechanical property test work on a single cast of the steel, heat treated to simulate heavy ruling sections encompassing thicknesses likely to be met in the CDFR context. The microstructures of the simulated thick section material were found to remain predominantly as tempered martensite even at the slowest transformation cooling rates used (50 deg. C/h). The effect of microstructure is reflected in the elevated temperature proof stress, tensile strength and strain-controlled fatigue endurance which were found to be comparable with the properties established for thin section normalised and tempered 9%Cr1%Mo steel. These results are extremely encouraging and, taken in conjunction with the results from other simulation work on this material, further demonstrate the potential of thick section 9%Cr1%Mo steel. (author)

  13. Effect of Si on Fe-rich intermetallic formation and mechanical properties of heat-treated Al–Cu–Mn–Fe alloys

    Science.gov (United States)

    Zhao, Yuliang; Zhang, Weiwen; Yang, Chao; Zhang, Datong; Wang, Zhi

    2018-04-01

    The effect of Si on Fe-rich intermetallics formation and mechanical properties of heat-treated squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy was investigated. Our results show that increasing Si content promotes the formation of Al15(FeMn)3(SiCu)2 (${\\alpha}$-Fe), and varying the morphology of T (Al20Cu3Mn2) where the size decreases and the amount increases. The major reason is that Si promotes heterogeneous nucleation of the intermetallics leading to finer precipitates. Si addition significantly enhances ultimate tensile strength and yield strength of the alloys. The strengthening effect is mainly owing to the dispersoid strengthening by increasing volume fraction of T phase and less harmful ${\\alpha}$-Fe with a compact structure, which make the cracks more difficult to initiate and propagation during tensile test. The squeeze cast Al-5.0Cu-0.6Mn-0.7Fe alloy with 1.1% Si shows significantly improved mechanical properties than the alloy without Si addition, which has tensile strength of 386 MPa, yield strength of 280 MPa and elongation of 8.6%.

  14. Selective splenic targeting of In-114m by heat-treated red blood cells for the treatment of lymphoid cell malignancy

    International Nuclear Information System (INIS)

    Sharma, H.L.; Jackson, N.C.; Jackson, H.; Smith, A.M.; Shukla, S.K.

    1998-01-01

    Spleen targeted In-114m, using labelled autologous lymphocytes, has produced a significant antitumour effect in patients with chronic lymphocytic leukaemia and Non-Hodgkins lymphoma (Sharma et al, Anti-Cancer Research 17, 1815-1822,1997). Heat treated red blood cells could be used as alternative vectors for splenic targeting of In-114m, making the technique easier, more universally applicable and furthermore, may reduce the myelosuppression seen with labelled lymphocytes. Red blood cells from HO3T rats were labelled with In-114m-oxine, incubated at 49.5 deg. C for 15 minutes and their distribution investigated in the spleen, liver and blood or recipient animals. The splenic uptake in the spleen at 24h was 64.08%, remained unchanged at 7 days, cleared slowly after that, clearly demonstrating the specificity of HTRBC to target In-114m to the spleen. The depletion of peripheral blood lymphocytes was measured in two groups of HO3T rats following the administration of 1.6 and 3.2 MBq of In-114m-HTRBC respectively. Compared to the controls, ∼ 70% of lymphocytes were depleted in the treated animals within one week and remained unchanged for 6 weeks. Using a rat T-cell lymphocytic leukaemia model, with resemblance to the clinical disease, an anti-leukaemic effect of his method of treatment, was monitored. An average life span of the treated group (1.85 MBq of In-114m-HTRBC) was 17.1 days, compared to the 13.5 days for the untreated group. These results are similar to the ones reported by targeting In-114m with labelled lymphocytes. In summary, the project has shown that In-114m-HTRBC can be used to deposit the radioactivity, selectively in the spleen, which in turn, depletes the peripheral blood lymphocytes and produces an anti-leukaemic effect in terms of enhanced life span. The bone marrow toxicity from In-114m therapy is under investigation and a pharmacokinetic study in selected cancer patients is planned following which, a clinical trial will be considered. (author)

  15. Electron emission from molybdenum under ion bombardment

    International Nuclear Information System (INIS)

    Ferron, J.; Alonso, E.V.; Baragiola, R.A.; Oliva-Florio, A.

    1981-01-01

    Measurements are reported of electron emission yields of clean molybdenum surfaces under bombardment with H + , H 2 + , D + , D 2 + , He + , N + , N 2 + , O + , O 2 + , Ne + , Ar + , Kr + and Xe + in the wide energy range 0.7-60.2 keV. The clean surfaces were produced by inert gas sputtering under ultrahigh vacuum. The results are compared with those predicted by a core-level excitation model. The disagreement found when using correct values for the energy levels of Mo is traced to wrong assumptions in the model. A substantially improved agreement with experiment is obtained using a model in which electron emission results from the excitation of valence electrons from the target by the projectiles and fast recoiling target atoms. (author)

  16. Molybdenum-base cermet fuel development

    International Nuclear Information System (INIS)

    Gurwell, W.E.; Moss, R.W.; Pilger, J.P.; White, G.D.

    1987-07-01

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermet. This cermet is to have a high matrix density (≥95%) for high strength and high thermal conductance coupled with a high particle (UN) porosity (∼25%) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous UN microspheres become available. Process development has been conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and vacuum hot press consolidation techniques. This paper summarizes the status of these activities

  17. Dithiolato complexes of molybdenum and tungsten

    International Nuclear Information System (INIS)

    Nieuwpoort, A.

    1975-01-01

    The synthesis of eight-coordinated and six-coordinated tungsten and molybdenum complexes with dithioligands is described. Molecular and crystal structures are determined and bond angles, bond lengths and structural parameters tabulated. Infrared spectra of dithiocarbamato complexes are discussed more extensively. Redox reactions are studied by voltammetry and electron transfer properties derived. Properties of the d electrons of the metal ion are interpreted in the ligand field model with data from electronic and e.s.r. spectra and magnetic susceptibilities. The result of molecular orbital calculations with the extended Hueckel-LCAO method are presented for eight-coordinated d 1 and d 2 systems, the six-coordinated complexes, and the free ligands

  18. Scattering of fast neutrons from elemental molybdenum

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-11-01

    Differential broad-resolution neutron-scattering cross sections of elemental molybdenum were measured at 10 to 20 scattering angles distributed between 20 and 160 degrees and at incident-neutron energy intervals of approx. = 50 to 200 keV from 1.5 to 4.0 MeV. Elastically-scattered neutrons were fully resolved from inelastic events. Lumped-level inelastic-neutron-scattering cross sections were determined corresponding to observed excitation energies of; 789 +- 23, 195 +- 23, 1500 +- 34, 1617 +- 12, 1787, 1874, 1991, 2063 +- 24, 2296, 2569 and 2802 keV. An optical-statistical model was deduced from the measured elastic-scattering results. The experimental values were compared with the respective quantities given in ENDF/B-V

  19. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Ion adsorption properties of molybdenum (II) bromide

    International Nuclear Information System (INIS)

    Ganzerli-Valentini, M.T.; Meloni, S.; Caramella-Crespi, V.; Borroni, P.A.

    1976-01-01

    The adsorption of about 50 ions on molybdenum dibromide, (Mo 6 Br 8 )Br 4 .2H 2 O in nitric acid was investigated. The behaviour of the investigated elements on MDB in nitric acid, in the concentration range 10 -2 -8M is presented, where the distribution coefficients are given against the HNO 3 molarity. In some cases the elements were investigated in different oxidation states. Most of the elements are not adsorbed or poorly adsorbed, among these the stable anions, thus indicating that bromide ions substitution with other anions is not competitive. The preparation of the adsorber and its characterization is presented and discussed. Adsorption mechanism studies were carried out for some noble metals and chromium. Sorption cannot be ascribed to ion exchange mechanism but to formation of insoluble species, and to settlement of few ions into surface sorption sites or into a limited number of cavitites in the cluster crystal structure of the adsorber. (T.G.)

  1. Radio frequency induction plasma spraying of molybdenum

    International Nuclear Information System (INIS)

    Jiang Xianliang

    2003-01-01

    Radio frequency (RF) induction plasma was used to make free-standing deposition of molybdenum (Mo). The phenomena of particle melting, flattening, and stacking were investigated. The effect of process parameters such as plasma power, chamber pressure, and spray distance on the phenomena mentioned above was studied. Scanning electron microscopy (SEM) was used to analyze the plasma-processed powder, splats formed, and deposits obtained. Experimental results show that less Mo particles are spheroidized when compared to the number of spheroidized tungsten (W) particles at the same powder feed rate under the same plasma spray condition. Molten Mo particles can be sufficiently flattened on substrate. The influence of the process parameters on the flattening behavior is not significant. Mo deposit is not as dense as W deposit, due to the splash and low impact of molten Mo particles. Oxidation of the Mo powder with a large particle size is not evident under the low pressure plasma spray

  2. Microplastic relaxations of single and polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Pichl, W.; Weiss, B. [Wien Univ. (Austria). Inst. fuer Materialphysik; Chen, D.L.

    1998-05-01

    The microplasticity of high-purity molybdenum single crystals and of Mo polycrystals of technical purity has been investigated by relaxation step tests in uniaxial compression. A new model for the evaluation of relaxation tests in the microplastic range of b.c.c metals is presented which takes into account the decrease of the mobile dislocation density due to exhaustion of non-screw dislocations. The model allows an independent determination of the activation volume and of the microstructure parameters controlling dislocation exhaustion. The results indicate that in the high-purity single crystals the deformation rate is controlled by interactions of non-screw dislocations with the grown-in network. In the polycrystals additional interactions with impurity atoms seem to occur. In the single crystals the activity and subsequent exhaustion of two different glide systems was observed, followed by a gradual onset of screw dislocation motion. (orig.) 26 refs.

  3. The molybdenum-technetium solar neutrino experiment

    International Nuclear Information System (INIS)

    Schroeder, N.C.; Wolfsberg, K.; Rokop, D.J.

    1991-01-01

    The authors are attempting to measure the time-averaged 8 B solar-neutrino flux over 10 Myr by measuring 98 Tc produced through the 98 Mo( nu ,e - ) reaction in a deeply buried molybdenum deposit. This will test the prediction of periodic mixing of the Sun's core over long time intervals. To separate technetium from 10,000-ton quantities of Henderson ore, the authors have taken advantage of the commercial processing of molybdenite. Technetium, volatilized during roasting of molybdenite to MoO 3 , was scrubbed from the gas stream and collected on anion exchange columns. After sample reduction and chemical separation and purification they measured technetium, as TcO 4 - , using negative thermal ionization mass spectrometry. Measurement of 99 Tc in spiked and 98 Tc in unspiked fractions from one sample gives an apparent solar neutrino production rate of 95.8 SNU. However, roaster memory probably invalidates this result

  4. Measured oscillator strengths in singly ionized molybdenum

    Science.gov (United States)

    Mayo-García, R.; Aragón, C.; Aguilera, J. A.; Ortiz, M.

    2015-11-01

    In this article, 112 oscillator strengths from Mo II have been measured, 79 of which for the first time. The radiative parameters have been obtained by laser-induced breakdown spectroscopy (LIBS). The plasma is produced from a fused glass sample prepared from molybdenum oxide with a Mo atomic concentration of 0.1%. The plasma evolved in air at atmospheric pressure, and measurements were carried out with the following plasma parameters: an electron density of (2.5+/- 0.1)\\cdot {10}17 cm-3 and an electron temperature of 14,400+/- 200 K. In these conditions, a local thermodynamic equilibrium environment and an optically thin plasma were confirmed for the measurements. The relative intensities were placed on an absolute scale by combining branching fractions with the measured lifetimes and by comparing well-known lines using the plasma temperature. Comparisons were made to previously obtained experimental and theoretical values wherever possible.

  5. Recovering and recycling uranium used for production of molybdenum-99

    Science.gov (United States)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-12-12

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated target suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.

  6. Physical chemical quality control of the molybdenum technetium generator

    International Nuclear Information System (INIS)

    Olive, E.; Cruz, J.; Isaac, M.; Gamboa, R.; D'Alessandro, K.; Desdin, L.F.

    1995-01-01

    Comparative operational procedure imported molybdenum technetium generators have been made. Procedures for determination of chemical, radiochemical and radionuclidic purities that may be applied in Hospital's laboratories and in the quality control of generators production are developed

  7. Electroplating and stripping copper on molybdenum and niobium

    Science.gov (United States)

    Power, J. L.

    1978-01-01

    Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.

  8. Alkaline elution of uranium and molybdenum and their recovery

    International Nuclear Information System (INIS)

    Song Wenlan; Wu Peisheng; Zhao Pinzhi; Tao Dening; Xie Chaoyan

    1987-01-01

    The uranium and molybdenum can be simultaneously eluted by using eluant (NH 4 ) 2 CO 3 + (NH 4 ) 2 SO 4 from resin loaded uranium and molybdenum. The ADU is precipitated from eluant by volatilization of ammonia. The molybdenum is extracted by TFA-TBP-kerosene from the filtrate at pH 3.0-3.2 with molybdenum extraction > 98%. Uranium is nearly not extracted. The precipitation of Mo is reached by sulphuric acid after stripping and the ammonium multimolybdate is obtained. This process can give the total recovery more than 99% for U and 90% for Mo. Because of the use of sulphate salt system, the hazard of NO 3 - can be avoided

  9. Mechanical properties of molybdenum coated with titanium carbide film

    International Nuclear Information System (INIS)

    Shikama, T.; Shinno, H.; Fukutomi, M.; Fujitsuka, M.; Okada, M.

    1983-01-01

    TiC-coated molybdenum is mechanically tensile tested. The 6 μm thick TiC-coated molybdenum has a higher 0.2% proof strength with a slight decrease in uniform and rupture elongation than the uncoated one. This strengthening effect of the TiC coating can be explained by the constrained effect of the high strength TiC film. The 1.2 μm thick TiC-coated molybdenum starts its plastic deformation at a lower stress than the uncoated one. Also, the coating makes the stress-strain curve more smooth. These effects are attributed to the surface effect, namely, that the interface between the molybdenum substrate and the strong and brittle TiC film acts as a strong dislocation source. The compressive stress in the TiC film will also help the start of plastic deformation at lower external stresses. (author)

  10. X-ray target with substrate of molybdenum alloy

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    Rotary targets for x-ray tubes are provided comprising a molybdenum base body alloyed with a stabilizing proportion of iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide, or a mixture of the preceding

  11. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  12. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  13. pH dependence of catalytic activity for ORR of the non-PGM catalyst derived from heat-treated Fe–phenanthroline

    International Nuclear Information System (INIS)

    Brocato, Shayna; Serov, Alexey; Atanassov, Plamen

    2013-01-01

    The effect of pH on the ORR efficiency of catalysts derived from heat-treated Fe–phenanthroline is analyzed using a rotating ring-disc electrode (RRDE). The activity of pyrolyzed Fe–phenanthroline catalysts was tested in electrolyte solutions with pHs ranging from 1 to 13.7. Fe–phenanthroline has a half-wave potential that remains steady at 0.7 V from pH 1 to pH 7 and linearly increases from pH 7 to the maximum 0.9 V at pH 13.7. The percent hydrogen peroxide detected on the ring was below 5% over all pHs at steady state potentials. The RRDE results were analyzed using Koutecky–Levich and charge/mass balance methods. The kinetic current (i k ) linearly decreases from pH 1 to pH 7 where it reaches a minimum and linearly increases from pH 7 to 13.7 indicating that the ORR reaction with OH − proceeds slower than with H + as the substrate. The number of electrons transferred decreases from 3.77 ± 0.09 (pH 1) to 2.38 ± 0.11 (pH 13.7) electrons according to the Koutecky–Levich analysis. The charge/mass balance analysis yielded the number of electrons transferred to be just under 4 electrons from pH 1 to pH 12, with a sharp decrease from pH 12 to pH 13.7. The results from the E 1/2 and Koutecky–Levich analysis, when taken together, indicate a mechanism shift taking place at pH 7 resulting from changes in the double-layer structure and the reaction mechanisms.

  14. Interactions between levels of heat-treated soybean meal and prilled fat on growth, rumen fermentation, and blood metabolites of Holstein calves.

    Science.gov (United States)

    Kazemi-Bonchenari, M; Mirzaei, M; Jahani-Moghadam, M; Soltani, A; Mahjoubi, E; Patton, R A

    2016-10-01

    This study evaluated the interaction of RUP and fat levels on growth, rumen fermentation, and blood metabolites of Holstein calves. Forty 3-d-old calves (20 females and 20 males) with a starting BW of 40.6 ± 2.8 kg were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Within sex treatments were: (1) high RUP and low fat (HRUP-LF); (2) low RUP and high fat (LRUP-HF); (3) high RUP and low fat (HRUP-LF); and high RUP and high fat (HRUP-HF). Low-RUP starter contained 21.5%, whereas high RUP starter contained 34.3% RUP as % of CP, whereas low fat starter contained 2.9% and high starter contained 5.8% crude fat based on DM. Isonitrogenous levels in the starter grain were maintained by replacing solvent soybean meal with heat treated soybean meal while fat levels were increased by the addition of prilled fatty acids. Calves were housed individually and had ad libitum access to water and calf starter throughout the study. All calves were weaned on d 60 of age but remained in the study until d 70 for final measurements. Overall, there was no interaction between RUP and fat levels for measured variables. Starter intake tended ( = 0.09) to be greater for calves fed low fat starter during the postweaning period, although over the whole experiment and during the preweaning period, differences in starter intake were not different. Although there were no differences for most VFA concentrations, the molar proportion of butyrate tended ( RUP ( RUP starter. However, feeding a calf starter with over 3% fat appeared to decrease starter intake as growth progressed.

  15. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Tsechanski, A. [Ben-Gurion University of the Negev, Department of Nuclear Engineering, P.O. Box 653, Beer-Sheva 84105 (Israel); Bielajew, A.F. [Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Archambault, J.P.; Mainegra-Hing, E. [National Research Council of Canada, Ionizing Radiation Standards Laboratory, Ottawa, ON K1A 0R6 (Canada)

    2016-01-01

    A new “one-stage” approach for production of {sup 99}Mo and other radioisotopes by means of an electron linear accelerator is described. It is based on using a molybdenum target both as a bremsstrahlung converter and as a radioisotope producing target for the production of {sup 99}Mo via the photoneutron reaction {sup 100}Mo(γ,n){sup 99}Mo. Bremsstrahlung characteristics, such as bremsstrahlung efficiency, angular distribution, and energy deposition for molybdenum targets were obtained by means of the EGSnrc Monte Carlo simulation code system. As a result of our simulations, it is concluded that a 60 MeV electron beam incident on a thick Mo target will have greater bremsstrahlung efficiency than the same thickness (in units of r{sub 0}) W target, for target thickness z > 1.84r{sub 0}, where r{sub 0} is the electron range. A 50 MeV electron beam incident on a Mo target will result in greater bremsstrahlung efficiency than the same thickness W target (in units of r{sub 0}) for target thickness case: z ⩾ 2.0r{sub 0}. It is shown for the one-stage approach with thicknesses of (1.84–2.0)r{sub 0}, that the {sup 99}Mo-production bremsstrahlung efficiency of a molybdenum target is greater by ∼100% at 30 MeV and by ∼70% at 60 MeV compared to the values for tungsten of the same thickness (in units of the appropriate r{sub 0}) in the traditional two-stage approach (W converter and separate {sup 99}Mo producing target). This advantage of the one-stage approach arises from the fact that the bremsstrahlung produced is attenuated only once from attenuation in the molybdenum converter/target. In the traditional, two-stage approach, the bremsstrahlung generated in the W-converter/target is attenuated both in the converter in the {sup 99}Mo-producing molybdenum target. The photoneutron production yield of molybdenum and tantalum (as a substitute for tungsten) target was calculated by means of the MCNP5 transport code. On the basis of these data, the specific activity

  16. Process R&D for Particle Size Control of Molybdenum Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Sujat [Argonne National Lab. (ANL), Argonne, IL (United States); Dzwiniel, Trevor [Argonne National Lab. (ANL), Argonne, IL (United States); Pupek, Krzysztof [Argonne National Lab. (ANL), Argonne, IL (United States); Krumdick, Gregory [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The primary goal of this study was to produce MoO3 powder with a particle size range of 50 to 200 μm for use in targets for production of the medical isotope 99Mo. Molybdenum metal powder is commercially produced by thermal reduction of oxides in a hydrogen atmosphere. The most common source material is MoO3, which is derived by the thermal decomposition of ammonium heptamolybdate (AHM). However, the particle size of the currently produced MoO3 is too small, resulting in Mo powder that is too fine to properly sinter and press into the desired target. In this study, effects of heating rate, heating temperature, gas type, gas flow rate, and isothermal heating were investigated for the decomposition of AHM. The main conclusions were as follows: lower heating rate (2-10°C/min) minimizes breakdown of aggregates, recrystallized samples with millimeter-sized aggregates are resistant to various heat treatments, extended isothermal heating at >600°C leads to significant sintering, and inert gas and high gas flow rate (up to 2000 ml/min) did not significantly affect particle size distribution or composition. In addition, attempts to recover AHM from an aqueous solution by several methods (spray drying, precipitation, and low temperature crystallization) failed to achieve the desired particle size range of 50 to 200 μm. Further studies are planned.

  17. Improved processes of molybdenum-99 production

    International Nuclear Information System (INIS)

    Dadachova, K.; La Riviere, K.; Anderon, P.

    1997-01-01

    Two improved processes of Molybdenum-99 production have been developed at ANSTO on laboratory scale. The first one allows to purify Mo of natural isotopic composition from tungsten impurities by using preferential adsorption of tungsten on hydrated tin(IV) oxide SnO 2 x nH 2 O before irradiation in the nuclear reactor. Mo-99 obtained via this route can be used for production of i nstant Tc-99m. As the starting material MoO 3 contains considerable amounts of tungsten impurity (W > 60 ppm), 5-7 days irradiation results in generation of W-188 in amounts sufficient to contaminate the final Tc-99m product with rhenium-188 (Re-188, 16.8 h half-life) - radioactive daughter of W-188. To overcome this problem, a method of MoO 3 purification from W, based on preferential adsorption of W by hydrated tin (IV) oxide has been developed. The contents of W in MoO 3 purified by this technique became 3 and retaining of Mo-99 on a large alumina column. Mo-99 is stripped off the column with 200 mL 1M NH 4 OH followed by loading this solution onto the AG 1x8 column. The next steps are different for each version of separation process

  18. Groundwater Molybdenum from Emerging Industries in Taiwan.

    Science.gov (United States)

    Tsai, Kuo-Sheng; Chang, Yu-Min; Kao, Jimmy C M; Lin, Kae-Long

    2016-01-01

    This study determined the influence of emerging industries development on molybdenum (Mo) groundwater contamination. A total of 537 groundwater samples were collected for Mo determination, including 295 samples from potentially contaminated areas of 3 industrial parks in Taiwan and 242 samples from non-potentially contaminated areas during 2008-2014. Most of the high Mo samples are located downstream from a thin film transistor-liquid crystal display (TFT-LCD) panel factory. Mean groundwater Mo concentrations from potentially contaminated areas (0.0058 mg/L) were significantly higher (p industry and following wastewater batch treatment were 0.788 and 0.0326 mg/L, respectively. This indicates that wastewater containing Mo is a possible source of both groundwater and surface water contamination. Nine samples of groundwater exceed the World Health Organization's suggested drinking water guideline of 0.07 mg/L. A non-carcinogenic risk assessment for Mo in adults and children using the Mo concentration of 0.07 mg/L yielded risks of 0.546 and 0.215, respectively. These results indicate the importance of the development of a national drinking water quality standard for Mo in Taiwan to ensure safe groundwater for use. According to the human health risk calculation, the groundwater Mo standard is suggested as 0.07 mg/L. Reduction the discharge of Mo-contaminated wastewater from factories in the industrial parks is also the important task in the future.

  19. Raman Signatures of Polytypism in Molybdenum Disulfide.

    Science.gov (United States)

    Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik

    2016-02-23

    Since the stacking order sensitively affects various physical properties of layered materials, accurate determination of the stacking order is important for studying the basic properties of these materials as well as for device applications. Because 2H-molybdenum disulfide (MoS2) is most common in nature, most studies so far have focused on 2H-MoS2. However, we found that the 2H, 3R, and mixed stacking sequences exist in few-layer MoS2 exfoliated from natural molybdenite crystals. The crystal structures are confirmed by HR-TEM measurements. The Raman signatures of different polytypes are investigated by using three different excitation energies that are nonresonant and resonant with A and C excitons, respectively. The low-frequency breathing and shear modes show distinct differences for each polytype, whereas the high-frequency intralayer modes show little difference. For resonant excitations at 1.96 and 2.81 eV, distinct features are observed that enable determination of the stacking order.

  20. Molybdenum disilicide composites produced by plasma spraying

    International Nuclear Information System (INIS)

    Castro, R.G.; Hollis, K.J.; Kung, H.H.; Bartlett, A.H.

    1998-01-01

    The intermetallic compound, molybdenum disilicide (MoSi 2 ) is being considered for high temperature structural applications because of its high melting point and superior oxidation resistance at elevated temperatures. The lack of high temperature strength, creep resistance and low temperature ductility has hindered its progress for structural applications. Plasma spraying of coatings and structural components of MoSi 2 -based composites offers an exciting processing alternative to conventional powder processing methods due to superior flexibility and the ability to tailor properties. Laminate, discontinuous and in situ reinforced composites have been produced with secondary reinforcements of Ta, Al 2 O 3 , SiC, Si 3 N 4 and Mo 5 Si 3 . Laminate composites, in particular, have been shown to improve the damage tolerance of MoSi 2 during high temperature melting operations. A review of research which as been performed at Los Alamos National Laboratory on plasma spraying of MoSi 2 -based composites to improve low temperature fracture toughness, thermal shock resistance, high temperature strength and creep resistance will be discussed

  1. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  2. Magnetic property variation in carbon steel and chrome-molybdenum steel as a function of uniaxial stress noncoaxial with the magnetic field (abstract)

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kaminski, D.A.; Jiles, D.C.; Biner, S.B.

    1993-01-01

    Magnescope 1 magnetic measurements were made on carbon steel specimens ranging from 0.1--0.8 wt %C and on chrome-molybdenum steel specimens cut from electric power plant pipes previously in service. The carbon steel specimens were heat-treated using three procedures: (1) spheroidization, (2) quenching, and (3) quench and tempering. The specimens were subjected to uniaxial tension up to 40 ksi. The inspection head was aligned so that the magnetic field was oriented at different angles with respect to the stress axis. Magnetic properties (such as coercivity and maximum differential permeability) were extracted from digitized magnetic hysteresis loop measurements. Magnetic properties were studied as a function of stress at each angle of stress-field orientation. To our knowledge, such a comprehensive study of noncoaxial stress and field effects has never been accomplished before for such a wide variety of steel specimens. Results for the various materials are presented for different orientation angles and compared to numerical results from the noncoaxial magnetomechanical hysteresis model of Sablik et al. 2

  3. Wide-range measurement of thermal effusivity using molybdenum thin film with low thermal conductivity for thermal microscopes

    Science.gov (United States)

    Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru

    2017-07-01

    Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.

  4. Uranium and Molybdenum extraction from a Cerro Solo deposit ore

    International Nuclear Information System (INIS)

    Becquart, Elena T.; Arias, Maria J.; Fuente, Juan C. de la; Misischia, Yamila A.; Santa Cruz, Daniel E.; Tomellini, Guido C.

    2009-01-01

    Cerro Solo, located in Chubut, Argentina, is a sandstone type uranium-molybdenum deposit. Good recovery of both elements can be achieved by acid leaching of the ore but the presence of molybdenum in pregnant liquors is an inconvenient to uranium separation and purification. A two steps process is developed. A selective alkaline leaching of the ore with sodium hydroxide allows separating and recovering of molybdenum and after solid-liquid separation, the ore is acid leached to recover uranium. Several samples averaging 0,2% uranium and 0,1% molybdenum with variable U/Mo ratio have been used and in both steps, leaching and oxidant reagents concentration, temperature and residence time in a stirred tank leaching have been studied. In alkaline leaching molybdenum recoveries greater than 96% are achieved, with 1% uranium extraction. In acid leaching up to 93% of the uranium is extracted and Mo/U ratio in solvent extraction feed is between 0,013 and 0,025. (author)

  5. Ion exchange resin fouling of molybdenum in recovery uranium processess

    International Nuclear Information System (INIS)

    Zhang Guowei; Zhao Guirong

    1990-09-01

    The relationship between anion exchange resin fouling and molybdic acid polymerization was studied. By using potentiometer titration and laser-Raman spectroscopy the relationship of molybdic acid polymerization and the pH value of solution or the molybdenum concentration was determined. It was shown that as the concentration of initial molybdenum in solution decreases from 0.2 mol/L to 0.5 mmol/L, the pH value of starting polymerization decreased from 6.5 to 4.5. The experimental results show that the fouling of 201 x 7 resin in the acidic solution is mainly caused by the adsorbing of Mo 3 O 26 4- ion and occupying the exchange radical site of the resin. Under the leaching conditions the molybdenum and phosphate existing in the leaching liquor can form 12-molybdo-phosphate ion. It also leads to resin fouling. The molybdenum on the fouled resin can synergically be desorbed by mixed desorbents containing ammonium hydroxide and ammonium sulfate. The desorbed resin can be used for uranium adsorption and the desorbed molybdenum can be recovered by ion exchange method

  6. The potential roles of lime and molybdenum on the growth, nitrogen ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-04-26

    Apr 26, 2010 ... and Molybdenum (Mo) are essential plant nutrients; whose role has been well ... interaction on different photosynthetic activities in P. vulgaris grown ..... concentrations of nickel, cadmium lead and molybdenum. J. Plant. Nutr.

  7. Reaction between molybdenum and carbon, and several carbides

    International Nuclear Information System (INIS)

    Morozumi, Shotaro; Kikuchi, Michio; Sugai, Shinzo; Hayashi, Masaaki.

    1980-01-01

    Diffusion couples of molybdenum with carbon and several carbides, i.e. B 4 C, SiC, TiC, and TaC, respectively, were heated for up to 3.6 x 10 5 s at various temperatures ranging from 1373 to 2223 K. The couples were then examined for composition, growth rate, structure, and hardness of reaction layers. Main results obtained are as follows: (1) In the Mo-C system, only Mo 2 C layer was formed at below 1873 K, while two sub- layers consisted of Mo 2 C and eta (MoC sub(1-x)), respectively, were found at above 1873 K. The activation energy for growth of total layer was 374 kJ/mol. (2) In the Mo-B 4 C system, two sub-layers consisted of Mo 2 B and MoB, respectively, with dispersed carbon particles were formed. (3) In the Mo-SiC system, Mo 2 C layer, including eta (MoC sub(1-x)) phase at high temperature, mixture of Mo 2 C and Mo 3 Si 2 phases, and Mo 3 Si 2 phase in order from the Mo side were formed. The activation energy for growth of total layer was 477 kJ/mol. (4) In the Mo-TiC system, two kinds of TiC in point of view of free carbon content were used; one is with 0.2% free carbon and the other is with 0.01%. In the Mo-TiC with 0.2% free carbon system, two sub-layers, i.e. relatively thick Mo 2 C layer and thin (Ti, Mo)C layer, were formed, while in the Mo-TiC with 0.01% free carbon system two thin sub-layers, Mo 2 C and (Ti, Mo)C, were formed; the Mo 2 C layer in the latter case was very thin and was not found after short time heating at low temperature. The activation energy for growth of Mo 2 C layer in the former system was 393 kJ/mol. (5) In the Mo-TaC with 0.02% free carbon system, two thin sub-layers, (Mo, Ta) 2 C and (Ta, Mo)C, were observed. (6) TEM studies on the interface between Mo (bcc) and Mo 2 C (hcp) showed that there was the following orientation relation, called as the Burgers relation, between these two phases; (110)sub(Mo)//(0001)sub(Mo 2 C), sub(Mo)// - 0>sub(Mo 2 C). (author)

  8. A chemical approach toward low temperature alloying of immiscible iron and molybdenum metals

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Applied Chemistry Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore 54600 (Pakistan); Ahmed, Sohail [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad, E-mail: mazhar42pk@yahoo.com [Department of Chemistry, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Akhtar, Muhammad Javed; Siddique, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Khan, Nawazish Ali [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Shah, Muhammad Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Nadeem, Muhammad [Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2013-11-15

    Graphical abstract: - Highlights: • Low temperature pyrolysis of [Fe(bipy){sub 3}]Cl{sub 2} and [Mo(bipy)Cl{sub 4}] homogeneous powder. • Easy low temperature alloying of immiscible metals like Fe and Mo. • Uniform sized Fe–Mo nanoalloy with particle size of 48–68 nm. • Characterization by EDXRF, AFM, XRPD, magnetometery, {sup 57}Fe Mössbauer and impedance. • Alloy behaves as almost superparamagnetic obeying simple –R(CPE)– circuit. - Abstract: The present research is based on a low temperature operated feasible method for the synthesis of immiscible iron and molybdenum metals’ nanoalloy for technological applications. The nanoalloy has been synthesized by pyrolysis of homogeneous powder precipitated, from a common solvent, of the two complexes, trisbipyridineiron(II)chloride, [Fe(bipy){sub 3}]Cl{sub 2}, and bipyridinemolybedenum(IV) chloride, [Mo(bipy)Cl{sub 4}], followed by heating at 500 °C in an inert atmosphere of flowing argon gas. The resulting nanoalloy has been characterized by using EDXRF, AFM, XRD, magnetometery, {sup 57}Fe Mössbauer and impedance spectroscopies. These results showed that under provided experimental conditions iron and molybdenum metals, with known miscibility barrier, alloy together to give (1:1) single phase material having particle size in the range of 48–66 nm. The magnetism of iron is considerably reduced after alloy formation and shows its trend toward superparamagnetism. The designed chemical synthetic procedure is equally feasible for the fabrication of other immiscible metals.

  9. Carbon-coated tungsten and molybdenum carbides for electrode of electrochemical capacitor

    International Nuclear Information System (INIS)

    Morishita, Takahiro; Soneda, Yasushi; Hatori, Hiroaki; Inagaki, Michio

    2007-01-01

    New electrode materials for electrochemical capacitor, tungsten carbide WC and molybdenum carbide Mo 2 C coated by porous carbon, were prepared through a simple heat treatment of the mixture of K 2 WO 4 and K 2 MoO 4 , respectively, with hydroxy propyl cellulose. Carbide changed to hydroxide during the 1st charge-discharge cycle in H 2 SO 4 aqueous electrolyte, which showed redox reaction in further charge-discharge cycles, in addition to electric double layers of the carbon formed on its surface. The carbon-coated carbide gave a high capacitance in 1 mol L -1 H 2 SO 4 electrolyte, as about 350 F cm -3 for carbon-coated WC and 550-750 F cm -3 for carbon-coated Mo 2 C. Coating of carbon inhibits the growth of carbide particles during their formation, of which the small particle size make possible to complete transformation to hydroxides during the 1st charge-discharge cycle, and also disturbs the agglomeration of tungsten and molybdenum hydroxides during charge-discharge cycles, as well as porous carbon coated act as electrode material for electric double layers of electrolyte ions

  10. A chemical approach toward low temperature alloying of immiscible iron and molybdenum metals

    International Nuclear Information System (INIS)

    Nazir, Rabia; Ahmed, Sohail; Mazhar, Muhammad; Akhtar, Muhammad Javed; Siddique, Muhammad; Khan, Nawazish Ali; Shah, Muhammad Raza; Nadeem, Muhammad

    2013-01-01

    Graphical abstract: - Highlights: • Low temperature pyrolysis of [Fe(bipy) 3 ]Cl 2 and [Mo(bipy)Cl 4 ] homogeneous powder. • Easy low temperature alloying of immiscible metals like Fe and Mo. • Uniform sized Fe–Mo nanoalloy with particle size of 48–68 nm. • Characterization by EDXRF, AFM, XRPD, magnetometery, 57 Fe Mössbauer and impedance. • Alloy behaves as almost superparamagnetic obeying simple –R(CPE)– circuit. - Abstract: The present research is based on a low temperature operated feasible method for the synthesis of immiscible iron and molybdenum metals’ nanoalloy for technological applications. The nanoalloy has been synthesized by pyrolysis of homogeneous powder precipitated, from a common solvent, of the two complexes, trisbipyridineiron(II)chloride, [Fe(bipy) 3 ]Cl 2 , and bipyridinemolybedenum(IV) chloride, [Mo(bipy)Cl 4 ], followed by heating at 500 °C in an inert atmosphere of flowing argon gas. The resulting nanoalloy has been characterized by using EDXRF, AFM, XRD, magnetometery, 57 Fe Mössbauer and impedance spectroscopies. These results showed that under provided experimental conditions iron and molybdenum metals, with known miscibility barrier, alloy together to give (1:1) single phase material having particle size in the range of 48–66 nm. The magnetism of iron is considerably reduced after alloy formation and shows its trend toward superparamagnetism. The designed chemical synthetic procedure is equally feasible for the fabrication of other immiscible metals

  11. Potentiometric titration of molybdenum (6) with a cathode-polarized solid electrode

    International Nuclear Information System (INIS)

    Boeva, L.V.; Kimstach, V.A.; Bagdasarov, K.N.

    1980-01-01

    The possibility has been studied of using solid electrodes for potentiometric precipitation titration of molybdenum (6). A cathode-polarized electrode, electrochemically covered with a molybdenum blue layer, can be used as indicator electrode. The best results were obtained during deposition of molybdenum blue on a tungsten electrode. The mechanism of electrode work during titration has been investigated. A procedure has been developed of titration of molybdenum (6) in acid solutions using hydroxylamine N-aryl derivatives as titrants

  12. Radioactive heat source and method of making same

    International Nuclear Information System (INIS)

    Elsner, N.B.

    1977-01-01

    A radioactive source of heat which is resistant to cremation conditions is made by encapsulating a radioisotope within a containment vessel and forming a refractory metal silicide diffusion coating exterior thereof. A secondary molybdenum vessel may be provided with a molybdenum silicide coating and then heated in air to oxidize its outer layer. A layer is applied exterior of the diffusion-coating which provides a continuous ceramic oxide layer upon subjection to cremation. This outer layer may be discrete silica carried in a hardenable binder of an organic polymer, and a minor amount of antimony is preferably also included

  13. Molybdenum Cycling During Crust Formation and Destruction

    Science.gov (United States)

    Greaney, A. T.; Rudnick, R. L.

    2016-12-01

    Molybdenum geochemistry has become an important tool for tracking the redox state of the early atmosphere and oceans as well as the emergence and sustainability of Mo-cofactored enzymes. However, in order for Mo to be enriched in the oceans, it must first be weathered out of the crust. Sulfides that weather in the presence of atmospheric O2have historically been deemed the predominant crustal source of Mo. Here, we test this assumption by determining the mineralogical hosts of Mo in Archean, Proterozoic, and Phanerozoic upper crustal rocks, using LA-ICP-MS. We also investigate Mo behavior during igneous differentiation and continental crust formation. We find that molybdenite, MoS2, is a weatherable sulfide source of Mo, but common igneous sulfides are not because their Mo concentrations are too low. However, molybdenite is uncommon in the upper continental crust. By contrast, volcanic glass is much more abundant and is a significant weatherable source of Mo that readily breaks down to release oxidized, soluble Mo whether or not atmospheric O2is present. Other common crustal mineral hosts of Mo are Ti-bearing phases like titanite, ilmenite, magnetite, and rutile that are resistant to weathering. Significant Mo depletion (relative to Ce and Pr) is observed in nearly every granitic rock analyzed in our study, but is not observed in OIB or MORB (Jenner and O'Neill, 2012). There are two possible reasons for this: 1) Mo is removed from cooling plutons during fluid expulsion, or 2) Mo is fractionated during igneous differentiation. The first scenario is a likely explanation given the solubility of oxidized Mo. However, correlations between Mo/Ce and Nb/La in several plutonic suites suggest a fractionating phase like rutile may sequester Mo in the lower crust. Additionally, a correlation between Mo/Ce and inferred tectonic setting (enrichments observed in rift-related plutons) suggest an overall tectonic influence on the availability of Mo in the upper crust.

  14. XPS and ToF-SIMS analysis of natural rubies and sapphires heat-treated in a reducing (5 mol% H 2/Ar) atmosphere

    Science.gov (United States)

    Achiwawanich, S.; James, B. D.; Liesegang, J.

    2008-12-01

    Surface effects on Mong Hsu rubies and Kanchanaburi sapphires after heat treatment in a controlled reducing atmosphere (5 mol% H 2/Ar) have been investigated using advanced surface science techniques including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Visual appearance of the gemstones is clearly affected by the heat treatment in a reducing atmosphere. Kanchanaburi sapphires, in particular, exhibit Fe-containing precipitates after the heat treatment which have not been observed in previous studies under an inert atmosphere. Significant correlation between changes in visual appearance of the gemstones and variations in surface concentration of trace elements, especially Ti and Fe are observed. The XPS and ToF-SIMS results suggest that; (1) a reducing atmosphere affects the oxidation state of Fe; (2) dissociation of Fe-Ti interaction may occur during heat treatment.

  15. XPS and ToF-SIMS analysis of natural rubies and sapphires heat-treated in a reducing (5 mol% H{sub 2}/Ar) atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Achiwawanich, S. [Department of Physics, La Trobe University, VIC 3086 (Australia); Centre for Materials and Surface Science, La Trobe University, VIC 3086 (Australia); James, B.D. [Centre for Materials and Surface Science, La Trobe University, VIC 3086 (Australia); Department of Chemistry, La Trobe University, VIC 3086 (Australia); Liesegang, J. [Department of Physics, La Trobe University, VIC 3086 (Australia); Centre for Materials and Surface Science, La Trobe University, VIC 3086 (Australia)], E-mail: J.Liesegang@latrobe.edu.au

    2008-12-30

    Surface effects on Mong Hsu rubies and Kanchanaburi sapphires after heat treatment in a controlled reducing atmosphere (5 mol% H{sub 2}/Ar) have been investigated using advanced surface science techniques including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Visual appearance of the gemstones is clearly affected by the heat treatment in a reducing atmosphere. Kanchanaburi sapphires, in particular, exhibit Fe-containing precipitates after the heat treatment which have not been observed in previous studies under an inert atmosphere. Significant correlation between changes in visual appearance of the gemstones and variations in surface concentration of trace elements, especially Ti and Fe are observed. The XPS and ToF-SIMS results suggest that; (1) a reducing atmosphere affects the oxidation state of Fe; (2) dissociation of Fe-Ti interaction may occur during heat treatment.

  16. Relationship between the fluidity of heat-treated coals and molecular weight distributions of their solvent-soluble component; Netsushoritan no yobai kayo seibun no bunshiryo bunpu to ryudosei no kanren

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science; Kato, K. [Nippon Steel Co. Ltd., Tokyo (Japan); Fukada, K. [NKK Corp., Tokyo (Japan)

    1996-10-28

    In order to improve the coke manufacturing process, considerations were given on fluidity manifestation mechanism of heat-treated coals from molecular weight distributions of extracts of a solvent mixed with CS2-N-methyl-2-pyrrolidinone (CS2-NMP). The heat treatment was performed in an autoclave under nitrogen atmosphere at a rate of 3{degree}C/min to settings of 200 to 550{degree}C. The resultant heat-treated coal was quenched, and then extracted by using the CS2-NMP mixed solvent. The fluidity was measured by using a Gieseler plastometer. Maximum extraction rate and the highest fluidity are in linear relationship, which suggests that the extracts govern the fluidity. Since heavy caking coal has no difference in the extraction rates due to heat treatment temperature, and its molecular weight distribution trend does not change, the extracted components which have existed primarily in the original coal govern the fluidity. In semi-caking coals, polymer molecular components are extracted in a large quantity at the softening starting temperature, but the quantity decreases as the temperature rises. However, low-molecular components present no quantitative change, while polymer molecular components decompose, decrease in molecular weight, get solubilized with rising temperature, and act as a binder to cause a flow. 7 figs., 1 tab.

  17. Study of defects near molybdenum surface using thermal desorption spectrometer

    International Nuclear Information System (INIS)

    Naik, P.K.

    1980-01-01

    Thermal desorption spectrometry is utilized to study the migration of atoms and defects near molybdenum surface. The thermal desorption spectra of inert gas ions (neon, argon and krypton) injected with various energies (430-1950 eV) into a polycrystalline molybdenum target with various dosages (6.4 x 10sup(12) - 3.9 x 10sup(14) ions/cmsup(2)) are investigated. Four different states of binding of the trapped atoms corresponding to the activation energies for desorption have been revealed from the spectra. The activation energies are found to be relatively insensitive to the species of the bombarding ion, incident ion energy and the dosage. The patterns of the spectra are strongly influenced by the mean projected range of the ions into the solid. The activation energies deduced are in good agreement with those reported for the migration of atoms and defects in molybdenum. (auth.)

  18. Targets for the production of neutron activated molybdenum-99

    International Nuclear Information System (INIS)

    Hetherington, E.L.R.; Boyd, R.E.

    1999-01-01

    Neutron activation of natural molybdenum is, ostensibly, the least complex route to 99m Tc. However in most commercial generators the severe limitation in 99 Mo specific activity that the route imposes has caused manufacturers to choose the alternative fission process despite its disadvantages of being more expensive and requiring a more complex waste management strategy. The development of a newer generator technology is capable of reviving the demand for neutron activated 99 Mo and might encourage the production of 99m Tc by countries possessing less developed nuclear infrastructures. The targets used in the (n,γ) production route consist of analytical grade molybdenum trioxide which has been further refined to remove both rhenium and tungsten trace impurities. The basic methods used by ANSTO to produce a molybdenum target capable of yielding 99m Tc of high radionuclidic purity are described. (author)

  19. Molybdenum erosion measurements in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States); LaBombard, B.; Lipshultz, B.; Pappas, D.; Pitcher, C.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); McCracken, G.M. [JET Joint Undertaking, Abingdon (United Kingdom)

    1998-05-01

    Erosion of molybdenum was measured on a set of 21 tiles after a run campaign of 1,090 shots in the Alcator C-Mod tokamak. The net erosion of molybdenum, was determined from changes in the depth of a thin chromium marker layer measured by Rutherford backscattering. Net Mo erosion was found to be approximately 150 nm near the outer divertor strike point, and much less everywhere else. Gross erosion rates by sputtering were estimated using ion energies and fluxes obtained from Langmuir probe measurements of edge-plasma conditions. Predicted net erosion using calculated gross erosion with prompt redeposition and measured net erosion agree within a factor of 3. Sputtering by boron and molybdenum impurities dominates erosion.

  20. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    Science.gov (United States)

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  1. Experiment on bio-leaching of associated molybdenum and uranium ore

    International Nuclear Information System (INIS)

    Zheng Ying; Fan Baotuan; Liu Jian; Meng Yunsheng; Liu Chao

    2007-01-01

    Column leaching experiment results on associated molybdenum uranium ore by bacteria (T. f) are introduced. The ore are leached for 210 days using bacteria domesticated to tolerate molybdenum, the leaching of uranium is of 98% and leaching of molybdenum is of 41%. Sulphuric acid produced by bio-oxidation of sulfides in ore can meet the demand of ore leaching. (authors)

  2. Ammonia treated Mo/AC catalysts for CO hydrogenation with ...

    Indian Academy of Sciences (India)

    A series of ammonia treated Mo/Activated Carbon (AC) catalysts were synthesized by wet impregnation method by nominal incorporation of 5, 10 and 15 wt% of molybdenum. The calcined catalysts (500◦C, 4 h, N₂ flow) were subjected to a stepwise ammonia treatment at temperatures from 25 up to 700◦C. This work ...

  3. Composite sheet made of molybdenum and dispersion-strengthened copper

    International Nuclear Information System (INIS)

    Nicholson, R.D.; Fusco, R.S.

    1990-01-01

    This patent describes a roll-bonded composite sheet product having at least one layer of dispersion-strengthened copper and at least one layer of molybdenum. The composite is characterized by a sharply defined, cleavage-resistant interface between the copper and the molybdenum with substantially no detectable diffusion of one metal into the other across the interface. The composite is resistant to delamination and being capable of maintaining structural integrity upon repeated high temperature firings at temperatures up to 900 degrees C

  4. Recovery of uranium from sulphate solutions containing molybdenum

    International Nuclear Information System (INIS)

    Weir, D.R.; Genik-Sas-Berezowsky, R.M.

    1983-01-01

    A process for recovering uranium from a sulphate solution containing dissolved uranium and molybdenum includes reacting the solution with ammonia (pH 8 to 10), the pH of the original solution must not exceed 5.5 and after the addition of ammonia the pH must not be in the vicinity of 7 for a significant time. The resultant uranium precipitate is relatively uncontaminated by molybdenum. The precipitate is then separated from the remaining solution while the pH is maintained within the stated range

  5. Electrochemistry and biochemistry of molybdenum. Ehlektrokhimiya i biokhimiya molibdena

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, A M; Zajtsev, P M; Mambetkaziev, E A; Zhdanov, S I

    1992-07-01

    Using the review of data on polarographic behaviour of double and ternary systems molybdenum(6)-oxidant-organic ligand (oxy- and aminoacids of protein composition) by way of example, the possibility to use the metal ferments for the study of peculiarities in behaviour of the metal ions manifested in reactions was considered. The content of molybdenum in organism is noticeably different for healthy people and patients with malignant neoplasms and diabetes mellitus. There is a certain relation between catalytic activity of the metal ions and multiplicity of their accumulation in human organism.

  6. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  7. A review of chromium, molybdenum, and tungsten alloys

    International Nuclear Information System (INIS)

    Klopp, W.D.

    1975-01-01

    The mechanical properties of chromium, molybdenum, and tungsten alloys are reviewed, with particular emphasis on high-temperature strength and low-temperature ductility. Precipitate strengthening is highly effective at 0.4-0.8 Tsub(m) in these metals, with HfC being most effective in tungsten and molybdenum, and Ta(B,C) most effective in chromium. Low-temperature ductility can be improved by alloying to promote rhenium ductilizing or solution softening. The low-temperature mechanical properties of these alloys appear related to electronic interactions rather than to the usual metallurgical considerations. (Auth.)

  8. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    Science.gov (United States)

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  9. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  10. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Dezhi, E-mail: dzwang68@163.com [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yan, Jianhui [Advanced Materials Synthesis and Application Technology Laboratory, Hunan University of Science and Technology, Xiangtan 411201 (China); Sun, Aokui [Key Laboratory of Ministry of Education for Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Hunan Province for Metallurgy and Material Processing of Rare Metals, Central South University, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2013-11-01

    MoSi{sub 2} oxidation protective coatings on molybdenum substrate were prepared by air plasma spraying technique (APS). Microstructure, phase composition, porosity, microhardness and bonding strength of the coatings were investigated and determined. Oxidation behavior of the coating at high temperature was also examined. Results show that composition of the coatings is constituted with MoSi{sub 2} and Mo{sub 5}Si{sub 3}, the surface morphology is described as flattened lamellar features, insufficiently flattened protuberance with some degree of surface roughness, a certain quantity of spherical particles, microcracks and pores. Testing results reveal that microhardness and bonding strength of the coatings increase, and porosity decreases with increasing power or decreasing Ar gas flow rate. Moreover, with decreasing the porosity, the microhardness of the coatings increases. The bonding strength of the coatings also increases with increasing spray distance. The MoSi{sub 2} coated Mo substrate exhibited a good oxidation resistance at 1200 °C.

  11. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Dezhi; Yan, Jianhui; Sun, Aokui

    2013-01-01

    MoSi 2 oxidation protective coatings on molybdenum substrate were prepared by air plasma spraying technique (APS). Microstructure, phase composition, porosity, microhardness and bonding strength of the coatings were investigated and determined. Oxidation behavior of the coating at high temperature was also examined. Results show that composition of the coatings is constituted with MoSi 2 and Mo 5 Si 3 , the surface morphology is described as flattened lamellar features, insufficiently flattened protuberance with some degree of surface roughness, a certain quantity of spherical particles, microcracks and pores. Testing results reveal that microhardness and bonding strength of the coatings increase, and porosity decreases with increasing power or decreasing Ar gas flow rate. Moreover, with decreasing the porosity, the microhardness of the coatings increases. The bonding strength of the coatings also increases with increasing spray distance. The MoSi 2 coated Mo substrate exhibited a good oxidation resistance at 1200 °C.

  12. Catalytic hydrotreatment of Illinois No. 6 coal-derived naphtha: comparison of molybdenum nitride and molybdenum sulfide for heteroatom removal

    Energy Technology Data Exchange (ETDEWEB)

    Raje, A.; Liaw, S.J.; Chary, K.V.R.; Davis, B.H. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1995-03-16

    The hydrotreatment of naphtha derived from Illinois No. 6 coal was investigated using molybdenum sulfide and nitride catalysts. The two catalysts are compared on the basis of total catalyst weight. Molybdenum sulfide is more active than molybdenum nitride for hydrodesulfurization (HDS) of a coal-derived naphtha. The rate of hydrodeoxygenation (HDO) of the naphtha over both catalysts are comparable. For hydrodenitrogenation (HDN), the sulfide is more active than the nitride only at higher temperatures ({gt}325{degree}C). Based upon conversion data, the naphtha can be lumped into a reactive and a less reactive fraction with each following first-order kinetics for heteroatom removal. The HDS and HDN rates and activation energies of the less reactive lump are smaller for the nitride than for the sulfide catalyst.

  13. Development of process maps for plasma spray: case study for molybdenum

    International Nuclear Information System (INIS)

    Sampath, S.; Jiang, X.; Kulkarni, A.; Matejicek, J.; Gilmore, D.L.; Neiser, R.A.

    2003-01-01

    A schematic representation referred to as 'process maps' examines the role of process variables on the properties of plasma-sprayed coatings. Process maps have been developed for air plasma spraying of molybdenum. Experimental work was done to investigate the importance of such spray parameters as gun current, primary gas flow, auxiliary gas flow, and powder carrier gas flow. In-flight particle temperatures and velocities were measured and diameters estimated in various areas of the spray plume. Empirical models were developed relating the input parameters to the in-flight particle characteristics. Molybdenum splats and coatings were produced at three distinct process conditions identified from the first-order process map experiments. In addition, substrate surface temperature during deposition was treated as a variable. Within the tested range, modulus, hardness and thermal conductivity increases with particle velocity, while oxygen content and porosity decreases. Increasing substrate deposition temperature resulted in dramatic improvement in coating thermal conductivity and modulus, while simultaneously increasing coating oxide content. Indentation reveals improved fracture resistance for the coatings prepared at higher substrate temperature. Residual stress was significantly affected by substrate temperature, although not to a great extent by particle conditions within the investigated parameter range. Coatings prepared at high substrate temperature with high-energy particles suffered considerably less damage in a wear test. The mechanisms behind these changes are discussed within the context relational maps, which have been proposed

  14. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    Science.gov (United States)

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Activity of molybdenum-containing oxide catalysts in the reaction of ethane oxidation

    International Nuclear Information System (INIS)

    Konovalov, V.I.; Ehpova, T.I.; Shchukin, V.P.; Averbukh, A.Ya.

    1977-01-01

    Investigation results concerning the catalytic activity of molybdenum-containing catalysts in ethane oxidation reaction are presented. It has been found that the greatest activity in the temperature range from 450 to 600 deg C is exhibited by cobalt-molybdenum catalyst; at 600 deg C bismuth-molybdenum catalyst is the most active. Nickel-molybdenum catalyst is selective and active with respect to ethylene. Iron- and manganese-molybdenum catalysts do not show high ethane oxidation rates and their selectivity is insignificant

  16. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  17. “Non-hydrolytic” sol–gel synthesis of molybdenum sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Leidich, Saskia; Buechele, Dominique; Lauenstein, Raphael; Kluenker, Martin; Lind, Cora, E-mail: cora.lind@utoledo.edu

    2016-10-15

    Non-hydrolytic sol–gel reactions provide a low temperature solution based synthetic approach to solid-state materials. In this paper, reactions between molybdenum chloride and hexamethyldisilthiane in chloroform were explored, which gave access to both MoS{sub 2} and Mo{sub 2}S{sub 3} after heat treatment of as-recovered amorphous samples to 600–1000 °C. Interesting morphologies were obtained for MoS{sub 2}, ranging from fused spherical particles to well-defined nanoplatelets and nanoflakes. Both 2H- and 3R-MoS{sub 2} were observed, which formed thin hexagonal and triangular platelets, respectively. The platelets exhibited thicknesses of 10–30 nm, which corresponds to 15–50 MoS{sub 2} layers. No attempts to prevent agglomeration were made, however, well separated platelets were observed for many samples. Heating at 1000 °C led to formation of Mo{sub 2}S{sub 3} for samples that showed well-defined MoS{sub 2} at lower temperatures, while less crystalline samples had a tendency to retain the MoS{sub 2} structure. - Graphical abstract: Overlay of variable pressure X-ray diffraction data of Al{sub 2}Mo{sub 3}O{sub 12} collected in a diamond anvil cell. Both subtle and discontinuous phase transitions are clearly observed. - Highlights: • Molybdenum sulfides were prepared by non-hydrolytic sol–gel chemistry. • Nanocrystalline 3R-MoS{sub 2} and 2H-MoS{sub 2}, and microcrystalline Mo{sub 2}S{sub 3} were obtained. • Particle morphology correlated strongly with crystalline phases. • Ultrathin platelets with limited tendency to agglomerate were recovered.

  18. Optimization of the dissolution of molybdenum disks. FY-16 results

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey D. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Argonne National Laboratory is providing technical development assistance to NorthStar Medical Technologies LLC in its pursuit of two pathways for production of molybdenum-99: the 98Mo(n,γ) 99Mo reaction and the photonuclear reaction, 100Mo(γ,n)99Mo. Processing of irradiated targets, from either production mode, requires dissolution of the target material in H2O2 followed by a concentration step, addition of ferric ion to precipitate impurities, and conversion of the final solution to 5M potassium hydroxide solution of potassium molybdate. Currently, NorthStar is using pressed and sintered Mo disks as targets. Several options are being considered for the design of Mo targets for the production of 99Mo using the (γ,n) reaction. In the current design, the target holder contains a series of sintered Mo disks lined up perpendicular to two incident electron beams, one entering from each side of the target stack. In this configuration, the front-most disks absorb most of the heat from the electron beam and need to be thinner to allow for better cooling, while the middle of the target can be thicker. Distribution of the total mass of Mo allows for larger masses of Mo material and thus larger production batches of 99Mo. A limitation of the sintering approach is the production of very thin disks. Recent advances in 3D printing allow for much thinner target components can be achieved than when the traditional press-and-sinter approach is used. We have demonstrated that several factors can play important roles in dissolution behavior: particle size of Mo metal used for production of targets, sintering conditions, degree of open porosity, and thickness of the sintered Mo targets. Here we report experimental results from studies of small-scale dissolution of sintered Mo disks fabricated from various recycled and commercial Mo materials, and dissolution of 3D-printed Mo disks that were

  19. Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.; Pellegrino, J.L.

    The activity and selectivity of three different molybdenum catalysts for reactions occurring in coal liquefaction, specifically for hydrogenation (HYD), hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrocracking (HYC), have been examined. The three molybdenum catalysts used were molybdenum napthenate, molybdenum on ..gamma..-alumina, and a precipitated, disordered MoS/sub 2/. Molybdenum naphthenate was most selective for HYD and HDN. All three catalysts exhibited approximately equal activity for HDS and HDO and little selectivity for HYC of alkyl bridge structures. The activity and selectivity of the three molybdenum catalysts for producing hydrocarbons and removing heteroatoms from coal during liquefaction were determined and compared. Molybdenum naphthenate was the most active catalyst for hydrocarbon production and removal of nitrogen- and oxygen-containing species during coal liquefaction. 31 refs., 4 figs., 7 tabs.

  20. Microstructure and mechanical properties of multi-components rare earth oxide-doped molybdenum alloys

    International Nuclear Information System (INIS)

    Zhang Guojun; Sun Yuanjun; Zuo Chao; Wei Jianfeng; Sun Jun

    2008-01-01

    Pure molybdenum and molybdenum alloys doped with two- or three-components rare earth oxide particles were prepared by powder metallurgy. Both the tensile property and fracture toughness of the pure molybdenum and multi-components rare earth oxide-doped molybdenum alloys were determined at room temperature. The multi-components rare earth oxide-doped molybdenum alloys are fine grained and contain a homogeneous distribution of fine particles in the submicron and nanometer size ranges, which is why the molybdenum alloys have higher strength and fracture toughness than pure molybdenum. Quantitative analysis is used to explain the increase in yield strength with respect to grain size and second phase strengthening. Furthermore, the relationship between the tensile properties and microstructural parameters is quantitatively established

  1. Methanol oxidation reaction activity of microwave irradiated and heat-treated Pt/Co and Pt/Ni nano-electrocatalysts

    CSIR Research Space (South Africa)

    Mathe, NR

    2014-11-01

    Full Text Available Bimetallic Pt nanoparticles were prepared by alloying Pt with the non-noble transition metals, Co and Ni, using a conventional heat-treatment (HT) method and microwaveirradiation (MW). The resulting samples were PteCo-Ht, PteNi-HT, PteCo, MW and Pt...

  2. Serological monitoring of previously treated lepromatous patients during a course of multiple immunotherapy treatments with heat-killed Mycobacterium leprae and BCG

    NARCIS (Netherlands)

    Douglas, J. T.; Hirsch, D. S.; Fajardo, T. T.; Guido, L. S.; Klatser, P. R.

    1990-01-01

    Two-hundred and seventy lepromatous patients who had completed treatment received multiple treatments with heat-killed M. leprae and BCG and were monitored for changes in humoral responses to M. leprae-specific antigens. These patients were divided into four treatment groups: placebo (n = 69); BCG

  3. Response of soybean plants to phosphorus, boron and molybdenum fertilization

    International Nuclear Information System (INIS)

    Abdel-Aziz, H. A.; Aly, M. E.

    2012-12-01

    A pot experiment was carried out to study the effect of added phosphorus levels (30. 60 kg p/fed) with the addition of boron at (2, 6 ppm) and molybdenum at (5, 10.ppm) and without addition beside the control the control on growth and mineral content and root nodules in soybean plants. The results indicated that the effect of phosphorus on the formation of nodules had a clear effect when added with boron, molybdenum and when boron added at a rate of 2 ppm in the absence of phosphorus led to increase in root nodules in each of the 5, 10 ppm led to increased formation of, naldetuss in of the alluvial and calcareous soil. The molybdenum, nitrogen and phosphorus uptake increased directly proportional to the result of increased rate of addition of phosphorus and molybdenum. While the uptake born may be added with the rate of increased concentration of 2 ppm, while when added at 6 ppm led tp increased absorption of boron in the calcareous soil, but led to a decrease in the alluvial soils. (Author)

  4. Technology of niobium and molybdenum refining by electron beam

    International Nuclear Information System (INIS)

    Conti, R.A.; Pinatti, D.G.; Sandim, H.R.Z.

    1988-01-01

    The uses of metals and alloys in superconductors (Nb46%Ti), aerospatial industry (Ti6Al4V), electroeletronic industry (Nb, Mo, W) and in surgical implants (Ti, Nb) are increasing nowadays. A refining process of niobium and molybdenum by electron beam technique, since the oxides reduction till the obtention of a high purity ingot is presented. (C.G.C.) [pt

  5. Radiation damage in molybdenum and tungsten in high neutron fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Veljkovic, S; Milasin, N [Institute of Nuclear Sciences Boris Kidric, Department of Reactor Materials, Vinca, Beograd (Serbia and Montenegro)

    1964-04-15

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  6. Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide

    Science.gov (United States)

    2014-07-14

    Lou, Sina Najmaei, Matin Amani, Matthew L. Chin, Zheng Se. TASK NUMBER Liu Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8...Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide Sina Najmaei,t.§ Matin Ama ni,M Matthew L. Chin,* Zhe ng liu/ ·"·v: A. Gle n

  7. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    Science.gov (United States)

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  8. Preparation of isotopic molybdenum foils utilizing small quantities of material

    Science.gov (United States)

    Lipski, A. R.; Lee, L. L.; Liang, J. F.; Mahon, J. C.

    1993-09-01

    A simple method utilizing a small amount of isotopic material for production of molybdenum foils is discussed. An e-gun is used in the procedure. The Mo powder undergoes reduction-sintering and melting-solidifying steps leading to the creation of a metallic droplet suitable for further cold rolling or vacuum deposition.

  9. Radiation damage in molybdenum and tungsten in high neutron fluxes

    International Nuclear Information System (INIS)

    Veljkovic, S.; Milasin, N.

    1964-01-01

    The effects of radiation on molybdenum and tungsten in high neutron fluxes are presented. The changes induced, particularly defects with a high migration activation energy, are analyzed. The correlation of these changes with the basic concepts of radiation damage in solids is considered. An attempt is made to relate the defects studied with the changes in macroscopic properties (author)

  10. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  11. Chromium and molybdenum diffusion in tungsten single crystals

    International Nuclear Information System (INIS)

    Klotsman, S.M.; Koloskov, V.M.; Osetrov, S.V.; Polikarpova, I.P.; Tatarinova, G.N.; Timofeev, A.N.

    1989-01-01

    Consideration is given to results of measuring temperature dependences of diffusion coefficients of homovalent impurities of chromium and molybdenum in tungsten single crystals. It is concluded that the difference of activation energies of selfdiffusion and impurity diffusion in the system 'tungsten-homovalent impurity' is conditioned by interaction of screened potentials of impurity and vacancy with Lazarus-Le Claire model

  12. Process for producing molybdenum foil and collapsible tubing

    Science.gov (United States)

    Bretts, G. R.; Gavert, R. B.; Groschke, G. F.

    1971-01-01

    Manufacturing process produces molybdenum foil 0.002 cm thick and 305 m long, and forms foil into high-strength, thin-walled tubing which can be flattened for storage on a spool. Desirable metal properties include high thermal conductivity stiffness, yield and tensile stress, and low thermal expansion coeffecient.

  13. Chemical effects of nuclear transformations in molybdenum complexes

    International Nuclear Information System (INIS)

    Millan S, S.A.

    1977-01-01

    The Szilard-Chalmers effect was studied in the complexes: tetraacetatedimolybdenum(II), tetrabenzoatedimolybdenum(II), benzenetricarbonylmolybdenym(0). The results we obtained in the measurement of the Szilard-Chalmers effect on the studied complexes imply some influence of the structure in the molecular fragmentation, or the conservation of the links molybdenum-ligands. (author)

  14. Recovery of Tungsten and Molybdenum from Low-Grade Scheelite

    Science.gov (United States)

    Li, Yongli; Yang, Jinhong; Zhao, Zhongwei

    2017-10-01

    With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.

  15. Characterization of the uranium--2 weight percent molybdenum alloy

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1976-01-01

    The uranium-2 wt percent molybdenum alloy was prepared, processed, and age hardened to meet a minimum 930-MPa yield strength (0.2 percent) with a minimum of 10 percent elongation. These mechanical properties were obtained with a carbon level up to 300 ppM in the alloy. The tensile-test ductility is lowered by the humidity of the laboratory atmosphere

  16. GEMAS: Molybdenum Spatial Distribution Patterns in European Soil

    Science.gov (United States)

    Cicchella, Domenico; Zuzolo, Daniela; Demetriades, Alecos; De Vivo, Benedetto; Eklund, Mikael; Ladenberger, Anna; Negrel, Philippe; O'Connor, Patrick

    2017-04-01

    Molybdenum is an essential trace element for both plants and animals as well as for human being. It is one such trace element for which potential health concerns have been raised but for which few data exist and little investigation or interpretation of distributions in soils has been made. The main goal of this study was to fill this gap. Molybdenum (Mo) concentrations are reported for the similar spatial distribution patterns mainly governed by geology (parent material and mineralisation), as well as weathering, soil formation and climate since the last glaciations period. The dominant feature is represented by low Mo concentrations over the coarse-grained sandy deposits of the last glaciations in central northern Europe while the most extensive anomalies occur in Scandinavian soils. The highest Mo concentration value occurs to the North of Oslo close to one of the largest porphyry Mo deposit of the World. Some interesting anomalous patterns occur also in Italy in correspondence with alkaline volcanics, in Spain and Greece associated with sulfides mineralizations and in Slovenia and Croatia where are probably related to the long weathering history of karstic residual soils. Anomalous concentrations in some areas of Ireland represent a clear example of how an excess of molybdenum has produced potentially toxic pastures. In fact, these give rise to problems particularly in young cattle when excess molybdenum in the herbage acts as an antagonist, which militates against efficient copper absorption by the animal.

  17. MOLYBDENUM CATALYZED ACID PEROXIDE BLEACHING OF EUCALYPTUS KRAFT PULP

    Directory of Open Access Journals (Sweden)

    Marcos S. Rabelo

    2008-08-01

    Full Text Available Molybdenum catalyzed peroxide bleaching (PMo Stage consists of pulp treatment with hydrogen peroxide under acidic conditions in the presence of a molybdenum catalyst. Molybdenum is applied in catalytic doses (50-200 mg/kg pulp and may originate from various sources, including (NH46Mo7O24.4H2O, Na2MoO4.2H2O, siliconmolybdate, etc. This work is aimed at optimizing the PMo stage and evaluating its industrial application in the OAZDP sequence. Optimum PMo stage conditions for bleaching eucalyptus pulp were 90 ºC, pH 3.5, 2 h, 0.1 kg/adt Mo and 5 kg/adt H2O2. The PMo stage was more efficient to remove pulp hexenuronic acids than lignin. Its efficiency decreased with increasing pH in the range of 1.5-5.5, while it increased with increasing temperature and peroxide and molybdenum doses. The application of the PMo stage as replacement for the A-stage of the AZDP sequence significantly decreased chlorine dioxide demand. The PMo stage caused a decrease of 20-30% in the generation of organically bound chlorine. The quality parameters of the pulp produced during the PMo stage mill trial were comparable to those obtained with the reference A-stage.

  18. Growth of molybdenum disulphide using iodine as transport material

    Indian Academy of Sciences (India)

    In the present paper an attempt has been made to describe the chemical vapor transport (CVT) technique used for the growth of molybdenum disulphide (MoS2) single crystals. Iodine (I2) is used as transporting material for this purpose. The energy dispersive analysis by X-ray (EDAX) confirmed the stoichiometry of the ...

  19. Determination of molybdenum in flotation concentrates by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Ise, Kazuo

    1978-01-01

    Molybdenum was determined by atomic absorption spectrophotometry in 0.05 N ammoniacal solution after the decomposition of the concentrate with aqua regia. Negros ore from Philippines was used as a flotation feed, which contained chalcopyrites and calcium-magnesium minerals. Among the metals tested copper, iron and the alkaline earths interfered. Less than 50 ppm of copper yielded lower results for molybdenum. Higher results came out with more than 50 ppm of copper. In the presence of iron and citric acid (0.4 g/100 ml) which is a suppressor for hydroxide formation, a lower estimation resulted for molybdenum. Calcium interfered, lower results by 2 and >10% being obtained with respective 2.5 and 20 ppm of calcium. More than 20 ppm of magnesium behaved similarly. Sodium sulfate (0.5 g/100 ml) served as the suppressor for copper, iron and citric acid; 100 ppm each of copper and iron did not interfere in this way. Interferences due to calcium and magnesium (less than 60 ppm) was able to be masked by the addition of sodium silicate (200 ppm as silica). The analysis of flotation products and synthetic samples consisting of molybdenite, chalcopyrite, calcium chloride and magnesium sulfate revealed that the atomic absorption method can be applied to the analysis of the concentrates for molybdenum with an error of about 2%. (auth.)

  20. Effect of in vitro zinc supplementation on HSPs expression and Interleukin 10 production in heat treated peripheral blood mononuclear cells of transition Sahiwal and Karan Fries cows.

    Science.gov (United States)

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; Aarif, Ovais

    2016-02-01

    The changing climatic scenario with apprehended rise in global temperature is likely to affect the livestock adversely vis-à-vis production and reproduction. This has prompted more focus in addressing the unfavorable effects of thermal stress in livestock system. Presuming that the trace element zinc is indispensible for cellular antioxidant system and immune function, the present study was designed to investigate the effect of zinc treatment on heat stress alleviation and immune modulation in peripheral blood mononuclear cells (PBMC) of indigenous and crossbred transition cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were selected for the experiment. The blood samples were collected at -21, 0 and +21 days in relation to expected date of calving. The experiment was carried out in vitro after isolating PBMC from whole blood. The 48h cultured PBMC were subjected to assorted levels of exposures viz. 37°C, 42°C to impose heat stress and 42°C+zinc to alleviate heat stress and modulate immunity. The PBMC viability was 86%, 69% and 78%, respectively. The mRNA expression of heat shock proteins (HSP 40, 70 and 90α) and Interleukin-10 (IL-10) production varied between the two breeds vis-à-vis days and levels of exposure. The mRNA expression of HSP40 and HSP70 was significantly (Pheat stressed PBMC caused a significant (Pheat stressed PBMC can ameliorate thermal stress and modulate immune response which can act as a model for reducing heat stress during the periparturient period in tropical livestock. Copyright © 2016 Elsevier Ltd. All rights reserved.