WorldWideScience

Sample records for heat transport simulation

  1. Borehole model for simulation transport geothermal heat with heat pipe system and with forced circulation of heat carrier

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2012-04-01

    Full Text Available In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057, whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3.

  2. A simulation of heat transfer during billet transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaklic, A.; Glogovac, B. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering; Zak, B. T. [Terming d.o.o., Ljubljana (Slovenia)

    2002-07-01

    This paper presents a simulation model for billet cooling during the billet's transport from the reheating furnace to the rolling mill. During the transport, the billet is exposed to radiation, convection and conduction. Due to the rectangular shape of the billet, the three-dimensional finite-difference model could be applied to calculate the heat conduction inside the billet. The billets are reheated in a gas-fired walking-beam furnace and are exposed to scaling. The model takes into account the effect of the thin oxide scale. We proved that the scale significantly affects the temperature distribution in the billet and should not be neglected. The model was verified by using a thermal camera. (author)

  3. Simulating water, solute, and heat transport in the subsurface with the VS2DI software package

    Science.gov (United States)

    Healy, R.W.

    2008-01-01

    The software package VS2DI was developed by the U.S. Geological Survey for simulating water, solute, and heat transport in variably saturated porous media. The package consists of a graphical preprocessor to facilitate construction of a simulation, a postprocessor for visualizing simulation results, and two numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). The finite-difference method is used to solve the Richards equation for flow and the advection-dispersion equation for solute or heat transport. This study presents a brief description of the VS2DI package, an overview of the various types of problems that have been addressed with the package, and an analysis of the advantages and limitations of the package. A review of other models and modeling approaches for studying water, solute, and heat transport also is provided. ?? Soil Science Society of America. All rights reserved.

  4. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    Science.gov (United States)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  5. Water and heat transport in hilly red soil of southern China: Ⅱ. Modeling and simulation

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Zhi-zhen; HAN Xiao-fei

    2005-01-01

    Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China.Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model,while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, Ks, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution,which would affect water redistribution.

  6. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    Science.gov (United States)

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix

  7. Simulation of Volume and Heat Transport along 26.5°N in the Atlantic

    Institute of Scientific and Technical Information of China (English)

    MO Hui-Er; YU Yong-Qiang

    2012-01-01

    The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are used to evaluate the volume and heat transport in the eddy-resolving model LASG/IAP Climate system Ocean Model (LICOM). The authors find that the Florida Cur- rent transport and upper mid-ocean transport of the model are underestimated against the observations. The simulated variability of MOC and MHT show a high correlation with the observations, exceeding 0.6. Both the simulated and observed MOC and MHT show a significant seasonal variability. According to the power spectrum analysis, LICOM can represent the mesoscale eddy characteristic of the MOC similar to the observation. The model shows a high correlation of 0.58 for the internal upper mid-ocean transport (MO) and a density difference between the western and eastern boundaries, as noted in previous studies.

  8. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport

    Science.gov (United States)

    Langevin, Christian D.; Thorne, Daniel T.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing

    2008-01-01

    The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant

  9. Heat Transport Simulation for Atmospheric-Pressure High-Density Microgap Plasma

    Science.gov (United States)

    Kono, Akihiro; Shibata, Tomoyuki; Aramaki, Mitsutoshi

    2006-02-01

    Atmospheric-pressure cw high-density plasma can be produced in a microgap between two knife-edge electrodes by microwave excitation. A possible application of such a plasma is as an excimer light source and for this purpose the gas temperature in the plasma is a particularly important parameter. In this paper we report a fluid dynamic simulation of heat transport in the microgap plasma and compare the results with previously studied experimental gas temperature characteristics (e.g., dependence on the microwave power and the forced gas flow rate). The simulation explains reasonably well the experimental results when the effect of local gas density change on the gas heating process is taken into consideration. Discussion is given that the existence of thermally driven convection in the microgap plasma indicated in a preliminary report is incorrect.

  10. Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3

    Science.gov (United States)

    Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.

    2008-01-01

    The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined

  11. Albedo and heat transport in 3-dimensional model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-01-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion yr ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun problem" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-dimensional model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterisation of the ice-albedo feedback for 1-dimensional model simulations of the early Archean and thus the faint young Sun problem.

  12. Albedo and heat transport in 3-D model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-08-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion years ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

  13. Analysis of simulation methodology for calculation of the heat of transport for vacancy thermodiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, William C.; Schelling, Patrick K., E-mail: patrick.schelling@ucf.edu [Advanced Material Processing and Analysis Center and Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)

    2014-07-14

    Computation of the heat of transport Q{sub a}{sup *} in monatomic crystalline solids is investigated using the methodology first developed by Gillan [J. Phys. C: Solid State Phys. 11, 4469 (1978)] and further developed by Grout and coworkers [Philos. Mag. Lett. 74, 217 (1996)], referred to as the Grout-Gillan method. In the case of pair potentials, the hopping of a vacancy results in a heat wave that persists for up to 10 ps, consistent with previous studies. This leads to generally positive values for Q{sub a}{sup *} which can be quite large and are strongly dependent on the specific details of the pair potential. By contrast, when the interactions are described using the embedded atom model, there is no evidence of a heat wave, and Q{sub a}{sup *} is found to be negative. This demonstrates that the dynamics of vacancy hopping depends strongly on the details of the empirical potential. However, the results obtained here are in strong disagreement with experiment. Arguments are presented which demonstrate that there is a fundamental error made in the Grout-Gillan method due to the fact that the ensemble of states only includes successful atom hops and hence does not represent an equilibrium ensemble. This places the interpretation of the quantity computed in the Grout-Gillan method as the heat of transport in doubt. It is demonstrated that trajectories which do not yield hopping events are nevertheless relevant to computation of the heat of transport Q{sub a}{sup *}.

  14. Ab-initio quantum transport simulation of self-heating in single-layer 2-D materials

    Science.gov (United States)

    Stieger, Christian; Szabo, Aron; Bunjaku, Teutë; Luisier, Mathieu

    2017-07-01

    Through advanced quantum mechanical simulations combining electron transport and phonon transport from first-principles, self-heating effects are investigated in n-type transistors with single-layer MoS2, WS2, and black phosphorus as channel materials. The selected 2-D crystals all exhibit different phonon-limited mobility values, as well as electron and phonon properties, which have a direct influence on the increase in their lattice temperature and on the power dissipated inside their channel as a function of the applied gate voltage and electrical current magnitude. This computational study reveals (i) that self-heating plays a much more important role in 2-D materials than in Si nanowires, (ii) that it could severely limit the performance of 2-D devices at high current densities, and (iii) that black phosphorus appears less sensitive to this phenomenon than transition metal dichalcogenides.

  15. SEAWAT: A Computer Program for Simulation of Variable-Density Groundwater Flow and Multi-Species Solute and Heat Transport

    Science.gov (United States)

    Langevin, Christian D.

    2009-01-01

    SEAWAT is a MODFLOW-based computer program designed to simulate variable-density groundwater flow coupled with multi-species solute and heat transport. The program has been used for a wide variety of groundwater studies including saltwater intrusion in coastal aquifers, aquifer storage and recovery in brackish limestone aquifers, and brine migration within continental aquifers. SEAWAT is relatively easy to apply because it uses the familiar MODFLOW structure. Thus, most commonly used pre- and post-processors can be used to create datasets and visualize results. SEAWAT is a public domain computer program distributed free of charge by the U.S. Geological Survey.

  16. Coupled Heat and Moisture Transport Simulation on the Re-saturation of Engineered Clay Barrier

    Science.gov (United States)

    Huang, W. H.; Chuang, Y. F.

    2014-12-01

    Engineered clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation processes of clay barrier, with emphasis on the coupling effects of heat and moisture during the intrusion of groundwater to the repository. A reference bentonite and a locally available clay were adopted in the laboratory program. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures so as to determine the soil water characteristic curves of the two clays at different temperatures. And water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the clay barrier. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. It was found that soil suction decreases as temperature increases, resulting in a reduction in water retention capability. The finite element method was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on the clays. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. Finally, the model was then used to evaluate the effect of clay barrier thickness on the time required for groundwater to penetrate the clay barrier and approach saturation. Due to the variation in clay suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.

  17. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    Science.gov (United States)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is

  18. Heat transport and parametric simulation of a porous ceramic combustor in a gas turbine environment

    Science.gov (United States)

    Lu, Wei David

    2002-09-01

    This study is to generate basic knowledge of heat transport inside a porous ceramic combustor in a gas turbine combustion environment. This work predicts the peak temperature inside the porous ceramic combustor, which directly affects the combustor life cycle and flame stability characteristics within the ceramic media. The results will help to generate an operating window for the stable operation of the porous ceramic combustor under the operating conditions of a gas turbine. A theoretical model is developed to study the operational characteristics of the combustor. The model used here accounts for both radiative and convective thermal transport between the solid and gas phases. The solid is assumed to absorb, emit, and scatter radiative energy. A one-step global reaction mechanism is used to model the released energy due to combustion. The effects of the properties of the porous material on gas and solid phase temperature distribution, radiative flux distribution, and flame location (as indicated by local temperature) were investigated. The results confirm that radiative heat transfer is a key mechanism in the stable operation of the combustor. For proper functioning of the combustor, the temperature of the porous material (the solid temperature) must be lowered in order to maintain material and structural integrity. Yet, the gas phase temperature has to be high enough so that a stable combustion process can be maintained. A lower value for the porous material temperature of the combustor can be obtained by enhancing the radiative output from the combustor to the downstream sections. This can be achieved by choosing optimized values of porosity and other properties of the porous ceramic matrix. Higher solid phase thermal conductivity enhances the radiative output from the combustor and helps to reduce the porous material's temperature. It is also desirable that the porous layer has an optimized optical thickness so that the radiative output of the combustor is

  19. Heat transport within the Earth

    CERN Document Server

    Herndon, J Marvin

    2011-01-01

    Numerous attempts have been made to interpret Earth's dynamic processes based upon heat transport concepts derived from ordinary experience. But, ordinary experience can be misleading, especially when underlain by false assumptions. Geodynamic considerations traditionally have embraced three modes of heat transport: conduction, convection, and radiation. Recently, I introduced a fourth, "mantle decompression thermal tsunami" that, I submit, is responsible for emplacing heat at the base of the Earth's crust. Here, I review thermal transport within the Earth and speculate that there might be a fifth mode: "heat channeling", involving heat transport from the core to "hot-spots" such as those that power the Hawaiian Islands and Iceland.

  20. Predictions on heat transport and plasma rotation from global gyrokinetic simulations

    Science.gov (United States)

    Sarazin, Y.; Grandgirard, V.; Abiteboul, J.; Allfrey, S.; Garbet, X.; Ghendrih, Ph.; Latu, G.; Strugarek, A.; Dif-Pradalier, G.; Diamond, P. H.; Ku, S.; Chang, C. S.; McMillan, B. F.; Tran, T. M.; Villard, L.; Jolliet, S.; Bottino, A.; Angelino, P.

    2011-10-01

    Flux-driven global gyrokinetic codes are now mature enough to make predictions in terms of turbulence and transport in tokamak plasmas. Some of the recent breakthroughs of three such codes, namely GYSELA, ORB5 and XGC1, are reported and compared wherever appropriate. In all three codes, turbulent transport appears to be mediated by avalanche-like events, for a broad range of ρ* = ρi/a values, ratio of the gyro-radius over the minor radius. Still, the radial correlation length scales with ρi, leading to the gyro-Bohm scaling of the effective transport coefficient below ρ* ≈ 1/300. The possible explanation could be due to the fact that avalanches remain meso-scale due to the interaction with zonal flows, whose characteristic radial wavelength appears to be almost independent of the system size. As a result of the radial corrugation of the turbulence driven zonal and mean flows, the shear of the radial electric field can be significantly underestimated if poloidal rotation is assumed to be governed by the neoclassical theory, especially at low collisionality. Indeed, the turbulence contribution to the poloidal rotation increases when collisionality decreases. Finally, the numerical verification of toroidal momentum balance shows that both neoclassical and turbulent contributions to the Reynolds' stress tensor play the dominant role. The phase space analysis further reveals that barely passing supra-thermal particles mostly contribute to the toroidal flow generation, consistently with quasi-linear predictions.

  1. Heat transport through atomic contacts.

    Science.gov (United States)

    Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd

    2017-02-06

    Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.

  2. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  3. Acoustically enhanced heat transport

    Science.gov (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  4. Tokamak electron heat transport by direct numerical simulation of small scale turbulence; Transport de chaleur electronique dans un tokamak par simulation numerique directe d'une turbulence de petite echelle

    Energy Technology Data Exchange (ETDEWEB)

    Labit, B

    2002-10-01

    In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure {beta} or the normalized Larmor radius, {rho}{sub *}. The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters {beta} and {rho}{sub *}. The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand

  5. Regional transportation simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.; Rickert, M.; Frye, R.; Stretz, P.; Simon, P.; Jacob, R.; Barrett, C.L.

    1998-07-01

    For transportation planning applications, it is useful to not only model each individual traveler, but also the decision-making process leading to their travel demand. Simulation-based modeling of this process means iterations between the actual transportation micro-simulation and the modules simulating the process making the plans. This means that for understanding a single day of travel, it may be necessary to simulate that day hundreds of times for the iteration process, leading to a considerable strain on computational resources.

  6. Finite Volume schemes on unstructured grids for non-local models: Application to the simulation of heat transport in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goudon, Thierry, E-mail: thierry.goudon@inria.fr [Team COFFEE, INRIA Sophia Antipolis Mediterranee (France); Labo. J.A. Dieudonne CNRS and Univ. Nice-Sophia Antipolis (UMR 7351), Parc Valrose, 06108 Nice cedex 02 (France); Parisot, Martin, E-mail: martin.parisot@gmail.com [Project-Team SIMPAF, INRIA Lille Nord Europe, Park Plazza, 40 avenue Halley, F-59650 Villeneuve d' Ascq cedex (France)

    2012-10-15

    In the so-called Spitzer-Haerm regime, equations of plasma physics reduce to a nonlinear parabolic equation for the electronic temperature. Coming back to the derivation of this limiting equation through hydrodynamic regime arguments, one is led to construct a hierarchy of models where the heat fluxes are defined through a non-local relation which can be reinterpreted as well by introducing coupled diffusion equations. We address the question of designing numerical methods to simulate these equations. The basic requirement for the scheme is to be asymptotically consistent with the Spitzer-Haerm regime. Furthermore, the constraints of physically realistic simulations make the use of unstructured meshes unavoidable. We develop a Finite Volume scheme, based on Vertex-Based discretization, which reaches these objectives. We discuss on numerical grounds the efficiency of the method, and the ability of the generalized models in capturing relevant phenomena missed by the asymptotic problem.

  7. Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a comprehensive Earth system model

    Directory of Open Access Journals (Sweden)

    N. Fischer

    2010-03-01

    Full Text Available Orbital forcing does not only exert direct insolation effects, but also alters climate indirectly through feedback mechanisms that modify atmosphere and ocean dynamics and meridional heat and moisture transfers. We investigate the regional effects of these changes by detailed analysis of atmosphere and ocean circulation and heat transports in a coupled atmosphere-ocean-sea ice-biosphere general circulation model (ECHAM5/JSBACH/MPI-OM. We perform long term quasi equilibrium simulations under pre-industrial, mid-Holocene (6000 years before present – yBP, and Eemian (125 000 yBP orbital boundary conditions. Compared to pre-industrial climate, Eemian and Holocene temperatures show generally warmer conditions at higher and cooler conditions at lower latitudes. Changes in sea-ice cover, ocean heat transports, and atmospheric circulation patterns lead to pronounced regional heterogeneity. Over Europe, the warming is most pronounced over the north-eastern part in accordance with recent reconstructions for the Holocene. We attribute this warming to enhanced ocean circulation in the Nordic Seas and enhanced ocean-atmosphere heat flux over the Barents Shelf in conduction with retreat of sea ice and intensified winter storm tracks over northern Europe.

  8. A thermodynamic view of heat transfer in different transport regimes

    Science.gov (United States)

    Schubler, Gulru Babac

    2016-11-01

    The nature of the heat transfer process changes substantially according to transport regime. A thermodynamic view to micro/nano scale flows is considered to get a better understanding within this regime dependent change. The transport processes are expressed as a polytropic process and T-s diagram of different transport regimes are presented. In addition, a molecular dynamic simulation of nano channel flows is presented. Since the polytropic processes are strongly related with the heat capacities, the heat capacity calculations are also taken into account in MD simulations. The theoretical predictions are approved with the molecular dynamic simulations for monatomic gases.

  9. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  10. Monte Carlo simulation of radiation heat transfer in arrays of fixed discrete surfaces using cell-to-cell photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Drost, M.K. (Pacific Northwest Lab., Richland, WA (United States)); Welty, J.R. (Oregon State Univ., Corvallis, OR (United States))

    1992-08-01

    Radiation heat transfer in an array of fixed discrete surfaces is an important problem that is particularly difficult to analyze because of the nonhomogeneous and anisotropic optical properties involved. This article presents an efficient Monte Carlo method for evaluating radiation heat transfer in arrays of fixed discrete surfaces. This Monte Carlo model has been optimized to take advantage of the regular arrangement of surfaces often encountered in these arrays. Monte Carlo model predictions have been compared with analytical and experimental results.

  11. Monte Carlo simulation of radiation heat transfer in arrays of fixed discrete surfaces using cell-to-cell photon transport

    Energy Technology Data Exchange (ETDEWEB)

    Drost, M.K. [Pacific Northwest Lab., Richland, WA (United States); Welty, J.R. [Oregon State Univ., Corvallis, OR (United States)

    1992-08-01

    Radiation heat transfer in an array of fixed discrete surfaces is an important problem that is particularly difficult to analyze because of the nonhomogeneous and anisotropic optical properties involved. This article presents an efficient Monte Carlo method for evaluating radiation heat transfer in arrays of fixed discrete surfaces. This Monte Carlo model has been optimized to take advantage of the regular arrangement of surfaces often encountered in these arrays. Monte Carlo model predictions have been compared with analytical and experimental results.

  12. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  13. Macroscopic heat transport equations and heat waves in nonequilibrium states

    Science.gov (United States)

    Guo, Yangyu; Jou, David; Wang, Moran

    2017-03-01

    Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

  14. A cellular automaton based model simulating HVAC fluid and heat transport in a building. Modeling approach and comparison with experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, A. [Department of Applied Mathematics, Polytechnic University of Valencia, ETSGE School, Camino de Vera s/n, 46022 Valencia (Spain); Urchueguia, J.F. [Department of Applied Physics, Polytechnic University of Valencia, ETSII School, Camino de Vera s/n, 46022 Valencia (Spain); Martos, J. [Superior Technical School of Engineering, Department of Electronic Engineering, University of Valencia, Vicente Andres Estelles s/n, Burjassot 46100, Valencia (Spain)

    2010-09-15

    A discrete model characterizing heat and fluid flow in connection with thermal fluxes in a building is described and tested against experiment in this contribution. The model, based on a cellular automaton approach, relies on a set of a few quite simple rules and parameters in order to simulate the dynamic evolution of temperatures and energy flows in any water or brine based thermal energy distribution network in a building or system. Using an easy-to-record input, such as the instantaneous electrical power demand of the heating or cooling system, our model predicts time varying temperatures in characteristic spots and the related enthalpy flows whose simulation usually requires heavy computational tools and detailed knowledge of the network elements. As a particular example, we have applied our model to simulate an existing fan coil based hydronic heating system driven by a geothermal heat pump. When compared to the experimental temperature and thermal energy records, the outcome of the model coincides. (author)

  15. Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in EUV applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, V.; Hassanein, A.; Morozov, V.; Sizyuk, T.; Mathematics and Computer Science

    2007-01-16

    The HEIGHTS integrated model has been developed as an instrument for simulation and optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) lithography. The model combines three general parts: hydrodynamics, radiation transport, and heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit schemes with sparse matrix technology. All model parts consider physical processes in three-dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was estimated, and it was found that this effect could be neglected for laser intensities relevant to EUV (up to {approx}10{sup 12} W/cm{sup 2}). All applied schemes were tested on analytical problems separately. Benchmark modeling of the full EUV source problem with a planar tin target showed good correspondence with experimental and theoretical data. Preliminary results are presented for tin droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV properties of source is discussed.

  16. Present-day thermal signatures of different heat transport mechanisms within the Northeast German basin and their sensitivity to the resolution of the computational mesh - results from coupled 3D numerical simulations

    Science.gov (United States)

    Kaiser, B. O.; Scheck-Wenderoth, M.; Cacace, M.; Przybycin, A.; Lewerenz, B.

    2012-04-01

    Sedimentary basins provide a significant portion of geothermal energy. Making geothermal heat an effective source for sustainable energy supply requires a quantitative reserve assessment. Numerical (mathematical) models of sedimentary basins are useful tools for first-order approximations of the geothermal potential on a regional scale. The challenge for numerical investigations within complex geological sedimentary basins is that the thermal field contains superposed signals originating from several heat transport processes, different in nature but physically coupled. An additional difficulty arising from numerical simulations is the error introduced by discretizing a continuous physical system into its numerical counterpart. Different mesh resolutions may lead to different and sometimes contrasting computational findings, thus making the reliability of coupled numerical simulations at least questionable. By means of 3D numerical simulations we discriminate conductive, forced convective and free thermal convective heat transport within a complex geological setting, the Northeast German Basin. As a second step we explore the sensitivity of each heat transport process with regard to the spatial discretization. The internal geological structure of the NEGB is characterized by the presence of a highly structured Zechstein salt sequence piercing the sedimentary overburden locally. Moreover, the Zechstein salt is impervious to fluid flow and has a relative high thermal conductivity compared to the surrounding clastic sediments. Computational results show that these hydrogeological conditions exerts primary constraints on the internal hydrothermal setting of the basin. The impervious nature of the Zechstein salt inhibits groundwater flow to be effective. Accordingly, conduction is the main heat transport mechanism within the salt. In contrast, forced convective heat transport triggerd by topographic gradients affects mainly the temperature distribution within the post

  17. Constructs of highly effective heat transport paths by bionic optimization

    Institute of Scientific and Technical Information of China (English)

    CHENG; Xinguang; (程新广); LI; Zhixin; (李志信); GUO; Zengyuan; (过增元)

    2003-01-01

    The optimization approach based on the biological evolution principle is used to construct the heat transport paths for volume-to-point problem. The transport paths are constructed by inserting high conductivity materials in the heat conduction domain where uniform or nonuniform heat sources exist. In the bionic optimization process, the optimal constructs of the high conductivity material are obtained by numerically simulating the evolution and degeneration process according to the uniformity principle of the temperature gradient. Finally, preserving the features of the optimal constructs, the constructs are regularized for the convenience of engineering manufacture. The results show that the construct obtained by bionic optimization is approximate to that obtained by the tree-network constructal theory when the heat conduction is enhanced for the domain with a uniform heat source and high conductivity ratio of the inserting material to the substrate, the high conductivity materials are mainly concentrated on the heat outlet for the case with a uniform heat source and low thermal conductivity ratio, and for the case with nonuniform heat sources, the high conductivity material is concentrated in the heat source regions and construacts several highly effective heat transport paths to connect the regions to the outlet.

  18. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  19. Numerical simulation on heat transfer inside rotating porous disk subjected to local heat flux

    Institute of Scientific and Technical Information of China (English)

    ZHU; XingDan; ZHANG; JingZhou; TAN; XiaoMing

    2013-01-01

    Numerical simulation was carried out to study the centrifugally-driven flow and heat transfer inside rotating metallic porous disk subjected to local heat flux. The effects of rotational speed, solid thermal conductivity and porosity on heat transfer were analyzed. The thermal transport coefficient, defined as the ratio of local heat flux to maximum temperature difference on the disk, was introduced to evaluate the thermal transport capacity in rotating porous disk. For convenience, the conjugation between convective heat transfer inside the rotating porous disk and convective heat transfer over the rotating disk surface was decoupled in the present study. Firstly, the convective heat transfer over the free rotating disk surface was investigated indi-vidually to determine the heat transfer coefficient over the disk surface to the ambient air. Then the convective heat transfer over a rotating disk surface was treated as the thermal boundary condition for the computation of convective heat transfer in-side rotating porous disk. Under the present research conditions, the results show that the centrifugally-driven flow is enhanced significantly with the increase of rotational speed. Consequently, the maximum temperature on the disk surface is decreased and the temperature distribution tends to be uniform. The thermal transport capacity in rotating porous disk is also enhanced with the increase of solid thermal conductivity or the decrease of solid porosity. In the rotating porous disk, the solid phase heat transfer is clearly the dominant mode of heat transport and the fluid phase makes an incremental contribution to the total heat transfer.

  20. Heat transport in the Hadean mantle: From heat pipes to plates

    Science.gov (United States)

    Kankanamge, Duminda G. J.; Moore, William B.

    2016-04-01

    Plate tectonics is a unique feature of Earth, and it plays a dominant role in transporting Earth's internally generated heat. It also governs the nature, shape, and the motion of the surface of Earth. The initiation of plate tectonics on Earth has been difficult to establish observationally, and modeling of the plate breaking process has not consistently accounted for the nature of the preplate tectonic Earth. We have performed numerical simulations of heat transport in the preplate tectonic Earth to understand the transition to plate tectonic behavior. This period of time is dominated by volcanic heat transport called the heat pipe mode of planetary cooling. These simulations of Earth's mantle include heat transport by melting and melt segregation (volcanism), Newtonian temperature-dependent viscosity, and internal heating. We show that when heat pipes are active, the lithosphere thickens and lithospheric isotherms are kept flat by the solidus. Both of these effects act to suppress plate tectonics. As volcanism wanes, conduction begins to control lithospheric thickness, and large slopes arise at the base of the lithosphere. This produces large lithospheric stress and focuses it on the thinner regions of the lithosphere resulting in plate breaking events.

  1. Transport simulation for EBT reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, T.; Uckan, N.A.; Jaeger, E.F.

    1983-08-01

    Transport simulation and modeling studies for the ELMO Bumpy Torus (EBT) reactor are carried out by using zero-dimensional (0-D) and one-and-one-half-dimensional (1 1/2-D) transport calculations. The time-dependent 0-D model is used for global analysis, whereas the 1 1/2-D radial transport code is used for accurate determination of density, temperature, and ambipolar potential profiles and of the role of these profiles in reactor plasma performance. Analysis with the 1 1/2-D transport code shows that profile effects near the outer edge of the hot electron ring lead to enhanced confinement by at least a factor of 2 to 5 beyond the simple scaling that is obtained from the global analysis. The radial profiles of core plasma density and temperatures (or core pressure) obtained from 1 1/2-D transport calculations are found to be similar to those theoretically required for stability.

  2. TOUGH2. Unsaturated Groundwater and Heat Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [Lawrence Berkeley National Lab., CA (United States)

    1991-05-01

    TOUGH2 is a new and improved version of TOUGH. TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO2; water, air; water, air, with vapor pressure lowering and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH2 is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH2 simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH2 takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy`s law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat.

  3. Heat transfer simulation in solid substrate fermentation.

    Science.gov (United States)

    Saucedo-Castañeda, G; Gutiérrez-Rojas, M; Bacquet, G; Raimbault, M; Viniegra-González, G

    1990-04-01

    A mathematical model was developed and tested to simulate the generation and transfer of heat in solid substrate fermentation (SSF). The experimental studies were realized in a 1-L static bioreactor packed with cassava wet meal and inoculated with Aspergillus niger. A simplified pseudohomogeneous monodimensional dynamic model was used for the energy balance. Kinetic equations taking into account biomass formation (logistic), sugar consumption (with maintenance), and carbon dioxide formation were used. Model verification was achieved by comparison of calculated and experimental temperatures. Heat transfer was evaluated by the estimation of Biot and Peclet heat dimensionless numbers 5-10 and 2550-2750, respectively. It was shown that conduction through the fermentation fixed bed was the main heat transfer resistance. This model intends to reach a better understanding of transport phenomena in SSF, a fact which could be used to evaluate various alternatives for temperature control of SSF, i.e., changing air flow rates and increasing water content. Dimensionless numbers could be used as scale-up criteria of large fermentors, since in those ratios are described the operating conditions, geometry, and size of the bioreactor. It could lead to improved solid reactor systems. The model can be used as a basis for automatic control of SSF for the production of valuable metabolites in static fermentors.

  4. Reaction-transport-mechanical (RTM) simulator Sym.CS: Putting together water-rock interaction, multi-phase and heat flow, composite petrophysics model, and fracture mechanics

    Science.gov (United States)

    Paolini, C.; Park, A. J.; Mellors, R. J.; Castillo, J.

    2009-12-01

    A typical CO2 sequestration scenario involves the use of multiple simulators for addressing multiphase fluid and heat flow, water-rock interaction and mass-transfer, rock mechanics, and other chemical and physical processes. The benefit of such workflow is that each model can be constrained rigorously; however, the drawback is final modeling results may achieve only a limited extent of the theoretically possible capabilities of each model. Furthermore, such an approach in modeling carbon sequestration cannot capture the nonlinearity of the various chemical and physical processes. Hence, the models can only provide guidelines for carbon sequestration processes with large margins of error. As an alternative, a simulator is being constructed by a multi-disciplinary team with the aim of implementing a large array of fundamental phenomenologies, including, but not limited to: water-rock interaction using elemental mass-balance and explicit mass-transfer and reaction coupling methods; multi-phase and heat flow, including super-critical CO2 and oil; fracture mechanics with anisotropic permeabilities; rheological rock mechanics based on incremental stress theory; and a composite petrophysics model capable of describing changing rock composition and properties. The modules representing the processes will be solved using a layered iteration method, with the goal of capturing the nonlinear feedback among all of the processes. The simulator will be constructed using proven optimization and modular, object-oriented, and service-oriented programming methods. Finally, a novel AJAX (asynchronous JavaScript and XML) user interface is being tested to host the simulator that will allow usage through an Internet browser. Currently, the water-rock interaction, composite petrophysics, and multi-phase fluid and heat flow modules are available for integration. Results of the water-rock interaction and petrophysics coupling has been used to model interaction between a CO2-charged water and

  5. Numerical Simulation Using Boundary Element Method of the Mechanism to Enhance Heat Transport by Solitary Wave on Falling Thin Liquid Films

    Institute of Scientific and Technical Information of China (English)

    Wen-QingLu

    1993-01-01

    A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers.The divergence theorem is applied to the non-linear convective volume integral of the boundary element formulation with the pressure penalty function.Consequently,velocity and temperature gradients are dliminated.and the complete formulation is written in terms of velocity and temperature,This provides considerable reduction is storage and computational requirements while improving accuracy.The non-linear equation systems of boundary element discretization are solved by the quasi-Nweton iterative scheme with Broyden's update.The streamline maps and the temperature distributions in solitary wave and wavy film flow have been obtained,and the variations of Nusselt numbers along the wall-liquid interface are also given.There are large cross-flow velocities and S-shape temperature distributions in the recirculating region of solitary wave.This special flow and thermal process can be a mechanism to enhance heat transport.

  6. Heat transport experiments on the HSX stellarator

    Science.gov (United States)

    Weir, Gavin McCabe

    It has been observed in tokamaks that temperature profiles are resilient to changes in heating, and that this effect has not been observed in conventional stellarators. Electron temperature profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is measured using a combination of steady-state and perturbative experiments. In this work, stiffness measurements are presented in the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the neoclassical transport is comparable to a tokamak and turbulent transport dominates throughout the plasma. A second gyrotron and transmission line have been installed and tested to facilitate modulated heating experiments on HSX, and a multi-pass absorption model accurately predicts the total absorption and spatial extent of the electron cyclotron resonance heating during a modulation experiment. The electron cyclotron emission measured by an absolutely calibrated 16-channel radiometer is used to measure the local electron temperature and its response to the modulated heating. The amplitude and phase of the heat wave through the foot of the steep electron temperature gradient region of the plasma, 0.2It has been observed in tokamaks that temperature profiles are resilient to changes in heating, and that this effect has not been observed in conventional stellarators. Electron temperature profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is measured using a combination of steady-state and perturbative experiments. In this work, stiffness measurements are presented in the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the neoclassical transport is comparable to a tokamak and turbulent transport dominates throughout the plasma. A second gyrotron and transmission

  7. Vibrational Heat Transport in Molecular Junctions

    Science.gov (United States)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  8. MODEL OF HEAT SIMULATOR FOR DATA CENTERS

    Directory of Open Access Journals (Sweden)

    Jan Novotný

    2016-08-01

    Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.

  9. Molecular-dynamics calculation of the vacancy heat of transport

    Energy Technology Data Exchange (ETDEWEB)

    Schelling, Patrick K.; Ernotte, Jacques; Shokeen, Lalit; Tucker, William C. [Advanced Material Processing and Analysis Center and Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States); Woods Halley, J. [Department of Physics, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 555455 (United States)

    2014-07-14

    We apply the recently developed constrained-dynamics method to elucidate the thermodiffusion of vacancies in a single-component material. The derivation and assumptions used in the method are clearly explained. Next, the method is applied to compute the reduced heat of transport Q{sub v}{sup *}−h{sub fv} for vacancies in a single-component material. Results from simulations using three different Morse potentials, with one providing an approximate description of Au, and an embedded-atom model potential for Ni are presented. It is found that the reduced heat of transport Q{sub v}{sup *}−h{sub fv} may take either positive or negative values depending on the potential parameters and exhibits some dependence on temperature. It is also found that Q{sub v}{sup *}−h{sub fv} may be correlated with the activation entropy. The results are discussed in comparison with experimental and previous simulation results.

  10. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  11. Neutron transport simulation (selected topics)

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, P. [Instituto Tecnologico e Nuclear, Estrada Nacional 10, P-2686-953 Sacavem (Portugal)], E-mail: pedrovaz@itn.pt

    2009-10-15

    Neutron transport simulation is usually performed for criticality, power distribution, activation, scattering, dosimetry and shielding problems, among others. During the last fifteen years, innovative technological applications have been proposed (Accelerator Driven Systems, Energy Amplifiers, Spallation Neutron Sources, etc.), involving the utilization of intermediate energies (hundreds of MeV) and high-intensity (tens of mA) proton accelerators impinging in targets of high Z elements. Additionally, the use of protons, neutrons and light ions for medical applications (hadrontherapy) impose requirements on neutron dosimetry-related quantities (such as kerma factors) for biologically relevant materials, in the energy range starting at several tens of MeV. Shielding and activation related problems associated to the operation of high-energy proton accelerators, emerging space-related applications and aircrew dosimetry-related topics are also fields of intense activity requiring as accurate as possible medium- and high-energy neutron (and other hadrons) transport simulation. These applications impose specific requirements on cross-section data for structural materials, targets, actinides and biologically relevant materials. Emerging nuclear energy systems and next generation nuclear reactors also impose requirements on accurate neutron transport calculations and on cross-section data needs for structural materials, coolants and nuclear fuel materials, aiming at improved safety and detailed thermal-hydraulics and radiation damage studies. In this review paper, the state-of-the-art in the computational tools and methodologies available to perform neutron transport simulation is presented. Proton- and neutron-induced cross-section data needs and requirements are discussed. Hot topics are pinpointed, prospective views are provided and future trends identified.

  12. Neutron transport simulation (selected topics)

    Science.gov (United States)

    Vaz, P.

    2009-10-01

    Neutron transport simulation is usually performed for criticality, power distribution, activation, scattering, dosimetry and shielding problems, among others. During the last fifteen years, innovative technological applications have been proposed (Accelerator Driven Systems, Energy Amplifiers, Spallation Neutron Sources, etc.), involving the utilization of intermediate energies (hundreds of MeV) and high-intensity (tens of mA) proton accelerators impinging in targets of high Z elements. Additionally, the use of protons, neutrons and light ions for medical applications (hadrontherapy) impose requirements on neutron dosimetry-related quantities (such as kerma factors) for biologically relevant materials, in the energy range starting at several tens of MeV. Shielding and activation related problems associated to the operation of high-energy proton accelerators, emerging space-related applications and aircrew dosimetry-related topics are also fields of intense activity requiring as accurate as possible medium- and high-energy neutron (and other hadrons) transport simulation. These applications impose specific requirements on cross-section data for structural materials, targets, actinides and biologically relevant materials. Emerging nuclear energy systems and next generation nuclear reactors also impose requirements on accurate neutron transport calculations and on cross-section data needs for structural materials, coolants and nuclear fuel materials, aiming at improved safety and detailed thermal-hydraulics and radiation damage studies. In this review paper, the state-of-the-art in the computational tools and methodologies available to perform neutron transport simulation is presented. Proton- and neutron-induced cross-section data needs and requirements are discussed. Hot topics are pinpointed, prospective views are provided and future trends identified.

  13. Heat transport modelling in EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.

    2009-02-01

    A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity χe into three regions, one in the plasma core, where χe is assumed to be determined by the tearing modes, one located around the reversal radius, where χe is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high χe is assumed. The absolute values of the core and of the reversal χe are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.

  14. Climate in the Absence of Ocean Heat Transport

    Science.gov (United States)

    Rose, B. E. J.

    2015-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on the climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify this by comparing a realistic control climate simulation with a slab ocean simulation in which OHT is disabled. Using the state-of-the-art CESM with a realistic present-day continental configuration, I show that the absence of OHT leads to a 23 K global cooling and massive expansion of sea ice to near 30º latitude in both hemisphere. The ice expansion is asymmetric, with greatest extent in the South Pacific and South Indian ocean basins. I discuss implications of this enormous and asymmetric climate change for atmospheric circulation, heat transport, and tropical precipitation. Parameter sensitivity studies show that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT, with some perturbations sufficient to cause a runaway Snowball Earth glaciation. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is still rather uncertain. I will also present some ideas on adapting the simple energy balance model to account for the enhanced sensitivity of sea ice to heating from the ocean.

  15. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    Science.gov (United States)

    Schulte, Daniel; Rühaak, Wolfram; Welsch, Bastian; Bär, Kristian; Sass, Ingo

    2016-04-01

    Borehole heat exchangers represent a well-established technology, which pushes for new fields of applications and novel modifications. Current simulation tools cannot - or only to some extent - describe features like inclined or partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We present a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. The presented tool benefits from the fast analytical solution of the thermal interactions within the boreholes while still allowing for a detailed consideration of the borehole heat exchanger properties.

  16. Modelling heat transport through completely positive maps

    CERN Document Server

    Wichterich, H; Gemmer, J; Henrich, M J; Michel, M; Breuer, Heinz-Peter; Gemmer, Jochen; Henrich, Markus J.; Michel, Mathias; Wichterich, Hannu

    2007-01-01

    We investigate heat transport in a spin-1/2 Heisenberg chain, coupled locally to independent thermal baths of different temperature. The analysis is carried out within the framework of the theory of open systems by means of appropriate quantum master equations. The standard microscopic derivation of the weak-coupling Lindblad equation in the secular approximation is considered, and shown to be inadequate for the description of stationary nonequilibrium properties like a non-vanishing energy current. Furthermore, we derive an alternative master equation that is capable to describe a stationary energy current and, at the same time, leads to a completely positive dynamical map. This paves the way for efficient numerical investigations of heat transport in larger systems based on Monte Carlo wave function techniques.

  17. Vapor-phase heat-transport system

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.

    1983-01-01

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  18. Comparison of Turbulent Transport Models and Transport Simulation of Internal Transport Barrier Formation

    Science.gov (United States)

    Honda, Mitsuru

    2005-10-01

    In order to predict the performance of ITER plasma, it is important to validate the existing theory-based turbulent transport models by systematicallycomparing them with the experimental observations. Taking experimental data from the ITPA profile database, we have carried out transport simulations with the CDBM, GLF23 and Weiland models by the one-dimensional diffusive transport code TASK/TR. The results are evaluated by the six figures of merit as specified in ITER Physics Basis^1. From the simulation on 55 discharges, it is found that each model has unique dependence on devices and operation modes and the CDBM model gives the most satisfactory results. We have incorporated the dependence on the elongation on the CDBM model^2 and confirmed that the accuracy of the prediction is improved for H-mode discharges. Single-particle-species heat transport simulations have indicated that the CDBM model reproduces Ti profiles more accurately than Te profiles. We will also show the results of the predictive simulations coupling TASK/TR and TASK/EQ, two-dimensional equilibrium code, for high performance plasmas with internal transport barriers like the high βp and reversed shear plasmas. [1] ITER Physics Basis Expert Groups, Nucl. Fusion, 39, 2175 (1999) [2] M. Yagi et al., J. Phys. Soc. Japan, 66, 379 (1997)

  19. Effect of Boundary Layer Latent Heating on MJO Simulations

    Institute of Scientific and Technical Information of China (English)

    LING Jian; LI Chongyin; ZHOU Wen; JIA Xiaolong; Chidong ZHANG

    2013-01-01

    A latent heating peak in the PBL was detected in a simulation by a global GCM that failed to reproduce Madden-Julian Oscillation (MJO).The latent heating peak in the PBL was generated by very shallow convection,which prevented moisture from being transported to the free troposphere.Large amount of moisture was therefore confined to the PBL,leading to a dry bias in the free atmosphere.Suffering from this dry bias,deep convection became lethargic,and MJO signals failed to occur.When the latent heating peak in the PBL was removed in another simulation,reasonable MJO signals,including the eastward propagation and the structure of its large-scale circulation,appeared.We therefore propose that the excessive latent heating peak in the PBL due to hyperactive shallow convection may be a reason for a lack of MJO signals in some simulations by other GCMs as well.

  20. Vertical eddy heat fluxes from model simulations

    Science.gov (United States)

    Stone, Peter H.; Yao, Mao-Sung

    1991-01-01

    Vertical eddy fluxes of heat are calculated from simulations with a variety of climate models, ranging from three-dimensional GCMs to a one-dimensional radiative-convective model. The models' total eddy flux in the lower troposphere is found to agree well with Hantel's analysis from observations, but in the mid and upper troposphere the models' values are systematically 30 percent to 50 percent smaller than Hantel's. The models nevertheless give very good results for the global temperature profile, and the reason for the discrepancy is unclear. The model results show that the manner in which the vertical eddy flux is carried is very sensitive to the parameterization of moist convection. When a moist adiabatic adjustment scheme with a critical value for the relative humidity of 100 percent is used, the vertical transports by large-scale eddies and small-scale convection on a global basis are equal: but when a penetrative convection scheme is used, the large-scale flux on a global basis is only about one-fifth to one-fourth the small-scale flux. Comparison of the model results with observations indicates that the results with the latter scheme are more realistic. However, even in this case, in mid and high latitudes the large and small-scale vertical eddy fluxes of heat are comparable in magnitude above the planetary boundary layer.

  1. Fractional-order theory of heat transport in rigid bodies

    Science.gov (United States)

    Zingales, Massimiliano

    2014-11-01

    The non-local model of heat transfer, used to describe the deviations of the temperature field from the well-known prediction of Fourier/Cattaneo models experienced in complex media, is framed in the context of fractional-order calculus. It has been assumed (Borino et al., 2011 [53], Mongioví and Zingales, 2013 [54]) that thermal energy transport is due to two phenomena: (i) A short-range heat flux ruled by a local transport equation; (ii) A long-range thermal energy transfer proportional to a distance-decaying function, to the relative temperature and to the product of the interacting masses. The distance-decaying function is assumed in the functional class of the power-law decay of the distance yielding a novel temperature equation in terms of α-order Marchaud fractional-order derivative (0⩽α⩽1). Thermodynamical consistency of the model is provided in the context of Clausius-Plank inequality. The effects induced by the boundary conditions on the temperature field are investigated for diffusive as well as ballistic local heat flux. Deviations of the temperature field from the linear distributions in the neighborhood of the thermostated zones of small-scale conductors are qualitatively predicted by the used fractional-order heat transport model, as shown by means of molecular dynamics simulations.

  2. Heat transport in coupled inhomogeneous chains

    Institute of Scientific and Technical Information of China (English)

    Hu Tao; Bai Meng; Hu Ke; Tang Yi

    2011-01-01

    We first investigate the heat transport in a network model consisting of two coupled dimerized chains. Results indicate that the thermal resistance of each chain increases with the decrease of the mass ratio γ of the two types of atoms. Then, we find, when a light impurity or a heavy one is added in the two coupled homogeneous chains and coupled with a particle of another chain, the interface thermal resistances Rlint andRγint present different dependences on the mass ratio γ'. Finally, a persistent circulation of energy current is observed in coupled inhomogeneous chains with two pairs of interchain coupling.

  3. Heat Transport of Electron-Doped Cobaltates

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; LIANG Ying; FENG Shi-Ping; CHEN Wei-Yeu

    2006-01-01

    Within the t-J model, the heat transport of electron-doped cobaltates is studied based on the fermionspin theory. It is shown that the temperature-dependent thermal conductivity is characterized by the low-temperature peak located at a finite temperature. The thermal conductivity increases monotonously with increasing temperature at low-temperatures T < 0.1 J, and then decreases with increasing temperature for higher temperatures T > 0.1 J, in qualitative agreement with experimental result observed from NaxCoO2.

  4. MSTS - Multiphase Subsurface Transport Simulator theory manual

    Energy Technology Data Exchange (ETDEWEB)

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  5. Momentum transport and non-local transport in heat-flux-driven magnetic reconnection in HEDP

    Science.gov (United States)

    Liu, Chang; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    Strong magnetic fields are readily generated in high-energy-density plasmas and can affect the heat confinement properties of the plasma. Magnetic reconnection can in turn be important as an inverse process, which destroys or reconfigures the magnetic field. Recent theory has demonstrated a novel physics regime for reconnection in high-energy-density plasmas where the magnetic field is advected into the reconnection layer by plasma heat flux via the Nernst effect. In this work we elucidate the physics of the electron dissipation layer in this heat-flux-driven regime. Through fully kinetic simulation and a new generalized Ohm's law, we show that momentum transport due to the heat-flux-viscosity effect provides the dissipation mechanism to allow magnetic field line reconnection. Scaling analysis and simulations show that the characteristic width of the current sheet in this regime is several electron mean-free-paths. These results additionally show a coupling between non-local transport and momentum transport, which in turn affects the dynamics of the magnetic field. This work was supported by the U.S. Department of Energy under Contract No. DE-SC0008655.

  6. Interactive Heat Transfer Simulations for Everyone

    Science.gov (United States)

    Xie, Charles

    2012-01-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

  7. Interactive Heat Transfer Simulations for Everyone

    Science.gov (United States)

    Xie, Charles

    2012-01-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

  8. Simulating W Impurity Transport in Tokamaks

    Science.gov (United States)

    Younkin, Timothy R.; Green, David L.; Lasa, Ane; Canik, John M.; Wirth, Brian D.

    2016-10-01

    The extreme heat and charged particle flux to plasma facing materials in magnetically confined fusion devices has motivated Tungsten experiments such as the ``W-Ring'' experiment on the DIII-D tokamak to investigate W divertor viability. In this domain, the transport of W impurities from their tile locations to other first-wall tiles is highly relevant to material lifetimes and tokamak operation. Here we present initial results from a simulation of this W transport. Given that sputtered impurities may experience prompt redeposition near the divertor strikepoint, or migrate far from its origin to the midplane, there is a need to track the global, 3-D, impurity redistribution. This is done by directly integrating the 6-D Lorentz equation of motion (plus thermal gradient terms and relevant Monte-Carlo operators) for the impurity ions and neutrals under background plasma parameters determined by the SOLPS edge plasma code. The geometric details of the plasma facing components are represented to a fidelity sufficient to examine the global impurity migration trends with initial work also presented on advanced surface meshing capabilities targeting high fidelity simulation. This work is supported by U.S. DOE Office of Science SciDAC project on plasma-surface interactions under US DOE contract DE-AC05-00OR22725.

  9. Notes on HP1 a software package for simulating variably-saturated water flow, heat transport, solute transport, and biogeochemistry in porous media. HP1 Version 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, D.; Simunek, J.

    2010-01-15

    HP1 is a comprehensive modeling tool in terms of processes and reactions for simulating reactive transport and biogeochemical processes in variably-saturated porous media. HP1 results from coupling the water and solute transport model HYDRUS-1D (Simunek et al., 2009a) and PHREEQC-2 (Parkhurst and Appelo, 1999). This note provides an overview of how to set up and execute a HP1 project using version 2.2.002 of HP1 and version 4.13 of the graphical user interface (GUI) of HYDRUS-1D. A large part of this note are step-by-step instructions for selected examples involving mineral dissolution and precipitation, cation exchange, surface complexation and kinetic degradation networks. The implementation of variably-saturated flow conditions, changing boundary conditions, a layered soil profile or immobile water is also illustrated.

  10. Reactive transport codes for subsurface environmental simulation

    NARCIS (Netherlands)

    Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Kalbacher, D.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen, J.C.L.; Molins, S.; Moulton, D.; Shao, D.; Simunek, J.; Spycher, N.; Yabusaki, S.B.; Yeh, G.T.

    2015-01-01

    A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that conside

  11. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.

    Science.gov (United States)

    Gowrishankar, T R; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-11-17

    analogy between local thermal models and local electrical (charge transport) models, thereby allowing robust, circuit simulation software to obtain solutions to Kirchhoff's laws for the system model. Transport lattices allow systematic introduction of realistic geometry and spatially heterogeneous heat transport mechanisms. Local representations for both simple, passive functions and more complex local models can be easily and intuitively included into the system model of a tissue.

  12. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    skin was solved by exploiting the mathematical analogy between local thermal models and local electrical (charge transport models, thereby allowing robust, circuit simulation software to obtain solutions to Kirchhoff's laws for the system model. Transport lattices allow systematic introduction of realistic geometry and spatially heterogeneous heat transport mechanisms. Local representations for both simple, passive functions and more complex local models can be easily and intuitively included into the system model of a tissue.

  13. Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula

    Science.gov (United States)

    Graham, Jennifer A.; Dinniman, Michael S.; Klinck, John M.

    2016-10-01

    The flux of warm deep water onto Antarctic continental shelves plays a vital role in determining water mass properties adjacent to the continent. A regional model, with two different grid resolutions, has been used to simulate ocean processes along the West Antarctic Peninsula. At both 4 km and 1.5 km resolution, the model reproduces the locations of warm intrusions, as shown through comparison with observations from instrumented seals. However, the 1.5 km simulation shows greater on-shelf heat transport, leading to improved representation of heat content on the shelf. This increased heat transport is associated with increased eddy activity, both at the shelf-break and in the deep ocean off-shore. Cross-shelf troughs are key locations of on-shelf heat transport. Comparison of two troughs, Belgica and Marguerite, shows differing responses to increased resolution. At higher resolution, there is an increased on-shelf volume transport at Belgica Trough, but not at Marguerite Trough. This is likely related to the differing structure of the shelf-break jet between these two locations. The increased heat flux at Marguerite Trough is attributed to increased heat content in the on-shelf transport. Increased eddy activity off-shelf may lead to greater cross-front heat transport, and therefore increased heat available above the continental slope. While these simulations differ in their magnitude of heat transport, both show similar patterns of variability. Variations in wind stress lead to variations in speed of the shelf-break jet, and therefore on-shelf heat transport. These results demonstrate the importance of model resolution for understanding cross-shelf transport around Antarctica.

  14. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In the viewpoint of heat transfer, heat transport potential capacity and its dissipation are defined based on the essence of heat transport phenomenon. Respectively, their physical meanings are the overall heat transfer capabilityand the dissipation rate of the heat transfer capacity. Then the least dissipation principle of heat transport potential capacity is presented to enhance the heat conduction efficiency in the heat conduction optimization. The principle is,for a conduction process with the constant integral of the thermal conductivityover the region, the optimal distribution of thermal conductivity, which corresponds to the highest heat conduction efficiency, is characterized by the least dissipation of heat transport potential capacity. Finally the principle is applied to some cases in heat conduction optimization.

  15. Simulation of a Heat Transfer in Porous Media

    CERN Document Server

    Geiser, Juergen

    2012-01-01

    We are motivated to model a heat transfer to a multiple layer regime and their optimization for heat energy resources. Such a problem can be modeled by a porous media with different phases (liquid and solid). The idea arose of a geothermal energy reservoir which can be used by cities, e.g. Berlin. While hot ground areas are covered to most high populated cites, the energy resources are important and a shift to use such resources are enormous. We design a model of the heat transport via the flow of water through the heterogeneous layer of the underlying earth sediments. We discuss a multiple layer model, based on mobile and immobile zones. Such numerical simulations help to economize on expensive physical experiments and obtain control mechanisms for the delicate heating process.

  16. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    CERN Document Server

    del-Castillo-Negrete, D

    2016-01-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across m...

  17. Numerical model to simulate the isotopic and heat release and transport through the geosphere from a geological repository of radioactive wastes; Un modelo numerico para la simulacion de transporte de calor y liberacion de materia en un almacenamiento profundo de residuos radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo Lopez, A. [Universidad Politecnica de Madrid (Spain)

    2002-07-01

    The aim of this research is to simulate the isotopic and heat release and transport through the geosphere, from a geological repository of high level nuclear waste. in order to achieve it, different physical processes, that have to do with the problem, are considered: groundwater flow, radioactive decay, nuclide dissolution in groundwater, heat generation, mass and heat transport. Some of these phenomena are related among the, which allows to build a coupled model,which is the starting point to generate a FORTRAN code. The flow and transport models are developed in two spatial dimensions and are integrated in space by means of a finite volume method. The time integration is fulfilled by a {theta}-method. Moreover, the advection-diffusion equation is solved by two finite volume techniques. In the first one a linear interpolation is used whereas in the second it is used a quadratic one. Also, a consistency an stability study of both methods is carried out in order to compare their stability zones and the errors appearing. Stability is analysed by applying the von Neumann method, which is based upon Fourier series. Although it is a classical technique when dealing with finite-difference schemes, it is here applied to two finite volume schemes. (Author)

  18. IMPACT OF THE TRANSPORT ON THE URBAN HEAT ISLAND

    Directory of Open Access Journals (Sweden)

    Haddad Louiza

    2015-09-01

    Full Text Available Although transport has resulted in many beneficial effects on society, but their development in fact have negative impacts on the environment. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. We perform a numerical simulation of the plume generated by the exhaust gases of cars and show that these gases form a screening effect above the urban cite which cause the heat island in the presence of wind flow. The study allows us: i- to understand the different mechanisms of interactions between these phenomenons, ii- to consider appropriate technical solutions to mitigate the effects of the heat island.

  19. ITER Shape Controller and Transport Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Casper, T A; Meyer, W H; Pearlstein, L D; Portone, A

    2007-05-31

    We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.

  20. Hybrid simulation of electron cyclotron resonance heating

    CERN Document Server

    Ropponen, T; Suominen, P; Koponen, T K; Kalvas, T; Koivisto, H

    2008-01-01

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  1. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  2. Barents Sea heattransport, storage and surface fluxes

    Directory of Open Access Journals (Sweden)

    Ø. Skagseth

    2009-07-01

    Full Text Available Sensitivity of the Barents Sea to variation in ocean heat transport and surface fluxes is explored using a 1-D column model. Mean monthly ocean transport and atmospheric forcing are synthesised and force model results that reproduce the observed winter convection and surface warming and freshening well. Model results are compared to existing estimates of the ocean to air heat fluxes and horizontally averaged profiles for the southern and northern Barents Sea. Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production. The northern Barents Sea, the major part of the area, receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss in the north, the balance is achieved by long wave loss removing most of the solar heating, and the model also suggests a positive sensible heat gain. During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. Despite large changes the Barents Sea heat loss remains robust, the temperature adjusts, and the yearly cycle remains. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport probably leads to a spreading of warm water further north.

  3. Gyrokinetic simulation of particle and heat transport in the presence of Wide orbits and strong profile variations in the Edge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, J.A. [Euratom-Tekes Association, VTT, P.O. Box 1000, FI-02044 VTT (Finland); Henriksson, S.; Janhunen, S.; Kiviniemi, T.P. [Euratom-Tekes Association, Helsinki University of Technology, P.O. Box 2200, FI-02015 TKK (Finland); Ogando, F. [Euratom-Tekes Association, Helsinki University of Technology, P.O. Box 2200, FI-02015 TKK (Finland); Universidad Nacional de Educacion a Distancia, C/ Juan del Rosal, 12 28040 Madrid (Spain)

    2006-09-15

    A full f nonlinear 5D gyrokinetic electrostatic particle-in-cell code ELMFIRE using an implicit direct solution method for ion polarization drift and electron parallel velocity response to electric field and its validation are described. The developed code is applied for transport analysis in a tokamak plasma at steep pressure gradient. The role of turbulence and neoclassical equilibrium in determining the flux surface averaged radial electric field component are investigated, as well as the role of the latter in affecting the saturation level of the turbulence. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    Science.gov (United States)

    Schulte, Daniel O.; Bastian, Welsch; Wolfram, Rühaak; Kristian, Bär; Ingo, Sass

    2017-04-01

    Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storage (BTES) systems for seasonally fluctuating heat sources like solar thermal energy or district heating grids. The high temperature level of these heat sources prohibits the use of the shallow subsurface for environmental reasons. Therefore, deeper reservoirs have to be accessed instead. The increased depth of the systems results in high investment costs and has hindered the implementation of this technology until now. Therefore, research of medium deep BTES systems relies on numerical simulation models. Current simulation tools cannot - or only to some extent - describe key features like partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We give an update on the development of BASIMO: a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport in a dual-continuum approach. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. Thereby, partly insulated boreholes can be considered in the model. Furthermore, BASIMO can be used to improve the design of BTES systems: the tool allows for automated parameter variations and is readily coupled to other code like mathematical optimization algorithms. Optimization can be used to determine the required minimum system size or to increase the system performance.

  5. Radiation transport calculations and simulations.

    Science.gov (United States)

    Fassò, A; Ferrari, A; Sala, P R

    2009-11-01

    This article is an introduction to the Monte Carlo method as used in particle transport. After a description at an elementary level of the mathematical basis of the method, the Boltzmann equation and its physical meaning are presented, followed by Monte Carlo integration and random sampling, and by a general description of the main aspects and components of a typical Monte Carlo particle transport code. In particular, the most common biasing techniques are described, as well as the concepts of estimator and detector. After a discussion of the different types of errors, the issue of quality assurance is briefly considered.

  6. Radiation Transport Calculations and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto; /SLAC; Ferrari, A.; /CERN

    2011-06-30

    This article is an introduction to the Monte Carlo method as used in particle transport. After a description at an elementary level of the mathematical basis of the method, the Boltzmann equation and its physical meaning are presented, followed by Monte Carlo integration and random sampling, and by a general description of the main aspects and components of a typical Monte Carlo particle transport code. In particular, the most common biasing techniques are described, as well as the concepts of estimator and detector. After a discussion of the different types of errors, the issue of Quality Assurance is briefly considered.

  7. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  8. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-01

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere–ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an “eyeball.” For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs’ habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets. PMID:24379386

  9. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction......The project is a basic study on the expected thermal behaviour of gravel storage initiated as a part of a research and demonstration gravel storage for seasonal heat storage.The goal of the investigation is to determine the heat transfer between heat pipes and sand-gravel storage media by carrying...... media no convectional heat transport is found. It would be relevant to extend the investigation to media that enables convectional heat transport. A last conclusion is that such experiments, necessary for proper designing of sand-gravel storage types, are a very cheap form of collecting information...

  10. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, T.J.

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of extern

  11. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, Taha Jibril

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of extern

  12. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, T.J.

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of

  13. Monoamine transporters: Insights from molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Julie eGrouleff

    2015-10-01

    Full Text Available The human monoamine transporters facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia and Parkinson’s disease. Inhibition of the monoamine transporters is thus an important strategy for treatment of such diseases. The monoamine transporters are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the monoamine transporters, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors.

  14. Molecular Dynamics Simulation on thermodynamic Properties and Transport Coefficients

    Institute of Scientific and Technical Information of China (English)

    D.X.Xiong

    1996-01-01

    Moecular dynamics simulation (MDS) is used to study the thermodynamic properties and transport coefficients of an argon system with Lennend-Jones potential.The results on the velocity distribution,mean free path,mean collison time,specific heat and self0diffusion coefficient agree well with the existing theoretical /experimental data,It shows that molecular dynamics method is another bridge to connect microworld and macreoworld.

  15. Kinetic transport simulation of energetic particles

    Science.gov (United States)

    Sheng, He; Waltz, R. E.

    2016-05-01

    A kinetic transport code (EPtran) is developed for the transport of the energetic particles (EPs). The EPtran code evolves the EP distribution function in radius, energy, and pitch angle phase space (r, E, λ) to steady state with classical slowing down, pitch angle scattering, as well as radial and energy transport of the injected EPs (neutral beam injection (NBI) or fusion alpha). The EPtran code is illustrated by treating the transport of NBI fast ions from high-n ITG/TEM micro-turbulence and EP driven unstable low-n Alfvén eigenmodes (AEs) in a well-studied DIII-D NBI heated discharge with significant AE central core loss. The kinetic transport code results for this discharge are compared with previous study using a simple EP density moment transport code ALPHA (R.E. Waltz and E.M. Bass 2014 Nucl. Fusion 54 104006). The dominant EP-AE transport is treated with a local stiff critical EP density (or equivalent pressure) gradient radial transport model modified to include energy-dependence and the nonlocal effects EP drift orbits. All previous EP transport models assume that the EP velocity space distribution function is not significantly distorted from the classical ‘no transport’ slowing down distribution. Important transport distortions away from the slowing down EP spectrum are illustrated by a focus on the coefficient of convection: EP energy flux divided by the product of EP average energy and EP particle flux.

  16. The Effect of Correlations on the Heat Transport in a Magnetized Plasma

    CERN Document Server

    Ott, Torben; Donko, Zoltan

    2015-01-01

    In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure or/and low temperature, a magnetic field reduces the perpendicular heat transport much less and even {\\it enhances} the parallel transport. These surprising observations are explained by the competition of kinetic, potential and collisional contributions to the heat conductivity. Our results are based on first principle molecular dynamics simulations of a one-component plasma.

  17. Turbulent transport and heating of trace heavy ions in hot, magnetized plasmas

    CERN Document Server

    Barnes, M; Dorland, W

    2012-01-01

    Scaling laws for the transport and heating of trace heavy ions in low-frequency, magnetized plasma turbulence are derived and compared with direct numerical simulations. The predicted dependences of turbulent fluxes and heating on ion charge and mass number are found to agree with numerical results for both stationary and differentially rotating plasmas. Heavy ion momentum transport is found to increase with mass, and heavy ions are found to be preferentially heated, implying a mass-dependent ion temperature for very weakly collisional plasmas and for partially-ionized heavy ions in strongly rotating plasmas.

  18. Operational demonstration of a field of high performance flat plate collectors with isothermal heat transport

    Science.gov (United States)

    Merges, V.; Klippel, E.

    1983-12-01

    A solar plant with 21 sq m of highly efficient flat plate collectors and which requires no electricity is described. Heat transport is provided by saturated steam that condenses in a four cubic meter storage tank. The operation temperature is set by the buffer gas pressure between 100 and 140 C, and an absorption chiller is simulated as a heat consumer. The solar collectors were observed to exhibit high performance. Heat transport and temperature control offered high reliability and the thermal stratification in the tank was satisfactory. The positive result permits the design and construction of larger solar plants following the same technical principles.

  19. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  20. Simulations of Metal Cu in Heating Process

    Institute of Scientific and Technical Information of China (English)

    ZHANG, Tao(张弢); WU, Ai-Ling(吴爱玲); GUAN, Li(管立); QI, Yuan-Hua(齐元华)

    2004-01-01

    Based on the Finnis-Sinsclair (FS) many-body potential model, the melting process of a system, which consists of 500 Cu atoms, controlled by period boundary condition has been simulated. The means of pair correlation function, mean square displacement and Honeycutt-Anderson bonded pair have been used to characterize the melting behavior of Cu at different heating rates. The simulation indicates that melting point of metal Cu is 1444 K during a continuous heating process, and the calculated diffusion constant at the melting point is 4.31×10-9 m2/s. These results are better than those from the EAM method, showing that the FS potential model works well in some disordered systems.

  1. Experimental Study of Heat Transport in Fractured Network

    Science.gov (United States)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Allegretti, Nicoletta M.; Redondo, Jose M.; Tarquis, Ana Maria

    2015-04-01

    Fractured rocks play an important role in transport of natural resources or contaminants transport through subsurface systems. In recent years, interest has grown in investigating heat transport by means of tracer tests, driven by the important current development of geothermal applications. In literature different methods are available for predicting thermal breakthrough in fractured reservoirs based on the information coming from tracer tests. Geothermal energy is one of the largest sources of renewable energies that are extracted from the earth. The growing interest in this new energy source has stimulated attempts to develop methods and technologies for extracting energy also from ground resource at low temperature. An example is the exploitation of low enthalpy geothermal energy that can be obtained at any place with the aid of ground-source heat pump system from the soil, rock and groundwater. In such geothermal systems the fluid movement and thermal behavior in the fractured porous media is very important and critical. Existing theory of fluid flow and heat transport through porous media is of limited usefulness when applied to fractured rocks. Many field and laboratory tracer tests in fractured media show that fracture -matrix exchange is more significant for heat than mass tracers, thus thermal breakthrough curves (BTCs) are strongly controlled by matrix thermal diffusivity. In this study the behaviour of heat transport in a fractured network at bench scale has been investigated. Heat tracer tests on an artificially created fractured rock sample have been carried out. The observed thermal BTCs obtained with six thermocouple probes located at different locations in the fractured medium have been modeled with the Explicit Network Model (ENM) based an adaptation of Tang's solution for solute transport in a semi-infinite single fracture embedded in a porous matrix. The ENM model is able to represent the behavior of observed heat transport except where the

  2. Air, contaminant and heat transport models. Integration and application

    Energy Technology Data Exchange (ETDEWEB)

    Dorer, V.; Weber, A. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Section 175 Building Equipment, CH-8600 Duebendorf (Switzerland)

    1999-07-01

    Comfort evaluations cover air quality, thermal, visual and acoustic comfort. Today, only few computer programs allow for the integrated evaluation of several or all relevant parameters. Heat transport, ventilation as well as lighting in a room are influenced by each other. Therefore they should be integrally modelled. As a part of the IEA-ECBCS Annex 23 'Multizone Air Flow Modelling' (IEA, International Energy Agency; ECBCS, Energy Conservation in Buildings and Community Systems, an IEA research programme), such a coupling has been realised by integrating the air flow and contaminant transport simulation code of COMIS into the building and systems simulation code TRNSYS. This paper gives a short description of the concept used for the coupling. Then, two application examples typical for a building design study situation are presented, the first being a multi-storey school building which was passively cooled at night due to natural stack airflow. In the second example the facade of the same building was retrofitted with a glazed outer facade. Ventilation was provided by naturally driven shaft ventilation through the facade spaces. For such cases as described in the examples, it may be necessary due to the complex interactions, to study many configurations to find optimum control strategies for the openings and the blinds with respect to overheating risk as well as to air quality. For the upper floors, the risk of overheating and low air quality may be difficult to minimize without extending the shaft above roof level. (author)

  3. Optimal wall spacing for heat transport in thermal convection

    Energy Technology Data Exchange (ETDEWEB)

    Shishkina, Olga [Max Planck Institute for Dynamics and Self-Organization, Goettingen (Germany)

    2016-11-01

    The simulation of RB flow for Ra up to 1 x 10{sup 10} is computationally expensive in terms of computing power and hard disk storage. Thus, we gratefully acknowledge the computational resources supported by Leibniz-Rechenzentrum Munich. Compared to Γ=1 situation, a new physical picture of heat transport is identified here at Γ{sub opt} for any explored Ra. Therefore, a detailed comparison between Γ=1 and Γ=Γ{sub opt} is valuable for our further research, for example, their vertical temperature and velocity profiles. Additionally, we plan to compare the fluid with different Pr under geometrical confinement, which are computationally expensive for the situations of Pr<<1 and Pr>>1.

  4. Evaluating the behavior, growth performance, immune parameters, and intestinal morphology of weaned piglets after simulated transport and heat stress when antibiotics are eliminated from the diet or replaced with L-glutamine

    Science.gov (United States)

    Study objectives were to evaluate the effects of post-weaning transport during heat stress (HS) and thermoneutral (TN) conditions when dietary antibiotics are removed or replaced with a nutraceutical. Sixty mixed sex piglets from 10 sows (n = 6 piglets/sow) were weaned (18.8 ± 0.8 d of age) and then...

  5. Simulation of Pollutant Transport in Marmaris Bay

    Institute of Scientific and Technical Information of China (English)

    Lale BALAS

    2001-01-01

    The circulation pattern and the pollutant transport in the Marmaris Bay are simulated by the developed three-dimensional baroclinic model. The Marmaris Bay is located at the Mediterranean Sea coast of Turkey. Since the sp ring tidal range is typically 20~30 cm, the dominant forcing for the circulation and water exchange is due to the wind action. In the Marmaris Bay, there is sea outfall discharging directly into the bay, and that threats the bay water quality significantly. The current patterns in the vicinity of the outfall have been observed by tracking drogues which are moved by currents at different water depths. In the simulations of pollutant transport, the coliforms-counts is used as the tracer.The model provides realistic predictions for the circulation and pollutant transport in the Marmaris Bay. The transport model component predictions well agree with the results of a laboratory model study.

  6. TRANSIMS: Transportation analysis and simulation system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.; Beckman, R.; Baggerly, K. [and others

    1995-07-01

    This document summarizes the TRansportation ANalysis and SIMulation System (TRANSIMS) Project, the system`s major modules, and the project`s near-term plans. TRANSIMS will employ advanced computational and analytical techniques to create an integrated regional transportation systems analysis environment. The simulation environment will include a regional population of individual travelers and freight loads with travel activities and plans, whose individual interactions will be simulated on the transportation system, and whose environmental impact will be determined. We will develop an interim operational capability (IOC) for each major TRANSIMS module during the five-year program. When the IOC is ready, we will complete a specific case study to confirm the IOC features, applicability, and readiness.

  7. Numerical Simulation of DC Coronal Heating

    Science.gov (United States)

    Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco

    2016-05-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.

  8. Behaviors of Electron Heat Transportation in HT-7 Sawtoothing Plasma

    Institute of Scientific and Technical Information of China (English)

    Hu Liqun; Xu Yi; Wan Baonian; Shi Yuejiang; Zhen Xiangjun; Chen Zhongyong; Lin Shiyao; HT-7 Team

    2005-01-01

    It is found that in HT-7 ohmic plasma, main energy loss comes from electron heat conduction, hence quantitative data of electron heat diffusivity is a very important issue for investigation of electron heat transportation behavior in different target plasmas so as to get high performance plasma. A time-to-peak method of the heat pulse propagation originating from the sawtooth activity on the soft x-ray intensity signal has been adopted to experimentally determine electron heat diffusivity XHPe on the HT-7 tokamak. Aiming to improve the signal-to-noise (S/N)ratio of the original signal to get a stable and reasonable electron heat diffusivity XHDe value, some data processing methods, including average of tens of sawteeth, is discussed. The electron heat diffusivity XHPe is larger than XPBe which is determined from the balance of background plasma power. Based on variation of the measured electron heat diffusivity XHPe, performances of different high confinement plasmas are analyzed.

  9. Transport coefficient and heat pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroki; Itoh, Sanae-I.; Kubota, Tetsuyuki; Toda, Shinichiro [Kyushu Univ., Fukuoka (Japan); Hanada, Kazuaki [Tokyo Univ. (Japan)

    1995-04-01

    The problem of deducing {Chi}{sub e} from heat pulse propagation measurements is addressed. It is indicated that diffusive models can not explain the experimental observations on WT-3 tokamak. The equation taking account of the convective term gives a good fit to experimental results. It may indicate that for the sawtooth free plasma, there exists a convection of heat pulse. 9 refs., 4 figs., 1 tab.

  10. Monoamine transporters: insights from molecular dynamics simulations

    Science.gov (United States)

    Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit

    2015-01-01

    The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185

  11. Simulating charge transport in flexible systems

    Directory of Open Access Journals (Sweden)

    Timothy Clark

    2015-12-01

    Full Text Available Systems in which movements occur on two significantly different time domains, such as organic electronic components with flexible molecules, require different simulation techniques for the two time scales. In the case of molecular electronics, charge transport is complicated by the several different mechanisms (and theoretical models that apply in different cases. We cannot yet combine time scales of molecular and electronic movement in simulations of real systems. This review describes our progress towards this goal.

  12. Ultrafast x-ray diffraction thermometry measures the influence of spin excitations on the heat transport through nanolayers

    Science.gov (United States)

    Koc, A.; Reinhardt, M.; von Reppert, A.; Rössle, M.; Leitenberger, W.; Dumesnil, K.; Gaal, P.; Zamponi, F.; Bargheer, M.

    2017-07-01

    We investigate the heat transport through a rare earth multilayer system composed of yttrium (Y), dysprosium (Dy), and niobium (Nb) by ultrafast x-ray diffraction. This is an example of a complex heat flow problem on the nanoscale, where several different quasiparticles carry the heat and conserve a nonequilibrium for more than 10 ns. The Bragg peak positions of each layer represent layer-specific thermometers that measure the energy flow through the sample after excitation of the Y top layer with fs-laser pulses. In an experiment-based analytic solution to the nonequilibrium heat transport problem, we derive the individual contributions of the spins and the coupled electron-lattice system to the heat conduction. The full characterization of the spatiotemporal energy flow at different starting temperatures reveals that the spin excitations of antiferromagnetic Dy speed up the heat transport into the Dy layer at low temperatures, whereas the heat transport through this layer and further into the Y and Nb layers underneath is slowed down. The experimental findings are compared to the solution of the heat equation using macroscopic temperature-dependent material parameters without separation of spin and phonon contributions to the heat. We explain why the simulated energy density matches our experiment-based derivation of the heat transport, although the simulated thermoelastic strain in this simulation is not even in qualitative agreement.

  13. The impact of oceanic heat transport on the atmospheric circulation

    Directory of Open Access Journals (Sweden)

    M.-A. Knietzsch

    2014-11-01

    Full Text Available A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo–Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3 PW, an increase of the oceanic heat transport leads to an increase of the global mean near-surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycle but of different relative magnitude for the individual components. The available potential energy of the zonal mean flow and its conversion to eddy available potential energy are affected most. Both the Hadley and Ferrel cell show a decline for increasing oceanic heat transport, with the Hadley cell being more sensitive. Both cells exhibit a poleward shift of their maxima, and the Hadley cell broadens for larger oceanic transports. The partitioning, by means of the Kuo–Eliassen equation, reveals that zonal mean diabatic heating and friction are the most important sources for changes of the Hadley cell, while the behaviour of the Ferrell cell is mostly controlled by friction.

  14. Experimental investigation of heat transport through single synthetic fractures

    Science.gov (United States)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Redondo, Jose M.

    2017-04-01

    In fractured geothermal reservoirs, heat transport is highly influenced by the presence of the fractures, so appropriate knowledge of heat behaviour in fractured porous media is essential for accurate prediction of the energy extraction in geothermal reservoirs. The present study focuses on the study of heat transport within single synthetic fractures. In particular manner several tests have been carried out in order to explore the role of fracture roughness, aperture variability and the fracture-matrix ratio on the heat transport dynamics. The Synfrac program together with a 3d printer have been used to build several fracture planes having different geometrical characteristics that have been moulded to generate concrete porous fractured blocks. The tests regard the observation of the thermal breakthrough curves obtained through a continuous flow injection in correspondence of eight thermocouples located uniformly on the fractured blocks. The physical model developed permits to reproduce and understand adequately some features of heat transport dynamics in fractured media. The results give emphasis on the errors of the assumptions commonly used in heat transport modelling.

  15. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  16. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  17. The impact of oceanic heat transport on the atmospheric circulation

    CERN Document Server

    Knietzsch, Marc-Andre; Lunkeit, Frank

    2014-01-01

    A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo-Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3PW, an increase of the oceanic heat transport leads to an increase of the global mean near surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycl...

  18. An oceanic heat transport pathway to the Amundsen Sea Embayment

    Science.gov (United States)

    Rodriguez, Angelica R.; Mazloff, Matthew R.; Gille, Sarah T.

    2016-05-01

    The Amundsen Sea Embayment (ASE) on the West Antarctic coastline has been identified as a region of accelerated glacial melting. A Southern Ocean State Estimate (SOSE) is analyzed over the 2005-2010 time period in the Amundsen Sea region. The SOSE oceanic heat budget reveals that the contribution of parameterized small-scale mixing to the heat content of the ASE waters is small compared to advection and local air-sea heat flux, both of which contribute significantly to the heat content of the ASE waters. Above the permanent pycnocline, the local air-sea flux dominates the heat budget and is controlled by seasonal changes in sea ice coverage. Overall, between 2005 and 2010, the model shows a net heating in the surface above the pycnocline within the ASE. Sea water below the permanent pycnocline is isolated from the influence of air-sea heat fluxes, and thus, the divergence of heat advection is the major contributor to increased oceanic heat content of these waters. Oceanic transport of mass and heat into the ASE is dominated by the cross-shelf input and is primarily geostrophic below the permanent pycnocline. Diagnosis of the time-mean SOSE vorticity budget along the continental shelf slope indicates that the cross-shelf transport is sustained by vorticity input from the localized wind-stress curl over the shelf break.

  19. Heat transport in bubbling turbulent convection

    NARCIS (Netherlands)

    Lakkaraju, R.; Stevens, R.J.A.M.; Oresta, P.; Verzicco, R.; Lohse, D.; Prosperetti, A.

    2013-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to giv

  20. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction...... in sand-gravel material, the storage media is to be water satured. In this case, handling of such material on site is rather complex. The conduction is highly dependent on the thermal properties of the storage media and so is the overall thermal performance of a storage applying such media. For sandy...... media no convectional heat transport is found. It would be relevant to extend the investigation to media that enables convectional heat transport. A last conclusion is that such experiments, necessary for proper designing of sand-gravel storage types, are a very cheap form of collecting information...

  1. Plasma transport simulation modeling for helical confinement systems

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called `H-mode` of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author).

  2. Plasma transport in a simulated magnetic-divertor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Strawitch, C. M.

    1981-03-01

    The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

  3. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    Science.gov (United States)

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  4. Heat transport in low-dimensional materials: A review and perspective

    Directory of Open Access Journals (Sweden)

    Zhiping Xu

    2016-05-01

    Full Text Available Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum-mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.

  5. Heat transport measurements in turbulent rotating Rayleigh-Benard convection

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory; Liu, Yuanming [Los Alamos National Laboratory

    2008-01-01

    We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.

  6. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  7. Framework Application for Core Edge Transport Simulation (FACETS)

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei; Pigarov, Alexander

    2011-10-15

    The FACETS (Framework Application for Core-Edge Transport Simulations) project of Scientific Discovery through Advanced Computing (SciDAC) Program was aimed at providing a high-fidelity whole-tokamak modeling for the U.S. magnetic fusion energy program and ITER through coupling separate components for each of the core region, edge region, and wall, with realistic plasma particles and power sources and turbulent transport simulation. The project also aimed at developing advanced numerical algorithms, efficient implicit coupling methods, and software tools utilizing the leadership class computing facilities under Advanced Scientific Computing Research (ASCR). The FACETS project was conducted by a multi-discipline, multi-institutional teams, the Lead PI was J.R. Cary (Tech-X Corp.). In the FACETS project, the Applied Plasma Theory Group at the MAE Department of UCSD developed the Wall and Plasma-Surface Interaction (WALLPSI) module, performed its validation against experimental data, and integrated it into the developed framework. WALLPSI is a one-dimensional, coarse grained, reaction/advection/diffusion code applied to each material boundary cell in the common modeling domain for a tokamak. It incorporates an advanced model for plasma particle transport and retention in the solid matter of plasma facing components, simulation of plasma heat power load handling, calculation of erosion/deposition, and simulation of synergistic effects in strong plasma-wall coupling.

  8. Io Volcanism: Modeling Vapor And Heat Transport

    Science.gov (United States)

    Allen, Daniel R.; Howell, R. R.

    2010-10-01

    Loki is a large, active volcanic source on Jupiter's moon, Io, whose overall temperatures are well explained by current cooling models, but there are unexplainable subtleties. Using the SO2 atmospheric models of Ingersoll (1989) as a starting point, we are investigating how volatiles, specifically sulfur, are transported on the surface and how they modify the temperatures at Loki and other volcanoes. Voyager images reveal light colored deposits, colloquially called "sulfur bergs,” on Loki's dark patera floor that may be sulfur fumaroles. Galileo images show the presence of red short-chain sulfur deposits around the patera. We are investigating the mechanisms that lead to these features. The light deposits are a few kilometers across. Calculations of the mean free paths for day time conditions on Io indicate lengths on the order of 0.1 km while poorly constrained night time conditions indicate mean free paths about 100 times greater, on the order of what is needed to produce the deposits under ballistic conditions. Preliminary calculations reveal horizontal transport length scales for diffuse transport in a collisional atmosphere of approximately 30 km for sublimating S8 sulfur at 300 K. These length scales would be sufficient to move the sulfur from the warm patera floor to the locations of the red sulfur deposits. At a typical Loki temperature of 300 K, the sublimation/evaporation rate of S8 is a few tens of microns/day. It then requires just a few days to deposit an optically thick 100 µm layer of material. Preliminary length scales and sublimation rates are thus of sufficient scale to produce the deposits. Investigations into the sulfur transport and its effect on temperature are ongoing.

  9. Computer Simulation of Transport Driven Current in Tokamaks

    Science.gov (United States)

    Nunan, William Joseph, III

    1995-01-01

    Plasma transport phenomena can drive large currents parallel to an externally applied magnetic field. The Bootstrap Current Theory accounts for the effect of Banana Diffusion on toroidal current, but the effect is not confined to that transport regime, or even to toroidal geometry. Our electromagnetic particle simulations have demonstrated that Maxwellian plasmas in static toroidal and vertical fields spontaneously develop significant toroidal current, even in the absence of the "seed current" which the Bootstrap Theory requires. Other simulations, in both cylindrical and toroidal geometries, and without any externally imposed electric field, show that if the plasma column is centrally fueled, then an initial toroidal current grows steadily, apparently due to a dynamo effect. The straight cylinder does not exhibit kink instabilities because k_ {z} = 0 in this 2 + 1/2 dimensional model. When the plasma is fueled at the edge rather than the center, the effect is diminished. Fueling at an intermediate radius should produce a level of current drive in between these two limits, because the key to the current drive seems to be the amount of total poloidal flux which the plasma crosses in the process of escaping. In a reactor, injected (cold) fuel ions must reach the center, and be heated up in order to burn; therefore, central fueling is needed anyway, and the resulting influx of cold plasma and outflux of hot plasma drives the toroidal current. Our simulations indicate that central fueling, coupled with the central heating due to fusion reactions may provide all of the required toroidal current. The Neoclassical Theory predicts that the Bootstrap Current approaches zero as the aspect ratio approaches infinity; however, in straight cylindrical plasma simulations, axial current increases over time at nearly the same rate as in the toroidal case. These results indicate that a centrally fueled and heated tokamak may sustain its own toroidal current, even in the absence of

  10. Heat transport in the quasi-single-helicity islands of EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Drake, J.

    2009-03-01

    The heat transport inside the magnetic island generated in a quasi-single-helicity regime of a reversed-field pinch device is studied by using a numerical code that simulates the electron temperature and the soft x-ray emissivity. The heat diffusivity χe inside the island is determined by matching the simulated signals with the experimental ones. Inside the island, χe turns out to be from one to two orders of magnitude lower than the diffusivity in the surrounding plasma, where the magnetic field is stochastic. Furthermore, the heat transport properties inside the island are studied in correlation with the plasma current and with the amplitude of the magnetic fluctuations.

  11. [The design of heat dissipation of the field low temperature box for storage and transportation].

    Science.gov (United States)

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.

  12. Effect of Joule heating on electrokinetic transport.

    Science.gov (United States)

    Cetin, Barbaros; Li, Dongqing

    2008-03-01

    The Joule heating (JH) is a ubiquitous phenomenon in electrokinetic flow due to the presence of electrical potential gradient and electrical current. JH may become pronounced for applications with high electrical potential gradients or with high ionic concentration buffer solutions. In this review, an in-depth look at the effect of JH on electrokinetic processes is provided. Theoretical modeling of EOF and electrophoresis (EP) with the presence of JH is presented and the important findings from the previous studies are examined. A numerical study of a fused-silica capillary PCR reactor powered by JH is also presented to extend the discussion of favorable usage of JH.

  13. Heat transport at the boundary of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Pitcher, C.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Herrmann, A.; Murmann, H.; Reimerdes, H.; Schweinzer, J.; Suttrop, W.; Salzmann, H. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany). EURATOM-IPP Association; ASDEX Upgrade Team; NBI Group

    1997-01-17

    The flow of heat in the scrape-off layer region of ASDEX Upgrade is investigated and compared with simple modelling. Parallel heat transport is found to be consistent with electron heat conduction based on Spitzer-Haerm conductivity. Cross-field heat transport is characterized using radial e-folding distances for power, temperature and plasma pressure, which are all found to vary weakly over a wide range of discharge conditions. Type I ELMs, also characterized, introduce a discreteness to the power flow into the SOL and carry approximately half of the power exhaust from the discharge. The divertor plates are effectively screened from the ELM energy, even in low radiation discharges, suggesting enhanced radiation rates during ELMs. (orig.)

  14. Heat transport at the boundary of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Pitcher, C.S. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States); Hermann, A.; Murmann, H. [IPP-EURATOM Association, Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany)] [and others

    1997-07-01

    The flow of heat in the scrape-off layer (SOL) region of ASDEX Upgrade is investigated and compared with simple modelling. Parallel heat transport is found to be consistent with electron heat conduction based on Spitzer-Harm conductivity. Cross-field heat transport is characterized using radial e-folding distances for power, temperature and plasma pressure, which are all found to vary weakly over a wide range of discharge conditions. Type I ELMs, also characterized, introduce a discreteness to the power flow into the SOL and carry approximately half of the power exhaust from the discharge. The divertor plates are effectively screened from the ELM energy, even in low-radiation discharges, suggesting enhanced radiation rates during ELMs. (Author).

  15. Monte Carlo simulation for the transport beamline

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  16. Computer simulation of transport driven current in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Nunan, W.J.; Dawson, J.M. (University of California at Los Angeles, Department of Physics, 405 Hilgard Avenue, Los Angeles, California 90024-1547 (United States))

    1994-09-19

    We have investigated transport driven current in tokamaks via 2+1/2 dimensional, electromagnetic, particle-in-cell simulations. These have demonstrated a steady increase of toroidal current in centrally fueled plasmas. Neoclassical theory predicts that the bootstrap current vanishes at large aspect ratio, but we see equal or greater current growth in straight cylindrical plasmas. These results indicate that a centrally fueled and heated tokamak may sustain its toroidal current, even without the seed current'' which the neoclassical bootstrap theory requires.

  17. Global gyrokinetic simulation of tokamak transport

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, G.; Horton, W.; Kishimoto, Y.; LeBrun, M.J.; Tajima, T. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies]|[Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)

    1998-10-01

    A kinetic simulation code based on the gyrokinetic ion dynamics in global general metric (including a tokamak with circular or noncircular cross-section) has been developed. This gyrokinetic simulation is capable of examining the global and semi-global driftwave structures and their associated transport in a tokamak plasma. The authors investigate the property of the ion temperature gradient (ITG) or {eta}{sub i}({eta}{sub i} {equivalent_to} {partial_derivative}{ell}nT{sub i}/{partial_derivative}{ell}n n{sub i}) driven drift waves in a tokamak plasma. The emergent semi-global drift wave modes give rise to thermal transport characterized by the Bohm scaling.

  18. Water and heat transport in boreal soils: Implications for soil response to climate change

    Science.gov (United States)

    Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.

  19. High heat flux transport by microbubble emission boiling

    Science.gov (United States)

    Suzuki, Koichi

    2007-10-01

    In highly subcooled flow boiling, coalescing bubbles on the heating surface collapse to many microbubbles in the beginning of transition boiling and the heat flux increases higher than the ordinary critical heat flux. This phenomenon is called Microbubble Emission Boiling, MEB. It is generated in subcooled flow boiling and the maximum heat flux reaches about 1 kW/cm2(10 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s for a small heating surface of 10 mm×10 mm which is placed at the bottom surface of horizontal rectangular channel. The high pressure in the channel is observed at collapse of the coalescing bubbles and it is closely related the size of coalescing bubbles. Periodic pressure waves are observed in MEB and the heat flux increases linearly in proportion to the pressure frequency. The frequency is considered the frequency of liquid-solid exchange on the heating surface. For the large sized heating surface of 50 mm length×20 mm width, the maximum heat flux obtained is 500 W/cm2 (5 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s. This is considerably higher heat flux than the conventional cooling limit in power electronics. It is difficult to remove the high heat flux by MEB for a longer heating surface than 50 mm by single channel type. A model of advanced cooling device is introduced for power electronics by subcooled flow boiling with impinging jets. Themaxumum cooling heat flux is 500 W/cm2 (5 MW/m2). Microbubble emission boiling is useful for a high heat flux transport technology in future power electronics used in a fuel-cell power plant and a space facility.

  20. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.;

    1987-01-01

    The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically i...

  1. Thermodynamic framework for a generalized heat transport equation

    Directory of Open Access Journals (Sweden)

    Guo Yangyu

    2016-06-01

    Full Text Available In this paper, a generalized heat transport equation including relaxational, nonlocal and nonlinear effects is provided, which contains diverse previous phenomenological models as particular cases. The aim of the present work is to establish an extended irreversible thermodynamic framework, with generalized expressions of entropy and entropy flux. Nonlinear thermodynamic force-flux relation is proposed as an extension of the usual linear one, giving rise to the nonlinear terms in the heat transport equation and ensuring compatibility with the second law. Several previous results are recovered in the linear case, and some additional results related to nonlinear terms are also obtained.

  2. Laboratory experimental investigation of heat transport in fractured media

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicoletta Maria

    2017-01-01

    Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays in relation to its potential for development in society worldwide. Most of its applications have already been investigated, such as heating and cooling of private and public buildings, road defrosting, cooling of industrial processes, food drying systems or desalination. Geothermal power development is a long, risky and expensive process. It basically consists of successive development stages aimed at locating the resources (exploration), confirming the power generating capacity of the reservoir (confirmation) and building the power plant and associated structures (site development). Different factors intervene in influencing the length, difficulty and materials required for these phases, thereby affecting their cost. One of the major limitations related to the installation of low enthalpy geothermal power plants regards the initial development steps that are risky and the upfront capital costs that are huge. Most of the total cost of geothermal power is related to the reimbursement of invested capital and associated returns. In order to increase the optimal efficiency of installations which use groundwater as a geothermal resource, flow and heat transport dynamics in aquifers need to be well characterized. Especially in fractured rock aquifers these processes represent critical elements that are not well known. Therefore there is a tendency to oversize geothermal plants. In the literature there are very few studies on heat transport, especially on fractured media. This study is aimed at deepening the understanding of this topic through heat transport experiments in fractured networks and their interpretation. Heat transfer tests have been carried out on the experimental apparatus previously employed to perform flow and tracer transport experiments, which has been modified in order to analyze heat transport dynamics in a network of fractures. In order to model the obtained

  3. Simulation of Heat Transfer of Heating-System and Water Pipelines Under Northern Conditions

    Science.gov (United States)

    Stepanov, A. V.; Egorova, G. N.

    2016-09-01

    A mathematical model of joint laying of water pipelines and of city-block heating-system pipelines is considered. The effect of radiation on the process of combined heat transfer in the heat insulation jacket between the construction elements is investigated. The results of mathematical simulation of heat losses with account of the radiant component are given.

  4. Computer-aided simulation of the heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Arola, R.; Martikainen, H.; Virta, J. [Technical Research Centre of Finland, Espoo (Finland). Metallurgy Lab.

    1993-12-31

    Computer-aided simulation of the heat treatment of components and charges is examined. Existing programs for the simulation of heat treatment are reviewed. Test simulations including calculation of temperature, phase composition and stresses and strains during heating and cooling are performed with selected programs. The results of the simulations are compared with the results of heat treating experiments. Heat transfer during heating-up varies considerably between different treatments, components of the charge and surfaces of the component. Therefore, heat transfer data defined on the basis of the measurements has to be used in exact simulation instead of literature data. According to the simulation results non-uniform temperature distribution, plastic straining and residual stresses after heating can be formed in an AISI 316 bar heated up at the edge of a charge in a pit furnace. Permanent bending of these bars as a result of heating is not observed. In the oil quenching of a 42CrMo4 cylinder, where martensite and bainite are formed in austenite decomposition, the simulation results (especially amounts of phases and residual stresses) are crucially dependent on the TTT-diagram describing the kinetics of the phase transformations. Several TTT-diagrams for the steel grade are found, leading to different simulation results

  5. Phonon heat transport in gallium arsenide

    Indian Academy of Sciences (India)

    Richa Saini; Vinod Ashokan; B D Indu; R Kumar

    2012-03-01

    The lifetimes of quantum excitations are directly related to the electron and phonon energy linewidths of a particular scattering event. Using the versatile double time thermodynamic Green’s function approach based on many-body theory, an ab-initio formulation of relaxation times of various contributing processes has been investigated with newer understanding in terms of the linewidths of electrons and phonons. The energy linewidth is found to be an extremely sensitive quantity in the transport phenomena of crystalline solids as a collection of large number of scattering processes, namely, boundary scattering, impurity scattering, multiphonon scattering, interference scattering, electron–phonon processes and resonance scattering. The lattice thermal conductivities of three samples of GaAs have been analysed on the basis of modified Callaway model and a fairly good agreement between theory and experimental observations has been reported.

  6. Unidirectional Heat Transport Driven by Rotating Cholesteric Droplets

    Science.gov (United States)

    Sato, Sayumi; Bono, Shinji; Tabe, Yuka

    2017-02-01

    When a cholesteric liquid crystal (LC) is submitted to a thermal gradient, it exhibits continuous director rotation. The phenomenon is called the Lehmann effect and is understood as a thermomechanical coupling in chiral LCs without mirror symmetry. Since the Lehmann effect is considered to possess time-reversal symmetry, one can expect the inverse process, i.e., rotating chiral LCs to pump heat along the rotational axis. We report the first observation of heat transport driven by rotating cholesteric droplets. This result suggests a new function of the cholesterics as a micro heat pump.

  7. Turbulent heat transport and its anisotropy in an impinging jet

    Directory of Open Access Journals (Sweden)

    Petera Karel

    2015-01-01

    Full Text Available The turbulent heat transport is anisotropic in many cases as reported by several researchers. RANS-based turbulence models use the turbulent viscosity when expressing the turbulent heat flux in the energy balance (analogy of the Reynolds stresses in the momentum balance. The turbulent (eddy viscosity calculation comes from the Boussinesq analogy mainly and it represents just a scalar value, hence a possible anisotropy in the turbulent flow field cannot be simply transferred to the temperature field. The computational cost of a LES-based approach can be too prohibitive in complex cases, therefore simpler explicit algebraic heat flux models describing the turbulent heat flux in the time-averaged energy equation could be used to get more accurate CFD results. This paper compares several turbulence models for the case of a turbulent impinging jet and deals with a methodology of implementing a user-defined function describing the anisotropic turbulent heat flux in a CFD code.

  8. A transport model for computer simulation of wildfires

    Energy Technology Data Exchange (ETDEWEB)

    Linn, R. [Los Alamos National Lab., NM (United States)

    1997-12-31

    Realistic self-determining simulation of wildfires is a difficult task because of a large variety of important length scales (including scales on the size of twigs or grass and the size of large trees), imperfect data, complex fluid mechanics and heat transfer, and very complicated chemical reactions. The author uses a transport approach to produce a model that exhibits a self-determining propagation rate. The transport approach allows him to represent a large number of environments such as those with nonhomogeneous vegetation and terrain. He accounts for the microscopic details of a fire with macroscopic resolution by dividing quantities into mean and fluctuating parts similar to what is done in traditional turbulence modeling. These divided quantities include fuel, wind, gas concentrations, and temperature. Reaction rates are limited by the mixing process and not the chemical kinetics. The author has developed a model that includes the transport of multiple gas species, such as oxygen and volatile hydrocarbons, and tracks the depletion of various fuels and other stationary solids and liquids. From this model he develops a simplified local burning model with which he performs a number of simulations that demonstrate that he is able to capture the important physics with the transport approach. With this simplified model he is able to pick up the essence of wildfire propagation, including such features as acceleration when transitioning to upsloping terrain, deceleration of fire fronts when they reach downslopes, and crowning in the presence of high winds.

  9. Mechanisms of heat transport across a nano-scale gap in heat assisted magnetic recording

    Science.gov (United States)

    Budaev, Bair V.; Bogy, David B.

    2012-06-01

    This paper compares different mechanisms of heat transport across nano-scale gaps and discusses the role of electromagnetic phenomena in heat transport in general nano-scale layered structures. The results of the analysis suggest that heat transfer across sub-5 nm gaps like that appearing in prototypes of heat assisted magnetic recording (HAMR) systems is dominated by direct intermolecular interactions between the separated bodies and is little affected by electromagnetic radiation. The analysis further suggests that local heating for HAMR with sub-5 nm spacing can be more efficiently achieved by a Joule heater that is simpler to fabricate than laser-based optical systems and is less destructive for the nano-scale transducers than laser radiation, which may lead to their structural damage and short duration life of nanoscale transducers.

  10. Underlying mechanisms for normal heat transport in one-dimensional anharmonic oscillator systems with a double-well interparticle interaction

    Science.gov (United States)

    Xiong, Daxing

    2016-04-01

    Previous studies have suggested a crossover from superdiffusive to normal heat transport in one-dimensional (1D) anharmonic oscillator systems with a double-well type interatomic interaction like V(ξ )=-{ξ2}/2+{ξ4}/4 , when the system temperature is varied. In order to better understand this unusual manner of thermal transport, here we perform a direct dynamics simulation to examine how the spreading processes of the three physical quantities, i.e. the heat, the total energy and the momentum, would depend on temperature. We find three main points that are worth noting. (i) The crossover from superdiffusive to normal heat transport is well verified from a new perspective of heat spread. (ii) The spreading of the total energy is found to be very distinct from heat diffusion, especially under some temperature regimes, energy is strongly localized, while heat can be superdiffusive. So one should take care to derive a general connection between the heat conduction and energy diffusion. (iii) In a narrow range of temperatures, the spreading of momentum implies clear unusual non-ballistic behaviors; however, such unusual transport of momentum cannot be directly related to the normal transport of heat. An analysis of phonon spectra suggests that one should also take the effects of phonon softening into account. All of these results may provide insights into establishing the connection between the macroscopic heat transport and the underlying dynamics in 1D systems.

  11. Simulations of charge transport in organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vehoff, Thorsten

    2010-05-05

    We study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The high mobility of rubrene is explained by two main

  12. Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth

    Science.gov (United States)

    Koenigk, Torben; Brodeau, Laurent

    2014-06-01

    The ocean heat transport into the Arctic and the heat budget of the Barents Sea are analyzed in an ensemble of historical and future climate simulations performed with the global coupled climate model EC-Earth. The zonally integrated northward heat flux in the ocean at 70°N is strongly enhanced and compensates for a reduction of its atmospheric counterpart in the twenty first century. Although an increase in the northward heat transport occurs through all of Fram Strait, Canadian Archipelago, Bering Strait and Barents Sea Opening, it is the latter which dominates the increase in ocean heat transport into the Arctic. Increased temperature of the northward transported Atlantic water masses are the main reason for the enhancement of the ocean heat transport. The natural variability in the heat transport into the Barents Sea is caused to the same extent by variations in temperature and volume transport. Large ocean heat transports lead to reduced ice and higher atmospheric temperature in the Barents Sea area and are related to the positive phase of the North Atlantic Oscillation. The net ocean heat transport into the Barents Sea grows until about year 2050. Thereafter, both heat and volume fluxes out of the Barents Sea through the section between Franz Josef Land and Novaya Zemlya are strongly enhanced and compensate for all further increase in the inflow through the Barents Sea Opening. Most of the heat transported by the ocean into the Barents Sea is passed to the atmosphere and contributes to warming of the atmosphere and Arctic temperature amplification. Latent and sensible heat fluxes are enhanced. Net surface long-wave and solar radiation are enhanced upward and downward, respectively and are almost compensating each other. We find that the changes in the surface heat fluxes are mainly caused by the vanishing sea ice in the twenty first century. The increasing ocean heat transport leads to enhanced bottom ice melt and to an extension of the area with bottom ice

  13. Iterated transportation simulations for Dallas and Portland

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.; Simon, P.; Rickert, M.; Esser, J.

    1998-09-02

    The goal of the TRansportation ANalysis and SIMulation System (TRANSIMS) is to combine the most important aspects of human decision-making related to transportation, from activities planning (sleep, work, eat, shop,...) via modal and route planning to driving, into a single, consistent methodological and software framework. This is meant to combine the functionalities of activities-based travel demand generation, modal choice and route assignment, and micro-simulation. TRANSIMS attempts to employ advanced methodologies in all these modules. Yet, it is probably the overall framework that is the most important part of this attempt. It is, for example, possible to replace the TRANSIMS microsimulation by another micro-simulation that uses the same input and generates the same output. TRANSIMS uses specific regions as examples in order to ensure that the technology is rooted in the real world. Until about the middle of 1997, an approximately five miles by five miles area in Dallas/Texas was used. Since then, TRANSIMS has moved to using data from Portland/Oregon; a case study for this region is planned to be completed by the end of the year 2000. In this paper the authors give short descriptions of these projects and give references to related publications.

  14. Atomistic simulations of nanoscale electrokinetic transport

    Science.gov (United States)

    Liu, Jin; Wang, Moran; Chen, Shiyi; Robbins, Mark

    2011-11-01

    An efficient and accurate algorithm for atomistic simulations of nanoscale electrokinetic transport will be described. The long-range interactions between charged molecules are treated using the Particle-Particle Particle-Mesh method and the Poisson equation for the electric potential is solved using an efficient multi-grid method in physical space. Using this method, we investigate two important applications in electrokinetic transport: electroosmotic flow in rough channels and electowetting on dielectric (EWOD). Simulations of electroosmotic and pressure driven flow in exactly the same geometries show that surface roughness has a much more pronounced effect on electroosmotic flow. Analysis of local quantities shows that this is because the driving force in electroosmotic flow is localized near the wall where the charge density is high. In atomistic simulations of EWOD, we find the contact angle follows the continuum theory at low voltages and always saturates at high voltages. Based on our results, a new mechanism for saturation is identified and possible techniques for controlling saturation are proposed. This work is supported by the National Science Foundation under Grant No. CMMI 0709187.

  15. A simplified heat pump model for use in solar plus heat pump system simulation studies

    OpenAIRE

    Perers, Bengt; Anderssen, Elsa; Nordman, Roger; Kovacs, Peter

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the he...

  16. Heat Transport in Confined Strongly Coupled 2D Dust Clusters

    CERN Document Server

    Kudelis, Giedrius; Bonitz, Michael

    2013-01-01

    Dusty plasmas are a model system for studying strong correlation. The dust grains' size of a few micro-meters and their characteristic oscillation frequency of a few hertz allows for an investigation of many particle effects on an atomic level. In this article, we model the heat transport through an axially confined 2D dust cluster from the center to the outside. The system behaves particularly interesting since heat is not only conducted within the dust component but also transfered to the neutral gas. Fitting the analytical solution to the obtained radial temperature profiles allows to determine the heat conductivity $\\kheat$. The heat conductivity is found to be constant over a wide range of coupling strengths even including the phase transition from solid to liquid here, as it was also found in extended systems by V. Nosenko et al. in 2008 \\cite{PhysRevLett.100.025003}

  17. Perturbative Heat Transport Experiments on TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-07-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs.

  18. Particle model for nonlocal heat transport in fusion plasmas.

    Science.gov (United States)

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  19. Thermal transport in low dimensions from statistical physics to nanoscale heat transfer

    CERN Document Server

    2016-01-01

    Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of na...

  20. Simulation of rarefied gas flow and heat transfer in microchannels

    Institute of Scientific and Technical Information of China (English)

    王娴; 王秋旺; 陶文铨; 郑平

    2002-01-01

    Analysis and simulation of rarefied nitrogen gas flow and heat transfer were performed with the Knusden number ranging from 0.05 to 1.0, using the direct simulation of Monte Carlo (DSMC) method. The influences of the Kn number and the aspect ratio on the gas temperature and wall heat flux in the microchannels were studied parametrically. The total and local heat fluxes of the microchannel walls varying with the channel inlet velocities were also investigated in detail. It was found that the Kn number and the aspect ratio greatly influence the heat transfer performance of microchannels, and both the channel inlet and outlet have higher heat fluxes while the heat flux in the middle part of channels is very low. It is also found that the inlet free stream flow velocity has small affect on the wall total heat flux while it changes the distribution of local heat flux.

  1. Heat science and transport phenomena in fuel cells; Thermique et phenomenes de transport dans les piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, P.M.; Boillot, M. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France); Bonnet, C.; Didieerjean, S.; Lapicque, F.; Deseure, J.; Lottin, O.; Maillet, D.; Oseen-Senda, J. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 54 - Vandoeuvre Les Nancy (France); Alexandre, A. [Laboratoire d' Etudes Thermiques, ENSMA, 86 Poitiers (France); Topin, F.; Occelli, R.; Daurelle, J.V. [IUSTI / Polytech' Marseille, Institut universitaire des Systemes Thermiques Industriels Ecole, 13 - Marseille (France); Pauchet, J.; Feidt, M. [CEA Grenoble, Groupement pour la recherche sur les echangeurs thermiques (Greth), 38 (France); Voarino, C. [CEA Centre d' Etudes du Ripault, 37 - Tours (France); Morel, B.; Laurentin, J.; Bultel, Y.; Lefebvre-Joud, F. [CEA Grenoble, LEPMI, 38 (France); Auvity, B.; Lasbet, Y.; Castelain, C.; Peerohossaini, H. [Ecole Centrale de Nantes, Laboratoire de Thermocinetique de Nantes (LTN), 44 - Nantes (France)

    2005-07-01

    In this work are gathered the transparencies of the lectures presented at the conference 'heat science and transport phenomena in fuel cells'. The different lectures have dealt with 1)the gas distribution in the bipolar plates of a fuel cell: experimental studies and computerized simulations 2)two-phase heat distributors in the PEMFC 3)a numerical study of the flow properties of the backing layers on the transfers in a PEMFC 4)modelling of the heat and mass transfers in a PEMFC 5)two-phase cooling of the PEMFC with pentane 6)stationary thermodynamic model of the SOFC in the GECOPAC system 7)modelling of the internal reforming at the anode of the SOFC 8)towards a new thermal design of the PEMFC bipolar plates. (O.M.)

  2. Identification of coronal heating events in 3D simulations

    Science.gov (United States)

    Kanella, Charalambos; Gudiksen, Boris V.

    2017-07-01

    Context. The solar coronal heating problem has been an open question in the science community since 1939. One of the proposed models for the transport and release of mechanical energy generated in the sub-photospheric layers and photosphere is the magnetic reconnection model that incorporates Ohmic heating, which releases a part of the energy stored in the magnetic field. In this model many unresolved flaring events occur in the solar corona, releasing enough energy to heat the corona. Aims: The problem with the verification and quantification of this model is that we cannot resolve small scale events due to limitations of the current observational instrumentation. Flaring events have scaling behavior extending from large X-class flares down to the so far unobserved nanoflares. Histograms of observable characteristics of flares show powerlaw behavior for energy release rate, size, and total energy. Depending on the powerlaw index of the energy release, nanoflares might be an important candidate for coronal heating; we seek to find that index. Methods: In this paper we employ a numerical three-dimensional (3D)-magnetohydrodynamic (MHD) simulation produced by the numerical code Bifrost, which enables us to look into smaller structures, and a new technique to identify the 3D heating events at a specific instant. The quantity we explore is the Joule heating, a term calculated directly by the code, which is explicitly correlated with the magnetic reconnection because it depends on the curl of the magnetic field. Results: We are able to identify 4136 events in a volume 24 × 24 × 9.5 Mm3 (i.e., 768 × 786 × 331 grid cells) of a specific snapshot. We find a powerlaw slope of the released energy per second equal to αP = 1.5 ± 0.02, and two powerlaw slopes of the identified volume equal to αV = 1.53 ± 0.03 and αV = 2.53 ± 0.22. The identified energy events do not represent all the released energy, but of the identified events, the total energy of the largest events

  3. Mathematical simulation of heat exchanger working conditions

    Science.gov (United States)

    Gavlas, Stanislav; Ďurčanský, Peter; Lenhard, Richard; Jandačka, Jozef

    2015-05-01

    One of the When designing a new heat exchanger it is necessary to consider all the conditions imposed on the exchanger and its desired properties. Most often the investigation of heat transfer is to find heat surface. When applying exchanger for proposed hot air engine, it will be a counter-flow heat exchanger of gas - gas type. Gas, which transfers the heat will be exhaust gas from the combustion of biomass. An important step in the design and verification is to analyze exchanger designed using numerical methods, the verification of the correctness of design and verification of boundary conditions which include temperatures, flow rates and pressure drops. Due to the fact that the heat transfer in the heat exchanger is a three-dimensional plot and timeindependent, the system is described by partial differential equations that need to be solved by numerical methods.

  4. Heat Transport Effects in Rotating Gases and Plasmas

    Science.gov (United States)

    Kolmes, Elijah; Geyko, Vasily; Fisch, Nathaniel

    2016-10-01

    In some contexts, rotating gases and plasmas exhibit heat transport effects that are substantially different from what would be found in the absence of rotation. For instance, a Ranque-Hilsch vortex tube is a device which separates an input stream of (neutral) gas into hot and cold streams by setting up a rotating flow in a specially designed cylindrical chamber. One class of vortex tube models involves radial motion that carries gas up and down the pressure gradients set up by the centrifugal potential inside the tube and which results in adiabatic heating and cooling of the radially moving material. The approach of producing heat transport in a rotating flow using pressure gradients and motion along those gradients may have applications in plasma systems. We discuss possible applications for rotational heat transport effects in plasma systems, including Z-pinch configurations. Princeton Plasma Physics Laboratory; U.S. Defense Reduction Agency Grant No. HDTRA1-11-1-0037; and the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948.

  5. Electrostatic particle-in-cell simulation of heat flux mitigation using magnetic fields

    Science.gov (United States)

    Lüskow, Karl Felix; Kemnitz, S.; Bandelow, G.; Duras, J.; Kahnfeld, D.; Matthias, P.; Schneider, R.; Konigorski, D.

    2016-10-01

    The particle-in-cell (PIC) method was used to simulate heat flux mitigation experiments with partially ionised argon. The experiments demonstrate the possibility of reducing heat flux towards a target using magnetic fields. Modelling using the PIC method is able to reproduce the heat flux mitigation qualitatively. This is driven by modified electron transport. Electrons are magnetised and react directly to the external magnetic field. In addition, an increase of radial turbulent transport is also needed to explain the experimental observations in the model. Close to the target an increase of electron density is created. Due to quasi-neutrality, ions follow the electrons. Charge exchange collisions couple the dynamics of the neutrals to the ions and reduce the flow velocity of neutrals by radial momentum transport and subsequent losses. By this, the dominant heat-transport channel by neutrals gets reduced and a reduction of the heat deposition, similar to the experiment, is observed. Using the simulation a diagnostic module for optical emission is developed and its results are compared with spectroscopic measurements and photos from the experiment. The results of this study are in good agreement with the experiment. Experimental observations such as a shrank bright emission region close to the nozzle exit, an additional emission in front of the target and an overall change in colour to red are reproduced by the simulation.

  6. Optimal Heat Transport in Rayleigh-B\\'enard Convection

    CERN Document Server

    Sondak, David; Waleffe, Fabian

    2015-01-01

    Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-B\\'enard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Ra\\sim 10^9$. Power law scalings of $Nu\\sim Ra^{\\gamma}$ are observed with $\\gamma\\approx 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr \\lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a...

  7. Mobile heat accumulators for lorry or train transport?; Mobile Waermespeicher fuer den LKW- oder Zugtransport?

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-07-01

    Where heat grids cannot be laid for geographic reasons, mobile heat accumulators may be appropriate. The mobile heat accumulators are transported by lorry or train between the heat source and the heat sink. The waste heat can be decoupled from biogas plants, waste incineration plants or industrial sites. Existing road or rail networks can be used for transportation. Decisive factors to achieve low heat production costs are: free waste heat, large and continuous heat quantities as well as a short distance between the heat source and the heat sink. (orig.)

  8. Water, heat and salt transport through the Strait of Otranto

    Science.gov (United States)

    Yari, Sadegh; Gačić, Miroslav; Kovačević, Vedrana; Cardin, Vanessa

    2010-05-01

    The water, heat and salt transports through the Strait of Otranto are estimated applying direct method to historical current and hydrographical data (from December 94 through November 95). A variational inverse method based on a variational principle and a finite element solver is used to reconstruct the current, temperature and salinity fields across the Strait section from sparse measurements. The mean annual inflow and outflow water transport rates are estimated as 0.901±0.039 Sv and -0.939±0.315 Sv, respectively, and the net transport for the period of study is equal to -0.032±0.208 Sv. Thus, on a yearly time interval, the inflow and the outflow are practically compensated. The heat and salt transports due to advection process are estimated for five monthly periods, namely December 1994, February, May, August and November 1995. Considering these five periods representative of the seasonal cycle during the year, their average values show that there is a net heat advection into the Adriatic Sea on a yearly basis. The estimated value of advected heat and the corresponding error are 2.408±0.490 TW, which is equivalent to a heat gain of 17.37±3.53 W m-2 for the whole basin. This value is compared to the heat loss of -36±152 (std) W m-2 through the air-sea interface calculated by means of bulk formulas over the Adriatic Sea. The two values are expected to be balance each other in order to close the heat budget of the basin. The possible reasons for this difference to occur are discussed. On a yearly basis, the salt transport is estimated as an input of salt equal to 0.05×106 Kg s-1. The average annual fresh water budget is estimated as -0.002 Sv, equivalent to the mass of fresh water of 2.00×106Kg s-1 or to the level of 0.45 m yr-1 for the entire Adriatic Sea. The import of salt that is less than the gain of fresh water is in agreement with the fact that the Adriatic Sea is a dilution basin.

  9. Solar assisted heat pump on air collectors: A simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Karagiorgas, Michalis; Galatis, Kostas; Tsagouri, Manolis [Department of Mechanical Engineering Educators, ASPETE, N. Iraklio, GR 14121 (Greece); Tsoutsos, Theocharis [Environmental Engineering Dept., Technical University of Crete, Technical University Campus, GR 73100, Chania (Greece); Botzios-Valaskakis, Aristotelis [Centre for Renewable Energy Sources (CRES), 19th km Marathon Ave., GR 19001, Pikermi (Greece)

    2010-01-15

    The heating system of the bioclimatic building of the Greek National Centre for Renewable Energy Sources (CRES) comprises two heating plants: the first one includes an air source heat pump, Solar Air Collectors (SACs) and a heat distribution system (comprising a fan coil unit network); the second one is, mainly, a geothermal heat pump unit to cover the ground floor thermal needs. The SAC configuration as well as the fraction of the building heating load covered by the heating plant are assessed in two operation modes; the direct (hot air from the collectors is supplied directly to the heated space) and the indirect mode (warm air from the SAC or its mixture with ambient air is not supplied directly to the heated space but indirectly into the evaporator of the air source heat pump). The technique of the indirect mode of heating aims at maximizing the efficiency of the SAC, saving electrical power consumed by the compressor of the heat pump, and therefore, at optimizing the coefficient of performance (COP) of the heat pump due to the increased intake of ambient thermal energy by means of the SAC. Results are given for three research objectives: assessment of the heat pump efficiency whether in direct or indirect heating mode; Assessment of the overall heating plant efficiency on a daily or hourly basis; Assessment of the credibility of the suggested simulation model TSAGAIR by comparing its results with the TRNSYS ones. (author)

  10. Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing

    Science.gov (United States)

    Park, Jin-Woo; Na, Yong-Su; Hong, Sang Hee; Ahn, Joon-Wook; Kim, Deok-Kyu; Han, Hyunsun; Shim, Seong Bo; Lee, Hae June

    2012-08-01

    Two-dimensional (2D), scrape-off layer (SOL)-divertor transport simulations are performed using the integrated plasma-neutral-impurity code KTRAN developed at Seoul National University. Firstly, the code is applied to reproduce a National Spherical Torus eXperiment (NSTX) discharge by using the prescribed transport coefficients and the boundary conditions obtained from the experiment. The plasma density, the heat flux on the divertor plate, and the D α emission rate profiles from the numerical simulation are found to follow experimental trends qualitatively. Secondly, predictive simulations are carried out for the baseline operation mode in Korea Superconducting Tokamak Advanced Research (KSTAR) to predict the heat flux on the divertor target plates. The stationary peak heat flux in the KSTAR baseline operation mode is expected to be 6.5 MW/m2 in the case of an orthogonal divertor. To study the mitigation of the heat flux, we investigated the puffing effects of deuterium and argon gases. The puffing position is assumed to be in front of the strike point at the outer lower divertor plate. In the simulations, mitigation of the peak heat flux at the divertor target plates is found to occur when the gas puffing rate exceeds certain values, ˜1.0 × 1020 /s and ˜5.0 × 1018 /s for deuterium and argon, respectively. Multi-charged impurity transport is also investigated for both NSTX and KSTAR SOL and divertor regions.

  11. Finite element simulation of heat transfer

    CERN Document Server

    Bergheau, Jean-Michel

    2010-01-01

    This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

  12. Controlling and measuring quantum transport of heat in trapped-ion crystals.

    Science.gov (United States)

    Bermudez, A; Bruderer, M; Plenio, M B

    2013-07-26

    Measuring heat flow through nanoscale devices poses formidable practical difficulties as there is no "ampere meter" for heat. We propose to overcome this problem in a chain of trapped ions, where laser cooling the chain edges to different temperatures induces a heat current of local vibrations (vibrons). We show how to efficiently control and measure this current, including fluctuations, by coupling vibrons to internal ion states. This demonstrates that ion crystals provide an ideal platform for studying quantum transport, e.g., through thermal analogues of quantum wires and quantum dots. Notably, ion crystals may give access to measurements of the elusive bosonic fluctuations in heat currents and the onset of Fourier's law. Our results are strongly supported by numerical simulations for a realistic implementation with specific ions and system parameters.

  13. Heat transport in a chaotic magnetic field; Transport de la chaleur dans un champ magnetique chaotique

    Energy Technology Data Exchange (ETDEWEB)

    Feron, Samuel [Service de Physique des Plasmas de Fusion, Dept. de Recherches sur la Fusion Controlee, Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1997-09-25

    Heat transport in a plasma with a magnetic perturbation of amplitude b and a transverse diffusion of typical scale {delta} is investigated. On Tore Supra, such a perturbation is induced at the edge by the Ergodic Divertor. Classically, the heat transport is expected to be diffusive, but the experimental evidence does not support such a model. The main experimental features are temperature modulations and a transport barrier which allows no loss of confinement in the core plasma. An analysis of both temperature field and magnetic perturbation indicates clearly delimited regions of strong and weak transport that are related to the loss of memory on a field line due to the transverse diffusion. Furthermore, the perturbation is strongly space-dependent. This implies non-local transport and a region (separatrix) in which the Chirikov parameter is less than one. This analysis leads to a 1D analytical model which recovers modulations. A transport barrier is also expected, assuming a dissymmetrical transport process around the separatrix. A mapping transport code has also been developed which takes the basic features of ergodic divertor into account. Both experimental results, modulations, and a transport barrier are recovered. The latter depends on the ratio b/{delta}, but occurs without any assumption of dissymmetrical transport. For the same ratio b/{delta} as Tore Supra, the core confinement, as with the experiment, is not affected. A lower ratio leads to a loss of confinement, while a larger value produces improved confinement. The barrier can be attributed to non diffusive transport out of islands located around separatrix. The trapping mechanisms in these islands, combined with some small level of transverse transport, reduce the probability for particles to flow back to the perturbed region. A dissymmetrical process then appears and allows for a transport barrier. (author) 90 refs., 65 figs.

  14. Heat transport in a chaotic magnetic field; Transport de la chaleur dans un champ magnetique chaotique

    Energy Technology Data Exchange (ETDEWEB)

    Feron, S. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Grenoble-1 Univ., 38 (France)

    1997-12-01

    Heat transport in a plasma with a magnetic perturbation of amplitude b and a transverse diffusion of typical scale {delta} is investigated. On Tore Supra, such a perturbation is induced at the edge by the Ergodic Divertor. Classically, the heat transport is expected to be diffusive, but the experimental evidence does not support such a model. The main experimental features are temperature modulations and a transport barrier which allows no loss of confinement in the core plasma. An analysis of both temperature filed nd magnetic perturbation indicates clearly delimited regions of strong and weak transport that are related to the loss of memory on a filed line due to the transverse diffusion. Furthermore, the perturbation is strongly space-dependent. This implies non local transport and a region (separatrix) in which the Chirikov parameter is less that one. This analysis leads to a 1D analytical model which recovers modulations. A transport barrier is also expected, assuming a dissymmetrical transport process around the separatrix. A mapping transport code has also been developed which takes the basic features of the ergodic divertor into account. Both experimental results, modulations, and a transport barrier are recovered. The latter depends on the ratio b/{delta}, but occurs without any assumption of dissymmetrical transport. For the same ratio b/{delta} as Tore Supra, the core confinement, as with the experiment, is not affected. A lower ratio leads to a loss of confinement, while a larger value produces improved confinement. The barrier can be attributed to non diffusive transport out of islands located around the separatrix. The trapping mechanisms in these islands, combined with some small level of transverse transport, reduce the probability for particles to flow back to the perturbed region. A dissymmetrical process then appears and allows for a transport barrier. (author) 90 refs.

  15. Solute and heat transport model of the Henry and hilleke laboratory experiment.

    Science.gov (United States)

    Langevin, Christian D; Dausman, Alyssa M; Sukop, Michael C

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment.

  16. Detailed simulation of morphodynamics: 2. Sediment pickup, transport, and deposition

    NARCIS (Netherlands)

    Nabi, M.; De Vriend, H.J.; Mosselman, E.; Sloff, C.J.; Shimizu, Y.

    2013-01-01

    The paper describes a numerical model for simulating sediment transport with eddy-resolving 3-D models. This sediment model consists of four submodels: pickup, transport over the bed, transport in the water column and deposition, all based on a turbulent flow model using large-eddy simulation. The

  17. Detailed simulation of morphodynamics: 2. Sediment pickup, transport, and deposition

    NARCIS (Netherlands)

    Nabi, M.; De Vriend, H.J.; Mosselman, E.; Sloff, C.J.; Shimizu, Y.

    2013-01-01

    The paper describes a numerical model for simulating sediment transport with eddy-resolving 3-D models. This sediment model consists of four submodels: pickup, transport over the bed, transport in the water column and deposition, all based on a turbulent flow model using large-eddy simulation. The s

  18. Analysis of coupled heat and moisture transport on parallel computers

    Science.gov (United States)

    Koudelka, Tomáš; Krejčí, Tomáš

    2017-07-01

    Coupled analysis of heat and moisture transport in complicated structural elements or in whole structures deserves a special attention because after space discretization, large number of degrees of freedom are needed. This paper describes possible solution of such problems based on domain decomposition methods executed on parallel computers. The Schur complement method is used with respect to nonsymmetric systems of algebraic equations. The method described is an alternative to other methods, e.g. two or more scale homogenization.

  19. Internal transport barrier with ICRH minority heating on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, G.T.; Bourdelle, C.; Garbet, X.; Antar, G.; Aniel, T.; Basiuk, V.; Becoulet, A.; Devynck, P.; Lasalle, J.; Martin, G.; Saint-Laurent, F. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Budny, R.V. [Princeton Plasma Physics Lab., N.J. (United States)

    2000-02-01

    Recently reversed magnetic shear (s) operation was performed using only ion cyclotron resonance frequency minority heating (ICRH) during current ramp-up. A wide region of reserved magnetic shear has been obtained. For the first time, an electron internal transport barrier sustained by ICRH is observed, with a dramatic drop of density fluctuations. This barrier was maintained, on the current flat top, for about 2 s. (authors)

  20. Measurements and simulations of water transport in maize plants

    Science.gov (United States)

    Heinlein, Florian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2017-04-01

    In Central Europe climate change will become manifest in the increase of extreme weather events like flash floods, heat waves and summer droughts, and in a shift of precipitation towards winter months. Therefore, regional water availability will alter which has an effect on future crop growth, water use efficiency and yields. To better estimate these effects accurate model descriptions of transpiration and other parts of the water balance are important. In this study, we determined transpiration of four maize plants on a field of the research station Scheyern (about 40km North of Munich) by means of sap flow measurement devices (ICQ International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which facilitates the calculation of sap flow. Additionally, high resolution changes of stem diameters were measured with dendrometers (DD-S, Ecomatik). The field was also situated next to an eddy covariance station which provided latent heat fluxes from the soil-plant system. We also performed terrestrial laser scans of the respective plants to extract the plant architectures. These structures serve as input for our mechanistic transpiration model simulating the water transport within the plant. This model, which has already been successfully applied to single Fagus sylvatica L. trees, was adapted to agricultural plants such as maize. The basic principle of this model is to solve a 1-D Richards equation along the graph of the single plants. A comparison between the simulations and the measurements is presented and discussed.

  1. A non-equilibrium model for soil heating and moisture transport during extreme surface heating

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2015-03-01

    Full Text Available With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank–Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m−2. The Hertz–Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50–90 °C. Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure, which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different models developed for somewhat different purposes and for different porous

  2. Reactive transport benchmarks for subsurface environmental simulation

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl I.; Yabusaki, Steven B.; Mayer, K. U.

    2015-06-01

    Over the last 20 years, we have seen firsthand the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface applications it is being used to address. There is a growing reliance on reactive transport modeling (RTM) to address some of the most compelling issues facing our planet: climate change, nuclear waste management, contaminant remediation, and pollution prevention. While these issues are motivating the development of new and improved capabilities for subsurface environmental modeling using RTM (e.g., biogeochemistry from cell-scale physiology to continental-scale terrestrial ecosystems, nonisothermal multiphase conditions, coupled geomechanics), there remain longstanding challenges in characterizing the natural variability of hydrological, biological, and geochemical properties in subsurface environments and limited success in transferring models between sites and across scales. An equally important trend over the last 20 years is the evolution of modeling from a service sought out after data has been collected to a multifaceted research approach that provides (1) an organizing principle for characterization and monitoring activities; (2) a systematic framework for identifying knowledge gaps, developing and integrating new knowledge; and (3) a mechanistic understanding that represents the collective wisdom of the participating scientists and engineers. There are now large multidisciplinary projects where the research approach is model-driven, and the principal product is a holistic predictive simulation capability that can be used as a test bed for alternative conceptualizations of processes, properties, and conditions. Much of the future growth and expanded role for RTM will depend on its continued ability to exploit technological advancements in the earth and environmental sciences. Advances in measurement technology, particularly in molecular biology (genomics), isotope fractionation, and high

  3. Effects of chemical bonding on heat transport across interfaces.

    Science.gov (United States)

    Losego, Mark D; Grady, Martha E; Sottos, Nancy R; Cahill, David G; Braun, Paul V

    2012-04-22

    Interfaces often dictate heat flow in micro- and nanostructured systems. However, despite the growing importance of thermal management in micro- and nanoscale devices, a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump-probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold-SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.

  4. Quantum Thermodynamics in Strong Coupling: Heat Transport and Refrigeration

    Directory of Open Access Journals (Sweden)

    Gil Katz

    2016-05-01

    Full Text Available The performance characteristics of a heat rectifier and a heat pump are studied in a non-Markovian framework. The device is constructed from a molecule connected to a hot and cold reservoir. The heat baths are modelled using the stochastic surrogate Hamiltonian method. The molecule is modelled by an asymmetric double-well potential. Each well is semi-locally connected to a heat bath composed of spins. The dynamics are driven by a combined system–bath Hamiltonian. The temperature of the baths is regulated by a secondary spin bath composed of identical spins in thermal equilibrium. A random swap operation exchange spins between the primary and secondary baths. The combined system is studied in various system–bath coupling strengths. In all cases, the average heat current always flows from the hot towards the cold bath in accordance with the second law of thermodynamics. The asymmetry of the double well generates a rectifying effect, meaning that when the left and right baths are exchanged the heat current follows the hot-to-cold direction. The heat current is larger when the high frequency is coupled to the hot bath. Adding an external driving field can reverse the transport direction. Such a refrigeration effect is modelled by a periodic driving field in resonance with the frequency difference of the two potential wells. A minimal driving amplitude is required to overcome the heat leak effect. In the strong driving regime the cooling power is non-monotonic with the system–bath coupling.

  5. Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface: Numerical model formulation

    Science.gov (United States)

    Adenekan, A. E.; Patzek, T. W.; Pruess, K.

    1993-11-01

    A numerical compositional simulator (Multiphase Multicomponent Nonisothermal Organics Transport Simulator (M2NOTS)) has been developed for modeling transient, three-dimensional, nonisothermal, and multiphase transport of multicomponent organic contaminants in the subsurface. The governing equations include (1) advection of all three phases in response to pressure, capillary, and gravity forces; (2) interphase mass transfer that allows every component to partition into each phase present; (3) diffusion; and (4) transport of sensible and latent heat energy. Two other features distinguish M2NOTS from other simulators reported in the groundwater literature: (1) the simulator allows for any number of chemical components and every component is allowed to partition into all fluid phases present, and (2) each phase is allowed to completely disappear from, or appear in, any region of the domain during a simulation. These features are required to model realistic field problems involving transport of mixtures of nonaqueous phase liquid contaminants, and to quantify performance of existing and emerging remediation methods such as vacuum extraction and steam injection.

  6. Why convective heat transport in the solar nebula was inefficient

    Science.gov (United States)

    Cassen, P.

    1993-01-01

    The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.

  7. Simulation of Micro-Climate in Heated Buildings

    Directory of Open Access Journals (Sweden)

    P. I. Diachek

    2009-01-01

    Full Text Available The paper presents main theoretical principles that serve as a basis for the developed numerical model of processes pertaining to conjugated heat exchange in the heated buildings. Information on functional capabilities of the developed programme, results of calculations and comparison of the obtained data with the conditions of heat comfort are given in the paper. It has been established that an application of simulation processes pertaining to energy and substance transfer at the design stage is considered as a rather efficient method for provision of the required parameters of a micro-climate and optimization of heat consumption by heated buildings.

  8. Semiconductor phonon and charge transport Monte Carlo simulation using Geant4

    CERN Document Server

    Brandt, D; Redl, P; Schneck, K; Asai, M; Kelsey, M; Faiez, D; Bagli, E; Cabrera, B; Partridge, R; Saab, T; Sadoulet, B

    2014-01-01

    A phonon and charge transport simulation based on the Geant4 Monte Carlo toolkit is presented. The transport code is capable of propagating acoustic phonons, electrons and holes in cryogenic crystals. Anisotropic phonon propagation, oblique carrier propagation and phonon emission by accelerated carriers are all taken into account. The simulation successfully reproduces theoretical predictions and experimental observations such as phonon caustics, heat pulse propagation times and mean carrier drift velocities. Implementation of the transport code using the Geant4 toolkit ensures availability to the wider scientific community.

  9. Discrete particle simulation of mixed sand transport

    Institute of Scientific and Technical Information of China (English)

    Fengjun Xiao; Liejin Guo; Debiao Li; Yueshe Wang

    2012-01-01

    An Eulerian/Lagrangian numerical simulation is performed on mixed sand transport.Volume averaged Navier-Stokes equations are solved to calculate gas motion,and particle motion is calculated using Newton's equation,involving a hard sphere model to describe particle-to-particle and particle-to-wall collisions.The influence of wall characteristics,size distribution of sand particles and boundary layer depth on vertical distribution of sand mass flux and particle mean horizontal velocity is analyzed,suggesting that all these three factors affect sand transport at different levels.In all cases,for small size groups,sand mass flux first increases with height and then decreases while for large size groups,it decreases exponentially with height and for middle size groups the behavior is in-between.The mean horizontal velocity for all size groups well fits experimental data,that is,increasing logarithmically with height in the middle height region.Wall characteristics greatly affects particle to wall collision and makes the flat bed similar to a Gobi surface and the rough bed similar to a sandy surface.Particle size distribution largely affects the sand mass flux and the highest heights they can reach especially for larger particles.

  10. CFD SIMULATION OF THE HEAT TRANSFER PROCESS IN A CHEVRON PLATE HEAT EXCHANGER USING THE SST TURBULENCE MODEL

    Directory of Open Access Journals (Sweden)

    Jan Skočilas

    2015-08-01

    Full Text Available This paper deals with a computational fluid dynamics (CFD simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST k-! model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.

  11. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    Science.gov (United States)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  12. Heat transfer capability simulation of high-temperature heat pipe in supersonic vehicle leading edge applications

    Directory of Open Access Journals (Sweden)

    Donghuan Liu

    2016-04-01

    Full Text Available A numerical method is proposed to determine the heat transfer capability of the high-temperature heat pipe and the stagnation temperature with supersonic vehicle leading edge applications. The finite element method is employed here to perform the temperature field simulation. Without considering the heat transfer limitations of the heat pipe, such as capillary limit and sonic limit, both numerical and experimental results indicate that equivalent high thermal conductivity method is a reasonable way to simulate the heat transfer capability of the high-temperature heat pipe in preliminary design of a heat-pipe-cooled leading edge. Several important parameters’ effects on the thermal protection performance are also numerically investigated.

  13. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Thirumarimurugan

    2008-01-01

    Full Text Available Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in smaller plot areas and, in many cases, less initial investment. One such type ofcompact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchangerdesign equations results from the exchangers unique ability to transfer heat between multiple processstreams and a wide array of possible flow configurations. This paper presents the performanceevaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems.Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculatedfor the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature ofboth the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchangerwas developed and simulated using MATLAB, which was verified with the experiments conducted.

  14. Simulations of proppant transport in microfractures

    Science.gov (United States)

    Bancewicz, Mateusz; Poła, Jakub; Koza, Zbigniew

    2017-04-01

    During the hydraulic fracturing of oil and gas shales a mixture of fracking fluid and solid proppant is injected into the rock fractures. Since this process takes place under physically extreme conditions, a few kilometers under the earth surface, it is practically impossible to obtain detailed, in situ data about the actual proppant transport on the scale of individual fractures and proppant grains. One way to improve our understanding of this technologically critical phenomenon is through numerical simulations. We use two standard computational fluid dynamics (CFD) solvers, finite volume (FVM) and lattice-Boltzmann (LBM) methods, and couple them with the discrete element method (DEM) in a fully resolved manner [1, 2, 3] to track the fluid parameters and proppant trajectories. This approach allows us to simulate up to about a thousand proppant agents in an arbitrary 3D fracture geometry filled with a fluid, with proppant-proppant, proppant-fluid, and fluid-proppant interactions taken into account. In this report we focus on two problems crucial for efficient and sufficiently accurate numerical simulations of proppant transport and sedimentation. 1. Is rotation of proppant grains an important factor determining the final distribution of proppants during proppant sedimentation in a realistically narrow, wiggly fracture? 2. Is the lubrication force necessary for the proper reconstruction of collision events between particles and walls as well as between particles themselves [4]? Our preliminary results show that the answer to the first question is negative. Due to a large number of proppant-proppant and proppant-wall collisions, as well as because of the damping effect of the proppant-fluid coupling, the influence of the proppant rotation on the proppant sedimentation appears to be negligible. However, the answer to the second question is positive: the lubrication force plays an important role in the proper numerical recovery of collisions. References: [1] D. R. J

  15. The effects of size, configuration and distribution of continents on the efficiency of heat transport

    Science.gov (United States)

    Cooper, C. M.; Moresi, L. N.; Lenardic, A.

    2011-12-01

    The addition of continents to the surface of a planet alters its interior dynamics; understanding this alteration is critical to understanding the thermal evolution of the Earth. Specifically, the increase in temperature induced by continental insulation can be compensated by an increase in the heat loss through the overturn of the oceanic lithosphere, thus contradicting the predicted reduction of global heat loss due to presence of continents (e.g., Lenardic et al, 2005; Cooper et al, 2006; Lenardic et al, 2011). We reconfirm this counterintuitive result with three-dimensional simulations. In addition, we explore variations in the configuration of continents on the surface. Within simulations with equivalent continental coverage, but varying configuration, there is a competition between the lateral size of the blocks and the natural horizontal scale of the convection pattern which influences the stability of the models over time, and the efficiency of heat transport. Smaller continental blocks tend to induce a stable planform with upwellings permanently avoiding the blocks. However, in cases with larger continental blocks, the imposed scale is larger than the preferred scale of the convection pattern and upwellings are unable to avoid the blocks altogether. The dependency on stability and efficiency of heat transport within the Earth on continental coverage and configuration suggests continents can play a significant role in the Earth's heat budget and thermal history. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006; Lenardic, A., C.M. Cooper, and L.-N. Moresi "A note on continents and the Earth's Urey ratio", Physics of the Earth and Planetary Interiors, 2011; Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci

  16. Simulation of the heat transfer around the ATLAS muon chambers

    CERN Multimedia

    2005-01-01

    This 2D simulation recently carried out on the ATLAS muon chambers by a small team of CERN engineers specialises in the numerical computation of fluid dynamics, in other words the flow of fluids and heat.

  17. Heat transport capability and compensation chamber influence in loop heat pipes performance

    Energy Technology Data Exchange (ETDEWEB)

    Riehl, Roger R. [National Institute for Space Research-Space Mechanics and Control Division-DMC/Satelite Av. dos Astronautas 1758, Sao Jose dos Campos, SP, 12227-010 (Brazil); Siqueira, Tulio C.P.A. [Universidade Federal de Ouro Preto-Departamento de Engenharia de Controle e Automacao Ouro Preto, MG, 35400-000 (Brazil)

    2006-08-15

    The development of the loop heat pipe technology for application in future space missions requires that certain aspects related to the operation of this device in regard to the heat transport, geometry and selected working fluid must be carefully considered. As efforts have been focused in the construction of loop heat pipes able to manage up to 80W of applied heat using an alternative working fluid, designing and testing these devices have shown important results. Two loop heat pipes have been built and tested, where they differ from each other on their compensation chamber geometry and use high grade acetone as working fluid, in substitution of the so-used ammonia. Life tests have shown reliable operation for both loop heat pipes with successful startups and continuous operation without temperature overshoot or evaporator dryout. The life tests results investigation have generated important data that has been applied on the design and construction of loop heat pipes toward their use in future space applications. (author)

  18. Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve

    Directory of Open Access Journals (Sweden)

    Zainal Nurul Amira

    2017-01-01

    Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.

  19. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths.

    Science.gov (United States)

    Sääskilahti, K; Oksanen, J; Tulkki, J

    2013-07-01

    Modeling of thermal transport in practical nanostructures requires making tradeoffs between the size of the system and the completeness of the model. We study quantum heat transfer in a self-consistent thermal bath setup consisting of two lead regions connected by a center region. Atoms both in the leads and in the center region are coupled to quantum Langevin heat baths that mimic the damping and dephasing of phonon waves by anharmonic scattering. This approach treats the leads and the center region on the same footing and thereby allows for a simple and physically transparent thermalization of the system, enabling also perfect acoustic matching between the leads and the center region. Increasing the strength of the coupling reduces the mean-free path of phonons and gradually shifts phonon transport from ballistic regime to diffusive regime. In the center region, the bath temperatures are determined self-consistently from the requirement of zero net energy exchange between the local heat bath and each atom. By solving the stochastic equations of motion in frequency space and averaging over noise using the general fluctuation-dissipation relation derived by Dhar and Roy [J. Stat. Phys. 125, 801 (2006)], we derive the formula for thermal current, which contains the Caroli formula for phonon transmission function and reduces to the Landauer-Büttiker formula in the limit of vanishing coupling to local heat baths. We prove that the bath temperatures measure local kinetic energy and can, therefore, be interpreted as true atomic temperatures. In a setup where phonon reflections are eliminated, the Boltzmann transport equation under gray approximation with full phonon dispersion is shown to be equivalent to the self-consistent heat bath model. We also study thermal transport through two-dimensional constrictions in square lattice and graphene and discuss the differences between the exact solution and linear approximations.

  20. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  1. Charge-transport simulations in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk

    2012-07-06

    In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors, where weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities. The contributions to the method development include (i) the derivation of a bimolecular charge-transfer rate, (ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies, (iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energies and (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies. These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED). When bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter. Furthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that

  2. Three dimensional heat transport modeling in Vossoroca reservoir

    Science.gov (United States)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to

  3. Heat and salt transport throughout the North Pacific Ocean

    Science.gov (United States)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.

  4. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  5. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation.

    Science.gov (United States)

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-19

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  6. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  7. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  8. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    Science.gov (United States)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  9. Topological Angular Momentum and Radiative Heat Transport in Closed Orbits

    CERN Document Server

    Silveirinha, Mario G

    2016-01-01

    Here, we study the role of topological edge states of light in the transport of thermally generated radiation in a closed cavity at a thermodynamic equilibrium. It is shown that even in the zero temperature limit - when the field fluctuations are purely quantum mechanical - there is a persistent flow of electromagnetic momentum in the cavity in closed orbits, deeply rooted in the emergence of spatially separated unidirectional edge state channels. It is highlighted the electromagnetic orbital angular momentum of the system is nontrivial, and that the energy circulation is towards the same direction as that determined by incomplete cyclotron orbits near the cavity walls. Our findings open new inroads in topological photonics and suggest that topological states of light can determine novel paradigms in the context of radiative heat transport.

  10. Temperature simulation of EMC aluminum ingot with induced heat

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The numerical simulation of temperature field of electromagnetic casting (EMC) aluminum ingots is an effective and also necessary approach to study the temperature field and forecast the quality of EMC ingot, or optimize the technological parameters. In EMC, the alternating electromagnetic field can produce induced current and heat within the surface layer. To calculate the temperature field precisely, the induced heat should be taken into account. The induced heat has been coupled into the calculation formula of temperature field of unit volume per unit time, which provides a convenient and also precise method to calculate the temperature field. Besides, the effect of induced heat on the temperature field of ingot has been simulated and discussed. The results show that the induced heat has large influences on the height of liquid column and the surface temperature of ingot.

  11. Stochastic Simulation of Lagrangian Particle Transport in Turbulent Flows

    Science.gov (United States)

    Sun, Guangyuan

    This dissertation presents the development and validation of the One Dimensional Turbulence (ODT) multiphase model in the Lagrangian reference frame. ODT is a stochastic model that captures the full range of length and time scales and provides statistical information on fine-scale turbulent-particle mixing and transport at low computational cost. The flow evolution is governed by a deterministic solution of the viscous processes and a stochastic representation of advection through stochastic domain mapping processes. The three algorithms for Lagrangian particle transport are presented within the context of the ODT approach. The Type-I and -C models consider the particle-eddy interaction as instantaneous and continuous change of the particle position and velocity, respectively. The Type-IC model combines the features of the Type-I and -C models. The models are applied to the multi-phase flows in the homogeneous decaying turbulence and turbulent round jet. Particle dispersion, dispersion coefficients, and velocity statistics are predicted and compared with experimental data. The models accurately reproduces the experimental data sets and capture particle inertial effects and trajectory crossing effect. A new adjustable particle parameter is introduced into the ODT model, and sensitivity analysis is performed to facilitate parameter estimation and selection. A novel algorithm of the two-way momentum coupling between the particle and carrier phases is developed in the ODT multiphase model. Momentum exchange between the phases is accounted for through particle source terms in the viscous diffusion. The source term is implemented in eddy events through a new kernel transformation and an iterative procedure is required for eddy selection. This model is applied to a particle-laden turbulent jet flow, and simulation results are compared with experimental measurements. The effect of particle addition on the velocities of the gas phase is investigated. The development of

  12. Transport in nanoscale systems: hydrodynamics, turbulence, and local electron heating

    Science.gov (United States)

    di Ventra, Massimiliano

    2007-03-01

    Transport in nanoscale systems is usually described as an open-boundary scattering problem. This picture, however, says nothing about the dynamical onset of steady states, their microscopic nature, or their dependence on initial conditions [1]. In order to address these issues, I will first describe the dynamical many-particle state via an effective quantum hydrodynamic theory [2]. This approach allows us to predict a series of novel phenomena like turbulence of the electron liquid [2], local electron heating in nanostructures [3], and the effect of electron viscosity on resistance [4]. I will provide both analytical results and numerical examples of first-principles electron dynamics in nanostructures using the above approach. I will also discuss possible experimental tests of our predictions. Work supported in part by NSF and DOE. [1] N. Bushong, N. Sai and M. Di Ventra, ``Approach to steady-state transport in nanoscale systems'' Nano Letters, 5 2569 (2005); M. Di Ventra and T.N. Todorov, ``Transport in nanoscale systems: the microcanonical versus grand-canonical picture,'' J. Phys. Cond. Matt. 16, 8025 (2004). [2] R. D'Agosta and M. Di Ventra, ``Hydrodynamic approach to transport and turbulence in nanoscale conductors,'' cond-mat/05123326; J. Phys. Cond. Matt., in press. [3] R. D'Agosta, N. Sai and M. Di Ventra, ``Local electron heating in nanoscale conductors,'' cond-mat/0605312; Nano Letters, in press. [4] N. Sai, M. Zwolak, G. Vignale and M. Di Ventra, ``Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems,'' Phys. Rev. Lett. 94, 186810 (2005).

  13. Simulations of chromospheric heating by ambipolar diffusion

    CERN Document Server

    Khomenko, Elena

    2012-01-01

    We propose a mechanism for efficient heating of the solar chromosphere, based on non-ideal plasma effects. Three ingredients are needed for the work of this mechanism: (1) presence of neutral atoms; (2) presence of a non-potential magnetic field; (3) decrease of the collisional coupling of the plasma. Due to decrease of collisional coupling, a net relative motion appears between the neutral and ionized components, usually referred to as "ambipolar diffusion". This results in a significant enhancement of current dissipation as compared to the classical MHD case. We propose that the current dissipation in this situation is able to provide enough energy to heat the chromosphere by several kK on the time scale of minutes, or even seconds. In this paper, we show that this energy supply might be sufficient to balance the radiative energy losses of the chromosphere.

  14. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C. [Lawrence Livermore National Lab., CA (United States); Jacques, S.L. [Texas Univ., Houston, TX (United States). M.D. Anderson Cancer Center

    1995-03-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered.

  15. TESTING AND SIMULATION OF SOLID STATE HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    CHAKIB ALAOUI

    2011-02-01

    Full Text Available The latest model of solid state Peltier thermoelectric pumps was reviewed and improved. A heating-cooling chamber was designed and fabricated by using the Peltier modules, and its equivalent circuit was extracted and simulated. This chamber was tested under various values of input power in both cooling and heating modes of operations. The experimental results were compared with the proposed model. This model is proven to be accurate and can be extend to any Peltier based thermoelectric system for simulation, and can be used to simulated thermoelectric systems based on these modules.

  16. Design and simulation of latent heat storage units. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C. [Houston Univ., TX (United States)

    1992-04-01

    This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

  17. Design and simulation of latent heat storage units

    Energy Technology Data Exchange (ETDEWEB)

    Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C. (Houston Univ., TX (United States))

    1992-04-01

    This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

  18. Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System

    Science.gov (United States)

    Ahmad, Rashid A.; Cash, Stephen F. (Technical Monitor)

    2002-01-01

    This simulation involved a two-dimensional axisymmetric model of a full motor initial grain of the Reusable Solid Rocket Motor (RSRM) of the Space Transportation System (STS). It was conducted with CFD (computational fluid dynamics) commercial code FLUENT. This analysis was performed to: a) maintain continuity with most related previous analyses, b) serve as a non-vectored baseline for any three-dimensional vectored nozzles, c) provide a relatively simple application and checkout for various CFD solution schemes, grid sensitivity studies, turbulence modeling and heat transfer, and d) calculate nozzle convective heat transfer coefficients. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, vacuum thrust and specific impulse, and measured chamber pressure drop. Matching these ballistic predictions was found to be good. This study was limited to convective heat transfer and the results compared favorably with existing theory. On the other hand, qualitative comparison with backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at constant pressure was made in a relative manner. This backed-out data was devised to match nozzle erosion that was a result of heat transfer (convective, radiative and conductive), chemical (transpirating), and mechanical (shear and particle impingement forces) effects combined.

  19. Progress of Time-dependent Transport Simulations Using GYRO and Neoclassical Models Within FACETS

    Science.gov (United States)

    Vadlamani, S.; Pankin, A. Y.; Kruger, S.; Carlsson, J.; Cary, J.; Pletzer, A.; Candy, J.; Collier, A.; Fahey, M.

    2009-05-01

    Progress on the integration of the turbulent transport code GYRO and the neoclassical codes such as NCLASS into the FACETS (Framework Application for Core-Edge Transport Simulations) framework through the use of a multi-language Fortran/C/C++ friendly FMCFM (Framework for Modernization and Componentization of Fusion Modules) interface is presented. The FMCFM framework provides a common interface to varying fusion transport modules and libraries such as those in the National Transport Code Collaboration (NTCC) module library [1]. The interlanguage wrapper code is automatically generated. First results of coupled GYRO-NCLASS-FACETS simulations using realistic initial profiles and particle/heat sources are presented. [1] A. H. Kritz et al. Comp. Phys. Communications 164 ,108 (2004) [2] See A. Pankin's et al. presentation on transport models in FACETS (Sherwood 2009)

  20. Simulation of Heat Transfer and Electromagnetic Fields of Protected Microcomputers

    Directory of Open Access Journals (Sweden)

    Josef Lakatos

    2006-01-01

    Full Text Available The paper presents results of collaboration between Department of mechatronics and electronics at University of Žilina and VÚVT Engineering a.s. Žilina in area of heat transfer simulations and disturbing electromagnetic radiation simulations in computer construction. The simulations results were used in development of protected microcomputer prototypes in frame of applied research at both of workplaces.

  1. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  2. Policies and initiatives for carbon neutrality in nordic heating and transport systems

    DEFF Research Database (Denmark)

    Muller, Jakob Glarbo; Wu, Qiuwei; Ostergaard, Jacob;

    2012-01-01

    to heat pumps in the Nordic region rely on both private economic and national economic incentives. Initiatives toward carbon neutrality in the transport system are mostly concentrated on research, development and demonstration for deployment of a large number of EVs. All Nordic countries have plans......Policies and initiatives promoting carbon neutrality in the Nordic heating and transport systems are presented. The focus within heating systems is the propagation of heat pumps while the focus within transport systems is initiatives regarding electric vehicles (EVs). It is found that conversion...... for the future heating and transport systems with the ambition of realizing carbon neutrality....

  3. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: michele.sciacca@unipa.it [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: ant.sellitto@gmail.com [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: david.jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2014-07-04

    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  4. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  5. Influence of Aerosol Heating on the Stratospheric Transport of the Mt. Pinatubo Eruption

    Science.gov (United States)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.

    2011-01-01

    On June 15th, 1991 the eruption of Mt. Pinatubo (15.1 deg. N, 120.3 Deg. E) in the Philippines injected about 20 Tg of sulfur dioxide in the stratosphere, which was transformed into sulfuric acid aerosol. The large perturbation of the background aerosol caused an increase in temperature in the lower stratosphere of 2-3 K. Even though stratospheric winds climatological]y tend to hinder the air mixing between the two hemispheres, observations have shown that a large part of the SO2 emitted by Mt. Pinatubo have been transported from the Northern to the Southern Hemisphere. We simulate the eruption of Mt. Pinatubo with the Goddard Earth Observing System (GEOS) version 5 global climate model, coupled to the aerosol module GOCART and the stratospheric chemistry module StratChem, to investigate the influence of the eruption of Mt. Pinatubo on the stratospheric transport pattern. We perform two ensembles of simulations: the first ensemble consists of runs without coupling between aerosol and radiation. In these simulations the plume of aerosols is treated as a passive tracer and the atmosphere is unperturbed. In the second ensemble of simulations aerosols and radiation are coupled. We show that the set of runs with interactive aerosol produces a larger cross-equatorial transport of the Pinatubo cloud. In our simulations the local heating perturbation caused by the sudden injection of volcanic aerosol changes the pattern of the stratospheric winds causing more intrusion of air from the Northern into the Southern Hemisphere. Furthermore, we perform simulations changing the injection height of the cloud, and study the transport of the plume resulting from the different scenarios. Comparisons of model results with SAGE II and AVHRR satellite observations will be shown.

  6. Study of fast electron transport and ionization in isochorically heated solid foil

    Science.gov (United States)

    Sawada, Hiroshi; Sentoku, Yasuhiko; Pandit, Rishi; Yabuuchi, Toshinori; Zastrau, Ulf; Foerster, Eckhart; Beg, Farhat; McLean, Harry; Chen, Hui; Park, J.-B.; Patel, Prav; Link, Anthony; Ping, Yuan

    2016-10-01

    Interaction of a high-power, short-pulse laser with a solid target generates a significant number of relativistic MeV electrons, subsequently heating the target isochorically in the transport process. Fast electron driven ionization of a solid titanium foil was studied by measuring Ti K-alpha x-rays and performing 2-D particle-in-cell simulations. The experiment was performed using the 50 TW Leopard short-pulse laser at UNR's Nevada Terawatt Facility. The 15 J, 0.35 ps laser was tightly focused on to a various sized, 2- μm thick Ti foil within a 8 μm spot to achieve the peak intensity of 2×1019 W/cm2. The transport of the fast electrons produced 4.51 keV Ti K-alpha x-rays. The yields and 2-D monochromatic images were recorded with a Bragg crystal spectrometer and a spherically bent crystal imager. The ionization degree of the heated foil was determined to be 15 from the ionized K-alpha lines and the missing emission in the images. 2-D PIC simulations using a PICLS code with a radiation transport module were performed to calculate the K-alpha profiles and spectra. Details of the experiment and comparison will be presented.

  7. Simulation of heat and mass transfer in spray drying

    NARCIS (Netherlands)

    Lijn, van der J.

    1976-01-01

    A survey is given of heat and mass transfer around droplets in spray dryers and the diffusional transport inside them. A calculational model is developed which includes variable diffusion coefficients in the drying liquid and swelling or shrinking of droplets. Calculations for droplets containing so

  8. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  9. Computer simulation of carburizers particles heating in liquid metal

    Directory of Open Access Journals (Sweden)

    K. Janerka

    2010-01-01

    Full Text Available In this article are introduced the problems of computer simulation of carburizers particles heating (anthracite, graphite and petroleum coke, which are present in liquid metal. The diameter of particles, their quantity, relative velocity of particles and liquid metal and the thermophysical properties of materials (thermal conductivity, specific heat and thermal diffusivity have been taken into account in calculations. The analysis has been carried out in the aspect of liquid metal carburization in metallurgical furnaces.

  10. How AGN Jets Heat the Intracluster Medium—Insights from Hydrodynamic Simulations

    Science.gov (United States)

    Yang, H.-Y. Karen; Reynolds, Christopher S.

    2016-10-01

    Feedback from active galactic nuclei (AGNs) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms of reproducing the properties of cool cores. We find that there is net heating within two “jet cones” (within ∼30° from the axis of jet precession) where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore, forming a “reduced” cooling flow. Consequently, the cluster core is in a process of “gentle circulation” over billions of years. Within the jet cones, there is significant adiabatic cooling as the gas is uplifted by buoyantly rising bubbles; outside the cones, energy is supplied by the inflow of already-heated gas from the jet cones as well as adiabatic compression as the gas moves toward the center. In other words, the fluid dynamics self-adjusts such that it compensates and transports the heat provided by the AGN, and hence no fine-tuning of the heating profile of any process is necessary. Throughout the cluster evolution, turbulent energy is only at the percent level compared to gas thermal energy, and thus turbulent heating is not the main source of heating in our simulation.

  11. Numerical simulation of heat-affected zone microstructure in GMAW

    Institute of Scientific and Technical Information of China (English)

    Wang Tianqi; Li Liangyu; Li Xiao; Yang Xu

    2009-01-01

    The grain size in the heat-affected zone (HAZ) of workpieces is an important factor for evaluating the welding quality. The Monte Carlo technique of grain growth in the heat-affected zone of alloy is widely used. A finite element model (FEM) was employed to simulate the temperature field of gas metal arc welding (GMAW) ; the data of thermal cycles were used in the Monte Carlo model to calculate the grain sizes in different welding heat inputs. The equation for the relationship between Monte Carlo Step and real time has been estimated using regression analysis. Then mathematics model of the grain growth could be worked out by both the kinetic model and the Monte Carlo model. The dynamic process of grain growth was simulated by the result of the Monte Carlo model. The experimental result was used to prove the validity of this method in simulating of microstructure.

  12. High performance stream computing for particle beam transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, R; Bailey, D; Higham, J; Salt, M [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)], E-mail: Robert.Appleby@manchester.ac.uk, E-mail: David.Bailey-2@manchester.ac.uk

    2008-07-15

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed.

  13. High performance stream computing for particle beam transport simulations

    Science.gov (United States)

    Appleby, R.; Bailey, D.; Higham, J.; Salt, M.

    2008-07-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed.

  14. Numerical Simulations of Coronal Heating through Footpoint Braiding

    CERN Document Server

    Hansteen, Viggo; De Pontieu, Bart; Carlsson, Mats

    2015-01-01

    Advanced 3D radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated area, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop shaped structures, and moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set ...

  15. Finned tubes for heat exchangers: Characterization and performance simulation

    Energy Technology Data Exchange (ETDEWEB)

    Armand, J.-L.; Molle, N. (Centre Tecnique des Industries Aerauliques et Thermiques (CETIAT), 75 Paris (France))

    1992-06-01

    Relevant to air conditioning applications, the state-of-the-art of finned tube heat exchanger design is reviewed. The review covers the key design, performance and operation characteristics, as well as, principal heat transfer correlations for exchangers adopting 'dry' (without condensation) and 'wet' operation. External side heat transfer and pressure drop calculation methods are established for the characterization of external surfaces. For internal surfaces, correlations are given for two-phase flow and pressure drop. Reference is made to the NTU and CANUT simulation codes for the determination of optimum finned tube geometries for standard and particular operating conditions.

  16. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great

  17. Seasonal and Interdecadal Variations of Heat Transport over the Northern Hemisphere

    Institute of Scientific and Technical Information of China (English)

    SUN Jilin; XU Delong; GU Dejun

    2006-01-01

    Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied.It was found that there are interdecadal variations in heat transport from middle latitudes to higher latitudes.The variations of interdecadal heat transport over longitudes around 120°E are out of phase with those over around 90°E and over the Northeastern Pacific.The seasonal variations of heat transport were also discussed.It was found that most heat is transported in the lower layer of the troposphere from middle latitudes to higher latitudes.Over around 120°E and over around 120°W, the seasonal and interannual variations of heat transport across 32.5°N are apparent and in phase.

  18. Numerical simulation of transient operation of loop heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, T. [Carleton University, Department of Mechanical and Aerospace Engineering, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 (Canada)], E-mail: tkaya@mae.carleton.ca; Perez, R.; Gregori, C.; Torres, A. [IberEspacio, Tecnologia Aeroespacial, Magallanes, 1, 28015 Madrid (Spain)

    2008-06-15

    A numerical model is developed to simulate the transient performance characteristics of loop heat pipes (LHP). The model satisfactorily simulates the overall dynamic behavior of an LHP unit tested under ambient and vacuum environments. The startup phase is also reproduced using the experimentally obtained incipient wall superheat. The accurate heat leak predictions at low powers remain problematic and experimental correlation is necessary. The model can be used to analyze the dynamic behavior of an LHP based thermal control system exposed to transient thermal loads.

  19. Integrated modeling and heat treatment simulation of austempered ductile iron

    Science.gov (United States)

    Hepp, E.; Hurevich, V.; Schäfer, W.

    2012-07-01

    The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.

  20. Mathematical Model of ComputerHeat Treatment and Its Simulation

    Institute of Scientific and Technical Information of China (English)

    PanJiansheng; ZhangWeimin; TianDong; GuJianfeng; HuMingjuan

    2004-01-01

    Computer simulation on heat treatment is the foundation of intelligent heat treatment. The simulations of temperature field,phase transformation, stress/strain complicate quenching operation were realized by using the model of three dimensional non-linear finite element method and the treatment methods of abruptly changing interface conditions. The simulation results basically fit those measured in experiments. The intelligent sealed multipurpose furnace production line has been developed based on the combination of computer simulation on gaseous carburizing and computer control technology. More than 3000 batches of workpieces have been processed on this production line, and all are up to standard. The application of computer simulation technology can significantly improve the loading ability and reliability of nitriding and carburizing workpieces, reduce heat treatment distortion, and shorten carburizing duration. It is recommended that the reliable product design without redundancy should be performed with the combination of the CAD of mechanical products, the CAE of materials selection and heat treatment, and the dynamic evaluation technology of product reliability.

  1. Heat- and mass-transport in aqueous silica nanofluids

    Science.gov (United States)

    Turanov, A. N.; Tolmachev, Yuriy V.

    2009-10-01

    Using the transient hot wire and pulsed field gradient nuclear magnetic resonance methods we determined the thermal conductivity and the solvent self-diffusion coefficient (SDC) in aqueous suspensions of quasi-monodisperse spherical silica nanoparticles. The thermal conductivity was found to increase at higher volume fraction of nanoparticles in accordance with the effective medium theory albeit with a smaller slope. On the other hand, the SDC was found to decrease with nanoparticle volume fraction faster than predicted by the effective medium theory. These deviations can be explained by the presence of an interfacial heat-transfer resistance and water retention by the nanoparticles, respectively. We found no evidence for anomalous enhancement in the transport properties of nanofluids reported earlier by other groups.

  2. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  3. Sensitivity of CO2 Simulation in a GCM to the Convective Transport Algorithms

    Science.gov (United States)

    Zhu, Z.; Pawson, S.; Collatz, G. J.; Gregg, W. W.; Kawa, S. R.; Baker, D.; Ott, L.

    2014-01-01

    Convection plays an important role in the transport of heat, moisture and trace gases. In this study, we simulated CO2 concentrations with an atmospheric general circulation model (GCM). Three different convective transport algorithms were used. One is a modified Arakawa-Shubert scheme that was native to the GCM; two others used in two off-line chemical transport models (CTMs) were added to the GCM here for comparison purposes. Advanced CO2 surfaced fluxes were used for the simulations. The results were compared to a large quantity of CO2 observation data. We find that the simulation results are sensitive to the convective transport algorithms. Overall, the three simulations are quite realistic and similar to each other in the remote marine regions, but are significantly different in some land regions with strong fluxes such as Amazon and Siberia during the convection seasons. Large biases against CO2 measurements are found in these regions in the control run, which uses the original GCM. The simulation with the simple diffusive algorithm is better. The difference of the two simulations is related to the very different convective transport speed.

  4. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yangyu, E-mail: yangyuhguo@gmail.com [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China); Jou, David, E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Wang, Moran, E-mail: mrwang@tsinghua.edu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China)

    2016-01-28

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit. - Highlights: • Exploring flux-limited behaviors based on a categorization of existing nonlinear heat transport models. • Proposing phonon hydrodynamic model as a standard to evaluate heat flux limiters. • Providing accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  5. Scaling of high-field transport and localized heating in graphene transistors.

    Science.gov (United States)

    Bae, Myung-Ho; Islam, Sharnali; Dorgan, Vincent E; Pop, Eric

    2011-10-25

    We use infrared thermal imaging and electrothermal simulations to find that localized Joule heating in graphene field-effect transistors on SiO(2) is primarily governed by device electrostatics. Hot spots become more localized (i.e., sharper) as the underlying oxide thickness is reduced, such that the average and peak device temperatures scale differently, with significant long-term reliability implications. The average temperature is proportional to oxide thickness, but the peak temperature is minimized at an oxide thickness of ∼90 nm due to competing electrostatic and thermal effects. We also find that careful comparison of high-field transport models with thermal imaging can be used to shed light on velocity saturation effects. The results shed light on optimizing heat dissipation and reliability of graphene devices and interconnects.

  6. The role of Ekman flow and planetary waves in the oceanic cross-equatorial heat transport

    Science.gov (United States)

    Schopf, P. S.

    1980-01-01

    A numerical model is used to mechanistically simulate the oceans' seasonal cross-equatorial heat transport. The basic process of Ekman pumping and drift is able to account for a large amount of the cross-equatorial flux. Increased easterly wind stress in the winter hemisphere causes Ekman surface drift poleward, while decreased easterly stress allows a reduction in the poleward drift in the summer hemisphere. The addition of planetary and gravity waves to this model does not alter the net cross-equatorial flow, although the planetary waves are clearly seen. On comparison with Oort and Vonder Haar (1976), this adiabatic advective redistribution of heat is seen to be plausible up to 10-20 deg N, beyond which other dynamics and thermodynamics are indicated.

  7. Photothermal heating in metal-embedded microtools for material transport

    Science.gov (United States)

    Villangca, Mark; Palima, Darwin; Bañas, Andrew; Glückstad, Jesper

    2016-03-01

    Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an optically fabricated and actuated microtool. As proof of concept, we demonstrate loading and unloading of beads. This can be extended to controlled transport and release of genetic material, bio-molecules, fluorescent dyes. We envisioned these microtools to be an important addition to the portfolio of structure-mediated contemporary biophotonics.

  8. Impacts of Cumulus Momentum Transport on MJO Simulation

    Institute of Scientific and Technical Information of China (English)

    LING Jian; LI Chongyin; JIA Xiaolong

    2009-01-01

    Vertical cumulus momentum transport is an important physical process in the tropical atmosphere and plays a key role in the evolution of the tropical atmospheric system.This paper focuses on the impact of the vertical cumulus momentum transport on Madden-Julian Oscillation (MJO) simulation in two global climate models (GCMs).The Tiedtke cumulus parameterization scheme is applied to both GCMs [CAM2 and Spectral Atmospheric general circulation Model of LASG/IAP (SAMIL)].It is found that the MJO simulation ability might be influenced by the vertical cumulus momentum transport through the cumulus parameterization scheme.However,the use of vertical momentum transport in different models provides different results.In order to improve model's MJO simulation ability,we must introduce vertical cumulus momentum transport in a more reasonable way into models.Furthermore,the coherence of the parameterization and the underlying model also need to be considered.

  9. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    Science.gov (United States)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  10. Numerical simulation of hyperbolic heat conduction with convection boundary conditions and pulse heating effects

    Science.gov (United States)

    Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

  11. Numerical simulation of hyperbolic heat conduction with convection boundary conditions and pulse heating effects

    Science.gov (United States)

    Glass, David E.; Tamma, Kumar K.; Railkar, Sudhir B.

    1989-01-01

    The paper describes the numerical simulation of hyperbolic heat conduction with convection boundary conditions. The effects of a step heat loading, a sudden pulse heat loading, and an internal heat source are considered in conjunction with convection boundary conditions. Two methods of solution are presened for predicting the transient behavior of the propagating thermal disturbances. In the first method, MacCormack's predictor-corrector method is employed for integrating the hyperbolic system of equations. Next, the transfinite element method, which employs specially tailored elements, is used for accurately representing the transient response of the propagating thermal wave fronts. The agreement between the results of various numerical test cases validate the representative behavior of the thermal wave fronts. Both methods represent hyperbolic heat conduction behavior by effectively modeling the sharp discontinuities of the propagating thermal disturbances.

  12. Numerical Simulation of Heat Transfer Characteristics of Horizontal Ground Heat Exchanger in Frozen Soil Layer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil's moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil's moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard "Technical Code for Ground Source Heat Pump (GB 50366-2005)" is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil's structure, backfilled materials,weather data, and economic analysis.

  13. Water and heat transport in hilly red soil of southern China: I. Experiment and analysis

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Zhi-zhen; HAN Xiao-fei

    2005-01-01

    Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depends on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great annual and diurnal air temperature differences result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields' conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 ℃ temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively.Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent,when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evaporation. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water.

  14. Solving wood chip transport problems with computer simulation.

    Science.gov (United States)

    Dennis P. Bradley; Sharon A. Winsauer

    1976-01-01

    Efficient chip transport operations are difficult to achieve due to frequent and often unpredictable changes in distance to market, chipping rate, time spent at the mill, and equipment costs. This paper describes a computer simulation model that allows a logger to design an efficient transport system in response to these changing factors.

  15. The Impact of Oceanic Heat Transport on the Atmospheric Circulation: a Thermodynamic Perspective

    CERN Document Server

    Schröder, Alexander; Lunkeit, Frank

    2014-01-01

    The present study investigates how global thermodynamic properties of the climate system are affected by the changes in the intensity of the imposed oceanic heat transport in an atmospheric general circulation model in aqua-planet configuration. Increasing the poleward oceanic heat transport results in an overall increase in the surface temperature and a decrease in the equator-to-pole surface temperature difference as a result of the ice-albedo feedback. Following the classical ansatz by Stone, the atmospheric heat transport changes in such a way that the total poleward heat transport remains almost unchanged. We also find that the efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport which suggests that the climate system becomes less efficient and turns into a state of reduced entropy production, as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fl...

  16. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating

    Science.gov (United States)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.

    2017-09-01

    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  17. Simulated impurity transport in LHD from MIST

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J.E. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1998-05-01

    The impurity transport code MIST and atomic physics package LINES are used to calculate the time evolution of charge state density profiles, individual line emissivity profiles and total radiated power profiles for impurities in LHD plasmas. Three model LHD plasmas are considered; a high density, low temperature case, a low density, high temperature case and the initial LHD start-up plasma (500 kW ECH), using impurity transport coefficient profiles from Heliotron E. The elements oxygen, neon, scandium, iron, nickel and molybdenum are considered, both injected and in steady state. (author)

  18. A virtual rat for simulating environmental and exertional heat stress.

    Science.gov (United States)

    Rakesh, Vineet; Stallings, Jonathan D; Reifman, Jaques

    2014-12-01

    Severe cases of environmental or exertional heat stress can lead to varying degrees of organ dysfunction. To understand heat-injury progression and develop efficient management and mitigation strategies, it is critical to determine the thermal response in susceptible organs under different heat-stress conditions. To this end, we used our previously published virtual rat, which is capable of computing the spatiotemporal temperature distribution in the animal, and extended it to simulate various heat-stress scenarios, including 1) different environmental conditions, 2) exertional heat stress, 3) circadian rhythm effect on the thermal response, and 4) whole body cooling. Our predictions were consistent with published in vivo temperature measurements for all cases, validating our simulations. We observed a differential thermal response in the organs, with the liver experiencing the highest temperatures for all environmental and exertional heat-stress cases. For every 3°C rise in the external temperature from 40 to 46°C, core and organ temperatures increased by ∼0.8°C. Core temperatures increased by 2.6 and 4.1°C for increases in exercise intensity from rest to 75 and 100% of maximal O2 consumption, respectively. We also found differences as large as 0.8°C in organ temperatures for the same heat stress induced at different times during the day. Even after whole body cooling at a relatively low external temperature (1°C for 20 min), average organ temperatures were still elevated by 2.3 to 2.5°C compared with normothermia. These results can be used to optimize experimental protocol designs, reduce the amount of animal experimentation, and design and test improved heat-stress prevention and management strategies.

  19. Numerical Propulsion System Simulation for Space Transportation

    Science.gov (United States)

    Owen, Karl

    2000-01-01

    Current system simulations are mature, difficult to modify, and poorly documented. Probabilistic life prediction techniques for space applications are in their early application stage. Many parts of the full system, variable fidelity simulation, have been demonstrated individually or technology is available from aeronautical applications. A 20% reduction in time to design with improvements in performance and risk reduction is anticipated. GRC software development will proceed with similar development efforts in aeronautical simulations. Where appropriate, parallel efforts will be encouraged/tracked in high risk areas until success is assured.

  20. Ballistic heat transport in laser generated nano-bubbles

    Science.gov (United States)

    Lombard, Julien; Biben, Thierry; Merabia, Samy

    2016-08-01

    Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR02144A

  1. The Asian monsoon's role in atmospheric heat transport responses to orbital and millennial-scale climate change

    Science.gov (United States)

    McGee, D.; Green, B.; Donohoe, A.; Marshall, J.

    2015-12-01

    Recent studies have provided a framework for understanding the zonal-mean position of the tropical rain belt by documenting relationships between rain belt latitude and atmospheric heat transport across the equator (Donohoe et al., 2013). Modern seasonal and interannual variability in globally-averaged rain belt position (often referred to as 'ITCZ position') reflects the interhemispheric heat balance, with the rain belt's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that rain belt shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean rain belt require large changes in hemispheric heat budgets, placing tight bounds on mean rain belt shifts in past climates. This work has primarily viewed tropical circulation in two dimensions, as a pair of zonal-mean Hadley cells on either side of the rain belt that are displaced north and south by perturbations in hemispheric energy budgets, causing the atmosphere to transport heat into the cooler hemisphere. Here we attempt to move beyond this zonal-mean perspective, motivated by arguments that the Asian monsoon system, rather than the zonal-mean circulation, plays the dominant role in annual-mean heat transport into the southern hemisphere in the modern climate (Heaviside and Czaja, 2012; Marshall et al., 2014). We explore a range of climate change experiments, including simulations of North Atlantic cooling and mid-Holocene climate, to test whether changes in interhemispheric atmospheric heat transport are primarily driven by the mean Hadley circulation, the Asian monsoon system, or other regional-scale atmospheric circulation changes. The scalings that this work identifies between Asian monsoon changes and atmospheric heat

  2. Plasma confinement theory and transport simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.W.

    1992-04-01

    The objectives are: (1) to advance the transport studies of tokamaks, including development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for TEXT-Upgrade. Recent reports, publications, and conference presentations of the Fusion Research Center are listed.

  3. Simulation of charge transport in organic semiconductors

    NARCIS (Netherlands)

    van der Kaap, Niels

    2016-01-01

    Plastic electronic devices can be used to emit light, or can convert sunlight into electricity. Charge transport in plastic electronic devices is described by thermally activated hopping of electrons between sites with varying energy levels. Since the hopping mechanism is hard to describe analytical

  4. The Electron Transport Chain: An Interactive Simulation

    Science.gov (United States)

    Romero, Chris; Choun, James

    2014-01-01

    This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…

  5. The Electron Transport Chain: An Interactive Simulation

    Science.gov (United States)

    Romero, Chris; Choun, James

    2014-01-01

    This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular…

  6. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Hiroki, E-mail: matsubara@microheat.ifs.tohoku.ac.jp; Kikugawa, Gota; Ohara, Taku [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Bessho, Takeshi; Yamashita, Seiji [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2015-04-28

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T{sub c}) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs.

  7. Exact solution of a Lévy walk model for anomalous heat transport

    Science.gov (United States)

    Dhar, Abhishek; Saito, Keiji; Derrida, Bernard

    2013-01-01

    The Lévy walk model is studied in the context of the anomalous heat conduction of one-dimensional systems. In this model, the heat carriers execute Lévy walks instead of normal diffusion as expected in systems where Fourier's law holds. Here we calculate exactly the average heat current, the large deviation function of its fluctuations, and the temperature profile of the Lévy walk model maintained in a steady state by contact with two heat baths (the open geometry). We find that the current is nonlocally connected to the temperature gradient. As observed in recent simulations of mechanical models, all the cumulants of the current fluctuations have the same system-size dependence in the open geometry. For the ring geometry, we argue that a size-dependent cutoff time is necessary for the Lévy walk model to behave like mechanical models. This modification does not affect the results on transport in the open geometry for large enough system sizes.

  8. BITLLES: Electron Transport Simulation with Quantum Trajectories

    CERN Document Server

    Albareda, Guillermo; Benali, Abdelilah; Alarcón, Alfonso; Moises, Simeon; Oriols, Xavier

    2016-01-01

    After the seminal work of R. Landauer in 1957 relating the electrical resistance of a conductor to its scattering properties, much progress has been made in our ability to predict the performance of electron devices in the DC (stationary) regime. Computational tools to describe their dynamical behavior (including the AC, transient and noise performance), however, are far from being as trustworthy as would be desired by the electronic industry. While there is no fundamental limitation to correctly modeling the high-frequency quantum transport and its fluctuations, certainly more careful attention must be paid to delicate issues such as overall charge neutrality, total current conservation, or the back action of the measuring apparatus. In this review, we will show how the core ideas behind the Bohmian formulation of quantum mechanics can be exploited to design an efficient Monte Carlo algorithm that provides a quantitative description of electron transport in open quantum systems. By making the most of traject...

  9. CFD simulation of a screw compressor including leakage flows and rotor heating

    Science.gov (United States)

    Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed

    2015-08-01

    Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.

  10. Influence of tube and particle diameter on heat transport in packed beds

    NARCIS (Netherlands)

    Borkink, J.G.H.; Borkink, J.G.H.; Westerterp, K.R.

    1992-01-01

    Influence of the tube and particle diameter and shape, as well as their ratio, on the radial heat transport in packed beds has been studied. Heat transport experiments were performed with four different packings in three wall-cooled tubes, which differed in inner diameter only. Experimental values f

  11. Influence of tube and particle diameter on heat transport in packed beds

    NARCIS (Netherlands)

    Borkink, J.G.H.; Borkink, J.G.H.; Westerterp, K.R.

    1992-01-01

    Influence of the tube and particle diameter and shape, as well as their ratio, on the radial heat transport in packed beds has been studied. Heat transport experiments were performed with four different packings in three wall-cooled tubes, which differed in inner diameter only. Experimental values

  12. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    developed as a Differential-Algebraic-Equation system (DAE) and MATLAB has been applied for the integration of the models. In generalMATLAB has proved to be very stable for these DAE systems. Experimental verication has been carried out at a full scale plant equipped with instrumentation to verify heat....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level uctuations in the drum. The dynamic model has been...

  13. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    developed as a Differential-Algebraic-Equation system (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for these DAE systems. Experimental verification has been carried out at a full scale plant equipped with instrumentation to verify heat....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  14. Simulation of Single Crystal Growth: Heat and Mass Transfer

    CERN Document Server

    Zhmakin, A I

    2015-01-01

    The heat transfer (conductive, convective, radiative) and the related problems (the unknown phase boundary fluid/crystal, the assessment of the quality of the grown crystals) encountered in the melt and vapour growth of single crystal as well as the corresponding macroscopic models are reviewed. The importance of the adequate description of the optical crystal properties (semitransparency, absorption, scattering, refraction, diffuse and specular reflecting surfaces) and their effect on the heat transfer is stressed. The problems of the code verification and validation are discussed; differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated.

  15. Heat transfer simulation for industrial applications. Needs, limitations, expectations

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-12-31

    The goal of this paper is to present a few problems and difficulties to which heat transfer engineers are confronted. Then, possible ways used to tackle these problems are exposed. The paper shows that in many occasions the approaches used are not completely satisfactory and that some aspects should be improved. It is also the opportunity to underline that even if turbulent heat transfer modelling is very important, from the industrial point of view, it represents often only one part of the problems which need to be addressed to perform a complete numerical simulation. (K.A.) 15 refs.

  16. Multi-Agent Competition Simulation of Integrated Transportation System

    Directory of Open Access Journals (Sweden)

    Jiashun Zhang

    2013-01-01

    Full Text Available Transportation networks have been developed during the recent decades with the rapid growth of economy. At the same time, the conflicts between different transportation modes were getting more and more intense. To describe the competition relationship in integrated transportation system, a multi-agent competition model was presented. It is important to provide decision support for regulators to lead more reasonable distribution of resources for planning and operating the integrated transportation network. Thus, a simulation program was developed to implement the proposed model and provide computer-aid decision support. Finally, several experiments were conducted to illustrate the effectiveness of this technique.

  17. Simulating charge transport in organic semiconductors and devices: a review

    Science.gov (United States)

    Groves, C.

    2017-02-01

    Charge transport simulation can be a valuable tool to better understand, optimise and design organic transistors (OTFTs), photovoltaics (OPVs), and light-emitting diodes (OLEDs). This review presents an overview of common charge transport and device models; namely drift-diffusion, master equation, mesoscale kinetic Monte Carlo and quantum chemical Monte Carlo, and a discussion of the relative merits of each. This is followed by a review of the application of these models as applied to charge transport in organic semiconductors and devices, highlighting in particular the insights made possible by modelling. The review concludes with an outlook for charge transport modelling in organic electronics.

  18. Numerical Simulation of Sediment Transport due to Plunging Breaking Waves

    DEFF Research Database (Denmark)

    Pedersen, Claus

    A numerical model simulating the sediment transport due to plunging breaking waves has been developed. The model is two-dimensional, assuming conditions in the long-shore direction invariable. A plunging breaker is simulated by superimposing a non-breaking wave with a jet. Based on the description...... of the sediment transport rates, a simple model describing the morphological changes has been applied to simulate the evolution of a plunge point generated vorticity included, the bottom topography from the experiments by Dette & Uliczka was not in equilibrium according to the model....

  19. Heat and moisture transport in durian fiber based lightweight construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Charoenvai, S.; Khedari, J.; Hirunlabh, J.; Asasutjarit, C. [King Mongkut' s Univ. of Technology, Building Scientific Research Center, Thonburi, Bangkok (Thailand); Zeghmati, B. [Perpignan Univ., Centre d' Etudes Fondamentales, Groupe de Mecanique, Acoustique et Instrumentation, Perpignan, 66 (France); Quenard, D.; Pratintong, N. [Centre Scientifique et Technique du Batiment (CSTB), Grenoble (France)

    2005-04-01

    This paper presents result on heat and moisture transport in durian (Durio zibethinus) fiber based lightweight construction materials composed of cement, sand and waste fiber from durian peel and the performance of the material was simulated with the surface treatment by using a computational tool. The commercial research software (WUFI 2D) was used to calculate heat and moisture transfer through a durian fiber based lightweight construction material. The materials were exposed to a climate condition similar to the one in Bangkok and the hygrothermal characteristics of the materials were investigated. The investigation reveals that the weekly mean water content on the surface of material was quite low. The effect of moisture on the apparent thermal performance of the composite was found to be higher as water absorbed in the pore structure contributed to higher thermal conductivity than the air it replaced. However, the mean value of thermal conductivity in material is still rather low as the mean value of water content in material is low. Coating the surface reduced the flow of moisture to or from the structure considerably. The results of simulation confirmed that the manufactured composite satisfied the requirement of construction materials. It is then reasonable to conclude that the use of such materials in the design and construction of passive solar buildings is promising. Laboratory investigation is undergoing to validate the simulated performance. (Author)

  20. Molecular dynamics simulations of non-Fourier heat conduction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Unsteady heat conduction is known to deviate significantly from Fourier's law when the system time and length scales are within certain temporal and spatial windows of relaxation. Classical molecular dynamics simulations were used to investigate unsteady heat conduction in argon thin films with a sudden temperature increase or heat flux at one surface to study the non-Fourier heat conduction effects in argon thin films. The studies were conducted with both pure argon films and films with vacancy defects. The temperature pro- files in the argon films showed the existence of mechanical waves when the thin film was suddenly heated and the wave nature of the heat propagation. The flux phase relaxation time, τq, and the temperature phase relaxation time, τq were calculated from the temporal vari- ations of the energy flux and temperature distribution in the film. Comparisons of the MD temperature profiles with temperature profiles predicted by Fourier's law show that Fourier's law is not able to predict the temperature variations with time. Different film thicknesses were also studied to illustrate the variation of the time needed for the films to reach steady-state temperature profiles after a sudden tem- perature rise at one surface and to illustrate the finite speed of the energy waves.

  1. Hourly simulation of a Ground-Coupled Heat Pump system

    Science.gov (United States)

    Naldi, C.; Zanchini, E.

    2017-01-01

    In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.

  2. Fluid simulations of non-resonant anisotropic ion heating

    Directory of Open Access Journals (Sweden)

    D. Laveder

    2013-07-01

    Full Text Available The finite Larmor radius (FLR-Landau fluid model, which extends the usual anisotropic magnetohydrodynamics to magnetized collisionless plasmas by retaining linear Landau damping and finite Larmor radius corrections down to the sub-ionic scales in the quasi-transverse directions, is used to study the non-resonant heating of the plasma by randomly driven Alfvén waves. One-dimensional numerical simulations, free from any artificial dissipation, are used to analyze the influence on the thermal dynamics, of the beta parameter and of the separation between the driving and the ion scales. While the gyrotropic heat fluxes play a dominant role when the plasma is driven at large scales, leading to a parallel heating of the ions by Landau damping, a different regime develops when the driving acts at scales comparable to the ion Larmor radius. Perpendicular heating and parallel cooling of the ions are then observed, an effect that is mostly due to the work of the non-gyrotropic pressure force and that can be viewed as the fluid signature of the so-called stochastic heating. A partial characterization of the plasma by global quantities (such as the magnetic compressibility and the density-magnetic field correlations that provide information on the dominant type of waves is also presented. The enhancement of the parallel electron heating by a higher level of fast magnetosonic waves is in particular pointed out.

  3. Heating and ion transport in a Y-junction surface-electrode trap

    CERN Document Server

    Shu, G; Volin, C; Buikema, A; Nichols, C S; Stick, D; Brown, Kenneth R

    2014-01-01

    We measure ion heating following transport throughout a Y-junction surface-electrode ion trap. By carefully selecting the trap voltage update rate during adiabatic transport along a trap arm, we observe minimal heating relative to the anomalous heating background. Transport through the junction results in an induced heating between 37 and 150 quanta in the axial direction per traverse. To reliably measure heating in this range, we compare the experimental sideband envelope, including up to fourth-order sidebands, to a theoretical model. The sideband envelope method allows us to cover the intermediate heating range inaccessible to the first-order sideband and Doppler recooling methods. We conclude that quantum information processing in this ion trap will likely require sympathetic cooling in order to support high fidelity gates after junction transport.

  4. Computational Fluid Dynamics Modeling of a wood-burning stove-heated sauna using NIST's Fire Dynamics Simulator

    CERN Document Server

    Macqueron, Corentin

    2014-01-01

    The traditional sauna is studied from a thermal and fluid dynamics standpoint using the NIST's Fire Dynamics Simulator (FDS) software. Calculations are performed in order to determine temperature and velocity fields, heat flux, soot and steam cloud transport, etc. Results are discussed in order to assess the reliability of this new kind of utilization of the FDS fire safety engineering software.

  5. A Comparison Study of Heat-Transfer Simulations in a Closed-Loop Geothermal Heat- Pump System

    Science.gov (United States)

    Kim, S.; Seol, Y.; Bae, G.; Lee, K.

    2006-12-01

    Calculating heat transfer, particularly at the boundary between two different materials with varying heat conductivities, often involves weighting the heat conductivities of the two materials. However, the validity of the weighting scheme would be weak for a system in which heat conductivities vary considerably. We implemented the concept of a heat-transfer coefficient into heat transfer simulations to replace the weighting schemes. The heat-transfer coefficient can be experimentally measured to capture heat transfer between two materials whose heat conductivities significantly differ. A numerical code incorporating the heat-transfer coefficient was developed for simulations of heat transfer in a geothermal heat pump system (GHP) that consists of heat pipes, enclosing grouting material, surrounding porous media, and ambient groundwater flow. The code was applied to a simplified closed-loop GHP system with a single U-shaped heat pipe, and temperature changes in the system with circulating water through the pipe were monitored. The simulated temperature distribution results from this code were compared with results using the conventional weighting schemes of TOUGH2, a widely accepted simulator for heat and water flow in geothermal systems. Detailed discussion on the comparison analysis will be presented.

  6. Simulation study of burning control with transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Gonta [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Itoh, Sanae-I.; Yagi, Masayoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2000-07-01

    Dynamics of burning plasmas are studied by use of one dimensional simulation code with current diffusive ballooning mode model. Focusing on the effects of current profile control, burning performance is evaluated. The ohmic plasma is heated by additional heating and ignited state of the plasma is reached. Due to the formation of negative shear, improved confinement is obtained with the L-mode boundary condition. Controlling the external current drive, burning state is sustained longer than 1000 sec. (author)

  7. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  8. Study on the Effect of Ground Heat Storage by Solar Heat Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Jin-Hwan Oh

    2015-12-01

    Full Text Available Recently, energy storage techniques using renewable energy efficiently have attracted considerable attention. However, there are several problems when using renewable energy. In the case of solar energy, the energy production time is different from the consumption time, and the use of geothermal energy has high investment costs. In order to solve these problems, it is essential to develop high-efficiency systems using both solar and geothermal energy simultaneously and efficiently. Thus, in this study, the performance of underground heat storage of solar energy was examined by simulation using models of underground heat transfer and heat exchange for the development of an integrated hybrid system exploiting both geothermal and solar energy. As a result, the heat extraction performance was determined to be up to 72.75 W/m. As a result, in Kagoshima, the most southern area in Korea, a case of six hour heat storage operation achieved the highest heat exchange rate of 72.75 W/m, which is approximately 105% higher than the case of operation without heat storage.

  9. Point Lepreau primary heat transport pump wear ring cracking

    Energy Technology Data Exchange (ETDEWEB)

    Licina, G. [Structural Integrity Associates, Inc., San Jose, California (United States); Rankin, B. [Point Lepreau Nuclear Generating Station, Fredericton, New Brunswick (Canada)

    2011-07-01

    The number 3 Primary Heat Transport (PHT) pump from Point Lepreau Nuclear Generating Station (Point Lepreau) was disassembled after more than 30 years of service for inspection during station refurbishment. The disassembly and inspection were performed to provide assurance of continued satisfactory operation during life extension. The inspection revealed cracks in the wear ring, at and near the tack welds (Type 309 stainless steel weld metal) at the cap screws that attach the Type 420 stainless steel wear ring to the body of the pump. Investigative work consisted of on-site PT and replication of the microstructure at the surface of the wear ring, subsequent impressions of two crack faces, and hardness determinations. This paper describes the investigative work and conclusions associated with resolution of the following questions: 1. What is the most likely cause of the cracking? 2. Will the cracks propagate within the base metal of the wear ring? 3. If propagation is possible, what is the risk of cracks intersecting, such that a piece of metal could become dislodged? Question number 3 has clear ramifications with respect to foreign material entering and damaging a nuclear fuel-containing pressure tube. There are also questions associated with extent of condition, specifically, whether other PHT pumps may have similar or worse cracking and whether such cracks will grow. Results will be applied to wear rings in other PHT pumps at Point Lepreau and are likely to be applicable to similar components in other CANDU PHT pumps. (author)

  10. Transmission line model for strained quantum well lasers including carrier transport and carrier heating effects.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H

    2016-03-01

    This paper reports a new model for strained quantum well lasers, which are based on the quantum well transmission line modeling method where effects of both carrier transport and carrier heating have been included. We have applied this new model and studied the effect of carrier transport on the output waveform of a strained quantum well laser both in time and frequency domains. It has been found that the carrier transport increases the turn-on, turn-off delay times and damping of the quantum well laser transient response. Also, analysis in the frequency domain indicates that the carrier transport causes the output spectrum of the quantum well laser in steady state to exhibit a redshift which has a narrower bandwidth and lower magnitude. The simulation results of turning-on transients obtained by the proposed model are compared with those obtained by the rate equation laser model. The new model has also been used to study the effects of pump current spikes on the laser output waveforms properties, and it was found that the presence of current spikes causes (i) wavelength blueshift, (ii) larger bandwidth, and (iii) reduces the magnitude and decreases the side-lobe suppression ratio of the laser output spectrum. Analysis in both frequency and time domains confirms that the new proposed model can accurately predict the temporal and spectral behaviors of strained quantum well lasers.

  11. Efficient self-consistent quantum transport simulator for quantum devices

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X., E-mail: xngao@sandia.gov; Mamaluy, D.; Nielsen, E.; Young, R. W.; Lilly, M. P.; Bishop, N. C.; Carroll, M. S.; Muller, R. P. [Sandia National Laboratories, 1515 Eubank SE, Albuquerque, New Mexico 87123 (United States); Shirkhorshidian, A. [Sandia National Laboratories, 1515 Eubank SE, Albuquerque, New Mexico 87123 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-04-07

    We present a self-consistent one-dimensional (1D) quantum transport simulator based on the Contact Block Reduction (CBR) method, aiming for very fast and robust transport simulation of 1D quantum devices. Applying the general CBR approach to 1D open systems results in a set of very simple equations that are derived and given in detail for the first time. The charge self-consistency of the coupled CBR-Poisson equations is achieved by using the predictor-corrector iteration scheme with the optional Anderson acceleration. In addition, we introduce a new way to convert an equilibrium electrostatic barrier potential calculated from an external simulator to an effective doping profile, which is then used by the CBR-Poisson code for transport simulation of the barrier under non-zero biases. The code has been applied to simulate the quantum transport in a double barrier structure and across a tunnel barrier in a silicon double quantum dot. Extremely fast self-consistent 1D simulations of the differential conductance across a tunnel barrier in the quantum dot show better qualitative agreement with experiment than non-self-consistent simulations.

  12. Efficient numerical simulation of heat storage in subsurface georeservoirs

    Science.gov (United States)

    Boockmeyer, A.; Bauer, S.

    2015-12-01

    The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and

  13. Global anomalous transport of ICRH- and NBI-heated fast ions

    CERN Document Server

    Wilkie, George J; Abel, Ian G; Dorland, William; Fülöp, Tünde

    2016-01-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Furthermore, we move beyond the trace approximatio...

  14. Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations

    Science.gov (United States)

    Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.

    2017-02-01

    Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with

  15. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    Science.gov (United States)

    Amharrak, H.; Reynard-Carette, C.; Lyoussi, A.; Carette, M.; Brun, J.; De Vita, C.; Fourmentel, D.; Villard, J.-F.; Guimbal, P.

    2016-02-01

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  16. Monte Carlo Simulation Study of a Differential Calorimeter Measuring the Nuclear Heating in Material Testing Reactors

    Directory of Open Access Journals (Sweden)

    Amharrak H.

    2016-01-01

    Full Text Available The nuclear heating measurements in Material Testing Reactors (MTRs are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. Then these measurements are used for other materials, other geometries, or other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. This paper will present new simulations with MCNP Monte-Carlo transport code to determine the gamma heating profile inside the calorimeter. The whole complex geometry of the sensor has been considered. We use as an input source in the model, the photon spectra calculated in various positions of CARMEN-1 irradiation program in OSIRIS reactor. After a description of the differential calorimeter device, the MCNP modeling used for the calculations of radial profile of nuclear heating inside the calorimeter elements will be introduced. The obtained results of different simulations will be detailed and discussed in this paper. The charged particle equilibrium inside the calorimeter elements will be studied. Then we will focus on parametric studies of the various components of the calorimeter. The influence of source type will be also took into account. Moreover the influence of the material used for the sample will be described.

  17. Theory-based transport simulations of TFTR L-mode temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, G.

    1991-10-24

    The temperature profiles from a selection of TFTR L-mode discharges are simulated with the 1-1/2-D BALDUR transport code using a combination of theoretically derived transport models, called the Multi-Mode Model. The present version of the Multi-Mode Model consists of effective thermal diffusivities resulting from trapped electron modes and ion temperature gradient ({eta}{sub i}) modes, which dominate in the core of the plasma, together with resistive ballooning modes, which dominate in the periphery. Within the context of this transport model and the TFTR simulations reported here, the scaling of confinement with heating power comes from the temperature dependence of the {eta}{sub i} and trapped electron modes, while the scaling with current comes mostly from resistive ballooning modes. 24 refs., 16 figs., 3 tabs.

  18. High fidelity simulation of nucleate boiling and transition to critical heat flux on enhanced structures

    Science.gov (United States)

    Yazdani, Miad; Alahyari, Abbas; Radcliff, Thomas; Soteriou, Marios

    2015-11-01

    Surface enhancement is often is the primary approach for improved heat transfer performance of two-phase thermal systems particularly when they operate in nucleate boiling regime. This paper exploits the modeling capability developed by Yazdani et al. for simulation of nucleate boiling and transition to critical heat flux to study the nucleation phenomenon on various enhanced structures. The multi-scale of two-phase flow associated with boiling phenomena is addressed through combination of deterministic CFD for the macro-scale transport, asymptotic based representation of micro-layer, and stochastic representation of surface roughness so as to allow a high-fidelity simulation of boiling on an arbitrary surface. In addition, given the excessive complexity of surface structures often used for enhancement of boiling heat transfer, a phase-field-based method is developed to generate the structures where the numerical parameters in the phase-field model determine the topology of a given structure. The ``generated'' structure is then embedded into the two-phase flow model through virtual boundary method for the boiling simulation. The model is validated against experimental data for the boiling curve and the critical heat flux as well as nucleation and bubble dynamics characteristics.

  19. Energy Transport Effects in Flaring Atmospheres Heated by Mixed Particle Beams

    Science.gov (United States)

    Zharkova, Valentina; Zharkov, Sergei; Macrae, Connor; Druett, Malcolm; Scullion, Eamon

    2016-07-01

    We investigate energy and particle transport in the whole flaring atmosphere from the corona to the photosphere and interior for the flaring events on the 1st July 2012, 6 and 7 September 2011 by using the RHESSI and SDO instruments as well as high-resolution observations from the Swedish 1-metre Solar Telescope (SST3) CRISP4 (CRisp Imaging Spectro-polarimeter). The observations include hard and soft X-ray emission, chromospheric emission in both H-alpha 656.3 nm core and continuum, as well as, in the near infra-red triplet Ca II 854.2 nm core and continuum channels and local helioseismic responses (sunquakes). The observations are compared with the simulations of hard X-ray emission and tested by hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams. The temperature, density and macro-velocity variations of the ambient atmospheres are calculated for heating by mixed beams and the seismic response of the solar interior to generation of supersonic shocks moving into the solar interior. We investigate the termination depths of these shocks beneath the quiet photosphere levels and compare them with the parameters of seismic responses in the interior, or sunquakes (Zharkova and Zharkov, 2015). We also present an investigation of radiative conditions modelled in a full non-LTE approach for hydrogen during flare onsets with particular focus on Balmer and Paschen emission in the visible, near UV and near IR ranges and compare them with observations. The links between different observational features derived from HXR, optical and seismic emission are interpreted by different particle transport models that will allow independent evaluation of the particle transport scenarios.

  20. Particle Transport Simulation on Heterogeneous Hardware

    CERN Document Server

    CERN. Geneva

    2014-01-01

    CPUs and GPGPUs. About the speaker Vladimir Koylazov is CTO and founder of Chaos Software and one of the original developers of the V-Ray raytracing software. Passionate about 3D graphics and programming, Vlado is the driving force behind Chaos Group's software solutions. He participated in the implementation of algorithms for accurate light simulations and support for different hardware platforms, including CPU and GPGPU, as well as distributed calculat...

  1. Confinement and non-universality of anomalous heat transport and superdiffusion of energy in low-dimensional systems

    OpenAIRE

    2015-01-01

    We provide molecular dynamics simulation of heat transport and thermal energy diffusion in one-dimensional molecular chains with different interparticle pair potentials at zero and non-zero temperature. We model the thermal conductivity (TC) and energy diffusion in the coupled rotator chain and in the Lennard-Jones chain either without or with the confining parabolic interatomic potential. The considered chains without the confining potential have normal TC and energy diffusion, while the cor...

  2. HEAT TRANSFER EXPERIMENTS AND ANALYSIS OF A SIMULATED HTS CABLE

    Energy Technology Data Exchange (ETDEWEB)

    Demko, J. A. [Oak Ridge National Laboratory (ORNL); Duckworth, R. C. [Oak Ridge National Laboratory (ORNL); Gouge, M. J. [Oak Ridge National Laboratory (ORNL); Knoll, D. [Oak Ridge National Laboratory (ORNL)

    2010-01-01

    Long-length high temperature superconducting (HIS) cable projects, over 1 km, are being designed that are cooled by flowing liquid nitrogen. The compact counter-flow cooling arrangement which has the supply and return stream in a single cryostat offers several advantages including smallest space requirement, least heat load, and reduced cost since a return cryostat is not required. One issue in long length HIS cable systems is the magnitude of the heat transfer radially through the cable. It is extremely difficult to instrument an HIS cable in service on the grid with the needed thermometry because of the issues associated with installing thermometers on high voltage components. A 5-meter long test system has been built that simulates a counter-flow cooled, HIS cable using a heated tube to simulate the cable. Measurements of the temperatures in the flow stream and on the tube wall can be made and compared to analysis. These data can be used to benchmark different HIS cable heat transfer and fluid flow analysis approaches.

  3. Heat Transfer Experiments and Analysis of a Simulated HTS

    Energy Technology Data Exchange (ETDEWEB)

    Demko, Jonathan A [ORNL; Duckworth, Robert C [ORNL; Gouge, Michael J [ORNL; Knoll, David [Ultera – A Southwire / nkt cables Joint Venture

    2010-01-01

    Long-length high temperature superconducting (HTS) cable projects, over 1 km, are being designed that are cooled by flowing liquid nitrogen. The compact counter-flow cooling arrangement which has the supply and return stream in a single cryostat offers several advantages including smallest space requirement, least heat load, and reduced cost since a return cryostat is not required. One issue in long length HTS cable systems is the magnitude of the heat transfer radially through the cable. It is extremely difficult to instrument an HTS cable in service on the grid with the needed thermometry because of the issues associated with installing thermometers on high voltage components. A 5-meter long test system has been built that simulates a counter-flow cooled, HTS cable using a heated tube to simulate the cable. Measurements of the temperatures in the flow stream and on the tube wall are presented and compared to analysis. These data can be used to benchmark different HTS cable heat transfer and fluid flow analysis approaches.

  4. Parametric simulation and experimental analysis of earth air heat exchanger with solar air heating duct

    Directory of Open Access Journals (Sweden)

    Sanjeev Jakhar

    2016-06-01

    Full Text Available Earth air heat exchanger (EAHE systems are insufficient to meet the thermal comfort requirements in winter conditions. The low heating potential of such systems can be improved by integrating the system with solar air heating duct (SAHD. The aim of this paper is to present a model to estimate the heating potential for EAHE system with and without SAHD. The model is generated using TRNSYS 17 simulation tool and validated against experimental investigation on an experimental set-up in Ajmer, India. The experiment was done during the winter season, where the system was evaluated for different inlet flow velocities, length and depth of buried pipe. From the experimentation, it was observed that the depth of 3.7 m is sufficient for pipe burial and the 34 m length of pipe is sufficient to get optimum EAHE outlet temperature. It is also observed that increase in flow velocity results in drop in EAHE outlet temperature, while room temperature is found to increase for higher velocities (5 m/s. The COP of the system also increased up to 6.304 when assisted with solar air heating duct. The results obtained from the experiment data are in good agreement with simulated results within the variation of up to 7.9%.

  5. Oil Refinery Supply Chain Modelling Using Pipe Transportation Simulator

    Directory of Open Access Journals (Sweden)

    Jakub Dyntar

    2012-03-01

    Full Text Available This paper describes an application of Pipe Transportation Simulator (PTS in oil refinery supply chain modelling. We develop the simulator in Witness simulation software environment using MS Excel for input data loading and outputs upgrading. PTS is particularly suitable for “what-if” analysis in the crude oil, fuels or gas supply chains where the products are transported among warehouses and refineries through the pipe lines. To discuss the basic functionality of proposed simulator we employ PTS to simulate a real oil refinery supply chain consisting of 16 warehouses and 3 refineries placed in the Czech Republic and Slovakia. The refineries and warehouses are connected together with 21 pipe lines. PTS is used to verify a plan of fuels movements among warehouses and refineries as well as a plan of repairs of certain pipe lines in the selected time period of the length of 30 days.

  6. A Comprehensive Flow, Heat and Mass Transport Uncertainty Quantification in Discrete Fracture Network Systems

    Science.gov (United States)

    Ezzedine, S. M.

    2010-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples among others. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distributions function for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, for probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory.

  7. Strong eddy compensation for the Gulf Stream heat transport

    Science.gov (United States)

    Saenko, Oleg A.

    2015-12-01

    Using a high-resolution ocean model forced with high-resolution atmospheric fields, a 5 year mean heat budget of the upper ocean in the Gulf Stream (GS) region is analyzed. The heat brought to the region with the mean flows along the GS path is 2-3 times larger than the heat loss to the atmosphere, with the difference being balanced by a strong cooling effect due to lateral eddy heat fluxes. However, over a broad area off the Grand Banks, the eddies warm the uppermost ocean layers, partly compensating for the loss of heat to the atmosphere. The upward eddy heat flux, which brings heat from the deeper ocean to the upper layers, is 30-80% of the surface heat loss.

  8. Quantum Transport Simulations of Nanoscale Materials

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2016-01-07

    Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green\\'s Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of

  9. Simulation on Thermal Integrity of the Fin/Tube Brazed Joint of Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yiyu QIAN; Feng GAO; Fengjiang WANG; Hui ZHAO

    2003-01-01

    In the applications of heat exchangers, the fin efficiency of heat transfer is the key issue. Thermal distribution withinthe brazed joints in heat exchanger under loading conditions is investigated in this paper. Simulated results showedthat the therma

  10. Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary

    Science.gov (United States)

    Schaffranek, Raymond W.; Baltzer, Robert A.; ,

    1990-01-01

    A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.

  11. Rayleigh wave inversion using heat-bath simulated annealing algorithm

    Science.gov (United States)

    Lu, Yongxu; Peng, Suping; Du, Wenfeng; Zhang, Xiaoyang; Ma, Zhenyuan; Lin, Peng

    2016-11-01

    The dispersion of Rayleigh waves can be used to obtain near-surface shear (S)-wave velocity profiles. This is performed mainly by inversion of the phase velocity dispersion curves, which has been proven to be a highly nonlinear and multimodal problem, and it is unsuitable to use local search methods (LSMs) as the inversion algorithm. In this study, a new strategy is proposed based on a variant of simulated annealing (SA) algorithm. SA, which simulates the annealing procedure of crystalline solids in nature, is one of the global search methods (GSMs). There are many variants of SA, most of which contain two steps: the perturbation of model and the Metropolis-criterion-based acceptance of the new model. In this paper we propose a one-step SA variant known as heat-bath SA. To test the performance of the heat-bath SA, two models are created. Both noise-free and noisy synthetic data are generated. Levenberg-Marquardt (LM) algorithm and a variant of SA, known as the fast simulated annealing (FSA) algorithm, are also adopted for comparison. The inverted results of the synthetic data show that the heat-bath SA algorithm is a reasonable choice for Rayleigh wave dispersion curve inversion. Finally, a real-world inversion example from a coal mine in northwestern China is shown, which proves that the scheme we propose is applicable.

  12. SIMULATION OF STEEL COIL HEAT TRANSFER IN HPH FURNACE

    Institute of Scientific and Technical Information of China (English)

    M.Y. Gu; G. Chen; M.C. Zhang; X.C. Dai

    2005-01-01

    The mathematical model has been established for the simulation of steel coil's heat transfer during annealing thermal process in HPH (high performance hydrogen) furnace. The equivalent radial thermal conductivity is adopted by statistical analysis regression approach through the combination of a large quantity of production data collected in practice and theoretical analyses. The effect of the number of coils on circulating flow gas is considered for calculating the convection heat transfer coefficient. The temperature within the coil is predicted with the developed model during the annealing cycle including heating process ard cooling process. The good consistency between the predicted results and the experimental data has demonstrated that the mathematical model established and the parameters identified by this paper are scientifically feasible and the effective method of calculation for coil equivalent radial heat transfer coefficient and circulating gas flow has been identified successfully, which largely enhances the operability and feasibility of the mathematic model. This model provides a theoretical basis and an effective means to conduct studies on the impact that foresaid factors may imposed on the steel coil's temperature field, to analyze the stress within coils, to realize online control and optimal production and to increase facility output by increasing heating and cooling rates of coils without producing higher thermal stress.

  13. Different spatial discretization methods of fault systems on heat transport processes in hard rock aquifers

    Science.gov (United States)

    Kruppa, Lisa; König, Christoph M.; Becker, Martin; Seidel, Torsten

    2016-04-01

    Most hard rock aquifers, which are important for geothermal use, contain fractures of different type and scale. These fault systems are of major significance for heat flow in the groundwater. The hydrogeological characterization of fault systems must therefore be part of any site investigation in hard rock aquifers and hydraulically important fault systems need to be appropriately represented in associated numerical models. This contribution discusses different spatial discretization methods of fault systems in three-dimensional groundwater models and their impact on the simulated groundwater flow field as well as density and viscosity dependent heat transport. The analysis includes a comparison of the convergence behavior and numerical stability of the different discretization methods. To ensure defendable results, the utilized numerical model SPRING was first verified against data from the Hydrocoin Level 1 Case 2 project. After verification, the software was used to evaluate the impact of different discretization strategies on steady-state and transient groundwater flow and transport model results. The results show a significant influence of the spatial discretization strategy on predicted flow rates and subsequent mass fluxes as well as energy balances.

  14. Corrosion of carbon steel feeders during dilute chemical decontamination of primary heat transport system of PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, H.; Madasamy, P.; Sathyaseelan, V.S.; Krishnamohan, T.V.; Velmurugan, S.; Narasimhan, S.V. [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India)

    2012-01-15

    Carbon steel feeders in the primary heat transport system of pressurized heavy water reactors (PHWRs) show significant wall thinning due to flow accelerated corrosion (FAC). This is of great concern, as the wear rate in certain locations exceeds the corrosion allowance by design. This necessitates periodic measurement of wall thickness and in some cases even mid course enmasse replacement of feeders. While analyzing the data on wall thicknesses and in arriving at the wall thinning rate during operation of the reactor, sufficient care has to be taken to account for the wall thinning occurring during full system chemical decontamination campaign which is carried out occasionally to reduce dose rates during reactor shut down. Chemical decontamination of primary heat transport system is carried out using a mixture of organic acids at a total concentration of about 0.1 g/L and at 85 C. The results of experiments carried out under simulated conditions for estimating the wall thinning occurring in carbon steel feeder elbow during dilute chemical decontamination are described in this work. The corrosion rates are quantified. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Simulations of the Montréal urban heat island

    Science.gov (United States)

    Roberge, François; Sushama, Laxmi; Fanta, Gemechu

    2017-04-01

    The current population of Montreal is around 3.8 million and this number is projected to go up in the coming years to decades, which will lead to vast expansion of urban areas. It is well known that urban morphology impacts weather and climate, and therefore should be taken into consideration in urban planning. This is particularly important in the context of a changing climate, as the intensity and frequency of temperature extremes such as hot spells are projected to increase in future climate, and Urban Heat Island (UHI) can potentially raise already stressful temperatures during such events, which can have significant effects on human health and energy consumption. High-resolution regional climate model simulations can be utilized to understand better urban-weather/climate interactions in current and future climates, particularly the spatio-temporal characteristics of the Urban Heat Island and its impact on other weather/climate characteristics such as urban flows, precipitation etc. This paper will focus on two high-resolution (250 m) simulations performed with (1) the Canadian Land Surface Scheme (CLASS) and (2) CLASS and TEB (Town Energy Balance) model; TEB is a single layer urban canopy model and is used to model the urban fractions. The two simulations are performed over a domain covering Montreal for the 1960-2015 period, driven by atmospheric forcing data coming from a high-resolution Canadian Regional Climate Model (CRCM5) simulation, driven by ERA-Interim. The two simulations are compared to assess the impact of urban regions on selected surface fields and the simulation with both CLASS and TEB is then used to study the spatio-temporal characteristics of the UHI over the study domain. Some preliminary results from a coupled simulation, i.e. CRCM5+CLASS+TEB, for selected years, including extreme warm years, will also be presented.

  16. Efficient method for transport simulations in quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    Maczka Mariusz

    2017-01-01

    Full Text Available An efficient method for simulating quantum transport in quantum cascade lasers is presented. The calculations are performed within a simple approximation inspired by Büttiker probes and based on a finite model for semiconductor superlattices. The formalism of non-equilibrium Green’s functions is applied to determine the selected transport parameters in a typical structure of a terahertz laser. Results were compared with those obtained for a infinite model as well as other methods described in literature.

  17. Efficient method for transport simulations in quantum cascade lasers

    Science.gov (United States)

    Maczka, Mariusz; Pawlowski, Stanislaw

    2016-12-01

    An efficient method for simulating quantum transport in quantum cascade lasers is presented. The calculations are performed within a simple approximation inspired by Büttiker probes and based on a finite model for semiconductor superlattices. The formalism of non-equilibrium Green's functions is applied to determine the selected transport parameters in a typical structure of a terahertz laser. Results were compared with those obtained for a infinite model as well as other methods described in literature.

  18. Computer simulation and optimal designing of energy-saving technologies of the induction heating of metals

    Science.gov (United States)

    Demidovich, V. B.

    2012-12-01

    Advanced energy-saving technologies of induction heating of metals are discussed. The importance of the joint simulation of electromagnetic and temperature fields on induction heating is demonstrated. The package of specialized programs for simulating not only induction heating devices, but also technologies that employ industrial heating has been developed. An intimate connection between optimal design and control of induction heaters is shown.

  19. The dynamics of iterated transportation simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.; Rickert, M.; Simon, P.M.

    1998-12-01

    Transportation-related decisions of people often depend on what everybody else is doing. For example, decisions about mode choice, route choice, activity scheduling, etc., can depend on congestion, caused by the aggregated behavior of others. From a conceptual viewpoint, this consistency problem causes a deadlock, since nobody can start planning because they do not know what everybody else is doing. It is the process of iterations that is examined in this paper as a method for solving the problem. In this paper, the authors concentrate on the aspect of the iterative process that is probably the most important one from a practical viewpoint, and that is the ``uniqueness`` or ``robustness`` of the results. Also, they define robustness more in terms of common sense than in terms of a mathematical formalism. For this, they do not only want a single iterative process to converge, but they want the result to be independent of any particular implementation. The authors run many computational experiments, sometimes with variations of the same code, sometimes with totally different code, in order to see if any of the results are robust against these changes.

  20. Global anomalous transport of ICRH- and NBI-heated fast ions

    Science.gov (United States)

    Wilkie, G. J.; Pusztai, I.; Abel, I.; Dorland, W.; Fülöp, T.

    2017-04-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when neutral beam injection (NBI) heating is combined with ion cyclotron resonance heating (ICRH). Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.

  1. A computational approach to calculate the heat of transport of aqueous solutions

    Science.gov (United States)

    Di Lecce, Silvia; Albrecht, Tim; Bresme, Fernando

    2017-01-01

    Thermal gradients induce concentration gradients in alkali halide solutions, and the salt migrates towards hot or cold regions depending on the average temperature of the solution. This effect has been interpreted using the heat of transport, which provides a route to rationalize thermophoretic phenomena. Early theories provide estimates of the heat of transport at infinite dilution. These values are used to interpret thermodiffusion (Soret) and thermoelectric (Seebeck) effects. However, accessing heats of transport of individual ions at finite concentration remains an outstanding question both theoretically and experimentally. Here we discuss a computational approach to calculate heats of transport of aqueous solutions at finite concentrations, and apply our method to study lithium chloride solutions at concentrations >0.5 M. The heats of transport are significantly different for Li+ and Cl− ions, unlike what is expected at infinite dilution. We find theoretical evidence for the existence of minima in the Soret coefficient of LiCl, where the magnitude of the heat of transport is maximized. The Seebeck coefficient obtained from the ionic heats of transport varies significantly with temperature and concentration. We identify thermodynamic conditions leading to a maximization of the thermoelectric response of aqueous solutions.

  2. Numerical Simulation Multicomponent Ion Beam Transport form ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    MaLei; SongMingtao; ZhangZimin; CaoYun

    2003-01-01

    In order to simulate the transport of multi-components ion beam extracted from an ECR ion source, we have developed a multi-charged ion beam transport program named MCIBS 1.0. The program is dedicated to numerical simulation of the behavior of highly-charged ion beam and optimization of beam optics in transport lines and is realized on a PC with Windows user interface of Microsoft Visual Basic. Among all the ions with different charge states in the beam, the exchanges of electrons between highly charged ions and low charged ions or neutral,atoms of residual gas are taken into account by using classical Molecular Over-barrier Model and Monte Carlo method. An advanced Windows graphical interface makes it; comfortable and friendly for the user to operate in an interactive mode. The present program is used for the numerical calculation and optimization of beam optics in a transport line consisting of various magnetic elements, such as dipole magnet, quadrupole and so on. It is possible to simultaneously simulate 200,000 particles, in a transport line of 340 m at most, and show every particle orbit. Beam cross section graphics and emittance phase pictures can be also shown at any position in the transport line.

  3. Mathematical simulation of sediment and radionuclide transport in estuaries

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Trent, D.S.

    1982-11-01

    The finite element model LFESCOT (Flow, Energy, Salinity, Sediment and Contaminant Transport Model) was synthesized under this study to simulate radionuclide transport in estuaries to obtain accurate radionuclide distributions which are affected by these factors: time variance, three-dimensional flow, temperature, salinity, and sediments. Because sediment transport and radionuclide adsorption/desorption depend strongly on sizes or types of sediments, FLESCOT simulates sediment and a sediment-sorbed radionuclide for the total of three sediment-size fractions (or sediment types) of both cohesive and noncohesive sediments. It also calculates changes of estuarine bed conditions, including bed elevation changes due to sediment erosion/deposition, and three-dimensional distributions of three bed sediment sizes and sediment-sorbed radionuclides within the bed. Although the model was synthesized for radionuclide transport, it is general enough to also handle other contaminants such as heavy metals, pesticides, or toxic chemicals. The model was checked for its capability for flow, water surface elevation change, salinity, sediment and radionuclide transport under various simple conditions first, confirming the general validity of the model's computational schemes. These tests also revealed that FLESCOT can use large aspect ratios of computational cells, which are necessary in handling long estuarine study areas. After these simple tests, FLESCOT was applied to the Hudson River estuary between Chelsea and the mouth of the river to examine how well the model can predict radionuclide transport through simulating tidally influenced three-dimensional flow, salinity, sediment and radionuclide movements with their interactions.

  4. Quantum Simulator for Transport Phenomena in Fluid Flows.

    Science.gov (United States)

    Mezzacapo, A; Sanz, M; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

    2015-08-17

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

  5. Explaining the isotope effect on heat transport in L-mode with the collisional electron-ion energy exchange

    Science.gov (United States)

    Schneider, P. A.; Bustos, A.; Hennequin, P.; Ryter, F.; Bernert, M.; Cavedon, M.; Dunne, M. G.; Fischer, R.; Görler, T.; Happel, T.; Igochine, V.; Kurzan, B.; Lebschy, A.; McDermott, R. M.; Morel, P.; Willensdorfer, M.; the ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-06-01

    In ASDEX Upgrade (AUG), the normalised gyroradius {ρ\\star} was varied via a hydrogen isotope scan while keeping other dimensionless parameters constant. This was done in L-mode, to minimise the impact of pedestal stability on confinement. Power balance and perturbative transport analyses reveal that the electron heat transport is unaffected by the differences in isotope mass. Nonlinear simulations with the Gene code suggest that these L-mode discharges are ion temperature gradient (ITG) dominated. The different gyroradii due to the isotope mass do not necessarily result in a change of the predicted heat fluxes. This result is used in simulations with the Astra transport code to match the experimental profiles. In these simulations the experimental profiles and confinement times are reproduced with the same transport coefficients for hydrogen and deuterium plasmas. The mass only enters in the energy exchange term between electrons and ions. These numerical observations are supported by additional experiments which show a lower ion energy confinement compared to that of the electrons. Additionally, hydrogen and deuterium plasmas have a similar confinement when the energy exchange time between electrons and ions is matched. This strongly suggests that the observed isotope dependence in L-mode is not dominated by a gyroradius effect, but a consequence of the mass dependence in the collisional energy exchange between electrons and ions.

  6. Implict Monte Carlo Radiation Transport Simulations of Four Test Problems

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, N

    2007-08-01

    Radiation transport codes, like almost all codes, are difficult to develop and debug. It is helpful to have small, easy to run test problems with known answers to use in development and debugging. It is also prudent to re-run test problems periodically during development to ensure that previous code capabilities have not been lost. We describe four radiation transport test problems with analytic or approximate analytic answers. These test problems are suitable for use in debugging and testing radiation transport codes. We also give results of simulations of these test problems performed with an Implicit Monte Carlo photonics code.

  7. Transport simulation of sorptive contaminants considering sediment-associated processes

    Institute of Scientific and Technical Information of China (English)

    LI Ruijie; LU Shasha; ZHENG Jun

    2012-01-01

    Sediment-associated processes,such as sediment erosion,deposition,and pore water diffusion/advection affect sorptive contaminant transport.By considering these processes,we developed an equation to simulate contaminant transport.Erosion and deposition processes are considered as erosion and deposition fluxes of sediment,and adsorption-desorption processes of contaminants by sediment are simulated using the Langmuir Equation.Pore water diffusion is calculated based on the contaminant concentration gradient across the sediment-water interface.Pore water advection is estimated using pore water contained in the sediments of erosion flux.The equation is validated to simulate total phosphorus concentrations in Guanhe estuary in the northern Jiangsu,China.The simulated total phosphorus concentrations show better agreement with field observations compared to estimations that do consider sediment-associated processes.

  8. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada

    Science.gov (United States)

    Shojae Ghias, Masoumeh; Therrien, René; Molson, John; Lemieux, Jean-Michel

    2016-12-01

    Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011-2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  9. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada

    Science.gov (United States)

    Shojae Ghias, Masoumeh; Therrien, René; Molson, John; Lemieux, Jean-Michel

    2017-05-01

    Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011-2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  10. Relativistic electron beam transport through cold and shock-heated carbon samples from aerogel to diamond

    Science.gov (United States)

    Krauland, C. M.; Wei, M.; Zhang, S.; Santos, J.; Nicolai, P.; Theobald, W.; Kim, J.; Forestier-Colleoni, P.; Beg, F.

    2016-10-01

    Understanding the transport physics of a relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense plasmas. We present three experiments that have been performed on OMEGA EP in order to extend fast electron transport and energy coupling studies in pre-assembled plasmas from different carbon samples. Each experiment has used one 4 ns long pulse UV beam (1014 W/cm2) to drive a shockwave through the target and a 10 ps IR beam (1019 W/cm2) to create an electron beam moving opposite the shock propagation direction. These shots were compared with initially cold target shots without the UV beam. We fielded three different samples including 340 mg/cc CRF foam, vitreous carbon at 1.4 g/cc, and high density carbon at 3.4 g/cc. Electrons were diagnosed via x-ray fluorescence measurements from a buried Cu tracer in the target, as well as bremsstrahlung emission and escaped electrons reaching an electron spectrometer. Proton radiograph was also performed in the foam shots. Details of each experiment, available data and particle-in-cell simulations will be presented. This work is supported by US DOE NLUF Program, Grant Number DE-NA0002728.

  11. Numerical simulations of evaporative instabilities in sessile drops of ethanol on heated substrates

    Science.gov (United States)

    Semenov, Sergey; Carle, Florian; Medale, Marc; Brutin, David

    2015-11-01

    The work is focussed on numerical simulations of thermo-convective instabilities in evaporating pinned sessile droplets of ethanol on heated substrates. Computed evaporation rate of a droplet is validated against parabolic flight experiments and semi-empirical theory presented here. To the best authors' knowledge, this is the first study which combines theoretical, experimental and computational approaches in convective evaporation of sessile droplets. The influence of gravity level on evaporation rate and contributions of different mechanisms of vapor transport (diffusion, Stefan flow, natural convection) are shown. The qualitative difference (in terms of developing thermo-convective instabilities) between steady-state and unsteady numerical approaches is demonstrated.

  12. Output feedback control of heat transport mechanisms in parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2016-08-05

    This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.

  13. Transport of radial heat flux and second sound in fusion plasmas

    Science.gov (United States)

    Gürcan, Ö. D.; Diamond, P. H.; Garbet, X.; Berionni, V.; Dif-Pradalier, G.; Hennequin, P.; Morel, P.; Kosuga, Y.; Vermare, L.

    2013-02-01

    Simple flux-gradient relations that involve time delay and radial coupling are discussed. Such a formulation leads to a rather simple description of avalanches and may explain breaking of gyroBohm transport scaling. The generalization of the flux-gradient relation (i.e., constitutive relation), which involve both time delay and spatial coupling, is derived from drift-kinetic equation, leading to kinetic definitions of constitutive elements such as the flux of radial heat flux. This allows numerical simulations to compute these cubic quantities directly. The formulation introduced here can be viewed as an extension of turbulence spreading to include the effect of spreading of cross-phase as well as turbulence intensity, combined in such a way to give the flux. The link between turbulence spreading and entropy production is highlighted. An extension of this formulation to general quasi-linear theory for the distribution function in the phase space of radial position and parallel velocity is also discussed.

  14. Transport of radial heat flux and second sound in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guercan, Oe. D.; Berionni, V.; Hennequin, P.; Morel, P.; Vermare, L. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CMTFO and CASS, UCSD, California 92093 (United States); Garbet, X.; Dif-Pradalier, G. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Kosuga, Y. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of)

    2013-02-15

    Simple flux-gradient relations that involve time delay and radial coupling are discussed. Such a formulation leads to a rather simple description of avalanches and may explain breaking of gyroBohm transport scaling. The generalization of the flux-gradient relation (i.e., constitutive relation), which involve both time delay and spatial coupling, is derived from drift-kinetic equation, leading to kinetic definitions of constitutive elements such as the flux of radial heat flux. This allows numerical simulations to compute these cubic quantities directly. The formulation introduced here can be viewed as an extension of turbulence spreading to include the effect of spreading of cross-phase as well as turbulence intensity, combined in such a way to give the flux. The link between turbulence spreading and entropy production is highlighted. An extension of this formulation to general quasi-linear theory for the distribution function in the phase space of radial position and parallel velocity is also discussed.

  15. Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance

    Science.gov (United States)

    Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.

    2014-12-01

    It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.

  16. Heat transport in metals irradiated by ultrashort laser pulses

    Science.gov (United States)

    Kanavin, Andrei P.; Afanasiev, Yuri V.; Chichkov, Boris N.; Isakov, Vladimir A.; Smetanin, Igor V.

    2000-02-01

    Different regimes of heat propagation in metals irradiated by subpicosecond laser pulses are studied on the basis of two-temperature diffusion model. New analytical solutions for the heat conduction equation, corresponding to the different temperature dependences of the electron thermal conductivity (formula available n paper), are found. It is shown that in case of a strong electron-lattice nonequilibrium, the heat penetration depth grows linearly with time, lT varies direct as t, in opposite to the ordinary diffusionlike behavior, lT varies direct as t1/2. Moreover, the heat propagation velocity decreases with increasing laser fluence.

  17. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Thuc Bui; Michael Read; Lawrence ives

    2012-05-17

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  18. 3-D numerical simulations of volcanic ash transport and deposition

    Science.gov (United States)

    Suzuki, Y. J.; Koyaguchi, T.

    2012-12-01

    During an explosive volcanic eruption, volcanic gas and pyroclasts are ejected from the volcanic vent. The pyroclasts are carried up within a convective plume, advected by the surrounding wind field, and sediment on the ground depending on their terminal velocity. The fine ash are expected to have atmospheric residence, whereas the coarser particles form fall deposits. Accurate modeling of particle transport and deposition is of critical importance from the viewpoint of disaster prevention. Previously, some particle-tracking models (e.g., PUFF) and advection-diffusion models (e.g., TEPHRA2 and FALL3D) tried to forecast particle concentration in the atmosphere and particle loading at ground level. However, these models assumed source conditions (the grain-size distribution, plume height, and mass release location) based on the simple 1-D model of convective plume. In this study, we aim to develop a new 3-D model which reproduces both of the dynamics of convective plume and the ash transport. The model is designed to describe the injection of eruption cloud and marker particles from a circular vent above a flat surface into the stratified atmosphere. Because the advection is the predominant mechanism of particle transport near the volcano, the diffusive process is not taken into account in this model. The distribution of wind velocity is given as an initial condition. The model of the eruption cloud dynamics is based on the 3-D time-dependent model of Suzuki et al. (2005). We apply a pseudo-gas model to calculate the eruption cloud dynamics: the effect of particle separation on the cloud dynamics is not considered. In order to reproduce the drastic change of eruption cloud density, we change the effective gas constant and heat capacity of the mixture in the equation of state for ideal gases with the mixing ratio between the ejected material and entrained air. In order to calculate the location and movement of ash particles, the present model employs Lagrangian marker

  19. General circulation driven by baroclinic forcing due to cloud layer heating: Significance of planetary rotation and polar eddy heat transport

    Science.gov (United States)

    Yamamoto, Masaru; Takahashi, Masaaki

    2016-04-01

    A high significance of planetary rotation and poleward eddy heat fluxes is determined for general circulation driven by baroclinic forcing due to cloud layer heating. In a high-resolution simplified Venus general circulation model, a planetary-scale mixed Rossby-gravity wave with meridional winds across the poles produces strong poleward heat flux and indirect circulation. This strong poleward heat transport induces downward momentum transport of indirect cells in the regions of weak high-latitude jets. It also reduces the meridional temperature gradient and vertical shear of the high-latitude jets in accordance with the thermal wind relation below the cloud layer. In contrast, strong equatorial superrotation and midlatitude jets form in the cloud layer in the absence of polar indirect cells in an experiment involving Titan's rotation. Both the strong midlatitude jet and meridional temperature gradient are maintained in the situation that eddy horizontal heat fluxes are weak. The presence or absence of strong poleward eddy heat flux is one of the important factors determining the slow or fast superrotation state in the cloud layer through the downward angular momentum transport and the thermal wind relation. For fast Earth rotation, a weak global-scale Hadley circulation of the low-density upper atmosphere maintains equatorial superrotation and midlatitude jets above the cloud layer, whereas multiple meridional circulations suppress the zonal wind speed below the cloud layer.

  20. Direct Numerical Simulation of Liquid Transport Through Fibrous Porous Media

    Science.gov (United States)

    Palakurthi, Nikhil Kumar

    Fluid flow through fibrous media occurs in many industrial processes, including, but not limited, to fuel cell technology, drug delivery patches, sanitary products, textile reinforcement, filtration, heat exchangers, and performance fabrics. Understanding the physical processes involved in fluid flow through fibrous media is essential for their characterization as well as for the optimization and development of new products. Macroscopic porous-media equations require constitutive relations, which account for the physical processes occurring at the micro-scale, to predict liquid transport at the macro-scale. In this study, micro-scale simulations were conducted using conventional computational fluid dynamics (CFD) technique (finite-volume method) to determine the macroscopic constitutive relations. The first part of this thesis deals with the single-phase flow in fibrous media, following which multi-phase flow through fibrous media was studied. Darcy permeability is an important parameter that characterizes creeping flow through a fibrous porous medium. It has a complex dependence on the medium's properties such as fibers' in-plane and through-plane orientation, diameter, aspect ratio, curvature, and porosity. A suite of 3D virtual fibrous structures with a wide range of geometric properties were constructed, and the permeability values of the structures were calculated by solving the 3D incompressible Navier-Stokes equations. The through-plane permeability was found to be a function of only the fiber diameter, the fibers' through-plane orientation, and the porosity of the medium. The numerical results were used to extend a permeability-porosity relation, developed in literature for 3D isotropic fibrous media, to a wide range of fibers' through-plane orientations. In applications where rate of capillary penetration is important, characterization of porous media usually involves determination of either the effective pore radius from capillary penetration experiments

  1. Burnett simulations of gas flow and heat transfer in microchannels

    Institute of Scientific and Technical Information of China (English)

    Fubing BAO; Jianzhong LIN

    2009-01-01

    In micro- and nanoscale gas flows, the flow falls into the transition flow regime. There are not enough molecule collisions and the gas deviates from the equilibrium. The Navier-Stokes equations fail to describe the gas flow in this regime. The direct simulation Monte Carlo method converges slowly and requires lots of computational time. As a result, the high-order Burnett equations are used to study the gas flow and heat transfer characteristics in micro- and nanoscale gas flows in this paper. The Burnett equations are first reviewed, and the augmented Burnett equations with high-order slip bound-ary conditions are then used to model the gas flow and heat transfer in Couette and Poiseuille flows in the transition regime.

  2. Monte Carlo simulation of phonon transport in variable cross-section nanowires

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A dedicated Monte Carlo (MC) model is proposed to investigate the mechanism of phonon transport in variable cross-section silicon nanowires (NWs). Emphasis is placed on understanding the thermal rectification effect and thermal conduction in tapered cross-section and incremental cross-section NWs. In the simulations, both equal and unequal heat input conditions are discussed. Under the latter condition, the tapered cross-section NW has a more prominent thermal rectification effect. Additionally, the capacity of heat conduction in the tapered cross-section NW is always higher than that of the incremental one. Two reasons may be attributed to these behaviors: one is their different boundary conditions and the other is their different volume distribution. Although boundary scattering plays an important role in nanoscale structures, the results suggest the influence of boundary scattering on heat conduction is less obvious than that of volume distribution in NWs with variable cross-sections.

  3. Finite element simulation of food transport through the esophageal body

    Institute of Scientific and Technical Information of China (English)

    Wei Yang; Tat Ching Fung; Kerm Sim Chian; Chuh Khiun Chong

    2007-01-01

    The peristaltic transport of swallowed material in the esophagus is a neuro-muscular function involving the nerve control, bolus-structure interaction, and structuremechanics relationship of the tissue. In this study, a finite element model (FEM) was developed to simulate food transport through the esophagus. The FEM consists of three components, i.e., tissue, food bolus and peristaltic wave, as well as the interactions between them. The transport process was simulated as three stages, i.e., the filling of fluid, contraction of circular muscle and traveling of peristaltic wave. It was found that the maximal passive intraluminal pressure due to bolus expansion was in the range of 0.8-10 kPa and it increased with bolus volume and fluid viscosity. It was found that the highest normal and shear stresses were at the inner surface of muscle layer. In addition, the peak pressure required for the fluid flow was predicted to be 1-15 kPa at the bolus tail. The diseases of systemic sclerosis or osteogenesis imperfecta, with the remodeled microstructures and mechanical properties, might induce the malfunction of esophageal transport. In conclusion, the current simulation was demonstrated to be able to capture the main characteristics in the intraluminal pressure and bolus geometry as measured experimentally. Therefore,the finite element model established in this study could be used to further explore the mechanism of esophageal transport in various clinical applications.

  4. Changes in Tropical Precipitation at the Mid-Holocene: Role of the Oceanic Heat Transport

    Science.gov (United States)

    Liu, X.; Battisti, D. S.; Donohoe, A.

    2015-12-01

    There is ample geological and geochemical evidence that precipitation in the tropics is largely different from today at the mid-Holocene, an era roughly 6,000 years ago when the Northern Hemisphere summer (winter) insolation was stronger (weaker) than today. These insolation differences are caused mainly by the precession of the earth's rotational axis, or called "precessional forcing". Using the mid-Holocene experiments of PMIP3, we studied changes in the zonal mean tropical precipitation, and its associated change in cross-equatorial energy transport. A northward movement of the zonal mean precipitation in the mid-Holocene is seen in 10 out of 13 PMIP3 models, with a correspondingly anomalous southward atmospheric heat transport across the equator. The slope is 3.0º per PW, close to the estimate given by Donohoe et al. (2013). The changes in cross-equatorial atmospheric heat transport are dictated by changes in the hemispheric asymmetry of heating from the surface, which in turn are associated with changes in the cross-equatorial oceanic heat transport: an anomalous northward oceanic heat transport at the equator is seen in all of the PMIP3 models. Analysis on this anomalous oceanic heat transport reveals that changes in the wind-driven gyre in the Pacific Ocean are primarily responsible for the changes in cross-equatorial ocean heat transport. Specifically, stronger easterly anomalies north of the equator in the western Pacific drives an anomalous northward mass transport, and therefore accomplishes an anomalous northward heat transport across the equator by acting on the asymmetric mean-state zonal temperature. The wind anomalies responsible for this anomalous ocean heat transport are seen in every PMIP3 model, as well as an ECHAM4-slab ocean model, indicating that it is atmospherically driven and independent of the changes in ocean heat transport. It also explains the consistency of ocean heat transport change, and eventually the relative consistency of zonal

  5. Numerical simulations of cardiovascular diseases and global matter transport

    CERN Document Server

    Simakov, S S; Evdokimov, A V; Kholodov, Y A

    2007-01-01

    Numerical model of the peripheral circulation and dynamical model of the large vessels and the heart are discussed in this paper. They combined together into the global model of blood circulation. Some results of numerical simulations concerning matter transport through the human organism and heart diseases are represented in the end.

  6. Impact of different vertical transport representations on simulating processes in the tropical tropopause layer (TTL)

    Energy Technology Data Exchange (ETDEWEB)

    Ploeger, Felix

    2011-07-06

    The chemical and dynamical processes in the tropical tropopause layer (TTL) control the amount of radiatively active species like water vapour and ozone in the stratosphere, and hence turn out to be crucial for atmospheric trends and climate change. Chemistry transport models and chemistry climate models are suitable tools to understand these processes. But model results are subject to uncertainties arising from the parametrization of model physics. In this thesis the sensitivity of model predictions to the choice of the vertical transport representation will be analysed. Therefore, backtrajectories are calculated in the TTL, based on different diabatic and kinematic transport representations using ERA-Interim and operational ECMWF data. For diabatic transport on potential temperature levels, the vertical velocity is deduced from the ERA-Interim diabatic heat budget. For kinematic transport on pressure levels, the vertical wind is used as vertical velocity. It is found that all terms in the diabatic heat budget are necessary to cause transport from the troposphere to the stratosphere. In particular, clear-sky heating rates alone miss very important processes. Many characteristics of transport in the TTL turn out to depend very sensitively on the choice of the vertical transport representation. Timescales for tropical troposphere-to-stratosphere transport vary between one and three months, with respect to the chosen representation. Moreover, for diabatic transport ascent is found throughout the upper TTL, whereas for kinematic transport regions of mean subsidence occur, particularly above the maritime continent. To investigate the sensitivity of simulated trace gas distributions in the TTL to the transport representation, a conceptual approach is presented to predict water vapour and ozone concentrations from backtrajectories, based on instantaneous freeze-drying and photochemical ozone production. It turns out that ozone predictions and vertical dispersion of the

  7. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

    Science.gov (United States)

    Frampton, Andrew; Destouni, Georgia

    2016-04-01

    In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

  8. Particle Simulations of DARHT-II Transport System

    Energy Technology Data Exchange (ETDEWEB)

    Poole, B; Chen, Y J

    2001-06-11

    The DARHT-II beam line utilizes a fast stripline kicker to temporally chop a high current electron beam from a single induction LINAC and deliver multiple temporal electron beam pulses to an x-ray converter target. High beam quality needs to be maintained throughout the transport line from the end of the accelerator through the final focus lens to the x-ray converter target to produce a high quality radiographic image. Issues that will affect beam quality such as spot size and emittance at the converter target include dynamic effects associated with the stripline kicker as well as emittance growth due to the nonlinear forces associated with the kicker and various focusing elements in the transport line. In addition, dynamic effects associated with transverse resistive wall instability as well as gas focusing will affect the beam transport. A particle-in-cell code is utilized to evaluate beam transport in the downstream transport line in DARHT-II. External focusing forces are included utilizing either analytic expressions or field maps. Models for wakefields from the beam kicker, transverse resistive wall instability, and gas focusing are included in the simulation to provide a more complete picture of beam transport in DARHT-II. From these simulations, for various initial beam loads based on expected accelerator performance the temporally integrated target spot size and emittance can be estimated.

  9. Particle Simulations of DARHT-II Transport System

    Energy Technology Data Exchange (ETDEWEB)

    Poole, B; Chen, Y J

    2001-06-11

    The DARHT-II beam line utilizes a fast stripline kicker to temporally chop a high current electron beam from a single induction LINAC and deliver multiple temporal electron beam pulses to an x-ray converter target. High beam quality needs to be maintained throughout the transport line from the end of the accelerator through the final focus lens to the x-ray converter target to produce a high quality radiographic image. Issues that will affect beam quality such as spot size and emittance at the converter target include dynamic effects associated with the stripline kicker as well as emittance growth due to the nonlinear forces associated with the kicker and various focusing elements in the transport line. In addition, dynamic effects associated with transverse resistive wall instability as well as gas focusing will affect the beam transport. A particle-in-cell code is utilized to evaluate beam transport in the downstream transport line in DARHT-II. External focusing forces are included utilizing either analytic expressions or field maps. Models for wakefields from the beam kicker, transverse resistive wall instability, and gas focusing are included in the simulation to provide a more complete picture of beam transport in DARHT-II. From these simulations, for various initial beam loads based on expected accelerator performance the temporally integrated target spot size and emittance can be estimated.

  10. Quantum Simulator for Transport Phenomena in Fluid Flows

    CERN Document Server

    Mezzacapo, A; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

    2015-01-01

    Transport phenomena are one of the most challenging problems in computational physics. We present a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics problems within a lattice kinetic formalism. This quantum simulator is obtained by exploiting the analogies between Dirac and lattice Boltzmann equations. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

  11. Directional heat transport through thermal reflection meta-device

    Science.gov (United States)

    Hu, Run; Zhou, Shuling; Shu, Weicheng; Xie, Bin; Ma, Yupu; Luo, Xiaobing

    2016-12-01

    Directional heat transfer may be hard to realize due to the fact that heat transfer is diffusive. In this paper, we try to take one step forward based on the transformation thermodynamics. A special structure and meta-device is proposed to "reflect" the heat flow directionally-just like the mirror to the light beam, in which the heat flow just one-time changes the direction rather than gradually changing the directions in isotropic materials. The benefits of such thermal reflection meta-device are discussed by comparing the corresponding thermal resistance with the same structures of isotropic materials. The proposed meta-device is verified to possess the low thermal resistance and high heat transfer ability with least energy loss, and can be made by nature-existing isotropic materials with specific structures.

  12. Large Eddy Simulation of turbulent heat transfer in a rotating square duct

    Science.gov (United States)

    Qin, Zhaohui; Pletcher, Richard

    2004-11-01

    Turbulent heat transfer in a rotating square duct is an important topic with numerous applications such as turbine blade cooling and automobile brake cooling. Without rotation, Prandtl's secondary flow of the second kind is known to have a significant impact on the transport of heat and momentum in turbulent duct flows. With rotation, Coriolis force and centrifugal buoyancy force cause more complicated secondary flow pattern and, as a consequence, modify heat transfer coefficients. The objective of this study is to expand the capability of the current LES code to correctly predict complex turbulent flow phenomena and to gain a better understanding of the physics of turbulent flow in rotating passages. A finite volume LU-SGS scheme is used to simulate compressible three-dimensional turbulent flow at low Mach numbers. Time derivative preconditioning is employed to deal with the low Mach number situation. A localized dynamic subgrid-scale (SGS) model is used to evaluate the unresolved stresses. The calculation domain is divided into two parts. In the first part periodic boundary conditions are applied and this provides the fully developed inlet flow for the second part in which the heat transfer conditions are imposed. Characteristic out-flow conditions are used in the second part. This allows the flow to develop further as it responds to the heating condition. The code is parallelized using MPI (Message Passing Interface). To verify the code, we calculated isothermal rotating duct cases and compared our results with DNS and experimental results. Then heated duct flow cases were simulated and the results were compared to available data. Good agreement has been obtained.

  13. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    CERN Document Server

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  14. Numerical simulations of urban heat island mitigation strategies in Vienna

    Science.gov (United States)

    Koch, Roland; Zuvela-Aloise, Maja

    2013-04-01

    Effects of change in land use on daytime urban heat island (UHI) of Vienna is investigated using the local-scale atmospheric model MUKLIMO3 developed at the German Weather Service (DWD). Assuming that the observed trend towards urbanization negatively impacts the heat stress of urban areas, it becomes increasingly important to develop UHI mitigation strategies that aims to reduce the urban heat stress. The purpose of this study is to gain a further understanding of the structure of the daytime UHI in Vienna and to investigate the question to what degree changes in the urban land use affect the near-surface climate and heat stress in the city. The qualitative and quantitative characterization of the UHI is obtained by the computation of the mean annual number of summer days (Tmax × 25° C) of the 1981-2010 period using the so-called cuboid method (DWD). A set of mitigation strategies is developed and applied to MUKLIMO3 simulation experiments. The strategies take into account the change in urban land use as well as the modification of land use features. Results confirm the importance of green areas, water ways and pervious surfaces in the city. In addition, the size, location and distribution of new vegetated areas, i.e. parks, can crucially alter the urban heat stress. In view of the unique character of the city, the realization of adequate mitigation strategies is mainly limited to the existing urban land use. The obtained model results are intended to provide additional information for the city planners.

  15. Coupled Soil Water and Heat Transport Near the Land Surface in Arid and Semiarid Regions - Multi-Domain Modeling

    Science.gov (United States)

    Mohanty, Binayak; Yang, Zhenlei

    2016-04-01

    Understanding and simulating coupled water and heat transfer appropriately in the shallow subsurface is of vital significance for accurate prediction of soil evaporation that would improve the coupling between land surface and atmosphere, which consequently could enhance the reliability of weather as well as climate forecast. The theory of Philip and de Vries (1957), accounting for water vapor diffusion only, was considered physically incomplete and consequently extended and improved by several researchers by explicitly taking water vapor convection, dispersion or air flow into account. It is generally believed that the soil moisture is usually low in the near surface layer under highly transient field conditions, particularly in arid and semiarid regions, and that accurate characterization of water vapor transport is critical when modeling simultaneous water and heat transport in the shallow field soils. The first objective of this study is thus mainly to test existing coupled water and heat transport theories and to develop reasonable and simplified numerical models using field experimental data collected under semi-arid and arid hydro-climatic conditions. In addition, more complex multi-domain models are developed for ubiquitous heterogeneous terrestrial surfaces such as horizontal textural contrasts or structured heterogeneity including macropores (fractures, cracks, root channels, etc.). This would make coupled water and heat transfer models applicable in such non-homogeneous soils more meaningful and enhance the skill of land-atmosphere interaction models at a larger context.

  16. Simulation model for the WIPP transportation and delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, F. [Westinghouse Electric Corp., Carlsbad, NM (United States); Lippis, J. [USDOE Albuquerque Operations Office, Carlsbad, NM (United States). Waste Isolation Pilot Plant Project Office; Quinn, D. [Systems Modeling Corp., Sewickley, PA (United States)

    1992-12-31

    The United States Department of Energy`s (DOE`s) Waste Isolation Pilot Plant (WIPP) is a first of its kind repository designed to demonstrate safe disposal of transuranic (TRU) waste in bedded salt 2150 feet underground. Contact-handled (CH) TRU waste, waste with low beta or gamma emitting radionuclides that can be handled without protective clothing or additional shielding, will be transported to WIPP in Nuclear Regulatory Commission (NRC) certified containers known as TRUPACT-IIs. The TRUPACT-II is the cornerstone of a transportation system designed for extraordinarily safe transport of TRU waste from ten DOE production and research sites to WIPP. This paper describes the complexities of the transportation system and discusses how a simulation model can be utilized as a tool to develop economical operating parameters for the system.

  17. Numeric Simulation of Heat Transfer from a Single Round Tube Shielded with Wire Mesh

    Directory of Open Access Journals (Sweden)

    Dymo B.V.

    2015-08-01

    Full Text Available This paper presents the results of development and investigation of heat transfer at transverse flow of round tube with wire screen using the software ANSYS Fluent 3D-model. Selection of optimal parameters of the finite element model, in particular, transition shear stress transport model as well and boundary conditions are realized. Instructed and combined net is used at numerical calculations. This net is built with the help of generators grid-torus ANSYS CFX Mesh 14.0. The problem of verification of conformity of the numerical model of the heat transfer of a single screen-covered round tubes according to physical experiment for the same tubes in the range of Reynolds numbers Re = (5000...35000 was studied. We established that discrepancy between physical experiments and numerical simulation results not exceeds 5% with respect to the data of physical experiment.

  18. Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law

    OpenAIRE

    López, Rosa; Sánchez, David

    2013-01-01

    We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two...

  19. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  20. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  1. Eddy heat and salt transports in the South China Sea and their seasonal modulations

    Science.gov (United States)

    Chen, Gengxin; Gan, Jianping; Xie, Qiang; Chu, Xiaoqing; Wang, Dongxiao; Hou, Yijun

    2012-05-01

    This study describes characteristics of eddy (turbulent) heat and salt transports, in the basin-scale circulation as well as in the embedded mesoscale eddy found in the South China Sea (SCS). We first showed the features of turbulent heat and salt transports in mesoscale eddies using sea level anomaly (SLA) data, in situ hydrographic data, and 375 Argo profiles. We found that the transports were horizontally variable due to asymmetric distributions of temperature and salinity anomalies and that they were vertically correlated with the thermocline and halocline depths in the eddies. An existing barrier layer caused the halocline and eddy salt transport to be relatively shallow. We then analyzed the transports in the basin-scale circulation using an eddy diffusivity method and the sea surface height data, the Argo profiles, and the climatological hydrographic data. We found that relatively large poleward eddy heat transports occurred to the east of Vietnam (EOV) in summer and to the west of the Luzon Islands (WOL) in winter, while a large equatorward heat transport was located to the west of the Luzon Strait (WLS) in winter. The eddy salt transports were mostly similar to the heat transports but in the equatorward direction due to the fact that the mean salinity in the upper layer in the SCS tended to decrease toward the equator. Using a 21/2-layer reduced-gravity model, we conducted a baroclinic instability study and showed that the baroclinic instability was critical to the seasonal variation of eddy kinetic energy (EKE) and thus the eddy transports. EOV, WLS, and WOL were regions with strong baroclinic instability, and, thus, with intensified eddy transports in the SCS. The combined effects of vertical velocity shear, latitude, and stratification determined the intensity of the baroclinic instability, which intensified the eddy transports EOV during summer and WLS and WOL during winter.

  2. Numerical simulations of heat transfer in plane channel flow

    CERN Document Server

    Gharbi, Najla El; Benzaoui, Ahmed

    2010-01-01

    Reynolds-averaged Navier-Stokes (RANS) turbulence models (such as k-{\\epsilon} models) are still widely used for engineering applications because of their relatively simplicity and robustness. In fully developed plane channel flow (i.e. the flow between two infinitely large plates), even if available models and near-wall treatments provide adequate mean flow velocities, they fail to predict suitable turbulent kinetic energy "TKE" profiles near walls. TKE is involved in determination of eddy viscosity/diffusivity and could therefore provide inaccurate concentrations and temperatures. In order to improve TKE a User Define Function "UDF" based on an analytical profile for TKE was developed and implemented in Fluent. Mean streamwise velocity and turbulent kinetic energy "TKE" profiles were compared to DNS data for friction Reynolds number $Re_{\\tau}$ = 150. Simulation results for TKE show accurate profiles. Simulation results for horizontal heated channel flows obtained with Fluent are presented. Numerical result...

  3. Comparison of performance of simulation models for floor heating

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    only the floor construction, the differences can be directly compared. In this comparison, a two-dimensional model of a slab-on-grade floor including foundation is used as reference. The other models include a one-dimensional model and a thermal network model including the linear thermal transmittance......This paper describes the comparison of performance of simulation models for floor heating with different level of detail in the modelling process. The models are compared in an otherwise identical simulation model containing room model, walls, windows, ceiling and ventilation system. By exchanging...... of the foundation. The result can be also be found in the energy consumption of the building, since up to half the energy consumption is lost through the ground. Looking at the different implementations it is also found, that including a 1m ground volume below the floor construction under a one-dimensional model...

  4. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    Science.gov (United States)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  5. Benchmarking of Proton Transport in Super Monte Carlo Simulation Program

    Science.gov (United States)

    Wang, Yongfeng; Li, Gui; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Wu, Yican

    2014-06-01

    The Monte Carlo (MC) method has been traditionally applied in nuclear design and analysis due to its capability of dealing with complicated geometries and multi-dimensional physics problems as well as obtaining accurate results. The Super Monte Carlo Simulation Program (SuperMC) is developed by FDS Team in China for fusion, fission, and other nuclear applications. The simulations of radiation transport, isotope burn-up, material activation, radiation dose, and biology damage could be performed using SuperMC. Complicated geometries and the whole physical process of various types of particles in broad energy scale can be well handled. Bi-directional automatic conversion between general CAD models and full-formed input files of SuperMC is supported by MCAM, which is a CAD/image-based automatic modeling program for neutronics and radiation transport simulation. Mixed visualization of dynamical 3D dataset and geometry model is supported by RVIS, which is a nuclear radiation virtual simulation and assessment system. Continuous-energy cross section data from hybrid evaluated nuclear data library HENDL are utilized to support simulation. Neutronic fixed source and critical design parameters calculates for reactors of complex geometry and material distribution based on the transport of neutron and photon have been achieved in our former version of SuperMC. Recently, the proton transport has also been intergrated in SuperMC in the energy region up to 10 GeV. The physical processes considered for proton transport include electromagnetic processes and hadronic processes. The electromagnetic processes include ionization, multiple scattering, bremsstrahlung, and pair production processes. Public evaluated data from HENDL are used in some electromagnetic processes. In hadronic physics, the Bertini intra-nuclear cascade model with exitons, preequilibrium model, nucleus explosion model, fission model, and evaporation model are incorporated to treat the intermediate energy nuclear

  6. Coupled Kinetic-MHD Simulations of Divertor Heat Load with ELM Perturbations

    Science.gov (United States)

    Cummings, Julian; Chang, C. S.; Park, Gunyoung; Sugiyama, Linda; Pankin, Alexei; Klasky, Scott; Podhorszki, Norbert; Docan, Ciprian; Parashar, Manish

    2010-11-01

    The effect of Type-I ELM activity on divertor plate heat load is a key component of the DOE OFES Joint Research Target milestones for this year. In this talk, we present simulations of kinetic edge physics, ELM activity, and the associated divertor heat loads in which we couple the discrete guiding-center neoclassical transport code XGC0 with the nonlinear extended MHD code M3D using the End-to-end Framework for Fusion Integrated Simulations, or EFFIS. In these coupled simulations, the kinetic code and the MHD code run concurrently on the same massively parallel platform and periodic data exchanges are performed using a memory-to-memory coupling technology provided by EFFIS. The M3D code models the fast ELM event and sends frequent updates of the magnetic field perturbations and electrostatic potential to XGC0, which in turn tracks particle dynamics under the influence of these perturbations and collects divertor particle and energy flux statistics. We describe here how EFFIS technologies facilitate these coupled simulations and discuss results for DIII-D, NSTX and Alcator C-Mod tokamak discharges.

  7. Radial heat transport in packed beds at elevated pressures

    NARCIS (Netherlands)

    Wijngaarden, R.J.; Westerterp, K.R.

    1992-01-01

    Values were measured for the effective radial heat conductivity λeff, r and the heat transfer coefficient at the wall αw in a packed bed. This was done for superficial velocities of 5 – 70 cm s−1 and at pressures from 1 – 10 bar. Values for λeff, r and αw were obtained by simultaneous fitting of

  8. On the Sensitivity of Atmospheric Model Implied Ocean Heat Transport to the Dominant Terms of the Surface Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, P J

    2004-11-03

    The oceanic meridional heat transport (T{sub o}) implied by an atmospheric General Circulation Model (GCM) can help evaluate a model's readiness for coupling with an ocean GCM. In this study we examine the T{sub o} from benchmark experiments of the Atmospheric Model Intercomparison Project, and evaluate the sensitivity of T{sub o} to the dominant terms of the surface energy balance. The implied global ocean TO in the Southern Hemisphere of many models is equatorward, contrary to most observationally-based estimates. By constructing a hybrid (model corrected by observations) T{sub o}, an earlier study demonstrated that the implied heat transport is critically sensitive to the simulated shortwave cloud radiative effects, which have been argued to be principally responsible for the Southern Hemisphere problem. Systematic evaluation of one model in a later study suggested that the implied T{sub o} could be equally as sensitive to a model's ocean surface latent heat flux. In this study we revisit the problem with more recent simulations, making use of estimates of ocean surface fluxes to construct two additional hybrid calculations. The results of the present study demonstrate that indeed the implied T{sub o} of an atmospheric model is very sensitive to problems in not only the surface net shortwave, but the latent heat flux as well. Many models underestimate the shortwave radiation reaching the surface in the low latitudes, and overestimate the latent heat flux in the same region. The additional hybrid transport calculations introduced here could become useful model diagnostic tests as estimates of implied ocean surface fluxes are improved.

  9. MHD Simulations of a Moving Subclump with Heat Conduction

    CERN Document Server

    Asai, N; Matsumoto, R; Asai, Naoki; Fukuda, Naoya; Matsumoto, Ryoji

    2004-01-01

    High resolution observations of cluster of galaxies by Chandra have revealed the existence of an X-ray emitting comet-like galaxy C153 in the core of cluster of galaxies A2125. The galaxy C153 moving fast in the cluster core has a distinct X-ray tail on one side, obviously due to ram pressure stripping, since the galaxy C153 crossed the central region of A2125. The X-ray emitting plasma in the tail is substantially cooler than the ambient plasma. We present results of two-dimensional magnetohydrodynamic simulations of the time evolution of a subclump like C153 moving in magnetized intergalactic matter. Anisotropic heat conduction is included. We found that the magnetic fields are essential for the existence of the cool X-ray tail, because in non-magnetized plasma the cooler subclump tail is heated up by isotropic heat conduction from the hot ambient plasma and does not form such a comet-like tail.

  10. COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ilkyoung Shin,Byung Yunn,Todd Satogata,Shahid Ahmed

    2011-03-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  11. AGN Heating in Simulated Cool-Core Clusters

    CERN Document Server

    Li, Yuan; Bryan, Greg L

    2016-01-01

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, while radiative cooling loses area less concentrated. However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over Gyr timescales. The cluster core is under-h...

  12. Numerical simulations of the impact of seasonal heat storage on source zone emission in a TCE contaminated aquifer

    Science.gov (United States)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2016-04-01

    In urban regions, with high population densities and heat demand, seasonal high temperature heat storage in the shallow subsurface represents an attractive and efficient option for a sustainable heat supply. In fact, the major fraction of energy consumed in German households is used for room heating and hot water production. Especially in urbanized areas, however, the installation of high temperature heat storage systems is currently restricted due to concerns on negative influences on groundwater quality caused e.g. by possible interactions between heat storages and subsurface contaminants, which are a common problem in the urban subsurface. Detailed studies on the overall impact of the operation of high temperature heat storages on groundwater quality are scarce. Therefore, this work investigates possible interactions between groundwater temperature changes induced by heat storage via borehole heat exchangers and subsurface contaminations by numerical scenario analysis. For the simulation of non-isothermal groundwater flow, and reactive transport processes the OpenGeoSys code is used. A 2D horizontal cross section of a shallow groundwater aquifer is assumed in the simulated scenario, consisting of a sandy sediment typical for Northern Germany. Within the aquifer a residual trichloroethene (TCE) contaminant source zone is present. Temperature changes are induced by a seasonal heat storage placed within the aquifer with scenarios of maximum temperatures of 20°C, 40°C and 60°C, respectively, during heat injection and minimum temperatures of 2°C during heat extraction. In the scenario analysis also the location of the heat storage relative to the TCE source zone and plume was modified. Simulations were performed in a homogeneous aquifer as well as in a set of heterogeneous aquifers with hydraulic conductivity as spatially correlated random fields. In both cases, results show that the temperature increase in the heat plume and the consequential reduction of water

  13. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation.

    Science.gov (United States)

    Han, Xu; Ma, Hongbin; Jiao, Anjun; Critser, John K

    2008-06-01

    Theoretically, direct vitrification of cell suspensions with relatively low concentrations ( approximately 1 M) of permeating cryoprotective agents (CPA) is suitable for cryopreservation of almost all cell types and can be accomplished by ultra-fast cooling rates that are on the order of 10(6-7) K/min. However, the methods and devices currently available for cell cryopreservation cannot achieve such high cooling rates. In this study, we constructed a novel cryogenic oscillating heat pipe (COHP) using liquid nitrogen as its working fluid and investigated its heat transport capability to assess its application for achieving ultra-fast cooling rates for cell cryopreservation. The experimental results showed that the apparent heat transfer coefficient of the COHP can reach 2 x 10(5) W/m(2).K, which is two orders of the magnitude higher than traditional heat pipes. Theoretical analyzes showed that the average local heat transfer coefficient in the thin film evaporation region of the COHP can reach 1.2 x 10(6) W/m(2).K, which is approximately 10(3) times higher than that achievable with standard pool-boiling approaches. Based on these results, a novel device design applying the COHP and microfabrication techniques is proposed and its efficiency for cell vitrification is demonstrated through numerical simulation. The estimated average cooling rates achieved through this approach is 10(6-7)K/min, which is much faster than the currently available methods and sufficient for achieving vitrification with relatively low concentrations of CPA.

  14. Simulated lipoprotein transport in the wall of branched arteries.

    Science.gov (United States)

    Darbeau, M Z; Lutz, R J; Collins, W E

    2000-01-01

    Study of arterial blood flow dynamics improves our understanding of the development of cardiovascular diseases such as atherosclerosis. The transport and accumulation of macromolecules in the arterial wall can be influenced by local fluid mechanics. We used numeric simulations to investigate such transport in a T-junction model. Presumably an in vitro experiment would consist of gel segments inserted in the walls of a mechanical flow T-junction model near branch points where separation and recirculation zones are expected. The transport of low density lipoprotein (LDL) was investigated theoretically at these sites in a two dimensional numeric T-branch model. In the numeric model, the hydraulic conductivity of the porous gel wall segments was varied for a fixed species diffusivity to provide simulations with wall transmural Peclet numbers ranging from 0.3 to 30. Steady state flow patterns in the lumen of the two dimensional T-branch were simulated at Reynolds numbers of 250 and 500, using the software package FIDAP 7.61 to implement the finite element method. The simulations demonstrated that wall Peclet numbers greater than 1.0 were needed to achieve species concentration gradients within the wall that varied in the axial direction, thereby reflecting the influence of disturbed flow and pressure patterns in the lumen. As expected, the transmural concentration gradients were steeper when convection predominated. Blood flow in the lumen can influence the distribution of macromolecules in the arterial wall and needs to be investigated for the relevance to atherosclerosis.

  15. Influence of the ambient temperature during heat pipe manufacturing on its function and heat transport ability

    Directory of Open Access Journals (Sweden)

    Čaja A.

    2014-03-01

    Full Text Available Heat pipe is heat transfer device working at a minimum temperature difference of evaporator and condenser. Operating temperature of the heat pipe determine by properties of the working substance and pressure achieved during production. The contribution is focused on the determining the effect of the initial surrounding temperature where the heat pipe is manufactured and on the obtaining performance characteristics produced heat pipes in dependence of manufacturing temperature. Generally hold, that the boiling point of the working liquid decrease with decreasing ambient pressure. Based on this can be suppose that producing of lower ambient temperature during heat pipe manufacturing, will create the lower pressure, the boiling point of the working fluid will lower too and the heat pipe should be better performance characteristics.

  16. Monte Carlo simulations of charge transport in heterogeneous organic semiconductors

    Science.gov (United States)

    Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta

    2015-03-01

    The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.

  17. Study of large eddy simulation of the effects of boundary layer convection on tracer uplift and transport

    Science.gov (United States)

    Huang, Qian; Wang, Rong

    2016-04-01

    Using large eddy model (LEM) and observed data from Dunhuang meteorological station during the intensive period of land-atmosphere interaction field experiment over arid region of North-west China, a series of sensitivity experiments have been performed to investigate the effects of the surface heat flux and wind shear on the strength and the organization of boundary layer convection as well as the growth of the convective boundary layer (CBL). The results show that surface heat flux increases with constant wind shear will give rise to a thicker and warmer CBL, stronger convections and larger thermal eddies due to intense surface turbulence transporting more energy to the upper layer. On the other hand wind shear increases with constant surface heat flux lead to a thicker and warmer CBL because of the entrainment of warm air from the inversion layer to the mixed layer, while the boundary layer convection became weaker with broken thermal eddies. To investigate the quantitative linkage of surface heat flux, wind shear with the tracer uplift rate and transport height, a passive tracer with a constant value of 100 was added at all model levels below the 100 m in all simulations. The least square analysis reveals that the tracer uplift rate increases linearly with the surface heat flux when wind shear is less than 10.5×10-3 s-1 owing to the enhancement of the downward transport of higher momentum. However, the tracer uplift rate decreases with increasing wind shear when the surface heat flux is less than 462.5 W/m2 because of the weakened convection. The passive tracer in the model is also shown to be transported to the higher altitude with increasing surface heat flux and under constant wind shear. However, under a constant surface heat flux, the tracer transport height increases with increasing wind shear only when the shear is above a certain threshold and this threshold depend on the magnitude of surface heat fluxes.

  18. Thermal conductivity and heat transport properties of nitrogen-doped graphene.

    Science.gov (United States)

    Goharshadi, Elaheh K; Mahdizadeh, Sayyed Jalil

    2015-11-01

    In the present study, the thermal conductivity (TC) and heat transport properties of nitrogen doped graphene (N-graphene) were investigated as a function of temperature (107-400K) and N-doped concentration (0.0-7.0%) using equilibrium molecular dynamics simulation based on Green-Kubo method. According to the results, a drastic decline in TC of graphene observed at very low N-doped concentration (0.5 and 1.0%). Substitution of just 1.0% of carbon atoms with nitrogens causes a 77.2, 65.4, 59.2, and 53.7% reduction in TC at 107, 200, 300, and 400K, respectively. The values of TC of N-graphene at different temperatures approach to each other as N-doped concentration increases. The results also indicate that TC of N-graphene is much less sensitive to temperature compared with pristine graphene and the sensitivity decreases as N-doped concentration increases. The phonon-phonon scattering relaxation times and the phonon mean free path of phonons were also calculated. The contribution of high frequency optical phonons for pristine graphene and N-graphene with 7.0% N-doped concentration is 0-2% and 4-8%, respectively. These findings imply that it is potentially feasible to control heat transfer on the nanoscale when designing N-graphene based thermal devices.

  19. Modeling Arctic Ocean heat transport and warming episodes in the 20th century caused by the intruding Atlantic Water

    Institute of Scientific and Technical Information of China (English)

    WANG Jia; JIN Mei-bing; Jun Takahashi; Tatsuo Suzuki; Igor V Polyakov; Kohei Mizobata; Moto Ikeda; Fancois J.Saucier; Markus Meier

    2008-01-01

    This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well the Atlantic Water core temperature (AWCT) in the Arctic Ocean and shows that four largest decadalscale warming episodes occurred in the 1930's, 70s, 80s, and 90s, in agreement with the hydrographic observational data. The difference is that there was no pre-warming prior to the 1930s episode, while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s, leading the 1990s into the largest and prolonged warming in the 20th century. Over the last century, the simulated heat transport via Fram Strait and the Barents Sea was estimated to be, on average, 31.32 TW and 14.82TW, respectively, while the Bering Strait also provides 15.94 TW heat into the western Arctic Ocean. Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT ( C =0.75 ) at Olag. The modeled North Atlantic Oscillation ( NAO ) index has a significant correlation with the heat transport ( C = 0.37 ). The observed AWCT has a significant correlation with both the modeled AWCT (C =0.49) and the heat transport (C =0.41 ).However, the modeled NAO index does not significantly correlate with either the observed AWCT (C =0.03 ) or modeled AWCT (C = 0. 16) at a zero-lag, indicating that the Arctic climate system is far more complex than expected.

  20. Water and heat fluxes in desert soils: 2. Numerical simulations

    Science.gov (United States)

    Scanlon, Bridget R.; Milly, P. C. D.

    1994-03-01

    Transient one-dimensional fluxes of soil water (liquid and vapor) and heat in response to 1 year of atmospheric forcing were simulated numerically for a site in the Chihuahuan Desert of Texas. The model was initialized and evaluated using the monitoring data presented in a companion paper (Scanlon, this issue). Soil hydraulic and thermal properties were estimated a priori from a combination of laboratory measurements, models, and other published information. In the first simulation, the main drying curves were used to describe soil water retention, and hysteresis was ignored. Remarkable consistency was found between computed and measured water potentials and temperatures. Attenuation and phase shift of the seasonal cycle of water potentials below the shallow subsurface active zone (0.0- to 0.3-m depth) were similar to those of temperatures, suggesting that water potential fluctuations were driven primarily by temperature changes. Water fluxes in the upper 0.3 m of soil were dominated by downward and upward liquid fluxes that resulted from infiltration of rain and subsequent evaporation from the surface. Upward flux was vapor dominated only in the top several millimeters of the soil during periods of evaporation. Below a depth of 0.3 m, water fluxes varied slowly and were dominated by downward thermal vapor flux that decreased with depth, causing a net accumulation of water. In a second simulation, nonhysteretic water retention was instead described by the estimated main wetting curves; the resulting differences in fluxes were attributed to lower initial water contents (given fixed initial water potential) and unsaturated hydraulic conductivities that were lower than they were in the first simulation. Below a depth of 0.3 m, the thermal vapor fluxes dominated and were similar to those in the first simulation. Two other simulations were performed, differing from the first only in the prescription of different (wetter) initial water potentials. These three simulations

  1. A semi-analytical method for simulating matrix diffusion in numerical transport models

    Science.gov (United States)

    Falta, Ronald W.; Wang, Wenwen

    2017-02-01

    A semi-analytical approximation for transient matrix diffusion is developed for use in numerical contaminant transport simulators. This method is an adaptation and extension of the heat conduction method of Vinsome and Westerveld (1980) used to simulate heat losses during thermally enhanced oil recovery. The semi-analytical method is used in place of discretization of the low permeability materials, and it represents the concentration profile in the low permeability materials with a fitting function that is adjusted in each element at each time-step. The resulting matrix diffusion fluxes are added to the numerical model as linear concentration-dependent source/sink terms. Since only the high permeability zones need to be discretized, the numerical formulation is extremely efficient compared to traditional approaches that require discretization of both the high and low permeability zones. The semi-analytical method compares favorably with the analytical solution for transient one-dimensional diffusion with first order decay, with a two-layer aquifer/aquitard solution, with the solution for transport in a fracture with matrix diffusion and decay, and with a fully numerical solution for transport in a thin sand zone bounded by clay with variable decay rates.

  2. Comparison of transport properties models for numerical simulations of Mars entry vehicles

    Science.gov (United States)

    Hao, Jiaao; Wang, Jingying; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2017-01-01

    Effects of two different models for transport properties, including the approximate model and the collision integral model, on hypersonic flow simulations of Mars entry vehicles are numerically investigated. A least square fitting is firstly performed using the best-available data of collision integrals for Martian atmosphere species within the temperature range of 300-20,000 K. Then, the performance of these two transport properties models are compared for an equilibrium Martian atmosphere gas mixture at 10 kPa and temperatures ranging from 1000 to 10,000 K. Finally, four flight conditions chosen from the trajectory of the Mars Pathfinder entry vehicle are numerically simulated. It is indicated that the approximate model is capable of accurately providing the distributions of species mass fractions and temperatures in the flowfield. Both models give similar translational-rotational and vibrational heat fluxes. However, the chemical diffusion heat fluxes predicted by the approximate model are significantly larger than the results computed by the collision integral model, particularly in the vicinity of the forebody stagnation point, whose maximum relative error of 15% for the super-catalytic case. The diffusion model employed in the approximate model is responsible to the discrepancy. In addition, the wake structure is largely unaffected by the transport properties models.

  3. Simulation and experimental validation of a 400 m vertical CO2 heat pipe for geothermal application

    Science.gov (United States)

    Ebeling, Johann-Christoph; Kabelac, Stephan; Luckmann, Sebastian; Kruse, Horst

    2017-03-01

    Geothermal heat pipes are an effective heat source for heat pumps used for space heating. Because the area for the installation of borehole heat exchangers is limited in urban areas (one site per borehole), the maximum heat extractable from one borehole shall rise. In cooperation with the FKW Hannover, the Institute for Thermodynamics of the Leibniz University of Hannover is investigating the thermodynamic behavior of CO2 driven geothermal heat pipes of higher thermal power. Therefore two different types of geothermal heat pipes with a length of 400 m each have been installed. Furthermore a numerical simulation of the heat and mass transfer within the pipes is under development. The experimental setup and first results of the experiments are presented as well as the current status of the numerical simulation. A comparison of the two different types of heat pipes and a comparison of the experimental data with the numerical simulation is given.

  4. The Dependence of Atmospheric Circulation and Heat Transport on the Planetary Rotation Rate

    Science.gov (United States)

    Basu, S.; Richardson, M. I.; Wilson, R. J.

    2002-12-01

    Simplified models of planetary climate require a parameterization for the equator-to-pole transport of heat and its dependence on factors, including the planetary rotation rate. Various such parameterizations exist, including ones based on the theory of baroclinic eddy mixing, and on principles of global entropy generation. However, such parameterizations are difficult to test given the limited available observational opportunities. In this study, we use a numerical model to examine heat flux dependencies, as part of a wider study of circulation regime sensitivity to rotation rates and other parameters. This study makes use of a simplified version of the Geophysical Fluid Dynamics Laboratory (GFDL) "Skyhi" General Circulation Model (GCM). All terrestrial hydrological processes have been stripped from the model, which in the form used here, is adapted from the Martian version of Skyhi. The atmosphere has the gas properties of CO2, except that it has been made uncondensible. No aerosols or surface ices are allowed. The model surface is flat, and of uniform albedo and thermal inertia. For the simulations presented in this study, the diurnal, seasonal, and eccentricity cycles have been disabled ({ i.e.} the surface and atmosphere receives constant, daily- and seasonally-averaged incident solar radiation). Radiative heating is treated with a band model for CO2 gas in the thermal and near-infrared bands. The use of a complex model to examine simplified theory of heat transport requires some justification since it is not necessarily clear that these models (GCM's) provide an accurate emulation of the real atmosphere (of any given planet). In this study, we have intentionally removed those aspects of GCM's that are of greatest concern. Especially for terrestrial GCM's, the hydrologic cycle is a major source of uncertainty due to radiative feedbacks, and cloud coupling to small-scale, convective mixing. For other planets, aerosols are important as radiatively and dynamical

  5. RCM simulation of interchange transport in Saturn's inner magnetosphere

    Science.gov (United States)

    Hill, T. W.; Liu, X.; Sazykin, S. Y.; Wolf, R.

    2013-12-01

    Numerical simulations with the Rice Convection Model have been used to study the radial transport of plasma in Saturn's inner magnetosphere (L process is the pervasive presence of V-shaped injection/dispersion signatures in linear energy-time spectrograms that are observed by the Cassini Plasma Spectrometer (CAPS) on every pass through the inner magnetosphere. Using observed hot plasma distributions at L~12 as input, we have now successfully simulated these V-shaped signatures. We will show these simulation results and compare them with observed signatures. We will also describe future improvements to the model including relaxing the dipole-field assumption, thus enabling us to simulate local-time asymmetries imposed by the outer magnetosphere and tail.

  6. A numerical study on the flow and heat transfer characteristics in a noncontact glass transportation unit

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ik Tae; Park, Chan Woo [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Kwang Sun [Korea University of Technology and Education, Chonan (Korea, Republic of)

    2009-12-15

    Vertical sputtering systems are key equipment in the manufacture of liquid crystal display (LCD) panels. During the sputtering process for LCD panels, a glass plate is transported between chambers for various processes, such as deposition of chemicals on the surface. The minimization of surface scratches and damage to the glass, the rate of consumption of gas, and the stability of the floating glass-plate are key considerations in the design of a gas pad. To develop new, non-contact systems of transportation for large, thin glass plates, various shapes of the nozzle of a gas pad unit were considered in this study. In the proposed nozzle design, negative pressure was used to suppress undesirable fluctuations of the glass plate. After the nozzle's shape was varied through numerical simulations in two dimensions, we determined the optimal shape, after which three-dimensional analyses were carried out to verify the results from the two-dimensional analyses. The rate of heat transfer from the glass plate, as a result of the gas jet, was also investigated. The average Nusselt number at the glass surface varied from 22.7 to 26.6 depending on the turbulence model, while the value from the correlation for the jet array was 23.5. It was found that the well-established correlation equation of the Nusselt number for the circular jet array can be applied to the cooling of the glass plates

  7. Solute or Heat Transport in a Flat Duct

    Directory of Open Access Journals (Sweden)

    Elijah Johnson

    2008-01-01

    Full Text Available Steady state solute and heat transfer for laminar flow in a flat duct has been widely studied[1-4]. The same problem in a circular tube is called the Graetz Problem[5,6]. The transfer rate of solute and heat from fluids is of importance in a number of processes, such as diffusion of drugs in the blood stream and the uptake of environmental contaminants by animals in aquatic media[7]. In this study the rate of solute or heat transfer from fluids was determined by solving the associated differential equation. Solution by the series approach in the complex plane was used with a series that had a gaussian factor. The eigenfunctions and eigenvalues involved were examined for two different sets of boundary conditions.

  8. Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

    Directory of Open Access Journals (Sweden)

    Korycki Ryszard

    2016-09-01

    Full Text Available Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

  9. Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law

    Science.gov (United States)

    López, Rosa; Sánchez, David

    2013-07-01

    We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two terminals. We discuss nonlinear contributions to the Peltier effect and find departures from the Wiedemann-Franz law in the nonlinear regime of transport.

  10. Particle-In-Cell simulation concerning heat-flux mitigation using electromagnetic fields

    Science.gov (United States)

    Lüskow, Karl Felix; Duras, Julia; Kemnitz, Stefan; Kahnfeld, Daniel; Matthias, Paul; Bandelow, Gunnas; Schneider, Ralf; Konigorski, Detlev

    2016-10-01

    In space missions enormous amount of money is spent for the thermal protection system for re-entry. To avoid complex materials and save money one idea is to reduce the heat-flux towards the spacecraft. The partially-ionized gas can be controlled by electromagnetic fields. For first-principle tests partially ionized argon flow from an arc-jet was used to measure the heat-flux mitigation created by an external magnetic field. In the successful experiment a reduction of 85% was measured. In this work the Particle-in-Cell (PIC) method was used to simulate this experiment. PIC is able to reproduce the heat flux mitigation qualitatively. The main mechanism is identified as a changed electron transport and by this, modified electron density due to the reaction to the applied magnetic field. Ions follow due to quasi-neutrality and influence then strongly by charge exchange collisions the neutrals dynamics and heat deposition. This work was supported by the German Space Agency DLR through Project 50RS1508.

  11. Modeling and Simulation of Radiative Compressible Flows in Aerodynamic Heating Arc-Jet Facility

    Science.gov (United States)

    Bensassi, Khalil; Laguna, Alejandro A.; Lani, Andrea; Mansour, Nagi N.

    2016-01-01

    Numerical simulations of an arc heated flow inside NASA's 20 [MW] Aerodynamics heating facility (AHF) are performed in order to investigate the three-dimensional swirling flow and the current distribution inside the wind tunnel. The plasma is considered in Local Thermodynamics Equilibrium(LTE) and is composed of Air-Argon gas mixture. The governing equations are the Navier-Stokes equations that include source terms corresponding to Joule heating and radiative cooling. The former is obtained by solving an electric potential equation, while the latter is calculated using an innovative massively parallel ray-tracing algorithm. The fully coupled system is closed by the thermodynamics relations and transport properties which are obtained from Chapman-Enskog method. A novel strategy was developed in order to enable the flow solver and the radiation calculation to be preformed independently and simultaneously using a different number of processors. Drastic reduction in the computational cost was achieved using this strategy. Details on the numerical methods used for space discretization, time integration and ray-tracing algorithm will be presented. The effect of the radiative cooling on the dynamics of the flow will be investigated. The complete set of equations were implemented within the COOLFluiD Framework. Fig. 1 shows the geometry of the Anode and part of the constrictor of the Aerodynamics heating facility (AHF). Fig. 2 shows the velocity field distribution along (x-y) plane and the streamline in (z-y) plane.

  12. Simulation Optimization for Transportation System: A Real Case Application

    Directory of Open Access Journals (Sweden)

    Muhammet Enes Akpınar

    2017-02-01

    Full Text Available Simulation applications help decision makers to give right decisions to eliminate some problems such as: create a new firm, need some changes inside a factory; improve the process of a hospital etc. In this engineering simulation study, there are two points which are used by students to arrive at the University. Initial point is the train station and the final point is the arrival point. Students’ transportation is provided with buses. The main problem is to decide the number of buses by taking number of student into consideration. To be able to solve this real-life application PROMODEL pack software is used.

  13. FLUKA simulations of neutron transport in the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Grieger, Marcel [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Bemmerer, Daniel; Mueller, Stefan E.; Szuecs, Tamas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    A new underground ion accelerator with 5 MV acceleration potential is currently being prepared for installation in the Dresden Felsenkeller. The Felsenkeller site consists of altogether nine mutually connected tunnels. It is shielded from cosmic radiation by a 45 m thick rock overburden, enabling uniquely sensitive experiments. In order to exclude any possible effect by the new accelerator in tunnel VIII on the existing low-background γ-counting facility in tunnel IV, Monte Carlo simulations of neutron transport are being performed. A realistic neutron source field is developed, and the resulting additional neutron flux at the γ-counting facility is modeled by FLUKA simulations.

  14. Heat transport in the high-pressure ice mantle of large icy moons

    Science.gov (United States)

    Choblet, G.; Tobie, G.; Sotin, C.; Kalousová, K.; Grasset, O.

    2017-03-01

    While the existence of a buried ocean sandwiched between surface ice and high-pressure (HP) polymorphs of ice emerges as the most plausible structure for the hundreds-of-kilometers thick hydrospheres within large icy moons of the Solar System (Ganymede, Callisto, Titan), little is known about the thermal structure of the deep HP ice mantle and its dynamics, possibly involving melt production and extraction. This has major implications for the thermal history of these objects as well as on the habitability of their ocean as the HP ice mantle is presumed to limit chemical transport from the rock component to the ocean. Here, we describe 3D spherical simulations of subsolidus thermal convection tailored to the specific structure of the HP ice mantle of large icy moons. Melt production is monitored and melt transport is simplified by assuming instantaneous extraction to the ocean above. The two controlling parameters for these models are the rheology of ice VI and the heat flux from the rock core. Reasonable end-members are considered for both parameters as disagreement remains on the former (especially the pressure effect on viscosity) and as the latter is expected to vary significantly during the moon's history. We show that the heat power produced by radioactive decay within the rock core is mainly transported through the HP ice mantle by melt extraction to the ocean, with most of the melt produced directly above the rock/water interface. While the average temperature in the bulk of the HP ice mantle is always relatively cool when compared to the value at the interface with the rock core (∼ 5 K above the value at the surface of the HP ice mantle), maximum temperatures at all depths are close to the melting point, often leading to the interconnection of a melt path via hot convective plume conduits throughout the HP ice mantle. Overall, we predict long periods of time during these moons' history where water generated in contact with the rock core is transported to

  15. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  16. Heat and Moisture Transport in Unsaturated Porous Media -- A Coupled Model in Terms of Chemical Potential

    CERN Document Server

    Sullivan, Eric

    2013-01-01

    Transport phenomena in porous media are commonplace in our daily lives. Examples and applications include heat and moisture transport in soils, baking and drying of food stuffs, curing of cement, and evaporation of fuels in wild fires. Of particular interest to this study are heat and moisture transport in unsaturated soils. Historically, mathematical models for these processes are derived by coupling classical Darcy's, Fourier's, and Fick's laws with volume averaged conservation of mass and energy and empirically based source and sink terms. Recent experimental and mathematical research has proposed modifications and suggested limitations in these classical equations. The primary goal of this thesis is to derive a thermodynamically consistent system of equations for heat and moisture transport in terms of the chemical potential that addresses some of these limitations. The physical processes of interest are primarily diffusive in nature and, for that reason, we focus on using the macroscale chemical potentia...

  17. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  18. {delta}f simulation of ion neoclassical transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Nakajima, N.; Okamoto, M.; Murakami, S. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-07-01

    Ion neoclassical transport with finite orbit width dynamics is calculated over whole poloidal cross section by using accurate {delta}f method which employs an improved like-particle collision operator and an accurate weighting scheme to solve drift kinetic equation. Ion thermal transport near magnetic axis shows a great reduction from its conventional neoclassical level due to non-standard orbit topology, like that of previous {delta}f simulation. On other hand, the direct particle loss from confinement region may strongly increase ion energy transport near the edge. It is found that ion parallel flow near the axis is also largely reduced due to non-standard orbit topology. In the presence of steep density gradient, ion thermal conductivity is significantly reduced, and an ion particle flux is driven by self-collision alone. (author)

  19. A VERTICAL 2-D NUMERICAL SIMULATION OF SUSPENDED SEDIMENT TRANSPORT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-xin; LIU Hua

    2007-01-01

    Numerical simulation of sediment transport and bed evolution has become an important technique in the sediment research. In this article, a numerical model of suspended sediment transport was proposed, which was established in the vertical coordinate for fitting the free surface and bottom. In the research of the sediment transport, the predominant factors were found to be the eddy diffusion, the settling velocity, the bed condition and so on. By the aid of the model in the article, the contribution of the Rouse parameter to the vertical profile of sediment concentration was clarified, which was identical to the theoretical results. In the comparison of the numerical results with laboratory data, the agreement between experimental data and numerical results was reached except for some data. And the possible reasons for the disagreement were discussed.

  20. Drivers of uncertainty in simulated ocean circulation and heat uptake

    Science.gov (United States)

    Huber, Markus B.; Zanna, Laure

    2017-02-01

    The impact of uncertainties in air-sea fluxes and ocean model parameters on the ocean circulation and ocean heat uptake (OHU) is assessed in a novel modeling framework. We use an ocean-only model forced with the simulated sea surface fields of the CMIP5 climate models. The simulations are performed using control and 1% CO2 warming scenarios. The ocean-only ensemble adequately reproduces the mean Atlantic Meridional Overturning Circulation (AMOC) and the zonally integrated OHU. The ensemble spread in AMOC strength, its weakening, and Atlantic OHU due to different air-sea fluxes is twice as large as the uncertainty range related to vertical and mesocale eddy diffusivities. The sensitivity of OHU to uncertainties in air-sea fluxes and model parameters differs vastly across basins, with the Southern Ocean exhibiting strong sensitivity to air-sea fluxes and model parameters. This study clearly demonstrates that model biases in air-sea fluxes are one of the key sources of uncertainty in climate simulations.

  1. Molecular dynamics simulation of ion transport in a nanochannel

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; CHEN YunFei; ZHONG Wu; YANG JueKuan

    2008-01-01

    A molecular dynamics (MD) model of the fluidic electrokinetic transport in a nano-scale channel with two bulk sinks was presented,and the process of ion transport in the nanochannel was simulated in this paper.The model consists of two water sinks at the two ends and a pump in the middle,which is different from a single pump model in previous MD simulations.Simulation results show that the charged surfaces of the nanochannel result in the depletion of co-ions and the en-richment of counterions in the nanochannel.A stable current is induced because of the motion of ions when an external electric field is applied across the nanochannel,and the current in the pump region is mainly induced by the motion of counterions.In addition,the ion number in the pump region rapidly decreases as the external electric field is applied.In the equilibrated system,the electrically neutral character in the pump region is destroyed and this region displays a certain electrical char-acter,which depends on the surface charge.The ion distribution is greatly different from the results predicted by the continuum theory,e.g.a smaller peak value of Na+ concentration appears near the wall.The transport efficiency of counterions (co-ions) can be effectively increased (decreased) by increasing the surface charge density.The simulation results demonstrate that the ion distribution in the electric double layer (EDL) of a nanochannel cannot be exactly described by the classical Gouy-Chapman-Stern (GCS) theory model.The mechanism of some special ex-perimental phenomena in a nanochannel and the effect of the surface charge den-sity on the ion-transport efficiency were also explored to provide some theoretical insights for the design and application of nano-scale fluidic pumps.

  2. Simulations of Electrophoretic RNA Transport Through Transmembrane Carbon Nanotubes

    OpenAIRE

    Zimmerli, Urs; Koumoutsakos, Petros

    2008-01-01

    The study of interactions between carbon nanotubes and cellular components, such as membranes and biomolecules, is fundamental for the rational design of nanodevices interfacing with biological systems. In this work, we use molecular dynamics simulations to study the electrophoretic transport of RNA through carbon nanotubes embedded in membranes. Decorated and naked carbon nanotubes are inserted into a dodecane membrane and a dimyristoylphosphatidylcholine lipid bilayer, and the system is sub...

  3. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  4. Hole transport simulations in SiGe cascade quantum wells

    Science.gov (United States)

    Ikonić, Z.; Harrison, P.; Kelsall, R. W.

    2004-03-01

    Hole transport in p-Si/SiGe quantum well cascade structures has been analyzed using a rate equation method with thermal balancing (self-consistent energy balance method). The carrier and energy relaxation due to alloy disorder, acoustic and optical phonon scattering are included. The model includes the in-plane k-space anisotropy. The results are compared to those obtained from Monte Carlo simulations and from the basic particle rate equation method.

  5. Molecular dynamics simulation of ion transport in a nanochannel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A molecular dynamics (MD) model of the fluidic electrokinetic transport in a nano-scale channel with two bulk sinks was presented, and the process of ion transport in the nanochannel was simulated in this paper. The model consists of two water sinks at the two ends and a pump in the middle, which is different from a single pump model in previous MD simulations. Simulation results show that the charged surfaces of the nanochannel result in the depletion of co-ions and the enrichment of counterions in the nanochannel. A stable current is induced because of the motion of ions when an external electric field is applied across the nanochannel, and the current in the pump region is mainly induced by the motion of counterions. In addition, the ion number in the pump region rapidly decreases as the external electric field is applied. In the equilibrated system, the electrically neutral character in the pump region is destroyed and this region displays a certain electrical character, which depends on the surface charge. The ion distribution is greatly different from the results predicted by the continuum theory, e.g. a smaller peak value of Na+ concentration appears near the wall. The transport efficiency of counterions (co-ions) can be effectively increased (decreased) by increasing the surface charge density. The simulation results demonstrate that the ion distribution in the electric double layer (EDL) of a nanochannel cannot be exactly described by the classical Gouy-Chapman-Stern (GCS) theory model. The mechanism of some special experimental phenomena in a nanochannel and the effect of the surface charge density on the ion-transport efficiency were also explored to provide some theoretical insights for the design and application of nano-scale fluidic pumps.

  6. Daily simulations of urban heat load in Vienna for 2011

    Science.gov (United States)

    Hollosi, Brigitta; Zuvela-Aloise, Maja; Koch, Roland

    2014-05-01

    In this study, the dynamical urban climate model MUKLIMO3 (horizontal resolution of 100 m) is uni-directionally coupled with the operational weather forecast model ALARO-ALADIN of the ZAMG (horizontal resolution of 4.8 km) to simulate the development of the urban heat island in Vienna on a daily basis. The aim is to evaluate the performance of the urban climate model applied for climatological studies in a weather prediction mode. The focus of the investigation is on assessment of the urban heat load during day-time. We used the archived daily forecast data for the summer period in 2011 (April - October) as input data for the urban climate model. The high resolution simulations were initialized with vertical profiles of temperature and relative humidity and prevailing wind speed and direction in the rural area near the city in the early morning hours. The model output for hourly temperature and relative humidity has been evaluated against the monitoring data at 9 weather stations in the area of the city. Additionally, spatial gradients in temperature were evaluated by comparing the grid point values with the data collected during a mobile measuring campaign taken on a multi-vehicle bicycle tour on the 7th of July, 2011. The results show a good agreement with observations on a district scale. Particular challenge in the modeling approach is achieving robust and numerically stable model solutions for different weather situation. Therefore, we analyzed modeled wind patterns for different atmospheric conditions in the summer period. We found that during the calm hot days, due to the inhomogeneous surface and complex terrain, the local-scale temperature gradients can induce strong anomalies, which in turn could affect the circulation on a larger scale. However, these results could not be validated due to the lack of observations. In the following years extreme hot conditions are very likely to occur more frequently and with higher intensity. Combining urban climate

  7. Transport phenomena in capillary-porous structures and heat pipes

    CERN Document Server

    Smirnov, Henry

    2009-01-01

    With emphasis on the processes involved, this text explores the experimental efforts in two-phase thermal control technology research and development. This work evaluates and compares different theoretical approaches, experimental results, and models, such as semi-empirical models for critical boiling heat fluxes.

  8. Theory of nonlocal heat transport in fully ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Maximov, A.V. (Tesla Labs., Inc., La Jolla, CA (United States)); Silin, V.P. (P.N. Lebedev Inst., Russian Academy of Sciences, Moscow (Russia))

    1993-01-25

    A new analytic solution of the electron kinetic equation describing the interacting of the electromagnetic heating field with plasma is obtained in the region of plasma parameters where the Spitzer-Harm classical theory is invalid. A novel expression for the nonlocal electron thermal conductivity is derived. (orig.).

  9. Photothermal heating in metal-embedded microtools for material transport

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael;

    2016-01-01

    as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control...

  10. Constrained Transport vs. Divergence Cleanser Options in Astrophysical MHD Simulations

    Science.gov (United States)

    Lindner, Christopher C.; Fragile, P.

    2009-01-01

    In previous work, we presented results from global numerical simulations of the evolution of black hole accretion disks using the Cosmos++ GRMHD code. In those simulations we solved the magnetic induction equation using an advection-split form, which is known not to satisfy the divergence-free constraint. To minimize the build-up of divergence error, we used a hyperbolic cleanser function that simultaneously damped the error and propagated it off the grid. We have since found that this method produces qualitatively and quantitatively different behavior in high magnetic field regions than results published by other research groups, particularly in the evacuated funnels of black-hole accretion disks where Poynting-flux jets are reported to form. The main difference between our earlier work and that of our competitors is their use of constrained-transport schemes to preserve a divergence-free magnetic field. Therefore, to study these differences directly, we have implemented a constrained transport scheme into Cosmos++. Because Cosmos++ uses a zone-centered, finite-volume method, we can not use the traditional staggered-mesh constrained transport scheme of Evans & Hawley. Instead we must implement a more general scheme; we chose the Flux-CT scheme as described by Toth. Here we present comparisons of results using the divergence-cleanser and constrained transport options in Cosmos++.

  11. Simulations of the L H transition dynamics with different heat and particle sources

    Institute of Scientific and Technical Information of China (English)

    李会东; 王占辉; Jan Weiland; 冯灏; 孙卫国

    2015-01-01

    It is crucial to increase the total stored energy by realizing the transition from a low confinement (L-mode) state to a high confinement (H-mode) state in magnetic confinement fusion. The L–H transition process is simulated by using the predictive transport code based on Weiland’s fl uid model. Based on the equilibrium parameters obtained from equilibrium fitting (EFIT) in the experiment, the electron density ne, electron temperature Te, ion temperatures Ti, ion poloidal Vp, and toroidal momenta Vt are simulated self-consistently. The L–H transition dynamic behaviors with the formation of the transport barriers of ion and electron temperatures, the electron density, and the ion toroidal momenta are analyzed. During the L–H transition, the strong poloidal fl ow shear in the edge transport barrier region is observed. The crashes of the electron and ion temperature pedestals are also observed during the L–H transition. The effects of the heating and particle sources on the L–H transition process are studied systematically, and the critical power threshold of the L–H transition is also found.

  12. Development of the universal and simplified soil model coupling heat and water transport

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is very important to develop a universal soil model with higher simplicity and more accuracy, which can be widely applied to very general cases such as wet or dry soil, frozen or unfrozen soil and homogeneous or heterogeneous soil. Firstly in this study, based on analysis of both magnitude order and the numerical simulation results, the universal and simplified soil model (USSM) coupling heat and mass transport processes is developed. Secondly, in order to avoid the greater uncertainty caused by the phase change term in numerical iteration process for the model solution obtaining, new version of the universal simplified soil model (NUSSM) is further derived through variables transformation, and accordingly a more efficient numerical scheme for the new version is designed well. The simulation results from the NUSSM agree with the results from more complicated and accurate soil model very well, also reasonably reproduce the observed data under widely real conditions. The new version model, because of its simplicity, will match for the development of land surface model.

  13. Effects of permeability fields on fluid, heat, and oxygen isotope transport in extensional detachment systems

    Science.gov (United States)

    Gottardi, RaphaëL.; Kao, Po-Hao; Saar, Martin O.; Teyssier, Christian

    2013-05-01

    Field studies of Cordilleran metamorphic core complexes indicate that meteoric fluids permeated the upper crust down to the detachment shear zone and interacted with highly deformed and recrystallized (mylonitic) rocks. The presence of fluids in the brittle/ductile transition zone is recorded in the oxygen and hydrogen stable isotope compositions of the mylonites and may play an important role in the thermomechanical evolution of the detachment shear zone. Geochemical data show that fluid flow in the brittle upper crust is primarily controlled by the large-scale fault-zone architecture. We conduct continuum-scale (i.e., large-scale, partial bounce-back) lattice-Boltzman fluid, heat, and oxygen isotope transport simulations of an idealized cross section of a metamorphic core complex. The simulations investigate the effects of crust and fault permeability fields as well as buoyancy-driven flow on two-way coupled fluid and heat transfer and resultant exchange of oxygen isotopes between meteoric fluid and rock. Results show that fluid migration to middle to lower crustal levels is fault controlled and depends primarily on the permeability contrast between the fault zone and the crustal rocks. High fault/crust permeability ratios lead to channelized flow in the fault and shear zones, while lower ratios allow leakage of the fluids from the fault into the crust. Buoyancy affects mainly flow patterns (more upward directed) and, to a lesser extent, temperature distributions (disturbance of the geothermal field by ~25°C). Channelized fluid flow in the shear zone leads to strong vertical and horizontal thermal gradients, comparable to field observations. The oxygen isotope results show δ18O depletion concentrated along the fault and shear zones, similar to field data.

  14. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    Science.gov (United States)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well

  15. Scalings of field correlations and heat transport in turbulent convection.

    Science.gov (United States)

    Verma, Mahendra K; Mishra, Pankaj K; Pandey, Ambrish; Paul, Supriyo

    2012-01-01

    Using direct numerical simulations of Rayleigh-Bénard convection under free-slip boundary condition, we show that the normalized correlation function between the vertical velocity field and the temperature field, as well as the normalized viscous dissipation rate, scales as Ra-0.22 for moderately large Rayleigh number Ra. This scaling accounts for the Nusselt number Nu exponent of approximately 0.3, as observed in experiments. Numerical simulations also reveal that the aforementioned normalized correlation functions are constants for the convection simulation under periodic boundary conditions.

  16. Confining interparticle potential makes both heat transport and energy diffusion anomalous in one-dimensional phononic systems

    Science.gov (United States)

    Kosevich, Yuriy A.; Savin, Alexander V.

    2016-10-01

    We provide molecular dynamics simulation of heat transport and energy diffusion in one-dimensional molecular chains with different interparticle pair potentials at zero and non-zero temperature. We model the thermal conductivity (TC) and energy diffusion (ED) in the chain of coupled rotators and in the Lennard-Jones chain either without or with the confining parabolic interparticle potential. The considered chains without the confining potential have normal TC and ED at non-zero temperature, while the corresponding chains with the confining potential are characterized by anomalous (diverging with the system length) TC and superdiffusion of energy. Similar effect is produced by the anharmonic quartic confining pair potential. We confirm in such a way that, surprisingly, the confining pair potential makes both heat transport and energy diffusion anomalous in one-dimensional phononic systems. We show that the normal TC is always accompanied by the normal ED in the thermalized anharmonic chains, while the superdiffusion of energy occurs in the thermalized chains with only anomalous heat transport.

  17. Effect of wind forcing on the meridional heat transport in a coupled climate model: equilibrium response

    Science.gov (United States)

    Yang, Haijun; Dai, Haijin

    2015-09-01

    The effect of the ocean surface winds on the meridional heat transports is studied in a coupled model. Shutting down the global surface winds causes significant reductions in both wind-driven and thermohaline ocean circulations, resulting in a remarkable decrease in the poleward oceanic heat transport (OHT). The sea surface temperature responds with significant warming in the equator and cooling off the equator, causing an enhancement and equatorward shift in the Hadley cell. This increases the poleward atmospheric heat transport (AHT), which in turn compensates the decrease in the OHT. This compensation implies a fundamental constraint in changes of ocean-atmosphere energy transports. Several other compensation changes are also identified. For the OHT components, the changes in the Eulerian mean and bolus OHT are compensated with each other in the Southern Ocean, since a stronger wind driven Ekman transport is associated with a stronger meridional density gradient (stronger bolus circulation) and vice versa. For the AHT components, the changes in the dry static energy (DSE) and latent energy transports are compensated within the tropics (30°N/S), because a stronger Hadley cell causes a stronger equatorward convergence of moisture. In the extratropics, the changes in the mean and eddy DSE transports show perfect compensation, as a result of the equatorward shift of the Ferrell Cell and enhancement of atmospheric baroclinicity in mid-high latitudes, particularly over the North Atlantic. This work also shows how the Earth's climate is trying to maintain the balance between two hemispheres: the ocean in the Northern Hemisphere is colder than that in the Southern Hemisphere due to much reduced northward heat transports cross the Equator in the Atlantic, therefore, the atmosphere responds to the ocean with temperature colder in the Southern Hemisphere than in the Northern Hemisphere by transporting more heat northward cross the equator over the Pacific, in association

  18. Three-dimensional simulations of radionuclide transport at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, K.H.; Eggert, K.G.; Travis, B.J. [Los Alamos National Lab., NM (United States)

    1994-12-31

    This paper presents preliminary transport calculations for radionuclide movement at Yucca Mountain. The simulations were run with TRACRN using approximately 30 000 finite-difference zones to represent the unsaturated and saturated zones underlying the potential repository in three dimensions. The results are used to study the sensitivity of radionuclide migration to uncertainties in several factors that affect transport through porous media. These factors include recharge rate, dispersivity length scale, radionuclide species, and source term. The calculations show that the transport of weakly sorbing species like {sup 99}Tc and {sup 129}I is highly sensitive to all of these factors. The transport of strongly sorbing species like {sup 135}Cs is limited by retardation and is therefore fairly insensitive to these factors. In addition to showing the sensitivity of transport to physical processes, the results show that the calculations themselves are sensitive to problem dimensionality. The calculations indicate that modeling in three dimensions provides faster breakthrough than modeling in one or two dimensions. (author) 30 figs., 2 tabs., 13 refs.

  19. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; Frith, S. M.; Gettleman, A.; Hardiman, S. C.; Kinnison, D. E.; Lamarque, J.-F.; Mancini, E.; Marchand, M.; Michou, M.; Morgenstern, O.; Nakamura, T.; Olivie, D.; Pawson, S.; Pitari, G.; Plummer, D. A.; Pyle, J. A.

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  20. Effect of tube pitch on heat transfer in shell-and-tube heat exchangers—new simulation software

    Science.gov (United States)

    Karno, A.; Ajib, S.

    2006-02-01

    A new program for simulation and optimization of the shell-and-tube heat exchangers is prepared to obtain useful results by employment of the computing technology fast and accurately. As an application of this program, the effects of transverse and longitudinal tube pitch in the in-line and staggered tube arrangements on the Nusselt numbers, heat transfer coefficients and thermal performance of the heat exchangers were investigated. The obtained values of the tube pitch were compared with literature values.

  1. Simulations and Transport Models for Imbalanced Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Ng, Chung-Sang; Dennis, T.

    2016-10-01

    We present results from a series of three-dimensional simulations of magnetohydrodynamic (MHD) turbulence based on reduced MHD equations. Alfven waves are launched from both ends of a long tube along the background uniform magnetic field so that turbulence develops due to collision between counter propagating Alfven waves in the interior region. Waves are launched randomly with specified correlation time Tc such that the length of the tube, L, is greater than (but of the same order of) VA *Tc such that turbulence can fill most of the tube. While waves at both ends are launched with equal power, turbulence generated is imbalanced in general, with normalized cross-helicity gets close to -1 at one end and 1 at the other end. This simulation setup allows easier comparison of turbulence properties with one-dimensional turbulence transport models, which have been applied rather successfully in modeling solar wind turbulence. However, direct comparison of such models with full simulations of solar wind turbulence is difficult due to much higher level of complexity involved. We will present our latest simulations at different resolutions with decreasing dissipation (resistivity and viscosity) levels and compare with model outputs from turbulence transport models. This work is supported by a NASA Grant NNX15AU61G.

  2. Discrete event simulation of Maglev transport considering traffic waves

    Directory of Open Access Journals (Sweden)

    Moo Hyun Cha

    2014-10-01

    Full Text Available A magnetically levitated vehicle (Maglev system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.

  3. Simulation of bipolar charge transport in nanocomposite polymer films

    Science.gov (United States)

    Lean, Meng H.; Chu, Wei-Ping L.

    2015-03-01

    This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.

  4. Nonlinear charge transport in bipolar semiconductors due to electron heating

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Valdovinos, S., E-mail: sergiom@fisica.uaz.edu.mx [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, CP 98060, Zacatecas, Zac, México (Mexico); Gurevich, Yu.G. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, México D.F., CP 07360, México (Mexico)

    2016-05-27

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  5. Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation

    Science.gov (United States)

    Ji, Pengfei; Zhang, Yuwen

    2016-03-01

    On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.

  6. Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation

    CERN Document Server

    Ji, Pengfei

    2016-01-01

    On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provide a general way that is accessible to other metals in laser heating.

  7. Ion Transport and Structural Properties of Polymeric Electrolytes and Ionic Liquids from Molecular Dynamics Simulations

    Science.gov (United States)

    Borodin, Oleg

    2010-03-01

    Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.

  8. Modeling unsteady-state VOC transport in simulated waste drums. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1994-01-01

    This report is a revision of an EG&G Idaho informal report originally titled Modeling VOC Transport in Simulated Waste Drums. A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the permeability had been measured.

  9. Flight Simulator Platform Motion and Air Transport Pilot Training

    Science.gov (United States)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  10. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    Science.gov (United States)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  11. Simulations of electrophoretic RNA transport through transmembrane carbon nanotubes.

    Science.gov (United States)

    Zimmerli, Urs; Koumoutsakos, Petros

    2008-04-01

    The study of interactions between carbon nanotubes and cellular components, such as membranes and biomolecules, is fundamental for the rational design of nanodevices interfacing with biological systems. In this work, we use molecular dynamics simulations to study the electrophoretic transport of RNA through carbon nanotubes embedded in membranes. Decorated and naked carbon nanotubes are inserted into a dodecane membrane and a dimyristoylphosphatidylcholine lipid bilayer, and the system is subjected to electrostatic potential differences. The transport properties of this artificial pore are determined by the structural modifications of the membrane in the vicinity of the nanotube openings and they are quantified by the nonuniform electrostatic potential maps at the entrance and inside the nanotube. The pore is used to transport electrophoretically a short RNA segment and we find that the speed of translocation exhibits an exponential dependence on the applied potential differences. The RNA is transported while undergoing a repeated stacking and unstacking process, affected by steric interactions with the membrane headgroups and by hydrophobic interaction with the walls of the nanotube. The RNA is structurally reorganized inside the nanotube, with its backbone solvated by water molecules near the axis of the tube and its bases aligned with the nanotube walls. Upon exiting the pore, the RNA interacts with the membrane headgroups and remains attached to the dodecane membrane while it is expelled into the solvent in the case of the lipid bilayer. The results of the simulations detail processes of molecular transport into cellular compartments through manufactured nanopores and they are discussed in the context of applications in biotechnology and nanomedicine.

  12. Analysis for Heat Transfer in a High Current-Passing Carbon Nanosphere Using Nontraditional Thermal Transport Model.

    Science.gov (United States)

    Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y

    2015-11-01

    This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.

  13. First-Principles Molecular Dynamics Investigation of the Atomic-Scale Energy Transport: From Heat Conduction to Thermal Radiation

    CERN Document Server

    Ji, Pengfei

    2016-01-01

    First-principles molecular dynamics simulation based on a plane wave/pseudopotential implementation of density functional theory is adopted to investigate atomic scale energy transport for semiconductors (silicon and germanium). By imposing thermostats to keep constant temperatures of the nanoscale thin layers, initial thermal non-equilibrium between the neighboring layers is established under the vacuum condition. Models with variable gap distances with an interval of lattice constant increment of the simulated materials are set up and statistical comparisons of temperature evolution curves are made. Moreover, the equilibration time from non-equilibrium state to thermal equilibrium state of different silicon or/and germanium layers combinations are calculated. The results show significant distinctions of heat transfer under different materials and temperatures combinations. Further discussions on the equilibrium time are made to explain the simulation results. As the first work of the atomic scale energy tra...

  14. Stability of Microturbulent Drift Modes during Internal Transport Barrier Formation in the Alcator C-Mod Radio Frequency Heated H-mode

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Redi; C.L. Fiore; W. Dorland; D.R. Mikkelsen; G. Rewoldt; P.T. Bonoli; D.R. Ernst; J.E. Rice; S.J. Wukitch

    2003-11-20

    Recent H-mode experiments on Alcator C-Mod [I.H. Hutchinson, et al., Phys. Plasmas 1 (1994) 1511] which exhibit an internal transport barrier (ITB), have been examined with flux tube geometry gyrokinetic simulations, using the massively parallel code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88 (1995) 128]. The simulations support the picture of ion/electron temperature gradient (ITG/ETG) microturbulence driving high xi/ xe and that suppressed ITG causes reduced particle transport and improved ci on C-Mod. Nonlinear calculations for C-Mod confirm initial linear simulations, which predicted ITG stability in the barrier region just before ITB formation, without invoking E x B shear suppression of turbulence. Nonlinear fluxes are compared to experiment, which both show low heat transport in the ITB and higher transport within and outside of the barrier region.

  15. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    Science.gov (United States)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  16. Research of Operation Modes of Heat Storage Tank in CHP Plant Using Numerical Simulation

    National Research Council Canada - National Science Library

    Streckiene, Giedre; Miseviciute, Violeta

    2011-01-01

    ... ________________ _________________________________________________________________________________ Volume 6 Re search of Operation Modes of Heat Storage Tank in CHP Plant Using Numerical Simulation Giedre Streckiene 1 , Violeta Miseviciute 2 , 1 - 2 Department...

  17. Construction of reduced transport model by gyro-kinetic simulation with kinetic electrons in helical plasmas

    Science.gov (United States)

    Toda, S.; Nakata, M.; Nunami, M.; Ishizawa, A.; Watanabe, T.-H.; Sugama, H.

    2016-10-01

    A reduced model of the turbulent ion heat diffusivity is proposed by the gyrokinetic simulation code (GKV-X) with the adiabatic electrons for the high-Ti Large Helical Device discharge. The plasma parameter region of the short poloidal wavelength is studied, where the ion temperature gradient mode becomes unstable. The ion heat diffusivity by the nonlinear simulation with the kinetic electrons is found to be several times larger than the simulation results using the adiabatic electrons in the radial region 0.46 ion energy flux. The model of the turbulent diffusivity is derived as the function of the squared electrostatic potential fluctuation and the squared zonal flow potential. Next, the squared electrostatic potential fluctuation is approximated with the mixing length estimate. The squared zonal flow potential fluctuation is shown as the linear zonal flow response function. The reduced model of the turbulent diffusivity is derived as the function of the physical parameters by the linear GKV-X simulation with the kinetic electrons. This reduced model is applied to the transport code with the same procedure as.

  18. Unraveling Quasiperiodic Relaxations of Transport Barriers with Gyrokinetic Simulations of Tokamak Plasmas

    Science.gov (United States)

    Strugarek, A.; Sarazin, Y.; Zarzoso, D.; Abiteboul, J.; Brun, A. S.; Cartier-Michaud, T.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, Ph.; Grandgirard, V.; Latu, G.; Passeron, C.; Thomine, O.

    2013-10-01

    The generation and dynamics of transport barriers governed by sheared poloidal flows are analyzed in flux-driven 5D gyrokinetic simulations of ion temperature gradient driven turbulence in tokamak plasmas. The transport barrier is triggered by a vorticity source that polarizes the system. The chosen source captures characteristic features of some experimental scenarios, namely, the generation of a sheared electric field coupled to anisotropic heating. For sufficiently large shearing rates, turbulent transport is suppressed and a transport barrier builds up, in agreement with the common understanding of transport barriers. The vorticity source also governs a secondary instability— driven by the temperature anisotropy (T∥≠T⊥). Turbulence and its associated zonal flows are generated in the vicinity of the barrier, destroying the latter due to the screening of the polarization source by the zonal flows. These barrier relaxations occur quasiperiodically, and generically result from the decoupling between the dynamics of the barrier generation, triggered by the source driven sheared flow, and that of the crash, triggered by the secondary instability. This result underlines that barriers triggered by sheared flows are prone to relaxations whenever secondary instabilities come into play.

  19. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  20. Improving bariatric patient transport and care with simulation.

    Science.gov (United States)

    Gable, Brad D; Gardner, Aimee K; Celik, Dan H; Bhalla, Mary Colleen; Ahmed, Rami A

    2014-03-01

    Obesity is prevalent in the United States. Obese patients have physiologic differences from non-obese individuals. Not only does transport and maintenance of these patients require use of specialized equipment, but it also requires a distinct skill set and knowledge base. To date, there is no literature investigating simulation as a model for educating pre-hospital providers in the care of bariatric patients. The purpose of this study was to determine if a 3-hour educational course with simulation could improve paramedics' knowledge and confidence of bariatric procedures and transport. This study also examined if prior experience with bariatric transport affected training outcomes. Our study took place in August 2012 during paramedic training sessions. Paramedics completed a pre- and post-test that assessed confidence and knowledge and provided information on previous experience. They had a 30-minute didactic and participated in 2 20-minute hands-on skills portions that reviewed procedural issues in bariatric patients, including airway procedures, peripheral venous and intraosseous access, and cardiopulmonary resuscitation. Study participants took part in one of two simulated patient encounters. Paramedics were challenged with treating emergent traumatic and/or medical conditions, as well as extricating and transporting bariatric patients. Each group underwent a debriefing of the scenario immediately following their case. We measured confidence using a 5-point Likert-type response scale ranging from 1 (strongly disagree) to 5 (strongly agree) on a 7-item questionnaire. We assessed knowledge with 12 multiple choice questions. Paired-sample t-tests were used to compare pre- and post-simulation confidence and knowledge with a significance level of p≤0.05. We used analysis of covariance to examine the effect of previous experiences on pre-and post-educational activity confidence and knowledge with a significance level of p ≤0.05. Proportions and 95% confidence

  1. Improving Bariatric Patient Transport and Care with Simulation

    Directory of Open Access Journals (Sweden)

    Brad D. Gable

    2014-03-01

    Full Text Available Introduction: Obesity is prevalent in the United States. Obese patients have physiologic differences from non-obese individuals. Not only does transport and maintenance of these patients require use of specialized equipment, but it also requires a distinct skill set and knowledge base. To date, there is no literature investigating simulation as a model for educating pre-hospital providers in the care of bariatric patients. The purpose of this study was to determine if a 3-hour educational course with simulation could improve paramedics’ knowledge and confidence of bariatric procedures and transport. This study also examined if prior experience with bariatric transport affected training outcomes. Methods: Our study took place in August 2012 during paramedic training sessions. Paramedics completed a pre- and post-test that assessed confidence and knowledge and provided information on previous experience. They had a 30-minute didactic and participated in 2 20-minute hands-on skills portions that reviewed procedural issues in bariatric patients, including airway procedures, peripheral venous and intraosseous access, and cardiopulmonary resuscitation. Study participants took part in one of two simulated patient encounters. Paramedics were challenged with treating emergent traumatic and/or medical conditions, as well as extricating and transporting bariatric patients. Each group underwent a debriefing of the scenario immediately following their case. We measured confidence using a 5-point Likert-type response scale ranging from 1 (strongly disagree to 5 (strongly agree on a 7-item questionnaire. We assessed knowledge with 12 multiple choice questions. Paired-sample t-tests were used to compare pre- and post-simulation confidence and knowledge with a significance level of p≤0.05. We used analysis of covariance to examine the effect of previous experiences on pre-and post-educational activity confidence and knowledge with a significance level of p

  2. Throughflow and Gravity Modulation Effects on Heat Transport in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-01-01

    Full Text Available The effect of vertical throughflow and time-periodic gravity field has been investigated on Darcy convection. The amplitude of gravity modulation is considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weak nonlinear stability analysis has been performed for the stationary mode of convection. As a consequence heat transport evaluated in terms of the Nusselt number, which is governed by the non-autonomous Ginzburg-Landau equation. Throughflow can stabilize or destabilize the system for stress free and isothermal boundary conditions. The amplitude and frequency of modulation, Prandtl Darcy number on heat transport have been analyzed and depicted graphically. Further, the study establishes that the heat transport can be controlled effectively by a mechanism that is external to the system. Finally flow patterns are presented in terms of streamlines and isotherms.

  3. Heat Transport by Coherent Rayleigh-B\\'enard Convection

    CERN Document Server

    Waleffe, Fabian; Smith, Leslie M

    2015-01-01

    Steady but generally unstable solutions of the 2D Boussinesq equations are obtained for no-slip boundary conditions and Prandtl number 7. The primary solution that bifurcates from the conduction state at Rayleigh number $Ra \\approx 1708$ has been calculated up to $Ra\\approx 5. 10^6$ and shows heat flux $Nu \\sim 0.143\\, Ra^{0.28}$ with a delicate spiral structure in the temperature field. Another solution that maximizes $Nu$ over the horizontal wavenumber has been calculated up to $Ra=10^9$ and its heat flux scales as $Nu \\sim 0.115\\, Ra^{0.31}$ for $10^7 < Ra \\le 10^9$, quite similar to 3D turbulent data. The latter is a simple yet multi-scale coherent solution whose horizontal wavenumber scales as $0.133 \\, Ra^{0.217}$ in that range. That optimum solution is unstable to larger scale perturbations and in particular to mean shear flows, yet it appears to be relevant as a backbone for turbulent solutions, possibly setting the scale, strength and spacing of elemental plumes.

  4. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

  5. Validating a quasi-linear transport model versus nonlinear simulations

    Science.gov (United States)

    Casati, A.; Bourdelle, C.; Garbet, X.; Imbeaux, F.; Candy, J.; Clairet, F.; Dif-Pradalier, G.; Falchetto, G.; Gerbaud, T.; Grandgirard, V.; Gürcan, Ö. D.; Hennequin, P.; Kinsey, J.; Ottaviani, M.; Sabot, R.; Sarazin, Y.; Vermare, L.; Waltz, R. E.

    2009-08-01

    In order to gain reliable predictions on turbulent fluxes in tokamak plasmas, physics based transport models are required. Nonlinear gyrokinetic electromagnetic simulations for all species are still too costly in terms of computing time. On the other hand, interestingly, the quasi-linear approximation seems to retain the relevant physics for fairly reproducing both experimental results and nonlinear gyrokinetic simulations. Quasi-linear fluxes are made of two parts: (1) the quasi-linear response of the transported quantities and (2) the saturated fluctuating electrostatic potential. The first one is shown to follow well nonlinear numerical predictions; the second one is based on both nonlinear simulations and turbulence measurements. The resulting quasi-linear fluxes computed by QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501) are shown to agree with the nonlinear predictions when varying various dimensionless parameters, such as the temperature gradients, the ion to electron temperature ratio, the dimensionless collisionality, the effective charge and ranging from ion temperature gradient to trapped electron modes turbulence.

  6. Simulations of electron transport in GaN devices

    CERN Document Server

    Arabshahi, H

    2002-01-01

    model of a device with traps to investigate this suggestion. The model includes the simulation of the capture and release of electrons by traps whose charge has a direct effect on the current flowing through the transistor terminals. The influence of temperature and light on the occupancy of the traps and the I-V characteristics are considered. It is concluded that traps are likely to play a substantial role in the behaviour of GaN field effect transistors. Further simulations were performed to model electron transport in AIGaN/GaN heterojunction FETs. So called HFET structures with a 78 nm Al sub 0 sub . sub 2 Ga sub 0 sub . sub 8 N pseudomorphically strained layer have been simulated, with the inclusion of spontaneous and piezoelectric polarization effects in the strained layer. The polarization effects are shown to not only increase the current density, but also improve the electron transport by inducing a higher electron density close to the positive charge sheet that occurs in the channel. This thesis de...

  7. Simulation Study of the Energy Performance of Different Space Heating Methods in Plus-energy Housing

    DEFF Research Database (Denmark)

    Schøtt, Jacob; Andersen, Mads E.; Kazanci, Ongun Berk

    2016-01-01

    systems had the best performance in terms of energy with a total energy saving of 23% compared to warm-air heating with heat recovery. It can furthermore be coupled to other heat sources than a boiler. The floor covering resistance of the floor heating system should be kept to a minimum to fully benefit...... simulation model has been validated and calibrated with measurement data from the house in a previous study. The studied systems were radiant floor heating, warm-air heating through ventilation system and radiator heating. The energy performance of systems for achieving the same thermal comfort was compared....... The effects of several parameters on system energy performance for each space heating solution were investigated; floor covering resistance of the floor heating system, having a heat recovery on the exhaust in the ventilation system, and different working temperature levels for the radiator heating. For all...

  8. Simulation of temperature fields in the process of induction through heating

    Directory of Open Access Journals (Sweden)

    Yulia E. Pleshivtseva

    2011-05-01

    Full Text Available This article focuses on the problem of simulation of induction through heating of steel cylindrical billets for forging industry. Numerical 2D nonlinear model is developed in ANSYS software, some results of simulation are considered and analysed.

  9. EFFECTIVENESS ANALYSIS OF CAMPUS HEAT SUPPLY SYSTEM OF DNIPROPETROVSK NATIONAL UNIVERSITY OF RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2014-03-01

    Full Text Available Purpose. Heat consumption for heating and hot water supply of housing and industrial facilities is an essential part of heat energy consumption. Prerequisite for development of energy saving measures in existing heating systems is their preliminary examination. The investigation results of campus heating system of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan are presented in the article. On the basis of the analysis it is proposed to take the energy saving measures and assess their effectiveness. Methodology. Analysis of the consumption structure of thermal energy for heating domestic and hot water supply was fulfilled. The real costs of heat supply during the calendar year and the normative costs were compared. Findings. The recording expenditures data of thermal energy for heating supply of residential buildings and dormitories in 2012 were analyzed. The comparison of actual performance with specific regulations was performed. This comparison revealed problems, whose solution will help the efficient use of thermal energy. Originality. For the first time the impact of climate conditions, features of schemes and designs of heating systems on the effective use of thermal energy were analyzed. It was studied the contribution of each component. Practical value. Based on the analysis of thermal energy consumption it was developed a list of possible energy saving measures that can be implemented in the system of heat and power facilities. It was evaluated the fuel and energy resources saving.

  10. Solar-energy heats a transportation test center--Pueblo, Colorado

    Science.gov (United States)

    1981-01-01

    Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

  11. Design of energy-efficient buildings using interaction between Building Simulation Programme and Energy Supply Simulations for District Heating

    DEFF Research Database (Denmark)

    Christensen, Jørgen Erik; Dalla Rosa, Alessandro; Nagla, Inese

    demand density for which the connection to low-energy district heating networks is cost-effective and energy efficient. By using a dynamic energy simulation program for buildings it is possible to analyze the influence of the human behaviour for the building and link the results to the simulation program...... for district heating networks. The results show that human behaviour can lead to 50% higher heating demand and 60% higher peak loads than expected according to reference values in standardized calculation of energy demand pattern in energy-efficient buildings. The consequence is that in order to get the full...... that there is a large potential for distributing energy in areas with energy efficient buildings. As a measure for the feasibility of district heating, the linear heat density can be used as a representative value, and the results show that it is possible to supply heat with low-energy district heating networks...

  12. Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis.

    Science.gov (United States)

    Xuan, Xiangchun; Li, Dongqing

    2005-02-04

    Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.

  13. Numerical simulation on inclusion transport in continuous casting mold

    Institute of Scientific and Technical Information of China (English)

    Lifeng Zhang; Brian G. Thomas

    2006-01-01

    Turbulent flow, the transport of inclusions and bubbles, and inclusion removal by fluid flow transport and by bubble flotation in the strand of the continuous slab caster are investigated using computational models, and validated through comparison with plant measurements of inclusions. Steady 3-D flow of steel in the liquid pool in the mold and upper strand is simulated with a finitedifference computational model using the standard k-ε turbulence model. Trajectories of inclusions and bubbles are calculated by integrating each local velocity, considering its drag and buoyancy forces. A "random walk" model is used to incorporate the effect of turbulent fluctuations on the particle motion. The attachment probability of inclusions on a bubble surface is investigated based on fundamental fluid flow simulations, incorporating the turbulent inclusion trajectory and sliding time of each individual inclusion along the bubble surface as a function of particle and bubble size. The change in inclusion distribution due to removal by bubble transport in the mold is calculated based on the computed attachment probability of inclusions on each bubble and the computed path length of the bubbles. The results indicate that 6%-10% inclusions are removed by fluid flow transport, 10% by bubble flotation, and 4% by entrapment to the submerged entry nozzle (SEN) walls. Smaller bubbles and larger inclusions have larger attachment probabilities. Smaller bubbles are more efficient for inclusion removal by bubble flotation, so long as they are not entrapped in the solidifying shell. A larger gas flow rate favors inclusion removal by bubble flotation. The optimum bubble size should be 2-4 mm.

  14. Fluctuation theory for transport properties in multicomponent mixtures: thermodiffusion and heat conductivity

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2004-01-01

    The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...... statistical theory of fluctuations around an equilibrium state. The Onsager matrix of phenomenological coefficients is expressed in terms of the penetration lengths, including the newly introduced penetration length for the energy transfer. As an example, this penetration length is found from the known value...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved....

  15. ESCRIPT-RT: Reactive transport simulation in PYTHON using ESCRIPT

    Science.gov (United States)

    Poulet, T.; Gross, L.; Georgiev, D.; Cleverley, J.

    2012-08-01

    We present ESCRIPT-RT, a new reactive transport simulation code for fully saturated porous media which is based on a finite element method (FEM) combined with three other components: (i) a Gibbs minimisation solver for equilibrium modelling of fluid-rock interactions, (ii) an equation of state for pure water to calculate fluid properties and (iii) a thermodynamically consistent material database to determine rocks' material properties. Using decoupling of most of the standard governing equations, this code solves sequentially for temperature, pressure, mass transport and chemical equilibrium. In contrast, pressure and Darcy flow velocities are solved as a coupled system. The reactive transport itself is performed using the masses of chemical elements instead of chemical species. In such way it requires less computing memory and time than the majority of other packages. The code is based on ESCRIPT, a parallelised platform which supports efficient stepwise simulation of realistic geodynamic scenarios at multiple scales. It is particularly suitable to analyse hydrothermal systems involving geometrically complex geological structures with strong permeability contrasts and subject to complex fluid-rock chemical interactions. The modular architecture of the code and its high level Python interface also provide flexibility for modellers who can easily modify or add new feedbacks between the different physical processes. In addition, the implemented abstract user interface allows geologists to run the code without knowledge of the underlying numerical implementation. As an example we show the simulation of hydrothermal gold precipitation in a granite-greenstone geological sequence, which illustrates the important coupling between thermal response and mass transfer to the localisation of gold.

  16. Direct numerical simulation of heat transfer in a spatially developing turbulent boundary layer

    Science.gov (United States)

    Li, Dong; Luo, Kun; Fan, Jianren

    2016-10-01

    Direct numerical simulation has been performed to investigate heat transfer in a zero-pressure-gradient spatially developing turbulent boundary layer with realistic thermal inflow boundary conditions. The temperature is considered as a passive scalar and the molecular Prandtl number is set to be 0.71. The turbulence statistics for both the velocity and temperature fields show good agreement with previous numerical and experimental data in the literature. The present study provides a valuable database for the spatially developing turbulent thermal boundary layer over a wide range of Reynolds numbers from Reθ = 1100 to 1940. The simulation results indicate that both the peak value and peak location of the streamwise velocity fluctuation grow slightly with increasing Reynolds number, same as those of the temperature fluctuation. The relationship between the streamwise velocity and temperature fluctuations has been examined and a strong correlation is observed in the vicinity of the wall. With increasing distance from the wall, however, the degree of correlation significantly decreases. In addition, the difference between the turbulent velocity and temperature fields is also analysed by investigating the mechanisms of heat and momentum transport in boundary layer flow.

  17. An Interactive Energy System with Grid, Heating and Transportation Systems

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker

    is required. The models developed in this thesis include different features (thermal, mechanical, chemical…) which are not normally considered in the traditional power system modelling. In this sense, they are intended to serve as a reference for the new researchers starting in the field. Moreover, the grid......: thermostatic loads (electric water heaters and heat pumps), loads for hydrogen generation (alkaline electrolyzers) and load for electric mobility (plug-in and vehicle-to-grid concepts). Many of these are considered domestic loads and they fulfill certain need to the household they belong. Depending on the user...... requirements, these may perform a different power consumption patterns. In this context, the thermal comfort or mobility needs from Danish users are statistically analyzed. The outcome is used to generate random profiles that define the different thermal and mobility requirements from the users of a network...

  18. Turbulent heat transport in two- and three-dimensional temperature fields

    Energy Technology Data Exchange (ETDEWEB)

    Samaraweera, Don Sarath Abesiri [Univ. of California, Berkeley, CA (United States)

    1978-03-01

    A fundamental numerical study of turbulent heat and mass transport processes in two- and three-dimensional convective flows is presented. The model of turbulence employed is the type referred to as a second-order closure. In this scheme transport equations for all nonzero components of the Reynolds stress tensor, for the isotropic dissipation rate of turbulent kinetic energy, for all nonzero scalar flux tensor components and for the mean square scalar fluctuations are solved by a finite difference method along with the mean momentum and mean enthalpy (or concentration) equations. The model used for the stresses was developed earlier. Parallel ideas were utilised in obtaining a model for turbulent heat and mass transfer processes. The study has focused especially on the problem of nonaxisymmetric convective heat and mass transport in pipes, which arises when the boundary conditions are not axisymmetric. The few available experimental data on such situations have indicated anisotropy in effective diffusivities. To expand the available data base an experiment was conducted to obtain heat transfer measurements in strong three-dimensional heating conditions. Numerical procedures especially suitable for incorporation of second-order turbulent closure models have been developed. The effect of circumferential conduction in the tube material, which is influential in the asymmetric heating data currently available, was accounted for directly by extending the finite difference calculations into the pipe wall. The principal goal of predicting three-dimensional scalar transfer has been achieved.

  19. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  20. From 3D gravity to coupled fluid and heat transport modelling - a case study from the Upper Rhine Graben

    Science.gov (United States)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2017-04-01

    Numerical models that predict and help to understand subsurface hydrothermal conditions are key to reduce the risk of drilling non-productive geothermal wells. Such simulations of coupled fluid and heat transport need a reliable 3D structural model. Therefore, we use an integrated approach of data-based 3D structural, gravity, conductive thermal and thermo-hydraulic coupled modelling. The Upper Rhine Graben (URG) is known for its large potential for deep geothermal energy that is already used in e.g. Soultz-sous-Forêts. In the frame of the EU-funded project "IMAGE" (Integrated Methods for Advanced Geothermal Exploration, grant agreement no. 608553), we assess the dominant processes and effective physical properties that control the deep thermal field of the URG. Therefore, we have built a lithospheric-scale 3D structural model of the URG by integrating existing data-based 3D models, deep seismic reflection and refraction profiles, as well as receiver function data. 3D gravity modelling was used to assess the internal configuration of the upper crystalline crust in addition to deep seismic lines. The resulting gravity-constrained 3D structural model was then used as base to calculate the 3D conductive thermal field. An analysis of deviations between measured and calculated temperatures revealed that heat transport connected to fluid circulation is probably relevant at depths above 2500 m. To test this hypotheses smaller-scale and higher resolution models for coupled fluid and heat transport were simulated. We present the results from this combined workflow considering 3D gravity and 3D thermal modelling.

  1. Heat storage in underground caverns - measurements and simulations; Speicherung von Waerme in Grubenraeumen - Messung und Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schaberg, A.; Krause, H.; Poetke, W. [TU Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Technische Thermodynamik

    1997-12-01

    Among the different discussed underground concepts for longterm storing of solar or waste heat old waterfilled mines can be an interesting solution. To examine the temperature behaviour of this storage type a testing store is built in a mine belonging to the Freiberg University of Mining and Technology in Saxonia. In a longterm project temperatures are measured inside the water volume and in the adjacent rock. The temperature behaviour depends on the operating conditions. Inside the water volume temperature stratification can be observed. During loading and standstill heat is transported into the rock surrounding. A certain part of this amount of heat can be discharged again. For designing and optimizing this storage type a numerical modell is developed. The modell is validated with experimental data from the testing plant. (orig.) [Deutsch] Unter den verschiedenen, in der Diskussion stehenden Untegrund-Waermespeichern fuer Solarwaerme oder Abwaerme bieten sich auch geflutete Gruben als Waermespeicher an. Zur Untersuchung des Temperaturverhaltens dieses Speichertyps ist im Saechsischen Lehr- und Besucherbergwerk der TU Bergakademie Freiberg ein Versuchsspeicher errichtet worden. In einem Langzeitversuch wird das Temperaturfeld im Wasser und im angrenzenden Gestein aufgezeichnet. Das Temperaturverhalten ist von den Betriebsgroessen abhaengig. Im Grubenwasser stellt sich eine stabile Temperaturschichtung ein. Waehrend der Beladung und der Stillstandszeiten wird Waerme in die Gesteinsumgebung transportiert. Ein Teil dieser Waermemenge kann wider entspeichert werden. Zur Auslegung und Optimierung von Gruben-Waermespeichern ist ein numerisches Modell entwickelt worden. Das Modell ist anhand der Messergebnisse des Versuchsspeichers validiert worden. (orig.)

  2. Laboratory evaluation of 10 heat and moisture exchangers using simulated aeromedical evacuation conditions.

    Science.gov (United States)

    Suliman, Huda S; Fecura, Stephen E; Baskin, Jonathan; Kalns, John E

    2011-06-01

    Heat and moisture exchangers (HMEs) are used for airway humidification in mechanically ventilated patients and have been evaluated only under hospital conditions. U.S. Air Force aeromedical evacuation transports are performed under rugged conditions further complicated by the cold and dry environment in military aircrafts, and HMEs are used to provide airway humidification for patients. This study evaluated 10 commercial HMEs using a test system that simulated aeromedical evacuation conditions. Although the American National Standards Institute recommends inspired air to be at an absolute humidity value of > or = 30 mg/L for mechanically ventilated patients, the highest absolute humidity by any HME was approximately 20 mg/L. Although none of the HMEs were able to maintain a temperature high enough to achieve the humidity standard of the American National Standards Institute, the clinical significance of this standard may be less important than the relative humidity maintained in the respired air, especially on evacuation flights of short duration.

  3. Optimization of TCR and heat transport in group-IV multiple-quantum-well microbolometers

    Science.gov (United States)

    Morea, Matthew; Gu, Kevin; Savikhin, Victoria; Fenrich, Colleen S.; Pop, Eric; Harris, James S.

    2016-09-01

    Group-IV semiconductors have the opportunity to have an equivalent or better temperature coefficient of resistance (TCR) than other microbolometer thermistor materials. By using multiple-quantum-well (MQW) structures, their TCR values can be optimized due to a confinement of carriers. Through two approaches - an activation energy approximation and a custom Monte Carlo transfer matrix method - we simulated this effect for a combination of Group-IV semiconductors and their alloys (e.g., SiGe and GeSn) to find the highest possible TCR, while keeping in mind the critical thicknesses of such layers in a MQW epitaxial stack. We calculated the TCR for a critical-thickness-limited Ge0.8Sn0.2/Ge MQW device to be about -1.9 %/K. Although this TCR is lower than similar SiGe/Si MQW thermistors, GeSn offers possible advantages in terms of fabricating suspended devices with its interesting etch-stop properties shown in previous literature. Furthermore, using finite element modeling of heat transport, we looked at another key bolometer parameter: the thermal time constant. The dimensions of a suspended Ge microbolometer's supporting legs were fine-tuned for a target response time of 5 ms, incorporating estimations for the size effects of the nanowire-like legs on thermal conductivity.

  4. Ductile fracture behaviour of primary heat transport piping material of nuclear reactors

    Indian Academy of Sciences (India)

    S Tarafder; V R Ranganath; S Sivaprasad; P Johri

    2003-02-01

    Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break concepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade 6 steel — the material used for Indian PHWR — under monotonic and cyclic tearing loading has been documented. An attempt has also been made to understand the mechanism responsible for the high fracture toughness of the steel through determination of the effect of constraint on the fracture behaviour and fractographic observations. From J–R tests over a range of temperatures, it was observed that SA333 steel exhibits embrittlement tendencies in the service temperature regime. The fracture resistance of the steel is inferior in the longitudinal direction with respect to the pipe geometry as compared to that in the circumferential direction. Imposition of cyclic unloading during ductile fracture tests for simulation of response to seismic activities results in a dramatic decrease of fracture resistance. It appears, from the observations of effects of constraint on fracture toughness and fractographic examinations, that fracture resistance of the steel is derived partly from the inability of voids to initiate and grow due to a loss of constraint in the crack-tip stress field.

  5. Bio-heat transfer simulation of retinal laser irradiation.

    Science.gov (United States)

    Narasimhan, Arunn; Jha, Kaushal Kumar

    2012-05-01

    Retinopathy is a surgical process in which maladies of the human eye are treated by laser irradiation. A two-dimensional numerical model of the human eye geometry has been developed to investigate transient thermal effects due to laser radiation. In particular, the influence of choroidal pigmentation and that of choroidal blood convection-parameterized as a function of choroidal blood perfusion-are investigated in detail. The Pennes bio-heat transfer equation is invoked as the governing equation, and finite volume formulation is employed in the numerical method. For a 500-μm diameter spot size, laser power of 0.2 W, and 100% absorption of laser radiation in the retinal pigmented epithelium (RPE) region, the peak RPE temperature is observed to be 103 °C at 100 ms of the transient simulation of the laser surgical period. Because of the participation of pigmented layer of choroid in laser absorption, peak temperature is reduced to 94 °C after 100 ms of the laser surgery period. The effect of choroidal blood perfusion on retinal cooling is found to be negligible during transient simulation of retinopathy. A truncated three-dimensional model incorporating multiple laser irradiation of spots is also developed to observe the spatial effect of choroidal blood perfusion and choroidal pigmentation. For a circular array of seven uniformly distributed spots of identical diameter and laser power of 0.2 W, transient temperature evolution using simultaneous and sequential mode of laser surgical process is presented with analysis.

  6. Transport of volume, heat, and salt towards the Arctic in the Faroe Current 1993-2013

    Science.gov (United States)

    Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.

    2015-09-01

    The flow of warm and saline water from the Atlantic Ocean, across the Greenland-Scotland Ridge, into the Nordic Seas - the Atlantic inflow - is split into three separate branches. The most intense of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21st century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport has made it difficult to establish whether there are trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv = 106 m3 s-1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW = 1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall increase over the 2 decades of observation was 9 ± 8 % for volume transport and 18 ± 9 % for heat transport (95 % confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the

  7. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    OpenAIRE

    Thirumarimurugan, M.; Kannadasan, T.; E. Ramasamy

    2008-01-01

    Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in...

  8. Numerical Simulations of Heat Explosion With Convection In Porous Media

    OpenAIRE

    Allali, Karam; Bikany, Fouad; Taik, Ahmed; Volpert, Vitaly

    2013-01-01

    In this paper we study the interaction between natural convection and heat explosion in porous media. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Darcy law. Stationary and oscillating convection regimes and oscillating heat explosion are observed. The models with quasi-stationary and unstationary Darcy equation are compared.

  9. Numerical simulations of heat explosion with convection in porous media

    OpenAIRE

    Allali, Karam; Bikany, Fouad; Taik, Ahmed; Volpert, Vitaly

    2015-01-01

    International audience; In this article, we study the interaction between natural convection and heat explosion in porous media. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Darcy law. Stationary and oscillating convection regimes and oscillating heat explosion are observed. The models with quasi-stationary and unstationary Darcy equation are compared.

  10. Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump.

    Science.gov (United States)

    Chatterjee, Dipankar; Amiroudine, Sakir

    2011-02-01

    A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative.

  11. Evaluation of moisture and heat transport in the fast-response building-resolving urban transport code QUIC EnvSim

    Science.gov (United States)

    Briggs, Kevin A.

    QUIC EnvSim (QES) is a complete building-resolving urban microclimate modeling system developed to rapidly compute mass, momentum, and heat transport for the design of sustainable cities. One of the more computationally intensive components of this type of modeling system is the transport and dispersion of scalars. In this paper, we describe and evaluate QESTransport, a Reynolds-averaged Navier-Stokes (RANS) scalar transport model. QESTransport makes use of light-weight methods and modeling techniques. It is parallelized for Graphics Processing Units (GPUs), utilizing NVIDIA's OptiX application programming interfaces (APIs). QESTransport is coupled with the well-validated QUIC Dispersion Modeling system. To couple the models, a new methodology was implemented to efficiently prescribe surface flux boundary conditions on both vertical walls and flat surfaces. In addition, a new internal boundary layer parameterization was introduced into QUIC to enable the representation of momentum advection across changing surface conditions. QESTransport is validated against the following three experimental test cases designed to evaluate the model's performance under idealized conditions: (i) flow over a step change in moisture, roughness, and temperature, (ii) flow over an isolated heated building, and (iii) flow through an array of heated buildings. For all three cases, the model is compared against published simulation results. QESTransport produces velocity, temperature, and moisture fields that are comparable to much more complex numerical models for each case. The code execution time performance is evaluated and demonstrates linear scaling on a single GPU for problem sizes up to 4.5 x 4.5 km at 5 m grid resolution, and is found to produce results at much better than real time for a 1.2 x 1.2 km section of downtown Salt Lake City, Utah.

  12. A generic algorithm for Monte Carlo simulation of proton transport

    Energy Technology Data Exchange (ETDEWEB)

    Salvat, Francesc, E-mail: francesc.salvat@ub.edu

    2013-12-01

    A mixed (class II) algorithm for Monte Carlo simulation of the transport of protons, and other heavy charged particles, in matter is presented. The emphasis is on the electromagnetic interactions (elastic and inelastic collisions) which are simulated using strategies similar to those employed in the electron–photon code PENELOPE. Elastic collisions are described in terms of numerical differential cross sections (DCSs) in the center-of-mass frame, calculated from the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. The polar scattering angle is sampled by employing an adaptive numerical algorithm which allows control of interpolation errors. The energy transferred to the recoiling target atoms (nuclear stopping) is consistently described by transformation to the laboratory frame. Inelastic collisions are simulated from DCSs based on the plane–wave Born approximation (PWBA), making use of the Sternheimer–Liljequist model of the generalized oscillator strength, with parameters adjusted to reproduce (1) the electronic stopping power read from the input file, and (2) the total cross sections for impact ionization of inner subshells. The latter were calculated from the PWBA including screening and Coulomb corrections. This approach provides quite a realistic description of the energy-loss distribution in single collisions, and of the emission of X-rays induced by proton impact. The simulation algorithm can be readily modified to include nuclear reactions, when the corresponding cross sections and emission probabilities are available, and bremsstrahlung emission.

  13. A generic algorithm for Monte Carlo simulation of proton transport

    Science.gov (United States)

    Salvat, Francesc

    2013-12-01

    A mixed (class II) algorithm for Monte Carlo simulation of the transport of protons, and other heavy charged particles, in matter is presented. The emphasis is on the electromagnetic interactions (elastic and inelastic collisions) which are simulated using strategies similar to those employed in the electron-photon code PENELOPE. Elastic collisions are described in terms of numerical differential cross sections (DCSs) in the center-of-mass frame, calculated from the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. The polar scattering angle is sampled by employing an adaptive numerical algorithm which allows control of interpolation errors. The energy transferred to the recoiling target atoms (nuclear stopping) is consistently described by transformation to the laboratory frame. Inelastic collisions are simulated from DCSs based on the plane-wave Born approximation (PWBA), making use of the Sternheimer-Liljequist model of the generalized oscillator strength, with parameters adjusted to reproduce (1) the electronic stopping power read from the input file, and (2) the total cross sections for impact ionization of inner subshells. The latter were calculated from the PWBA including screening and Coulomb corrections. This approach provides quite a realistic description of the energy-loss distribution in single collisions, and of the emission of X-rays induced by proton impact. The simulation algorithm can be readily modified to include nuclear reactions, when the corresponding cross sections and emission probabilities are available, and bremsstrahlung emission.

  14. On the effect of electron temperature fluctuations on turbulent heat transport in the edge plasma of tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Baudoin, C.; Tamain, P.; Ciraolo, G.; Futtersack, R.; Gallo, A.; Ghendrih, P.; Nace, N.; Norscini, C. [CEA, IRFM, Saint-Paul-lez-Durance (France); Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, UMR 7345, Marseille (France)

    2016-08-15

    In this paper we study the impact of electron temperature fluctuations in a two-dimensional turbulent model. This modification adds a second linear instability, known as sheath-driven conducting-wall instability, with respect to the previous isothermal model only driven by the interchange instability. Non-linear simulations, backed up by the linear analysis, show that the additional mechanism can change drastically the dynamics of turbulence (scales, density-potential correlation, and statistical momentum). Moreover, its importance relatively to the interchange instability should be more significant in the private flux region than in the main scrape of layer. Its effect on heat transport is also investigated for different regimes of parameters, results show that both instabilities are at play in the heat transport. Finally, the sheath negative resistance instability could be responsible for the existence of corrugated heat flux profiles in the scrape-off layer leading to a multiple decay length. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. A conceptual model of oceanic heat transport in the Snowball Earth scenario

    Science.gov (United States)

    Comeau, Darin; Kurtze, Douglas A.; Restrepo, Juan M.

    2016-12-01

    Geologic evidence suggests that the Earth may have been completely covered in ice in the distant past, a state known as Snowball Earth. This is still the subject of controversy, and has been the focus of modeling work from low-dimensional models up to state-of-the-art general circulation models. In our present global climate, the ocean plays a large role in redistributing heat from the equatorial regions to high latitudes, and as an important part of the global heat budget, its role in the initiation a Snowball Earth, and the subsequent climate, is of great interest. To better understand the role of oceanic heat transport in the initiation of Snowball Earth, and the resulting global ice covered climate state, the goal of this inquiry is twofold: we wish to propose the least complex model that can capture the Snowball Earth scenario as well as the present-day climate with partial ice cover, and we want to determine the relative importance of oceanic heat transport. To do this, we develop a simple model, incorporating thermohaline dynamics from traditional box ocean models, a radiative balance from energy balance models, and the more contemporary "sea glacier" model to account for viscous flow effects of extremely thick sea ice. The resulting model, consisting of dynamic ocean and ice components, is able to reproduce both Snowball Earth and present-day conditions through reasonable changes in forcing parameters. We find that including or neglecting oceanic heat transport may lead to vastly different global climate states, and also that the parameterization of under-ice heat transfer in the ice-ocean coupling plays a key role in the resulting global climate state, demonstrating the regulatory effect of dynamic ocean heat transport.

  16. Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels

    Institute of Scientific and Technical Information of China (English)

    WANG Moran; LI Zhixin

    2005-01-01

    The dense gas flow and heat transfer in micro- and nano-channels was simulated using the Enskog simulation Monte Carlo (ESMC) method. The results were compared with those from the direct simulation Monte Carlo (DSMC) method and from the consistent Boltzmann algorithm (CBA). The dense gas flow and heat transfer characteristics were thus analyzed. The results showed that when the gas density was large enough, the finite gas density effect on the flow and heat transfer cannot be ignored, which decreased the skin friction coefficient and changed the heat transfer characteristics on the channel wall surfaces.

  17. Simulation Study on Heat Value Control System of Natural Gas Used for Color TV Tubes Production

    Institute of Scientific and Technical Information of China (English)

    ZHENG Bin

    2006-01-01

    In order to know the character of the heat value control system, determine the influence of natural gas quality and flow on the heat value, and learn how to adjust the parameters of control system, the model of the whole system is established, and simulation of the system is adopted in Matlab/Simulink. The simulation result shows that the feedback system with feed-forward block controls the heat value very well, and the simulation result can effectively guide the engineering design of the heat value control system, and the efficiency of engineering is improved.

  18. Simulation of carrier transport through Single Wall Carbon Nanotubes(SWNT)

    OpenAIRE

    Rajesh Kumar; Ramlal Singh

    2011-01-01

    In this paper, it is observed & verified that the simulation of carrier transport through Carbon Nanotubes (CNTs) can be explained with the help of tool, “the Boltzmann transport simulator for CNTs”.By using this simulator, we examine the electronic transport quantities of SWNTs such as electric current, electric field, steady state potential, resistance of CNTs and (I-V) curve which is useful in device modeling of nanodevices and the transport quantities as a function of different parameters...

  19. Autothermal reforming over a Pt/Gd-doped ceria catalyst: Heat and mass transport limitations in the steam reforming section

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sungkwang [Center for Fuel Cell Research, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Sungbuk-gu, Seoul 136-791 (Korea); Bae, Joongmyeon [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-Dong, Yuseong-Gu, Daejeon 305-701 (Korea)

    2010-07-15

    Autothermal reforming (ATR) has several advantages for fuel cell applications, such as a compact reactor structure and fast response. Using oxidation reactions inside the reactor, ATR does not have the external heat transfer limitations associated with steam reforming. However, mass and heat transfer limitations inside and outside the catalyst particles are still anticipated. In this study, transport limitations in the steam reforming section of ATR over a Pt/Gd-doped ceria catalyst are analyzed by numerical simulations based on a reaction rate equation in which parameters are adjusted to measured kinetic data. The simulation results show that significant transport limitations characterize the steam reforming section of packed-bed ATR reactors. The activity per catalyst bed volume is highly dependent on the particle size, and only the thin exterior layer of the particles is involved in catalyzing the reactions. Based on the results, it is shown that an eggshell type catalyst particle could reduce catalyst material significantly without a considerable decline in the activity per catalyst bed volume. (author)

  20. Stochastic simulations of cargo transport by processive molecular motors.

    Science.gov (United States)

    Korn, Christian B; Klumpp, Stefan; Lipowsky, Reinhard; Schwarz, Ulrich S

    2009-12-28

    We use stochastic computer simulations to study the transport of a spherical cargo particle along a microtubule-like track on a planar substrate by several kinesin-like processive motors. Our newly developed adhesive motor dynamics algorithm combines the numerical integration of a Langevin equation for the motion of a sphere with kinetic rules for the molecular motors. The Langevin part includes diffusive motion, the action of the pulling motors, and hydrodynamic interactions between sphere and wall. The kinetic rules for the motors include binding to and unbinding from the filament as well as active motor steps. We find that the simulated mean transport length increases exponentially with the number of bound motors, in good agreement with earlier results. The number of motors in binding range to the motor track fluctuates in time with a Poissonian distribution, both for springs and cables being used as models for the linker mechanics. Cooperativity in the sense of equal load sharing only occurs for high values for viscosity and attachment time.

  1. Parallelization of a Monte Carlo particle transport simulation code

    Science.gov (United States)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  2. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    Directory of Open Access Journals (Sweden)

    Alberto Fernández-Isabel

    2015-06-01

    Full Text Available Intelligent Transportation Systems (ITSs integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use.

  3. Analysis of Intelligent Transportation Systems Using Model-Driven Simulations

    Science.gov (United States)

    Fernández-Isabel, Alberto; Fuentes-Fernández, Rubén

    2015-01-01

    Intelligent Transportation Systems (ITSs) integrate information, sensor, control, and communication technologies to provide transport related services. Their users range from everyday commuters to policy makers and urban planners. Given the complexity of these systems and their environment, their study in real settings is frequently unfeasible. Simulations help to address this problem, but present their own issues: there can be unintended mistakes in the transition from models to code; their platforms frequently bias modeling; and it is difficult to compare works that use different models and tools. In order to overcome these problems, this paper proposes a framework for a model-driven development of these simulations. It is based on a specific modeling language that supports the integrated specification of the multiple facets of an ITS: people, their vehicles, and the external environment; and a network of sensors and actuators conveniently arranged and distributed that operates over them. The framework works with a model editor to generate specifications compliant with that language, and a code generator to produce code from them using platform specifications. There are also guidelines to help researchers in the application of this infrastructure. A case study on advanced management of traffic lights with cameras illustrates its use. PMID:26083232

  4. Applications of Bayesian temperature profile reconstruction to automated comparison with heat transport models and uncertainty quantification of current diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Irishkin, M. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Imbeaux, F., E-mail: frederic.imbeaux@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Aniel, T.; Artaud, J.F. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2015-11-15

    Highlights: • We developed a method for automated comparison of experimental data with models. • A unique platform implements Bayesian analysis and integrated modelling tools. • The method is tokamak-generic and is applied to Tore Supra and JET pulses. • Validation of a heat transport model is carried out. • We quantified the uncertainties due to Te profiles in current diffusion simulations. - Abstract: In the context of present and future long pulse tokamak experiments yielding a growing size of measured data per pulse, automating data consistency analysis and comparisons of measurements with models is a critical matter. To address these issues, the present work describes an expert system that carries out in an integrated and fully automated way (i) a reconstruction of plasma profiles from the measurements, using Bayesian analysis (ii) a prediction of the reconstructed quantities, according to some models and (iii) a comparison of the first two steps. The first application shown is devoted to the development of an automated comparison method between the experimental plasma profiles reconstructed using Bayesian methods and time dependent solutions of the transport equations. The method was applied to model validation of a simple heat transport model with three radial shape options. It has been tested on a database of 21 Tore Supra and 14 JET shots. The second application aims at quantifying uncertainties due to the electron temperature profile in current diffusion simulations. A systematic reconstruction of the Ne, Te, Ti profiles was first carried out for all time slices of the pulse. The Bayesian 95% highest probability intervals on the Te profile reconstruction were then used for (i) data consistency check of the flux consumption and (ii) defining a confidence interval for the current profile simulation. The method has been applied to one Tore Supra pulse and one JET pulse.

  5. Coupled Normal Heat and Matter Transport in a Simple Model System

    Energy Technology Data Exchange (ETDEWEB)

    Mejia-Monasterio, C.; Larralde, H.; Leyvraz, F.

    2001-06-11

    We introduce the first simple mechanical system that shows fully realistic transport behavior while still being exactly solvable at the level of equilibrium statistical mechanics. The system is a Lorentz gas with fixed freely rotating circular scatterers which scatter point particles via perfectly rough collisions. Upon imposing either a temperature gradient and/or a chemical potential gradient, a stationary state is attained for which local thermal equilibrium holds. Transport in this system is normal in the sense that the transport coefficients which characterize the flow of heat and matter are finite in the thermodynamic limit. Moreover, the two flows are nontrivially coupled, satisfying Onsager{close_quote}s reciprocity relations.

  6. Anharmonic effects and heat transport in complex systems (Invited)

    Science.gov (United States)

    Wentzcovitch, R. M.

    2013-12-01

    We have recently developed a hybrid strategy combining first principles molecular dynamics (MD) with vibrational normal mode analysis to obtain anharmonic frequency shifts and lifetimes of phonon quasi-particles. This approach is effective irrespective of crystal structure complexity and has been used to investigate anharmonicity in MgSiO3-perpovskite (MgPv) and cubic CaSiO3-perovskite (CaPv). The first is weakly anharmonic but has well identified temperature induced anharmonic Raman frequency shifts, while the second is strongly anharmonic. This method displays fine predictive capability by reproducing subtle measured effects in MgPv and proves to be robust and capable of handling soft phonon anharmonicity in CaPv. This strategy also facilitates calculation of anharmonic phonon dispersions throughout the Brillouin zone. Combination of analytical treatments of anharmonic free energy based on the phonon gas model (PGM) with thoroughly sampled anharmonic dispersions should improve considerably the accuracy of first-principles free energy calculations in crystalline solids at very high temperatures. This method also enables calculations of thermal conductivity, κ, using Boltzman transport equation with lifetimes calculated by MD. This is essential to predict thermodynamics properties and κ by first principles at very high temperatures. Research in collaboration with Tao Sun and Dong-Bo Zhang and supported by NSF award EAR-1019853.

  7. Molecular dynamics simulations on specific heat capacity and glass transition tempera-ture of liquid silver

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The embedded-atom method is adopted to simulate the specific heat capacity of liquid silver. The relationship between the specific heat capacity and the temperature above and below melting point is derived. The results show that there exists an anormaly of the specific heat capacity of liquid silver near 950 K. Simulated pair distribution functions show that the liquid-to-glass transition takes place at this temperature.

  8. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    Science.gov (United States)

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  9. Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1.

    Directory of Open Access Journals (Sweden)

    Min-Sun Park

    Full Text Available Glucose transporters (GLUTs provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and cancer. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE, a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM domains and the intracellular helices (ICH domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states.

  10. Constraining Parameter Uncertainty in Simulations of Water and Heat Dynamics in Seasonally Frozen Soil Using Limited Observed Data

    Directory of Open Access Journals (Sweden)

    Mousong Wu

    2016-02-01

    Full Text Available Water and energy processes in frozen soils are important for better understanding hydrologic processes and water resources management in cold regions. To investigate the water and energy balance in seasonally frozen soils, CoupModel combined with the generalized likelihood uncertainty estimation (GLUE method was used. Simulation work on water and heat processes in frozen soil in northern China during the 2012/2013 winter was conducted. Ensemble simulations through the Monte Carlo sampling method were generated for uncertainty analysis. Behavioral simulations were selected based on combinations of multiple model performance index criteria with respect to simulated soil water and temperature at four depths (5 cm, 15 cm, 25 cm, and 35 cm. Posterior distributions for parameters related to soil hydraulic, radiation processes, and heat transport indicated that uncertainties in both input and model structures could influence model performance in modeling water and heat processes in seasonally frozen soils. Seasonal courses in water and energy partitioning were obvious during the winter. Within the day-cycle, soil evaporation/condensation and energy distributions were well captured and clarified as an important phenomenon in the dynamics of the energy balance system. The combination of the CoupModel simulations with the uncertainty-based calibration method provides a way of understanding the seasonal courses of hydrology and energy processes in cold regions with limited data. Additional measurements may be used to further reduce the uncertainty of regulating factors during the different stages of freezing–thawing.

  11. Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the pliocene

    Science.gov (United States)

    Dowsett, H.J.; Cronin, T. M.; Poore, R.Z.; Thompson, R.S.; Whatley, R.C.; Wood, A.M.

    1992-01-01

    The Middle Pliocene (???3 million years ago) has been identified as the last time the Earth was significantly warmer than it was during the Last Interglacial and Holocene. A quantitative micropaleontological paleotemperature transect from equator to high latitudes in the North Atlantic indicates that Middle Pliocene warmth involved increased meridional oceanic heat transport.

  12. Impact of compressibility on heat transport characteristics of large terrestrial planets

    NARCIS (Netherlands)

    Čížková, Hana; van den Berg, Arie; Jacobs, Michel

    2017-01-01

    We present heat transport characteristics for mantle convection in large terrestrial exoplanets (M⩽8M⊕). Our thermal convection model is based on a truncated anelastic liquid approximation (TALA) for compressible fluids and takes into account a selfconsistent thermodynamic description of material

  13. Studies of Electron Transport and Isochoric Heating and Their Applicability to Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Key, M H; Amiranoff, F; Andersen, C; Batani, D; Baton, S D; Cowan, T; Fisch, N; Freeman, R; Gremillet, L; Hall, T; Hatchett, S; Hill, J; King, J; Kodama, R; Koch, J; Koenig, M; Lasinski, B; Langdon, B; MacKinnon, A; Martinolli, E; Norreys, P; Parks, P; Perrelli-Cippo, E; Rabec Le Gloahec, M; Rosenbluth, M; Rousseaux, C; Santon, J J; Scianitti, F; Snavely, R; Tabak, M; Tanaka, K; Town, R; Tsutumi, T; Stephens, R

    2003-10-30

    Experimental measurements of electron transport and isochoric heating in 100 J, 1 ps laser irradiation of solid A1 targets are presented. Modeling with a hybrid PIC code is compared with the data and good agreement is obtained using a heuristic model for the electron injection. The relevance for fast ignition is discussed.

  14. Heat transport in the geostrophic regime of rotating Rayleigh-B{\\'e}nard convection

    CERN Document Server

    Ecke, Robert E

    2013-01-01

    We report experimental measurements of heat transport in rotating Rayleigh-B{\\'e}nard convection in a cylindrical convection cell with aspect ratio $\\Gamma = 1/2$. The fluid was helium gas with Prandtl number Pr = 0.7. The range of control parameters was Rayleigh number $4 \\times 10^9 < {\\rm Ra} < 4 \\times 10^{11}$ and Ekman number $2 \\times 10^{-7} < {\\rm Ek} < 3 \\times 10^{-5}$(corresponding to Taylor number $4 \\times 10^9 < {\\rm Ta} < 1 \\times 10^{14}$ and convective Rossby number $0.07 < {\\rm Ro} < 5$). We determine the crossover from weakly rotating turbulent convection to rotation dominated geostrophic convection through experimental measurements of the normalized heat transport Nu. The heat transport for the rotating state in the geostrophic regime, normalized by the zero-rotation heat transport, is consistent with scaling of $({\\rm RaEk}^{-7/4})^\\beta$ with $\\beta \\approx 1$. A phase diagram is presented that encapsulates measurements on the potential geostrophic turbulence reg...