WorldWideScience

Sample records for heat transfer surface

  1. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  2. Heat transfer research on enhanced heating surfaces in pool boiling

    Science.gov (United States)

    Kalawa, Wojciech; Wójcik, Tadeusz M.; Piasecka, Magdalena

    The paper focuses on the analysis of the enhanced surfaces in such applications as boiling heat transfer. The testing measurement module with enhanced heating surfaces was used for pool boiling research. Pool boiling experiments were conducted with distilled water at atmospheric pressure in the vessel using an enhanced sample as the bottom heating surface. The samples are soldered to a copper heating block of the round cross-section .They were placed: in the fluid (saturation temperature measurement), under the sample for temperature determination. A vessel made of four flat glass panes was used for visualization. The heated surfaces in contact with the fluid differed in roughness were smooth or enhanced. This paper analyzes the effects of the microstructured heated surface on the heat transfer coefficient. The results are presented as relationships between the heat transfer coefficient and the heat flux and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported for the enhanced surfaces.

  3. Heat transfer with freezing in a scraped surface heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lakhdar, M.B. [LGL France Refrigerating Division, Genas (France); Cerecero, R.; Alvarez, G.; Guilpart, J. [Cemagref, Antony cedex (France). Food Process Engineering; Flick, D. [Institut National Agronomique, Paris (France); Lallemand, A. [Institut National des Sciences Appliquees de Lyon (France). Centre de Thermique

    2005-01-01

    An experimental study was carried out on a scraped surface heat exchanger used for freezing of water-ethanol mixture and aqueous sucrose solution. The influence of various parameters on heat transfer intensity was established: product type and composition, flow rate, blade rotation speed, distance between blades and wall. During starting (transient period) the solution is first supercooled, then ice crystals appear on the scraped surface (heterogeneous nucleation) and no more supercooling is observed. It seems that, when blades are 3 mm far from the surface, a constant ice layer is formed having this thickness and acting as a thermal resistance. But when the blades rotate at 1 mm from the surface, periodically all the ice layer is removed despite the surface is not really scraped. This could simplify ice generator technology. An internal heat transfer coefficient was defined; it depends mainly on rotation speed. Correlations were proposed for its prediction, which could be applied, at least as a first approach, for the most common freezing applications of scraped surface heat exchanger i.e. ice creams (which are derived from sucrose solutions) and two-phase secondary refrigerants (which are principally ethanol solutions). (author)

  4. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.

    Science.gov (United States)

    Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei

    2017-09-12

    Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.

  5. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  6. Numerical study on condensation heat transfer of trapezoid grooved surfaces

    Directory of Open Access Journals (Sweden)

    Baojin Qi

    2016-05-01

    Full Text Available This article presents a numerical analysis and experimental study on condensation heat transfer and fluid flow for filmwise condensation on trapezoid grooved surfaces. First, a physical model was properly simplified based on some reasonable assumptions. Then, the coupled non-linear governing equations for the mass transfer, fluid flow, and two-dimensional thermal conduction were developed. The relationship between z-coordinate and heat transfer was obtained by solving the equations numerically. The influences of groove length and basic angle were discussed. The calculation results showed that the heat flux decreased with increase in groove length, and the decline range also decreased gradually. The calculation results also suggested that the heat flux through groove with α = 60° was lower than the groove with α = 75° at the top of the groove, while the opposite conclusion was obtained at the low parts. The distributions of wall temperature and heat flux on trapezoid groove were also studied systematically. The distribution of surface temperature and heat flux presents obvious lateral inhomogeneity, and the maximum wall temperature and heat flux were both obtained in region II. The thermal resistance of groove with α = 60° was lower but the liquid-discharged ability was better than that of groove with α = 75°. In order to validate the feasibility and reliability of the present analyses and to further investigate the heat transfer performance of trapezoid grooved surfaces, experiments were carried out with three condensing plates including two trapezoid grooved surfaces in different physical dimensions and one smooth surface. The experimental data obtained under various schooling were compared with the calculations, and the experimental results for different condensing plates are all in good agreement with the numerical model, with a maximum deviation less than 15%. Moreover, the trapezoid grooves can enhance the

  7. Heat and mass transfer over slippery, superhydrophobic surfaces

    NARCIS (Netherlands)

    Haase, A. Sander; Lammertink, Rob G.H.

    2016-01-01

    The classical Graetz-Nusselt problem is extended to describe heat and mass transfer over heterogeneously slippery, superhydrophobic surfaces. The cylindrical wall consists of segments with a constant temperature/concentration and areas that are insulating/impermeable. Only in the case of mass

  8. Effect of carbon nanofiber surface morphology on convective heat transfer from cylindrical surface: Synthesis, characterization and heat transfer measurement

    NARCIS (Netherlands)

    Taha, T.J.; Mojet, Barbara; Lefferts, Leonardus; van der Meer, Theodorus H.

    2016-01-01

    In this work, heat transfer surface modification is made by layers of carbon nanofiber (CNF) on a 50 μm nickel wire using Thermal chemical vapor deposition process (TCVD). Three different CNF layer morphologies are made, at 500 °C, 600 °C and 700 °C, to investigate the influence of morphology on

  9. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  10. Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements

    Science.gov (United States)

    Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.; Camperchioli, W. P.

    2000-01-01

    Turbine vane heat transfer distributions obtained using an infrared camera technique are described. Infrared thermography was used because noncontact surface temperature measurements were desired. Surface temperatures were 80 C or less. Tests were conducted in a three vane linear cascade, with inlet pressures between 0.14 and 1.02 atm., and exit Mach numbers of 0.3, 0.7, and 0.9, for turbulence intensities of approximately 1 and 10%. Measurements were taken on the vane suction side, and on the pressure side leading edge region. The designs for both the vane and test facility are discussed. The approach used to account for conduction within the vane is described. Midspan heat transfer distributions are given for the range of test conditions.

  11. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  12. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  13. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon

  14. Ultrasonic Heat Transfer Enhancement with Obstacle in Front of Heating Surface

    Science.gov (United States)

    Nomura, Shinfuku; Nakagawa, Masafumi; Mukasa, Shinobu; Toyota, Hiromichi; Murakami, Koichi; Kobayashi, Ryousuke

    2005-06-01

    Heat transfer enhancement using a horn-type transducer was carried out in the natural convection region while a flat plate was used as a wall-like obstacle in front of the heating surface. Three types of plate were used as obstacles: acrylic, aluminum, and Styrofoam. A horn tip of 6 mm diameter and 60.7 kHz was used as the ultrasonic transducer. The acoustic cavitation jet induced by the ultrasonic vibration exhibited the same tendency as the axisymmetric free jet. The acoustic jet from the horn tip was shut out by the flat plate; however, the ultrasound passed through the flat plate and transferred the flow effect and agitation effect to the area behind the plate. By applying ultrasonic vibration, the heat transfer coefficient of the heating surface behind the flat plate was increased by up to threefold. The heat transfer coefficient decreased as the thickness of the flat plate increased. The heat transfer coefficient was the highest for the acrylic plate, then the aluminum plate, and lowest for the Styrofoam plate.

  15. Enhancement of heat transfer at pool boiling on surfaces with silicon oxide nanowires

    Science.gov (United States)

    Chinnov, E. A.; Shatskiy, E. N.; Khmel, S. Ya; Baranov, E. A.; Zamchiy, A. O.; Semionov, V. V.; Kabov, O. A.

    2017-11-01

    The boiling heat transfer on the local heaters with microstructured and nanomodified surfaces was studied. As nanomodified surfaces we used copper ones where the microropes of silicon oxide nanowires were grown. The aging of the nanomodified surface was observed after first series of experiments. It was shown that both finning and nanostructuring of the surface result in increase of heat transfer. The heat flux density of 1400 W/cm2 was reached.

  16. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... HAM conditions. The paper focuses on the influence of the interior surface heat and moisture transfer coefficients, and investigates its effect on the hygrothermal performance. The parameter study showed that the magnitude of the convective surface transfer coefficients have a relatively large...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  17. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon-Joon; Choo, Yeon-Jun [FNC Tech., Yongin (Korea, Republic of); Ha, Sang-Jun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect.

  18. Investigation of the third heat transfer crisis on a vertical surface

    Science.gov (United States)

    Avksentyuk, B. P.; Ovchinnikov, V. V.

    2012-03-01

    The process of development of the third heat transfer crisis for vertical orientation of the heating surface was studied experimentally. Experiments were carried out with acetone under the conditions of saturation for the pressures in the working volume from 20 to 28 kPa. In all experiments, the third heat transfer crisis was preceded by propagation of evaporation front along the heating surface. The threshold values of heat flux densities, above which a stable vapor film is formed on the whole heating surface, are lower for vertical orientation of this heating surface than for the horizontal one. Data on the threshold heat flux densities and overheating before boiling-up were obtained. Above these values, formation of evaporation fronts was observed. The range of operation parameters corresponding to formation of the sites of unstable film boiling on the heating surface after boiling-up was determined.

  19. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  20. Thermal and Fluid Dynamic Performance of Pin Fin Heat Transfer Surfaces

    OpenAIRE

    Sahiti, Naser

    2006-01-01

    This thesis is organized into nine Chapters. Chapter 2 gives an overview of some highly effec-tive heat transfer surfaces used basically for the enhancement of single-phase convective heat transfer in the air conditioning, refrigeration, unit air heater and automobile industries. It follows the analysis of basic parameters that influence the performance of the fins and at the end a rela-tively simple analytical method for the assessment of the order of the magnitude of heat transfer enhanceme...

  1. Vaporization heat transfer of dielectric liquids on enhanced surfaces covered with screen wicks

    Science.gov (United States)

    Gu, C. B.; Chow, L. C.; Pais, M. R.; Baker, K.

    1993-01-01

    Experiments were conducted to investigate the vaporization heat transfer characteristics for the dielectric liquid FC-72 on several wicking surfaces which may be used in flat-plate heat pipes. The wicking materials studied included microstructure enhanced surfaces and coarse surfaces covered with screen meshes. Experimental data for q versus deltaT curves and critical heat fluxes were obtained for the two different operating conditions of a heat pipe, evaporation, and shallow pool boiling. When the liquid level was above the heated surface, the height of the liquid level above the surface was varied from 0 to 10 mm. When the liquid level was below the heated surface, the distance from the liquid level to the edge of the surface was adjusted from 0 to 15 mm. Experimental results revealed that for shallow pool boiling when the heated surface was covered with a wire screen mesh, the heat transfer coefficient increased at lower heat fluxes but the critical heat flux (CHF) decreased for all the surfaces tested. In the case of evaporation, both CHF and the heat transfer coefficient increased as the microstructure surfaces were covered with screen meshes.

  2. Contact angle and droplet heat transfer during evaporation on structured and smooth surfaces of heated wall

    Science.gov (United States)

    Misyura, S. Y.

    2017-08-01

    Water evaporation in a wide range of droplet diameters and wall temperatures on the structured and smooth surfaces were studied experimentally. Linear dependence of evaporation rate (dV/dt) on a droplet radius varies when the volume is greater than 40-60 μl. The static contact angles on the structured surface vary with a droplet diameter for high wall superheating. Dependence of the contact angle on diameter for the corrugated surface is defined by a change in both potential energy barrier U and three-phase contact line tension τcl. This energy barrier for the structured wall changes with an increase in the initial droplet diameter and becomes constant for the large droplets. For high wall superheating, the power in the law of evaporation increases from 1 to 1.45 with an increase in the initial droplet diameter. Depending on the droplet radius, number of droplets and heater length, four different characters of evaporation are realized. Complete droplet evaporation time on structured surface is less than smooth wall. Heat transfer coefficient is greater for structured wall than smooth one. When simulating droplet evaporation and heat transfer, it is necessary to take into account free convection of air and vapor.

  3. Viscous flow and heat transfer over an unsteady stretching surface

    Directory of Open Access Journals (Sweden)

    Ene Remus-Daniel

    2016-01-01

    Full Text Available In this paper we have studied the flow and heat transfer of a horizontal sheet in a viscous fluid. The stretching rate and temperature of the sheet vary with time. The governing equations for momentum and thermal energy are reduced to ordinary differential equations by means of similarity transformation. These equations are solved approximately by means of the Optimal Homotopy Asymptotic Method (OHAM which provides us with a convenient way to control the convergence of approximation solutions and adjust convergence rigorously when necessary. Some examples are given and the results obtained reveal that the proposed method is effective and easy to use.

  4. Immersion Condensation on Oil-Infused Heterogeneous Surfaces for Enhanced Heat Transfer

    Science.gov (United States)

    Xiao, Rong; Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N.

    2013-01-01

    Enhancing condensation heat transfer is important for broad applications from power generation to water harvesting systems. Significant efforts have focused on easy removal of the condensate, yet the other desired properties of low contact angles and high nucleation densities for high heat transfer performance have been typically neglected. In this work, we demonstrate immersion condensation on oil-infused micro and nanostructured surfaces with heterogeneous coatings, where water droplets nucleate immersed within the oil. The combination of surface energy heterogeneity, reduced oil-water interfacial energy, and surface structuring enabled drastically increased nucleation densities while maintaining easy condensate removal and low contact angles. Accordingly, on oil-infused heterogeneous nanostructured copper oxide surfaces, we demonstrated approximately 100% increase in heat transfer coefficient compared to state-of-the-art dropwise condensation surfaces in the presence of non-condensable gases. This work offers a distinct approach utilizing surface chemistry and structuring together with liquid-infusion for enhanced condensation heat transfer. PMID:23759735

  5. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2017-11-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  6. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Siegel, Robert

    2016-01-01

    Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.

  7. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    Science.gov (United States)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  8. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    Science.gov (United States)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-07-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  9. Comprehensive study of flow and heat transfer at the surface of circular cooling fin

    Science.gov (United States)

    Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.

    2017-11-01

    For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.

  10. Vaporization heat transfer of dielectric liquids on a wick-covered surface

    Science.gov (United States)

    Gu, C. B.; Chow, L. C.; Baker, K.

    1993-01-01

    Vaporization heat transfer characteristics were measured for the dielectric liquid FC-72 on a horizontal heated surface covered with wire screen wicks with the mesh number for the screens varying from 24 to 100. In such a situation the liquid level can be either higher or lower than the heated surface. When the liquid level was above the heated surface (shallow pool boiling), the height of the liquid level above the surface, h, was varied from 0 to 10 mm. When the liquid level was below the heated surface (evaporation through capillary pumping), the distance from the liquid level to the edge of the surface, L, was adjusted from 0 to 15 mm. Experimental data revealed that the critical heat flux (CHF) decreases as the mesh number is increased from 24 to 100 for both vaporation and shallow pool boiling, showing that the vapor-escaping limit is more important than the capillary limit in flat plate heat pipe application.

  11. Experimental measurements of heat transfer from an iced surface during artificial and natural cloud icing conditions

    Science.gov (United States)

    Kirby, M. S.; Hansman, R. J., Jr.

    1986-01-01

    The heat transfer behavior of accreting ice surfaces in natural (flight test) and simulated (wind tunnel) cloud icing conditions have been studied. Observations of wet and dry ice growth regimes as measured by ultrasonic pulse-echo techniques were made. Observed wet and dry ice growth regimes at the stagnation point of a cylinder were compared with those predicted using a quasi steady-state heat balance model. A series of heat transfer coefficients were employed by the model to infer the local heat transfer behavior of the actual ice surfaces. The heat transfer in the stagnation region was generally inferred to be higher in wind tunnel icing tests than in natural, flight, icing conditions.

  12. A comparative study of the local heat transfer distributions around various surface mounted obstacles

    Science.gov (United States)

    Wyssmann, Robert; Ullmer, Dirk; Terzis, Alexandros; Ott, Peter

    2014-04-01

    In many engineering applications, heat transfer enhancement techniques are of vital importance in order to ensure reliable thermal designs of convective heat transfer applications. This study examines experimentally the heat transfer characteristics on the base plate around various surface mounted obstacles. Local convection coefficients are evaluated in the vicinity of each individual protruding body with great spatial resolution using the transient liquid crystal technique. Five different obstacles of constant height-to-hydraulic diameter ratio (˜1.3) are considered. These include: a cylinder, a square, a triangle, a diamond and a vortex generator of delta wing shape design. The experiments were carried out over a range of freestream Reynolds numbers, based on the hydraulic diameter of each obstacle, varying from 4,000 to 13,000. The results indicate a negligible effect of the flow speed on the heat transfer topological structure and a considerable effect of the obstacle geometry on the level and distribution of heat transfer enhancement.

  13. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  14. Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels

    Directory of Open Access Journals (Sweden)

    Depczyński Wojciech

    2017-01-01

    Full Text Available This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.

  15. Impact of Fe powder sintering and soldering in production of porous heating surface on flow boiling heat transfer in minichannels

    Science.gov (United States)

    Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga

    2017-10-01

    This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.

  16. CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk [Institute of Construction and Architecture, Slovak Academy of Sciences, Dubravska cesta 9, 845 03 Bratislava (Slovakia)

    2016-07-07

    The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity of an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.

  17. On the Heat Transfer through a Solid Slab Heated Uniformly and Continuously on One of Its Surfaces

    Science.gov (United States)

    Marin, E.; Lara-Bernal, A.; Calderon, A.; Delgado-Vasallo, O.

    2011-01-01

    Some peculiarities of the heat transfer through a sample that is heated by the superficial absorption of light energy under continuous uniform illumination are discussed. We explain, using a different approach to that presented in a recent article published in this journal (Salazar "et al" 2010 "Eur. J. Phys." 31 1053-9), that the front surface of…

  18. Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan Tae; Lim, Dae Ho; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)

    2014-08-15

    Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02-0.1 m/s), liquid viscosity (0.1-3 Pa·s) and surface tension (66.1-72.9x10{sup -3} N/m) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; h=2502U{sub G}{sup 0.236}{sub L}{sup -0.250}{sub L}{sup -}0{sup .028} Nu=3.25Re{sup 0.180}Pr{sup -0.067}We{sup 0.028}.

  19. Heat transfer and vascular cambium necrosis in the boles of trees during surface fires

    Science.gov (United States)

    M. B. Dickinson

    2002-01-01

    Heat-transfer and cell-survival models are used to link surface fire behavior with vascular cambium necrosis from heating by flames. Vascular cambium cell survival was predicted with a numerical model based on the kinetics of protein denaturation and parameterized with data from the literature. Cell survival was predicted for vascular cambium temperature regimes...

  20. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  1. Heat transfer at evaporation of falling films of Freon mixture on the smooth and structured surfaces

    Science.gov (United States)

    Pecherkin, N. I.; Pavlenko, A. N.; Volodin, O. A.

    2011-12-01

    The paper presents the results of experimental investigation of heat transfer and hydrodynamics of falling films of binary mixtures of R21 and R114 freons on the surfaces with complex configuration. The vertical tubes of 50-mm diameter with the smooth and structured surfaces, made of D16T alloy, were used as the working sections. The range of film Reynolds number at the inlet to the working section was Re =10÷155. The image of wave surface of the falling liquid film was visualized and recorded by a high-speed digital video camera. At evaporation the heat transfer coefficients on the smooth and structured surfaces are determined by the liquid flow rate and weakly depend on the heat flux. At low liquid flows, the heat transfer coefficients on the structured surface decrease in comparison with the smooth surface because of liquid accumulation and enlargement of efficient thickness in microtexture channels. At high liquid flows, a change in the structure of the wave film surface leads to an increase in heat transfer coefficients in comparison with the smooth surface.

  2. Evaporation Heat Transfer of HCFC 22 on the Grooved Surfaces Inside a Horizontal Rectangular Channel

    Science.gov (United States)

    Kido, Osao; Uehara, Haruo

    The evaporation heat transfer performance on six kinds of grooved surface with 0.15 mm to 0.34 mm of the groove pitch was obtained using a rectangular channel. The upper and lower surfaces inside a horizontal rectangular channel, 10 mm in width, 5 mm in height, and 500 mm in length, were heated electrically by Nichrome heaters. HCFC 22 was used as a working fluid. Evaporating pressure was 0.49 MPa, heat flux was 4.65 kW/m2, vapor quality was varied from 0.1 to 0.9, and mass velocity was varied from 86 to 345 kg/(m2s). The empirical correlations to predict the heat transfer coefficients on upper and lower surfaces were proposed. The maximum heat transfer coefficient on upper surface is obtained on the grooved surface with 2 × 10-8 of the modified bond number. Heat transfer coefficient on lower surface isn't influenced by the groove geometries except for lead angle.

  3. Experimental Study on Boiling Heat Transfer of Liquid Film Flow on a Structural Surface

    Science.gov (United States)

    Hirose, Koichi; Mizuno, Itsuo; Nakata, Daisuke; Ouchi, Masaki

    An experimental study on the boiling heat transfer characteristics of liquid films flowing downward along vertically positioned plane and constant curvature surface (CCS) with isolated fine cavities was conducted. The effects of structural surfaces were examined, comparing with the case of smooth plane. The main results of these experiments are summarized as follows; (1) In the case of structual plane surface, there are remarkable enhancements of heat transfer rate in the nucleate boiling region. (2) In the case of CCS, it takes large values of heatflux in the region which strongly governed by the surface evaporation. (3)CCS avoids effectively the occurrence of splitting of the liquid film into rivulets. This study aims to put practical use of the heat transfer enhancement for the evaporator of a two-phase closed thermosiphon.

  4. Effect of surface catalytic activity on stagnation heat-transfer rates.

    Science.gov (United States)

    Anderson, L. A.

    1973-01-01

    An experiment was made to determine the effect heterogeneous catalytic surface reactions have on heat-transfer rates in highly frozen low-density stagnation-point boundary layers. Data were obtained in arc-heated facilities that were capable of producing large percentages of chemical energy frozen in a supersonic freestream. The heat-transfer rate to a silicon-dioxide surface was reduced to a minimum value of only one-third of the value obtained on relatively active nickel and platinum surfaces. This is the result of its low catalytic efficiency. Ionization energy was recovered on both the active and the inactive surfaces, indicating that this energy either was released many times faster than the recombination energy or was not controlled by the surface composition.

  5. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.

    Science.gov (United States)

    Chavan, Shreyas; Cha, Hyeongyun; Orejon, Daniel; Nawaz, Kashif; Singla, Nitish; Yeung, Yip Fun; Park, Deokgeun; Kang, Dong Hoon; Chang, Yujin; Takata, Yasuyuki; Miljkovic, Nenad

    2016-08-09

    Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces.

  6. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  7. Heat transfer at boiling of R114/R21 refrigerants mixture film on microstructured surfaces

    Science.gov (United States)

    Volodin, O. A.; Pecherkin, N. I.; Pavlenko, A. N.; Zubkov, N. N.; Bityutskaya, Yu L.

    2017-10-01

    The paper presents the results of experimental study of heat transfer in the film flow of R114/R21 refrigerant mixture on the vertical thin-wall copper cylinders with microstructured outer surfaces. Microstructuring is made by the method of deforming cutting with subsequent rolling by a straight knurl roller along the fin tops. The pitch of micro-finning was 100 or 200 μm and height was 220 or 440 μm, respectively. The knurling pitch in both cases was 318 μm. The film Reynolds number was varied in the range of 300-1500. The heat flux density was step-by-step increased from zero to the values corresponding to the boiling crisis. It is shown that the heat transfer coefficients at nucleate boiling on the studied surfaces with microstructuring exceed the corresponding values for a smooth surface more than by 3 times, the critical heat flux increases more than twice.

  8. Effect of Favorable Pressure Gradients on Turbine Blade Pressure Surface Heat Transfer

    Science.gov (United States)

    Boyle, Robert J.; Giel, P. W.

    2002-01-01

    Recent measurements on a turbine rotor showed significant relaminarization effects. These effects were evident on the pressure surface heat transfer measurements. The character of the heat transfer varied with Reynolds number. Data were obtained for exit Reynolds numbers between 500,000 and 880,000. Tests were done with a high level of inlet turbulence, 7.5%. At lower Reynolds numbers the heat transfer was similar to that for laminar flow, but at a level higher than for laminar flow. At higher Reynolds numbers the heat transfer was similar to turbulent flow, when the acceleration parameter, K, was sufficiently small. The proposed paper discusses the experimental results, and also discusses approaches to calculating the surface heat transfer for the blade surface. Calculations were done using a three-dimensional Navier-Stokes CFD analysis. The results of these tests, when compared with previous blade tests in the same facility, illustrate modeling difficulties that were encountered in CFD predictions. The two blades were in many ways similar. However, the degree of agreement between the same analysis and the experimental data was significantly different. These differences are highlighted to illustrate where improvements in modeling approaches are needed for transitional flows.

  9. Computational prediction of heat transfer to gas turbine nozzle guide vanes with roughened surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Guo, S.M.; Jones, T.V. [Univ. of Oxford (United Kingdom). Dept. of Engineering Science; Lock, G.D. [Univ. of Bath (United Kingdom). Dept. of Mechanical Engineering; Dancer, S.N. [Rolls-Royce PLC, Derby (United Kingdom)

    1998-04-01

    The local Mach number and heat transfer coefficient over the aerofoil surfaces and endwalls of a transonic gas turbine nozzle guide vane have been calculated. the computations were performed by solving the time-averaged Navier-Stokes equations using a fully three-dimensional computational code (CFDS), which is well established at Rolls-Royce. A model to predict the effects of roughness has been incorporated into CFDS and heat transfer levels have been calculated for both hydraulically smooth and transitionally rough surfaces. The roughness influences the calculations in two ways; first the mixing length at a certain height above the surface is increased; second the wall function used to reconcile the wall condition with the first grid point above the wall is also altered. The first involves a relatively straightforward shift of the origin in the van Driest damping function description, the second requires an integration of the momentum equation across the wall layer. A similar treatment applies to the energy equation. The calculations are compared with experimental contours of heat transfer coefficient obtained using both thin-film gages and the transient liquid crystal technique. Measurements were performed using both hydraulically smooth and roughened surfaces, and at engine-representative Mach and Reynolds numbers. The heat transfer results are discussed and interpreted in terms of surface-shear flow visualization using oil and dye techniques.

  10. Heat pipe and surface mass transfer cooling of hypersonic vehicle structures

    Science.gov (United States)

    Colwell, Gene T.; Modlin, James M.

    1992-01-01

    The problem of determining the feasibility of cooling hypersonic vehicle leading-edge structures exposed to severe aerodynamic surface heating using heat pipe and mass transfer cooling techniques is addressed. A description is presented of a numerical finite-difference-based hypersonic leading-edge cooling model incorporating poststartup liquid metal heat pipe cooling with surface transpiration and film cooling to predict the transient structural temperature distributions and maximum surface temperatures of hypersonic vehicle leading edge. An application of this model to the transient cooling of a typical aerospace plane wing leading-edge section. The results of this application indicated that liquid metal heat pipe cooling alone is insufficient to maintain surface temperatures below an assumed maximum level of 1800 K for about one-third of a typical aerospace plane ascent trajectory through the earth's atmosphere.

  11. Similarity Solutions for Flow and Heat Transfer of Non-Newtonian Fluid over a Stretching Surface

    OpenAIRE

    Atta Sojoudi; Ali Mazloomi; Saha, Suvash C.; Gu, Y. T.

    2014-01-01

    Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE) governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE) using two-parameter groups. This technique reduces the number of ...

  12. Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface

    Science.gov (United States)

    Nema, V. K.; Sharma, O. P.

    1986-01-01

    To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.

  13. The evaluation of energy efficiency of convective heat transfer surfaces in tube bundles

    Science.gov (United States)

    Grigoriev, B. A.; Pronin, V. A.; Salohin, V. I.; Sidenkov, D. V.

    2017-11-01

    When evaluating the effectiveness of the heat exchange surfaces in the main considered characteristics such as heat flow (Q, Watt), the power required for pumps (N, Watt), and surface area of heat transfer (F, m2). The most correct comparison provides a comparison “ceteris paribus”. Carried out performance comparison “ceteris paribus” in-line and staggered configurations of bundles with a circular pipes can serve as a basis for the development of physical models of flow and heat transfer in tube bundles with tubes of other geometric shapes, considering intertubular stream with attached eddies. The effect of longitudinal and transverse steps of the pipes on the energy efficiency of different configurations would take into account by mean of physical relations between the structure of shell side flow with attached eddies and intensity of transfer processes of heat and momentum. With the aim of energy-efficient placement of tubes, such an approach opens up great opportunities for the synthesis of a plurality of tubular heat exchange surfaces, in particular, the layout of the twisted and in-line-diffuser type with a drop-shaped pipes.

  14. Nanofluids for power engineering: Emergency cooling of overheated heat transfer surfaces

    Science.gov (United States)

    Bondarenko, B. I.; Moraru, V. N.; Sidorenko, S. V.; Komysh, D. V.

    2016-07-01

    The possibility of emergency cooling of an overheated heat transfer surface using nanofluids in the case of a boiling crisis is explored by means of synchronous recording of changes of main heat transfer parameters of boiling water over time. Two nanofluids are tested, which are derived from a mixture of natural aluminosilicates (AlSi-7) and titanium dioxide (NF-8). It is found that the introduction of a small portions of nanofluid into a boiling coolant (distilled water) in a state of film boiling ( t heater > 500°C) can dramatically decrease the heat transfer surface temperature to 130-150°C, which corresponds to a transition to a safe nucleate boiling regime without affecting the specific heat flux. The fact that this regime is kept for a long time at a specific heat load exceeding the critical heat flux for water and t heater = 125-130°C is particularly important. This makes it possible to prevent a potential accident emergency (heater burnout and failure of the heat exchanger) and to ensure the smooth operation of the equipment.

  15. Surface energy equation for heat transfer process in a pebble fuel

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, G., E-mail: gepe@xanum.uam.mx [Área de Ingeniería en Recursos Energéticos, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, México, DF 09340 (Mexico); Castillo-Jiménez, V. [Área de Ingeniería en Recursos Energéticos, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, México, DF 09340 (Mexico); Herranz-Puebla, L.E. [División de Fisión Nuclear, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avda. Complutense, 22, 28040 Madrid (Spain); Vázquez-Rodríguez, R. [Área de Ingeniería en Recursos Energéticos, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, México, DF 09340 (Mexico)

    2014-12-15

    Highlights: • Steady and transient behaviors of the interfacial heat transfer in a fuel element. • Non-local averaging volume method for deriving the surface energy equation. • The method captures significant physical phenomena of the interfacial heat transfer. • Closure relationships are proposed in order to obtain the temperatures distribution. • The derived average equation represents an upscaling regarding the local description. - Abstract: In this paper the surface energy equation for the heat transfer process (HT) between the mixture of fuel (TRISO particles and graphite matrix) and coating in a fuel pebble is derived. The fuel pebble can be treated as a heterogeneous region (mixture of microspheres and graphite) interacting thermally with the homogeneous region (the coating or cladding). These two regions are separated by a boundary region where the properties and behavior differ from those of the adjoining regions. The methodology applied for deriving the surface energy equation is based on the classical theory on interfacial transport phenomena. The surface energy equation derived in this work is an average equation that represents an upscaling respect to the local description. The regions around the surface where changes in the physical phenomena are important are of the order of microns, in contrast with interfacial mass transfer between phases that may be several molecular diameters. The numerical analysis regarding the application of surface energy equation is presented in this work.

  16. Numerical investigation of heat transfer performance of synthetic jet impingement onto dimpled/protrusioned surface

    Directory of Open Access Journals (Sweden)

    Zhang Di

    2015-01-01

    Full Text Available Dynamic mesh methods and user defined functions are adopted and the shear stress transport k-ω turbulent model has been used in the numerical investigation of heat transfer performance of synthetic jet impingement onto dimple/protrusioned surface. The results show that the local time-averaged Nusselt number of the dimpled/protrusioned target surface tends to be much closer with that of flat cases with increasing of frequency. The heat transfer performance gets better when frequency increases. The area-averaged time-averaged Nusselt number of protrusioned target surface is the most close to that of flat cases when f = 320 Hz while it is the smallest among the synthetic jet cases in dimpled target surface. The heat transfer enhancement performance of synthetic jet is 30 times better than that of natural convection. The time-averaged Nusselt number of stagnation point in the protrusioned target surface is higher than that of flat target surface while it is lower in the dimpled surface than that of flat surface no matter in the synthetic jet, steady jet or natural convection cases. Meanwhile, the timeaveraged Nusselt number of stagnation point in the synthetic jet cases increases with the increasing of frequency. It is worth pointing out that the time-averaged Nusselt number of stagnation point is lower than that of steady cases when the frequency is low. However, it shows a bit higher than that of steady cases when f = 320 Hz.

  17. Investigation of the influence of a step change in surface roughness on turbulent heat transfer

    Science.gov (United States)

    Taylor, Robert P.; Coleman, Hugh W.; Taylor, J. Keith; Hosni, M. H.

    1991-01-01

    The use is studied of smooth heat flux gages on the otherwise very rough SSME fuel pump turbine blades. To gain insights into behavior of such installations, fluid mechanics and heat transfer data were collected and are reported for a turbulent boundary layer over a surface with a step change from a rough surface to a smooth surface. The first 0.9 m length of the flat plate test surface was roughened with 1.27 mm hemispheres in a staggered, uniform array spaced 2 base diameters apart. The remaining 1.5 m length was smooth. The effect of the alignment of the smooth surface with respect to the rough surface was also studied by conducting experiments with the smooth surface aligned with the bases or alternatively with the crests of the roughness elements. Stanton number distributions, skin friction distributions, and boundary layer profiles of temperature and velocity are reported and are compared to previous data for both all rough and all smooth wall cases. The experiments show that the step change from rough to smooth has a dramatic effect on the convective heat transfer. It is concluded that use of smooth heat flux gages on otherwise rough surfaces could cause large errors.

  18. A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2015-01-01

    In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed...... that the maximum differences between the calculated surface temperature and heat transfer using the proposed model and the measured data were 0.8 ºC and 8.1 W/m2 for radiant floor heating system when average water temperature between 40 ºC and 60 ºC. For the corresponding values were 0.3 ºC and 2.0 W/m2...... for radiant floor cooling systems when average water temperature between 10 ºC and 20 ºC. Numerically simulated data in this study were also used to validate the proposed model. The results showed that the surface temperature and heat transfer of radiant floor calculated by the proposed model agreed very well...

  19. Dynamics of explosive boiling and third heat transfer crisis at subcooling on a vertical surface

    Science.gov (United States)

    Avksentyuk, B. P.; Ovchinnikov, V. V.

    2017-07-01

    Results of experimental studies on dynamics of explosive boiling and third heat transfer crisis under the conditions of liquid subcooling are presented for the vertical arrangement of the heat-transfer surface. Acetone was used in experiments at the pressure in the working volume from 20 to 46 kPa and subcooling from 0 to 20 K. The studied processes were recorded. Data on the velocity of evaporation front propagation at liquid subcooling were obtained. These data are compared with the results of calculations according to the models available in the literature. The effect of liquid subcooling on the regions of regime parameters corresponding to explosive boiling and third heat transfer crisis is studied.

  20. Thermal radiation heat transfer.

    Science.gov (United States)

    Siegel, R.; Howell, J. R.

    1972-01-01

    A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.

  1. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  2. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  3. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  4. Effects of Surface Wettability and Roughness on the Heat Transfer Performance of Fluid Flowing through Microchannels

    Directory of Open Access Journals (Sweden)

    Jing Cui

    2015-06-01

    Full Text Available The surface characteristics, such as wettability and roughness, play an important role in heat transfer performance in the field of microfluidic flow. In this paper, the process of a hot liquid flowing through a microchannel with cold walls, which possesses different surface wettabilities and microstructures, is simulated by a transient double-distribution function (DDF two-phase thermal lattice Boltzmann BGK (LBGK model. The Shan-Chen multiphase LBGK model is used to describe the flow field and the independent distribution function is introduced to solve the temperature field. The simulation results show that the roughness of the channel wall improves the heat transfer, no matter what the surface wettability is. These simulations reveal that the heat exchange characteristics are directly related to the flow behavior. For the smooth-superhydrophobic-surface flow, a gas film forms that acts as an insulating layer since the thermal conductivity of the gas is relatively small in comparison to that of a liquid. In case of the rough-superhydrophobic-surface flow, the vortex motion of the gas within the grooves significantly enhances the heat exchange between the fluid and wall.

  5. Vibration-Assisted Laser Surface Texturing and Electromachining for the Intensification of Boiling Heat Transfer in a Minichannel

    Directory of Open Access Journals (Sweden)

    Piasecka M.

    2017-12-01

    Full Text Available The paper describes applications of the vibration-assisted laser surface texturing and spark erosion process as methods of modifying properties and structures of metal surfaces. Practical aspects of the use of produced surfaces in the heat exchanger with a minichannel have been described. Compared with smooth surfaces, developed metal surfaces obtained by vibration-assisted laser surface texturing and electromachining show more effective heat transfer. The local heat transfer coefficient for the saturated boiling region obtained for developed surfaces had the values significantly higher than those obtained for the smooth plate at the same heat flux. The experimental results are presented as the heated plate temperature (obtained from infrared thermography and relationships between the heat transfer coefficient and the distance along the length of the minichannel for the saturated boiling region.

  6. Heat transfer in a stagnation point flow of a second grade fluid over a stretching surface with heat generation/absorption

    Directory of Open Access Journals (Sweden)

    Hazem Ali Attia

    2014-01-01

    Full Text Available The heat transfer in a steady planar stagnation point flow of an incompressible non-Newtonian second grade fluid impinging on a permeable stretching surface with heat generation or absorption is examined. The governing nonlinear momentum and energy equations are solved numerically using finite differences. The influence of the characteristics of the non-Newtonian fluid, the surface stretching velocity, the heat generation/ absorption coefficient, and Prandtl number on both the flow and heat transfer is reported.

  7. Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface

    Directory of Open Access Journals (Sweden)

    C.S.K. Raju

    2016-03-01

    Full Text Available In this study we analyzed the flow, heat and mass transfer behavior of Casson fluid past an exponentially permeable stretching surface in presence of thermal radiation, magneticfield, viscous dissipation, heat source and chemical reaction. We presented dual solutions by comparing the results of the Casson fluid with the Newtonian fluid. The governing partial nonlinear differential equations of the flow, heat and mass transfer are transformed into ordinary differential equations by using similarity transformation and solved numerically by using Matlab bvp4c package. The effects of various non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented graphically. Also, the friction factor, Nusselt and Sherwood numbers are analyzed and presented in tabular form for both Casson and Newtonian fluids separately. Under some special conditions the results of the present study have an excellent agreement with existing studies for both Casson and Newtonian fluid cases.

  8. Impact of Cubic Pin Finned Surface Structure Geometry upon Spray Cooling Heat Transfer

    Science.gov (United States)

    Silk, Eric A.; Kim, Jungho; Kiger, Ken

    2005-01-01

    Experiments were conducted to study the effects of enhanced surface structures on heat flux using spray cooling. The surface enhancements consisted of cubic pin fins machined on the top surface of copper heater blocks. The structure height, pitch, and width were parametrically vaned. Each copper block had a projected cross-sectional area of 2.0 sq cm. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2 x 2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data were obtained under nominally degassed (chamber pressure of 41.4 kPa) and gassy conditions (chamber with N2 gas at 100.7 kPa) with a bulk fluid temperature of 20.5 C. Results for both the degassed and gassy cases show that structure width and separation distance have a dominant effect upon the heat transfer for the size ranges used. Cubic pin fin height had little impact upon heat flux. The maximum critical heat flux (CHF) attained for any of the surfaces was 121 W/sq cm, giving an enhancement of 51% relative to the flat surface case under nominally degassed conditions. The gassy case had a maximum CHF of 149 W/sq cm, giving an enhancement of 38% relative to the flat surface case.

  9. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... can result in the increased heat amount that can be transferred and stored in the heavy construction element during the diurnal indoor temperature fluctuations.......The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...

  10. EFFECT OF TEMPERATURE-DEPENDENCY OF SURFACE EMISSIVITY ON HEAT TRANSFER USING THE PARAMETERIZED PERTURBATION METHOD

    Directory of Open Access Journals (Sweden)

    Maziar Jalaal

    2011-01-01

    Full Text Available Knowledge of the temperature dependence of the physical properties such surface emissivity, which controls the radiative problem, is fundamental for determining the thermal balance of many scientific and industrial processes. The current work studies the ability of a strong analytical method called parameterized perturbation method (PPM, which unlike classic perturbation method do not need small parameter, for nonlinear heat transfer equations. The results are compared with the numerical Runge-Kutta method showed good agreement.

  11. Comparison of Predicted and Measured Turbine Vane Rough Surface Heat Transfer

    Science.gov (United States)

    Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.

    2000-01-01

    The proposed paper compares predicted turbine vane heat transfer for a rough surface over a wide range of test conditions with experimental data. Predictions were made for the entire vane surface. However, measurements were made only over the suction surface of the vane, and the leading edge region of the pressure surface. Comparisons are shown for a wide range of test conditions. Inlet pressures varied between 3 and 15 psia, and exit Mach numbers ranged between 0.3 and 0.9. Thus, while a single roughened vane was used for the tests, the effective rougness,(k(sup +)), varied by more than a factor of ten. Results were obtained for freestream turbulence levels of 1 and 10%. Heat transfer predictions were obtained using the Navier-Stokes computer code RVCQ3D. Two turbulence models, suitable for rough surface analysis, are incorporated in this code. The Cebeci-Chang roughness model is part of the algebraic turbulence model. The k-omega turbulence model accounts for the effect of roughness in the application of the boundary condition. Roughness causes turbulent flow over the vane surface. Even after accounting for transition, surface roughness significantly increased heat transfer compared to a smooth surface. The k-omega results agreed better with the data than the Cebeci-Chang model. However, the low Reynolds number k-omega model did not accurately account for roughness when the freestream turbulence level was low. The high Reynolds number version of this model was more suitable when the freestream turbulence was low.

  12. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-01-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k- ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  13. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-06-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k-ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  14. Thermophysical properties of lunar media. II - Heat transfer within the lunar surface layer

    Science.gov (United States)

    Cremers, C. J.

    1974-01-01

    Heat transfer within the lunar surface layer depends on several thermophysical properties of the lunar regolith, including the thermal conductivity, the specific heat, the thermal diffusivity, and the thermal parameter. Results of property measurements on simulated lunar materials are presented where appropriate as well as measurements made on the actual samples themselves. The variation of temperature on the moon with depth is considered, taking into account various times of the lunar day. The daily variation in temperature drops to about 1 deg at a depth of only 0.172 meters. The steady temperature on the moon below this depth is 225 K.

  15. Evaluation of reusable surface insulation for space shuttle over a range of heat-transfer rate and surface temperature

    Science.gov (United States)

    Chapman, A. J.

    1973-01-01

    Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.

  16. Dynamic surface tension of heat transfer additives suitable for use in steam condensers and absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Yong-Du [Department of Mechanical and Automotive Engineering, Kongju National University, Kongju, Chungnam, 314-701 (Korea); Kim, Kwang J.; Kennedy, John M. [Department of Mechanical Engineering, University of Nevada-Reno, MS 312, Reno, NV 89557 (United States)

    2010-03-15

    Additives are often effectively used in enhancing heat transfer by creating a surface tension gradient on the surface of a condensate film to induce Marangoni driven ''dropwise-like'' condensation. The objective of the current study is to use the Maximum Bubble Pressure Method (MBPM) to evaluate dynamic behavior of the surface tension of solutions of three different additives (2-ethoxy ethanol, isobutylamine, and 2-ethyl-1-hexanol) of varying concentrations with water. It was shown that the effects of 2-ethoxy ethanol on surface tension was primarily dependent on solute concentration and showed little dependence on time (i.e. surface age of bubble). While both isobutylamine and 2-ethyl-1-hexanol showed strong dependence on both concentration and time, the effects of the later were far more dramatic. The results for all solutions are presented as functions of concentration and time (i.e. surface age of bubble). (author)

  17. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  18. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  19. Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2013-01-01

    Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.

  20. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  1. A study of the flow boiling heat transfer in a minichannel for a heated wall with surface texture produced by vibration-assisted laser machining

    Science.gov (United States)

    Piasecka, Magdalena; Strąk, Kinga; Maciejewska, Beata; Grabas, Bogusław

    2016-09-01

    The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced surface. Two types of surface textures were considered. Both were produced by vibration-assisted laser machining. Infrared thermography was used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass pane. The main aim of the study was to analyze how the two types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the heated wall was solved using a semi-analytical method based on the Trefftz functions. The results are presented as relationships between the heat transfer coefficient and the distance along the minichannel length and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported in the saturated boiling region for the plate with the type 1 texture produced by vibration-assisted laser machining.

  2. The simultaneous retrieval of surface evaporative fraction and heat transfer coefficients using variational data assimilation and surface radiometric temperature observations

    Science.gov (United States)

    Crow, W. T.; Kustas, W. P.

    2003-12-01

    Recent advances in land data assimilation have yielded data assimilation techniques designed to solve the surface energy balance based on remote observations of surface radiometric temperature and a simple prognostic equation for surface temperature. These approaches have a number of potential advantages over existing diagnostic models, including the ability to make energy flux predictions between satellite overpass times, more physically realistic representations of ground heat flux, and reduced requirements for ancillary parameter estimation. Of particular interest is the variational approach presented by Caparrini et al. (Journal of Hydrometeorology, 2003) which uses a force-restore equation for surface temperature as a constraint for the simultaneous estimation of both evaporative fraction and bulk heat transfer coefficients from sequences of surface radiometric temperature observations. Using eddy correlation flux tower data and analogous energy balance results obtained from the diagnostic Two-Source Model (TSM), this presentation will examine the performance of the Caparrini et al. algorithm over a range of vegetative and hydrologic conditions in the southern United States. Results identify circumstances under which the simultaneous - and unambiguous - retrieval of both surface evaporation fraction and heat transfer coefficients is possible and clarify parameter interpretation issues associated with the single-source geometry of the variational approach. Inter-comparison with the TSM model illustrates circumstances under which the increased parameter complexity of the TSM model is justified by its more accurate two-source representation of thermal emission from partial vegetation canopies. Potential improvements to current variational data assimilation techniques will also be discussed.

  3. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  4. Observed Wind Speed at Weather Station and Heat Transfer Coefficient of External Surface of the Building in Summer and Winter

    OpenAIRE

    小林, 定教; コバヤシ, サダノリ; Sadanori, KOBAYASHI

    1994-01-01

    The heat transfer coefficient of the external surface of the building used for thermal load calculations was proposed by Dr. Watanabe et at. in about 1934. In those days the main purpose of studies focused on heating; recently calculations in respect to cooling have been increasing in importance, calling attention to the heat transfer coefficient in summer in relation to the wind speed. In this paper I studied summer and winter wind speeds based on observation results of a weather station, an...

  5. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  6. Analytical accuracy of the one dimensional heat transfer in geometry with logarithmic various surfaces

    Science.gov (United States)

    Vahabzadeh, A.; Fakour, M.; Ganji, D.; Rahimipetroudi, I.

    2014-12-01

    In this study, heat transfer and temperature distribution equations for logarithmic surface are investigated analytically and numerically. Employing the similarity variables, the governing differential equations have been reduced to ordinary ones and solved via Homotopy perturbation method (HPM), Variational iteration method (VIM), Adomian decomposition method (ADM). The influence of the some physical parameters such as rate of effectiveness of temperature on non-dimensional temperature profiles is considered. Also the fourth-order Runge-Kutta numerical method (NUM) is used for the validity of these analytical methods and excellent agreement are observed between the solutions obtained from HPM, VIM, ADM and numerical results.

  7. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  8. Investigation of heat transfer on surface mount packages for different chip materials

    Science.gov (United States)

    Ramdzan, N.; Aziz, M. H. B. A.; Ong, N. R.; Alcain, J. B.; Sauli, Z.

    2017-09-01

    The allocation and design placement of devices consisting of thermal sensitive units and poor thermal design can affect the device performance and damage the device in the worst case scenario. This study investigates the effect of thermal performance on the surface mount package corresponding to difference chip material. COMSOL Multiphysics software was used to assess the thermal effect on the electronic package. All the simulations are conducted under an identical simulation environment. The heat is transferred from the chip through the mount package to the surroundings by conduction. Besides that, thermal conduction mechanism happens among the components and thermal convection occurs on the air-exposed surface. The temperature of surface mount package was analyzed. The simulation result indicates that the chip material of titanium beta 21s as chip material shows the highest temperature of 48.04°C. While, magnesium as chip material shows the lowest temperature about 43.61°C.

  9. Heat transfer and fluid mechanics measurements in transitional boundary layers on convex-curved surfaces

    Science.gov (United States)

    Wang, T.; Simon, T. W.

    1987-01-01

    The test section of the present experiment to ascertain the effects of convex curvature and freestream turbulence on boundary layer momentum and heat transfer during natural transition provided a two-dimensional boundary layer flow on a uniformly heated curved surface, with bending to various curvature radii, R. Attention is given to results for the cases of R = infinity, 180 cm, and 90 cm, each with two freestream turbulence intensity levels. While the mild convex curvature of R = 180 cm delays transition, further bending to R = 90 cm leads to no signifucant further delay of transition. Cases with both curvature and higher freestream disturbance effects exhibit the latter's pronounced dominance. These data are pertinent to the development of transition prediction models for gas turbine blade design.

  10. Similarity Solutions for Flow and Heat Transfer of Non-Newtonian Fluid over a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Atta Sojoudi

    2014-01-01

    Full Text Available Similarity solutions are carried out for flow of power law non-Newtonian fluid film on unsteady stretching surface subjected to constant heat flux. Free convection heat transfer induces thermal boundary layer within a semi-infinite layer of Boussinesq fluid. The nonlinear coupled partial differential equations (PDE governing the flow and the boundary conditions are converted to a system of ordinary differential equations (ODE using two-parameter groups. This technique reduces the number of independent variables by two, and finally the obtained ordinary differential equations are solved numerically for the temperature and velocity using the shooting method. The thermal and velocity boundary layers are studied by the means of Prandtl number and non-Newtonian power index plotted in curves.

  11. CONVECTIVE HEAT AND MASS TRANSFER IN THE COMBUSTION OF CHEMICALLY ACTIVE SUBSTANCES IN THE BOUNDARY LAYER ON A POROUS SURFACE.

    Science.gov (United States)

    COOLING, *POROUS MATERIALS), (*HEAT TRANSFER, *COMBUSTION), (* MASS TRANSFER , COMBUSTION), CONVECTION(HEAT TRANSFER), GAS FLOW, INJECTION, CHEMICAL REACTIONS, LAMINAR BOUNDARY LAYER, TURBULENT BOUNDARY LAYER, THERMAL INSULATION, USSR

  12. Experimental investigation on narrow gap heat transfer with porous media under downward-facing horizontal heated surface

    Energy Technology Data Exchange (ETDEWEB)

    Hu, B.X. [State Key laboratory of Multiphase Flow in Power Engineering, Department of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an city 710049 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.c [State Key laboratory of Multiphase Flow in Power Engineering, Department of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an city 710049 (China); Wu, Y.W. [State Key laboratory of Multiphase Flow in Power Engineering, Department of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an city 710049 (China); Sugiyama, K. [Faculty of Engineering, Hokkaido University, Kita 13 Jo, Nishi 8 Chome, Kita-Ku, Sapporo 060-8628 (Japan); Qiu, S.Z. [State Key laboratory of Multiphase Flow in Power Engineering, Department of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an city 710049 (China)

    2009-12-15

    An experimental study of horizontal narrow gap heat transfer of porous media under a round downward-facing heated plate has been carried out, using water as the working fluid. The boiling curves are obtained with different gap size, plate diameter and solid spherules. The results show that the heat transfer increases significantly with porous media in the gap especially under boiling condition, and the occurrence of pool boiling crisis would be brought forward when the gap size is very small. The results also indicate that the heat transfer in horizontal narrow gap can be enhanced by increasing the ratio of gap size to plate diameter and using porous media with high thermal conductivity. Based on the mechanism of heat transfer of porous media, the correlations for natural convection and nucleate boiling are proposed to predict the heat flux.

  13. Enhancement of near-field radiative heat transfer via multiple coupling of surface waves with graphene plasmon

    Directory of Open Access Journals (Sweden)

    Ting Zhou

    2017-05-01

    Full Text Available Coated silicon carbide (SiC thin films can efficiently enhance near-field radiative heat transfer among metamaterials. In this study, the near-field heat transfer among graphene–SiC–metamaterial (GSM multilayer structures was theoretically investigated. Graphene plasmons could be coupled both with electric surface plasmons supported by the metamaterial and with symmetric and anti-symmetric surface phonon polaritons (SPhPs supported by SiC. The heat transfer among GSM structures was considerably improved compared to that among SiC-coated metamaterials when the chemical potential of graphene was not very high. In addition, the near-field heat transfer was enhanced among SiC–graphene–metamaterial multilayer structures, though the heat transfer among these structures was less than that among GSMs owing to the absence of coupling between symmetric SPhPs and graphene plasmons. Hence, heat transfer could be flexibly tuned by modifying the chemical potential of graphene in both configurations. These results provide a basis for active control of the near-field radiative heat transfer in the far-infrared region.

  14. Enhancement of near-field radiative heat transfer via multiple coupling of surface waves with graphene plasmon

    Science.gov (United States)

    Zhou, Ting; Song, Chen-Cai; Wang, Tong-Biao; Liu, Wen-Xing; Liu, Jiang-Tao; Yu, Tian-Bao; Liao, Qing-Hua; Liu, Nian-Hua

    2017-05-01

    Coated silicon carbide (SiC) thin films can efficiently enhance near-field radiative heat transfer among metamaterials. In this study, the near-field heat transfer among graphene-SiC-metamaterial (GSM) multilayer structures was theoretically investigated. Graphene plasmons could be coupled both with electric surface plasmons supported by the metamaterial and with symmetric and anti-symmetric surface phonon polaritons (SPhPs) supported by SiC. The heat transfer among GSM structures was considerably improved compared to that among SiC-coated metamaterials when the chemical potential of graphene was not very high. In addition, the near-field heat transfer was enhanced among SiC-graphene-metamaterial multilayer structures, though the heat transfer among these structures was less than that among GSMs owing to the absence of coupling between symmetric SPhPs and graphene plasmons. Hence, heat transfer could be flexibly tuned by modifying the chemical potential of graphene in both configurations. These results provide a basis for active control of the near-field radiative heat transfer in the far-infrared region.

  15. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Directory of Open Access Journals (Sweden)

    Wenli Cai

    Full Text Available This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  16. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  17. Periodic Unsteady Flow Aerodynamics and Heat Transfer: Studies on a Curved Surface, Combined Part I and II

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2000-01-01

    Full Text Available Aerodynamic and heat transfer investigations were done on a constant curvature curved plate in a subsonic wind tunnel facility for various wake passing frequencies and zero pressure gradient conditions. Steady and unsteady boundary layer transition measurements were taken on the concave surface of the curved plate at different wake passing frequencies where a rotating squirrel-cage generated the unsteady wake flow. The data were analyzed using timeaveraged and ensemble-averaged techniques to provide insight into the growth of the boundary layer and transition. Ensemble-averaged turbulence intensity contours in the temporal spatial domain showed that transition was induced for increasing wake passing frequency and structure. The local heat transfer coefficient distribution for the concave and convex surface was determined at those wake passing frequencies using a liquid crystal heat transfer measurement technique. Detailed aerodynamic and heat transfer investigations showed that higher wake passing frequency caused transition to occur earlier on the concave surface. Local Stanton numbers were also calculated on the concave surface and compared with Stanton numbers predicted using a differential boundary layer and heat transfer calculation method. On the convex side, no effect of wake passing frequency on heat transfer was observed due to a separation bubble that induced transition.

  18. Heat transfer and surface flow visualization around a 180 deg turn in a rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Astarita, G.; Cardone, G.; Carlomagno, G.M. [Univ. of Naples (Italy)

    1995-12-31

    The efficiency of gas turbine engines strongly depends on the gas entry temperature, the higher the latter, the more efficient is the turbine thermal cycle. Present advanced gas turbines operate at gas entry temperatures much higher than metal creeping temperatures and therefore require intensive cooling of their blades especially in the early stages. The aim of the present study is to obtain detailed measurements of the convective heat transfer coefficient nearby a 180deg sharp turn in a rectangular channel, and to prove that the use of infrared thermography may be appropriate to experimentally study this type of problem. A rectangular two-pass channel, which is 40 mm high and 200 mm wide, is tested for two different geometries of the tip of the partition wall: a square tip and semicircular one. To perform surface flow visualization and heat transfer measurements, the heated-thin-foil technique is used and results in terms of temperature maps and Nusselt number Nu distributions are obtained. Nu is computed by means of the local bulk temperature which is evaluated by making a one-dimensional energy balance along the channel. Reynolds number, based on average inlet velocity and hydraulic diameter of the channel is varied between 1.6 {times} 10{sup 4} and 6.4 {times} 10{sup 4}. By moving in the streamwise direction, at the beginning of the heated zone a rapid increase of the wall temperature is found due to the development of the thermal boundary layer. Two well distinguishable separation zones are found, one at the first outer corner of the channel and the other attached to the partition wall and just downstream of its tip. The influence of the geometry of the latter seems to be limited mainly to the position of the onset of the second separation zone. A third weak recirculation zone seems to appear in the vicinity of the second outer corner at the highest tested Reynolds number.

  19. Bubble Departure from Metal-Graphite Composite Surfaces and Its Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli

    2010-01-01

    The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.

  20. Surface temperatures in New York City: Geospatial data enables the accurate prediction of radiative heat transfer.

    Science.gov (United States)

    Ghandehari, Masoud; Emig, Thorsten; Aghamohamadnia, Milad

    2018-02-02

    Despite decades of research seeking to derive the urban energy budget, the dynamics of thermal exchange in the densely constructed environment is not yet well understood. Using New York City as a study site, we present a novel hybrid experimental-computational approach for a better understanding of the radiative heat transfer in complex urban environments. The aim of this work is to contribute to the calculation of the urban energy budget, particularly the stored energy. We will focus our attention on surface thermal radiation. Improved understanding of urban thermodynamics incorporating the interaction of various bodies, particularly in high rise cities, will have implications on energy conservation at the building scale, and for human health and comfort at the urban scale. The platform presented is based on longwave hyperspectral imaging of nearly 100 blocks of Manhattan, in addition to a geospatial radiosity model that describes the collective radiative heat exchange between multiple buildings. Despite assumptions in surface emissivity and thermal conductivity of buildings walls, the close comparison of temperatures derived from measurements and computations is promising. Results imply that the presented geospatial thermodynamic model of urban structures can enable accurate and high resolution analysis of instantaneous urban surface temperatures.

  1. Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface

    Directory of Open Access Journals (Sweden)

    N. Sandeep

    2016-03-01

    Full Text Available We analyzed the unsteady magnetohydrodynamic radiative flow and heat transfer characteristics of a dusty nanofluid over an exponentially permeable stretching surface in presence of volume fraction of dust and nano particles. We considered two types of nanofluids namely Cu-water and CuO-water embedded with conducting dust particles. The governing equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using Runge–Kutta based shooting technique. The effects of non-dimensional governing parameters namely magneticfield parameter, mass concentration of dust particles, fluid particle interaction parameter, volume fraction of dust particles, volume fraction of nano particles, unsteadiness parameter, exponential parameter, radiation parameter and suction/injection parameter on velocity profiles for fluid phase, dust phase and temperature profiles are discussed and presented through graphs. Also, friction factor and Nusselt numbers are discussed and presented for two dusty nanofluids separately. Comparisons of the present study were made with existing studies under some special assumptions. The present results have an excellent agreement with existing studies. Results indicated that the enhancement in fluid particle interaction increases the heat transfer rate and depreciates the wall friction. Also, radiation parameter has the tendency to increase the temperature profiles of the dusty nanofluid.

  2. Heat transfer in a channel with inclined target surface cooled by single array of centered impinging jets

    Directory of Open Access Journals (Sweden)

    Al Mubarak Ali A.

    2013-01-01

    Full Text Available An experimental investigation has been carried out to study the heat transfer characteristics in a channel with heated target plate inclined at an angle cooled by single array of equally spaced centered impinging jets for three different jet Reynolds numbers (Re=9300, 14400 and 18800. Air ejected from an array of orifices impinges on the heated target surface The target plate forms the leading edge of a gas turbine blade cooled by jet impingement technique. The work includes the effect of jet Reynolds numbers and feed channel aspect ratios (H/d = 5, 7, 9 where H=2.5, 3.5, 4.5 cm and d=0.5 cm on the heat transfer characteristics for a given orifice jet plate configuration with equally spaced centered holes with outflow exiting in both directions (with inclined heated target surface. In general, It has been observed that, H/d=9 gives the maximum heat transfer over the entire length of the target surface as compared to all feed channel aspect ratios. H/d=9 gives 3% more heat transfer from the target surface as compared to H/d=5 (for Re=14400. Also, it has been observed that the magnitude of the averaged local Nusselt number increases with an increase in the jet Reynolds number for all the feed channel aspect ratios studied.

  3. Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films

    CERN Document Server

    Boriskina, Svetlana V; Huang, Yi; Zhou, Jiawei; Chiloyan, Vazrik; Chen, Gang

    2016-01-01

    The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs) on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (...

  4. Turbulence and surface heat transfer near the stagnation point of a circular cylinder in turbulent flow

    Science.gov (United States)

    Wang, C. R.

    1983-01-01

    A turbulent boundary layer flow analysis of the momentum and thermal flow fields near the forward stagnation point due to a circular cylinder in turbulent cross flow is presented. Turbulence modeling length scale, anisotropic turbulence initial profiles and boundary conditions were identified as functions of the cross flow turbulence intensity and the boundary layer flow far field velocity. These parameters were used in a numerical computational procedure to calculate the mean velocity, mean temperature, and turbulence double correlation profiles within the flow field. The effects of the cross flow turbulence on the stagnation region momentum and thermal flow fields were investigated. This analysis predicted the existing measurements of the stagnation region mean velocity and surface heat transfer rate with cross flow Reynolds number and turbulence intensity less than 250,000 and 0.05, respectively.

  5. Piston surface heat transfer during combustion in large marine diesel engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    In the design process of large marine diesel engines information on the maximum heat load on the piston surface experienced during the engine cycle is an important parameter. The peak heat load occurs during combustion when hot combustion products impinge on the piston surface. Although the maximum...... heat load is only present for a short time of the total engine cycle, it is a severe thermal load on the piston surface. At the same time, cooling of the piston crown is generally more complicated than cooling of the other components of the combustion chamber. This can occasionally cause problems...... with burning off piston surface material. In this work the peak heat load on the piston surface of large marine diesel engines during combustion was investigated. Measurements of the instantaneous surface temperature and surface heat flux on pistons in large marine engines are difficult due to expensive...

  6. Experimental Study on States of Liquid Film on Heat Transfer Surface Inside a Horizontal Spirally Grooved Tube during Evaporation

    Science.gov (United States)

    Higashiiue, Shinya; Momoki, Satoru; Shigechi, Toru; Mori, Hideo; Yamaguchi, Tomohiko

    This paper presents a prediction method of flow regimes during evaporation of pure refrigerants in a horizontal spirally grooved steel tube with 12mm in average inner diameter. Circumferential temperature distributions on the external surface of the tube and boiling heat transfer coefficients were obtained through the experiments on the flow boiling heat transfer using two kinds of fluorocarbon refrigerants, HCFC123 and HCFC22. Based on the temperature distributions and the characteristics of heat transfer coefficient against vapor quality, we discussed the conditions of liquid film formed on the heat transfer surface. The experimental data were classified into four kinds of flow regimes according to the viewpoint on the liquid film conditions and heat transfer characteristics: annular flow, annular flow with liquid meniscus, separated flow with liquid meniscus and separated flow with dry surface. In order to predict the transition quality from separated flow to annular flow, we developed the correlation for border angle of well-wetted perimeter for the present grooved tube based on the Mori et al. correlation proposed for smooth tubes. The correlation for the transitional quality between separated flow with dry surface and separated flow with liquid meniscus was developed empirically as well as the correlation for the transient transitional quality between annular flow and annular flow with liquid meniscus.

  7. Radiative heat transfer with hydromagnetic flow and viscous dissipation over a stretching surface in the presence of variable heat flux

    Directory of Open Access Journals (Sweden)

    Kumar Hitesh

    2009-01-01

    Full Text Available The boundary layer steady flow and heat transfer of a viscous incompressible fluid due to a stretching plate with viscous dissipation effect in the presence of a transverse magnetic field is studied. The equations of motion and heat transfer are reduced to non-linear ordinary differential equations and the exact solutions are obtained using properties of confluent hypergeometric function. It is assumed that the prescribed heat flux at the stretching porous wall varies as the square of the distance from origin. The effects of the various parameters entering into the problem on the velocity field and temperature distribution are discussed.

  8. Heat transfer, diffusion, and evaporation

    Science.gov (United States)

    Nusselt, Wilhelm

    1954-01-01

    Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.

  9. Numerical Simulation of Heat and Mass Transfer in a Liquid Film Moving Over a Heated Horizontal Surface Under the Action of a Gas Flow

    Directory of Open Access Journals (Sweden)

    Bartashevich Maria V.

    2017-01-01

    Full Text Available Heat and mass transfer during desorption on a horizontal film of lithium bromide water solution flowing on a heated wall under the action of shear stress is numerically investigated in this paper. The shear stress on the film surface is set by the motion of surrounding saturated water vapor. It is shown that at low values of heat flux the film temperature and vapor concentration in the solution downstream decreases due to desorption. However, with an increase in heat flux, general film heating and desorption slowing down are observed.

  10. Scraped surface heat exchangers.

    Science.gov (United States)

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  11. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  12. Heat transfer, insulation calculations simplified

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1985-08-19

    Determination of heat transfer coefficients for air, water, and steam flowing in tubes and calculation of heat loss through multilayered insulated surfaces have been simplified by two computer programs. The programs, written in BASIC, have been developed for the IBM and equivalent personal computers.

  13. Heat transfer II essentials

    CERN Document Server

    REA, The Editors of

    1988-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Heat Transfer II reviews correlations for forced convection, free convection, heat exchangers, radiation heat transfer, and boiling and condensation.

  14. Advances in heat transfer

    CERN Document Server

    Hartnett, James P; Cho, Young I; Greene, George A

    2001-01-01

    Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.

  15. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  16. Heat Transfer Basics and Practice

    CERN Document Server

    Böckh, Peter

    2012-01-01

    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...

  17. Film evaporation from a micro-grooved surface - An approximate heat transfer model and its comparison with experimental data

    Science.gov (United States)

    Xu, X.; Carey, V. P.

    1990-10-01

    An analytical model is presented that can be used to predict the heat-transfer characteristics of film evaporation on a microgroove surface. The model assumes that the liquid flow along a 'V' shaped groove channel is driven primarily by the capillary pressure difference due to the receding of the meniscus toward the apex of the groove, and the flow up the groove side wall is driven by the disjoining pressure difference. It also assumes that conduction across the thin liquid film is the dominant mechanism of heat transfer. A correlation between the Nusselt number and a nondimensional parameter Psi is developed from this model which relates the heat transfer for the microgroove surface to the fluid properties, groove geometry, and the constants for the disjoining pressure relation. The results of a limited experimental study of the heat transfer during vaporization of a liquid coolant on a microgroove surface are also reported. Film-evaporation transfer coefficients inferred from these experiments are found to correlate fairly well in terms of Nusselt number and Psi parameter format developed in the model. The results of this study suggest that disjoining pressure differences may play a central role in evaporation processes in microgroove channels.

  18. Analysis of the dual phase lag bio-heat transfer equation with constant and time-dependent heat flux conditions on skin surface

    Directory of Open Access Journals (Sweden)

    Ziaei Poor Hamed

    2016-01-01

    Full Text Available This article focuses on temperature response of skin tissue due to time-dependent surface heat fluxes. Analytical solution is constructed for DPL bio-heat transfer equation with constant, periodic and pulse train heat flux conditions on skin surface. Separation of variables and Duhamel’s theorem for a skin tissue as a finite domain are employed. The transient temperature responses for constant and time-dependent boundary conditions are obtained and discussed. The results show that there is major discrepancy between the predicted temperature of parabolic (Pennes bio-heat transfer, hyperbolic (thermal wave and DPL bio-heat transfer models when high heat flux accidents on the skin surface with a short duration or propagation speed of thermal wave is finite. The results illustrate that the DPL model reduces to the hyperbolic model when τT approaches zero and the classic Fourier model when both thermal relaxations approach zero. However for τq = τT the DPL model anticipates different temperature distribution with that predicted by the Pennes model. Such discrepancy is due to the blood perfusion term in energy equation. It is in contrast to results from the literature for pure conduction material, where the DPL model approaches the Fourier heat conduction model when τq = τT . The burn injury is also investigated.

  19. Unsteady boundary layer nanofluid flow and heat transfer along a porous stretching surface with magnetic field

    Science.gov (United States)

    Alam, M. S.; Ali, M.; Alim, M. A.; Munshi, M. J. Haque

    2017-06-01

    The present study is performed to find the similarity solution like Blasius solution and also analyzed the effect of various dimensionless parameters on the momentum, thermal and nanoparticle concentration. In this respect we have considered the magnetohydrodynamic (MHD) unsteady boundary layer nanofluid flow and heat - mass transfer along a porous stretching surface. So the governing partial differential equations are transformed to ordinary differential equations by using similarity transformations. The numerical solution is taken by applying the Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme. The effects of various dimensionless parameters on velocity, temperature and nanoparticle concentration are discussed numerically and shown graphically. Therefore, from the figures it is observed that the results of velocity profile increases for increasing values of unsteadiness parameter, permeability parameter and stretching ratio parameter but there is no effect for magnetic parameter, the temperature profile decreases for increasing values of Brownian motion, unsteadiness, thermophoresis and stretching ratio but increases for magnetic parameter, the nanoparticle concentration decreases for increasing values of unsteadiness parameter, thermophoresis parameter, suction parameter, stretching ratio parameter and Lewis number but increases for magnetic parameter and Brownian motion parameter. For validity and accuracy the present results are compared with previously published work and found to in good agreement.

  20. Magnetohydrodynamic boundary layer nanofluid flow and heat transfer over a stretching surface

    Science.gov (United States)

    Ali, M.; Alim, M. A.; Nasrin, R.; Alam, M. S.; Chowdhury, M. Z. U.

    2017-06-01

    The present study is performed to investigate the effect of unsteadiness, stretching ratio, Brownian motion, thermophoresis and magnetic parameter on boundary layer such as momentum, thermal and nanoparticle concentration. In this respect we have considered the magnetohydrodynamic (MHD) unsteady boundary layer nanofluid flow and heat - mass transfer over a stretching surface. The dimensionless governing equations are unsteady, two-dimensional coupled and non-linear ordinary differential equations. The numerical solution is taken by applying the Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme. The effects of various dimensionless parameters on velocity, temperature and nanoparticle concentration are discussed numerically and shown graphically. Therefore, from the figures it is observed that the results of velocity profile increases for increasing values of magnetic parameter and unsteadiness parameter but decreases for stretching ratio parameter, the temperature profile decreases in presence of Brownian motion, unsteadiness parameter, stretching ratio parameter and thermophoresis parameter but increases for magnetic parameter and, the nanoparticle concentration decreases for increasing values of thermophoresis parameter, unsteadiness parameter and stretching ratio parameter whereas the reverse trend arises for Brownian motion & magnetic parameter. For validity and accuracy the present results are compared with previously published work and found good agreement.

  1. Radiative flow of MHD Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer

    Directory of Open Access Journals (Sweden)

    Kalidas Das

    2015-12-01

    Full Text Available The present paper investigates numerically the influence of melting heat transfer and thermal radiation on MHD stagnation point flow of an electrically conducting non-Newtonian fluid (Jeffrey fluid over a stretching sheet with partial surface slip. The governing equations are reduced to non-linear ordinary differential equations by using a similarity transformation and then solved numerically by using Runge–Kutta–Fehlberg method. The effects of pertinent parameters on the flow and heat transfer fields are presented through tables and graphs, and are discussed from the physical point of view. Our analysis revealed that the fluid temperature is higher in case of Jeffrey fluid than that in the case of Newtonian fluid. It is also observed that the wall stress increases with increasing the values of slip parameter but the effect is opposite for the rate of heat transfer at the wall.

  2. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2015-06-01

    Full Text Available The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.

  3. Analytical heat transfer

    CERN Document Server

    Han, Je-Chin

    2012-01-01

    … it will complete my library … [and] complement the existing literature on heat transfer. It will be of value for both graduate students and faculty members.-Bengt Sunden, Lund University, Sweden

  4. Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zupančič, Matevž, E-mail: matevz.zupancic@fs.uni-lj.si; Može, Matic; Gregorčič, Peter; Golobič, Iztok

    2017-03-31

    Highlights: • Surfaces with periodically changed wettability were produced by a ns marking laser. • Heat transfer was investigated on uniformly and non-uniformly wettable surfaces. • Microporous surfaces with non-uniform wettability enhance boiling heat transfer. • The most bubble nucleations were observed in the vicinity of the microcavities. • Results agree with the predictions of the nucleation criteria. - Abstract: Microstructured uniformly and non-uniformly wettable surfaces were created on 25-μm-thin stainless steel foils by laser texturing using a marking nanosecond Nd:YAG laser (λ = 1064 nm) and utilizing various laser fluences and scan line separations. High-speed photography and high-speed IR thermography were used to investigate nucleate boiling heat transfer on the microstructured surfaces. The most pronounced results were obtained on a surface with non-uniform microstructure and non-uniform wettability. The obtained results show up to a 110% higher heat transfer coefficients and 20–40 times higher nucleation site densities compared to the untextured surface. We show that the number of active nucleation sites is significantly increased in the vicinity of microcavities that appeared in areas with the smallest (10 μm) scan line separation. Furthermore, this confirms the predictions of nucleation criteria and proves that straightforward, cost-effective nanosecond laser texturing allows the production of cavities with diameters of up to a few micrometers and surfaces with non-uniform wettability. Additionally, this opens up important possibilities for a more deterministic control over the complex boiling process.

  5. Heat transfer direction dependence of heat transfer coefficients in annuli

    Science.gov (United States)

    Prinsloo, Francois P. A.; Dirker, Jaco; Meyer, Josua P.

    2017-11-01

    In this experimental study the heat transfer phenomena in concentric annuli in tube-in-tube heat exchangers at different annular Reynolds numbers, annular diameter ratios, and inlet fluid temperatures using water were considered. Turbulent flow with Reynolds numbers ranging from 15,000 to 45,000, based on the average bulk fluid temperature was tested at annular diameter ratios of 0.327, 0.386, 0.409 and 0.483 with hydraulic diameters of 17.00, 22.98, 20.20 and 26.18 mm respectively. Both heated and cooled annuli were investigated by conducting tests at a range of inlet temperatures between 10 °C to 30 °C for heating cases, and 30 °C to 50 °C for cooling cases. Of special interest was the direct measurement of local wall temperatures on the heat transfer surface, which is often difficult to obtain and evasive in data-sets. Continuous verification and re-evaluation of temperatures measurements were performed via in-situ calibration. It is shown that inlet fluid temperature and the heat transfer direction play significant roles on the magnitude of the heat transfer coefficient. A new adjusted Colburn j-factor definition is presented to describe the heating and cooling cases and is used to correlate the 894 test cases considered in this study.

  6. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J.V.; Cadene, V.; Occelli, R. [Universite de Provence, 13 - Marseille (France)

    1996-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  7. Elementary heat transfer analysis

    CERN Document Server

    Whitaker, Stephen; Hartnett, James P

    1976-01-01

    Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra

  8. A heat transfer textbook

    CERN Document Server

    Lienhard, John H

    2011-01-01

    This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' ins

  9. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...

  10. Heat and mass transfer

    CERN Document Server

    Karwa, Rajendra

    2017-01-01

    This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...

  11. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  12. Effect of Substrate Temperature and Ambient Pressure on Heat Transfer at Interface Between Molten Droplet and Substrate Surface

    Science.gov (United States)

    Fukumoto, M.; Yang, K.; Tanaka, K.; Usami, T.; Yasui, T.; Yamada, M.

    2011-01-01

    Millimeter-sized molten Cu droplets were deposited on AISI304 substrate surface by free falling experiment. The roles of substrate temperature and ambient pressure on heat transfer at interface between molten droplet and substrate surface were systematically investigated. The splat characteristics were evaluated in detail. Temperature history of molten droplet was measured at splat-substrate interface. Cooling rate of the flattening droplet was calculated as well. Furthermore, the spreading behavior of molten droplet on substrate surface was captured by high speed camera. The heat transfer from splat to substrate was enhanced both by substrate heating and by ambient pressure reduction, which can be attributed to the good contact at splat bottom surface. The splats in free falling experiment showed similar changing tendency as thermal-sprayed particles. Consequently, substrate temperature and ambient pressure have an equivalent effect to contact condition at interface between droplet and substrate surface. Substrate heating and pressure reduction may enhance the wetting during splat flattening, and then affect the flattening and solidification behavior of the molten droplet.

  13. Heat and mass transfer at a free surface with diabatic boundaries in a single-species system under microgravity conditions

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael E.

    2014-06-01

    In this paper, we analyzed the heat and mass transfer at a free surface under microgravity conditions. The SOURCE-II (Sounding Rocket COMPERE Experiment) experiment was performed on a suborbital flight in February 2012 from Esrange in North Sweden. It provided representative data with respect to solid, liquid, and vapor temperatures as well as the visible surface position. The objectives were to quantify the deformation of the free liquid surface and to correlate the apparent contact angle to a characteristic temperature difference between subcooled liquid and superheated wall. Furthermore, the influence of evaporation and condensation at the liquid/vapor interface and at the superheated wall must be taken into account to analyze heat and mass fluxes due to a characteristic temperature difference. In the following, we show evidently that the magnitude of the apparent contact angle depends on the exerted specific pressurizations of the vapor phase during the experiment and hence on the change in the saturation temperature at the free surface. The characteristic temperature difference is defined with respect to the wall temperature in the vicinity of the contact line and the saturation temperature. Therefore, apparent contact angle and temperature difference can be correlated and indicate a specific characteristic. Concerning the heat and mass transfer at the free liquid surface and the contact line, two different methods are presented to evaluate the net mass due to phase change within a certain time interval. In the first approach, the mass flow rate is calculated by means of the ideal gas law and its derivatives with respect to temperature and pressure. The second approach calculates the heat flux as well as the mass flux at the wall and in the region of the free liquid surface. In these cases, a specific heat transfer coefficient and a thermal boundary layer thickness are used.

  14. Tip clearance effect on heat transfer and leakage flows on the shroud-wall surface in an axial flow turbine

    Science.gov (United States)

    Kumada, Masaya; Iwata, Satoshi; Obata, Masakazu; Watanabe, Osamu

    1992-06-01

    An axial flow turbine for a turbocharger is used as a test turbine, and the local heat transfer coefficient on the surface of the shroud is measured under uniform heat flux conditions. The nature of the tip clearance flow on the shroud surface and a flow pattern in the downstream region of the rotor blades are studied, and measurements are obtained by using a hot-wire anemometer in combination with a periodic multisampling and an ensemble averaging technique. Data are obtained under on- and off-design conditions. The effects of inlet flow angle, rotational speed and tip clearance on the local heat transfer coefficient are elucidated. The mean heat transfer coefficient is correlated with the tip clearance, and the mean velocity is calculated by the velocity triangle method for approximation. A leakage flow region exists in the downstream direction beyond the middle of the wall surface opposite the rotor blade, and a leakage vortex is recognized at the suction side near the trailing edge.

  15. Essentials of radiation heat transfer

    CERN Document Server

    Balaji

    2014-01-01

    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  16. Effects of thermal radiation and heat transfer over an unsteady stretching surface embedded in a porous medium in the presence of heat source or sink

    Directory of Open Access Journals (Sweden)

    Elsayed M. A Elbashbeshy

    2011-01-01

    Full Text Available The effects of thermal radiation and heat transfer over an unsteady stretching surface embedded in a porous medium in the presence of heat source or sink are studied. The governing time dependent boundary layer equations are transformed to ordinary differential equations containing radiation parameter, permeability parameter, heat source or sink parameter, Prandtl number, and unsteadiness parameter. These equations are solved numerically by applying Nachtsheim-Swinger shooting iteration technique together with Rung-Kutta fourth order integration scheme. The velocity profiles, temperature profiles, the skin friction coefficient, and the rate of heat transfer are computed and discussed in details for various values of the different parameters. Comparison of the obtained numerical results is made with previously published results.

  17. Transient mass transfer caused by local surface heating in close binaries

    Science.gov (United States)

    Modisette, J. J.; Kondo, Y.

    1980-01-01

    The surge of mass from one component of a binary system resulting from local surface heating is analyzed. The impact of such surges on the companion can produce transient phenomena such as those seen in X-ray binaries, RS CVn objects, and cataclysmic variables. The heating may be caused by nonlinear g-mode oscillations or by X-ray heating by the companion in X-ray binaries, among other possible mechanisms. As an example, model calculations have been performed for a surge, triggered by a relatively moderate local heating, in a hypothetical X-ray binary; the results show that such a surge can account for X-ray turn-ons.

  18. Investigation into aerodynamic and heat transfer of annular channel with inner and outer surface of the shape truncated cone and swirling fluid flow

    Science.gov (United States)

    Leukhin, Yu L.; Pankratov, E. V.; Karpov, S. V.

    2017-11-01

    We have carried out Investigation into aerodynamic and convective heat transfer of the annular channel. Inner or outer surface of annular channel has shape of blunt-nosed cone tapering to outlet end. Truncated cone connects to a cyclone swirling flow generator. Asymmetric and unsteady flow from the swirling generator in the shape of periodic process gives rise to the formation of secondary flows of the type Taylor-Görtler vortices. These vortices occupy the whole space of the annular channel, with the axes, which coincide with the motion direction of the major stream. Contraction of cross-sectional area of channel (in both cases 52%) causes a marked increase in total velocity of flow, primarily due to its axial component and promotes a more intensive vortex generation. Vortex structures have a significant influence on both average heat transfer and surface distribution. At cross-sections of the annular channel we observe similarity of curves describing distribution of total velocity about wall and heat flux density on the surface. The coordinates of maximum and minimum values of velocity and heat flux coincide. At the average cross-section channel of maximum value of heat transfer is greater than minimum of about by a factor of 2.7 times for outer heat transfer surface and about by a factor of 1.7 times for inner heat transfer surface. Taper channel has a much higher influence on heat transfer of the inner surface than the outer surface and manifests itself at lower values of dimensionless axial coordinate. For the investigated taper cone geometry of the annular channel the heat transfer coefficient of inner surface increases at the outlet section and exceeds value in comparison with straight-line section by 91 … 98%. Heat transfer of the outer cylinder in the same section increases only by 5 … 11%. The increase in average heat transfer over the surfaces is 36% and 4% respectively.

  19. Heat and Mass Transfer in a Pipe with Moving Surface: Effects of ...

    African Journals Online (AJOL)

    appropriate to simulate wind tunnel tests on lubrication phenomenon in engineering systems. Mathematics Subject Classification (1991): 76Z05, 76E25 Keywords: pipe flow, moving surface, viscosity variation;, heat and material flux, energy dissipation, physiological flows, magnetohydrodynamic and electrohydrodynamic ...

  20. Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation

    Directory of Open Access Journals (Sweden)

    S. Pramanik

    2014-03-01

    Full Text Available The present paper aims at investigating the boundary layer flow of a non-Newtonian fluid accompanied by heat transfer toward an exponentially stretching surface in presence of suction or blowing at the surface. Casson fluid model is used to characterize the non-Newtonian fluid behavior. Thermal radiation term is incorporated into the equation for the temperature field. With the help of similarity transformations, the governing partial differential equations corresponding to the momentum and heat transfer are reduced to a set of non-linear ordinary differential equations. Numerical solutions of these equations are then obtained. The effect of increasing values of the Casson parameter is seen to suppress the velocity field. But the temperature is enhanced with increasing Casson parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature increases. It is found that the skin-friction coefficient increases with the increase in suction parameter.

  1. Heat and mass transfer

    CERN Document Server

    Baehr, Hans Dieter

    2011-01-01

    This comprehensive textbook provides a solid foundation of knowledge on the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems.   The thoroughly revised 3rd edition includes an introduction to the numerical solution of Finite Elements. A new section on heat and mass transfer in porous media has also been added.   The book will be useful not only to upper-level and graduate students, but also to practicing scientists and engineers, offering a firm understanding of the principles of heat and mass transfer, and showing how to solve problems by applying modern methods. Many completed examples and numerous exercises with solutions facilitate learning and understanding, and an appendix includes data on key properties of important substances.

  2. Mass Transfer and MHD Effects on Unsteady Porous Stretching Surface Embedded in a Porous Medium With Variable Heat Flux in The Presence of Heat Source

    Directory of Open Access Journals (Sweden)

    G.V. Ramana REDDY

    2013-01-01

    Full Text Available An unsteady two dimensional boundary layer flowof a viscous, incompressible, electrically conducting fluid over aporous stretching surface embedded in a porous medium in thepresence of heat source or sink is studied in chapter 7. Theunsteadiness in the flow and temperature fields is caused by thetime dependence of the stretching velocity and the surface heatflux. The governing partial differential equations aretransformed into a system of ordinary differential equationsusing similarity variables, which is then solved numerically byapplying shooting method using Runge-Kutta method. Thesolution is found to be dependent on the governing parametersincluding the Prandtl number, porous parameter, heat source/sink parameter, suction or injection parameter andunsteadiness parameter. Comparison of numerical results ismade with previously published results under the special cases,and found to be in good agreement. Effects of the Prandtlnumber, porous parameter, heat source /sink parameter, suctionor injection parameter and unsteadiness parameter on the flowand heat transfer are examined.

  3. Effects of heat source/sink on magnetohydrodynamic flow and heat transfer of a non-Newtonian power-law fluid on a stretching surface

    Directory of Open Access Journals (Sweden)

    Naikoti Kishan

    2016-01-01

    Full Text Available Non-Newtonian boundary layer flow and heat transfer characteristics over a stretching surface with thermal radiation and slip condition at the surface is analyzed. The flow is subject to a uniform transverse magnetic field. The suitable local similarity transformations are used to transform the non-linear partial differential equations into system of ordinary differential equations. The non-linear ordinary differential equations are linearized by using Quasi-linearization technique. The implicit finite difference scheme has been adopted to solve the obtained coupled ordinary differential equations. The important finding in this communication is the combined effects of Magnetic field parameter M, power law index n, slip parameter l, radiation parameter R, surface temperature parameter g , heat source/sink parameter S, local Eckert number Ec, temperature difference parameter r, generalized local Prandtl number Pr on velocity and temperature profiles and also the skin-friction coefficient -f''(0and heat transfer coefficient -θ'(0 results are discussed. The results pertaining to the present study indicate that as the increase of magnetic field parameter, slip parameter decreases the velocity profiles, where as the temperature profiles increases for both Newtonian and non-Newtonian fluids. The power law index n and heat source/sink parameter decreases the dimensionless velocity and temperature profiles. The effect of radiation parameter, Eckert number leads to increase the dimensionless temperature. It is found that increasing the slip parameter has the effect of decreasing the skin-friction coefficient-f''(0and heat transfer coefficient-θ'(0.With the increase of power law index n is to reduce the skin-friction coefficient and increase the heat transfer coefficient.

  4. Heat transfer. Basics and practice

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Thomas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Boeckh, Peter von

    2012-07-01

    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author's experience indicates that students, after 40 lectures and exercises of 45 minutes based on this textbook, have proved capable of designing independently complex heat exchangers such as for cooling of rocket propulsion chambers, condensers and evaporators for heat pumps. (orig.)

  5. Numerical Investigation of Heat Transfer on the Surface of a Circular Cylinder in Cross-Flow

    Directory of Open Access Journals (Sweden)

    Gizem ŞENCAN

    2015-03-01

    Full Text Available In the present study, numerical analysis of heat transfer from heated cylinder, located inrectangular channel normal to the flow direction is studied. Finite volume based ANSYS-FLUENT 14 codeis used in the solution of governing equations. Three different turbulence models as Std. k-ε, RNG k-ε andRealizable k-ε are used in computations for four different Reynolds numbers, Re= 4000, 8000, 16000, and32000. It is found that numerical results obtained with Std. and RNG k-ε turbulence models are in goodagreement with experimental data for maximum value of local Nusselt number on the cylinder. As expectedthat local Nusselt numbers increase with increasing Reynolds number for almost all points on cylinder.

  6. Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces

    Directory of Open Access Journals (Sweden)

    Rajendra Karwa

    2013-01-01

    Full Text Available The existing equations for the thermal performance evaluation, at equal pumping power for the artificially roughened and smooth surfaced multitube and rectangular duct heat exchangers, have been critically reviewed because the literature survey indicates that a large number of researchers have not interpreted these equations correctly. Three of the most widely used equations have been restated with clearly defined constraints and conditions for their application. Two new equations have been developed for the design constraints not covered earlier.

  7. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2016-01-01

    Full Text Available This work concentrates on the mathematical modeling for stagnation point flow of nanofluids over an impermeable stretching sheet with variable thickness. Carbon nanotubes [single-wall carbon nanotubes (SWCNTs and multi-wall carbon nanotubes (MWCNTs] as the nanoparticles are utilized. Water and kerosene oil are taken as the base fluids. Heat transfer through melting effect is discussed. Transformation procedure is adapted to obtain the non-linear ordinary differential equations from the fundamental laws of mass, linear momentum and energy. The optimal values of convergence control parameters and corresponding individual and total residual errors for SWCNTs and MWCNTs are computed by means of homotopy analysis method (HAM based BVPh 2.0. Characteristics of different involved parameters on the velocity, temperature, skin friction coefficient and Nusselt number are discussed. Higher velocity profile is observed for wall thickness parameter in case of water carbon nanotubes when compared with the kerosene oil carbon nanotubes.

  8. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  9. Heat Transfer Analogies

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A.

    1965-11-15

    This report contains descriptions of various analogues utilised to study different steady-state and unsteady-state heat transfer problems. The analogues covered are as follows: 1 . Hydraulic: a) water flow b) air flow 2. Membrane 3. Geometric Electrical: a) Electrolytic-tank b) Conducting sheet 4. Network; a) Resistance b) R-C A comparison of the different analogues is presented in the form of a table.

  10. A study on the upward and downward facing pool boiling heat transfer characteristics of graphene-modified surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hoon; Ahn, Ho Seon [Incheon National Univ., Incheon (Korea, Republic of); Kim, Ji Min [POSTECH, Pohang (Korea, Republic of)

    2016-10-15

    Recently, graphene, carbon in two dimensions, were highlighted as a good heat transfer materials, according to its high thermal conductivity. Lateral conduction and water absorption into the structure helped graphene films to inhibit the formation of hot spots, which means increasing of critical heat flux (CHF) and boiling heat transfer coefficient (BHTC) performances. In this study, we report a promising increase of CHF and BHTC results with 2D graphene films. Furthermore, we tried to observe bubble behavior via high-speed visualization to investigate a relationship between bubble behavior and pool boiling performances in downward facing boiling. The effect of graphene film coating on the pool boiling performances of upward and downward facing heater surface were examined. 2D- and 3D- graphene film showed good enhancement results on the CHF (by 111% and 60%) and BHTC (by 40% and 20-25%) performances. Bubble behavior change was significant factor on the CHF and BHTC performances in downward facing boiling. The amount of evaporation heat flux was calculated from the velocity, bubble diameter, frequency, orientation angle and superheat that the post-products of the high-speed visualization.

  11. Modelling Heat Transfer of Carbon Nanotubes

    OpenAIRE

    Yang, Xin-She

    2010-01-01

    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or ex...

  12. Elements of heat transfer

    CERN Document Server

    Rathakrishnan, Ethirajan

    2012-01-01

    1 Basic Concepts and Definitions1.1 Introduction1.1.1 Driving Potential1.2 Dimensions and Units1.2.1 Dimensional Homogeneity1.3 Closed and Open Systems1.3.1 Closed System (ControlMass)1.3.2 Isolated System1.3.3 Open System (ControlVolume)1.4 Forms of Energy1.4.1 Internal Energy1.5 Properties of a System1.5.1 Intensive and Extensive Properties1.6 State and Equilibrium1.7 Thermal and Calorical Properties1.7.1 Specific Heat of an Incompressible Substance1.7.2 Thermally Perfect Gas 1.8 The Perfect Gas1.9 Summary1.10 Exercise ProblemsConduction Heat Transfer2.1 Introduction2.2 Conduction Heat Trans

  13. Mathematical Modeling of Radiant Heat Transfer in Mirror Systems Considering Deep Reflecting Surface Defects

    Directory of Open Access Journals (Sweden)

    V. V. Leonov

    2014-01-01

    Full Text Available When designing large-sized mirror concentrating systems (MCS for high-temperature solar power plants, one must have at disposal reasonably reliable and economical methods and tools, making it possible to analyze its characteristics, to predict them depending on the operation conditions and accordingly to choose the most suitable system for the solution of particular task.Experimental determination of MCS characteristics requires complicated and expensive experimentation, having significant limitations on interpretation of the results, as well as limitations imposed due to the size of the structure. Therefore it is of particular interest to develop a mathematical model capable of estimating power characteristics of MCS considering the influence of operating conditions, design features, roughness and other surface defects.For efficient solution of the tasks the model must ensure simulation of solar radiant flux as well as simulation of geometrical and optical characteristics of reflection surface and their interaction. In this connection a statistical mathematical model of radiation heat exchange based on use of Monte Carlo methods and Finite Element Method was developed and realized in the software complex, making it possible to determine main characteristics of the MCS.In this paper the main attention is given to definition of MCS radiation characteristics with account for deep reflecting surface defects (cavities, craters. Deep cavities are not typical for MCS, but their occurrence is possible during operation as a result of erosion or any physical damage. For example, for space technology it is primarily micrometeorite erosion.

  14. Separation & free-stream turbulence: implications for surface aerodynamics & heat transfer

    Science.gov (United States)

    Stevenson, J. P. J.; Walsh, E. J.; Nolan, K. P.; Davies, M. R. D.

    2014-07-01

    Preliminary results from a Particle Image Velocimetry (PIV) investigation of the separation-reattachment flow over a flat plate are presented. The experiments address the effects of two key variables: flow approach angle (manipulated indirectly with a trailing edge flap) and free-stream turbulence level (introduced upstream with grids). The plate thickness Reynolds number is fixed throughout and lies within the transitional regime. In the first test series (I), it is shown that increasing the turbulence level and reducing the approach angle cause the mean leading-edge separation bubble to shrink. The effect of free- stream turbulence, in particular, diminishes progressively as its level is raised. In the second series (II), downstream development of the reattached boundary layer is found to unfold rapidly at first but plateau after approximately three bubble-lengths. Momentum thickness Reynolds and Stanton numbers develop independently of the free-stream turbulence thereafter, and are well described by shifted turbulent correlations. Heat transfer potential ultimately depends upon the balance between frictional loss, bubble size and downstream mixing.

  15. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  16. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles.

    Science.gov (United States)

    Francoeur, Mathieu; Basu, Soumyadipta; Petersen, Spencer J

    2011-09-26

    Near-field radiative heat transfer between isotropic, dielectric-based metamaterials is analyzed. A potassium bromide host medium comprised of silicon carbide (SiC) spheres with a volume filling fraction of 0.4 is considered for the metamaterial. The relative electric permittivity and relative magnetic permeability of the metamaterial are modeled via the Clausius-Mossotti relations linking the macroscopic response of the medium with the polarizabilities of the spheres. We show for the first time that electric and magnetic surface polariton (SP) mediated near-field radiative heat transfer occurs between dielectric-based structures. Magnetic SPs, existing in TE polarization, are physically due to strong magnetic dipole resonances of the spheres. We find that spherical inclusions with radii of 1 μm (or greater) are needed in order to induce SPs in TE polarization. On the other hand, electric SPs existing in TM polarization are generated by surface modes of the spheres, and are thus almost insensitive to the size of the inclusions. We estimate that the total heat flux around SP resonance for the metamaterial comprised of SiC spheres with radii of 1 μm is about 35% greater than the flux predicted between two bulks of SiC, where only surface phonon-polaritons in TM polarization are excited. The results presented in this work show that the near-field thermal spectrum can be engineered via dielectric-based metamaterials, which is crucial in many emerging technologies, such as in nanoscale-gap thermophotovoltaic power generation. © 2011 Optical Society of America

  17. Enhanced heat transfer through filler-polymer interface by surface-coupling agent in heat-dissipation material: A non-equilibrium molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kouichi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan); Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Kitsunezuka, Masashi; Shinma, Atsushi [DENSO CORPORATION, Kariya, Aichi 448-8661 (Japan)

    2013-11-21

    Developing a composite material of polymers and micrometer-sized fillers with higher heat conductance is crucial to realize modular packaging of electronic components at higher densities. Enhancement mechanisms of the heat conductance of the polymer-filler interfaces by adding the surface-coupling agent in such a polymer composite material are investigated through the non-equilibrium molecular dynamics (MD) simulation. A simulation system is composed of α-alumina as the filler, bisphenol-A epoxy molecules as the polymers, and model molecules for the surface-coupling agent. The inter-atomic potential between the α-alumina and surface-coupling molecule, which is essential in the present MD simulation, is constructed to reproduce the calculated energies with the electronic density-functional theory. Through the non-equilibrium MD simulation runs, we find that the thermal resistance at the interface decreases significantly by increasing either number or lengths of the surface-coupling molecules and that the effective thermal conductivity of the system approaches to the theoretical value corresponding to zero thermal-resistance at the interface. Detailed analyses about the atomic configurations and local temperatures around the interface are performed to identify heat-transfer routes through the interface.

  18. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  19. Lie group analysis of heat and mass transfer effects on steady MHD free convection dissipative fluid flow past an inclined porous surface with heat generation

    Directory of Open Access Journals (Sweden)

    Reddy Gnaneswara M.

    2012-01-01

    Full Text Available In this paper, an analysis has been carried out to study heat and mass transfer effects on steady two-dimensional flow of an electrically conducting incompressible dissipating fluid past an inclined semi-infinite porous surface with heat generation. A scaling group of transformations is applied to the governing equations. The system remains invariant due to some relations among the parameters of the transformations. After finding three absolute invariants, a third-order ordinary differential equation corresponding to the momentum equation, and two secondorder ordinary differential equations corresponding to energy and diffusion equations are derived. The coupled ordinary differential equations along with the boundary conditions are solved numerically. Many results are obtained and a representative set is displayed graphically to illustrate the influence of the various parameters on the dimensionless velocity, temperature and concentration profiles. Comparisons with previously published work are performed and the results are found to be in very good agreement.

  20. On radiative-magnetoconvective heat and mass transfer of a nanofluid past a non-linear stretching surface with Ohmic heating and convective surface boundary condition

    Directory of Open Access Journals (Sweden)

    Shweta Mishra

    2016-12-01

    Full Text Available In this paper magnetoconvective heat and mass transfer characteristics of a two-dimensional steady flow of a nanofluid over a non-linear stretching sheet in the presence of thermal radiation, Ohmic heating and viscous dissipation have been investigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and the presence of nanoparticles in the base fluid. The governing equations are transformed into a system of nonlinear ordinary differential equations by using similarity transformation. The numerical solutions are obtained by using fifth order Runge–Kutta–Fehlberg method with shooting technique. The non-dimensional parameters on velocity, temperature and concentration profiles and also on local Nusselt number and Sherwood number are discussed. The results indicate that the local skin friction coefficient decreases as the value of the magnetic parameter increases whereas the Nusselt number and Sherwood number increase as the values of the Brownian motion parameter and magnetic parameter increase.

  1. Heat transfer physics

    CERN Document Server

    Kaviany, Massoud

    2014-01-01

    This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers that enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum tr...

  2. Flow and heat transfer enhancement in tube heat exchangers

    Science.gov (United States)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  3. New techniques for measuring thermal properties and surface heat transfer applied to food freezing

    OpenAIRE

    Brennvall, Jon Eirik

    2007-01-01

    This thesis presents two different works. The first part introduces a thermal multimeter which measures heat capacity, thermal conductivity and density. The instrument gives continuous measurement data within a temperature range. With some exceptions this also holds for the prototype of a thermal multimeter which is built and tested. The measuring method is constant heating of one side of a slab. The slab is insulated on all other sides. After some time there will be equilibrium where there i...

  4. Self-similar analysis of fluid flow, heat, and mass transfer at orthogonal nanofluid impingement onto a flat surface

    Science.gov (United States)

    Avramenko, A. A.; Shevchuk, I. V.; Abdallah, S.; Blinov, D. G.; Tyrinov, A. I.

    2017-05-01

    Momentum, heat, and mass transfer in the vicinity of a stagnation point at uniform impingement of a nanofluid onto a flat plate were investigated. The novelty of the work consists in obtaining self-similar forms for the Hiemenz flow of a nanofluid and the self-similar representation of the velocity, thermal, and diffusion boundary layer equations derived on the basis of symmetry analysis using discrete symmetries. Momentum, energy, and concentration equations in the self-similar form were solved numerically. In frames of this analysis, functional dependence of the physical properties of nanofluids (viscosity, thermal conductivity, and diffusion coefficient) on concentration and temperature profiles was included as a part of the mathematical model, whose form enables including different models for the thermophysical properties of the nanofluid. Also novel are numerical results that revealed the influence of the nanoparticle concentration on the velocity, temperature, and concentration profiles, as well as on the normalized Nusselt numbers and surface friction coefficients illustrated in the form of analytical relations and graphically. The focus was put not only on modeling of heating of a colder wall by a hotter nanofluid but also on cooling of a hotter wall by a colder nanofluid. For the latter case, theoretical results were validated against experimental data available in the literature. Effects of various dimensionless parameters on the Nusselt number and surface friction coefficient were elucidated.

  5. Dual solutions in hydromagnetic stagnation point flow and heat transfer towards a stretching/shrinking sheet with non-uniform heat source/sink and variable surface heat flux

    Directory of Open Access Journals (Sweden)

    Mohamed Abd El-Aziz

    2016-07-01

    Full Text Available The steady stagnation-point flow and heat transfer of a viscous, incompressible and heat generating/absorbing fluid over a shrinking sheet in the presence of a non-uniform heat source/sink is considered. The system of partial differential equations was transformed to a system of ordinary differential equations, which was solved numerically. Numerical results were obtained for the skin friction coefficient, the surface temperature as well as the velocity and temperature profiles for some values of the governing parameters. The study reveals that the range of velocity ratio parameter for which the solution exists increases as the magnetic field increase.

  6. Heat and water transfer at the bare soil surface : aspects affecting thermal imagery

    NARCIS (Netherlands)

    Berge, ten H.F.M.

    1986-01-01

    Surface temperature as assessed by means of thermal infra red remote sensing is affected by a number of soil properties. The sensitivity of surface temperature and surface energy fluxes to variations in physical soil properties is studied by means of a numerical simulation

  7. Transient heat transfer behavior of water spray evaporative cooling on a stainless steel cylinder with structured surface for safety design application in high temperature scenario

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad

    2017-02-01

    High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.

  8. Modelling of the heat transfer during oxygen atoms recombination on metallic surfaces in a plasma reactor

    NARCIS (Netherlands)

    Cavadias, S; Cauquot, P; Amouroux, J

    1997-01-01

    Space shuttle overheating during the re-entry phase, due to catalytic oxygen recombination on the thermal protection system, is a problem of practical and theoretical interest. The energy transfer is characterised by the product of the accommodation and the recombination coefficients. Previous

  9. Free convection heat and mass transfer in a power law fluid past an inclined surface with thermophoresis

    Directory of Open Access Journals (Sweden)

    Medhat M. Helal

    2013-10-01

    Full Text Available The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0  0.5.

  10. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  11. Conjugate heat transfer characterization in cooling channels

    Science.gov (United States)

    Cukurel, Beni; Arts, Tony; Selcan, Claudio

    2012-06-01

    Cooling technology of gas turbine blades, primarily ensured via internal forced convection, is aimed towards withdrawing thermal energy from the airfoil. To promote heat exchange, the walls of internal cooling passages are lined with repeated geometrical flow disturbance elements and surface non-uniformities. Raising the heat transfer at the expense of increased pressure loss; the goal is to obtain the highest possible cooling effectiveness at the lowest possible pressure drop penalty. The cooling channel heat transfer problem involves convection in the fluid domain and conduction in the solid. This coupled behavior is known as conjugate heat transfer. This experimental study models the effects of conduction coupling on convective heat transfer by applying iso-heat-flux boundary condition at the external side of a scaled serpentine passage. Investigations involve local temperature measurements performed by Infrared Thermography over flat and ribbed slab configurations. Nusselt number distributions along the wetted surface are obtained by means of heat flux distributions, computed from an energy balance within the metal domain. For the flat plate experiments, the effect of conjugate boundary condition on heat transfer is estimated to be in the order of 3%. In the ribbed channel case, the normalized Nusselt number distributions are compared with the basic flow features. Contrasting the findings with other conjugate and convective iso-heat-flux literature, a high degree of overall correlation is evident.

  12. Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer.

    Science.gov (United States)

    Zhang, Yue; Barnes, George L; Yan, Tianying; Hase, William L

    2010-05-07

    Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Science, 2007, 317, 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface, and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly, much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM, perpendicular to the interface, results in nearly identical temperatures for the CH(2) and CH(3) groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate, the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM, there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.

  13. Heat transfer to a full-coverage film-cooled surface with 30 degree slant-hole injection

    Science.gov (United States)

    Crawford, M. E.; Kays, W. M.; Moffat, R. J.

    1976-01-01

    Heat transfer behavior was studied in a turbulent boundary layer with full coverage film cooling through an array of discrete holes and with injection 30 deg to the wall surface in the downstream direction. Stanton numbers were measured for a staggered hole pattern with pitch-to-diameter ratios of 5 and 10, an injection mass flux ratio range of 0.1 to 1.3, and a range of Reynolds number Re sub x of 150,000 to 5 million. Air was used as the working fluid, and the mainstream velocity varied from 9.8 to 34.2 m/sec (32 to 112 ft/sec). The data were taken for secondary injection temperature equal to the wall temperature and also equal to the mainstream temperature. The data may be used to obtain Stanton number as a continuous function of the injectant temperature by use of linear superposition theory. The heat transfer coefficient is defined on the basis of a mainstream-to-wall temperature difference. This definition permits direct comparison of performance between film cooling and transpiration cooling. A differential prediction method was developed to predict the film cooling data base. The method utilizes a two-dimensional boundary layer program with routines to model the injection process and turbulence augmentation. The program marches in the streamwise direction, and when a row of holes is encountered, it stops and injects fluid into the boundary layer. The turbulence level is modeled by algebraically augmenting the mixing length, with the augmentation keyed to a penetration distance for the injected fluid.

  14. Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer

    Science.gov (United States)

    Tang, Yong; Tang, Biao; Qing, Jianbo; Li, Qing; Lu, Longsheng

    2012-09-01

    The paper reports a flexible and low-cost approach, hot-dip galvanizing and dealloying, for the fabrication of enhanced nanoporous metallic surfaces. A Cu-Zn alloy layer mainly composed of γ-Cu5Zn8 and β'-CuZn was formed during the hot-dipping process. The multiple oxidation peaks recorded in the anodic liner sweep voltammetry measurements indicate different dezincification preferences of the alloy phases. A nanoporous copper surface with approximately 50-200 nm in pore size was obtained after a free corrosion process. The nanoporous structure improves the surface wettability and shows dramatic reduction of wall superheat compared to that of the plain surface in the pool-boiling experiments.

  15. Studies of Gas Turbine Heat Transfer Airfoil Surface and End-Wall.

    Science.gov (United States)

    1987-04-01

    station I values . N A o Profiles of crass- stram turbulent heat flux r are shown 0 06 on Fig. S. The effects of curvature and recovery on -’t’ are very...ECKCERT ET AL. APR 87 UNCLASSIFIE AFOSR-TR-70 ?1 F-5C492F/50F21/ NL mohEmhhhohhhEI mohhEEmhEmhsoE EU3OPVV NUCLUTM" VlSI Choi -W - z - _m- "W MAP ...Recovery in the weak 2 portion of the profile occurs quickly, with the profiles often overshooting the flat plate (upstream of the curve) values . 2. A

  16. Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson J. Boise; Reid, Robert S.

    2007-01-01

    As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).

  17. Heat transfer measurements with surface mounted foil-sensors in an active mode: a comprehensive review and a new design.

    Science.gov (United States)

    Mocikat, Horst; Herwig, Heinz

    2009-01-01

    A comprehensive review of film-sensors shows that they are primarily operated in a passive mode, i.e. without being actively heated to an extent, whereby they create a heat transfer situation on their own. Only when these sensors are used for wall shear stress measurements, the detection of laminar/turbulent transition, or the measurement of certain flow velocities, they are operated in an active mode, i.e. heated by an electrical current (after an appropriate calibration). In our study we demonstrate how these R(T)-based sensors (temperature dependence of the electrical resistance R) can also be applied in an active mode for heat transfer measurements. These measurements can be made on cold, unheated bodies, provided certain requirements with respect to the flow field are fulfilled. Our new sensors are laminated nickel- and polyimide-foils manufactured with a special technology, which is also described in detail.

  18. Heat Transfer Measurements with Surface Mounted Foil-Sensors in an Active Mode: A Comprehensive Review and a New Design

    Directory of Open Access Journals (Sweden)

    Heinz Herwig

    2009-04-01

    Full Text Available A comprehensive review of film-sensors shows that they are primarily operated in a passive mode, i.e. without being actively heated to an extent, whereby they create a heat transfer situation on their own. Only when these sensors are used for wall shear stress measurements, the detection of laminar/turbulent transition, or the measurement of certain flow velocities, they are operated in an active mode, i.e. heated by an electrical current (after an appropriate calibration. In our study we demonstrate how these R(T-based sensors (temperature dependence of the electrical resistance R can also be applied in an active mode for heat transfer measurements. These measurements can be made on cold, unheated bodies, provided certain requirements with respect to the flow field are fulfilled. Our new sensors are laminated nickel- and polyimide-foils manufactured with a special technology, which is also described in detail.

  19. Heat Transfer Measurements with Surface Mounted Foil-Sensors in an Active Mode: A Comprehensive Review and a New Design

    OpenAIRE

    Mocikat, Horst; Herwig, Heinz

    2009-01-01

    A comprehensive review of film-sensors shows that they are primarily operated in a passive mode, i.e. without being actively heated to an extent, whereby they create a heat transfer situation on their own. Only when these sensors are used for wall shear stress measurements, the detection of laminar/turbulent transition, or the measurement of certain flow velocities, they are operated in an active mode, i.e. heated by an electrical current (after an appropriate calibration). In our study we de...

  20. Heat transfer in an airfoil shaped strut

    Science.gov (United States)

    Crawford, James Douglas

    The heat transfer from a hot primary flow stream passing over the outside of an airfoil shaped strut to a cool secondary flow stream passing through the inside of that strut was studied experimentally and numerically. The results showed that the heat transfer on the inside of the strut could be reliably modeled as a developing flow and described using a power law model. The heat transfer on the outside of the strut was complicated by flow separation and stall on the suction side of the strut at high angles of attack. This separation was quite sensitive to the condition of the turbulence in the flow passing over the strut, with the size of the separated wake changing significantly as the mean magnitude and levels of anisotropy were varied. The point of first stall moved by as much as 15% of the chord, while average heat transfer levels changed by 2-5% as the inlet condition was varied. This dependence on inlet conditions meant that comparisons between experiment and steady RANS based CFD were quite poor. Differences between the CFD and experiment were attributed to anisotropic and unsteady effects. The coupling between the two flows was shown to be quite low - that is to say, heat transfer coefficients on both the inner and outer surfaces of the strut were relatively unaffected by the temperature of the strut, and it was possible to predict the temperature on the strut surface quite reliably using heat transfer data from decoupled tests, especially for CFD simulations.

  1. Lie group analysis of hydromagnetic flow and heat transfer of a power-law fluid over stretching surface with temperature-dependent viscosity and thermal conductivity

    Science.gov (United States)

    El-Aziz, Mohamed Abd; Afify, Ahmed A.

    2016-07-01

    The symmetry group of MHD boundary layer flow and heat transfer of a non-Newtonian power-law fluid over a stretching surface under the effects of variable fluid properties is investigated. The similarity equations with the corresponding boundary conditions are solved numerically by using a shooting method with the fourth order Runge-Kutta integration scheme. Comparisons of the numerical method with the existing results in the literature are made and obtained an excellent agreement. It is observed that the heat transfer rate diminishes with an increase in magnetic parameter and variable thermal conductivity parameter. Further, the opposite influence is found with an increase in variable viscosity parameter.

  2. Investigation of heat and mass transfer of rotating MHD viscous flow between a stretching sheet and a porous surface

    DEFF Research Database (Denmark)

    Sheikholeslami, R; Ashorynejad, H.R; Barari, Amin

    2013-01-01

    Purpose – The purpose of this paper is to analyze hydromagnetic flow between two horizontal plates in a rotating system. The bottom plate is a stretching sheet and the top one is a solid porous plate. Heat transfer in an electrically conducting fluid bounded by two parallel plates is also studied...

  3. MHD flow and heat transfer of an Ostwald–de Waele fluid over an unsteady stretching surface

    Directory of Open Access Journals (Sweden)

    K. Vajravelu

    2014-03-01

    Full Text Available An analysis is carried out to study the effects of variable thermo-physical properties on an unsteady MHD flow and heat transfer of an Ostwald–de Waele fluid over a stretching surface. The thermo-physical properties, namely, viscosity and thermal conductivity of the fluid are assumed to vary with temperature. Using similarity transformation, the governing partial differential equations are converted into coupled, non-linear ordinary differential equations with variable coefficients. The resulting non-linear equations are solved numerically by a second-order finite difference scheme known as the Keller-box method for various values of the pertinent parameters. Also, the numerical results are obtained for special cases and are found to be in good agreement with those of the results available in the literature. Further, the results obtained reveal many interesting behaviors that warrant further study of the equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.

  4. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    Science.gov (United States)

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.

  5. Heat transfer with freezing and thawing

    CERN Document Server

    Lunardini, VJ

    1991-01-01

    This volume provides a comprehensive overview on the vast amount of literature on solidification heat transfer. Chapter one develops important basic equations and discusses the validity of considering only conductive heat transfer, while ignoring convection, in the large class of materials which make up the porous media. Chapters 2 to 4 deal with problems that can be expressed in plane (Cartesian) coordinates. These problems are further divided into boundary conditions of temperature, prescribed heat flux, and surface convection. Chapter 5 examines some plane geometries involving three-dime

  6. Intensification of Convective Heat Transfer in Heating Device of Mobile Heating System with BH-Heat Generator

    Directory of Open Access Journals (Sweden)

    N. A. Nesenchuk

    2013-01-01

    Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated  in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following  evaluation results of  heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.

  7. Heat and mass transfer are in the interaction of multi-pulsed spray with vertical surfaces in the regime of evaporative cooling

    Science.gov (United States)

    Karpov, P. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.

    2017-10-01

    Sprays with a periodic supply drop phase have great opportunities to control the processes of heat transfer. We can achieve optimal evaporative modes of cooling by changing the pulse duration and the repetition frequency while minimizing flow of the liquid phase. Experimental data of investigation of local heat transfer for poorly heated large surface obtained on the original stand with multi nozzle managed the irrigation system impact of the gas-droplet flow present in this work. Researches on the contribution to the intensification of spray options were conducted. Also the growth rate was integral and local heat. Information instantaneous distribution of the heat flux in the description of the processes have helped us. Managed to describe two basic modes of heat transfer: Mode “insular” foil cooling and thick foil with forming of streams. Capacitive sensors allow to monitor the dynamics of the foil thickness, the birth-belt flow, forming and the evolution of waves generated by “bombing” the surface with the droplets.

  8. Advances in heat transfer enhancement

    CERN Document Server

    Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan

    2016-01-01

    This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  9. Experimental investigation of the Cu/R141b nanofluids on the evaporation/boiling heat transfer characteristics for surface with capillary micro-channels

    Science.gov (United States)

    Diao, Yanhua; Liu, Yan; Wang, Rui; Zhao, Yaohua; Guo, Lei

    2014-09-01

    An experimental study was conducted to investigate the heat transfer characteristic of a vertical copper plate with rectangular micro-channels. In this research, Cu/R141b nanofluids were used as the working fluid. Three different volume concentrations—0.001, 0.01, and 0.1 %—of Cu nanoparticles with an average diameter of 20 nm dispersed in R141b were prepared. Experiments were performed to measure thermal resistance of the microchannel surface under a steady operating pressure range of 0.86 × 105 Pa to 2 × 105 Pa. Thermal resistance weakened with addition of nanoparticles into the base fluid. The maximum reduction effect of the thermal resistance was 50 %, which corresponds to 0.01 % volume concentration of nanofluid at low operating pressure. The operating pressure significantly affects thermal performance of the microchannel surface. This paper also studied heat transfer characteristics for a Cu nanoparticle-coated surface with rectangular microchannels, which were produced by heating in different volume concentrations from 0.001 to 0.1 %. Nanoparticle layer on the micro-channel surface is responsible for enhanced heat transfer of nanofluids with 0.001 and 0.01 % volume concentrations.

  10. Heat Transfer Coefficient Measurement for Downward Facing Flow Boiling Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Yeong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    To evaluate heat transfer capability of the ERVC, estimating heat transfer coefficient (HTC) is important. In this study, the HTCs were experimentally measured, and large break loss of coolant accident (LLOCA) was used as basic accident. At the lower head outer wall, heat transfer phenomenon was downward facing flow boiling heat transfer. Because, natural circulation occurred. Hence, to simulate the flow boiling, water loop was designed. The reactor vessel lower head was simulated as 2-D slice main heater. To simulate the heat transfer characteristics of material and geometry, the main heater was made of SA508 consisting the reactor vessel, and its radius curvature was 2.5 m. The main heater outer surface (facing to air) temperature was measured by infrared (IR) camera, and the inner surface (facing to working fluid) temperature was calculated by solving conduction equation of main heater. The main heater heat flux was under CHF value of previous research. The results of 60 .deg. and 90 .deg. were used as representative angular location data. LLOCA was used as basic accident. Through this experiment, the HTC data was produced for SA508 heat transfer surface material and 2.5 m of radius curvature. The HTCs result shown different trend at each angular location. The HTCs commonly increased with heat flux increment, but the trends were different for angular location.

  11. Heat transfer enhancement with nanofluids

    CERN Document Server

    Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz

    2015-01-01

    Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za

  12. Fundamental principles of heat transfer

    CERN Document Server

    Whitaker, Stephen

    1977-01-01

    Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int

  13. Theory of Periodic Conjugate Heat Transfer

    CERN Document Server

    Zudin, Yuri B

    2012-01-01

    This book presents the theory of periodic conjugate heat transfer in a detailed way. The effects of thermophysical properties and geometry of a solid body on the commonly used and experimentally determined heat transfer coefficient are analytically presented from a general point of view. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. At the body surface, the true heat transfer coefficient is composed of two parts: the true mean value resulting from the solution of the steady state heat transfer problem and a periodically variable part, the periodic time and length to describe the oscillatory hydrodynamic effects. The second edition is extended by (i) the analysis of stability boundaries in helium flow at supercritical conditions in a heated channel with respect to the interaction between a solid body and a fluid; (ii) a periodic model and a method of heat transfer sim...

  14. Experimental Investigation of the Heat-Transfer Rate to a Series of 20 deg Cones of Various Surface Finishes at a Mach Number of 4.95

    Science.gov (United States)

    Jones, Jim J.

    1959-01-01

    The heat-transfer rates were measured on a series of cones of various surface finishes at a Mach number of 4.95 and Reynolds numbers per foot varying from 20 x 10(exp 6) to 100 x 10(exp 6). The range of surface finish was from a very smooth polish to smooth machining with no polish (65 micro inches rms). Some laminar boundary-layer data were obtained, since transition was not artificially tripped. Emphasis, however, is centered on the turbulent boundary layer. The results indicated that the turbulent heat-transfer rate for the highest roughness tested was only slightly greater than that for the smoothest surface. The laminar-sublayer thickness was calculated to be about half the roughness height for the roughest model at the highest value of unit Reynolds number tested.

  15. Modeling microscale heat transfer using Calore.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  16. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  17. Engineering heat transfer

    CERN Document Server

    Annaratone, Donatello

    2010-01-01

    This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone's books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practi

  18. Heat and Mass Transfer of Unsteady Hydromagnetic Free Convection Flow Through Porous Medium Past a Vertical Plate with Uniform Surface Heat Flux

    Science.gov (United States)

    El-Aziz, Mohamed Abd; Yahya, Aishah S.

    2017-09-01

    Simultaneous effects of thermal and concentration diffusions in unsteady magnetohydrodynamic free convection flow past a moving plate maintained at constant heat flux and embedded in a viscous fluid saturated porous medium is presented. The transport model employed includes the effects of thermal radiation, heat sink, Soret and chemical reaction. The fluid is considered as a gray absorbing-emitting but non-scattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. The dimensionless coupled linear partial differential equations are solved by using Laplace transform technique. Numerical results for the velocity, temperature, concentration as well as the skin friction coefficient and the rates of heat and mass transfer are shown graphically for different values of physical parameters involved.

  19. Determination of the convective heat transfer coefficient

    NARCIS (Netherlands)

    Spierings, D.; Bosman, F.; Peters, T.; Plasschaert, F.

    The value of the convective heat transfer coefficient (htc) is determined under different loading conditions by using a computer aided method. The thermal load has been applied mathematically as well as experimentally to the coronal surface of an axisymmetric tooth model. To verify the assumptions

  20. Basic heat and mass transfer

    CERN Document Server

    Mills, A F

    1999-01-01

    The Second Edition offers complete coverage of heat transfer with broad up-to-date coverage that includes an emphasis on engineering relevance and on problem solving. Integrates software to assist the reader in efficiently calculations. Carefully orders material to make book more reader-friendly and accessible. Offers an extensive introduction to heat exchange design to enhance the engineering and design content of course to satisfy ABET requirements. For professionals in engineering fields.

  1. Group Theoretical Analysis of non-Newtonian Fluid Flow, Heat and Mass Transfer over a Stretching Surface in the Presence of Thermal Radiation

    OpenAIRE

    Muhammad Tufail; Adnan Saeed Butt; Asif Ali

    2016-01-01

    The present article examines the flow, heat and mass transfer of a non-Newtonian fluid known as Casson fluid over a stretching surface in the presence of thermal radiations effects. Lie Group analysis is used to reduce the governing partial differential equations into non-linear ordinary differential equations. These equations are then solved by an analytical technique known as Homotopy Analysis Method (HAM). A comprehensive study of the problem is being made for various parameters i...

  2. Characterization of simultaneous heat and mass transfer phenomena for water vapour condensation on a solid surface in an abiotic environment--application to bioprocesses.

    Science.gov (United States)

    Tiwari, Akhilesh; Kondjoyan, Alain; Fontaine, Jean-Pierre

    2012-07-01

    The phenomenon of heat and mass transfer by condensation of water vapour from humid air involves several key concepts in aerobic bioreactors. The high performance of bioreactors results from optimised interactions between biological processes and multiphase heat and mass transfer. Indeed in various processes such as submerged fermenters and solid-state fermenters, gas/liquid transfer need to be well controlled, as it is involved at the microorganism interface and for the control of the global process. For the theoretical prediction of such phenomena, mathematical models require heat and mass transfer coefficients. To date, very few data have been validated concerning mass transfer coefficients from humid air inflows relevant to those bioprocesses. Our study focussed on the condensation process of water vapour and developed an experimental set-up and protocol to study the velocity profiles and the mass flux on a small size horizontal flat plate in controlled environmental conditions. A closed circuit wind tunnel facility was used to control the temperature, hygrometry and hydrodynamics of the flow. The temperature of the active surface was controlled and kept isothermal below the dew point to induce condensation, by the use of thermoelectricity. The experiments were performed at ambient temperature for a relative humidity between 35-65% and for a velocity of 1.0 ms⁻¹. The obtained data are analysed and compared to available theoretical calculations on condensation mass flux.

  3. Bubble Impingement and the Mechanisms of Heat Transfer

    OpenAIRE

    Robinson, Anthony; ALBADAWI, ABDULALEEM; MURRAY, DARINA

    2014-01-01

    PUBLISHED Heat transfer augmentation resulting from the effects of two phase flow can play a significant role in convective cooling applications. To date, the interaction between a rising gas bubble impinging on a heated horizontal surface has received limited attention. Available research has focused on bubble dynamics and the associated heat transfer has not been reported. To address this, this study investigates the effect of a single bubble impinging on a heated horizontal surface. Loc...

  4. Supercritical heat transfer in an annular channel with bilateral heating

    Energy Technology Data Exchange (ETDEWEB)

    Sergeev, V.V.; Gal' chenko, E.F.; Remizov, O.V.

    1986-09-01

    This paper presents the experimental investigation of the degradation of heat transfer accompanying an ascending flow of a steam-water mixture and the development of an engineering method for calculating supercritical heat transfer in a vertical annular channel with bilateral heating. The experimental setup is described. The temperature of the exothermic surfaces from the indications of the thermocouples are determined taking into account their individual calibration, the temperature drops in the wall, and thermal losses. The temperature distribution along the length and periphery of the exothermic surfaces of the annular channel is shown and the dependence of the critical steam content on the power fed to the outer wall of the channel with different mass velocities is presented.

  5. Optimal Allocation of Heat Exchanger Inventory Associated with Fixed Power Output or Fixed Heat Transfer Rate Input

    OpenAIRE

    COSTEA M.; Petrescu, S; K. Le Saos; Michel Feidt

    2010-01-01

    The purpose of this study is to determine the optimal distribution of the heat transfer surface area or conductance among the Stirling engine heat exchangers when the minimum of the total heat transfer surface area of the heat exchangers is sought. The optimization procedure must fulfill one of the following constraints: (1) fixed power output of the engine, (2) fixed heat transfer rate available at the source, or (3) fixed power output and heat transfer rate at the source. Internal and exter...

  6. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  7. Heat transfer in aerospace propulsion

    Science.gov (United States)

    Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

    1988-01-01

    Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

  8. Lie group analysis of flow and heat transfer of non-Newtonian nanofluid over a stretching surface with convective boundary condition

    Science.gov (United States)

    Afify, Ahmed A.; El-Aziz, Mohamed Abd

    2017-02-01

    The steady two-dimensional flow and heat transfer of a non-Newtonian power-law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the flow. Four different types of nanoparticles, namely copper (Cu), silver (Ag), alumina (Al 2 O 3) and titanium oxide (TiO 2) are considered by using sodium alginate (SA) as the base non-Newtonian fluid. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The transformed equations are solved numerically by using a shooting method with fourth-order Runge-Kutta integration scheme. The results show that the effect of viscosity on the heat transfer rate is remarkable only for relatively strong convective heating. Moreover, the skin friction coefficient and the rate of heat transfer increase with an increase in Biot number.

  9. Near-field radiative heat transfer between metasurfaces

    DEFF Research Database (Denmark)

    Dai, Jin; Dyakov, Sergey A.; Bozhevolnyi, Sergey I.

    2016-01-01

    Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve a controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two...

  10. Criteria selection for the assessment of Serbian lignites tendency to form deposits on power boilers heat transfer surfaces

    Directory of Open Access Journals (Sweden)

    Mladenović Milica

    2009-01-01

    Full Text Available Based on investigations of ash deposit formation, semi-empirical indicators for slagging and fouling, based on ash chemical composition and its fusion temperature, have been determined. These criteria-indicators, in suggested limits, describe the coals on which they are based (North-American and British well. However, the experience in the thermal power production sector of Serbia shows that their literal application to domestic coals does not produce satisfactory results. This contribution provides an analysis of applicability and the choice of criteria that are suitable for Serbian coals. The focus of the contribution is on coal slagging indicators, since slagging has much heavier consequences on heat transfer inside the steam boiler, and on boiler operation as a whole. The basis for the analysis of chosen criteria comprises of the results of investigations of four coal fields - Kostolac, Kolubara, Kosovo (Serbia, and Ugljevik (Bosnia and Herzegovina.

  11. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  12. A REVIEW ON HEAT TRANSFER THROUGH HELICAL COIL HEAT EXCHANGERS

    OpenAIRE

    Surendra Vishvakarma*, Sanjay Kumbhare, K. K. Thakur

    2016-01-01

    This study presents a brief review of heat transfer through helical coil heat exchangers. Helical coils of circular cross section have been used in wide variety of applications due to simplicity in manufacturing. Enhancement in heat transfer due to helical coils has been reported by many researchers. While the heat transfer characteristics of double pipe helical heat exchangers are available in the literature, there exists no published experimental or theoretical analysis of a helically coile...

  13. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  14. Thermodynamics and heat transfer in fire fighting

    Science.gov (United States)

    Romanenko, P. N.; Koshmarov, Y. A.; Bashkirtsev, M. P.

    1985-05-01

    The book presents the fundamental principles of thermodynamics and heat transfer with particular reference to their application in problems related to fire prevention. Special attention is given to the study of unsteady heat transfer, radiant heat transfer (including radiation from flames to the surrounding), thermodynamic analysis of the growth of fires and theoretical modeling of fires in building.

  15. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  16. High-resolution heat-transfer-coefficient maps applicable to compound-curve surfaces using liquid crystals in a transient wind tunnel

    Science.gov (United States)

    Jones, Terry V.; Hippensteele, Steven A.

    1988-01-01

    Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.

  17. Heat Transfer in a Thermoacoustic Process

    Science.gov (United States)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  18. Effects on heat transfer of multiphase magnetic fluid due to circular magnetic field over a stretching surface with heat source/sink and thermal radiation

    Directory of Open Access Journals (Sweden)

    A. Zeeshan

    Full Text Available The purpose of the current article is to explore the boundary layer heat transport flow of multiphase magnetic fluid with solid impurities suspended homogeneously past a stretching sheet under the impact of circular magnetic field. Thermal radiation effects are also taken in account. The equations describing the flow of dust particles in fluid along with point dipole are modelled by employing conservation laws of mass, momentum and energy, which are then converted into non-linear coupled differential equations by mean of similarity approach. The transformed ODE’s are tackled numerically with the help of efficient Runga-Kutta method. The influence of ferromagnetic interaction parameter, viscous dissipation, fluid-particle interaction parameter, Eckert number, Prandtl number, thermal radiation parameter and number of dust particles, heat production or absorption parameter with the two thermal process namely, prescribed heat flux (PHF or prescribed surface temperature (PST are observed on temperature and velocity profiles. The value of skin-friction coefficient and Nusselt number are calculated for numerous physical parameters. Present results are correlated with available for a limited case and an excellent agreement is found. Keywords: Ferromagnetic interaction parameter, Dusty magnetic fluid, stretching sheet, Magnetic dipole, Heat source/sink, Thermal radiation

  19. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable.

  20. Experimental Investigation of Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Jensen, Rasmus Lund; Manz, H.

    2010-01-01

    is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night...

  1. Heat transfer characteristics for the Maxwell fluid flow past an unsteady stretching permeable surface embedded in a porous medium with thermal radiation

    Science.gov (United States)

    Mukhopadhyay, S.; Ranjan De, P.; Layek, G. C.

    2013-05-01

    An unsteady boundary layer flow of a non-Newtonian fluid over a continuously stretching permeable surface in the presence of thermal radiation is investigated. The Maxwell fluid model is used to characterize the non-Newtonian fluid behavior. Similarity solutions for the transformed governing equations are obtained. The transformed boundary layer equations are then solved numerically by the shooting method. The flow features and heat transfer characteristics for different values of the governing parameters (unsteadiness parameter, Maxwell parameter, permeability parameter, suction/blowing parameter, thermal radiation parameter, and Prandtl number) are analyzed and discussed in detail.

  2. Influence of radiation heat transfer during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2016-09-15

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  3. Heat transfer enhancement using tip and junction vortices

    Science.gov (United States)

    Gentry, Mark Cecil

    1998-10-01

    Single-phase convective heat transfer can be enhanced by modifying the heat transfer surface to passively generate streamwise vortices. The swirling flow of the vortices modifies the temperature field, thinning the thermal boundary layer and increasing surface convection. Tip vortices generated by delta wings and junction vortices generated by hemispherical protuberances were studied in laminar flat-plate and developing channel flows. Local and average convective measurements were obtained, and the structure of the vortices was studied using quantitative flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement was also investigated. Tip vortices generated by delta wings enhanced local convection by as much as 300% over a flat-plate boundary layer flow. Vortex strength increased with Reynolds number based on chord length, wing aspect ratio, and wing angle of attack. As the vortices were advected downstream, they decayed because of viscous interactions. In the developing channel flow, tip vortices produced a significant local heat transfer enhancement on both sides of the channel. The largest spatially averaged heat transfer enhancement was 55%; it was accompanied by a 100% increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator. Junction vortices created by hemispherical surface protuberances provided local heat transfer enhancements as large as 250%. Vortex strength increased with an increasing ratio of hemisphere radius to local boundary layer thickness on a flat plate. In the developing channel flows, heat transfer enhancements were observed on both sides of the channel. The largest spatially averaged heat transfer enhancement was 50%; it was accompanied by a 90% pressure drop penalty relative to the same channel flow with no hemispherical vortex generator. This research is important in compact heat exchanger design. Enhancing heat transfer can lead to

  4. Effects of thermal radiation and magnetic field on unsteady mixed convection flow and heat transfer over an exponentially stretching surface with suction in the presence of internal heat generation/absorption

    Directory of Open Access Journals (Sweden)

    Elsayed M.A. Elbashbeshy

    2012-10-01

    Full Text Available In this paper, the problem of unsteady laminar two-dimensional boundary layer flow and heat transfer of an incompressible viscous fluid in the presence of thermal radiation, internal heat generation or absorption, and magnetic field over an exponentially stretching surface subjected to suction with an exponential temperature distribution is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. New numerical method using Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.

  5. Convective heat transfer enhancement with nanofluids

    Science.gov (United States)

    Rahman, Md. Habibur; Abedin, Z.

    2017-12-01

    Nanofluids are considered to offer important advantages over conventional heat transfer fluids. Over a decade ago, researchers focused on measuring and modeling the effective thermal conductivity and viscosity of nanofluids. Recently important theoretical and experimental research works on convective heat transfer appeared in the open literatures on the enhancement of heat transfer using suspensions of nanometer-sized solid particle materials, metallic or nonmetallic in base heat transfer fluids. The purpose of this article is to summarize recent research on fluid flow and heat transfer enhancement characteristics of nanofluids and thereby identify opportunities for future research.

  6. Passive heating of the ground surface

    Science.gov (United States)

    Tyburczyk, Anna

    2016-03-01

    The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  7. Heat Transfer in Health and Healing.

    Science.gov (United States)

    Diller, Kenneth R

    2015-10-01

    Our bodies depend on an exquisitely sensitive and refined temperature control system to maintain a state of health and homeostasis. The exceptionally broad range of physical activities that humans engage in and the diverse array of environmental conditions we face require remarkable strategies and mechanisms for regulating internal and external heat transfer processes. On the occasions for which the body suffers trauma, therapeutic temperature modulation is often the approach of choice for reversing injury and inflammation and launching a cascade of healing. The focus of human thermoregulation is maintenance of the body core temperature within a tight range of values, even as internal rates of energy generation may vary over an order of magnitude, environmental convection, and radiation heat loads may undergo large changes in the absence of any significant personal control, surface insulation may be added or removed, all occurring while the body's internal thermostat follows a diurnal circadian cycle that may be altered by illness and anesthetic agents. An advanced level of understanding of the complex physiological function and control of the human body may be combined with skill in heat transfer analysis and design to develop life-saving and injury-healing medical devices. This paper will describe some of the challenges and conquests the author has experienced related to the practice of heat transfer for maintenance of health and enhancement of healing processes.

  8. HEAT-MASS TRANSFER IN MOVING MELT

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2005-01-01

    Full Text Available The paper gives mathematical formation and solution of the heat-mass transfer problem when liquid metals are flowing in the channels of complicated geometry. The problem is solved with the help of numerical methods. A method of control volume is used for finite-difference approximation of transfer equations. The research results can be applied for execution of a numerical experiment while investigating heat-mass transfer in liquid-metal heat-transfer and reological media.

  9. Radiation heat transfer model using Monte Carlo ray tracing method on hierarchical ortho-Cartesian meshes and non-uniform rational basis spline surfaces for description of boundaries

    Directory of Open Access Journals (Sweden)

    Kuczyński Paweł

    2014-06-01

    Full Text Available The paper deals with a solution of radiation heat transfer problems in enclosures filled with nonparticipating medium using ray tracing on hierarchical ortho-Cartesian meshes. The idea behind the approach is that radiative heat transfer problems can be solved on much coarser grids than their counterparts from computational fluid dynamics (CFD. The resulting code is designed as an add-on to OpenFOAM, an open-source CFD program. Ortho-Cartesian mesh involving boundary elements is created based upon CFD mesh. Parametric non-uniform rational basis spline (NURBS surfaces are used to define boundaries of the enclosure, allowing for dealing with domains of complex shapes. Algorithm for determining random, uniformly distributed locations of rays leaving NURBS surfaces is described. The paper presents results of test cases assuming gray diffusive walls. In the current version of the model the radiation is not absorbed within gases. However, the ultimate aim of the work is to upgrade the functionality of the model, to problems in absorbing, emitting and scattering medium projecting iteratively the results of radiative analysis on CFD mesh and CFD solution on radiative mesh.

  10. Earth's surface heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Davies

    2010-02-01

    Full Text Available We present a revised estimate of Earth's surface heat flux that is based upon a heat flow data-set with 38 347 measurements, which is 55% more than used in previous estimates. Our methodology, like others, accounts for hydrothermal circulation in young oceanic crust by utilising a half-space cooling approximation. For the rest of Earth's surface, we estimate the average heat flow for different geologic domains as defined by global digital geology maps; and then produce the global estimate by multiplying it by the total global area of that geologic domain. The averaging is done on a polygon set which results from an intersection of a 1 degree equal area grid with the original geology polygons; this minimises the adverse influence of clustering. These operations and estimates are derived accurately using methodologies from Geographical Information Science. We consider the virtually un-sampled Antarctica separately and also make a small correction for hot-spots in young oceanic lithosphere. A range of analyses is presented. These, combined with statistical estimates of the error, provide a measure of robustness. Our final preferred estimate is 47±2 TW, which is greater than previous estimates.

  11. Mathematical Model of Moving Heat-Transfer Agents

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2010-01-01

    Full Text Available A mathematical model of moving heat-transfer agents which is applied in power systems and plants has been developed in the paper. A paper presents the mathematical model as a closed system of differential convective heat-transfer equations that includes a continuity equation, a motion equation, an energy equation.Various variants of boundary conditions on the surfaces of calculation flow and heat exchange zone are considered in the paper.

  12. Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel

    Science.gov (United States)

    Fouladi, Fama

    This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.

  13. Heat Transfer and Cooling in Gas Turbines

    Science.gov (United States)

    1985-09-01

    the detailed component internal heat transfer for a variety of families of cooling schemes, and (c) to choose from among and withir those families to...1965. 32. Metzger, D.E., and Grochowsky, 1.D., "Heat Transfer Between an Impinging Jet and a Rotating Dink ," J. Heat Tranafer, Trans. ASME, 99, pp. 663

  14. REVIEW OF PCMs AND HEAT TRANSFER ENHANCEMENT ...

    African Journals Online (AJOL)

    HOD

    for power applications. The various methods of heat transfer enhancement in latent heat storage systems were also reviewed systematically. The review showed that three commercially-available PCMs are suitable in the operating temperature range of parabolic trough plants. Many heat transfer enhancement methods ...

  15. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W

    1974-01-01

    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  16. Infrared thermography for convective heat transfer measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, Giovanni Maria; Cardone, Gennaro [University of Naples Federico II, Department of Aerospace Engineering, Naples (Italy)

    2010-12-15

    This paper deals with the evolution of infrared (IR) thermography into a powerful optical tool that can be used in complex fluid flows to either evaluate wall convective heat fluxes or investigate the surface flow field behavior. Measurement of convective heat fluxes must be performed by means of a thermal sensor, where temperatures have to be measured with proper transducers. By correctly choosing the thermal sensor, IR thermography can be successfully exploited to resolve convective heat flux distributions with both steady and transient techniques. When comparing it to standard transducers, the IR camera appears very valuable because it is non-intrusive, it has a high sensitivity (down to 20 mK), it has a low response time (down to 20 {mu}s), it is fully two dimensional (from 80 k up to 1 M pixels, at 50 Hz) and, therefore, it allows for better evaluation of errors due to tangential conduction within the sensor. This paper analyses the capability of IR thermography to perform convective heat transfer measurements and surface visualizations in complex fluid flows. In particular, it includes the following: the necessary radiation theory background, a review of the main IR camera features, a description of the pertinent heat flux sensors, an analysis of the IR image processing methods and a report on some applications to complex fluid flows, ranging from natural convection to hypersonic regime. (orig.)

  17. Advanced turbine cooling, heat transfer, and aerodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Je-Chin Han; Schobeiri, M.T. [Texas A& M Univ., College Station, TX (United States)

    1995-10-01

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect on Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  18. Advanced turbine cooling, heat transfer, and aerodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Je-Chin; Schobeiri, M.T. [Texas A & M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1995-12-31

    The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect of Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

  19. Heat diffusion in fractal geometry cooling surface

    Directory of Open Access Journals (Sweden)

    Ramšak Matjaz

    2012-01-01

    Full Text Available In the paper the numerical simulation of heat diffusion in the fractal geometry of Koch snowflake is presented using multidomain mixed Boundary Element Method. The idea and motivation of work is to improve the cooling of small electronic devices using fractal geometry of surface similar to cooling ribs. The heat diffusion is assumed as the only principle of heat transfer. The results are compared to the heat flux of a flat surface. The limiting case of infinite small fractal element is computed using Richardson extrapolation.

  20. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  1. Non intrusive measurement of the convective heat transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM

    2010-07-01

    The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.

  2. Finite element simulation of heat transfer

    CERN Document Server

    Bergheau, Jean-Michel

    2010-01-01

    This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

  3. Heat Transfer and Flow Structure Evaluation of a Synthetic Jet Emanating from a Planar Heat Sink

    Science.gov (United States)

    Manning, Paul; Persoons, Tim; Murray, Darina

    2014-07-01

    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.

  4. A literature survey on numerical heat transfer

    Science.gov (United States)

    Shih, T. M.

    1982-12-01

    Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.

  5. Experimental study of heat transfer to falling liquid films

    Science.gov (United States)

    Fagerholm, N. E.; Kivioja, K.; Ghazanfari, A. R.; Jaervinen, E.

    1985-12-01

    This project was initiated in order to obtain more knowledge about thermal design of falling film heat exchangers and to find methods to improve heat transfer in film flow. A short literature survey of film flow characteristics and heat transfer is presented. An experimental apparatus designed and built for studying falling film evaporation is described. The first experiments were made with smooth Cu tube 25/22 mm and refrigerant R114 as evaporating liquid. A significant amount of droplet entrainment was observed during the tests. The measured average heat transfer coefficient varied from 1000 to 1800 W/m K when Re=1300 to 11000 respectively and when the transfer mode is surface evaporation. This could be predicted accurately with the experimental correlation of Chun and Seban. When nucleate boiling is dominant the heat transfer could be predicted well with pool boiling correlation of VDI-84.

  6. Scalable graphene coatings for enhanced condensation heat transfer.

    Science.gov (United States)

    Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N

    2015-05-13

    Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.

  7. Heat Transfer Performance for Evaporator of Absorption Refrigerating Machine

    Science.gov (United States)

    Kunugi, Yoshifumi; Usui, Sanpei; Ouchi, Tomihisa; Fukuda, Tamio

    An experiment was conducted to check the heat transfer performance of evaporators with grooved tubes for absorption refrigerating machines. Heat transfer rate of evaporators were 35kW and 70kW. The range of the flow rate of the sprayed refrigerant per unit length Γ was 1 to 50kg/hm, and the outside diameters of the tubes, D0 were 16 and 19.6 mm. About 80 to 100 % increase of heat transfer rate over a plane surfaced tube is obtained by using grooved tube. The heat transfer coefficients for evaporation are correlated by the equation αE0=(Γ/D0)1/2. The substantial surface area, which is about three times larger than that of plane surfaced tube, is used in the above correlation.

  8. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  9. Heat Transfer in Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent

    Heat transfer between the cylinder gas and the piston surface during combustion in large two-stroke uniflow scavenged marine diesel engines has been investigated in the present work. The piston surface experiences a severe thermal load during combustion due to the close proximity of the combustion...... is thus important for the engine manufactures. The piston surface heat transfer was studied in the event of impingement of hot combustion products on the piston during combustion, and an estimate was obtained of the peak heat flux level experienced on the piston surface. The investigation was carried out...... numerically by performing simulations with a CFD code of the heat transfer between gas and wall in a jet impingement configuration where a hot round turbulent gas jet impinged normally onto a wall under conditions approximating the in-cylinder conditions in the engine during combustion. A jet impingement...

  10. Heat transfer and pressure drop in microchannels with random roughness

    NARCIS (Netherlands)

    Pelevic, N.; van der Meer, Theodorus H.

    2016-01-01

    The effect of surface roughness on heat transfer and fluid flow phenomena within a microchannel has been investigated by using the lattice Boltzmann method. The surface roughness has been generated by using Gaussian function. Gaussian function is an efficient and convenient method to create surface

  11. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  12. Heat transfer from humans wearing clothing

    NARCIS (Netherlands)

    Lotens, W.A.

    1993-01-01

    In this monograph the effects of clothing on human heat transfer are described. The description is based on the physics of heat and mass transfer, depending on the design of the clothing, the climate, and the activity of the wearer. The resulting model has been stepwise implemented in computer

  13. Dynamic Heat Transfer Model of Refrigerated Foodstuff

    DEFF Research Database (Denmark)

    Cai, Junping; Risum, Jørgen; Thybo, Claus

    2006-01-01

    their temperature relation. This paper discusses the dynamic heat transfer model of foodstuff inside the display cabinet, one-dimensional dynamic model is developed, and the Explicit Finite Difference Method is applied, to handle the unsteady heat transfer problem with phase change, as well as time varying boundary...

  14. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  15. Heat transfer coefficient of cryotop during freezing.

    Science.gov (United States)

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  16. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren

    2005-01-01

    Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...... on calculations with a CFD-model, which has earlier been validated by means of experiments. The CFD-model is used to determine the heat transfer between the solar collector fluid in the mantle and the walls surrounding the mantle in all levels of the mantle as well as the heat transfer between the wall...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from...

  17. Forced convective heat transfer in curved diffusers

    Science.gov (United States)

    Rojas, J.; Whitelaw, J. H.; Yianneskis, M.

    1987-01-01

    Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.

  18. Heat transfer characteristics of rotating triangular thermosyphon

    Science.gov (United States)

    Ibrahim, E.; Moawed, M.; Berbish, N. S.

    2012-09-01

    An experimental investigation is carried out to study heat transfer characteristics of a rotating triangular thermosyphon, using R-134a refrigerant as the working fluid. The tested thermosyphon is an equilateral triangular tube made from copper material of 11 mm triangular length, 2 mm thickness, and a total length of 1,500 mm. The length of the evaporator section is 600 mm, adiabatic section is 300 mm, and condenser section is 600 mm. The effects of the rotational speed, filling ratio, and the evaporator heat flux on each of the evaporator heat transfer coefficient, he, condenser heat transfer coefficient, hc, and the overall effective thermal conductance, Ct are studied. Experiments are performed with a vertical position of thermosyphon within heat flux ranges from 11 to 23 W/m2 for the three selected filling ratios of 10, 30 and 50 % of the evaporator section volume. The results indicated that the maximum values of the tested heat transfer parameters of the rotational equilateral triangular thermosyphon are obtained at the filling ratio of 30 %. Also, it is found that the heat transfer coefficient of the condensation is increased with increasing the rotational speed. The tested heat transfer parameters of the thermosyphon are correlated as a function of the evaporator heat flux and angular velocity.

  19. Studies on Heat Transfer in Agricultural Products by Far-infrared Ray

    OpenAIRE

    劉, 厚清; 毛利, 建太郎; 難波, 和彦

    1998-01-01

    Heat is transferred when the objected has temperature differences. In this research, the difference of two heating methods (far-infrared ray heating and hot wind heating) was analyzed. To compare their differences, the heat flux was measured by setting a heat flux meter beneath the surface of the object at different depths, then the heat conductivities and heat diffusion rates were analyzed. 1. Compared with hot wind, far-infrared ray heating has more heat flux before reaching a definite dept...

  20. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.

    Science.gov (United States)

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.

  1. Cryogenic apparatus for study of near-field heat transfer.

    Science.gov (United States)

    Kralik, T; Hanzelka, P; Musilova, V; Srnka, A; Zobac, M

    2011-05-01

    For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 10(0) to 10(3) μm. The heat transferred from the hot (10 - 100 K) to the cold sample (∼5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within ∼2 nW∕cm(2) and ∼30 μW∕cm(2) is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer.

  2. Determining convective heat transfer coefficient using phoenics software package

    Energy Technology Data Exchange (ETDEWEB)

    Kostikov, A.; Matsevity, Y. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    1997-12-31

    The two methods of determination of such important quantity of heat exchange on a body surface using PHOENICS are suggested in the presentation. The first method consists in a post-processing of results of conjugate heat transfer problem solved by PHOENICS. The second one is solving an inverse heat conduction problem for solid body using PHOENICS. Comparative characteristic of these two methods is represented. (author) 4 refs.

  3. Heat transfer and thermoregulation in the largemouth blackbass, Micropterus salmoides

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D. J.

    1976-01-01

    An energy budget equation, based on energy budget theory for terrestrial organisms, was developed to describe the heat energy exchange between a largemouth bass (Micropterus salmoides) and its aquatic environment. The energy budget equation indicated that convection and a combined conduction-convection process were major avenues of heat exchange for a fish. Solid aluminum castings were used to experimentally determine heat transfer coefficients for the largemouth bass at water velocities covering the free and forced convection ranges. Heat energy budget theory was applied to the casting data and the derived coefficients were used to characterize heat exchange between the bass and its aquatic habitat. The results indicate that direct transfer of heat from the body surface is the major mechanism of heat exchange for a fish.

  4. Effects of Variable Thermal Conductivity with Thermal Radiation on MHD Flow and Heat Transfer of Casson Liquid Film Over an Unsteady Stretching Surface

    Science.gov (United States)

    El-Aziz, Mohamed Abd; Afify, Ahmed A.

    2016-10-01

    In the present work, the hydromagnetic boundary layer flow and heat transfer of Casson fluid in a thin liquid film over an unsteady stretching sheet in the presence of variable thermal conductivity, thermal radiation, and viscous dissipation is investigated numerically. The Casson fluid model is applied to characterize the non-Newtonian fluid behavior. Similarity equations are derived and then solved numerically by using a shooting method with fourth order Runge-Kutta integration scheme. Comparisons with previous literature are accomplished and obtained an excellent agreement. The influences of parameters governing a thin liquid film of Casson fluid and heat transfer characteristics are presented graphically and analyzed. It is observed that the heat transfer rate diminishes with a rise in thermal conductivity parameter and Eckert number. Further, the opposite influence is found with an increase in radiation parameter.

  5. An analytical dynamic model of heat transfer from the heating body to the heated room

    Directory of Open Access Journals (Sweden)

    Mižáková Jana

    2017-01-01

    Full Text Available On the base of mathematical description of thermal balance the dynamic model of the hot-water heating body (radiator was designed. The radiator is mathematically described as a heat transfer system between heating water and warmed-up air layer. Similarly, the dynamic model of heat transfer through the wall from the heated space to the outdoor environment was design. Both models were interconnected into dynamic model of heat transfer from the heating body to the heated room and they will be implemented into simulation model of the heating system in Matlab/Simulink environment.

  6. Heat transfer enhancement using 2MHz ultrasound.

    Science.gov (United States)

    Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas

    2017-11-01

    The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Natural convective heat transfer from short inclined cylinders

    CERN Document Server

    Oosthuizen, Patrick H

    2014-01-01

    Natural Convective Heat Transfer from Short Inclined Cylinders  examines a heat transfer situation of significant, practical importance not adequately dealt with in existing textbooks or in any widely available review papers. Specifically, the book introduces the reader to recent studies of natural convection from short cylinders mounted on a flat insulated base where there is an “exposed” upper surface. The authors considers the effects of the cylinder cross-sectional shape, the cylinder inclination angle, and the length-to-cross sectional size of the cylinder. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed. This book is ideal for professionals involved with thermal management and related systems, researchers, and graduate students in the field of natural convective heat transfer, instructors in graduate level courses in convective heat transfer.

  8. Simultaneous measurement of aerodynamic and heat transfer data ...

    Indian Academy of Sciences (India)

    An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the ...

  9. Enhanced boiling heat transfer in horizontal test bundles

    Energy Technology Data Exchange (ETDEWEB)

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  10. Modeling of Radiative Heat Transfer in an Electric Arc Furnace

    Science.gov (United States)

    Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen

    2017-12-01

    Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.

  11. An experimental investigation devoted to determine heat transfer characteristics in a radiant ceiling heating system

    Science.gov (United States)

    Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai

    2017-08-01

    Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.

  12. An experimental investigation devoted to determine heat transfer characteristics in a radiant ceiling heating system

    Science.gov (United States)

    Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai

    2018-02-01

    Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.

  13. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  14. Heat Transfer Characteristics of Tubular Thermal Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hei Cheon; Park, Sang Kyoo [Chonnam National Univ., Yeosu (Korea, Republic of); Ra, Beong Yeol [Sinsung Plant company, Ansan (Korea, Republic of)

    2007-07-01

    Heat transfer augmentation based on the process intensification concept in heat exchangers and thermal reactors has received much attention in recent years, mainly due to energy efficiency and environmental considerations. The concept consists of the development of novel apparatuses and techniques that, compared to those commonly used today, are expected to bring dramatic improvements in manufacturing and processing, substantially decreasing equipment size, energy consumption, and ultimately resulting in cheaper, sustainable technologies. The objective of this paper was to investigate the heat transfer characteristics of tubular thermal reactor using static mixing technology. Glycerin and water were used as the test fluids and water was used as the heating source. The results for heat transfer rate were strongly influenced by tube geometry and flow conditions.

  15. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  16. Radiative Heat Transfer in Fractal Structures

    OpenAIRE

    Nikbakht, Moladad

    2017-01-01

    The radiative properties of most structures are intimately connected to the way in which their constituents are ordered on the nano-scale. We have proposed a new representation for radiative heat transfer formalism in many-body systems. In this representation, we explain why collective effects depend on the morphology of structures, and how the arrangement of nanoparticles and their material affects the thermal properties in many-body systems. We investigated the radiative heat transfer probl...

  17. Nuclear reactor fuel element having improved heat transfer

    Science.gov (United States)

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  18. Heat transfer characteristics of building walls using phase change material

    Science.gov (United States)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  19. Heat and mass transfer in materials processing

    Science.gov (United States)

    Tanasawa, Ichiro; Lior, Noam

    Various papers on heat and mass transfer in materials processing are presented. The topics addressed include: heat transfer in plasma spraying, structure of ultrashort pulse plasma for CVD processing, heat flow and thermal contraction during plasma spray deposition, metal melting process by laser heating, improved electron beam weld design and control with beam current profile measurements, transport phenomena in laser materials processing, perspectives on integrated modeling of transport processes in semiconductor crystal growth, numerical simulation of natural convection in crystal growth in space and on the earth, conjugate heat transfer in crystal growth, effects of convection on the solidification of binary mixtures. Also discussed are: heat transfer in in-rotating-liquid-spinning process, thermal oscillations in materials processing, modeling and simulation of manufacturing processes of advanced composite materials, reaction engineering principles of combustion synthesis of advanced materials, numerical evaluation of the physical properties of magnetic fluids suitable for heat transfer control, and measurement techniques of thermophysical properties of high temperature melts. (For individual items see A93-10827 to A93-10843)

  20. Electronic Equipment Cooling by Simultaneous Heat and Mass Transfer,

    Science.gov (United States)

    ELECTRONIC EQUIPMENT, COOLING, HEAT TRANSFER, SUPERSONIC AIRCRAFT, HIGH ALTITUDE, DENSITY, THERMAL STRESSES, AIR, COOLING AND VENTILATING EQUIPMENT, FLUIDS, COOLANTS, HEAT EXCHANGERS, WATER, MASS TRANSFER .

  1. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

    Science.gov (United States)

    Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

    2012-01-01

    In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

  2. Interactive Heat Transfer Simulations for Everyone

    Science.gov (United States)

    Xie, Charles

    2012-01-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

  3. Theory of periodic conjugate heat transfer

    CERN Document Server

    Zudin, Yuri B

    2016-01-01

    This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.

  4. Modelling flow and heat transfer through unsaturated chalk - Validation with experimental data from the ground surface to the aquifer

    Science.gov (United States)

    Thiéry, Dominique; Amraoui, Nadia; Noyer, Marie-Luce

    2018-01-01

    During the winter and spring of 2000-2001, large floods occurred in northern France (Somme River Basin) and southern England (Patcham area of Brighton) in valleys that are developed on Chalk outcrops. The floods durations were particularly long (more than 3 months in the Somme Basin) and caused significant damage in both countries. To improve the understanding of groundwater flooding in Chalk catchments, an experimental site was set up in the Hallue basin, which is located in the Somme River Basin (France). Unsaturated fractured chalk formation overlying the Chalk aquifer was monitored to understand its reaction to long and heavy rainfall events when it reaches a near saturation state. The water content and soil temperature were monitored to a depth of 8 m, and the matrix pressure was monitored down to the water table, 26.5 m below ground level. The monitoring extended over a 2.5-year period (2006-2008) under natural conditions and during two periods when heavy, artificial infiltration was induced. The objective of the paper is to describe a vertical numerical flow model based on Richards' equation using these data that was developed to simulate infiltrating rainwater flow from the ground surface to the saturated aquifer. The MARTHE computer code, which models the unsaturated-saturated continuum, was adapted to reproduce the monitored high saturation periods. Composite constitutive functions (hydraulic conductivity-saturation and pressure-saturation) that integrate the increase in hydraulic conductivity near saturation and extra available porosity resulting from fractures were introduced into the code. Using these composite constitutive functions, the model was able to accurately simulate the water contents and pressures at all depths over the entire monitored period, including the infiltration tests. The soil temperature was also accurately simulated at all depths, except during the infiltrations tests, which contributes to the model validation. The model was used

  5. Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh

    2000-11-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.

  6. Heat and mass transfer in porous cavity: Assisting flow

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    In this paper, investigation of heat and mass transfer in a porous cavity is carried out. The governing partial differential equations are non-dimensionalised and solved using finite element method. The left vertical surface of the cavity is maintained at constant temperature and concentration which are higher than the ambient temperature and concentration applied at right vertical surface. The top and bottom walls of the cavity are adiabatic. Heat transfer is assumed to take place by natural convection and radiation. The investigation is carried out for assisting flow when buoyancy and gravity force act in same direction.

  7. Heat transfer simulation of motorcycle fins under varying velocity using CFD method

    Science.gov (United States)

    Shahril, K.; Mohd Kasim, Nurhayati Binti; Sabri, M.

    2013-12-01

    Motorcycle engine releases heat to the atmosphere through the mode of force convection. To solve this, fins are provided on the outer of the cylinder. The heat transfer rate is defined depending on the velocity of vehicle, fin geometry and the ambient temperature. Increasing the temperature difference between the object and the environment, increasing the convection heat transfer coefficient, or increasing the surface area of the object increases the heat transfer. Many experimental methods are available in literature to analyze the effect of these factors on the heat transfer rate. However, CFD analysis will be use to simulate the heat transfer of the engine block. ANSYS software is selected to run the simulation.

  8. Estimation of transient heat transfer coefficients in multidimensional problems by using inverse heat transfer methods

    Science.gov (United States)

    Osman, Arafa Mohamed

    1987-05-01

    The inverse heat transfer problem is one of considerable practical interest in the analysis and design of experimental heat transfer investigations. The analytical and experimental investigation of the inverse heat transfer coefficients in multi-dimensional convective heat transfer applications is examined. An application considered is the sudden quenching of a hot solid in a cold liquid. Other applications include thermal analysis of forced convection over impulsively started solid bodies and investigation of short duration wind tunnel experiments. The primary aim is to describe methods and algorithms for the solution of the ill-posed inverse heat transfer coefficient problem. The solution method used is an extension of the sequential future-information method of Beck. Numerical experiments are conducted for a systematic investigation of the developed algorithms on selected heat transfer coefficient test cases. The overall objective of the experimental work is to investigate the early transients in the heat transfer coefficients from spheres in one- and two-dimensional quenching experiments. Several experiments were performed by plunging hollow spheres in either ethylene glycol or water. The developed methods are used for the analysis of the quenching experiments for the estimation of the transient heat transfer coefficients. Analysis of the results indicate that the transient inverse technique has the capability of estimating early transients and subsequent quasi-steady state values of the heat transfer coefficients in a single transient experiment.

  9. Literature survey of heat transfer enhancement techniques in refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  10. Modeling Local Hygrothermal Interaction: Local surface transfer coefficients

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in building components assume uniform boundary conditions, both for the temperature and relative humidity of the air in an indoor space as well as for the heat and moisture surface transfer coefficients. In order to obtain a reliable...... and moisture transfer coefficients. The research showed that the developed model gives good agreement with the local convective surface transfer coefficients predicted from CFD. The main advantage of the presented (sub)zonal airflow model is that the computational effort is relatively small, while...... the predictions of the local surface transfer coefficients are relatively accurate....

  11. Microscale and nanoscale heat transfer fundamentals and engineering applications

    CERN Document Server

    Sobhan, CB

    2008-01-01

    Preface Introduction to Microscale Heat Transfer Microscale Heat Transfer: A Recent Avenue in Energy Transport State of the Art: Some Introductory Remarks Overview of Microscale Transport Phenomena Discussions on Size-Effect Behavior Fundamental Approach for Microscale Heat Transfer Introduction to Engineering Applications of Microscale Heat Transfer Microscale Heat Conduction Review of Conduction Heat Transfer Conduction at the Microscale Space and Timescales Fundamental Approach Thermal Conductivity Boltzmann Equation and Phonon Transport Conduction in Thin Films

  12. Heat transfer in cooled porous region with curved boundary

    Science.gov (United States)

    Siegel, R.; Snyder, A.

    1981-01-01

    Heat transfer characteristics are analyzed for a cooled two-dimensional porous medium having a curved boundary. A general analytical procedure is given in combination with a numerical conformal mapping method used to transform the porous region into an upper half plane. To illustrate the method, results are evaluated for a cosine shaped boundary subjected to uniform external heating. The results show the effects of coolant starvation in the thick regions of the medium, and the extent that internal heat conduction causes the heated surface to have a more uniform temperature.

  13. Free shear layer and swirl flow heat transfer enhancement

    Science.gov (United States)

    Wirtz, R. A.; Greiner, M.; Snyder, B.

    1990-05-01

    Two wall shape induced convective heat transfer enhancement mechanisms for channel flows are investigated. The first uses transverse grooves in a channel wall to produce unstable free shear layers which cause traveling waves to be superimposed on the mean flow, thus augmenting heat transfer. The second uses streamline curvature to produce a swirling secondary flow. In this case, a serpentine channel is investigated. Flow visualization and heat transfer/pressure drop measurements with both air and water show that the expected augmentation mechanisms are operable in both the grooved and serpentine channel configurations at flow rates normally encountered in compact heat exchanger applications. When compared to other enhanced surfaces (such as offset strip fins or corrugated plate fins) on an equal pumping power basis, both the grooved and serpentine configurations of the present study produce performance curves which are comparable to, and in some cases superior to other conventional techniques.

  14. A computational study of heat transfer in a laminar oscillating confined slot jet impinging on an isothermal surface at low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Johnny ISSA

    2015-09-01

    Full Text Available Heat transfer in a laminar confined oscillating slot jet is numerically investigated. A uniform inlet velocity profile oscillating with an angle φ, having the following sinusoidal shape: φ= φmax*sin(2πft. φ is in radians, φmax is the maximum jet angle, and f is the oscillation frequency. The height-to-jet-width ratio (H/w was fixed to 5 and the fluid’s Prandtl number which is one of the dimensionless governing groups is 0.74. The other dimensionless groups characterizing this problem, which are, Strouhal’s number, St, and Reynolds number, Re, where varied. Re was in the range 100heat transfer enhancement was noticed in the stagnation region, when compared to the steady case. A similar enhancement was observed for Re=400 at St=0.75. At Re=100 no improvements were observed, where the flow showed a high vulnerability to severe oscillations, that drastically reduced heat removal ability. Jet flapping could be triggered at Re=400. But the flapping mode was most stable for St=0.75, in which case, heat transfer enhancement was detected.

  15. Stagnation Point Heat Transfer with Gas Injection Cooling

    Science.gov (United States)

    Vancrayenest, B.; Tran, M. D.; Fletcher, D. G.

    2005-01-01

    The present paper deals with an experimental study of the stagnation-point heat transfer to a cooled copper surface with gas injection under subsonic conditions. Test were made with a probe that combined a steady-state water-cooled calorimeter that allows the capability to study convective blockage and to perform heat transfer measurements in presence of gas injection in the stagnation region. The copper probe was pierced by 52 holes, representing 2.4% of the total probe surface. The 1.2 MW high enthalpy plasma wind tunnel was operated at anode powers between 130 and 230 kW and a static pressures from 35 hPa up to 200 hPa. Air, carbon dioxide and argon were injected in the mass flow range 0-0.4 g/s in the boundary layer developed around the 50 mm diameter probe. The measured stagnation-point heat transfer rates are reported and discussed.

  16. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  17. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  18. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  19. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  20. Linearization properties, first integrals, nonlocal transformation for heat transfer equation

    Science.gov (United States)

    Orhan, Özlem; Özer, Teoman

    2016-08-01

    We examine first integrals and linearization methods of the second-order ordinary differential equation which is called fin equation in this study. Fin is heat exchange surfaces which are used widely in industry. We analyze symmetry classification with respect to different choices of thermal conductivity and heat transfer coefficient functions of fin equation. Finally, we apply nonlocal transformation to fin equation and examine the results for different functions.

  1. Near-field heat transfer between multilayer hyperbolic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Biehs, Svend-Age [Oldenburg Univ. (Germany). Inst. fuer Physik; Ben-Abdallah, Philippe [Univ. Paris-Sud 11, Palaiseau (France). Lab. Charles Fabry; Univ. Sherbrooke, PQ (Canada). Dept. of Mechanical Engineering

    2017-05-01

    We review the near-field radiative heat flux between hyperbolic materials focusing on multilayer hyperbolic meta-materials. We discuss the formation of the hyperbolic bands, the impact of ordering of the multilayer slabs, as well as the impact of the first single layer on the heat transfer. Furthermore, we compare the contribution of surface modes to that of hyperbolic modes. Finally, we also compare the exact results with predictions from effective medium theory.

  2. Numerical Modeling of Transient Heat Transfer in Longitudinal Fin

    OpenAIRE

    Farshad Panahizadeh; Mohammed Hasnat; Ashkan Ghafour

    2017-01-01

    The main objective of the present numerical study is to investigate the transient heat transfer in one kind of all-purpose longitudinal fin with the triangular profile. The lateral surface of the concerned fin and the tip of it are subjected to general situations included heat flux at the base and insulation on the tip. For this study developed a one dimensional in house code written by Fortran 90 programming language by using finite difference method with an implicit scheme...

  3. A numerical study of momentum and forced convection heat transfer ...

    African Journals Online (AJOL)

    ASME J. Heat Transfer, Vol. 99, 180-186. [2] Webb B.W., Ramadhyani S., 1985. Conjugate heat transfer in a channel with staggered ribs, Int. J. Heat Mass. Transfer, Vol. 28, 1679-1687. [3] Kelkar K.M.&Patankar S.V., 1987. Numerical prediction of flow and heat transfer in a parallel plate channel with staggered fins, ASME J.

  4. Combined heat and mass transfer device for improving separation process

    Science.gov (United States)

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  5. Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [University of North Dakota; Kingery, Joseph E. [University of North Dakota

    2015-06-17

    A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs

  6. Heat transfer enhancement in two-start spirally corrugated tube

    Directory of Open Access Journals (Sweden)

    Zaid S. Kareem

    2015-09-01

    Full Text Available Various techniques have been tested on heat transfer enhancement to upgrade the involving equipment, mainly in thermal transport devices. These techniques unveiled significant effects when utilized in heat exchangers. One of the most essential techniques used is the passive heat transfer technique. Corrugations represent a passive technique. In addition, it provides effective heat transfer enhancement because it combined the features of extended surfaces, turbulators and artificial roughness. Therefore, A Computational Fluid Dynamics was employed for water flowing at low Reynolds number in spiral corrugated tubes. This article aimed for the determination of the thermal performance of unique smooth corrugation profile. The Performance Evaluation Criteria were calculated for corrugated tubes, and the simulation results of both Nusselt number and friction factor were compared with those of standard plain and corrugated tubes for validation purposes. Results showed the best thermal performance range of 1.8–2.3 for the tube which has the severity of 45.455 × 10−3 for Reynolds number range of 100–700. The heat transfer enhancement range was 21.684%–60.5402% with friction factor increase of 19.2–36.4%. This indicated that this creative corrugation can improve the heat transfer significantly with appreciably increasing friction factor.

  7. Intensification of heat transfer across falling liquid films

    Science.gov (United States)

    Ruyer-Quil, Christian; Cellier, Nicolas; Stutz, Benoit; Caney, Nadia; Bandelier, Philippe; Locie Team; Legi Team

    2017-11-01

    The wavy motion of a liquid film is well known to intensify heat or mass transfers. Yet, if film thinning and wave merging are generally invoked, the physical mechanisms which enable this intensification are still unclear. We propose a systematic investigation of the impact of wavy motions on the heat transfer across 2D falling films on hot plates as a function of the inlet frequency and flow parameters. Computations over extended domains and for sufficient durations to achieve statistically established flows have been made possible by low-dimensional modeling and the development of a fast temporal solver based on graph optimizations. Heat transfer has been modeled using the weighted residual technique as a set of two evolution equations for the free-surface temperature and the wall heat flux. This new model solves the shortcomings of previous attempts, namely their inability to capture the onset of thermal boundary layers in large-amplitude waves and their limitation to low Prandtl numbers. Our study reveals that heat transfer is enhanced at the crests of the waves and that heat transfer intensification is maximum at the maximum of density of wave crests, which does not correspond to the natural wavy regime (no inlet forcing). Supports from Institut Universitaire de France and Région Auvergne-Rhones-Alpes are warmly acknowledged.

  8. Heat transfer enhancement of a single row of tube

    Directory of Open Access Journals (Sweden)

    Tsutsui Takayuki

    2017-01-01

    Full Text Available A rod was positioned upstream of a circular cylinder to enhance its heat transfer and reduce its drag in air stream. The results are increasing the overall heat transfer by 40% over and reducing the drag by 30% the value for a single circular cylinder. In the present, this technique applied to a single row of tubes. Heat transfer enhancement and drag reduction are important factor for multi-tube heat exchanger. The present study investigated the heat transfer and surface pressure characteristics of each tube for single row of tubes under various numbers of tubes, pitch and Reynolds number. The tube diameter, D, was 20 mm, and the rod diameter was 5 mm. The distance between the center axes of the rod and the tube was 30mm. The Reynolds number based on D ranged from 5.3×103 to 2.1×104. The result is that this technique is effective for heat transfer enhancement and drag reduction of row of tube.

  9. Convective heat transfer in non-uniformly heated corrugated slots

    Science.gov (United States)

    Abtahi, Arman; Floryan, J. M.

    2017-10-01

    An analysis of heat transfer in non-uniformly heated corrugated slots has been carried out. A sinusoidal corrugation is placed at the lower plate that is exposed to heating consisting of uniform and sinusoidal components, while the upper smooth plate is kept isothermal. The phase difference ΩTL describes the shift between the heating and geometric non-uniformities. The analysis is limited to heating conditions that do not give rise to secondary motions. Depending on ΩTL, the conductive heat flow is directed either upwards, or downwards, or is eliminated. Its magnitude is smallest for the long-wavelength systems and largest for the short-wavelength systems, and it increases proportionally to the corrugation amplitude and heating intensity. The same heating creates horizontal temperature gradients that give rise to convection whose form depends on ΩTL. Convection consists of counter-rotating rolls with the size dictated by the system wavelength when the hot spots (points of maximum temperature) overlap either with the corrugation tips or with the corrugation bottoms. Thermal drift forms for all other values of ΩTL. The convective heat flow is always directed upwards, and it is the largest in systems with wavelengths comparable to the slot height. The magnitude of the overall heat flow increases proportionally to the heating intensity when conductive effects dominate and proportionally to the second power of the heating intensity when convection dominates. It also increases proportionally to the corrugation amplitude. The system characteristics are dictated by convection when the relative position of the heating and corrugation patterns eliminates conduction. Addition of the uniform heating component amplifies the above processes, while uniform cooling reduces them. The processes described above are qualitatively similar for all Prandtl numbers of practical interest with the magnitude of the convective heat flow increasing with Pr.

  10. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1987-06-01

    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  11. Natural convection heat transfer along vertical rectangular ducts

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M. [King Saud University, Mechanical Engineering Department, Riyadh (Saudi Arabia)

    2009-12-15

    Experimental investigations have been reported on steady state natural convection from the outer surface of vertical rectangular and square ducts in air. Seven ducts have been used; three of them have a rectangular cross section and the rest have square cross section. The ducts are heated using internal constant heat flux heating elements. The temperatures along the vertical surface and the peripheral directions of the duct wall are measured. Axial (perimeter averaged) heat transfer coefficients along the side of each duct are obtained for laminar and transition to turbulent regimes of natural convection heat transfer. Axial (perimeter averaged) Nusselt numbers are evaluated and correlated using the modified Rayleigh numbers for laminar and transition regime using the vertical axial distance as a characteristic length. Critical values of the modified Rayleigh numbers are obtained for transition to turbulent. Furthermore, total overall averaged Nusselt numbers are correlated with the modified Rayleigh numbers and the area ratio for the laminar regimes. The local axial (perimeter averaged) heat transfer coefficients are observed to decrease in the laminar region and increase in the transition region. Laminar regimes are obtained at the lower half of the ducts and its chance to appear decreases as the heat flux increases. (orig.)

  12. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, T.J.

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of

  13. Metallized Gelled Propellant Heat Transfer Tests Analyzed

    Science.gov (United States)

    Palaszewski, Bryan A.

    1997-01-01

    A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted at the NASA Lewis Research Center. These experiments used a small 20- to 40-lbf thrust engine composed of a modular injector, an igniter, a chamber, and a nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt % loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each channel used water flow to carry heat away from the chamber and the attached thermocouples; flow meters allowed heat flux estimates at each of the 31 stations.

  14. Measurement of Heat Transfer Coefficients in an Agitated Vessel with Tube Baffles

    OpenAIRE

    M. Dostál; Petera, K.; Rieger, F.

    2010-01-01

    Cooling or heating an agitated liquid is a very common operation in many industrial processes. A classic approach is to transfer the necessary heat through the vessel jacket. Another option, frequently used in the chemical and biochemical industries is to use the heat transfer area of vertical tube baffles. In large equipment, e.g. fermentor, the jacket surface is often not sufficient for large heat transfer requirements and tube baffles can help in such cases. It is then important to know th...

  15. Heat transfer applications for the practicing engineer

    CERN Document Server

    Theodore, Louis

    2011-01-01

    This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu

  16. Experimental evaluation of heat transfer coefficients between radiant ceiling and room

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2009-01-01

    The heat transfer coefficients between radiant surfaces and room are influenced by several parameters: surfaces temperature distributions, internal gains, air movements. The aim of this paper is to evaluate the heat transfer coefficients between radiant ceiling and room in typical conditions...... of occupancy of an office or residential building. Internal gains were therefore simulated using heated cylinders and heat losses using cooled surfaces. Evaluations were developed by means of experimental tests in an environmental chamber. Heat transfer coefficient may be expressed separately for radiation...

  17. Convective heat transfer on an inlet guide vane.

    Science.gov (United States)

    Holmer, M L; Eriksson, L E; Sunden, B

    2001-05-01

    The flow and temperature fields around an inlet guide vane are determined numerically by a CFD method. Outer surface temperatures, heat transfer coefficient distributions, and static pressure distributions are presented. Three different thermal boundary conditions on the vane are analysed. The computed results are compared with experimental data. The governing equations are solved by a finite-volume method with the low Reynolds number version of the k-omega turbulence model by Wilcox implemented. It is found that the calculated results agree best with measurements if a conjugate heat transfer approach is applied and thus this wall condition is recommended for future investigations of film cooling of guide vanes and turbine blades.

  18. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  19. Heat flux sensors for infrared thermography in convective heat transfer.

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-11-07

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  20. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  1. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  2. Aspects of forced convective heat transfer in geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Kilty, K.; Chapman, D.S.; Mase, C.

    1978-07-01

    A knowledge of convective heat transfer is essential to understanding geothermal systems and other systems of moving groundwater. A simple, kinematic approach toward convective heat transfer is taken here. Concern is not with the cause of the groundwater motion but only with the fact that the water is moving and transferring heat. The mathematical basis of convective heat transfer is the energy equation which is a statement of the first law of thermodynamics. The general solution of this equation for a specific model of groundwater flow has to be done numerically. The numerical algorithm used here employs a finite difference approximation to the energy equation that uses central differences for the heat conduction terms and one-sided differences for the heat convection terms. Gauss--Seidel iteration is then used to solve the finite difference equation at each node of a non-uniform mesh. The Monroe and Red Hill hot springs, a small hydrothermal system in central Utah, provide an example to illustrate the application of convective heat transfer theory to a geophysical problem. Two important conclusions regarding small geothermal systems follow immediately from the results of this application. First, the most rapid temperature rise in the convecting part of a geothermal system is near the surface. Below this initially rapid temperature increase the temperature increases very slowly, and thus temperatures extrapolated from shallow boreholes can be seriously in error. Second, the temperatures and heat flows observed at Monroe and Red Hill, and probably at many other small geothermal areas, can easily result from moderate vertical groundwater velocities in faults and fracture zones in an area of normal heat flow.

  3. Topology optimization for transient heat transfer problems

    DEFF Research Database (Denmark)

    Zeidan, Said; Sigmund, Ole; Lazarov, Boyan Stefanov

    , TopOpt has later been extended to transient problems in mechanics and photonics (e.g. [5], [6] and [7]). In the presented approach, the optimization is gradient-based, where in each iteration the non-steady heat conduction equation is solved,using the finite element method and an appropriate time......The focus of this work is on passive control of transient heat transfer problems using the topology optimization (TopOpt) method [1]. The goal is to find distributions of a limited amount of phase change material (PCM), within a given design domain, which optimizes the heat energy storage [2]. Our...

  4. Cooperative heat transfer and ground coupled storage system

    Science.gov (United States)

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  5. Numerical prediction of nucleate pool boiling heat transfer coefficient under high heat fluxes

    Directory of Open Access Journals (Sweden)

    Pezo Milada L.

    2016-01-01

    Full Text Available This paper presents CFD (Computational Fluid Dynamics approach to prediction of the heat transfer coefficient for nucleate pool boiling under high heat fluxes. Three-dimensional numerical simulations of the atmospheric saturated pool boiling are performed. Mathematical modelling of pool boiling requires a treatment of vapor-liquid two-phase mixture on the macro level, as well as on the micro level, such as bubble growth and departure from the heating surface. Two-phase flow is modelled by the two-fluid model, which consists of the mass, momentum and energy conservation equations for each phase. Interface transfer processes are calculated by the closure laws. Micro level phenomena on the heating surface are modelled with the bubble nucleation site density, the bubble resistance time on the heating wall and with the certain level of randomness in the location of bubble nucleation sites. The developed model was used to determine the heat transfer coefficient and results of numerical simulations are compared with available experimental results and several empirical correlations. A considerable scattering of the predictions of the pool boiling heat transfer coefficient by experimental correlations is observed, while the numerically predicted values are within the range of results calculated by well-known Kutateladze, Mostinski, Kruzhilin and Rohsenow correlations. The presented numerical modeling approach is original regarding both the application of the two-fluid two-phase model for the determination of heat transfer coefficient in pool boiling and the defined boundary conditions at the heated wall surface. [Projekat Ministarstva nauke Republike Srbije, br. 174014

  6. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh

    2000-08-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

  7. Enhanced heat transfer characteristics of conjugated air jet impingement on a finned heat sink

    Directory of Open Access Journals (Sweden)

    Qiu Shuxia

    2017-01-01

    Full Text Available Air jet impingement is one of the effective cooling techniques employed in micro-electronic industry. To enhance the heat transfer performance, a cooling system with air jet impingement on a finned heat sink is evaluated via the computational fluid dynamics method. A two-dimensional confined slot air impinging on a finned flat plate is modeled. The numerical model is validated by comparison of the computed Nusselt number distribution on the impingement target with published experimental results. The flow characteristics and heat transfer performance of jet impingement on both of smooth and finned heat sinks are compared. It is observed that jet impingement over finned target plate improves the cooling performance significantly. A dimensionless heat transfer enhancement factor is introduced to quantify the effect of jet flow Reynolds number on the finned surface. The effect of rectangular fin dimensions on impingement heat transfer rate is discussed in order to optimize the cooling system. Also, the computed flow and thermal fields of the air impingement system are examined to explore the physical mechanisms for heat transfer enhancement.

  8. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    Science.gov (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  9. Heat Transfer in a Paper Cup

    Science.gov (United States)

    Ribeiro, Carla

    2017-01-01

    The double-wall paper cup is an everyday object that can be used in the laboratory to study heat transfer. The experiment described here has been done by physics students aged 12-13 years; it can also be used in a different context to prompt debate about environmental issues.

  10. Free convection film flows and heat transfer

    CERN Document Server

    Shang, Deyi

    2010-01-01

    Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.

  11. A Paradox in Radiation Heat Transfer

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 4. A Paradox in Radiation Heat Transfer. J Srinivasan. Classroom Volume 12 Issue 4 April 2007 pp 85-91. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/04/0085-0091. Keywords. Radiation ...

  12. Endwall convective heat transfer for bluff bodies

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2012-01-01

    The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this stud...

  13. Conjugate problems in convective heat transfer

    CERN Document Server

    Dorfman, Abram S

    2009-01-01

    The conjugate heat transfer (CHT) problem takes into account the thermal interaction between a body and fluid flowing over or through it, a key consideration in both mechanical and aerospace engineering. Presenting more than 100 solutions of non-isothermal and CHT problems, this title considers the approximate solutions of CHT problems.

  14. Forced Convection Heat Transfer in Circular Pipes

    Science.gov (United States)

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  15. Heat Transfer Analysis of Fin Tube

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Cheng-Ryul [ELSOLTEC Co., Yongin (Korea, Republic of)

    2015-10-15

    This paper describes a preliminary numerical analysis of fin tube used for a heat exchanger of the air-water cooling system. The internal flow in a fin tube is steam and the external of the fin is cooled by air. Cooling system in a nuclear power plant can be divided into two categories; 1) active pump driven system powered by alternating current and 2) passive cooling system drived by natural circulation phenomena. After the accident in Hukushima Nuclear Power Plants, the importance of the passive cooling system that can provide a long-term cooling of reactor decay heat during station blackout condition is emphasized. However, the effectiveness of passive cooling system based on cooling water is limited by the capacity of water storage tank. To overcome the limit due to the exhaustion of the cooling water, an natural convection air cooling system is proposed. As the air operated cooling system utilizes natural circulation phenomena of air, it does not require cooling water. However, the heat transfer area of the air operated cooling system should be increased much as the heat removal capacity per unit area is much lower than that of water cooling system. The air-water combined cooling system can resolve this excess increase of the heat transfer area in the air operated cooling system. This air-water cooling system can be also used in the passive containment cooling system. The effect of design parameters such as fin tube arrangement, the fin height, and pitch has been analyzed and the chimney effect on the simulation of heat transfer in a heat exchanger is evaluated. The internal flows in a fin tube heat exchanger for natural circulation flow condition and forced convection (suction) condition were investigated.

  16. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    Science.gov (United States)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  17. Heat transfer characteristics of various kinds of ground heat exchangers for ground source heat pump system

    Science.gov (United States)

    Miyara, A.; Kariya, K.; Ali, Md. H.; Selamat, S. B.; Jalaluddin

    2017-01-01

    Three kinds of vertical-type ground heat exchangers, U-tube; double-tube; multi-tube, and two kinds of horizontal-type ground heat exchangers, standing Slinky; reclined Slinky, were experimentally and numerically investigated in order to clarify their heat transfer characteristics. Experiments and simulations were carried out under two operation conditions which are continuous operation mode and discontinuous operation mode and effects of temperature recovery and thermal storage on the heat transfer rate were shown. Differences of the heat transfer rate between standing Slinky and reclined Slinky were also indicated.

  18. Heat transfer at the sintered layer-polysynthetic material interface inside heat micro pipes

    Science.gov (United States)

    Sprinceana, Siviu; Mihai, Ioan

    2016-12-01

    If micro heat pipe heat transfers, the inside working fluid goes through a biphasic state. The flow of the liquid and the vapor thereof by the capillary beds of frittered copper and the layer of capillary polysynthetic material and migration of vapors liquid from the end, takes the heat flow towards the end where a transfer of heat may occur only if there is a difference in temperature between the end of a flat micro heat pipe that gives the acquirer heat and heat flux. The porosity of the material is total pore of the total material volume. In the analysis of heat and mass transfer through porous media, both convective and conductive transfer forms can not be separated, because of the surfaces in contact between the two capillar layers. It had been studied the dependence of the rate of flow of liquid through the frittered porous media, and Reynolds polysynthetic. It tracks changes in the Reynolds number based on the interior capillary porosity. They traced in Mathcad [1] the graphs for changing the Reynolds number of capillary pressure by capillary porosity.

  19. Exergy in near-field electromagnetic heat transfer

    Science.gov (United States)

    Iizuka, Hideo; Fan, Shanhui

    2017-09-01

    The maximum amount of usable work extractable from a given radiative heat flow defines the exergy. It was recently noted that the exergy in near-field radiative heat transfer can exceed that in the far-field. Here, we derive a closed form formula of exergy in the near-field heat transfer between two parallel surfaces. This formula reveals that, for a given resonant frequency, the maximum exergy depends critically on the resonant linewidth, and there exists an optimal choice of the linewidth that maximizes the exergy. Guided by the analytical result, we show numerically that with a proper choice of doping concentration, the heat flow between two properly designed SiC-coated heavily doped silicon regions can possess exergy that is significantly higher compared to the heat flow between two SiC regions where the heat flow is carried out by phonon-polaritons. Our work indicates significant opportunities for either controlling material properties or enhancing the fundamental potential for near-field heat transfer in thermal energy conversion through the approach of meta-material engineering.

  20. Boiling heat transfer on fins – experimental and numerical procedure

    Directory of Open Access Journals (Sweden)

    Orzechowski T.

    2014-03-01

    Full Text Available The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the heat transfer coefficient were determined and shown in the form of a boiling curve. For the thicker sample, for which 1-D model cannot be used, numerical calculations were conducted. They resulted in obtaining the values of the local heat flux on the surface the invisible to the infrared, camera i.e. on the side on which the boiling of the medium proceeds.

  1. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...

  2. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  3. Radiative heat transfer in fractal structures

    Science.gov (United States)

    Nikbakht, M.

    2017-09-01

    The radiative properties of most structures are intimately connected to the way in which their constituents are ordered on the nanoscale. We have proposed a new representation for radiative heat transfer formalism in many-body systems. In this representation, we explain why collective effects depend on the morphology of structures, and how the arrangement of nanoparticles and their material affects the thermal properties in many-body systems. We investigated the radiative heat transfer problem in fractal (i.e., scale invariant) structures. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer and radiative cooling are studied and the results are compared for fractal and nonfractal structures. It is shown that fractal arranged nanoparticles display complex radiative behavior related to their scaling properties. We showed that, in contrast to nonfractal structures, heat flux in fractals is not of large-range character. By using the fractal dimension as a means to describe the structure morphology, we present a universal scaling behavior that quantitatively links the structure radiative cooling to the structure gyration radius.

  4. Numerical investigation on the convective heat transfer in a spiral coil with radiant heating

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2016-01-01

    Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006

  5. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    Energy Technology Data Exchange (ETDEWEB)

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

  6. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    Science.gov (United States)

    Siegel, R.

    1974-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  7. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    Science.gov (United States)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  8. Effects of fouling in heat transfer equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V. (ABCO Industries, Abilene, TX (United States))

    1993-03-04

    Fouling between the hot and cold streams in heat transfer equipment is a major reason boilers, heaters, and heat exchangers do not perform according to original specifications. Commonly used fluids such as water and air have well-established fouling factors. However, the factors for some industrial effluents, particularly for flue gas streams resulting from the combustion or incineration of solid or liquid fuels, can be determined only through operating experience. The paper discusses the signs of fouling, and how expensive fouling can be illustrating the second with three example problems.

  9. Advances and Outlooks of Heat Transfer Enhancement by Longitudinal Vortex Generators

    CERN Document Server

    He, Ya-Ling

    2016-01-01

    In the last several decades, heat transfer enhancements using extended surface (fins) has received considerable attentions. A new heat transfer enhancement technique, longitudinal vortex generators (LVG), has received significant attention since the 1990s. It is activated by a special type of extended surface that can generate vortices with axes parallel to the main flow direction. The vortices result from strong swirling secondary flow caused by flow separation and friction. The state-of-the-art on research and applications of LVG are described here. The topical coverage includes heat transfer enhancement in straight channels and in heat exchangers. Among the latter are plate and wavy fin-and-tube heat exchangers, fin-and-oval-tube heat exchangers, and fin-and-tube heat exchangers with multiple rows of tubes. The trends and future directions of heat transfer enhancement by means of LVG are discussed.

  10. An oil heat-transfer agent

    Energy Technology Data Exchange (ETDEWEB)

    Bednarski, A.; Ligeza, S.; Montewski, W.; Ozga, A.; Steinmec, E.

    1979-10-01

    An oil heat-transfer agent, suitable for operation in the temperature range of 30-360 degrees, containing hydrocarbon oil with a boiling point of 5% above 360 degrees and 2% alkylphenolate or alkaline or alkaline-earth metal with a reserve alkalinity to 300 mg KOH/g, and to 5% alkenylksuccinic anhydride with a molar weight of 1000-1600 and content of nitrogen to 2.5%, or alkylthiophosphonate with a molecular weight to 1500 and phosphorus content to 2%. The oil used in the heat-transfer agent contains over 25% aromatic hydrocarbons containing 4-40% aromatic C atoms, 3-40% naphthene carbon atoms and 25-75% paraffin carbon atoms, and to 3% tar. Data are given describing the high oxidation stability and low tendency to deposit formation of oil compositions obtained according to the patent.

  11. Heat transfer modeling an inductive approach

    CERN Document Server

    Sidebotham, George

    2015-01-01

    This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...

  12. Influence of high range of mass transfer coefficient and convection heat transfer on direct contact membrane distillation performance

    KAUST Repository

    Lee, Jung Gil

    2017-11-03

    In order to improve water production of membrane distillation (MD), the development of high performance membrane having better mass transfer and enhancement of convection heat transfer in MD module have been continuously investigated. This paper presents the relationship between the heat and mass transfer resistance across the membrane and the performance improvement. Various ranges of mass transfer coefficient (MTC) from normal (0.3×10−6 to 2.1×10−6kg/m2sPa: currently available membranes) to high (>2.1×10−6kg/m2sPa: membranes under development) were simulated using an experimentally validated model at different ranges of convection heat transfer by varying the inlet flow rates and spacer enhancement factor. The effect of mass transfer and convection heat transfer on the MD performance parameters including temperature polarization coefficient (TPC), mean permeate flux, and specific energy consumption were investigated in a direct contact MD (DCMD) configuration. Results showed that improving the MTC at the low ranges is more important than that at the high ranges where the heat transfer resistance becomes dominant and hence the convection heat transfer coefficient must be increased. Therefore, an effort on designing MD modules using feed and permeate spacers and controlling the membrane surface roughness to increase the convection heat transfer and TPC in the channel aiming to enhance the flux is required because the currently developed mass transfer has almost reached the critical point.

  13. Principles of heat and mass transfer

    CERN Document Server

    Incropera, Frank P; Bergman, Theodore L; Lavine, Adrienne S

    2013-01-01

    Completely updated, the seventh edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.

  14. Heat transfer in multi-phase materials

    CERN Document Server

    Öchsner, Andreas

    2011-01-01

    This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).

  15. Analysis of reverse heat transfer for conventional and optimized lubri-cooling methods during tangential surface grinding of ABNT 1020 steel

    Directory of Open Access Journals (Sweden)

    Henrique Cotait Razuk

    Full Text Available Abstract A numerical thermal model was developed to evaluate the heat flux which is conducted to a rectangular workpiece of steel plate ABNT 1020, thus making it possible to compute the maximum temperature in the grinding surface, taking into account the rectangular distribution of heat flux, the thermal properties of the grinding wheel conventional Al2O3, the piece to be machined and the lubri-refrigerating fluid. The finite volume method was employed for the discretization of the direct thermal problem from the heat diffusion equation associated with the two-dimensional problem of heat conduction in transient regime. The inverse thermal problem was solved by the Golden Section technique. The thermal flux, when compared to the conventional technique of method of application fluid, was reduced by 84.0% in the practices performed with cutting depth of 30µm, at 74.0% in practices with cutting depth of 45µm and 61.2% in the aggressive practices of 60µm, thus demonstrating the applicability of the optimized method for fluid application.

  16. Heat transfer studies on spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Rajavel Rangasamy

    2008-01-01

    Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.

  17. Hydrodynamics and Heat Transfer of Discrete Droplets in Microfluidic Devices

    Science.gov (United States)

    Weber, Robert; Shajiee, Shervin; Mohseni, Kamran

    2009-11-01

    Electrostatic manipulation of surfaces tension forces is now a standard fluid handling technique in microfluidic devices. In this investigation electrowetting on dielectric (EWOD) is employed in order to use discrete droplets for thermal management of compact micro systems. Both hydro- and thermodynamics of digitized droplets are investigated by experimental, theoretical and computational means. EWOD devices have been built on silicon substrates with highly doped layers replacing metal electrodes, and higher quality thermal oxides replacing the more expensive PECVD oxides. In parallel, an experimental test rig has been built to measure the heat transfer rate of the slug flow at a macro scale. Droplets at several length and speed are created systematically. Average heat transfer rates and Nusselt numbers in constant heat flux in a tube has been experimentally measured for continuous and discrete water flow cases and the results have been compared with numerical results.

  18. Convective Heat Transfer in Acoustic Streaming Flows

    Science.gov (United States)

    Gopinath, Ashok

    1992-01-01

    Convective heat transfer due to acoustic streaming has been studied in the absence of an imposed mean flow. The work is motivated by the need to design and control the thermal features of a suitable experimental rig for the containerless processing of materials by heat treatment of acoustically levitated alloy samples at near zero-gravity. First the problem of heat transfer from an isolated sphere (in a standing sound field) is explored in detail. The streaming Reynolds number, Rs, which characterizes the resulting steady flows, is determined from the acoustic signal. A scale analysis is used to ascertain the importance of buoyancy and viscous dissipation. The steady velocity and temperature fields are determined using asymptotic techniques and numerical methods for the limiting cases of RsKundt tube (supporting a plane axial standing sound wave) with insulated side-wall and isothermal end-walls. Analytical solution techniques are used to determine the steady fields close to the tube walls. For the steady recirculatory transport in the core, the numerical solver PHOENICS is adopted for the solution of the complete elliptic form of the governing equations. A study of the effects of a range of acoustic and geometric parameters on the flow and heat transfer is performed and Nusselt number correlations are obtained for air. PHOENICS is also used to study the effects of variable fluid properties and axial side-wall conduction (coupled with radiation). The role of normal/reduced gravity is assessed and suggestions made for terrestrial testing of the levitation apparatus. Finally, with the sample located at a node in the levitation chamber, the effect of the interaction of the streaming flows (on the sphere and the tube walls) is estimated. Representative calculations for the sample heating/cooling rates are presented and compared with existing data in the literature.

  19. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery

    Science.gov (United States)

    Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung

    2018-02-01

    In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.

  20. Refrigeration. Heat Transfer. Part I: Evaporators and Condensers

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard

    2002-01-01

    The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation.......The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation....

  1. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  2. Heat and mass transfer through spiral tubes in absorber of absorption heat pump system for waste heat recovery

    Directory of Open Access Journals (Sweden)

    Yoshinori Itaya

    2017-06-01

    Full Text Available Heat and mass transfer of a LiBr/water absorption heat pump system (AHP was experimentally studied during working a heating-up mode. The examination was performed for a single spiral tube, which was simulated for heat transfer tubes in an absorber. The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere, respectively. The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube. The steam absorption rate and/or heat generation rate in the liquid film are not constant along the tube. Hence the average convective heat transfer coefficient between the liquid film flowing down and the inside wall of the tube was determined based on a logarithmic mean temperature difference between the tube surface temperature and the film temperature at the maximum temperature location and the bottom. The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream. The coefficients showed opposite trend to the empirical correlation reported for laminar film flow on a straight smooth tube in a refrigeration mode in the past work. The fact can be caused due to a turbulent promotion effect of the liquid in a spiral tube.

  3. Description, calibration, and preliminary testing of the coal liquefaction heat transfer coefficient measurement test unit

    Energy Technology Data Exchange (ETDEWEB)

    Mulcahey, T.P.; Lo, R.N.K.; Bump, T.R.; Mulcahey, M.E.; Fischer, J.; Cannon, T.F.; Brock, R.E.; Wilson, W.I.; Bowyer, D.

    1979-06-01

    The efficiency of energy utilization within coal-liquefaction process is of major significance to the commercialization of the process. Heat exchange equipment is also one of the major economic investments in new plants. Consequently, reliable heat transfer data are required for the economical design of heat exchange equipment. Since accurate heat transfer coefficients of coal slurries, especially with a gas phase present, cannot be accurately calculated from known physical data for the operational conditions found in the coal-liquefaction process, experimentally determined heat transfer coefficients under actual process conditions are needed. A liquefaction heat-transfer-coefficient measurement test unit for a nominal one-half-ton-per-day coal slurry was constructed, calibrated, and operated at ANL. This test unit was built to determine heat transfer coefficients needed for design of feed-heat and effluent-heat exchangers used in coal-liquefaction processes. The heat-transfer test module was substituted for the preheater and reactor used in the normal coal-liquefaction process. The heat transfer coefficient can be evaluated for the heat transfer between the three-phase feed and effluent fluids in turbulent flow and a heated or cooled stainless steel surface. A description is presented of the unit and its capabilities, calibration procedures and results, and preliminary operation and data analysis. Recommendations are made that should improve accuracy and ease of operation and data analysis of the test unit.

  4. The stagnation-point flow and heat transfer of nanofluid over a shrinking surface in magnetic field and thermal radiation with slip effects : a stability analysis

    Science.gov (United States)

    Ismail, N. S.; Arifin, N. M.; Nazar, R.; bachok, N.

    2017-09-01

    A numerical study is performed to evaluate the problem of stagnation - point flow and heat transfer towards a shrinking sheet with magnetic field and thermal radiation in nanofluid. The Buongiorno’s nanofluid model is used in this study along with slip effect at boundary condition. By using non-similar transformation, the governing equations are able to be reduced into an ordinary differential equation. Then, the ordinary differential equation can be solved by using the bvp4c solver in Matlab. A linear stability analysis shows that only one solution is linearly stable otherwise is unstable. Based on the numerical results obtained, the dual solutions do exist at certain ranges in this study. Then, the stability analysis is carried out to determine which one is stable between both of the solutions.

  5. Heat and Mass Transfer in a Thin Liquid Film over an Unsteady Stretching Surface in the Presence of Thermosolutal Capillarity and Variable Magnetic Field

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2016-01-01

    Full Text Available The heat and mass transfer characteristics of a liquid film which contain thermosolutal capillarity and a variable magnetic field over an unsteady stretching sheet have been investigated. The governing equations for momentum, energy, and concentration are established and transformed to a set of coupled ordinary equations with the aid of similarity transformation. The analytical solutions are obtained using the double-parameter transformation perturbation expansion method. The effects of various relevant parameters such as unsteady parameter, Prandtl number, Schmidt number, thermocapillary number, and solutal capillary number on the velocity, temperature, and concentration fields are discussed and presented graphically. Results show that increasing values of thermocapillary number and solutal capillary number both lead to a decrease in the temperature and concentration fields. Furthermore, the influences of thermocapillary number on various fields are more remarkable in comparison to the solutal capillary number.

  6. CONVECTIVE HEAT TRANSFER IN CYCLONE DEVICE WITH EXTERNAL GAS RECIRCULATION

    Directory of Open Access Journals (Sweden)

    S. V. Karpov

    2016-01-01

    Full Text Available The article considers the convective heat transfer on the surface of a hollow cylinder or several billets in a cyclone device with the new principle of external gas recirculation. According to this principle, transport of coolant from the lateral surface of the chamber, where the temperature is the highest, in the axial region is being fulfilled due to the pressure drop between the wall and axial areas of cyclonic flow. Dependency analysis of average and local heat transfer coefficients from operational and geometrical parameters has been performed; the generalized similarity equations for the calculation of the latter have been suggested. It is demonstrated that in case of download of a cyclone chamber with several billets, the use of the considered scheme of the external recirculation due to the specific characteristics of aerodynamics practically does not lead to noticeable changes in the intensity of convective heat transfer. Both experimental data and the numerical simulation results obtained with the use of OpenFOAM platform were used in the work. The investigations fulfilled will expand the area of the use of cyclone heating devices.

  7. Heat transfer enhancement by dynamic corrugated heat exchanger wall: Numerical study

    Science.gov (United States)

    Kumar, P.; Schmidmayer, K.; Topin, F.; Miscevic, M.

    2016-09-01

    A new concept of heat exchanger at sub-millimeter scale is proposed for applications in cooling on-board electronics devices, in which the quality of the exchanges between fluid and wall is very critical. In the proposed system, the upper wall of the channel is deformed dynamically to obtain a sinusoidal wave on this surface. The lower wall is exposed to constant heat flux simulating the imprint of an electronic component. A systematic 3-D numerical study in transient regime on the different deformation parameters allowed obtaining both the pumping characteristics and the heat transfer characteristics of the system. It was observed that the dynamic deformation of the wall induces a significant pumping effect. The intensification of the heat transfer is very important even for highly degraded waveforms, although the pumping efficiency is reduced in this case.

  8. Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles

    Science.gov (United States)

    Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.

    2010-01-01

    This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…

  9. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    which controls the gasification rate of the energetic material for estimating heat transfer. Radiation effect on flow and heat transfer is important in the context of space technology and processes involving high temperature. In recent years, the problems of free convective and heat transfer flows through a porous medium under ...

  10. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    user

    width twisted tape inserts, ASME Transactions, Vol. 122, pp. 143-149. Naphon P., 2006. Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert, International communications in Heat and Mass Transfer, Vol. 33, pp. 166-175. Promvonge P. and Eiamsa-ard S., 2007. Heat transfer ...

  11. Low heat transfer oxidizer heat exchanger design and analysis

    Science.gov (United States)

    Kanic, P. G.; Kmiec, T. D.; Peckham, R. J.

    1987-01-01

    The RL10-IIB engine, a derivative of the RLIO, is capable of multi-mode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2 percent of full thrust, and pumped idle (PI), which is 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for log-g deployment. Stable combustion of the RL10-IIB engine at THI and PI thrust levels can be accomplished by providing gaseous oxygen at the propellant injector. Using gaseous hydrogen from the thrust chamber jacket as an energy source, a heat exchanger can be used to vaporize liquid oxygen without creating flow instability. This report summarizes the design and analysis of a United Aircraft Products (UAP) low-rate heat transfer heat exchanger concept for the RL10-IIB rocket engine. The design represents a second iteration of the RL10-IIB heat exchanger investigation program. The design and analysis of the first heat exchanger effort is presented in more detail in NASA CR-174857. Testing of the previous design is detailed in NASA CR-179487.

  12. Effects of Angle of Rotation on Pool Boiling Heat Transfer of V-shape Tube Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2016-10-15

    The most important facility for the systems is a passive heat exchanger that transfers core decay heat to the cold water in a water storage tank under atmospheric pressure. Since the space for the installation of the heat exchanger is usually limited, developing more efficient heat exchangers is important. In general, pool boiling is generated on the surface of the heat exchanging tube. The major design parameter of the heat exchanger is a tube arrangement. The upper tube is affected by the lower tube and the enhancement of the heat transfer on the upper tube is estimated by the bundle effect. Since heat transfer is related to the conditions of a tube surface, bundle geometries, and a liquid type, lots of studies have been carried out for the combinations of those parameters. An experimental study was performed to investigate the effects of the angle of rotation on pool boiling heat transfer of a V-shape tube bundle. For the test, two smooth stainless steel tubes of 19 mm outside diameter and the water at atmospheric pressure were used. The enhancement of the heat transfer is clearly observed when the angle becomes to 90° where the upper tube has the maximum region of influence by the lower tube. The convective flow and liquid agitation enhance heat transfer while the coalescence of the bubbles deteriorates heat transfer.

  13. Heat and mass transfer of a second grade magnetohydrodynamic fluid over a convectively heated stretching sheet

    Directory of Open Access Journals (Sweden)

    Kalidas Das

    2016-10-01

    Full Text Available The present work is concerned with heat and mass transfer of an electrically conducting second grade MHD fluid past a semi-infinite stretching sheet with convective surface heat flux. The analysis accounts for thermophoresis and thermal radiation. A similarity transformations is used to reduce the governing equations into a dimensionless form. The local similarity equations are derived and solved using Nachtsheim-Swigert shooting iteration technique together with Runge–Kutta sixth order integration scheme. Results for various flow characteristics are presented through graphs and tables delineating the effect of various parameters characterizing the flow. Our analysis explores that the rate of heat transfer enhances with increasing the values of the surface convection parameter. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of thermal radiation parameter.

  14. 46 CFR 153.430 - Heat transfer systems; general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...

  15. Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: 1. Comparison of predictions with measured surface temperature histories

    Energy Technology Data Exchange (ETDEWEB)

    Rozzi, J.C.; Pfefferkorn, F.E.; Shin, Y.C. [Purdue University, (United States). Laser Assisted Materials Processing Laboratory, School of Mechanical Engineering; Incropera, F.P. [University of Notre Dame, (United States). Aerospace and Mechanical Engineering Department

    2000-04-01

    Laser assisted machining (LAM), in which the material is locally heated by an intense laser source prior to material removal, provides an alternative machining process with the potential to yield higher material removal rates, as well as improved control of workpiece properties and geometry, for difficult-to-machine materials such as structural ceramics. To assess the feasibility of the LAM process and to obtain an improved understanding of governing physical phenomena, experiments have been performed to determine the thermal response of a rotating silicon nitride workpiece undergoing heating by a translating CO{sub 2} laser and material removal by a cutting tool. Using a focused laser pyrometer, surface temperature histories were measured to determine the effect of the rotational and translational speeds, the depth of cut, the laser-tool lead distance, and the laser beam diameter and power on thermal conditions. The measurements are in excellent agreement with predictions based on a transient, three-dimensional numerical solution of the heating and material removal processes. The temperature distribution within the unmachined workpiece is most strongly influenced by the laser power and laser-tool lead distance, as well as by the laser/tool translational velocity. A minimum allowable operating temperature in the material removal region corresponds to the YSiAlON glass transition temperature, below which tool fracture may occur. In a companion paper, the numerical model is used to further elucidate thermal conditions associated with laser assisted machining. (author)

  16. Heat transfer at nanometric scales described by extended irreversible thermodynamics

    Directory of Open Access Journals (Sweden)

    Machrafi Hatim

    2016-06-01

    Full Text Available The purpose of this work is to present a study on heat conduction in systems that are composed out of spherical and cylindrical micro- and nanoparticles dispersed in a bulk matrix. Special emphasis is put on the dependence of the effective heat conductivity on various selected parameters as particle size and also its shape, surface specularity and density, including particle-matrix interaction. The heat transfer at nanometric scales is modelled using extended irreversible thermodynamics, whose main feature is to elevate the heat flux vector to the status of independent variable. The model is illustrated by a Copper-Silicium (Cu-Si system. It is shown that all the investigated parameters have a considerable influence, the particle size being especially useful to either increase or decrease the effective thermal conductivity.

  17. Design of horizontal fin array for radiative heat transfer

    Science.gov (United States)

    Ali, Mutari Hajara; Shuaibu, Bilyaminu

    2017-08-01

    This paper presents the analytical and simulation results of optimizing the radiative heat transfer performance of horizontal rectangular fin array heat sink. The fin thickness and inter-fin spacing need to be properly designed to eliminate surface area changes accompanying the creation of fin structures. Analytical expression for this change in area is developed in this work and used in identifying the optimum number of fins and their corresponding inter-fin spacing for a given rectangular space of a radiative heat sink. COMSOL Multiphysics software is used to simulate the structures considered in the above analysis. The performances of the simulated structures as radiative heat sinks are compared with the ones suggested by the developed empirical equation. The results from the two methods agreed with each successfully in the sense that the structures with large numerical radiative power from the simulations are found to also be the optimum structures suggested by the analytical formula derived in this work.

  18. Determination of the heat transfer capability of laser mirrors with cooled cells

    Science.gov (United States)

    Zhernovyi, Yu. V.; Odnorozhenko, I. G.; Potyagailo, D. B.; Romanchuk, Ya. P.

    1992-09-01

    A mathematical model of steady-state heat transfer in a laser mirror involving cooled prismatically shaped cells has been developed. Using cooling systems with hexahedral and tetrahedral cells (by the number of side walls) as examples, the influence of the mirror illumination nonuniformity, reflector thickness, and other parameters on the effective heat-transfer coefficient and thermal head coefficient is investigated; the physical limits for heat-transfer characteristics in the case of an unlimited increase in heat transfer from the surfaces of the cell walls have been determined.

  19. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, Jos; van der Geld, C.W.M.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall

  20. Study made of transfer of heat energy through metal joints in vacuum environment

    Science.gov (United States)

    Elliot, D. H.

    1967-01-01

    Heat energy transfer is concentrated closely around a melted joint and the temperature drop across it decreases rapidly as the bolt and nut are tightened to a minimum torque level. Flat metal surfaces pressed together display a cyclical improvement in heat energy transfer as the interface pressure is increased.

  1. Flow and Convective Heat Transfer of Cylinder Misaligned from Aerodynamic Axis of Cyclone Flow

    Directory of Open Access Journals (Sweden)

    I. L. Leukhin

    2008-01-01

    Full Text Available The paper provides and analyzes results of experimental investigations on physical specific features of hydrodynamics and convective heat transfer of a cyclone flow with a group of round cylinders located symmetrically relative to its aerodynamic axis, calculative equations for average and local heat transfer factors at characteristic sections of cylinder surface.

  2. Numerical investigation of heat transfer enhancement by carbon nano fibers deposited on a flat plate

    NARCIS (Netherlands)

    Pelevic, N.; van der Meer, Theodorus H.

    2013-01-01

    Numerical simulations of flow and heat transfer have been performed for flow over a plate surface covered with carbon nano fibers (CNFs). The CNFs influence on fluid flow and heat transfer has been investigated. Firstly, a stochastic model for CNFs deposition has been explained. Secondly, the

  3. The effect of blowing or suction on laminar free convective heat transfer on flat horizontal plates

    NARCIS (Netherlands)

    Brouwers, Jos

    1993-01-01

    In the present paper laminar free convective heat transfer on flat permeable horizontal plates is investigated. To assess the effect of surface suction or injection on heat transfer a correction factor, provided by the film model (or ldquofilm theoryrdquo), is applied. Comparing the film model

  4. Heat transfer unit and method for prefabricated vessel

    Energy Technology Data Exchange (ETDEWEB)

    Tamburello, David A.; Kesterson, Matthew R; Hardy, Bruce J.

    2017-11-07

    Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one of the plurality of peripheral rods.

  5. Heat transfer and friction characteristics of the microfluidic heat sink with variously-shaped ribs for chip cooling.

    Science.gov (United States)

    Wang, Gui-Lian; Yang, Da-Wei; Wang, Yan; Niu, Di; Zhao, Xiao-Lin; Ding, Gui-Fu

    2015-04-22

    This paper experimentally and numerically investigated the heat transfer and friction characteristics of microfluidic heat sinks with variously-shaped micro-ribs, i.e., rectangular, triangular and semicircular ribs. The micro-ribs were fabricated on the sidewalls of microfluidic channels by a surface-micromachining micro-electro-mechanical system (MEMS) process and used as turbulators to improve the heat transfer rate of the microfluidic heat sink. The results indicate that the utilizing of micro-ribs provides a better heat transfer rate, but also increases the pressure drop penalty for microchannels. Furthermore, the heat transfer and friction characteristics of the microchannels are strongly affected by the rib shape. In comparison, the triangular ribbed microchannel possesses the highest Nusselt number and friction factor among the three rib types.

  6. Investigation and optimization of the depth of flue gas heat recovery in surface heat exchangers

    Science.gov (United States)

    Bespalov, V. V.; Bespalov, V. I.; Melnikov, D. V.

    2017-09-01

    Economic issues associated with designing deep flue gas heat recovery units for natural gas-fired boilers are examined. The governing parameter affecting the performance and cost of surface-type condensing heat recovery heat exchangers is the heat transfer surface area. When firing natural gas, the heat recovery depth depends on the flue gas temperature at the condenser outlet and determines the amount of condensed water vapor. The effect of the outlet flue gas temperature in a heat recovery heat exchanger on the additionally recovered heat power is studied. A correlation has been derived enabling one to determine the best heat recovery depth (or the final cooling temperature) maximizing the anticipated reduced annual profit of a power enterprise from implementation of energy-saving measures. Results of optimization are presented for a surface-type condensing gas-air plate heat recovery heat exchanger for the climatic conditions and the economic situation in Tomsk. The predictions demonstrate that it is economically feasible to design similar heat recovery heat exchangers for a flue gas outlet temperature of 10°C. In this case, the payback period for the investment in the heat recovery heat exchanger will be 1.5 years. The effect of various factors on the optimal outlet flue gas temperature was analyzed. Most climatic, economical, or technological factors have a minor effect on the best outlet temperature, which remains between 5 and 20°C when varying the affecting factors. The derived correlation enables us to preliminary estimate the outlet (final) flue gas temperature that should be used in designing the heat transfer surface of a heat recovery heat exchanger for a gas-fired boiler as applied to the specific climatic conditions.

  7. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  8. Finite element analysis of heat and mass transfer by MHD mixed convection stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface with radiation

    Directory of Open Access Journals (Sweden)

    Macha Madhu

    2016-07-01

    Full Text Available Magnetohydrodynamic mixed convection boundary layer flow of heat and mass transfer stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface in the presence of thermal radiation is investigated numerically. The non-Newtonian nanofluid model incorporates the effects of Brownian motion and thermophoresis. The basic transport equations are made dimensionless first and the coupled non linear differential equations are solved by finite element method. The numerical calculations for velocity, temperature and concentration profiles for different values of the physical parameters presented graphically and discussed. As well as for skin friction coefficient, local Nusselt and Sherwood numbers exhibited and examined.

  9. Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Emanuele Teodori

    2017-06-01

    Full Text Available This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet.

  10. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  11. Heat transfer in rotor/stator cavity

    Science.gov (United States)

    Tuliszka-Sznitko, Ewa; Majchrowski, Wojciech; Kiełczewski, Kamil

    2011-12-01

    In the paper we analyze the results of DNS/LES of the flow with heat transfer in the rotor/stator cavity. The rotor and the outer cylinder are heated. Computations have been performed for wide range of Reynolds numbers and aspect ratios. Computations are based on the efficient pseudo-spectral Chebyshev-Fourier method. In LES we used a Lagrangian dynamic subgrid-scale model of turbulence. Analysis allowed to check the influence of the aspect ratio and Reynolds number on the statistics and the structure of the flow. We analyzed all six Reynolds stress tensor components, turbulent fluctuations, three turbulent heat fluxes and different structural parameters which can be useful for modeling purposes. The distributions of Nusselt numbers obtained for different Re and aspect rations along disks are given. We also investigated influence of thermal Rosssby number as well as distributions of temperature along heated disk on statistics. Computations have shown that turbulence is mostly concentrated in the stator boundary layer with a maximum at the junction between the stator and the outer cylinder. The results are compared to the experimental and numerical data taken from literature.

  12. Porous media heat transfer for injection molding

    Science.gov (United States)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  13. Computational fluid mechanics and heat transfer

    CERN Document Server

    Pletcher, Richard H; Anderson, Dale

    2012-01-01

    ""I have always considered this book the best gift from one generation to the next in computational fluid dynamics. I earnestly recommend this book to graduate students and practicing engineers for the pleasure of learning and a handy reference. The description of the basic concepts and fundamentals is thorough and is crystal clear for understanding. And since 1984, two newer editions have kept abreast to the new, relevant, and fully verified advancements in CFD.""-Joseph J.S. Shang, Wright State University""Computational Fluid Mechanics and Heat Transfer is very well written to be used as a t

  14. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  15. An investigation of heat pipe meniscus heat transfer

    Science.gov (United States)

    Saaski, E. W.; Franklin, J. L.; Mccreight, C. R.

    1978-01-01

    The use of grooved evaporator surfaces in heat pipes has increased in popularity in the past few years primarily due to the reproducibility achievable with grooved walls and the relatively low costs of the threading or extrusion processes involved in their production. The present study combines both analyses and experiments on square groove geometries, with special emphasis on overcoming the limitations of earlier analyses with finite-difference methods and groove-fillet hydrodynamic simplifications. The groove fillet, which has in previous analyses been assumed constant in radius of curvature, is permitted to change in thickness and curvature consistent with hydrodynamics and heat loss from the groove. A model is developed for accurate determination of the effect of constriction resistance on groove performance. The grooved-surface tests to be conducted are briefly described which will provide data under closely controlled operation to allow comparison and verification of the analyses.

  16. The impact of heat transfer on Murphree tray efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kaeser, M.; Pritchard, C.L. [University of Edinburgh (United Kingdom). Institute for Energy Systems

    2006-12-15

    This work features the experimental determination of heat transfer coefficients and Murphree tray efficiencies on a diabatic (heat-transferring) distillation tray. The present investigation, focussing on the impact of heat transfer on sieve tray performance, is part of a long-term project on heat integrated distillation columns (HIDiC). Heat transfer coefficients and tray efficiencies have been determined experimentally for the methanol/water system in a 150mm diameter distillation column. The heat-transferring tray was operated in both heating and cooling modes, with heat fluxes up to 50 and 100kWm{sup -2}, respectively. The experimental data from these diabatic experiments were compared with data obtained from the same column in adiabatic mode and were correlated with the vapour velocity and the heat flux to/from the tray. (author)

  17. A SINDA '85 nodal heat transfer rate calculation user subroutine

    Science.gov (United States)

    Cheston, Derrick J.

    1992-01-01

    This paper describes a subroutine, GETQ, which was developed to compute the heat transfer rates through all conductors attached to a node within a SINDA '85 thermal submodel. The subroutine was written for version 2.3 of SINDA '85. Upon calling GETQ, the user supplies the submodel name and node number which the heat transfer rate computation is desired. The returned heat transfer rate values are broken down into linear, nonlinear, source and combined heat loads.

  18. Heat and mass transfer in building services design

    CERN Document Server

    Moss, Keith

    1998-01-01

    Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *

  19. Method of calculating heat transfer in furnaces of small power

    Directory of Open Access Journals (Sweden)

    Khavanov Pavel

    2016-01-01

    Full Text Available This publication presents the experiences and results of generalization criterion equation of importance in the analysis of the processes of heat transfer and thermal calculations of low-power heat generators cooled combustion chambers. With generalizing depending estimated contribution of radiation and convective heat transfer component in the complex for the combustion chambers of small capacity boilers. Determined qualitative and quantitative dependence of the integrated radiative-convective heat transfer from the main factors working combustion chambers of small volume.

  20. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  1. Thermal radiation heat transfer (3rd revised and enlarged edition)

    Science.gov (United States)

    Siegel, Robert; Howell, John R.

    This book first reviews the overall aspects and background information related to thermal radiation heat transfer and incorporates new general information, advances in analytical and computational techniques, and new reference material. Coverage focuses on radiation from opaque surfaces, radiation interchange between various types of surfaces enclosing a vacuum or transparent medium, and radiation including the effects of partially transmitting media, such as combustion gases, soot, or windows. Boundary conditions and multiple layers are discussed with information on radiation in materials with nonunity refractive indices.

  2. Active chimney effect using heated porous layers: optimum heat transfer

    Science.gov (United States)

    Mehiris, Abdelhak; Ameziani, Djamel-Edine; Rahli, Omar; Bouhadef, Khadija; Bennacer, Rachid

    2017-05-01

    The purpose of the present work is to treat numerically the problem of the steady mixed convection that occurs in a vertical cylinder, opened at both ends and filled with a succession of three fluid saturated porous elements, namely a partially porous duct. The flow conditions fit with the classical Darcy-Brinkman model allowing analysing the flow structure on the overall domain. The induced heat transfer, in terms of local and average Nusselt numbers, is discussed for various controlling parameters as the porous medium permeability, Rayleigh and Reynolds numbers. The efficiency of the considered system is improved by the injection/suction on the porous matrices frontier. The undertaken numerical exploration particularly highlighted two possible types of flows, with and without fluid recirculation, which principally depend on the mixed convection regime. Thus, it is especially shown that recirculation zones appear in some domain areas under specific conditions, obvious by a negative central velocity and a prevalence of the natural convection effects, i.e., turnoff flow swirls. These latter are more accentuated in the areas close to the porous obstacles and for weak permeability. Furthermore, when fluid injection or suction is considered, the heat transfer increases under suction and reduces under injection. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  3. Heat and mass transfer during baking: product quality aspects

    NARCIS (Netherlands)

    Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.

    2005-01-01

    Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in

  4. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  5. Transient critical heat flux and blowdown heat-transfer studies

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  6. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  7. Heat Transfer Boundary Conditions in the RELAP5-3D Code

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2008-05-01

    The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.

  8. Boiling local heat transfer enhancement in minichannels using nanofluids

    Science.gov (United States)

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  9. Boiling local heat transfer enhancement in minichannels using nanofluids

    Science.gov (United States)

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  10. Heat transfers in porous media. Conduction, convection, radiant transfer; Transferts de chaleur dans les milieux poreux. Conduction, convection, rayonnement

    Energy Technology Data Exchange (ETDEWEB)

    Bories, S.; Mojtabi, A.; Prat, M.; Quintard, M. [Institut de Mecanique des Fluides de Toulouse, 31 (France)

    2008-10-15

    Multiple physico-chemical and transport phenomena take place in porous media. The study of these phenomena requires the knowledge of fluid storage, transfer and mechanical properties of these media. Like all polyphasic heterogenous systems, these properties depend on the morphology of the matrix and of the phenomena interacting in the different phases. This makes the heat transfers in porous media a particularly huge field of researches. This article makes a synthesis of these researches. Content: 1 - classification and characterization of porous media; 2 - modeling of transfer phenomena; 3 - heat transfer by conduction: concept of equivalent thermal conductivity (ETC), modeling of conduction heat transfer, ETC determination; 4 - heat transfer by convection: modeling of convection heat transfer, natural convection (in confined media, along surfaces or impermeable bodies immersed in a saturated porous medium), forced and mixed convection; 5 - radiant heat transfer: energy status equation, approximate solutions of the radiant transfer equation, use of the approximate solutions: case of fibrous insulating materials; 6 - conclusion. (J.S.)

  11. Heat transfer assembly for a fluorescent lamp and fixture

    Science.gov (United States)

    Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  12. Heat transfer assembly for a fluorescent lamp and fixture

    Science.gov (United States)

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  13. Convective heat transfer in porous media

    Science.gov (United States)

    Cheng, P.

    Recent emerging technologies on the extraction of geothermal energy, the design of insulation systems for energy conservation, the use of aquifers for hot-water storage, the disposal of nuclear wastes in sub-seabeds, the enhanced recovery of oils by thermal methods, and the design of catalyst-bed reactors have demanded an improved understanding of heat transfer mechanisms in fluid-filled porous media. Experiments have been conducted to investigate the onset of free convection in rectangular and cylindrical enclosures filled with porous media and heated from below. The Nusselt numbers determined from these experiments during steady conditions are correlated in terms of the Rayleigh number. The data for free convection in rectangular geometries show considerable scattering among investigators using different porous media and fluids. Recently, some data has been obtained for free convect on in water-filled glass beads adjacent to a heated vertical flat plate, a horizontal cylinder and between vertical concentric cylinders. The data obtained at low Rayleigh numbers is found to be in good agreement with theoretical predictions based on Darcy's law.

  14. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    Science.gov (United States)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 spacer ribs, or other surfaces.

  15. Heat transfer and fluid friction in bundles of twisted tubes

    Science.gov (United States)

    Dzyubenko, B. V.; Dreitser, G. A.

    1986-06-01

    The results of heat-transfer and friction studies in bundles of twisted tubes and rods with spiral wire-wrap spacers are analyzed, and recommendations are given for calculating the heat-transfer coefficient in heat exchangers using twisted tubes.

  16. Measurement of heat transfer coefficient using termoanemometry methods

    Directory of Open Access Journals (Sweden)

    Dančová P.

    2014-03-01

    Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  17. Boiling Heat-Transfer Processes and Their Application in the Cooling of High Heat Flux Devices

    Science.gov (United States)

    1993-06-01

    presented previously in Eq. (8). Bjorge , et al. (Ref. 170) and Stephan and Auracher (Ref. 171) later presented variations of the superposition approach...ofHeat Transfer, Vol. 90, May 1968, pp. 239-247. 170. Bjorge , R. W., Hall, G. R., and Rohsenow, W. M. "Correlation of Forced Convection Boiling Heat... Communications on Heat Mass Transfer, Vol. 18, No.5, September-October 1991, pp. 659-667. 383. Boyd, R. D., Sr. "Critical Heat Flux and Heat Transfer

  18. Influence of the nucleation surface inclination on heat transfers and on the growth dynamics of a steam bubble; Influence de l'inclinaison de la surface de nucleation sur les transferts de chaleur et la dynamique de croissance d'une bulle de vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Barthes, M.; Reynard, Ch.; Santini, R.; Tadrist, L. [Institut Universitaire des Systemes Thermiques Industriels - CNRS UMR 6595, 13 - Marseille (France)

    2006-07-01

    The influence of the inclination of the nucleation surface on heat and mass transfers and on the growth dynamics of a single steam bubble is experimentally studied. The bubble is created beneath a wall with an imposed heating flux. The evolution of geometrical bubble parameters and of the frequency of emission with respect to the inclination angle are presented. The total heat flux measurements are compared to the evaporation fluxes determined by image processing. Contrary to the evaporation flux, the total flux is conditioned by the inclination and thus is correlated to the frequency of bubbles emission. (J.S.)

  19. Influence of structural design condensing part of NH3 heat pipe to heat transfer

    Directory of Open Access Journals (Sweden)

    Vantúch Martin

    2014-03-01

    Full Text Available The article describes influence design heat exchangers to efficiency condensation liquid ammonia in the gravitational heat pipe. Analyse adverse factors in the operation and flow of ammonia in heat pipe. Also describes heat transfer characteristics of heat pipe in low-potential geothermal heat transport simulations.

  20. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  1. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    Science.gov (United States)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  2. Numerical simulation of heat transfer at unsteady heat generation in falling wavy liquid films

    Science.gov (United States)

    Chernyavskiy, A. N.; Pavlenko, A. N.

    2017-11-01

    The mathematical model which allows the calculation of the wave surface profile as well as velocity and temperature fields has been presented. The numerical simulation of heat transfer in falling wavy films of liquid nitrogen has been performed. The dependencies of boiling expectation time and total local evaporation time on heat flux density for different inlet Reynolds numbers have been calculated. The regime map which describes the different mechanisms of film decay was obtained by summing up the simulation results. The results of numerical simulation are in satisfactory agreement with the experimental data.

  3. Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator

    National Research Council Canada - National Science Library

    Tomasz Muszyński; Sławomir Marcin Kozieł

    2016-01-01

    Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator...

  4. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  5. Nonequilibrium Fluctuational Quantum Electrodynamics: Heat Radiation, Heat Transfer, and Force

    Science.gov (United States)

    Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran; Krüger, Matthias

    2017-03-01

    Quantum-thermal fluctuations of electromagnetic waves are the cornerstone of quantum statistics and inherent to phenomena such as thermal radiation and van der Waals forces. Although the principles are found in elementary texts, recent experimental and technological advances make it necessary to come to terms with counterintuitive consequences at short scales—the so-called near-field regime. We focus on three manifestations: (a) The Stefan-Boltzmann law describes radiation from macroscopic bodies but fails for small objects. (b) The heat transfer between two bodies at close proximity is dominated by evanescent waves and can be orders of magnitude larger than the classical (propagating) contribution. (c) Casimir forces, dominant at submicron separation, are not sufficiently explored for objects at different temperatures (at least experimentally). We explore these phenomena using fluctuational quantum electrodynamics (QED), introduced by Rytov in the 1950s, combined with scattering formalisms. This enables investigation of different material properties, shapes, separations, and arrangements.

  6. Kissing heat transfer between the wraps of a scroll pump

    Energy Technology Data Exchange (ETDEWEB)

    Sunder, S.; Smith, J.L. Jr. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Mechanical Engineering

    1996-12-31

    Conductances associated with the various modes of internal heat transfer in a scroll pump are estimated. Heat transfer through transient contact between scroll wraps (kissing heat transfer) is found to be a dominant mode of heat transfer between discharge and suction sides of the pump. Such heat transfer is characterized by significant steady-state heat fluxes across the wraps of a scroll pump. Experiments on a specially instrumented scroll compressor provide evidence of significant heat fluxes across the wraps of the scroll pump. Estimation of the contact angle between wraps based on Hertzian stresses, as well as an oil film demonstrate that kissing heat transfer is a plausible mechanism of heat transfer in these pumps. Contact angles inferred from experimental data are also shown to be of the same order of magnitude as those predicted by Hertzian stress calculations. It is shown that the heat fluxes observed in the kissing heat transfer experiment are too large to be explained by convection between gas and wall in the scroll pump.

  7. Heat transfer modeling of double-side arc welding

    CERN Document Server

    Sun Jun Sheng; Zhang Yan Ming

    2002-01-01

    If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones

  8. The surface heat budget of Hudson Bay

    National Research Council Canada - National Science Library

    Danielson, E.W

    1969-01-01

    ... which information the heat budget calculations are based. These data include surface air and sea temperatures, ice concentration, cloudiness, wind, atmospheric moisture, ice and water movement, and heat storage amounts within Hudson Bay waters...

  9. Heat transfer in heated industrial premises with using radiant heating system

    Directory of Open Access Journals (Sweden)

    Nagornova Tatiana A.

    2017-01-01

    Full Text Available The results of mathematical modeling of heat transfer processes in a closed air volume surrounded by enclosing constructions, heated by supplying energy to the upper contour of gas infrared radiators are represented. Regimes of turbulent natural conjugate convection in the region bounded by solid walls are investigated. Two-dimensional nonstationary problem is solved in the framework of the Navier -Stokes equations for gas and thermal conductivity for solid walls. Nonstationary processes of heat propagation in course of time and essential heterogeneity of temperature fields and heat fluxes are established.

  10. Heat and mass transfer in flames

    Science.gov (United States)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  11. HEAT TRANSFER AND TRITIUM PRODUCING SYSTEM

    Science.gov (United States)

    Johnson, E.F.

    1962-06-01

    This invention related to a circulating lithium-containing blanket system in a neution source hav'ing a magnetic field associated therewith. The blanket serves simultaneously and efficiently as a heat transfer mediunm and as a source of tritium. The blanket is composed of a lithium-6-enriched fused salt selected from the group consisting of lithium nitrite, lithium nitrate, a mixture of said salts, a mixture of each of said salts with lithium oxide, and a mixture of said salts with each other and with lithium oxide. The moderator, which is contained within the blanket in a separate conduit, can be water. A stellarator is one of the neutron sources which can be used in this invention. (AEC)

  12. Submersible pumping system with heat transfer mechanism

    Science.gov (United States)

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  13. Heat transfer analysis of cylindrical anaerobic reactors with different sizes: a heat transfer model.

    Science.gov (United States)

    Liu, Jiawei; Zhou, Xingqiu; Wu, Jiangdong; Gao, Wen; Qian, Xu

    2017-10-01

    The temperature is the essential factor that influences the efficiency of anaerobic reactors. During the operation of the anaerobic reactor, the fluctuations of ambient temperature can cause a change in the internal temperature of the reactor. Therefore, insulation and heating measures are often used to maintain anaerobic reactor's internal temperature. In this paper, a simplified heat transfer model was developed to study heat transfer between cylindrical anaerobic reactors and their surroundings. Three cylindrical reactors of different sizes were studied, and the internal relations between ambient temperature, thickness of insulation, and temperature fluctuations of the reactors were obtained at different reactor sizes. The model was calibrated by a sensitivity analysis, and the calibrated model was well able to predict reactor temperature. The Nash-Sutcliffe model efficiency coefficient was used to assess the predictive power of heat transfer models. The Nash coefficients of the three reactors were 0.76, 0.60, and 0.45, respectively. The model can provide reference for the thermal insulation design of cylindrical anaerobic reactors.

  14. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  15. Transient Heat Transfer Properties in a Pulse Detonation Combustor

    Science.gov (United States)

    2011-03-01

    Applications,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, March 2010. [7] F.P. Incropera , and D.P. Dewitt, Fundamentals of Heat and Mass Transfer ...cooling water mass flow rates through each individual cooling jacket was used to determine the average heat transfer rate in Watts. The maximum...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Transient Heat Transfer Properties in a Pulse Detonation Combustor 6. AUTHOR(S) Dion Glenn

  16. CarbAl Heat Transfer Material

    Science.gov (United States)

    Fink, Richard

    2015-01-01

    The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.

  17. Heat Transfer of DE-Series MOSFETs

    Directory of Open Access Journals (Sweden)

    Arthur James Swart

    2011-01-01

    Full Text Available MOSFET devices have developed significantly over the past few years to become the number one choice for high-power applications in power electronics and electronic communication. Commercially available devices (such as the IXYS RF manufactured now operate into the VHF range with output RF powers of up to 300 W. They are optimized for linear operation and suitable for broadcast and communication applications. This paper presents the heat transfer out of an IXZ210N50L MOSFET which is sandwiched between two identical heatsinks. The results reveal a linear decrease in heat flowing away from the top of the MOSFET when compared to the bottom of the MOSFET for each step increase of drain current. Two graphs (representing the top and bottom heatsinks connected to the MOSFET device contrast the temperature rise for the Bisink technique when the drain current through the IXZ210N50L MOSFET is kept constant at 5 A. The Bisink technique has the advantages of lower on-state resistances and higher output powers when compared to the traditional mounting using only one heatsink, resulting in improved reliability and performance. Results further reveal that the ambient temperature must be measured in the vicinity of the heatsink.

  18. Optimal design of a bar with an attached mass for maximizing the heat transfer

    Directory of Open Access Journals (Sweden)

    Boris P. Belinskiy

    2012-10-01

    Full Text Available We maximize, with respect to the cross sectional area, the rate of heat transfer through a bar of given mass. The bar serves as an extended surface to enhance the heat transfer surface of a larger heated known mass to which the bar is attached. In this paper we neglect heat transfer from the sides of the bar and consider only conduction through its length. The rate of cooling is defined by the first eigenvalue of the corresponding Sturm-Liouville problem. We establish existence of an optimal design via rearrangement techniques. The necessary conditions of optimality admit a unique optimal design. We compare the rate of heat transfer for that bar with the rate for the bar of the same mass but of a constant cross-section area.

  19. Personalized recommendation based on heat bidirectional transfer

    Science.gov (United States)

    Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

    2016-02-01

    Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

  20. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in

  1. An introduction to heat transfer principles and calculations

    CERN Document Server

    Ede, A J; Ower, E

    1967-01-01

    An Introduction to Heat Transfer Principles and Calculations is an introductory text to the principles and calculations of heat transfer. The theory underlying heat transfer is described, and the principal results and formulae are presented. Available techniques for obtaining rapid, approximate solutions to complicated problems are also considered. This book is comprised of 12 chapters and begins with a brief account of some of the concepts, methods, nomenclature, and other relevant information about heat transfer. The reader is then introduced to radiation, conduction, convection, and boiling

  2. Influence of wall properties on peristaltic transport with heat transfer

    Science.gov (United States)

    Radhakrishnamacharya, G.; Srinivasulu, Ch.

    2007-07-01

    The effect of elasticity of the flexible walls on peristaltic transport of an incompressible viscous fluid, with heat transfer, in a two dimensional uniform channel has been investigated under long wave length approximation. The perturbation solution has been obtained in terms of wall slope parameter and closed form expressions have been derived for velocity, temperature and heat transfer. The effects of elastic tension, damping and mass characterizing parameters on temperature and heat transfer have been studied. It is found that heat transfer increases with elastic tension and mass characterizing parameters. To cite this article: G. Radhakrishnamacharya, Ch. Srinivasulu, C. R. Mecanique 335 (2007).

  3. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)

    1994-11-29

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  4. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, B.A.; Zawacki, T.S.; Marsala, J.

    1994-11-29

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. 13 figures.

  5. HEAT AND MASS TRANSFER. VOLUME 2, 1968 (COLLECTION OF ARTICLES),

    Science.gov (United States)

    are quite thoroughly investigated. Also treated are such problems as internal heat and mass transfer during filtration of gases through a porous...boundary layer of a multi-component gas, critical heat fluxes during the boiling of organic heat carriers, the intensification of heat and mass ... transfer , entropy during the melting of polymers, the thermodynamics of plasma flows, process of sublimation by various methods of energy supply, and others

  6. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, B.A.; Zawacki, T.S.

    1996-12-03

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium. 7 figs.

  7. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-12-03

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  8. Buoyancy effect on heat transfer in rotating smooth square U-duct at high rotation number

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-09-01

    Full Text Available The buoyancy effect on heat transfer in a rotating, two-pass, square channel is experimentally investigated in current work. The classical copper plate technique is performed to measure the regional averaged heat transfer coefficients. In order to perform a fundamental research, all turbulators are removed away. Two approaches of altering Buoyancy numbers are selected: varying rotation number from 0 to 2.08 at Reynolds number ranges of 10000 to 70000, and varying inlet density ratio from 0.07 to 0.16 at Reynolds number of 10000. And thus, Buoyancy numbers range from 0 to 12.9 for both cases. According to the experimental results, the relationships between heat transfer and Buoyancy numbers are in accord with those obtained under different rotation numbers. For both leading and trailing surface, a critical Buoyancy number exists for each X/D location. Before the critical point, the effect of Buoyancy number on heat transfer is limited; but after that, the Nusselt number ratios show different increase rate. Given the same rotation number, higher wall temperature ratios with its corresponding higher Buoyancy numbers substantially enhance heat transfer on both passages. And the critical exceed-point that heat transfer from trailing surface higher than leading surface happens at the same Buoyancy number for different wall temperature ratios in the second passage. Thus, the stronger buoyancy effect promotes heat transfer enhancement at high rotation number condition.

  9. Thermal performance analysis for heat exchangers having a variable overall heat transfer coefficient

    Science.gov (United States)

    Conklin, J. C.; Granryd, E.

    The classic, conventional analysis for the thermal performance of heat exchangers is based on three assumptions: constant fluid flow rate, constant specific heat fluids, and constant overall heat transfer coefficient. Our analysis describes a general approach for analyzing the thermal performance of heat exchangers in which the overall heat transfer coefficient varies as a function of enthalpy, with the other two basic assumptions of constant mass flow rates and constant specific heats unchanged. Many heat exchangers have an overall heat transfer coefficient that is not constant. The conventional heat exchanger thermal performance analysis is correct as long as a true, area-weighted mean value is used. In many applications, however, fluids undergo a change in phase, and the heat transfer coefficient is a function of the local quality or enthalpy; hence, the true, area-weighted, mean heat transfer coefficient will be a function of the heat flux distribution. Examples are presented that illustrate the variation in overall heat transfer coefficient for an evaporation process. We present a general method for computing a true, area-weighted mean overall heat transfer coefficient that permits use of a local overall heat transfer coefficient that is an arbitrary function of enthalpy. This method allows a simple yet accurate analysis of the effects of a variable overall heat transfer coefficient to be made without the use of a large mainframe computer. We then investigate: (1) linear variation of local overall heat transfer coefficient with respect to enthalpy; and (2) two heat transfer correlations applicable to flow-boiling inside a tube.

  10. Development of Empirical Correlation to Calculate Pool Boiling Heat Transfer of Tandem Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2015-10-15

    The heat exchanging tubes are in vertical alignment. For the cases, the upper tube is affected by the lower tube. Since heat transfer is closely related to the conditions of tube surface, bundle geometry, and liquid, lots of studies have been carried out for the several decades to investigate the combined effects of those factors on pool boiling heat transfer. One of the most important parameters in the analysis of a tube array is the pitch ( P ) between tubes. Many researchers have been investigated its effect on heat transfer enhancement for the tube bundles and the tandem tubes. The effect of a tube array on heat transfer enhancement was also studied for application to the flooded evaporators. Cornwell and Schuller studied the sliding bubbles by high speed photography to account the enhancement of heat transfer observed at the upper tubes of a bundle. The study by Memory et al. shows the effects of the enhanced surface and oil adds to the heat transfer of tube bundles. They identified that, for the structured and porous bundles, oil addition leads to a steady decrease in performance. The flow boiling of n-pentane across a horizontal tube bundle was investigated experimentally by Roser et al. They identified that convective evaporation played a significant part of the total heat transfer. The fouling of the tube bundle under pool boiling was also studied by Malayeri et al. They identified that the mechanisms of fouling on the middle and top heater substantially differ from those at the bottom heater.

  11. An Optical-Based Aggregate Approach to Measuring Condensation Heat Transfer

    Science.gov (United States)

    Stevens, Kimberly A.; Crockett, Julie; Maynes, Daniel R.; Iverson, Brian D.

    2017-11-01

    Condensation heat transfer is significant in a variety of industries including desalination, energy conversion, atmospheric water harvesting, and electronics cooling. Recently, superhydrophobic surfaces have gained attention as a possible condensing surface due to their potential for high droplet mobility and coalescence-induced, out-of-plane jumping of the condensate droplets, both of which contribute to higher rates of condensate removal and thus higher thermal transport rates. Several studies involving condensation on superhydrophobic surfaces have quantified metrics which indirectly indicate the relative rate of heat transfer on a surface, such as maximum droplet diameter, drop size distribution, and individual droplet growth rates. In this study, an optical-based method is used to monitor growth and departure of individual condensate drops for the entire viewing area to obtain full-field, aggregate heat transfer measurements. This approach offers several advantages relative to traditional heat transfer measurement methods such as heat flux sensors and thermocouples, including the ability to provide a link between macroscopic heat transfer rates and the more indirect measures of heat transfer traditionally reported in the literature.

  12. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept.

  13. Heat transfer augmentation in double pipe heat exchanger using mechanical turbulators

    Science.gov (United States)

    Kamboj, Kushal; Singh, Gurjeet; Sharma, Rohit; Panchal, Dilbagh; Hira, Jaspreet

    2017-02-01

    The work presented here focuses on heat transfer augmentation by means of divergent-convergent spring turbulator (the enhancement device). Aim of the present work is to find such an optimum pitch at which the augmentation in heat transfer is maximum and the amount of power consumption is minimum, so that an economic design can be created with maximum thermal efficiency. So, the concept of pitch variation is introduced, which is defined as the horizontal distance between two consecutive turbulators. It describes that, the lesser is the pitch the more number of turbulators that can be inserted in inner pipe of double pipe heat exchanger, hence more will be the friction factor. This physics increases convective ability of the heat transfer process from the surface of inner pipe. There is a certain limit to which a pitch can be decreased, lesser the pitch the more the pressure drop and friction factor and hence the more will be the pumping power requirement to maintain a desired mass flow rate of hot water. Analysis of thermal factors such as Nusselts number, friction factor, with different pitches of divergent convergent spring turbulators of circular cross-section 15, 10, and 5 cm at Reynolds's number ranging between 9000 < Re < 40,000 is done graphically.

  14. Double tube heat exchanger with novel enhancement: part II—single phase convective heat transfer

    Science.gov (United States)

    Tiruselvam, R.; Chin, W. M.; Raghavan, Vijay R.

    2012-08-01

    The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction.

  15. Turbulent Heat Transfer Behavior of Nanofluid in a Circular Tube Heated under Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Shuichi Torii

    2010-01-01

    Full Text Available The aim of the present study is to disclose the forced convective heat transport phenomenon of nanofluids inside a horizontal circular tube subject to a constant and uniform heat flux at the wall. Consideration is given to the effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region. It is found that (i heat transfer enhancement is caused by suspending nanoparticles and becomes more pronounced with the increase of the particle volume fraction, (ii its augmentation is affected by three different nanofluids employed here, and (iii the presence of particles produces adverse effects on viscosity and pressure loss that also increases with the particle volume fraction.

  16. Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Natural Convection Condition in Tank

    Directory of Open Access Journals (Sweden)

    Qiming Men

    2014-01-01

    Full Text Available Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX, experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.

  17. Heat transfer in a smooth-walled reciprocating anti-gravity open thermosyphon

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.W. [Thermal Fluids Laboratory, National Kaohsiung Institute of Marine Technology, Post code: 811, ROC, Kaohsiung, Taiwan (China); Su, L.M. [Department of Electrical Engineering, Tung Fang Institute of Technology, ROC, Taiwan (China); Morris, W.D. [Department of Mechanical Engineering, University of Wales Swansea, Singleton Park, SA28PP, Swansea (United Kingdom); Liou, T.M. [Department of Power Mechanical Engineering, National Tsing Hua University, ROC, Hsinchu, Taiwan (China)

    2003-12-01

    This paper describes an experimental investigation of heat transfer in a smooth-walled reciprocating anti-gravity open thermosyphon with relevance to the 'shaker' cooling system for the pistons of marine propulsive diesel engines. A selection of experimental results illustrates the interactive effects of inertial, reciprocating and buoyancy forces on heat transfer. It is demonstrated that the gravitational and reciprocating buoyancy effects, respectively, improve heat transfer in the static and reciprocating anti-gravity open thermosyphon. The individual pulsating force effect impairs heat transfer in the axial region with 5 hydraulic diameter length measured from the entrance of thermosyphon (region I). In the vicinity of sealed end of reciprocating thermosyphon with one hydraulic diameter from the sealed surface (region II), the individual pulsating force effect improves heat transfer at low pulsating number range, over which range a subsequent heat transfer reduction in this axial region is followed. The synergistic effects of inertial force, reciprocating force and buoyancy interaction in the reciprocating anti-gravity open thermosyphon could, respectively, impede or improve the regional heat transfers in the axial regions I and II from the static references of zero-buoyancy. A set of empirical correlations, which is physically consistent, was developed that permits the individual and interactive effects of inertial, reciprocating and buoyancy forces on heat transfer to be evaluated. (authors)

  18. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  19. Numerical simulation of heat transfer in a micro channel heat sinks using nanofluids

    Science.gov (United States)

    Farsad, E.; Abbasi, S. P.; Zabihi, M. S.; Sabbaghzadeh, J.

    2011-04-01

    In this study, a numerical simulation of copper microchannel heatsink (MCHS) using nanofluids as coolants is presented. The nanofluid is a mixture of pure water and nanoscale metallic or nonmetallic particles with various volume fractions. Also, the effects of various volume fractions, volumetric flow rate and various materials of nanoparticles on the performance of MCHS have been developed. A three-dimensional computational fluid dynamics model was developed using the commercial software package FLUENT, to investigate the conjugate fluid flow and heat transfer phenomena in micro channel heatsinks. The results show that the cooling performance of a microchannel heat sink with water based nanofluid containing Al2O3 (vol 8%) is enhanced by about 4.5% compared with micro channel heatsink with pure water. Nanofluids reduce both the thermal resistance and the temperature difference between the top (heated) surface of the MCHS and inlet nanofluid compared with that pure water. The cooling performance of a micro channel heat sink with metal nanofluids improves compared with that of a micro channel heat sink with oxide metal nanofluids because the thermal conductivity of metal nanofluid is higher than oxide metal nanofluids. Micro channel heat sinks with nanofluids are expected to be good candidates as the next generation cooling devices for removing ultra high heat flux.

  20. Analysis of heat transfer under high heat flux nucleate boiling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Dinh, N. [3145 Burlington Laboratories, Raleigh, NC (United States)

    2016-07-15

    Analysis was performed for a heater infrared thermometric imaging temperature data obtained from high heat flux pool boiling and liquid film boiling experiments BETA. With the OpenFOAM solver, heat flux distribution towards the coolant was obtained by solving transient heat conduction of heater substrate given the heater surface temperature data as boundary condition. The so-obtained heat flux data was used to validate them against the state-of-art wall boiling model developed by D. R. Shaver (2015) with the assumption of micro-layer hydrodynamics. Good agreement was found between the model prediction and data for conditions away from the critical heat flux (CHF). However, the data indicate a different heat transfer pattern under CHF, which is not captured by the current model. Experimental data strengthen the notion of burnout caused by the irreversible hot spot due to failure of rewetting. The observation forms a basis for a detailed modeling of micro-layer hydrodynamics under high heat flux.

  1. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  2. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere]|[Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author) 197 refs.

  3. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs.

  4. Numerical Modeling of Transient Heat Transfer in Longitudinal Fin

    Directory of Open Access Journals (Sweden)

    Farshad Panahizadeh

    2017-11-01

    Full Text Available The main objective of the present numerical study is to investigate the transient heat transfer in one kind of all-purpose longitudinal fin with the triangular profile. The lateral surface of the concerned fin and the tip of it are subjected to general situations included heat flux at the base and insulation on the tip. For this study developed a one dimensional in house code written by Fortran 90 programming language by using finite difference method with an implicit scheme in unsteady state condition. Generally, the result of this study in time variation state after 700 seconds is steady. The results also show the fin efficiency by increasing the time of study decreases due to a reduction in the total heat transfer which is happened in the fin. The grid independence study shows that for the number of nodes greater than 20 the result will not be changed and same as before. Finally, the result of Fortran code verified by commercial CFD code which relies on finite difference method and it was shown have a consistent agreement

  5. THE ELECTRONIC COURSE OF HEAT AND MASS TRANSFER

    Directory of Open Access Journals (Sweden)

    Alexander P. Solodov

    2013-01-01

    Full Text Available The Electronic course of heat and mass transfer in power engineering is presented containing the full Electronic book as the structured hypertext document, the full set of Mathcad-documents with the whole set of educative computer models of heat and mass transfer, the computer labs, and selected educational presentations. 

  6. Computational heat transfer analysis and combined ANN–GA ...

    Indian Academy of Sciences (India)

    In the present work, the heat transfer characteristics of hollow cylindrical pin fin array on a vertical rectangular base plate is studied using commercial CFD code ... The analysis using the numerical simulation and neural network shows that the hollow fins provide an increased heat transfer and a weight reduction of about ...

  7. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...

  8. Heat transfer and thermal stress analysis in grooved tubes

    Indian Academy of Sciences (India)

    The maximum thermal stress ratio positions inside the tube have been indicated as MX for all investigated cases. In the light of the thermal stress values, various designs can be applied to reduce thermal stress in grooved tubes. Keywords. Heat transfer; thermal stress; grooved tubes. 1. Introduction. Heat transfer in pipe flow ...

  9. On local fractional Volterra integral equations in fractal heat transfer

    Directory of Open Access Journals (Sweden)

    Wu Zhong-Hua

    2016-01-01

    Full Text Available In the article, the fractal heat-transfer models are described by the local fractional integral equations. The local fractional linear and nonlinear Volterra integral equations are employed to present the heat transfer problems in fractal media. The local fractional integral equations are derived from the Fourier law in fractal media.

  10. Improving Heat Transfer Performance of Printed Circuit Boards

    Science.gov (United States)

    Schatzel, Donald V.

    2009-01-01

    This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

  11. Analytical Evalution of Heat Transfer Conductivity with Variable Properties

    DEFF Research Database (Denmark)

    Rahimi, Masoume; Hosseini, Mohammad Javad; Barari, Amin

    2011-01-01

    The homotopy analysis method (HAM) as a new technique which is powerful and easy-to-use, is applied to solve heat transfer problems. In this paper, we use HAM for heat transfer conductivity equation with variable properties which may contain highly nonlinear terms. The obtained results are also...

  12. Design, Construction, and Qualification of a Microscale Heater Array for Use in Boiling Heat Transfer

    Science.gov (United States)

    Rule, T. D.; Kim, J.; Kalkur, T. S.

    1998-01-01

    Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall temperature and heat flux near the wall would add to the database of knowledge which is necessary to understand the mechanisms of nucleate boiling. A heater array has been developed which contains 96 heater elements within a 2.5 mm square area. The temperature of each heater element is held constant by an electronic control system similar to a hot-wire anemometer. The voltage that is being applied to each heater element can be measured and digitized using a high-speed A/D converter, and this digital information can be compiled into a series of heat-flux maps. Information for up to 10,000 heat flux maps can be obtained each second. The heater control system, the A/D system and the heater array construction are described in detail. Results are presented which show that this is an effective method of measuring the local heat flux during nucleate and transition boiling. Heat flux maps are obtained for pool boiling in FC-72 on a horizontal surface. Local heat flux variations are shown to be three to six times larger than variations in the spatially averaged heat flux.

  13. Heat transfer in open-cell metal foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, T.J.; Ashby, M.F. [Univ. of Cambridge (United Kingdom). Dept. of Engineering; Stone, H.A. [Harvard Univ., Cambridge, MA (United States). Div. of Engineering and Applied Sciences

    1998-06-12

    The paper explores the use of open-celled metal foams as compact heat exchangers, exploiting convective cooling. An analytical model is developed for model foams with simple cubic unit cells consisting of heated slender cylinders, based on existing heat transfer data on convective crossflow through cylinder banks. A foam-filled channel having constant wall temperatures is analyzed to obtain the temperature distribution inside the channel as a function of foam density, cell size and other pertinent heat transfer parameters. Two characteristic length scales of importance to the problem are discussed: the minimum channel length required for heating the fluid to its goal temperature and the thermal entry length beyond which the transfer of heat between fluid and channel wall assumes a constant coefficient. The overall heat transfer coefficient of the heat exchanging system is calculated, and the pressure drop experienced by the fluid flow obtained. The present model perhaps oversimplifies the calculation of transport in a metal foam consisting of non-circular, possibly sharp-edged ligaments, and so likely leads to overestimates. Nevertheless the trends of heat transfer predicted by the model (for dependence on foam relative density, duct geometries, fluid velocity, etc.) are expected to be valid for a wide range of open-cell foams and are in reasonable agreement with available experimental data on aluminum foams (Bastawros and Evans, Proceedings Symposium Application of Heat Transfer in Microelectronics Packaging, IMECE, Dallas, TX, 1997).

  14. Heat transfer through metal-graphene interfaces

    Directory of Open Access Journals (Sweden)

    Tomasz Wejrzanowski

    2015-07-01

    Full Text Available The paper presents the results of Molecular Dynamics (MD studies of the thermal properties of Cu and Ag composites with single- (SLG and multi-layered (MLG graphene. We show that the thermal boundary conductance (TBC of the metal-graphene interface drops significantly for the systems containing more than one layer of graphene. It is also concluded that the TBC for a single graphene layer is significantly higher for silver than for copper. For both systems, however, we found that the interface is a barrier for heat transfer with the thermal conductance being at least two orders of magnitude lower than for metal. Moreover, we found that the TBC decreases with an increase in the number of graphene layers. The interfacial effect becomes negligible for a thickness bigger than two graphene layers. Above this thickness the thermal conductivity of the region of multilayered graphene is not influenced by the interface and becomes similar to that of graphite. The results are compared with available experimental data and discussed in terms of the rules for designing composites of a high thermal conductivity.

  15. Fem Formulation of Coupled Partial Differential Equations for Heat Transfer

    Science.gov (United States)

    Ameer Ahamad, N.; Soudagar, Manzoor Elahi M.; Kamangar, Sarfaraz; Anjum Badruddin, Irfan

    2017-08-01

    Heat Transfer in any field plays an important role for transfer of energy from one region to another region. The heat transfer in porous medium can be simulated with the help of two partial differential equations. These equations need an alternate and relatively easy method due to complexity of the phenomenon involved. This article is dedicated to discuss the finite element formulation of heat transfer in porous medium in Cartesian coordinates. A triangular element is considered to discretize the governing partial differential equations and matrix equations are developed for 3 nodes of element. Iterative approach is used for the two sets of matrix equations involved representing two partial differential equations.

  16. Second Law Analysis in Convective Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    A. Ben Brahim

    2006-02-01

    Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.

  17. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

    Science.gov (United States)

    Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; hide

    2012-01-01

    This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

  18. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  19. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

    Science.gov (United States)

    Bigham, Sajjad; Fazeli, Abdolreza; Moghaddam, Saeed

    2017-03-01

    Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.

  20. Correlation for Evaporation Heat Transfer of Pure Refrigerant Inside an Internally Grooved Horizontal Tube

    Science.gov (United States)

    Kido, Osao; Uehara, Haruo

    The empirical correlation to predict the evaporation heat transfer coefficient inside an internally grooved horizontal tube was proposed using previous experimental data studied by other researchers. Parameters in the correlation were selected by refering to the correlation for rectangular channnel. The correlation for rectangular channnel was proposed by taking weighted average of heat transfer coefficients on upper and lower grooved surfaces inside a rectangular channnel to applicate to the internally grooved tube. Effects of parameters in the correlation for grooved tube are corresponding to those in the correlation for rectangular chaannel, and increasing the modified bond number, the heat transfer coefficient decreases. For rectangular channel, the maximum heat transfer coefficient is obtained on the grooved surface with 2 × 10-3 of the modified bond number.

  1. Non-Uniform Heat Transfer in Thermal Regenerators

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch

    This thesis presents investigations on the heat transfer in complex heat ex- changers in general and in regenerative heat exchangers (regenerators) in par- ticular. The motivation for this work is a result of inconsistencies obeserved in the results from a series of experiments on active magnetic...... regenerators (AMRs) with parallel plates. The results suggest that random variations in the regenerator geometries causes maldistributed fluid flow inside the regener- ators, which affects the regenerator performance. In order to study the heat transfer processes in regenerators with non-uniform geometries......, a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled...

  2. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    Science.gov (United States)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  3. Energy conservation via heat transfer enhancement. Quarterly progress report, January 1-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Junkhan, G.H.; Webb, R.L.

    1979-06-01

    This report for the first quarter of 1979 summarizes visits and contacts relative to the theory and practice of heat transfer enhancement. The Technical Literature File and Manufacturers' File were expanded, and the initial Patent Technology Information File was completed. Application studies on enhancement of waste heat recuperators and laminar internal flow heat transfer are described. A comprehensive bibliography on laminar flow enhancement is included. The Technology study on performance of internally finned tubes is complete. New data for the heat transfer and friction characteristics of internally finned tubes will be analyzed to develop rationally based correlations. An assessment of natural convection from rough surfaces was performed. Major effort was directed toward planning of the Research Workshop on Energy Conservation Through Enhanced Heat Transfer. The Workshop, scheduled for May 24 and May 25, 1979 in Chicago, will be co-sponsored by NSF.

  4. Electrohydrodynamic (EHD) enhancement of boiling heat transfer of R113+WT4% ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Si Doek [Hyosung Corporation, Seoul (Korea, Republic of); Kwak, Ho Young [Chungang University, Seoul (Korea, Republic of)

    2006-05-15

    Nucleate boiling heat transfer for refrigerants, R113, and R113+wt14% ethanol mixture, an azeotropic mixture under electric field was investigated experimentally in a single-tube shell/tube heat exchanger. A special electrode configuration which provides a more uniform electric field that produces more higher voltage limit against the dielectric breakdown was used in this study. Experimental study has revealed that the electrical charge relaxation time is an important parameter for the boiling heat transfer enhancement under electric field. Up to 1210% enhancement of boiling heat transfer was obtained for R113+wt4% ethanol mixture which has the electrical charge relaxation time of 0.0053 sec whereas only 280% enhancement obtained for R113 which has relaxation time of 0.97 sec. With artificially machined boiling surface, more enhancement in the heat transfer coefficient in the azeotropic mixture was obtained.

  5. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  6. Dynamic measurement of near-field radiative heat transfer

    OpenAIRE

    Lang, S.; G. Sharma; Molesky, S.; Kränzien, P. U.; Jalas, T.; Z. Jacob; Petrov, A. Yu.; Eich, M.

    2017-01-01

    Super-Planckian near-field radiative heat transfer allows effective heat transfer between a hot and a cold body to increase beyond the limits long known for black bodies. Until present, experimental techniques to measure the radiative heat flow relied on steady-state systems. Here, we present a dynamic measurement approach based on the transient plane source technique, which extracts thermal properties from a temperature transient caused by a step input power function. Using this versatile me...

  7. Enhanced boiling performance of a nanoporous copper surface by electrodeposition and heat treatment

    Science.gov (United States)

    Gao, Jiao; Lu, Long-Sheng; Sun, Jia-Wei; Liu, Xiao-Kang; Tang, Biao

    2017-03-01

    A nanoporous structure was fabricated on the surface of a copper block by electrodeposition and heat treatment compound technology. The influence of the heat treatment parameters on the binding force of a structure was analyzed, and a platform was set up to test the pool boiling heat transfer performance. By observing the SEM morphology, the effect of electrodeposition parameters on the formation of nanoporous structure was determined, and the heat transfer coefficient and wall superheat between different surfaces were compared. At the same time, by means of visualization, the bubble behavior of a smooth surface and a nanoporous surface under different heat fluxes was studied. The results show that the surface structure of nanoporous copper prepared by electrodeposition and heat treatment can improve the bonding strength by 77 %, decrease the wall superheat by 45 %, and increase the heat transfer coefficient by 80 %.

  8. Nucleate pool boiling heat transfer in aqueous surfactant solutions

    Science.gov (United States)

    Wasekar, Vivek Mahadeorao

    Saturated, nucleate pool boiling in aqueous surfactant solutions is investigated experimentally. Also, the role of Marangoni convection, driven both by temperature and surfactant concentration gradients at the vapor-liquid interface of a nucleating bubble is computationally explored. Experimental measurements of dynamic and equilibrium sigma using the maximum bubble pressure method indicate dynamic sigma to be higher than the corresponding equilibrium value, both at room and elevated temperatures. Also, nonionic surfactants (Triton X-100, Triton X-305) show larger sigma depression than anionic surfactants (SDS, SLES), and a normalized representation of their dynamic adsorption isotherms is shown to be helpful in generalizing the surfactant effectiveness to reduce surface tension. The dynamic sigma has a primary role in the modification of bubble dynamics and associated heat transfer, and is dictated by the adsorption kinetics of the surfactant molecules at boiling temperatures. In general, an enhancement in heat transfer is observed, which is characterized by an early incipience and an optimum boiling performance at or around the critical micelle concentration of the surfactant. The optimum performances, typically in the fully developed boiling regime ( q''w > 100 kW/m2), show a reverse trend with respect to surfactant molecular weights M, i.e., higher molecular weight additives promote lower enhancement. Normalized boiling performance using the respective solution's dynamic sigma correlates heat transfer coefficient by M-0.5 for anionics and M 0 for nonionics. This has been shown to be brought about by the surfactant concentration and its interfacial activity in a concentration sublayer around the growing vapor bubble, which governs the bubble growth behavior through the mechanism of dynamic sigma. The ionic nature of the surfactant influences the thickness and molecular makeup of the enveloping sublayer, thereby affecting the bubble dynamics and boiling heat

  9. Heat transfer in Rockwool modelling and method of measurement. The effect of natural convection on heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the

  10. Heat transfer to the adsorbent in solar adsorption cooling device

    Science.gov (United States)

    Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

    2014-08-01

    The article deals with design and construction of solar adsorption cooling device and with heat transfer problem in adsorber. The most important part of adsorption cooling system is adsorber/desorber containing adsorbent. Zeolith (adsorbent) type was chosen for its high adsorption capacity, like a coolant was used water. In adsorber/desorber occur, at heating of adsorbent, to heat transfer from heat change medium to the adsorbent. The time required for heating of adsorber filling is very important, because on it depend flexibility of cooling system. Zeolith has a large thermal resistance, therefore it had to be adapted the design and construction of adsorber. As the best shows the tube type of adsorber with double coat construction. By this construction is ensured thin layer of adsorbent and heating is quick in all volume of adsorbent. The process of heat transfer was experimentally measured, but for comparison simulated in ANSYS, too.

  11. Heat transfer performance uniformity factor for the basement floor made of brick vaults in historic buildings

    Directory of Open Access Journals (Sweden)

    Murgul Vera

    2017-01-01

    Full Text Available The paper exposes the calculation of Heat transfer performance uniformity factor for the basement floor made of brick vaults in residential historic buildings. It was determined that the temperature pattern on the floor surface of the premise could be characterized as uniform one. Heat transfer performance uniformity factor for the considered basement floor design can be ignored during the thermotechnical calculations. Thermal resistance calculation is performed for the overlap structure with the smallest thickness.

  12. Droplet Evaporator For High-Capacity Heat Transfer

    Science.gov (United States)

    Valenzuela, Javier A.

    1993-01-01

    Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.

  13. GAM-HEAT: A computer code to compute heat transfer in complex enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.E.; Taylor, J.R.

    1992-12-01

    This report discusses the GAM[underscore]HEAT code which was developed for heat transfer analyses associated with postulated Double Ended Guilliotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re-radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices as discussed below, and also accounts for convective, conductive, and advective heat exchanges. The code is structured such that it is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium.

  14. GAM-HEAT: A computer code to compute heat transfer in complex enclosures. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.E.; Taylor, J.R.

    1992-12-01

    This report discusses the GAM{underscore}HEAT code which was developed for heat transfer analyses associated with postulated Double Ended Guilliotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re-radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices as discussed below, and also accounts for convective, conductive, and advective heat exchanges. The code is structured such that it is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium.

  15. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  16. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  17. Heat and mass transfer in unsaturated porous media. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Childs, S.W.; Malstaff, G.

    1982-02-01

    A preliminary study of heat and water transport in unsaturated porous media is reported. The project provides background information regarding the feasibility of seasonal thermal energy storage in unconfined aquifers. A parametric analysis of the factors of importance, and an annotated bibliography of research findings pertinent to unconfined aquifer thermal energy storage (ATES) are presented. This analysis shows that heat and mass transfer of water vapor assume dominant importance in unsaturated porous media at elevated temperature. Although water vapor fluxes are seldom as large as saturated medium liquid water fluxes, they are important under unsaturated conditions. The major heat transport mechanism for unsaturated porous media at temperatures from 50 to 90/sup 0/C is latent heat flux. The mechanism is nonexistent under saturated conditions but may well control design of unconfined aquifer storage systems. The parametric analysis treats detailed physical phenomena which occur in the flow systems study and demonstrates the temperature and moisture dependence of the transport coefficients of importance. The question of design of an unconfined ATES site is also addressed by considering the effects of aquifer temperature, depth to water table, porous medium flow properties, and surface boundary conditions. Recommendations are made for continuation of this project in its second phase. Both scientific and engineering goals are considered and alternatives are presented.

  18. The kinetics of reaction of the by-products of ablative materials at high temperatures and the rate of heat transfer between hot surfaces and reactive gases

    Science.gov (United States)

    Spokes, G. N.; Beadle, P. C.; Gac, N. A.; Golden, D. M.; King, K. D.; Benson, S. W.

    1971-01-01

    Research has been conducted by means of laboratory experiments to enhance understanding of the fundamental mechanisms of heterogeneous and homogeneous chemical reactions taking place during ablative processes that accompany the reentry or manned space vehicles into planetary atmospheres. Fundamental mechanisms of those chemical reactions believed to be important in the thermal degradation of ablative plastic heat shield materials, and the gases evolved, are described.

  19. H eat transfer betw een tw o surfaces usually in- creases w h en th e ...

    Indian Academy of Sciences (India)

    Srimath

    H eat transfer betw een tw o surfaces usually in- creases w h en th e tem p eratu re d i® eren ce b etw een the tw o surfaces increases. H ere w e highlight an unusual situation in radiation heat transfer w herein the heat transfer decreases w hen the tem perature di®erence increases. In tro d u ctio n. In 1701,N ew ton ...

  20. Numerical investigation of natural and mixed convection heat transfer on optimal distribution of discrete heat sources mounted on a substrate

    Science.gov (United States)

    Karvinkoppa, M. V.; Hotta, T. K.

    2017-11-01

    The paper deals with the numerical investigation of natural and mixed convection heat transfer on optimal distribution of five non-identical protruding discrete heat sources (Aluminium) mounted on a substrate (Bakelite) board. The heat sources are subjected to a uniform heat flux of 2000 W/m2. The temperature of heat sources along with the effect of thermal interaction between them is predicted by carrying out numerical simulations using ANSYS Icepak, and the results are validated with the existing experimental findings. The results suggest that mixed convection is a better method for cooling of discrete heat source modules. Also, the temperature of heat sources is a strong function of their shape, size, and positioning on the substrate. Effect of radiation is studied by painting the surface of heat sources by black paint. The results conclude that, under natural convection heat transfer, the temperature of heat sources drops by 6-13% from polished to black painted surface, while mixed convection results in the drop by 3-15%. The numerical predictions are in strong agreement with experimental results.