Pumped two-phase heat transfer loop
Edelstein, Fred
1988-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Capillary-Condenser-Pumped Heat-Transfer Loop
Silverstein, Calvin C.
1989-01-01
Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.
Heat transfer in a one-dimensional mixed convection loop
International Nuclear Information System (INIS)
Kim, Min Joon; Lee, Yong Bum; Kim, Yong Kyun; Kim, Jong Man; Nam, Ho Yun
1999-01-01
Effects of non-uniform heating in the core and additional forced circulation during decay heat removal operation are studied with a simplified mixed convection loop. The heat transfer coefficient is calculated analytically and measured experimentally. The analytic solution obtained from a one-dimensional heat equation is found to agree well with the experimental results. The effects of the non-uniform heating and the forced circulation are discussed
Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply
Energy Technology Data Exchange (ETDEWEB)
Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics
2004-07-01
Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)
International Nuclear Information System (INIS)
Arslan, Goekhan; Ozdemir, Mustafa
2008-01-01
In this paper, heat transfer in an oscillating loop heat pipe is investigated experimentally. The oscillation of the liquid columns at the evaporator and condenser sections of the heat pipe are driven by gravitational force and the phase lag between evaporation and condensation because the dimensions of the heat pipe are large enough to neglect the effect of capillary forces. The overall heat transfer coefficient based on the temperature difference between the evaporator and condenser surfaces is introduced by a correlation function of dimensionless numbers such as kinetic Reynolds number, c p ΔT/h fg and the geometric parameters
Concepts of self-acting circulation loops for downward heat transfer (reverse thermosiphons)
International Nuclear Information System (INIS)
Dobriansky, Y.
2011-01-01
This paper reviews the scientific and technical knowledge related to general self-acting flow loops (thermosiphons and heat pipes) that transmit heat upwards and self-acting reverse flow loops that transmit heat downwards. This paper classifies the heat and mass transfer processes that take place in general flow loops and analyses the nomenclature applied in the literature. It also presents the principles of operation of sixteen reverse flow loops; four of the loops are powered by an external source of energy, while the remaining loops are self-acting. Of the self-acting loops, vapor was used for heat transfer in seven of them and liquid was used in the remaining ones. Based on the available research results, a list of the advantages and disadvantages of both types of loops is presented.
Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons
Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.
2009-01-01
Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.
MODELING OF THE HEAT PUMP STATION ADJUSTABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part I
Directory of Open Access Journals (Sweden)
Sit B.
2009-08-01
Full Text Available There are examined equations of dynamics and statics of an adjustable intermediate loop of heat pump carbon dioxide station in this paper. Heat pump station is a part of the combined heat supply system. Control of transferred thermal capacity from the source of low potential heat source is realized by means of changing the speed of circulation of a liquid in the loop and changing the area of a heat-transmitting surface, both in the evaporator, and in the intermediate heat exchanger depending on the operating parameter, for example, external air temperature and wind speed.
MODELING OF THE HEAT PUMP STATION CONTROLABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part II
Directory of Open Access Journals (Sweden)
Sit M.L.
2011-08-01
Full Text Available It is studied the model of the heat pump station controllable loop of an intermediate heat-transfer agent for the use in wineries. There are demonstrated transients after the disturbing action of the temperature on the input of cooling jacket of the fermentation stirred tank. There are compared different control laws of the object.
Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop
Energy Technology Data Exchange (ETDEWEB)
Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover
2010-09-01
This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will
Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State
Balouch, Masih N.
Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the
Energy Technology Data Exchange (ETDEWEB)
McFarlane, Joanna [ORNL; Bell, Jason R [ORNL; Felde, David K [ORNL; Joseph III, Robert Anthony [ORNL; Qualls, A L [ORNL; Weaver, Samuel P [ORNL
2013-02-01
ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.
Steady state and transient heat transfer on molten salt natural circulation loop
International Nuclear Information System (INIS)
Kudariyawar, Jayaraj Y.; Vaidya, A.M.; Maheshwari, N.K.; Satyamurthy, P.
2016-01-01
In this work, heat transfer characteristics of Molten Salt Natural Circulation Loop (MSNCL) are studied using 3D CFD simulations. Molten Nitrate salt, NaNO_3+KNO_3 (60:40 ratio by weight), is used as a fluid in MSNCL. In the MSNCL, in heater section, flow is developing and also mixed convection flow regime exists. The local Nusselt number variation in heater is calculated from computed data and is compared with that from Boelter correlation. Steady state heat transfer characteristics are obtained using CFD simulations. Transient heat transfer characteristics in the oscillatory flow formed in MSNCL with horizontal heater configuration are also studied and are found to be different as compared to vertical heater configuration. (author)
International Nuclear Information System (INIS)
McDowell, M.W.; Blink, J.A.; Curlander, K.A.
1983-01-01
A conceptual heat transfer loop and balance-of-plant design for the Pulse Star Inertial Confinement Fusion Reactor has been investigated and the results are presented. The Pulse Star reaction vessel, a perforated steel bell jar about11 m in diameter, is immersed in Li 17 Pb 83 coolant, which flows through the perforations and forms a 1.5-m-thick plenum of droplets around a 8-m-diameter inner chamber. The bell jar and associated pumps, piping, and steam generators are contained within a 17-m-diameter pool of Li 17 Pb 83 coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops, each with a flow rate of 5.5 m 3 /s, are necessary to transfer 3300 MWt of power. Liquid metal is pumped to the top of the pool, where it flows downward through eight vertical steam generators. Double-walled tubes are used in the steam generators to assure tritium containment without intermediate heat transfer loops. Each pump is a mixed flow type and has a required NPSH of 3.4 m, a speed of 278 rpm, and an impeller diameter of 1.2 m. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. The design minimizes the total cost (heat exchanger area plus pumping) for the plant lifetime. The power required for the pumps is 36 MWe. Each resulting steam generator is 12 m high and 1.6 m in diameter, with 2360 tubes. The steam generators and pumps fit easily in the pool between the reactor chamber and the pool wall
International Nuclear Information System (INIS)
McDowell, M.W.; Murray, K.A.
1984-01-01
A conceptual heat transfer loop and balance of plant design for the Pulse*Star Inertial Confinement Fusion Reactor has been investigated and results are presented. The Pulse*Star reaction vessel, a perforated steel bell jar approximately 11 m in diameter, is immersed in Li 17 Pb 83 coolant which flows through the perforations and forms a 1.5 m thick plenum of droplets around an 8 m diameter inner chamber. The reactor and associated pumps, piping, and steam generators are contained within a 17 m diameter pool of Li 17 Pb 83 coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops with flow rates of 5.5 m 3 /s each are necessary to transfer 3300 MWt of power. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. Power balance calculations based on an improved electrical conversion efficiency revealed a net electrical output of 1260 MWe to the bus bar and a resulting net efficiency of 39%. Suggested balance-of-plant layouts are also presented
Wang, Xiao-wu; Wan, Zhen-ping; Tang, Yong
2018-02-01
A miniature loop heat pipe (mLHP) is a promising device for heat dissipation of electronic products. Experimental study of heat transfer performance of an mLHP employing Cu-water nanofluid as working fluid was conducted. It is found that, when input power is above 25 W, the temperature differences between the evaporator wall and vapor of nanofluid, Te - Tv, and the total heat resistance of mLHP using nanofluid are always lower than those of mLHP using de-ionized water. The values of Te - Tv and total heat resistance of mLHP using nanofluid with concentration 1.5 wt. % are the lowest, while when the input power is 25 W, the values of Te - Tv and total heat resistance of mLHP using de-ionized water are even lower than those of mLHP using nanofluid with concentration 2.0 wt. %. At larger input power, the dominant interaction is collision between small bubbles and nanoparticles which can facilitate heat transfer. While at lower input power, nanoparticles adhere to the surface of large bubble. This does not benefit boiling heat transfer. For mLHP using nanofluid with larger concentration, for example 2.0%, the heat transfer may even be worse compared with using de-ionized water at lower input power. The special structure of the mLHP in this study, two separated chambers in the evaporator, produces an extra pressure difference and contributes to the heat transfer performance of the mLHP.
Directory of Open Access Journals (Sweden)
Thierno M. O. Diallo
2018-01-01
Full Text Available This paper presents an analytical investigation of heat-transfer limits of a novel solar loop-heat pipe developed for space heating and domestic hot water use. In the loop-heat pipe, the condensate liquid returns to the evaporator via small specially designed holes, using a mini-channel evaporator. The study considered the commonly known heat-transfer limits of loop-heat pipes, namely, the viscous, sonic, entrainment, boiling and heat-transfer limits due to the two-phase pressure drop in the loop. The analysis considered the main factors that affect the limits in the mini-channel evaporator: the operating temperature, mini-channel aspect ratio, evaporator length, evaporator inclination angle, evaporator-to-condenser height difference and the dimension of the holes. It was found that the entrainment is the main governing limit of the system operation. With the specified loop design and operational conditions, the solar loop-heat pipe can achieve a heat-transport capacity of 725 W. The analytical model presented in this study can be used to optimise the heat-transfer capacity of the novel solar loop-heat pipe.
Directory of Open Access Journals (Sweden)
Zeeshan Nawaz
2009-04-01
Full Text Available The present research focuses to develop mathematical model for the removal of iron (magnetite by ion-exchange resin from primary heat transfer loop of process industries. This mathematical model is based on operating capacities (that’s provide more effective design as compared to loading capacity from static laboratory tests. Results showed non-steady state distribution of external Fe2+ and limitations imposed on operating conditions, these conditions includes; loading and elution cycle time, flow rate, concentration of both loading and removal, volume of resin required. Number of generalized assumptions was made under shortcut modeling techniques to overcome the gap of theoretical and actual process design.
International Nuclear Information System (INIS)
Lin, H.-W.; Lin, W.-K.
2007-01-01
This paper aims to study the capillary-pumped loop (CPL) vapor line temperature distributions. A simple axial heat transfer method is developed to predict the vapor line temperature from evaporator outlet to condenser inlet. CPL is a high efficiency two-phase heat transfer device. Since it does not need any other mechanical force such as pump, furthermore, it might be used to do the thermal management of high power electronic component such as spacecraft, notebook and computer servers. It is a cyclic circulation pumped by capillary force, and this force is generated from the fine porous structure in evaporator. A novel semi-arc porous evaporator to CPL in 1U server is designed on the ground with a horizontal position and scale down the whole device to the miniature size. From the experimental results, the CPL could remove heat 90 W in steady-state and keep the heat source temperature about 70 deg. C. Finally, a good agreement between the simulation and experimental values has been achieved. Comparing with experiment and simulation results, the deviation values of the distributions of the condenser inlet temperature are less than 8%
Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code
Energy Technology Data Exchange (ETDEWEB)
Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of)
2014-05-15
The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will
Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code
International Nuclear Information System (INIS)
Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong
2014-01-01
The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will
Computational simulation of flow and heat transfer in single-phase natural circulation loops
International Nuclear Information System (INIS)
Pinheiro, Larissa Cunha
2017-01-01
Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr_m), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.
International Nuclear Information System (INIS)
Chen, K.S.; Chen, Y.Y.; Tsai, S.T.
1990-01-01
An experimental study is presented for the heat transfer performance of a rectangular, two-phase, natural-circulation loop with water-steam as the working fluid. Local temperature measurements of the core fluid and the wall were made, and the overall heat transfer coefficients of the evaporator, the condenser, and the loop system were obtained and correlated in terms of the fluid properties, heat flux conditions, and the liquid charge level. An overheat phenomenon at very low charge level was also observed. Result of a preliminary analysis shows that if the liquid charge level is below the fractional volume of the connecting tube between the condenser and the evaporator, an overheat phenomenon will occur
International Nuclear Information System (INIS)
Yang, Fubin; Zhang, Hongguang; Yu, Zhibin; Wang, Enhua; Meng, Fanxiao; Liu, Hongda; Wang, Jingfu
2017-01-01
In this study, a dual loop ORC (organic Rankine cycle) system is adopted to recover exhaust energy, waste heat from the coolant system, and intercooler heat rejection of a six-cylinder CNG (compressed natural gas) engine. The thermodynamic, heat transfer, and optimization models for the dual loop ORC system are established. On the basis of the waste heat characteristics of the CNG engine over the whole operating range, a GA (genetic algorithm) is used to solve the Pareto solution for the thermodynamic and heat transfer performances to maximize net power output and minimize heat transfer area. Combined with optimization results, the optimal parameter regions of the dual loop ORC system are determined under various operating conditions. Then, the variation in the heat transfer area with the operating conditions of the CNG engine is analyzed. The results show that the optimal evaporation pressure and superheat degree of the HT (high temperature) cycle are mainly influenced by the operating conditions of the CNG engine. The optimal evaporation pressure and superheat degree of the HT cycle over the whole operating range are within 2.5–2.9 MPa and 0.43–12.35 K, respectively. The optimal condensation temperature of the HT cycle, evaporation and condensation temperatures of the LT (low temperature) cycle, and exhaust temperature at the outlet of evaporator 1 are kept nearly constant under various operating conditions of the CNG engine. The thermal efficiency of the dual loop ORC system is within the range of 8.79%–10.17%. The dual loop ORC system achieves the maximum net power output of 23.62 kW under the engine rated condition. In addition, the operating conditions of the CNG engine and the operating parameters of the dual loop ORC system significantly influence the heat transfer areas for each heat exchanger. - Highlights: • A dual loop ORC system is adopted to recover the waste heat of a CNG engine. • Parametric optimization and heat transfer analysis are
International Nuclear Information System (INIS)
Saad, M.A.
1985-01-01
Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously
Not Available
1980-03-07
A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
Loop Transfer Matrix and Loop Quantum Mechanics
International Nuclear Information System (INIS)
Savvidy, George K.
2000-01-01
The gonihedric model of random surfaces on a 3d Euclidean lattice has equivalent representation in terms of transfer matrix K(Q i ,Q f ), which describes the propagation of loops Q. We extend the previous construction of the loop transfer matrix to the case of nonzero self-intersection coupling constant κ. We introduce the loop generalization of Fourier transformation which allows to diagonalize transfer matrices, that depend on symmetric difference of loops only and express all eigenvalues of 3d loop transfer matrix through the correlation functions of the corresponding 2d statistical system. The loop Fourier transformation allows to carry out the analogy with quantum mechanics of point particles, to introduce conjugate loop momentum P and to define loop quantum mechanics. We also consider transfer matrix on 4d lattice which describes propagation of memebranes. This transfer matrix can also be diagonalized by using the generalized Fourier transformation, and all its eigenvalues are equal to the correlation functions of the corresponding 3d statistical system. In particular the free energy of the 4d membrane system is equal to the free energy of 3d gonihedric system of loops and is equal to the free energy of 2d Ising model. (author)
International Nuclear Information System (INIS)
Nguyen, Xuan Hung; Sung, Byung Ho; Choi, Jee Hoon; Kim, Chul Ju; Yoo, Jung Hyung; Seo, Min Whan
2008-01-01
This paper investigates the plate loop heat pipe system with an evaporator mounted with fin-wick structure to dissipate effectively the heat generated by the electronic components. The heat transfer formulation is modeled and predicted through thermal resistance analysis of the fin-wick structure in the evaporator. The experimental approach measures the thermal resistances and the operating characteristics. These results gathered in this investigation have been used to the objective of the information to improve the LHP system design so as to apply as the future cooling devices of the electronic components
International Nuclear Information System (INIS)
Herranz, L.E.; Munoz-Cobo, J.L.; Tachenko, I.; Sancho, J.; Escriva, A.; Verdu, G.
1994-01-01
One of the key safety systems of the Simplified Boiling Water Reactor (SBWR) of General Electric is the Passive Containment Cooling System (PCCS). This system is designed to behave as a heat sink without need of operator actions in case of a reactor accident. Such a function relies on setting up a natural circulation loop between drywell and wetwell. Along this loop heat is removed by condensing the steam coming from the drywell onto the inner surface of externally cooled vertical tubes. Therefore, a successful design of the condenser requires a good knowledge of the local heat transmission coefficients. In this paper a model of steam condensation into vertical tubes is presented. Based on a modified diffusion boundary layer approach for noncondensables, this model accounts for the effect of shear stress caused by the cocurrent steam-gas mixture on the liquid film thickness. An approximate method to calculate film thickness, avoiding iterative algorithms, has been proposed. At present, this model has been implemented in HTCPIPE code and its results are being checked in terms of local heat transfer coefficients against the experimental data available. A good agreement between measurements and predictions is being observed for tests at atmospheric pressure. Further development and validation of the model is needed to consider aspects such as mist formation, wavy flow and high pressure. (author)
Introduction to Loop Heat Pipes
Ku, Jentung
2015-01-01
This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.
Loop Heat Pipe Startup Behaviors
Ku, Jentung
2016-01-01
A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.
Primary heat transfer loop design for the Cascade inertial confinement fusion reactor
International Nuclear Information System (INIS)
Murray, K.A.; McDowell, M.W.
1984-05-01
This study investigates a heat exchanger and balance of plant design to accompany the Cascade inertial confinement fusion reaction chamber concept. The concept uses solid Li 2 O or other lithium-ceramic granules, held to the wall of a rotating reaction chamber by centrifugal action, as a tritium breeding blanket and first wall protection. The Li 2 O granules enter the chamber at 800 K and exit at 1200 K after absorbing the thermal energy produced by the fusion process
Heat transfer in the in-pile test section and penetration region of 3-pin fuel test loop
Energy Technology Data Exchange (ETDEWEB)
Chi, Dae Young; Lee, Chung Young; Sim, Bong Shick; Park, Kook Nam; Park, Su Ki; Lee, Jong Min; Kim, Young Jin
2003-12-01
This report studies two types of normal heat transfer. One is the heat loss from the pressure vessel of In-Pile Test Section to HANARO pool water via IPS insulation gas gap. The other is the heat transfer of the Penetration Cooling Water System including the effect of the Foamglas insulator at the penetration region. The heat transfer from IPS insulation gas gap has been performed according to the detail design results from NUKEM. The heat loss also occurs at the concrete penetration region between the HANARO pool water and the FTL pipe gallery. The Foamglas insulator has been already installed at the MCW piping of the penetration region. This insulation effect has been reviewed. The Penetration Cooling Water System has been designed to fulfill the design requirement not to exceed the allowable temperature at the penetration concrete wall. The cooling ability and heat loss of PCW system has been reviewed with the insulation effect.
TeGrotenhuis, Ward Evan
2013-11-05
A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.
Capillary pumped loop body heat exchanger
Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)
1998-01-01
A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.
Heat transfer: Pittsburgh 1987
International Nuclear Information System (INIS)
Lyczkowski, R.W.
1987-01-01
This book contains papers divided among the following sections: Process Heat Transfer; Thermal Hydraulics and Phase Change Phenomena; Analysis of Multicomponent Multiphase Flow and Heat Transfer; Heat Transfer in Advanced Reactors; General Heat Transfer in Solar Energy; Numerical Simulation of Multiphase Flow and Heat Transfer; High Temperature Heat Transfer; Heat Transfer Aspects of Severe Reactor Accidents; Hazardous Waste On-Site Disposal; and General Papers
Barron, Randall F
2016-01-01
Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.
International Nuclear Information System (INIS)
2003-08-01
This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.
SUNDÉN, B
2012-01-01
Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.
Energy Technology Data Exchange (ETDEWEB)
Pinheiro, Larissa Cunha
2017-07-01
Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr{sub m}), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)
Kakac, Sadik; Pramuanjaroenkij, Anchasa
2014-01-01
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....
International Nuclear Information System (INIS)
Hasatani, Masanobu; Itaya, Yoshinori
1985-01-01
In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)
Bacon, D H
2013-01-01
Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc
Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.
1990-01-01
Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.
Closed loop solar chemical heat pipe
International Nuclear Information System (INIS)
Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.
1991-01-01
The system used for the closed loop operation of the solar chemical heat pipe comprises a reformer, heated by the solar furnace, a methanator and a storage assembly containing a compressor and storage cylinders. (authors). 7 figs
Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.
2017-11-01
A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.
Containment condensing heat transfer
International Nuclear Information System (INIS)
Gido, R.G.; Koestel, A.
1983-01-01
This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained
Bejan, Adrian
2013-01-01
Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.
REA, The Editors of
1988-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Heat Transfer II reviews correlations for forced convection, free convection, heat exchangers, radiation heat transfer, and boiling and condensation.
Hartnett, James P; Cho, Young I; Greene, George A
2001-01-01
Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.
Overview of Loop Heat Pipe Operation
Ku, Jentung
1999-01-01
Loop heat pipes (LHP's) are two-phase heat transfer devices that utilize the evaporation and condensation of a working fluid to transfer heat, and the capillary forces developed in the porous wicks to circulate the fluid. The LHP was first developed in the former Soviet Union in the early 1980s, about the same time that the capillary pumped loop (CPL) was developed in the United States. The LHP is known for its high pumping capability and robust operation mainly due to the use of fine-pored metal wicks and an integral evaporator/hydro-accumulator design. The LHP technology is rapidly gaining acceptance in aerospace community. It is the baseline design for thermal control of several spacecraft, including NASA's GLAS and Chemistry, ESA's ATLID, CNES' STENTOR, RKA's OBZOR, and several commercial satellites. Numerous LHP papers have been published since the mid-1980's. Most papers presented test results and discussions on certain specific aspects of the LHP operation. LHP's and CPL's show many similarities in their operating principles and performance characteristics. However, they also display significant differences in many aspects of their operation. Some of the LHP behaviors may seem strange or mysterious, even to experienced CPL practitioners. The main purpose of this paper is to present a systematic description of the operating principles and thermal-hydraulic behaviors of LHP'S. LHP operating principles will be given first, followed by a description of the thermal-hydraulics involved in LHP operation. Operating characteristics and important parameters affecting the LHP operation will then be described in detail. Peculiar behaviors of the LHP, including temperature hysteresis and temperature overshoot during start-up, will be explained. For simplicity, most discussions will focus upon LHP's with a single evaporator and a single condenser, but devices with multiple evaporators and condensers will also be discussed. Similarities and differences between LHP's and
Modest, Michael F
2013-01-01
The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...
Energy Technology Data Exchange (ETDEWEB)
Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-01-03
This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.
Han, Je-Chin
2012-01-01
… it will complete my library … [and] complement the existing literature on heat transfer. It will be of value for both graduate students and faculty members.-Bengt Sunden, Lund University, Sweden
International Nuclear Information System (INIS)
Weisman, J.
1983-01-01
Heat may be defined as that form of energy which spontaneously flows between two bodies, or two regions of a body, by virtue of a temperature difference. The second law of thermodynamics tells us that we cannot have heat flow from a low temperature to high temperature without doing work. Heat flows spontaneously from a high temperature to a low temperature region. Thermodynamics, which is concerned with equilibrium states, cannot tell us anything about the rate of heat flow in the presence of a finite temperature difference. It is to the discipline of heat transfer to which we must turn for this answer
Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate
Energy Technology Data Exchange (ETDEWEB)
Mittereder, N.; Poerschke, A.
2013-11-01
This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.
Lienhard, John H
2011-01-01
This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' ins
Elementary heat transfer analysis
Whitaker, Stephen; Hartnett, James P
1976-01-01
Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra
Two-phase Heating in Flaring Loops
Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.
2018-03-01
We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.
Mass transfer of steels for FBR in sodium loop
International Nuclear Information System (INIS)
Susukida, Hiroshi; Yonezawa, Toshio; Ueda, Mitsuo; Imazu, Takayuki; Kiyokawa, Teruyuki.
1976-06-01
In order to grasp quantitatively the corrosion and mass transfer of steels for FBR in sodium loop and to establish their allowable stress value and corrosion rate, a special sodium loop for material testing was designed and fabricated and the steels were given 3010 hours exposing test in the sodium loop. This paper gives the outline of the sodium loop and the results of the test. (1) Carburization and a slight increase in weight were observed in the specimens of type 304 stainless steel exposed in the sodium loop for 3010 hours, while decarburization was observed in the specimens of 2 1/4 Cr-1 Mo steel. It is considered that these phenomena were caused by the downstream factor of the sodium loop. (2) A remarkable decrease of Charpy absorbed energy was observed in the specimens of type 304 stainless steel exposed in the sodium loop. It is considered that this resulted from the weakening of the grain boundary due to heat history and mass transfer. (3) The specimens exposed in the sodium loop must be washed by ultrasonic waves in a water bath after washing in alcohol. (auth.)
Karwa, Rajendra
2017-01-01
This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...
International Nuclear Information System (INIS)
Borges, Eduardo M.; Sabundjian, Gaiane
2015-01-01
Identifying the flow regimes and the heat transfer modes is important for the analysis of accidents such as the Loss-of-Coolant Accident (LOCA). The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used in the RELAP5/MOD3.2.gama code in ANGRA 2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 100cm 2 -rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of ANGRA 2 (FSAR - A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of ANGRA 2 during the postulated accident. (author)
Energy Technology Data Exchange (ETDEWEB)
Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: gdgian@ipen.br, E-mail: borges.em@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
Identifying the flow regimes and the heat transfer modes is important for the analysis of accidents such as the Loss-of-Coolant Accident (LOCA). The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used in the RELAP5/MOD3.2.gama code in ANGRA 2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 100cm{sup 2}-rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of ANGRA 2 (FSAR - A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of ANGRA 2 during the postulated accident. (author)
Thermal radiation heat transfer
Howell, John R; Mengüç, M Pinar
2011-01-01
Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...
Heat transfer fluids containing nanoparticles
Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.
2016-05-17
A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
International Nuclear Information System (INIS)
Welty, J.R.
1974-01-01
The basic concepts of heat transfer are covered with special emphasis on up-to-date techniques for formulating and solving problems in the field. The discussion progresses logically from phenomenology to problem solving, and treats numerical, integral, and graphical methods as well as traditional analytical ones. The book is unique in its thorough coverage of the fundamentals of numerical analysis appropriate to solving heat transfer problems. This coverage includes several complete and readable examples of numerical solutions, with discussions and interpretations of results. The book also contains an appendix that provides students with physical data for often-encountered materials. An index is included. (U.S.)
International Nuclear Information System (INIS)
1992-01-01
This volume contains the 4 key-note lectures and 83 of the 148 papers presented at the 3rd UK National Conference on Heat Transfer. The papers are grouped under the following broad headings: boiling and condensation; heat exchangers; refrigeration and air-conditioning; natural convection; process safety and nuclear reactors; two-phase flow; post dry-out; combustion, radiation and chemical reaction. Separate abstracts have been prepared for 13 papers of relevance to nuclear reactors. (UK)
Mathematical Modeling of Loop Heat Pipes
Kaya, Tarik; Ku, Jentung; Hoang, Triem T.; Cheung, Mark L.
1998-01-01
The primary focus of this study is to model steady-state performance of a Loop Heat Pipe (LHP). The mathematical model is based on the steady-state energy balance equations at each component of the LHP. The heat exchange between each LHP component and the surrounding is taken into account. Both convection and radiation environments are modeled. The loop operating temperature is calculated as a function of the applied power at a given loop condition. Experimental validation of the model is attempted by using two different LHP designs. The mathematical model is tested at different sink temperatures and at different elevations of the loop. Tbc comparison of the calculations and experimental results showed very good agreement (within 3%). This method proved to be a useful tool in studying steady-state LHP performance characteristics.
Operational characteristics of miniature loop heat pipe with flat evaporator
Energy Technology Data Exchange (ETDEWEB)
Gai, Dongxing; Liu, Zhichun; Liu, Wei; Yang, Jinguo [Huazhong University of Science and Technology, School of Energy and Power Engineering, Wuhan, Hubei (China)
2009-12-15
Loop heat pipes are heat transfer devices whose operating principle is based on the evaporation and condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (mLHP) with flat evaporator and fin-and-tube type condenser. The loop is made of pure copper with stainless mesh wick and methanol as the working fluid. Detailed study is conducted on the start-up reliability of the mLHP at high as well as low heat loads. During the testing of mLHP under step power cycles, the thermal response presented by the loop to achieve steady state is very short. At low heat loads, temperature oscillations are observed throughout the loop. The amplitudes and frequencies of these fluctuations are large at evaporator wall and evaporator inlet. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. The thermal resistance of the mLHP lies between 0.29 and 3.2 C/W. The effects of different liquid charging ratios and the tilt angles to the start-up and the temperature oscillation are studied in detail. (orig.)
Enhanced Condensation Heat Transfer
Rose, John Winston
The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.
Gambill, W.R.; Greene, N.D.
1960-08-30
A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.
HEATING OF FLARE LOOPS WITH OBSERVATIONALLY CONSTRAINED HEATING FUNCTIONS
Energy Technology Data Exchange (ETDEWEB)
Qiu Jiong; Liu Wenjuan; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)
2012-06-20
We analyze high-cadence high-resolution observations of a C3.2 flare obtained by AIA/SDO on 2010 August 1. The flare is a long-duration event with soft X-ray and EUV radiation lasting for over 4 hr. Analysis suggests that magnetic reconnection and formation of new loops continue for more than 2 hr. Furthermore, the UV 1600 Angstrom-Sign observations show that each of the individual pixels at the feet of flare loops is brightened instantaneously with a timescale of a few minutes, and decays over a much longer timescale of more than 30 minutes. We use these spatially resolved UV light curves during the rise phase to construct empirical heating functions for individual flare loops, and model heating of coronal plasmas in these loops. The total coronal radiation of these flare loops are compared with soft X-ray and EUV radiation fluxes measured by GOES and AIA. This study presents a method to observationally infer heating functions in numerous flare loops that are formed and heated sequentially by reconnection throughout the flare, and provides a very useful constraint to coronal heating models.
Energy Technology Data Exchange (ETDEWEB)
Bhattacharyya, A
1965-11-15
This report contains descriptions of various analogues utilised to study different steady-state and unsteady-state heat transfer problems. The analogues covered are as follows: 1 . Hydraulic: a) water flow b) air flow 2. Membrane 3. Geometric Electrical: a) Electrolytic-tank b) Conducting sheet 4. Network; a) Resistance b) R-C A comparison of the different analogues is presented in the form of a table.
International Nuclear Information System (INIS)
Bhattacharyya, A.
1965-11-01
This report contains descriptions of various analogues utilised to study different steady-state and unsteady-state heat transfer problems. The analogues covered are as follows: 1 . Hydraulic: a) water flow b) air flow 2. Membrane 3. Geometric Electrical: a) Electrolytic-tank b) Conducting sheet 4. Network; a) Resistance b) R-C A comparison of the different analogues is presented in the form of a table
Nucleate boiling heat transfer
Energy Technology Data Exchange (ETDEWEB)
Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es
2009-07-01
Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)
Nucleate boiling heat transfer
International Nuclear Information System (INIS)
Saiz Jabardo, J.M.
2009-01-01
Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 μm and 10.5 μm ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 μm). (author)
International Nuclear Information System (INIS)
Borges, Eduardo M.; Sabundjian, Gaiane
2017-01-01
The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm 2 of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)
Energy Technology Data Exchange (ETDEWEB)
Borges, Eduardo M.; Sabundjian, Gaiane, E-mail: borges.em@hotmail.com, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)
2017-07-01
The aim of this paper is to identify the flow regimes, the heat transfer modes, and the correlations used by RELAP5/MOD3.2. gamma code in Angra-2 during the Small-Break Loss-of-Coolant Accident (SBLOCA) with a 250cm{sup 2} of rupture area in the cold leg of primary loop. The Chapter 15 of the Final Safety Analysis Report of Angra-2 (FSAR-A2) reports this specific kind of accident. The results from this work demonstrated the several flow regimes and heat transfer modes that can be present in the core of Angra-2 during the postulated accident. The results obtained for Angra-2 nuclear reactor core during the postulated accident were satisfactory when compared with the FSAR-A2. Additionally, the results showed the correct actuation of the ECCS guaranteeing the integrity of the reactor core. (author)
Heat Transfer Phenomena of Supercritical Fluids
Energy Technology Data Exchange (ETDEWEB)
Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)
2008-07-01
In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)
Phase change heat transfer device for process heat applications
International Nuclear Information System (INIS)
Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred
2010-01-01
The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.
Heat transfer bibliography: russian works
Energy Technology Data Exchange (ETDEWEB)
Luikov, A V
1965-02-01
This bibliography of recent Russian publications in heat transfer is divided into the following categories: (1) books; (2) general; (3) experimental methods; (4) analytical calculation methods; (5) thermodynamics; (6) transfer processes involving phase conversions; ((7) transfer processes involving chemical conversions; (8) transfer processes involving very high velocities; (9) drying processes; (10) thermal properties of various materials, heat transfer agents and their determination methods; (11) high temperature physics and magneto- hydrodynamics; and (12) transfer processes in technological apparatuses. (357 refs.)
Measuring of heat transfer coefficient
DEFF Research Database (Denmark)
Henningsen, Poul; Lindegren, Maria
Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...
Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff
2006-10-10
Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.
Loop transfer recovery for general observer architecture
DEFF Research Database (Denmark)
Niemann, Hans Henrik; Søgaard-Andersen, Per; Stoustrup, Jakob
1991-01-01
A general and concise formulation is given of the loop transfer recovery (LTR) design problem based on recovery errors. Three types of recovery errors are treated: open loop recovery, sensitivity recovery and input-output recovery errors. The three corresponding versions of the asymptotic recovery...... recovery cases. This general recovery formulation covers all known observer based compensator types as special cases. The conditions given in this setting are effectively the aim of all known LTR design methods. The recovery formulation is interpreted in terms of a modelmatching problem as well, which...... is examined by means of the Q-parametrization. It is shown how the general controller obtained by the Q-parametrization can be written as a Luenberger observer based controller. In all cases, n controller states suffice to achieve recovery. The compensators are characterized for errors both on the input...
aerodynamics and heat transfer
Directory of Open Access Journals (Sweden)
J. N. Rajadas
1998-01-01
Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.
The economics of supplying the supplementary heat in a closed loop water source heat pump system
International Nuclear Information System (INIS)
Johnson, R.P.; Bartkus, V.E.; Singh, J.B.
1993-01-01
The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop
Heat transfer from internally heated hemispherical pools
International Nuclear Information System (INIS)
Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.
1980-01-01
Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere
Hal E. Anderson
1969-01-01
Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...
Directory of Open Access Journals (Sweden)
Ірина Геннадіївна Шитікова
2016-11-01
Full Text Available The fuel-energy complex research has made it possible to disclose a huge power-saving potential in the municipal heat-and-power engineering. Power-and-resource-saving units and systems are becoming extremely urgent because of the power engineering crisis expansion. The self-adjusting heat supply system from the individual heating points with the heat-accumulating units and coil heat exchangers for independent heating and water supply systems has been examined. Coil heat exchangers are used in municipal heating for heat transfer (e.g. geothermal waters for the independent mains of the heating and hot water supply systems. The heat engineering calculation of the heating and accumulating unit with the coil heat exchanger for independent heat supply systems from individual heater was performed and experimental data were received at the experimental industrial unit under the laboratory conditions. The peculiarities of the flows in the intertubular space, their influence on the heat exchange and temperatures of the first and intermediate mains have been shown. It is important to know the processes running inside the apparatus to be able to improve the technical characteristics of the three-loop coil heat exchanger. The task solution will make it possible to save the materials consumption for the three-loop coil heat exchangers in the future
Kaviany, Massoud
2014-01-01
This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers that enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum tr...
Heat transport and surface heat transfer with helium in rotating channels
International Nuclear Information System (INIS)
Schnapper, C.
1978-06-01
Heat transport and surface heat transfer with helium in rotating radially arranged channels were experimentally studied with regard to cooling of large turbogenerators with superconducting windings. Measurements with thermosiphon and thermosiphon loops of different channel diameters were performed, and results are presented. The thermodynamic state of the helium in a rotating thermosiphon and the mass flow rate in a thermosiphon loop is characterized by formulas. Heat transport by directed convection in thermosiphon loops is found to be more efficient 12 cm internal convection in thermosiphons. Steady state is reached sooner in thermosiphon loops than in thermosiphons, when heat load suddenly changes. In a very large centrifugal field single-phase heat transfer with natural and forced convection is described by similar formulas which are also applicable 10 thermosiphons in gravitation field or to heat transfer to non-rotating helium. (orig.) [de
International Nuclear Information System (INIS)
Herkenrath, H.; Hufschmidt, W.
1978-01-01
The loops are modified and adapted for the study of the mixing phenomena in subchannels of rod clusters under two-phase flow conditions in steady-state and transient conditions. This report is dedicated to the technical description of the loops actually existing. In a second part the specific measurement requirements are discussed together with first results of steady-state mixing experiments with a 16 rod cluster in BWR geometry
International Nuclear Information System (INIS)
Silverman, M.D.; Huntley, W.R.; Robertson, H.E.
1976-10-01
Heat transfer coefficients were determined experimentally for two molten-fluoride salts [LiF-BeF 2 -ThF 2 -UF 4 (72-16-12-0.3 mole %) and NaBF 4 -NaF (92-8 mole %] proposed as the fuel salt and coolant salt, respectively, for molten-salt breeder reactors. Information was obtained over a wide range of variables, with salt flowing through 12.7-mm-OD (0.5-in.) Hastelloy N tubing in a forced convection loop (FCL-2b). Satisfactory agreement with the empirical Sieder-Tate correlation was obtained in the fully developed turbulent region at Reynolds moduli above 15,000 and with a modified Hausen equation in the extended transition region (Re approx.2100-15,000). Insufficient data were obtained in the laminar region to allow any conclusions to be drawn. These results indicate that the proposed salts behave as normal heat transfer fluids with an extended transition region
Heat Transfer Basics and Practice
Böckh, Peter
2012-01-01
The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...
Heat transfer direction dependence of heat transfer coefficients in annuli
Prinsloo, Francois P. A.; Dirker, Jaco; Meyer, Josua P.
2018-04-01
In this experimental study the heat transfer phenomena in concentric annuli in tube-in-tube heat exchangers at different annular Reynolds numbers, annular diameter ratios, and inlet fluid temperatures using water were considered. Turbulent flow with Reynolds numbers ranging from 15,000 to 45,000, based on the average bulk fluid temperature was tested at annular diameter ratios of 0.327, 0.386, 0.409 and 0.483 with hydraulic diameters of 17.00, 22.98, 20.20 and 26.18 mm respectively. Both heated and cooled annuli were investigated by conducting tests at a range of inlet temperatures between 10 °C to 30 °C for heating cases, and 30 °C to 50 °C for cooling cases. Of special interest was the direct measurement of local wall temperatures on the heat transfer surface, which is often difficult to obtain and evasive in data-sets. Continuous verification and re-evaluation of temperatures measurements were performed via in-situ calibration. It is shown that inlet fluid temperature and the heat transfer direction play significant roles on the magnitude of the heat transfer coefficient. A new adjusted Colburn j-factor definition is presented to describe the heating and cooling cases and is used to correlate the 894 test cases considered in this study.
Condensation heat transfer in plate heat exchangers
International Nuclear Information System (INIS)
Panchal, C.B.
1985-01-01
An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers
The radiation safety assessment of the heating loop of district heating reactors
International Nuclear Information System (INIS)
Liu Yuanzhong
1993-01-01
The district heating reactors are used to supply heating to the houses in cities. The concerned problems are whether the radioactive materials reach the heated houses through heating loop, and whether the safety of the dwellers can be ensured. In order to prevent radioactive materials getting into the heated houses, the district heating reactors have three loops, namely, primary loop, intermediate loop, and heating loop. In the paper, the measures of preventing radioactive materials getting into the heating loop are presented, and the possible sources of the radioactivity in the water of the intermediate loop and the heating loop are given. The regulatory aim limit of radioactive concentration in the water of the intermediate loop is put forward, which is 18.5 Bq/l. Assuming that specific radioactivity of the water of contaminated intermediate loop is up to 18.5 Bq/l, the maximum concentration of radionuclides in water of the heating loop is calculated for the normal operation and the accident of district heating reactor. The results show that the maximum possible concentration is 5.7 x 10 -3 Bq/l. The radiation safety assessment of the heating loop is made out. The conclusions are that the district heating reactors do not bring any harmful impact to the dwellers, and the safety of the dwellers can be safeguarded completely
International Nuclear Information System (INIS)
Xiong, Zhenqin; Gu, Hanyang; Wang, Minglu; Cheng, Ye
2014-01-01
Highlights: • Feasibility of applying loop-type heat pipes for SFP is studied. • The heat transfer rate of the heat pipes was tested. • The heat transfer coefficient was between 200 and 490 W/m 2 /s. • The effect of the water temperature is dominant. • Three kinds of the filling ratio 27%, 21% and 14% are compared. - Abstract: Heat pipe is an efficient heat transfer device without electrically driven parts. Therefore large-scale loop type heat pipe systems have potential uses for passively removing heat from spent fuel pools and reactor cores under the accidental conditions to improve the safety of the nuclear power station. However, temperature difference between the hot water in the spent fuel pool and the ambient air which is the heat sink is small, in the range of 20–60 °C. To understand and predict the heat removal capacity of such a large scale loop type heat pipe in the situation similar to the accidental condition of the spent fuel pool (SFP) for the design purpose, a loop-type heat pipe with a very high and large evaporator has been fabricated and was tested using ammonia as the working fluid. The evaporator with inner diameter of 65 mm and length of 7.6 m is immersed in a hot water tube which simulate the spent fuel pool. The condenser of the loop-type heat pipe is cooled by the air. The tests were performed with the velocity of the hot water in the tube in the range of 0.7–2.1 × 10 −2 m/s, the hot water inlet temperature between 50 and 90 °C and the air velocity ranging from 0.5 m/s to 2.5 m/s. Three kinds of the ammonia volumetric filling ratio in the heat pipe were tested, i.e. 27%, 21% and 14%. It is found that the heat transfer rate was in the range of 1.5–14.9 kW, and the heat transfer coefficient of evaporator was between 200 and 490 W/m 2 /s. It is feasible to use the large scale loop type heat pipe to passively remove the residual heat from SFP. Furthermore, the effect of air velocity, air temperature, water flow rate and
Energy Technology Data Exchange (ETDEWEB)
Xiong, Zhenqin [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Gu, Hanyang, E-mail: guhanyang@stu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Wang, Minglu [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Cheng, Ye [Shanghai Nuclear Engineering Research and Design Institute, Shanghai 200233 (China)
2014-12-15
Highlights: • Feasibility of applying loop-type heat pipes for SFP is studied. • The heat transfer rate of the heat pipes was tested. • The heat transfer coefficient was between 200 and 490 W/m{sup 2}/s. • The effect of the water temperature is dominant. • Three kinds of the filling ratio 27%, 21% and 14% are compared. - Abstract: Heat pipe is an efficient heat transfer device without electrically driven parts. Therefore large-scale loop type heat pipe systems have potential uses for passively removing heat from spent fuel pools and reactor cores under the accidental conditions to improve the safety of the nuclear power station. However, temperature difference between the hot water in the spent fuel pool and the ambient air which is the heat sink is small, in the range of 20–60 °C. To understand and predict the heat removal capacity of such a large scale loop type heat pipe in the situation similar to the accidental condition of the spent fuel pool (SFP) for the design purpose, a loop-type heat pipe with a very high and large evaporator has been fabricated and was tested using ammonia as the working fluid. The evaporator with inner diameter of 65 mm and length of 7.6 m is immersed in a hot water tube which simulate the spent fuel pool. The condenser of the loop-type heat pipe is cooled by the air. The tests were performed with the velocity of the hot water in the tube in the range of 0.7–2.1 × 10{sup −2} m/s, the hot water inlet temperature between 50 and 90 °C and the air velocity ranging from 0.5 m/s to 2.5 m/s. Three kinds of the ammonia volumetric filling ratio in the heat pipe were tested, i.e. 27%, 21% and 14%. It is found that the heat transfer rate was in the range of 1.5–14.9 kW, and the heat transfer coefficient of evaporator was between 200 and 490 W/m{sup 2}/s. It is feasible to use the large scale loop type heat pipe to passively remove the residual heat from SFP. Furthermore, the effect of air velocity, air temperature, water flow
Radiation and combined heat transfer in channels
International Nuclear Information System (INIS)
Tamonis, M.
1986-01-01
This book presents numerical methods of calculation of radiative and combined heat transfer in channel flows of radiating as well as nonradiating media. Results obtained in calculations for flow conditions of combustion products from organic fuel products are given and methods used in determining the spectral optical properties of molecular gases are analyzed. The book presents applications of heat transfer in solving problems. Topic covered are as follows: optical properties of molecular gases; transfer equations for combined heat transfer; experimental technique; convective heat transfer in heated gas flows; radiative heat transfer in gaseous media; combined heat transfer; and radiative and combined heat transfer in applied problems
Advances in heat transfer enhancement
Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan
2016-01-01
This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.
Fundamental principles of heat transfer
Whitaker, Stephen
1977-01-01
Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int
Heat transfer enhancement with nanofluids
Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz
2015-01-01
Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za
Directory of Open Access Journals (Sweden)
WANG Fang
2017-04-01
Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity，the experimental data were divided into group. Using the control variable method，the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object，using numerical simulation methods，porous media，k一￡model，second order upwind mode，and pressure一velocity coupling with SIMPLE algorithm，the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.
Annaratone, Donatello
2010-01-01
This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone's books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practi
Heat transfer from rough surfaces
International Nuclear Information System (INIS)
Dalle Donne, M.
1977-01-01
Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.) [de
Essentials of radiation heat transfer
Balaji
2014-01-01
Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...
International Nuclear Information System (INIS)
Zhao Xudong; Wang Zhangyuan; Tang Qi
2010-01-01
A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 deg. C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.
Study of PTFE wick structure applied to loop heat pipe
International Nuclear Information System (INIS)
Wu, Shen-Chun; Gu, Tzu-Wei; Wang, Dawn; Chen, Yau-Ming
2015-01-01
This study investigated the use of sintered PTFE (polytetrafluoroethylene) particles as the wick material of loop heat pipe (LHP), taking advantage of PTFE's low thermal conductivity to reduce the heat leakage problem during LHP's operation. Different PTFE particle sizes were tried to find the one that resulted in the best wick; LHP performance tests were then conducted, and PTFE's potential for application to LHP was examined. Using PTFE particles ranging from 300–500 μm in size, the best wick properties were effective pore radius of 1.7 μm, porosity of 50%, and permeability of 6.2 × 10 −12 m 2 . LHP performance tests showed that, under typical electronic devices' operating temperature of 85 °C, the heat load reached 450 W, the thermal resistance was 0.145 °C/W, and the critical heat load (dryout heat load) reached 600 W. Compared to LHP with a nickel wick, LHP with a PTFE wick had a significantly lower operating temperature, indicating reduced heat leakage during operation, while having comparable performance; also, during the manufacturing process, a PTFE wick required lower sintering temperature, needed shorter sintering time, and had no need for hydrogen gas during sintering. The results of this study showed that, for high heat transfer capacity cooling devices, PTFE wicks possess great potential for applications to LHPs. - Highlights: • The performances of PTFE and nickel wicks in LHP are comparable for the first time. • PTFE wick allows for lower operating temperature and thus pressure in LHP system. • A wick requiring lower temperature and manufacturing cost and less time was made. • PTFE wick has potential to replace metal wick and enhance performance of LHP
Anti-Gravity Loop-shaped heat pipe with graded pore-size wick
International Nuclear Information System (INIS)
Tang Yong; Zhou Rui; Lu Longsheng; Xie Zichun
2012-01-01
An Anti-Gravity Loop-Shaped Heat Pipe (AGLSHP) with a Continuous Graded Pore-Size Wick (CGPSW) was developed for the cooling of electronic devices at the anti-gravity orientation on the ground. At this orientation, heat is transferred toward the direction of the gravitational field. The AGLSHP consists of an evaporator, a condenser, a vapor line and a liquid line. The CGPSW is formed by sintered copper powders and it is filled inside the evaporator and the liquid line. The corresponding test system was developed to investigate the start-up characteristics and heat transfer performance of the AGLSHP at the anti-gravity orientation. The experimental result shows that, the AGLSHP has the capability to start-up reliably without any temperature overshoot or oscillation at the test heat loads. And the AGLSHP is able to keep the temperature of the evaporator below 105 °C and the overall thermal resistance below 0.24 °C/W at the heat load of 100 W. It is also found that the ideal heat load range of the AGLSHP at the anti-gravity orientation is from 30 W to 90 W. In this power range the overall thermal resistance stabilizes at about 0.15 °C/W, and the maximum temperature of the evaporator is lower than 84 °C at the heat load of 90 W. - Highlights: ► We present a loop-shaped heat pipe for the anti-gravity application on the ground. ► We present the continuous graded pore-size wick and its fabrication process. ► We test the start-up and heat transfer performance of this loop-shaped heat pipe. ► This loop-shaped heat pipe starts up reliably and has satisfying heat transfer capability.
Mills, A F
1999-01-01
The Second Edition offers complete coverage of heat transfer with broad up-to-date coverage that includes an emphasis on engineering relevance and on problem solving. Integrates software to assist the reader in efficiently calculations. Carefully orders material to make book more reader-friendly and accessible. Offers an extensive introduction to heat exchange design to enhance the engineering and design content of course to satisfy ABET requirements. For professionals in engineering fields.
2016-05-01
AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled...CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field 5a...Shukla, K., “Thermo-fluid dynamics of Loop Heat Pipe Operation,” International Communications in Heat and Mass Transfer , Vol. 35, No. 8, 2008, pp
Heat transfer to accelerating gas flows
International Nuclear Information System (INIS)
Kennedy, T.D.A.
1978-01-01
The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)
Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...
Heat transfer characteristics of a direct contact heat exchanger
International Nuclear Information System (INIS)
Kinoshita, I.; Nishi, Y.
1993-01-01
As a first step for development of a direct contact steam generator for FBRs, fundamental heat transfer characteristics of a liquid-liquid contact heat exchanger were evaluated by heat transfer experiment with low melting point alloy and water. Distinctive characteristics of direct contact heat transfer with liquid metal and water was obtained. (author)
Heat transfer study under supercritical pressure conditions
International Nuclear Information System (INIS)
Yamashita, Tohru; Yoshida, Suguru; Mori, Hideo; Morooka, Shinichi; Komita, Hideo; Nishida, Kouji
2003-01-01
Experiments were performed on heat transfer and pressure drop of a supercritical pressure fluid flowing upward in a uniformly heated vertical tube of a small diameter, using HCFC22 as a test fluid. Following results were obtained. (1) Characteristics of the heat transfer are similar to those for the tubes of large diameter. (2) The effect of tube diameter on the heat transfer was seen for a 'normal heat transfer, but not for a 'deteriorated' heat transfer. (3) The limit heat flux for the occurrence of deterioration in heat transfer becomes larger with smaller diameter tube. (4) The Watts and Chou correlation has the best prediction performance for the present data in the 'normal' heat transfer region. (5) Frictional pressure drop becomes smaller than that for an isothermal flow in the region near the pseudocritical point, and this reduction was more remarkable for the deteriorated' heat transfer. (author)
Visualisation of heat transfer in laminar flows
Speetjens, M.F.M.; Steenhoven, van A.A.
2009-01-01
Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients at non-adiabatic walls. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the
Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system
International Nuclear Information System (INIS)
Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong
2013-01-01
Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance
Transient heat transfer for forced convection flow of helium gas
International Nuclear Information System (INIS)
Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu
1999-01-01
Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)
Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures
Directory of Open Access Journals (Sweden)
Patrik Nemec
2014-01-01
Full Text Available Loop heat pipes (LHPs are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements’ influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT have been made.
Heat Removal from Bipolar Transistor by Loop Heat Pipe with Nickel and Copper Porous Structures
Smitka, Martin; Malcho, Milan
2014-01-01
Loop heat pipes (LHPs) are used in many branches of industry, mainly for cooling of electrical elements and systems. The loop heat pipe is a vapour-liquid phase-change device that transfers heat from evaporator to condenser. One of the most important parts of the LHP is the porous wick structure. The wick structure provides capillary force to circulate the working fluid. To achieve good thermal performance of LHP, capillary wicks with high permeability and porosity and fine pore radius are expected. The aim of this work was to develop porous structures from copper and nickel powder with different grain sizes. For experiment copper powder with grain size of 50 and 100 μm and nickel powder with grain size of 10 and 25 μm were used. Analysis of these porous structures and LHP design are described in the paper. And the measurements' influences of porous structures in LHP on heat removal from the insulated gate bipolar transistor (IGBT) have been made. PMID:24959622
Energy Conversion Advanced Heat Transport Loop and Power Cycle
Energy Technology Data Exchange (ETDEWEB)
Oh, C. H.
2006-08-01
operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va
Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN
Pereira, H; Haug, F; Silva, P; Wu, J; Koettig, T
2010-01-01
The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of...
MHTGR inherent heat transfer capability
International Nuclear Information System (INIS)
Berkoe, J.M.
1992-01-01
This paper reports on the Commercial Modular High Temperature Gas-Cooled Reactor (MHTGR) which achieves improved reactor safety performance and reliability by utilizing a completely passive natural convection cooling system called the RCCS to remove decay heat in the event that all active cooling systems fail to operate. For the highly improbable condition that the RCCS were to become non-functional following a reactor depressurization event, the plant would be forced to rely upon its inherent thermo-physical characteristics to reject decay heat to the surrounding earth and ambient environment. A computational heat transfer model was created to simulate such a scenario. Plant component temperature histories were computed over a period of 20 days into the event. The results clearly demonstrate the capability of the MHTGR to maintain core integrity and provide substantial lead time for taking corrective measures
Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe
International Nuclear Information System (INIS)
Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol
2015-01-01
Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of
Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants
Yoshida, Suguru; Fujita, Yasunobu
The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.
Radiation effects on heat transfer in heat exchangers, (2)
International Nuclear Information System (INIS)
Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.
1980-01-01
In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)
Heat transfer--Orlando (Symposium), 1980
International Nuclear Information System (INIS)
Stein, R.P.
1980-01-01
This conference proceedings contains 36 papers of which 3 appear as abstracts. 23 papers are indexed separately. Topics covered include: thermodynamics of PWR and LMFBR Steam Generators; two-phase flow in parallel channels; geothermal heat transfer; natural circulation in complex geometries; heat transfer in non-Newtonian systems; and process heat transfer
Research progress on microgravity boiling heat transfer
International Nuclear Information System (INIS)
Xiao Zejun; Chen Bingde
2003-01-01
Microgravity boiling heat transfer is one of the most basic research topics in aerospace technology, which is important for both scientific research and engineering application. Research progress on microgravity boiling heat transfer is presented, including terrestrial simulation technique, terrestrial simulation experiment, microgravity experiment, and flow boiling heat transfer
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P
2013-12-10
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
International Nuclear Information System (INIS)
French, R.T.
1975-08-01
Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)
Transient heat transfer characteristics of liquid helium
International Nuclear Information System (INIS)
Tsukamoto, Osami
1976-01-01
The transient heat transfer characteristics of liquid helium are investigated. The critical burnout heat fluxes for pulsive heating are measured, and empirical relations between the critical burnout heat flux and the length of the heat pulse are given. The burnout is detected by observing the super-to-normal transition of the temperature sensor which is a thin lead film prepared on the heated surface by vacuum evaporation. The mechanism of boiling heat transfer for pulsive heating is discussed, and theoretical relations between the critical burnout heat flux and the length of the heat pulse are derived. The empirical data satisfy the theoretical relations fairly well. (auth.)
Heat Transfer in a Thermoacoustic Process
Beke, Tamas
2012-01-01
Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…
Analysis of a convection loop for GFR post-LOCA decay heat removal
International Nuclear Information System (INIS)
Williams, W.C.; Hejzlar, P.; Saha, P.
2004-01-01
A computer code (LOCA-COLA) has been developed at MIT for steady state analysis of convective heat transfer loops. In this work, it is used to investigate an external convection loop for decay heat removal of a post-LOCA gas-cooled fast reactor (GFR). The major finding is that natural circulation cooling of the GFR is feasible under certain circumstances. Both helium and CO 2 cooled system components are found to operate in the mixed convection regime, the effects of which are noticeable as heat transfer enhancement or degradation. It is found that CO 2 outdoes helium under identical natural circulation conditions. Decay heat removal is found to have a quadratic dependence on pressure in the laminar flow regime and linear dependence in the turbulent flow regime. Other parametric studies have been performed as well. In conclusion, convection cooling loops are a credible means for GFR decay heat removal and LOCA-COLA is an effective tool for steady state analysis of cooling loops. (authors)
Design of a pressurized water loop heated by electric resistances
International Nuclear Information System (INIS)
Ribeiro, S.V.G.
1981-01-01
A pressurized water loop design is presented. Its operating pressure is 420 psi and we seek to simulate qualitatively some thermo-hydraulic phenomena of PWR reactors. The primary circuit simulator consists basically of two elements: 1)the test section housing 16 electric resistences dissipating a total power of 100 Kw; 2)the loop built of SCH40S 304L steel piping, consisting of the pump, a heat exchanger and the pressurizer. (Author) [pt
Heat transfer performance of heat pipe for passive cooling of spent fuel pool
International Nuclear Information System (INIS)
Wang Minglu; Xiong Zhengqin; Gu Hanyang; Ye Cheng; Cheng Xu
2014-01-01
A large-scale loop heat pipe has no electricity driven component and high efficiency of heat transfer. It can be used for the passive cooling of the SFP after SBO to improve the safety performance of nuclear power plants. In this paper, such a large-scale loop heat pipe is studied experimentally. The heat transfer rate, evaporator average heat transfer coefficient operating temperature, operating pressure and ammonia flow rate have been obtained with the water flow ranging from 0.007 m/s to 0.02 m/s outside the evaporator section, heating water temperature in the range of 50 to 90℃, air velocity outside the condensation section ranging from 0.5 to 2.5 m/s. It is found that the heat transfer rate reaches as high as 20.1 kW. Parametric analysis indicates that, the heat transfer rate and ammonia flow rate are influenced significantly by hot water inlet temperature and velocity, while beyond 1.5 m/s, the effect of air velocity outside the condensation section is minor. (authors)
Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate
Energy Technology Data Exchange (ETDEWEB)
Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)
2013-11-01
This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.
Chow, L. C.; Hahn, O. J.; Nguyen, H. X.
1992-08-01
This report presents the description of a liquid sodium heat transfer facility (sodium loop) constructed to support the study of transient response of heat pipes. The facility, consisting of the loop itself, a safety system, and a data acquisition system, can be safely operated over a wide range of temperature and sodium flow rate. The transient response of a heat pipe to pulse heat load at the condenser section was experimentally investigated. A 0.457 m screen wick, sodium heat pipe with an outer diameter of 0.127 m was tested under different heat loading conditions. A major finding was that the heat pipe reversed under a pulse heat load applied at the condenser. The time of reversal was approximately 15 to 25 seconds. The startup of the heat pipe from frozen state was also studied. It was found that during the startup process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all of the working fluid in the heat pipe was molten.
In situ heat treatment process utilizing a closed loop heating system
Vinegar, Harold J.; Nguyen, Scott Vinh
2010-12-07
Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.
Blowdown heat transfer experiment, (1)
International Nuclear Information System (INIS)
Soda, Kunihisa; Yamamoto, Nobuo; Osaki, Hideki; Shiba, Masayoshi
1976-09-01
Blowdown heat transfer experiment has been carried out with a transparent test section to observe phenomena in coolant behavior during blowdown process. Experimental parameters are discharge position, initial system pressure, initial coolant temperature, power supply to heater rods and number of heater rods. At initial pressure 7-12 ata and initial power 6-50 kw per one heater rod, the flow condition in the test section is a major factor in determining time of DNB occurrence and physical process to DNB during blowdown. (auth.)
Liquid metal heat transfer issues
International Nuclear Information System (INIS)
Hoffman, H.W.; Yoder, G.L.
1984-01-01
An alkali liquid metal cooled nuclear reactor coupled with an alkali metal Rankine cycle provides a practicable option for space systems/missions requiring power in the 1 to 100 MW(e) range. Thermal issues relative to the use of alkali liquid metals for this purpose are identified as these result from the nature of the alkali metal fluid itself, from uncertainties in the available heat transfer correlations, and from design and performance requirements for system components operating in the earth orbital microgravity environment. It is noted that, while these issues require further attention to achieve optimum system performance, none are of such magnitude as to invalidate this particular space power concept
Tunable heat transfer with smart nanofluids.
Bernardin, Michele; Comitani, Federico; Vailati, Alberto
2012-06-01
Strongly thermophilic nanofluids are able to transfer either small or large quantities of heat when subjected to a stable temperature difference. We investigate the bistability diagram of the heat transferred by this class of nanofluids. We show that bistability can be exploited to obtain a controlled switching between a conductive and a convective regime of heat transfer, so as to achieve a controlled modulation of the heat flux.
Design aspects of commercial open-loop heat pump systems
Energy Technology Data Exchange (ETDEWEB)
Rafferty, Kevin
2000-01-01
Open loop (or groundwater heat pump systems are the oldest of the ground-source systems. Common design variations include direct (groundwater used directly in the heat pump units), indirect (building loop isolated with a plate heat exchanger), and standing column (water produced and returned to the same well). Direct systems are typically limited to the smallest applications. Standing column systems are employed in hard rock geology sites where it is not possible to produce sufficient water for a conventional system. Due to its greater potential application, this paper reviews key design aspects of the indirect approach. The general design procedure is reviewed, identification of optimum groundwater flow, heat exchanger selection guidelines, well pump control, disposal options, well spacing, piping connections and related issues.
Design Aspects of Commerical Open-Loop Heat Pump Systems
Energy Technology Data Exchange (ETDEWEB)
Rafferty, Kevin
2001-03-01
Open loop (or groundwater heat pump systems are the oldest of the ground-source systems. Common design variations include direct (groundwater used directly in the heat pump units), indirect (building loop isolated with a plate heat exchanger), and standing column (water produced and returned to the same well). Direct systems are typically limited to the smallest applications. Standing column systems are employed in hard rock geology sites where it is not possible to produce sufficient water for a conventional system. Due to its greater potential application, this paper reviews key design aspects of the indirect approach. The general design procedure is reviewed, identification of optimum groundwater flow, heat exchanger selection guidelines, well pump control, disposal options, well spacing, piping connections and related issues.
Heat Transfer in Complex Fluids
Energy Technology Data Exchange (ETDEWEB)
Mehrdad Massoudi
2012-01-01
fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a
Heat transfer coeffcient for boiling carbon dioxide
DEFF Research Database (Denmark)
Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik
1997-01-01
Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...... transfer coefficient but the ratio between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has...
Corrosion and material transfer in a sodium loop
International Nuclear Information System (INIS)
Garcia, A.M.; Espigares, M.M.; Arroyo, J.; Borgstedt, H.U.; Kernforschungszentrum Karlsruhe G.m.b.H.
1984-01-01
The corrosion and material transfer behaviour of the martensitic steel X18 CrMoVNb 12 1 as a function of the temperature and the position is studied in the ML-1 sodium loop. Up to 600 C the material has the same good compatibility with liquid sodium as austenitic stainless steels, as well in the corrosion region of the loop as in the deposition zone in the cooled leg. The steel is not sensitive to carburization or decarburization under the conditions in the sodium rig. (author)
Boiling heat transfer on horizontal tube bundles
International Nuclear Information System (INIS)
Anon.
1987-01-01
Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed
Engineering calculations in radiative heat transfer
Gray, W A; Hopkins, D W
1974-01-01
Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.
High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II)
International Nuclear Information System (INIS)
Song, Kee Nam; Lee, Heong Yeon; Kim, Chan Soo; Hong, Seong Duk; Park, Hong Yoon
2010-01-01
PHE (Process Heat Exchanger) is a key component required to transfer heat energy of 950 .deg. C generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype
PWR-blowdown heat transfer separate effects program
International Nuclear Information System (INIS)
Thomas, D.G.
1976-01-01
The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described
Numerical Study of Heat Transfer Enhancement in Heat Exchanger Using AL2O3 Nanofluids
Directory of Open Access Journals (Sweden)
Hussein Talal Dhaiban
2016-04-01
Full Text Available In this study, the flow and heat transfer characteristics of Al2O3-water nanofluids for a range of the Reynolds number of 3000, 4500, 6000 and 7500 with a range of volume concentration of 1%, 2%, 3% and 4% are studied numerically. The test rig consists of cold liquid loop, hot liquid loop and the test section which is counter flow double pipe heat exchanger with 1m length. The inner tube is made of smooth copper with diameter of 15mm. The outer tube is made of smooth copper with diameter of 50mm. The hot liquid flows through the outer tube and the cold liquid (or nanofluid flow through the inner tube. The boundary condition of this study is thermally insulated the outer wall with uniform velocity at (0.2, 0.3, 0.4 and 0.5 m/s at the cold loop and constant velocity at (0.5 m/s at the hot loop. The results show that the heat transfer coefficient and Nusselt number increased by increasing Reynolds number and particle concentration. Numerical results indicate that the maximum enhancement in Nusselt number and heat transfer coefficient were 9.5% and 13.5% respectively at Reynolds number of 7100 and particles volume fraction of 4%. Results of nanofluids also showed a good agreement with the available empirical correlation at particles volume fractions of 1%, 2% and 3%, but at volume fractions of 4% a slight deviation is obtained.
Garg, Vijay K.
2001-01-01
The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.
Directory of Open Access Journals (Sweden)
N. Amanifard
2007-06-01
Full Text Available In this work, the effects of electrical double layer (EDL near the solid/ liquid interface, on three dimensional heat transfer characteristic and pressure drop of water flow through a rectangular microchannel numerically are investigated. An additional body force originating from the existence of EDL is considered to modify the conventional Navier-stokes and energy equations. These modified equations are solved numerically for steady laminar flow on the basis of control volume approaches. Fluid velocity distribution and temperature with presence and absence of EDL effects are presented for various geometric cases and different boundary conditions. The results illustrate that, the liquid flow in rectangular microchannels is influenced significantly by the EDL, particularly in the high electric potentials, and hence deviates from flow characteristics described by classical fluid mechanics.
Heat and mass transfer in particulate suspensions
Michaelides, Efstathios E (Stathis)
2013-01-01
Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...
Industrial furnace with improved heat transfer
Energy Technology Data Exchange (ETDEWEB)
Hoetzl, M.; Lingle, T.M.
1992-07-07
This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.
Experimental study of supercritical water flow and heat transfer in vertical tube
International Nuclear Information System (INIS)
Li Hongbo; Yang Jue; Lu Donghua; Gu Hanyang; Zhao Meng
2012-01-01
The experiment of flow and heat transfer of supercritical water has been performed on the supercritical water multipurpose test loop co-constructed by China Guangdong Nuclear Power Group and Shanghai Jiao Tong University with a 7.6 mm vertical tube. Heat transfer experimental data is obtained. The results of experimental research of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: (1) Heat transfer enhancement occurs when the bulk temperature reaches pseudo-critical point with low mass flow velocity; (2) The heat transfer co- efficient and Nusselt number are decreased with the increasing of heat flux; (3) The wall temperature is decreased, but the heat transfer coefficient and Nusselt number are increased with the increasing of mass flow velocity; (4) The wall temperature is increased, but the heat transfer coefficient and Nusselt number are decreased with the increasing of sys- tem pressure. (authors)
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
International Nuclear Information System (INIS)
Antonopoulos-Domis, M.; Mourtzanos, K.
1996-01-01
Estimators of the confidence limits of open loop transfer functions via Multivariate Auto-Regressive (MAR) modelling are not available in the literature. The statistics of open loop transfer functions obtained by MAR modelling are investigated via numerical experiments. A system of known open loop transfer functions is simulated digitally and excited by random number series. The digital signals of the simulated system are then MAR modelled and the open loop transfer functions are estimated. Performing a large number of realizations, mean values and variances of the open loop transfer functions are estimated. It is found that if the record length N of each realization is long enough then the estimates of open loop transfer functions follow normal distribution. The variance of the open loop transfer functions is proportional to 1/N. For MAR processes the asymptotic covariance matrix of the estimate of open loop transfer functions was found in agreement with theoretical prediction. (author)
Heat Transfer Experiment with Supercritical CO{sub 2} Flowing Upward in a Circular Tube
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2005-07-01
SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO{sub 2} are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations.
Heat Transfer Experiment with Supercritical CO2 Flowing Upward in a Circular Tube
International Nuclear Information System (INIS)
Kim, Hyung Rae; Kim, Hwan Yeol; Song, Jin Ho; Kim, Hee Dong; Bae, Yoon Yeong
2005-01-01
SCWR (SuperCritical Water-cooled Reactor) is one of the six reactor candidates selected in the Gen-IV project, which aims at the development of new reactors with enhanced economy and safety. Heat transfer experiments under supercritical conditions are required in relevant geometries for the proper prediction of thermo-hydraulic phenomena in a reactor core. A heat transfer test loop, named as SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), has been constructed in KAERI. The loop uses carbon dioxide as a surrogate fluid for water since the critical pressure and temperature of CO 2 are much lower those of water. As a first stage of heat transfer experiments, a single tube test is being performed in the test loop. Controlled parameters for the tests are operating pressure, mass flux, and heat flux. Wall temperatures are measured along the tube. Experimental data are compared with existing correlations
Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger
Directory of Open Access Journals (Sweden)
S. A. Burtsev
2016-01-01
Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at
A literature survey on numerical heat transfer
Shih, T. M.
1982-12-01
Technical papers in the area of numerical heat transfer published from 1977 through 1981 are reviewed. The journals surveyed include: (1) ASME Journal of Heat Transfer, (2) International Journal of Heat and Mass Transfer, (3) AIAA Journal, (4) Numerical Heat Transfer, (5) Computers and Fluids, (6) International Journal for Numerical Methods in Engineering, (7) SIAM Journal of Numerical Analysis, and (8) Journal of Computational Physics. This survey excludes experimental work in heat transfer and numerical schemes that are not applied to equations governing heat transfer phenomena. The research work is categorized into the following areas: (A) conduction, (B) boundary-layer flows, (C) momentum and heat transfer in cavities, (D) turbulent flows, (E) convection around cylinders and spheres or within annuli, (F) numerical convective instability, (G) radiation, (H) combustion, (I) plumes, jets, and wakes, (J) heat transfer in porous media, (K) boiling, condensation, and two-phase flows, (L) developing and fully developed channel flows, (M) combined heat and mass transfer, (N) applications, (O) comparison and properties of numerical schemes, and (P) body-fitted coordinates and nonuniform grids.
Heat transfer coefficient for boiling carbon dioxide
DEFF Research Database (Denmark)
Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik
1998-01-01
Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...... between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's....
Supercritical heat transfer phenomena in nuclear system
International Nuclear Information System (INIS)
Seo, Kyoung Woo; Kim, Moo Hwan; Anderson, Mark H.; Corradini, Michael L.
2005-01-01
A supercritical water (SCW) power cycle has been considered as one of the viable candidates for advanced fission reactor designs. However, the dramatic variation of thermo-physical properties with a modest change of temperature near the pseudo-critical point make existing heat transfer correlations such as the Dittus-Boelter correlation not suitably accurate to calculate the heat transfer in supercritical fluid. Several other correlations have also been suggested but none of them are able to predict the heat transfer over a parameter range, needed for reactor thermal-hydraulics simulation and design. This has prompted additional research to understand the characteristic of supercritical fluid heat transfer
International Nuclear Information System (INIS)
Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Park, Choon-Kyung; Lee, Sung-Jae; Song, Chul-Hwa; Chung, Moon-Ki; Lee, Un-Chul
2004-01-01
Experiments on the heat transfer characteristics and natural circulation performance of the passive residual heat removal system (PRHRS) for the SMART-P have been performed using the high temperature/high pressure thermal-hydraulic test facility (VISTA). The VISTA facility consists of the primary loop, the secondary loop, the PRHRS loop, and auxiliary systems to simulate the SMART-P, a pilot plant of the SMART. The primary loop is composed of the steam generator (SG) primary side, a simulated core, a main coolant pump, and loop piping, and the PRHRS loop consists of the SG secondary side, a PRHRS heat exchanger, and loop piping. The natural circulation performance of the PRHRS, the heat transfer characteristics of the PRHRS heat exchangers and the emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are intensively investigated. The experimental results show that the coolant flows steadily in the PRHRS loop and the heat transfers through the PRHRS heat exchanger and the emergency cooldown tank are sufficient enough to enable the natural circulation of the coolant. The results also show that the core decay heat can be sufficiently removed from the primary loop with the operation of the PRHRS. (authors)
Berry, G.F.; Minkov, V.; Petrick, M.
1981-11-02
A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery
International Nuclear Information System (INIS)
Song, Jian; Gu, Chun-wei
2015-01-01
Highlights: • A dual loop ORC system is designed for engine waste heat recovery. • The two loops are coupled via a shared heat exchanger. • The influence of the HT loop condensation parameters on the LT loop is evaluated. • Pinch point locations determine the thermal parameters of the LT loop. - Abstract: This paper presents a dual loop Organic Rankine Cycle (ORC) system consisting of a high temperature (HT) loop and a low temperature (LT) loop for engine waste heat recovery. The HT loop recovers the waste heat of the engine exhaust gas, and the LT loop recovers that of the jacket cooling water in addition to the residual heat of the HT loop. The two loops are coupled via a shared heat exchanger, which means that the condenser of the HT loop is the evaporator of the LT loop as well. Cyclohexane, benzene and toluene are selected as the working fluids of the HT loop. Different condensation temperatures of the HT loop are set to maintain the condensation pressure slightly higher than the atmosphere pressure. R123, R236fa and R245fa are chosen for the LT loop. Parametric analysis is conducted to evaluate the influence of the HT loop condensation temperature and the residual heat load on the LT loop. The simulation results reveal that under different condensation conditions of the HT loop, the pinch point of the LT loop appears at different locations, resulting in different evaporation temperatures and other thermal parameters. With cyclohexane for the HT loop and R245fa for the LT loop, the maximum net power output of the dual loop ORC system reaches 111.2 kW. Since the original power output of the engine is 996 kW, the additional power generated by the dual loop ORC system can increase the engine power by 11.2%.
A Heat Transfer Correlation in a Vertical Upward Flow of CO2 at Supercritical Pressures
International Nuclear Information System (INIS)
Kim, Hyung Rae; Bae, Yoon Yeong; Song, Jin Ho; Kim, Hwan Yeol
2006-01-01
Heat transfer data has been collected in the heat transfer test loop, named SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), in KAERI. The facility primarily aims at the generation of heat transfer data in the flow conditions and geometries relevant to SCWR (SuperCritical Water-cooled Reactor). The produced data will aid the thermohydraulic design of a reactor core. The loop uses carbon dioxide, and later the results will be scaled to the water flows. The heat transfer data has been collected for a vertical upward flow in a circular tube with varying mass fluxes, heat fluxes, and operating pressures. The results are compared with the existing correlations and a new correlation is proposed by fine-tuning the one of the existing correlations
Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system
International Nuclear Information System (INIS)
Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong
2014-01-01
Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison
Heat transfer correlations in mantle tanks
DEFF Research Database (Denmark)
Furbo, Simon; Knudsen, Søren
2005-01-01
on calculations with a CFD-model, which has earlier been validated by means of experiments. The CFD-model is used to determine the heat transfer between the solar collector fluid in the mantle and the walls surrounding the mantle in all levels of the mantle as well as the heat transfer between the wall...... transfer correlations are suitable as input for a detailed simulation model for mantle tanks. The heat transfer correlations determined in this study are somewhat different from previous reported heat transfer correlations. The reason is that this study includes more mantle tank designs and operation......Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...
International Nuclear Information System (INIS)
Goto, T.; Tsushima, H.; Sakurai, N.; Jo, T.
2006-01-01
MONJU is a prototype fast breeder reactor (FBR). Modification work commenced in March 2005. Since June 2004, MONJU has changed to one-loop operation of the primary heat transport system (PHTS) with all of the secondary heat transport systems (SHTS) drained of sodium. The purposes of this change are to shorten the modification period and to reduce the cost incurred for circuit trace heating electrical consumption. Before changing condition, the following issues were investigated to show that this mode of operation was possible. The heat loss from the reactor vessel and the single primary loop must exceed the decay heat by an acceptable margin but the capacity of pre-heaters to keep the sodium within the primary vessel at about 200 deg. C must be maintained. With regard to the heat loss and the decay heat, the estimated heat loss in the primary system was in the range of 90-170 kW in one-loop operation, and the calculated decay heat was 21.2 kW. Although the heat input of the primary pump was considered, it was clear that circuit heat loss greatly exceeded the decay heat. As for pre-heaters, effective capacity was less than the heat loss. Therefore, the temperature of the reactor vessel room was raised to reduce the heat loss. One-loop operation of the PHTS was able to be executed by means of these measures. The cost of electrical consumption in the power plant has been reduced by one-loop operation of the PHTS and the modification period was shortened. (authors)
Conjugate heat and mass transfer in heat mass exchanger ducts
Zhang, Li-Zhi
2013-01-01
Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi
Heat transfer in heterogeneous propellant combustion systems
International Nuclear Information System (INIS)
Brewster, M.Q.
1992-01-01
This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles
Heat transfer capability analysis of heat pipe for space reactor
International Nuclear Information System (INIS)
Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang
2015-01-01
To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)
Solar chemical heat pipe in a closed loop
International Nuclear Information System (INIS)
Levy, M.
1990-06-01
The work on the solar CO 2 reforming of methane was completed. A computer program was developed for simulation of the whole process. The calculations agree reasonably well with the experimental results. The work was written up and submitted for publication in Solar Energy. A methanator was built and tested first with a CO/H 2 mixture from cylinders, and then with the products of the solar reformer. The loop was then closed by recirculating the products from the methanator into the solar reformer. Nine closed loop cycles were performed, so far, with the same original gas mixture. This is the first time that a closed loop solar chemical heat pipe was operated anywhere in the world. (author). 13 refs., 12 figs., 3 tabs
Directory of Open Access Journals (Sweden)
Zonghao Yang
2017-12-01
Full Text Available In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.
Heat transfer from humans wearing clothing
Lotens, W.A.
1993-01-01
In this monograph the effects of clothing on human heat transfer are described. The description is based on the physics of heat and mass transfer, depending on the design of the clothing, the climate, and the activity of the wearer. The resulting model has been stepwise implemented in computer
Boiling heat transfer modern developments and advances
Lahey, Jr, RT
2013-01-01
This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the
Heat transfer coefficient of cryotop during freezing.
Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J
2013-01-01
Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).
"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"
Energy Technology Data Exchange (ETDEWEB)
Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann
2008-06-12
ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers
Operation of a cascade air conditioning system with two-phase loop
Feng, Yinshan; Wang, Jinliang; Zhao, Futao; Verma, Parmesh; Radcliff, Thomas D.
2018-05-29
A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heat transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.
Condenser design optimization and operation characteristics of a novel miniature loop heat pipe
International Nuclear Information System (INIS)
Wan Zhenping; Wang Xiaowu; Tang Yong
2012-01-01
Highlights: ► A novel miniature LHP (mLHP) system was presented. ► Optimal design of condenser was considered. ► The heat transfer performance was investigated experimentally. - Abstract: Loop heat pipe (LHP) is a promising means for electronics cooling since LHP is a exceptionally efficient heat transfer device. In this paper, a novel miniature LHP (mLHP) system is presented and optimal design of condenser is considered seeing that evaporators have been able to handle very high-heat fluxes with low-heat transfer resistances since most of the previous researchers focused on the evaporator of mLHP. The arrayed pins were designed and machined out on the bottom of condenser to enhance condensation heat transfer. The parameters of the arrayed pins, including layout, cross-section shape and area, were optimized by finite element analysis. Tests were carried out on the mLHP with a CPU thermal simulator using forced air convection condenser cooling to validate the optimization. The operation characteristics of the mLHP with optimal design parameters of condenser were investigated experimentally. The experimental results show that the mLHP can reject head load 200 W while maintaining the cooled object temperatures below 100 °C, and for a variable power applied to the evaporator, the system presents reliable startups and continuous operation.
Heat transfer from internally-heated molten UO2 pools
International Nuclear Information System (INIS)
Stein, R.P.; Baker, L. Jr.; Gunther, W.H.; Cook, C.
1978-01-01
Experimental measurements of heat transfer from internally heated pools of molten UO 2 have been obtained for two cell sizes: 10 cm x 10 cm and 20 cm x 20 cm. The experiments with the large cell have supported a previous conclusion from early small data that the measured downward heat fluxes are higher than would be expected on the basis of considerations of thermal convection. A convective model underpredicts the downward heat fluxes by a factor of 2.5 to 4.5 for all but one early experiment. Arbitrary assumptions of increased thermal conductivity do not account for the discrepancy. A single model based on internal thermal radiation heat transfer is able to account for the high values. The model uses the optically thick Rosseland approximation. Because of this, it is tentatively concluded that thermal radiation plays a dominant role in controlling the heat transfer from internally heated molted fuel
Droplet heat transfer and chemical reactions during direct containment heating
International Nuclear Information System (INIS)
Baker, L. Jr.
1986-01-01
A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences
Stokes flow heat transfer in an annular, rotating heat exchanger
International Nuclear Information System (INIS)
Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.
2011-01-01
The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.
The magnetic fluid for heat transfer applications
International Nuclear Information System (INIS)
Nakatsuka, K.; Jeyadevan, B.; Neveu, S.; Koganezawa, H.
2002-01-01
Real-time visual observation of boiling water-based and ionic magnetic fluids (MFs) and heat transfer characteristics in heat pipe using ionic MF stabilized by citrate ions (JC-1) as working liquid are reported. Irrespective of the presence or absence of magnetic field water-based MF degraded during boiling. However, the degradation of JC-1 was avoided by heating the fluid in magnetic field. Furthermore, the heat transfer capacity of JC-1 heat pipe under applied magnetic field was enhanced over the no field case
Natural convection heat transfer in SIGMA experiment
International Nuclear Information System (INIS)
Lee, Seung Dong; Lee, Gang Hee; Suh, Kune Yull
2004-01-01
A loss-of-coolant accident (LOCA) results in core melt formation and relocation at various locations within the reactor core over a considerable period of time. If there is no effective cooling mechanism, the core debris may heat up and commence natural circulation. The high temperature pool of molten core material will threaten the structural integrity of the reactor vessel. The extent and urgency of this threat depend primarily upon the intensity of the internal heat sources and upon the consequent distribution of the heat fluxes on the vessel walls in contact with the molten core material pools. In such a steady molten pool convection state, the thermal loads against the vessel would be determined by the in-vessel heat transfer distribution involving convective and conductive heat transfer from the decay-heated core material pool to the lower head wall in contact with the core material. In this study, upward and downward heat transfer fraction ratio is focused on
Thermal performance of horizontal closed-loop oscillating heat-pipe with check valves
International Nuclear Information System (INIS)
Rittidech, S.; Pipatpaiboon, N.; Thongdaeng, S.
2010-01-01
This research investigated the thermal performance of various horizontal closed-loop oscillating heat-pipe systems with check valves (HCLOHPs/CVs). Numerous test systems were constructed using copper capillary tubes with assorted inner diameters, evaporator lengths, and check valves. The test systems were evaluated under normal operating conditions using ethanol, R123, and distilled water as working fluids. The system's evaporator sections were heated by hot water from a hot bath, and the heat was removed from the condenser sections by cold water from a cool bath. The adiabatic sections were well insulated with foam insulators. The heat-transfer performance of the various systems was evaluated in terms of the rate of heat transferred to the cold water at the condenser. The results showed that the heat-transfer performance of an HCLOHP/CV system could be improved by decreasing the evaporator length. The highest performance of all tested systems was obtained when the maximum number of system check valves was 2. The maximum heat flux occurred with a 2 mm inner diameter tube, and R123 was determined to be the most suitable working fluid
Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe
International Nuclear Information System (INIS)
Cui, Xiaoyu; Zhu, Yue; Li, Zhihua; Shun, Shende
2014-01-01
Pulsating heat pipe (PHP) is becoming a promising heat transfer device for the application like electronics cooling. However, due to its complicated operation mechanism, the heat transfer properties of the PHP still have not been fully understood. This study experimentally investigated on a closed-loop PHP charged with four types of working fluids, deionized water, methanol, ethanol and acetone. Combined with the visualization experimental results from the open literature, the operation characteristics and the corresponding heat transfer mechanisms for different heat inputs (5 W up to 100 W) and different filling ratios (20% up to 95%) have been presented and elaborated. The results show that heat-transfer mechanism changed with the transition of operation patterns; before valid oscillation started, the thermal resistance was not like that described in the open literature where it decreased almost linearly, but would rather slowdown descending or even change into rise first before further decreasing (i.e. an inflection point existed); when the heat input further increased to certain level, e.g. 65 W or above, there presented a limit of heat-transfer performance which was independent of the types of working fluids and the filling ratios, but may be related to the structure, the material, the size and the inclination of the PHP. - Highlights: •The thermal mechanisms altered accordingly with the operation features in the PHP. •Unlike conventional heat pipes, continuous temperature soaring would not happen in the PHP. •Before the oscillation start-up, there existed a heat-transfer limit for the relatively stagnated flow in the PHP. •A limit of thermal performance existed in the PHP at relatively high heat inputs
Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring
International Nuclear Information System (INIS)
Mihalina, M.; Djetelic, N.
2010-01-01
The ultimate heat sink (UHS) is of highest importance for nuclear power plant safe and reliable operation. The most important component in line from safety-related heat sources to the ultimate heat sink water body is a component cooling heat exchanger (CC Heat Exchanger). The Component Cooling Heat Exchanger has a safety-related function to transfer the heat from the Component Cooling (CC) water system to the Service Water (SW) system. SW systems throughout the world have been the root of many plant problems because the water source, usually river, lake, sea or cooling pond, are conductive to corrosion, erosion, biofouling, debris intrusion, silt, sediment deposits, etc. At Krsko NPP, these problems usually cumulate in the summer period from July to August, with higher Sava River (service water system) temperatures. Therefore it was necessary to continuously evaluate the CC Heat Exchanger operation and confirm that the system would perform its intended function in accordance with the plant's design basis, given as a minimum heat transfer rate in the heat exchanger design specification sheet. The Essential Service Water system at Krsko NPP is an open cycle cooling system which transfers heat from safety and non-safety-related systems and components to the ultimate heat sink the Sava River. The system is continuously in operation in all modes of plant operation, including plant shutdown and refueling. However, due to the Sava River impurities and our limited abilities of the water treatment, the system is subject to fouling, sedimentation buildup, corrosion and scale formation, which could negatively impact its performance being unable to satisfy its safety related post accident heat removal function. Low temperature difference and high fluid flows make it difficult to evaluate the CC Heat Exchanger due to its specific design. The important effects noted are measurement uncertainties, nonspecific construction, high heat transfer capacity, and operational specifics (e
Heat Transfer in Metal Foam Heat Exchangers at High Temperature
Hafeez, Pakeeza
Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.
National Research Council Canada - National Science Library
Chow, L
1998-01-01
.... The heat generated from a 9x9-heater array was removed by liquid nitrogen pool boiling. The orientation and space limitation of the array were varied to explore their effects on the critical heat flux (CHF) value...
Heat exchanger network retrofit optimization involving heat transfer enhancement
International Nuclear Information System (INIS)
Wang Yufei; Smith, Robin; Kim, Jin-Kuk
2012-01-01
Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often result in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. Both of these problems can be avoided through the use of heat transfer enhancement in heat exchanger network retrofit. This paper presents a novel design approach to solve heat exchanger network retrofit problems based on heat transfer enhancement. An optimisation method based on simulated annealing has been developed to find the appropriate heat exchangers to be enhanced and to calculate the level of enhancement required. The physical insight of enhanced exchangers is also analysed. The new methodology allows several possible retrofit strategies using different retrofit methods be determined. Comparison of these retrofit strategies demonstrates that retrofit modification duration and payback time are reduced when heat transfer enhancement is utilised. Heat transfer enhancement can be also used as a substitute for increased heat exchanger network surface area to reduce retrofit investment costs.
Capillary Pumped Heat Transfer (CHT) Experiment
Hallinan, Kevin P.; Allen, J. S.
1998-01-01
The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.
Endwall convective heat transfer for bluff bodies
DEFF Research Database (Denmark)
Wang, Lei; Salewski, Mirko; Sundén, Bengt
2012-01-01
The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study......, a single bluff body and two bluff bodies arranged in tandem are considered. Due to the formation of horseshoe vortices, the heat transfer is enhanced appreciably for both cases. However, for the case of two bluff bodies in tandem, it is found that the presence of the second bluff body decreases the heat...... transfer as compared to the case of a single bluff body. In addition, the results show that the heat transfer exhibits Reynolds number similarity. For a single bluff body, the Nusselt number profiles collapse well when the data are scaled by Re0.55; for two bluff bodies arranged in tandem, the heat...
Experimental study on transient boiling heat transfer
International Nuclear Information System (INIS)
Visentini, R.
2012-01-01
Boiling phenomena can be found in the everyday life, thus a lot of studies are devoted to them, especially in steady state conditions. Transient boiling is less known but still interesting as it is involved in the nuclear safety prevention. In this context, the present work was supported by the French Institute of Nuclear Safety (IRSN). In fact, the IRSN wanted to clarify what happens during a Reactivity-initiated Accident (RIA). This accident occurs when the bars that control the nuclear reactions break down and a high power peak is passed from the nuclear fuel bar to the surrounding fluid. The temperature of the nuclear fuel bar wall increases and the fluid vaporises instantaneously. Previous studies on a fuel bar or on a metal tube heated by Joule effect were done in the past in order to understand the rapid boiling phenomena during a RIA. However, the measurements were not really accurate because the measurement techniques were not able to follow rapid phenomena. The main goal of this work was to create an experimental facility able to simulate the RIA boiling conditions but at small scale in order to better understand the boiling characteristics when the heated-wall temperature increases rapidly. Moreover, the experimental set-up was meant to be able to produce less-rapid transients as well, in order to give information on transient boiling in general. The facility was built at the Fluid-Mechanics Institute of Toulouse. The core consists of a metal half-cylinder heated by Joule effect, placed in a half-annulus section. The inner half cylinder is made of a 50 microns thick stainless steel foil. Its diameter is 8 mm, and its length 200 mm. The outer part is a 34 mm internal diameter glass half cylinder. The semi-annular section is filled with a coolant, named HFE7000. The configuration allows to work in similarity conditions. The heated part can be place inside a loop in order to study the flow effect. The fluid temperature influence is taken into account as
Supercritical heat transfer in an annular channel with external heating
International Nuclear Information System (INIS)
Remizov, O.V.; Gal'chenko, Eh.F.; Shurkin, N.G.; Sergeev, V.V.
1980-01-01
Results are presented of experimental studies of the burnout heat transfer in a 32x28x3000 mm annular channel with a uniform distribution of a heat flow at pressures of 6.9-19.6 MPa and mass rates of 350-1000 kg/m 2 xs. The heating is electrical, external, one-sided. It is shown that dependencies of the heat-transfer coefficient on rated parameters in the annular channel and tube are similar. An empirical equation has been obtained for the calculation of the burnout heat transfer in the annual channels with external heating in the following range: pressure, 6.9 -13.7 MPa; mass rate 350-700 kg/m 2 xs, and steam content ranging from Xsub(crit) to 1
Forced convection heat transfer in He II
International Nuclear Information System (INIS)
Kashani, A.
1986-01-01
An investigation of forced convection heat transfer in He II is conducted. The study includes both experimental and theoretical treatments of the problem. The experiment consists of a hydraulic pump and a copper flow tube, 3 mm in ID and 2m long. The system allows measurements of one-dimensional heat and mass transfer in He II. The heat transfer experiments are performed by applying heat at the midpoint along the length of the flow tube. Two modes of heat input are employed, i.e., step function heat input and square pulse heat input. The heat transfer results are discussed in terms of temperature distribution in the tube. The experimental temperature profiles are compared with numerical solutions of an analytical model developed from the He II energy equation. The bath temperature is set at three different values of 1.65, 1.80, and 1.95 K. The He II flow velocity is varied up to 90 cm/s. Pressure is monitored at each end of the flow tube, and the He II pressure drop is obtained for different flow velocities. Results indicate that He II heat transfer by forced convention is considerably higher than that by internal convection. The theoretical model is in close agreement with the experiment. He II pressure drop and friction factor are very similar to those of an ordinary fluid
In situ conversion process utilizing a closed loop heating system
Sandberg, Chester Ledlie [Palo Alto, CA; Fowler, Thomas David [Houston, TX; Vinegar, Harold J [Bellaire, TX; Schoeber, Willen Jan Antoon Henri
2009-08-18
An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.
Heat transfer from two-side heated helical channels
International Nuclear Information System (INIS)
Shimonis, V.; Ragaishis, V.; Poshkas, P.
1995-01-01
Experimental results are presented on the heat transfer from two-side heated helical channels to gas (air) flows. The study covered six configurations and wide ranges of geometrical (D/h=5.5 to 84.2) and performance (Re=10 3 to 2*10 5 ) parameters. Under the influence of Re and of the channel curvature, the heat transfer from both the convex and the concave surfaces for two-side heating (q w1 ≅ q w2 ) is augmented by 20-30% over one-side heating. Improved relations to predict the critical values of Reynolds Re cr1 and Re cr2 are suggested. They enable more exact predictions of the heat transfer from convex surface in transient flows for one-side heating. The relation for annular channels is suggested for the turbulent heat transfer from the convex and concave surfaces of two-side heated helical channels. It can be adapted by introducing earlier expresions for one-side heated helical channels. (author). 6 refs., 2 tabs., 3 figs
Turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Noda, Nobuaki
2008-01-01
The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by an experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thickness (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influence of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer is investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for the wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15%, difference. (author)
Turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Noda, Nobuaki
2007-01-01
The turbulent heat transfer coefficients for the flow velocities (u=4.0 to 21 m/s), the inlet liquid temperatures (T in =296.5 to 353.4 K), the inlet pressures (P in =810 to 1014 kPa) and the increasing heat inputs (Q 0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured by the experimental water loop. The Platinum test tubes of test tube inner diameters (d=3, 6 and 9 mm), heated lengths (L=32.7 to 100 mm), ratios of heated length to inner diameter (L/d=5.51 to 33.3) and wall thicknesses (δ=0.3, 0.4 and 0.5 mm) with surface roughness (Ra=0.40 to 0.78 μm) are used in this work. The turbulent heat transfer data for Platinum test tubes were compared with the values calculated by other workers' correlations for the turbulent heat transfer. The influences of Reynolds number (Re), Prandtl number (Pr), Dynamic viscosity (μ) and L/d on the turbulent heat transfer are investigated into details and, the widely and precisely predictable correlation of the turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data. The correlation can describe the turbulent heat transfer coefficients obtained in this work for wide range of the temperature difference between heater inner surface temperature and average bulk liquid temperature (ΔT L =5 to 140 K) with d=3, 6 and 9 mm, L=32.7 to 100 mm and u=4.0 to 21 m/s within ±15% difference. (author)
Interfacial stability with mass and heat transfer
International Nuclear Information System (INIS)
Hsieh, D.Y.
1977-07-01
A simplified formulation is presented to deal with interfacial stability problems with mass and heat transfer. For Rayleigh-Taylor stability problems of a liquid-vapor system, it was found that the effect of mass and heat transfer tends to enhance the stability of the system when the vapor is hotter than the liquid, although the classical stability criterion is still valid. For Kelvin-Holmholtz stability problems, however, the classical stability criterion was found to be modified substantially due to the effect of mass and heat transfer
Heat transfer between adsorbate and laser-heated hot electrons
International Nuclear Information System (INIS)
Ueba, H; Persson, B N J
2008-01-01
Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough
Enhancing heat transfer in microchannel heat sinks using converging flow passages
International Nuclear Information System (INIS)
Dehghan, Maziar; Daneshipour, Mahdi; Valipour, Mohammad Sadegh; Rafee, Roohollah; Saedodin, Seyfolah
2015-01-01
Highlights: • The fluid flow and conjugate heat transfer in microchannel heat sinks are studied. • The Poiseuille and Nusselt numbers are presented for width-tapered MCHS. • Converging walls are found to enhance the thermal performance of MCHS. • The optimum performance of MCHS for fixed inlet and outlet pressures is discussed. • For the optimum configuration, the pumping power is reduced up to 75%. - Abstract: Constrained fluid flow and conjugate heat transfer in microchannel heat sinks (MCHS) with converging channels are investigated using the finite volume method (FVM) in the laminar regime. The maximum pressure of the MCHS loop is assumed to be limited due to constructional or operational conditions. Results show that the Poiseuille number increases with increased tapering, while the required pumping power decreases. Meanwhile, the Nusselt number increases with tapering as well as the convection heat transfer coefficient. The MCHS having the optimum heat transfer performance is found to have a width-tapered ratio equal to 0.5. For this tapering configuration and at the maximum pressure constraint of 3000 Pa, the pumping power reduces by a factor of 4 while the overall heat removal rate is kept fixed in comparison with a straight channel
Heat transfer enhancement using 2MHz ultrasound.
Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas
2017-11-01
The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.
Heat transfer in an asymmetrically heated duct, 2
International Nuclear Information System (INIS)
Satoh, Isao; Kurosaki, Yasuo
1986-01-01
The objective of this article is to study theoretically and experimentally the effects of nonuniform heating on turbulent heat transfer characteristics for flow in a horizontal rectangular duct ; a vertical side wall was uniformly heated, and the other wall were insulated. In our theoretical approach, the zero-equation model for turbulent eddy viscosity was employed. The effects of mesh size of finite difference on the calculation results were examined, and some refined compensation for wall temperatures and wall shear stresses by no use of fine mesh were proposed to reduce the calculation time. The heat transfer coefficients in thermally developing region for a nonuniformly heated duct obtained from numerical solutions are larger than the one for uniformly heated case. The buoyancy effects on heat transfer were evaluated. However, it was seen that the secondary flow due to buoyancy force was hardly expected to enhance heat transfer in a turbulent duct flow. Experiments were performed to measure the velocity and temperature profiles in a turbulent duct flow with a nonuniform heated wall. The experimental results were in good agreement with the theoretical ones. (author)
Modeling of heat transfer into a heat pipe for a localized heat input zone
International Nuclear Information System (INIS)
Rosenfeld, J.H.
1987-01-01
A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance
Porous Foam Based Wick Structures for Loop Heat Pipes
Silk, Eric A.
2012-01-01
As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.
Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study
Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.
2018-04-01
1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.
Effect of Tube Diameter on Heat Transfer to Vertically Upward Flowing Supercritical CO2
International Nuclear Information System (INIS)
Kang, Deog Ji; Kim, Sin; Bae, Yoon Yeong; Kim, Hwan Yeol; Kim, Hyung Rae
2007-01-01
Heat transfer characteristics of supercritical carbon dioxide are being investigated experimentally in the test loop named as SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt generation) at KAERI. The main purpose of the experiment is to provide a reliable heat transfer database for a SCWR (SuperCritical Water-cooled Reactor) by a prudent extension of the carbon dioxide test results to the estimation of a heat transfer for water. The produced data will be used in the thermo-hydraulic design of core and safety analysis for SCWR. The aim of the present paper is to study the influence of a tube diameter on a heat transfer. The experiments were completed for tubes of an inside diameter of 4.4mm and 9.0mm, respectively. The heat transfer characteristics from the two tubes of different diameters were compared and discussed
Effect of Tube Diameter on Heat Transfer to Vertically Upward Flowing Supercritical CO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Kang, Deog Ji; Kim, Sin [Cheju National University, Jeju (Korea, Republic of); Bae, Yoon Yeong; Kim, Hwan Yeol; Kim, Hyung Rae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2007-07-01
Heat transfer characteristics of supercritical carbon dioxide are being investigated experimentally in the test loop named as SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt generation) at KAERI. The main purpose of the experiment is to provide a reliable heat transfer database for a SCWR (SuperCritical Water-cooled Reactor) by a prudent extension of the carbon dioxide test results to the estimation of a heat transfer for water. The produced data will be used in the thermo-hydraulic design of core and safety analysis for SCWR. The aim of the present paper is to study the influence of a tube diameter on a heat transfer. The experiments were completed for tubes of an inside diameter of 4.4mm and 9.0mm, respectively. The heat transfer characteristics from the two tubes of different diameters were compared and discussed.
Heat transfer studies in pool fire environment
International Nuclear Information System (INIS)
Nitsche, F.
1993-01-01
A Type B package has to withstand severe thermal accident conditions. To calculate the temperature behaviour of such a package in a real fire environment, heat transfer parameters simulating the effect of the fire are needed. For studying such heat transfer parameters, a systematic programme of experimental and theoretical investigations was performed which was part of the IAEA Coordinated Research Programme (Nitsche and Weib 1990). The studies were done by means of small, unfinned and finned, steel model containers of simplified design in hydrocarbon fuel open fire tests. By using various methods, flame and container temperatures were measured and also container surface absorptivity before and after the test to study the effect of sooting and surface painting on heat transfer. Based on all these experimental data and comparative calculations, simplified, effective heat transfer parameters could be derived, simulating the effect of the real fire on the model containers. (J.P.N.)
Transient heat transfer in liquid helium
International Nuclear Information System (INIS)
Shiotsu, Masahiro
1991-01-01
Detailed knowledge on the steady-state and transient heat transfer from solid surfaces in He I and He II is important as a database for the analysis of the influence of local thermal disturbances on the stability of He I or He II cooled large superconducting magnets. In this paper, an overview of the transient heat transfer characteristics on solid surfaces in He I and He II caused by various large stepwise heat inputs, such as the quasi-steady nucleate boiling with a certain lifetime in He I and the quasi-steady Kapitza conductance heat flux with a certain lifetime in He II, are presented in comparison with their steady-state heat transfer characteristics. (author)
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
International Nuclear Information System (INIS)
Chang Oh; Cliff Davis; Rober Barner; Paul Pickard
2005-01-01
The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic evaluations and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various
Heat transfer analysis of short helical borehole heat exchangers
International Nuclear Information System (INIS)
Zarrella, Angelo; De Carli, Michele
2013-01-01
Highlights: ► Vertical ground heat exchanger with a helical shaped pipe is analyzed. ► The model considers the interaction between the ground and the environment. ► The results of the model are in good agreement with the experimental values. ► The weather conditions considerably affect the fluid heat carrier temperature. ► The pitch between the turns does not affect the behaviour of the heat exchanger. -- Abstract: In this paper a numerical model to analyze the thermal behaviour of vertical ground heat exchangers with a helical shaped pipe is presented. This type of configuration can be a suitable alternative to conventional ground heat exchangers, especially when the heating and cooling loads of the building are very low. The model describes the heat transfer problem by means of a network of interconnected thermal resistances and capacitances. Moreover, as the investigated ground heat exchanger is usually installed in shallow depth, the model takes into account the interaction between the ground and the ambient environment which affects the fluid heat carrier temperature into the heat exchanger and, as a consequence, the energy efficiency of the heat pump. After a sensitivity analysis on the mesh parameters, the presented model is compared with experimental data and the simulation results show good agreement with the measurements. Finally, analyses to investigate the influence of the weather conditions, of the axial heat transfer and of the pitch between the turns of the helical pipe for two types of ground are carried out.
International Nuclear Information System (INIS)
Guo, Yuandong; Lin, Guiping; He, Jiang; Bai, Lizhan; Zhang, Hongxing; Miao, Jianyin
2017-01-01
Highlights: • A neon-charged CLHP integrated with a G-M cryocooler was designed and investigated. • The CLHP can realize the supercritical startup with an auxiliary heat load of 1.5 W. • Maximum heat transport capability of the CLHP was 4.5 W over a distance of 0.6 m. • There existed an optimum auxiliary heat load to expedite the supercritical startup. • There existed an optimum charged pressure to reach the largest heat transfer limit. - Abstract: Neon-charged cryogenic loop heat pipe (CLHP) can realize efficient cryogenic heat transport in the temperature range of 30–40 K, and promises great application potential in the thermal control of future space infrared exploration system. In this work, extensive experimental studies on the supercritical startup and heat transport capability of a neon-charged CLHP integrated with a G-M cryocooler were carried out, where the effects of the auxiliary heat load applied to the secondary evaporator and charged pressure of the working fluid were investigated. Experimental results showed that the CLHP could successfully realize the supercritical startup with an auxiliary heat load of 1.5 W, and there existed an optimum auxiliary heat load and charged pressure of the working fluid respectively, to achieve the maximum temperature drop rate of the primary evaporator during the supercritical startup. The CLHP could reach a maximum heat transport capability of 4.5 W over a distance of 0.6 m corresponding to the optimum charged pressure of the working fluid; however, the heat transport capability decreased with the increase of the auxiliary heat load. Furthermore, the inherent mechanisms responsible for the phenomena observed in the experiments were analyzed and discussed, to provide a better understanding from the theoretical view.
Heat transfer enhancement on nucleate boiling
International Nuclear Information System (INIS)
Zhuang, M.; Guibai, L.
1990-01-01
This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives
Theory of Periodic Conjugate Heat Transfer
Zudin, Yuri B
2012-01-01
This book presents the theory of periodic conjugate heat transfer in a detailed way. The effects of thermophysical properties and geometry of a solid body on the commonly used and experimentally determined heat transfer coefficient are analytically presented from a general point of view. The main objective of the book is a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body. At the body surface, the true heat transfer coefficient is composed of two parts: the true mean value resulting from the solution of the steady state heat transfer problem and a periodically variable part, the periodic time and length to describe the oscillatory hydrodynamic effects. The second edition is extended by (i) the analysis of stability boundaries in helium flow at supercritical conditions in a heated channel with respect to the interaction between a solid body and a fluid; (ii) a periodic model and a method of heat transfer sim...
Nonlocal heat transfer in nanostructures
International Nuclear Information System (INIS)
Kanavin, A.P.; Uryupin, S.A.
2008-01-01
Kinetics of electrons in a degenerate conductor heated up by absorption of a high-frequency field localized in a region of about hundred nanometers has been studied. A new law for nonlocal electron thermal flux has been predicted
Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System
Directory of Open Access Journals (Sweden)
Nannan Dai
2017-02-01
Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used
International Nuclear Information System (INIS)
Barchewitz, E.; Baumgaertner, H.
1985-01-01
The invention is concerned with improving the arrangement of a heat exchanger designed to transfer heat from the coolant gas circuit of a high temperature reactor to a gas which is to be used for a process heat plant. In the plant the material stresses are to be kept low at high differential pressures and temperatures. According to the invention the tube bundles designed as boxes are fixed within the heat exchanger closure by means of supply pipes having got loops. For conducting the hot gas the heat exchanger has got a central pipe leading out of the reactor vessel through the pod closure and having got only one point of fixation, lying in this closure. Additional advantageous designs are mentioned. (orig./PW)
Conjugate Heat Transfer Study in Hypersonic Flows
Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar
2018-04-01
Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.
Theory of periodic conjugate heat transfer
Zudin, Yuri B
2016-01-01
This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.
Cornish heat transfer experiment - final report
International Nuclear Information System (INIS)
Bourke, P.J.; Hodgkinson, D.P.
1985-01-01
The transfer of heat released in an in-site heating experiment simulating high level radioactive waste packages in granite in Cornwall has been found to be mainly by conduction but some appreciable convection does occur. Interim analysis of the data suggests that the latter may account for about 20% of the total. (author)
Interactive Heat Transfer Simulations for Everyone
Xie, Charles
2012-01-01
Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…
Directory of Open Access Journals (Sweden)
Lei Ma
2016-06-01
Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.
Industrial furnace with improved heat transfer
Energy Technology Data Exchange (ETDEWEB)
Hoetzl, M.; Lingle, T.M.
1993-07-20
A method is described for effecting improved heat transfer with in an industrial furnace having a cylindrical furnace section, a door at one end of the furnace section, an end plate at the opposite end of the section a circular fan plate concentrically positioned within the furnace section to define a cylindrical fan chamber between the plate and the end section with a fan there between and a heat treat chamber between the plate and the door, the fan plate defining a non-orificing annular space extending between the interior of the cylindrical furnace section and the outer edge of the plate, the plate having a centrally located under-pressure opening extending there through and a plurality of circumferentially spaced tubular heating elements extending through the annular space into the heat treating chamber, the method comprising the steps of: (a) heating the heating elements to a temperature which is hotter that the temperature of the work within the heat treating chamber; (b) rotating the fan at a speed sufficient to form a portion of the furnace atmosphere as a wind mass swirling about the fan chamber; (c) propagating the wind mass through the annular space into the heat treating chamber as a swirling wind mass in the form of an annulus, the wind mass impinging the heating elements to establish heat transfer contact therewith while the mass retains its annulus shape until contacting the door and without any significant movement of the wind mass into the center of the heat treating chamber; (d) drawing the wind mass through the under-pressure zone after the wind mass comes into heat transfer contact with the work in the heat treating chamber; and (e) thereafter heating the work by radiation from the beating elements at high furnace temperatures in excess of about 1,600 F.
Heat transfer enhancement in heat exchangers by longitudinal vortex generators
International Nuclear Information System (INIS)
Guntermann, T.; Fiebig, M.; Mitra, N.K.
1990-01-01
In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β
Heat transfer with freezing and thawing
Lunardini, VJ
1991-01-01
This volume provides a comprehensive overview on the vast amount of literature on solidification heat transfer. Chapter one develops important basic equations and discusses the validity of considering only conductive heat transfer, while ignoring convection, in the large class of materials which make up the porous media. Chapters 2 to 4 deal with problems that can be expressed in plane (Cartesian) coordinates. These problems are further divided into boundary conditions of temperature, prescribed heat flux, and surface convection. Chapter 5 examines some plane geometries involving three-dime
International Nuclear Information System (INIS)
Sircilli Neto, F.; Passaro, A.; Borges, E.M.
1991-01-01
The cooling systems of nuclear reactors for spacial applications include direct current electromagnetic pumps, which are used to circulate the coolant fluid thru the reactor core. In this work, the transfer of the heat generated by the electrical current in a magnet C excitation coils, which is used in a prototype pump, was evaluated. Considering the processes of heat transfer by conduction, natural convection and radiation, the results of simulation with the codes HEATING5 and AUTHEATS indicate the utilization of the 180 sup(0)C thermal class conductor for a working Joule power of 4 10 sup(4) W/m sup(3) in each magnet coil. (author)
Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid
International Nuclear Information System (INIS)
Faw, R.E.; Baker, L. Jr.
1976-01-01
Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process
Indirect evaporative coolers with enhanced heat transfer
Kozubal, Eric; Woods, Jason; Judkoff, Ron
2015-09-22
A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.
Heat transfer in the atmosphere
Oerlemans, J.
1982-01-01
The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it
Modeling microscale heat transfer using Calore.
Energy Technology Data Exchange (ETDEWEB)
Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley
2005-09-01
Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.
Heat transfer characteristics of a helical heat exchanger
International Nuclear Information System (INIS)
San, Jung-Yang; Hsu, Chih-Hsiang; Chen, Shih-Hao
2012-01-01
Heat transfer performance of a helical heat exchanger was investigated. The heat exchanger is composed of a helical tube with rectangular cross section and two cover plates. The ε–Ntu relation of the heat exchanger was obtained using a numerical method. In the analysis, the flow in the tube (helical flow) was considered to be mixed and the flow outside the tube (radial flow) was unmixed. In the experiment, the Darcy friction factor (f) and convective heat transfer coefficient (h) of the radial flow were measured. The radial flow was air and the helical flow was water. Four different channel spacing (0.5, 0.8, 1.2 and 1.6 mm) were individually considered. The Reynolds numbers were in the range 307–2547. Two correlations, one for the Darcy friction factor and the other for the Nusselt number, were proposed. - Highlights: ► We analyze the heat transfer characteristics of a helical heat exchanger and examine the effectiveness–Ntu relation. ► Increasing number of turns of the heat exchanger would slightly increase the effectiveness. ► There is an optimum Ntu value corresponding to a maximum effectiveness. ► We measure the Darcy friction factor and Nusselt number of the radial flow and examine the correlations.
Lunar ash flow with heat transfer.
Pai, S. I.; Hsieh, T.; O'Keefe, J. A.
1972-01-01
The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.
Heat transfer in a thermoacoustic process
International Nuclear Information System (INIS)
Beke, Tamas
2012-01-01
Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis aimed at determining the stability–instability border of the thermoacoustic system. In this paper, we present a project type of physical examination and modelling task. We employed an electrically heated Rijke tube in our thermoacoustic project work. The aim of our project is to help our students enlarge their knowledge about thermodynamics, mainly about thermoacoustics, and develop their applied information technology and mathematical skills. (paper)
Temperature Oscillations in Loop Heat Pipes - A Revisit
Ku, Jentung
2018-01-01
Three types of temperature oscillation have been observed in the loop heat pipes. The first type is an ultra-high frequency temperature oscillation with a period on the order of seconds or less. This type of temperature oscillation is of little significance in spacecraft thermal control because the amplitude is in the noise level. The second type is a high frequency, low amplitude temperature oscillation with a period on the order of seconds to minutes and an amplitude on the order of one Kelvin. It is caused by the back-and-forth movement of the vapor front near the inlet or outlet of the condenser. The third type is a low frequency, high amplitude oscillation with a period on the order of hours and an amplitude on the order of tens of Kelvin. It is caused by the modulation of the net heat load into the evaporator by the attached large thermal mass which absorbs and releases energy alternately. Several papers on LHP temperature oscillation have been published. This paper presents a further study on the underlying physical processes during the LHP temperature oscillation, with an emphasis on the third type of temperature oscillation. Specifically, equations governing the thermal and hydraulic behaviors of LHP operation will be used to describe interactions among LHP components, heat source, and heat sink. The following sequence of events and their interrelationship will also be explored: 1) maxima and minima of reservoir and thermal mass temperatures; 2) the range of the vapor front movement inside the condenser; 3) rates of change of the reservoir and thermal mass temperatures; 4) the rate of heat absorption and heat release by the thermal mass and the rate of vapor front movement; and 5) inflection points of the reservoir and thermal mass temperatures.
A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap
Directory of Open Access Journals (Sweden)
Musiał Tomasz
2017-01-01
Full Text Available In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.
Pressure Profiles in a Loop Heat Pipe under Gravity Influence
Ku, Jentung
2015-01-01
During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.
Heat transfer from thermal effluent
International Nuclear Information System (INIS)
Czapski, U.H.; Mumford, W.
1975-01-01
Measurements of the turbulent fluxes of sensible heat and momentum, together with profiles of horizontal wind, temperature, and humidity (wet bulb) have been conducted above the thermal plume of the Nine Mile Point Nuclear plant near Oswego, New York on Lake Ontario. The spectral analysis of the data, obtained with sonic anemometer and ultrafast thermocouples, reveals the importance of microthermals and similar features for the transport of heat. Temperature variance spectra and the cospectra wT and uw show distinct deviations from the -5/3 Kolmogorov law in the inertial subrange, suggesting a high input of energy in the eddy frequency range between 0.01 and 1 Hz. It is shown that microthermals in this frequency range are also responsible for a large portion of the momentum transport. 46 refs
Heat Transfer Model for Hot Air Balloons
Lladó Gambín, Adriana
2016-01-01
A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the mod...
Evaluation of heat transfer enhancement in air-heating collectors
Energy Technology Data Exchange (ETDEWEB)
Mattox, D. L.
1979-06-01
The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the
Heat transfer 1990. Proceedings of the ninth international heat transfer conference
International Nuclear Information System (INIS)
Hetsroni, G.
1990-01-01
This book contains the proceedings of the Ninth International Heat Transfer Conference. Included in Volume 3 are the following chapters: Refrigerant vapor condensation on a horizontal tube bundle. Local heat transfer in a reflux condensation inside a closed two-phase thermosyphon and surface temperature by means of a pulsed photothermal effects
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
Koplow, Jeffrey P.
2016-02-16
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.
Development of BNL Heat Transfer Facility 1: flashing experiments
International Nuclear Information System (INIS)
Leonhardt, W.J.; Klein, J.H.; Zimmer, G.A.; Abuaf, N.; Jones, O.C. Jr.
1979-01-01
A major area of interest to reactor safety technology is the prediction of actual vapor generation rates under conditions of thermal nonequilibrium as would be encountered during a loss-of-coolant accident (LOCA) in a light water reactor. In support of the development of advanced codes dealing with LOCA induced flashing, analytical models of the nonequilibrium vapor generation processes of interest have been formulated, and an experimental facility has been constructed to provide data to verify these models. This facility is known as BNL Heat Transfer Facility. The experimental facility consists of a flow loop, test section and the data acquisition and analysis system. The main portion of the flow loop is constructed from three inch nominal (7.6 cm) stainless steel pipe. High purity water is circulated through the loop using a centrifugal pump rated 1500 l/min at 600 kPa. Very close and stable control of all loop parameters is required since flashing is sensitive to very small changes in such parameters as flow rate, subcooling, and pressure
Heat transfer pipe shielding device for heat exchanger
International Nuclear Information System (INIS)
Hanawa, Jun.
1991-01-01
The front face and the rear face of a frame that surrounds the circumference of the water chamber body of a multi-tube heat exchanger are covered by a rotational shielding plate. A slit is radially formed to the shielding plate for the insertion of a probe or cleaner to the heat transfer pipe and a deflector is disposed on the side opposite to the slit. The end of the heat transfer pipe to be inspected is exposed to the outer side by way of the slit by the rotation of the shielding plate, and the probe or cleaner is inserted in the heat transfer pipe to conduct an eddy current injury monitoring test or cleaning. The inside of the water chamber and the heat transfer pipe is exhausted by a ventilation nozzle disposed to the frame. Accordingly, a shielding effect upon inspection and cleaning can be obtained and, in addition, inspection and exhaustion at the cleaning position can be conducted easily. Since the operation for attachment and detachment is easy, the effect of reducing radiation dose per unit can be obtained by the shortening of the operation time. (N.H.)
Study of a Loop Heat Pipe Using Neutron Radiography
International Nuclear Information System (INIS)
C. Thomas Conroy; A. A. El-Ganayni; David R. Riley; John M. Cimbala; Jack S. Brenizer, Jr.; Abel Po-Ya Chuang; Shane Hanna
2001-01-01
An explanation is given of what a loop heat pipe (LHP) is, and how it works. It is then shown that neutron imaging (both real time neutron radioscopy and single exposure neutron radiography) is an effective experimental tool for the study of LHPs. Specifically, neutron imaging has helped to identify and correct a cooling water distribution problem in the condenser, and has enabled visualization of two-phase flow (liquid and vapor) in various components of the LHP. In addition, partial wick dry-out, a phenomenon of great importance in the effective operation of LHPs, has been identified with neutron imaging. It is anticipated that neutron radioscopy and radiography will greatly contribute to our understanding of LHP operation, and will lead to improvement of LHP modeling and design
Heat transfer with a split water channel
International Nuclear Information System (INIS)
Krinsky, S.
1978-01-01
The heat transfer problem associated with the incidence of synchrotron radiation upon a vacuum chamber wall cooled by a single water channel was previously studied, and a numerical solution to the potential problem was found using the two-dimensional magnet program POISSON. Calculations were extended to consider the case of a split water channel using POISSON to solve the potential problem for a given choice of parameters. By optimizing the dimensions, boiling of the water can be avoided. A copper chamber is a viable solution to the heat transfer problem at a beam port
Natural Convective Heat Transfer from Narrow Plates
Oosthuizen, Patrick H
2013-01-01
Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.
Heat transfer applications for the practicing engineer
Theodore, Louis
2011-01-01
This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu
Heat transfer phenomena revelant to severe accidents
International Nuclear Information System (INIS)
Dallman, R.J.; Duffey, R.B.
1990-01-01
A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression
Heat transfer phenomena relevant to severe accidents
International Nuclear Information System (INIS)
Dallman, R.J.; Duffey, R.B.
1990-01-01
A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression. 26 refs
Heat transfer for plasma facing components
International Nuclear Information System (INIS)
Boyd, R.D.; Meng, X.; Maughan, H.
1995-01-01
Although the high heat flux requirements for plasma-facing components have been reduced drastically from 40.0 MW/m 2 to near 10.0 MW/m 2 , there are still some refinements needed. This paper highlights: (1) recent accomplishments and pinpoints new thermal solutions and problem areas of immediate concern to the development of plasma-facing components, and (2) next generation thermal hydraulic problems which must be addressed to insure safety and reliability in component operation. More specifically the near-term thermal hydraulic problems entail: (1) generating an appropriate data base to insure the development of single-side heat flux correlations; and (2) adapting the existing vast uniform heat flux literature to the case of non-uniform heat flux distributions found in plasma facing components in fusion reactors. Results are presented for the latter task which includes: (a) an accurate subcooled flow boiling curve correlation for the partial nucleate boiling regime which can be adapted using previously proposed correlations relating single-side boundary heat flux to heat transfer, in uniformly heated channels, (b) the evaluation of the possibility of using the existing literature directly with redefined parameters, and (c) an estimation of circumferential variations in the heat transfer coefficient
Microscale surface modifications for heat transfer enhancement.
Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C
2013-10-09
In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.
Turbulent Heat Transfer in Curved Pipe Flow
Kang, Changwoo; Yang, Kyung-Soo
2013-11-01
In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).
Natural convective heat transfer from square cylinder
Energy Technology Data Exchange (ETDEWEB)
Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 1, 010 26 Žilina (Slovakia)
2016-06-30
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.
Heat and mass transfer in buildings
International Nuclear Information System (INIS)
Kristoffersen, Astrid Rusaas
2005-01-01
This thesis has presented four journal papers about ventilation and heat transfer in buildings. Ventilation and heat transfer in buildings are elements that decide our indoor air quality, thermal comfort and energy use in buildings. Models and experiments are tools to understand the complex physics of heat and air transfer in buildings. As computers are, getting cheaper and more powerful, there is a need to develop reliable models that can predict heat and air transfer in buildings. The first paper in this thesis addressed the widely used multizone model. This model is mainly used to find the airflows between zones in a building. A multizone model is often coupled to an energy analysis program, and affects therefore the calculated energy use in a building. The first paper in this thesis, titled ''Effect of room air recirculation delay on the decay rate of tracer gas concentration'' discussed the impact of a recirculating ventilation system on the decay of the tracer gas concentration in the room. The delay of the tracer gas through the ventilation system affects the concentration in the room, and must be accounted for when calculating the amount of fresh air that the ventilation system supplies. The second paper titled ''CFD Investigation of Room Ventilation for Improved Operation of a Downdraft Table: Novel Concepts'' investigated the performance of a downdraft table by changing the ventilation configuration in the room by use of Computational Fluid Dynamics (CFD). CFD can provide a microscopic description of the airflow and the behavior of pollutants and temperature distribution in a room. This paper calculated the airflow pattern in the room without influence of thermal effects, and demonstrated the usage of CFD. It was found that the total airflow could be reduced compared to an existing configuration (and hence reduce energy costs), and at the same time increasing the performance of the downdraft table (increasing the indoor air quality). A room with a
Heat Transfer in Directional Water Transport Fabrics
Directory of Open Access Journals (Sweden)
Chao Zeng
2016-10-01
Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso
2014-01-01
This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758
Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer
Directory of Open Access Journals (Sweden)
Giovanni Maria Carlomagno
2014-11-01
Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.
Directory of Open Access Journals (Sweden)
Smitka Martin
2014-03-01
Full Text Available One of the options on how to remove waste heat from electronic components is using loop heat pipe. The loop heat pipe (LHP is a two-phase device with high effective thermal conductivity that utilizes change phase to transport heat. It was invented in Russia in the early 1980’s. The main parts of LHP are an evaporator, a condenser, a compensation chamber and a vapor and liquid lines. Only the evaporator and part of the compensation chamber are equipped with a wick structure. Inside loop heat pipe is working fluid. As a working fluid can be used distilled water, acetone, ammonia, methanol etc. Amount of filling is important for the operation and performance of LHP. This work deals with the design of loop heat pipe and impact of filling ratio of working fluid to remove waste heat from insulated gate bipolar transistor (IGBT.
A Heat Transfer Correlation in a Vertical Upward Flow of CO{sub 2} at Supercritical Pressures
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyung Rae; Bae, Yoon Yeong; Song, Jin Ho; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2006-07-01
Heat transfer data has been collected in the heat transfer test loop, named SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), in KAERI. The facility primarily aims at the generation of heat transfer data in the flow conditions and geometries relevant to SCWR (SuperCritical Water-cooled Reactor). The produced data will aid the thermohydraulic design of a reactor core. The loop uses carbon dioxide, and later the results will be scaled to the water flows. The heat transfer data has been collected for a vertical upward flow in a circular tube with varying mass fluxes, heat fluxes, and operating pressures. The results are compared with the existing correlations and a new correlation is proposed by fine-tuning the one of the existing correlations.
The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation
International Nuclear Information System (INIS)
Wong, K.-L.; Ke, M.-T.; Ku, S.-S.
2009-01-01
The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.
Very High Temperature Test of Alloy617 Compact Heat Exchanger in Helium Experimental Loop
Energy Technology Data Exchange (ETDEWEB)
Kim, Chan Soo; Park, Byung-Ha; Kim, Eung-Seon [KAERI, Daejeon (Korea, Republic of)
2016-05-15
The Intermediate Heat eXchanger (IHX) is a key-challenged high temperature component which determines the efficiency and the economy of VHTR system. Heat generated in the VHTR fuel block is transferred from the VHTR to the intermediate loop through IHX. In the present, the shell-helical tube heat exchanger is generally used as IHX of the helium cooled reactor. Recently, a Printed Circuit Heat Exchanger (PCHE) is one of the candidates for the IHX in a VHTR because its operation temperature and pressure are larger than any other compact heat exchanger types. These test results show that there is no problem in operation of HELP at the very high temperature experimental condition and the alloy617 compact heat exchanger can be operated in the very high temperature condition above 850℃. In the future, the high temperature structural analysis will be studied to estimate the thermal stress during transient and thermal shock condition. The conditions and evaluation standard for the alloy 617 diffusion bonding will be minutely studied to fabricate the large-scale PCHE for the high temperature condition.
Solar thermoelectric cooling using closed loop heat exchangers with macro channels
Atta, Raghied M.
2017-07-01
In this paper we describe the design, analysis and experimental study of an advanced coolant air conditioning system which cools or warms airflow using thermoelectric (TE) devices powered by solar cells. Both faces of the TE devices are directly connected to closed-loop highly efficient channels plates with macro scale channels and liquid-to-air heat exchangers. The hot side of the system consists of a pump that moves a coolant through the hot face of the TE modules, a radiator that drives heat away into the air, and a fan that transfer the heat over the radiator by forced convection. The cold side of the system consists also of a pump that moves coolant through the cold face of the TE modules, a radiator that drives cold away into the air, and a fan that blows cold air off the radiator. The system was integrated with solar panels, tested and its thermal performance was assessed. The experimental results verify the possibility of heating or cooling air using TE modules with a relatively high coefficient of performance (COP). The system was able to cool a closed space of 30 m3 by 14 °C below ambient within 90 min. The maximum COP of the whole system was 0.72 when the TE modules were running at 11.2 Å and 12 V. This improvement in the system COP over the air cooled heat sink is due to the improvement of the system heat exchange by means of channels plates.
Sensitivity analysis on the performances of a closed-loop Ground Source Heat Pump
Casasso, Alessandro; Sethi, Rajandrea
2014-05-01
Ground Source Heat Pumps (GSHP) permit to achieve a significant reduction of greenhouse gas emissions, and the margins for economic saving of this technology are strongly correlated to the long-term sustainability of the exploitation of the heat stored in the soil. The operation of a GSHP over its lifetime should be therefore modelled considering realistic conditions, and a thorough characterization of the physical properties of the soil is essential to avoid large errors of prediction. In this work, a BHE modelling procedure with the finite-element code FEFLOW is presented. Starting from the governing equations of the heat transport in the soil around a GSHP and inside the BHE, the most important parameters are individuated and the adopted program settings are explained. A sensitivity analysis is then carried on both the design parameters of the heat exchanger, in order to understand the margins of improvement of a careful design and installation, and the physical properties of the soil, with the aim of quantifying the uncertainty induced by their variability. The relative importance of each parameter is therefore assessed by comparing the statistical distributions of the fluid temperatures and estimating the energy consumption of the heat pump, and practical conclusions are from these results about the site characterization, the design and the installation of a BHE. References Casasso A., Sethi R., 2014 Efficiency of closed loop geothermal heat pumps: A sensitivity analysis, Renewable Energy 62 (2014), pp. 737-746 Chiasson A.C., Rees S.J., Spitler J.D., 2000, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (2000), pp. 380-393 Delaleux F., Py X., Olives R., Dominguez A., 2012, Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity, Applied Thermal Engineering 33-34, pp. 92-99 Diao N., Li Q., Fang Z., 2004, Heat transfer in
Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan
2018-03-01
Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.
Cooperative heat transfer and ground coupled storage system
Metz, P.D.
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Numerical simulation of heat transfer process in automotive brakes
Gonzalo Voltas, David
2013-01-01
This master thesis concerns the theoretical investigations of the heat transfer process in automotive brakes. The process of heat generation and heat transfer to ambient air in automotive brake was presented. The two–dimensional, axi-symmetrical model of transient heat conduction for the brake was applied. The relevant boundary conditions, that describe the heat generated in the brake and the heat transferred to ambient air, were used. The unsteady heat conduction problem was solved by the...
Heat transfer in two-phase flow of helium
International Nuclear Information System (INIS)
Subbotin, V.I.; Deev, V.I.; Solodovnikov, V.V.; Arkhipov, V.V.
1986-01-01
The results of experimental study of heat transfer in two-phase helium flow are presented. The effect of operating parameters (pressure, mass velocity, heat flux and quality) on boiling heat transfer intensity was investigated. A significant influence of boiling process prehistory on heat transfer coefficients was demonstrated. On the basis of experimental data obtained three typical regimes of flow boiling heat transfer were found. Analogy of heat transfer in flow boiling and pool boiling of helium and noncryogenic liquids was established. Correlations were developed which are in close agreement with available heat transfer data
Ribeiro, Carla
2017-01-01
The double-wall paper cup is an everyday object that can be used in the laboratory to study heat transfer. The experiment described here has been done by physics students aged 12-13 years; it can also be used in a different context to prompt debate about environmental issues.
Free convection film flows and heat transfer
Shang, Deyi
2010-01-01
Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.
Conjugate problems in convective heat transfer
Dorfman, Abram S
2009-01-01
The conjugate heat transfer (CHT) problem takes into account the thermal interaction between a body and fluid flowing over or through it, a key consideration in both mechanical and aerospace engineering. Presenting more than 100 solutions of non-isothermal and CHT problems, this title considers the approximate solutions of CHT problems.
CENTRIFUGAL COMPRESSOR EFFICIENCY CALCULATION WITH HEAT TRANSFER
Directory of Open Access Journals (Sweden)
Valeriu Dragan
2017-12-01
and manner under which the efficiency itself is calculated. The paper presents a more robust approach to measuring efficiency, regardless of the heat transfer within the turbomachinery itself. Possible applications of the study may range from cold-start regime simulation to the optimization of inter-cooling setup or even flow angle control without mechanically actuated OGV
Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor
Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.
2013-01-01
This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.
International Nuclear Information System (INIS)
Son, Hyung M.; Suh, Kune Y.
2012-01-01
Highlights: ► Performed experiment for the upward SCO 2 flow surrounded by highly conducting metal. ► Selected dimensionless groups representing the property variations and buoyancy. ► Developed the heat transfer correlation for the mixed thermal boundary condition. ► Wrote a finite element heat transfer code to find the appropriate correlation. ► Coupled the 1D convection and 2D heat conduction via heat transfer coefficient. - Abstract: This paper presents heat transfer characteristics of supercritical carbon dioxide flow inside vertical circular pipe surrounded by highly conducting material, and develops an adequate tool to test the performance of available heat transfer correlations with. The possible situations are illustrated for the nuclear power plant to which the above-mentioned geometric configuration might be applicable. An experimental loop with vertical circular geometry is designed and constructed to test the upward flow in supercritical state when the axial heat transfer is enhanced by the surrounding metals, resulting in a wall boundary condition between the constant heat flux and temperature. The set of correlations and important findings are critically reviewed from extensive literature survey. Incorporating nondimensional groups resorting to past insights from the available literature, a convective heat transfer correlation is proposed. The optimization procedure is described which utilizes a random walk method along with the in-house finite element heat transfer code to determine the coefficients of the proposed heat transfer correlation. The proposed methodology can be applied to evaluation of heat transfer when the heat transfer coefficient data cannot directly be determined from the experiment.
Fluid dynamics and heat transfer methods for the TRAC code
International Nuclear Information System (INIS)
Reed, W.H.; Kirchner, W.L.
1977-01-01
A computer code called TRAC is being developed for analysis of loss-of-coolant accidents and other transients in light water reactors. This code involves a detailed, multidimensional description of two-phase flow coupled implicitly through appropriate heat transfer coefficients with a simulation of the temperature field in fuel and structural material. Because TRAC utilizes about 1000 fluid mesh cells to describe an LWR system, whereas existing lumped parameter codes typically involve fewer than 100 fluid cells, we have developed new highly implicit difference techniques that yield acceptable computing times on modern computers. Several test problems for which experimental data are available, including blowdown of single pipe and loop configurations with and without heated walls, have been computed with TRAC. Excellent agreement with experimental results has been obtained. (author)
Fluid dynamics and heat transfer methods for the TRAC code
International Nuclear Information System (INIS)
Reed, W.H.; Kirchner, W.L.
1977-01-01
A computer code called TRAC is being developed for analysis of loss-of-coolant accidents and other transients in light water reactors. This code involves a detailed, multidimensional description of two-phase flow coupled implicitly through appropriate heat transfer coefficients with a simulation of the temperature field in fuel and structural material. Because TRAC utilizes about 1000 fluid mesh cells to describe an LWR system, whereas existing lumped parameter codes typically involve fewer than 100 fluid cells, new highly implicit difference techniques are developed that yield acceptable computing times on modern computers. Several test problems for which experimental data are available, including blowdown of single pipe and loop configurations with and without heated walls, have been computed with TRAC. Excellent agreement with experimental results has been obtained
Experimentally Determined Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments
Bue, Grant; Watts, Carly; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vonau, Walt; Vogel, Matt; Conger, Bruce
2015-01-01
A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flowrate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.
Numerical Modeling of Ablation Heat Transfer
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
On the thermoeconomics of heat transfer
International Nuclear Information System (INIS)
El-Sayed, Y.M.
1991-01-01
The cost effectiveness of improving the thermodynamics of heat transfer in an energy system is investigated by considering steam power systems bottoming a given gas turbine. Higher efficiencies are basically achieved by improving the temperature match of the heat addition process using both structural and parametric modes of change. The heat transfer surfaces, when expressed solely in terms of efficiency, indicate the existence of an envelope bounding them. The envelope can be approximated by a simple continuous function. Minimum surface for a given efficiency is on or closest to the envelope. Similar features apply to capital cost and to the cost objective function. In this paper the generalization and the limitations of the envelopment concept are discussed as well as the relevance to artificial intelligence
Numerical study of heat transfer characteristics in BOG heat exchanger
Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin
2016-12-01
In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.
Visualisation of heat transfer in unsteady laminar flows
Speetjens, M.F.M.; Steenhoven, van A.A.
2011-01-01
Heat transfer in fluid flows traditionally is examined in terms of temperature fields and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by
Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer
Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław
2017-10-01
The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.
Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer
Directory of Open Access Journals (Sweden)
Nadolny Zbigniew
2017-01-01
Full Text Available The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal. In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.
International Nuclear Information System (INIS)
Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi
2012-01-01
Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.
Steady 3D Numerical Simulation of the Evaporator and Compensation Chamber of a Loop Heat Pipe
Directory of Open Access Journals (Sweden)
A. V. Nedayvozov
2017-01-01
Full Text Available The paper presents results of a steady three-dimensional numerical simulation of a flat evaporator and compensation chamber (CC of a loop heat pipe (LHP and describes a procedure of the thermal state calculation of the evaporator and the compensation chamber.The LHP is an efficient heat transfer device operating on the principle of evaporation-condensation cycle. It is successfully used in space technology and also to cool the heat-stressed components of electronic devices and computer equipment. The authors carried out a numerical study of the influence of the condensate pipeline length, immersed in water, on the thermal state of the evaporator and the compensation chamber. The paper shows the influence of the mass forces field on the calculation results. Presents all the numerical studies carried out by the authors for a brass flat evaporator with a thermal load of 80 W. Water is used as a LHP heat-transfer fluid. Fields of temperature, pressure and velocity are presented for each design option.Based on the calculation results, the authors came to the following conclusions:Influence of the mass forces field for the LHP of this type is significant and leads to arising water vortex flow in the condensate pipeline and CC, thereby mixing and equalizing the water temperature in the CC and in the porous element, reducing the maximum temperature of the porous element;The increasing section length of the condensate pipeline in the CC leads to increasing velocity of the heat-transfer fluid in the CC and in the porous element, decreasing mixing zone of the condensate in the CC, and increasing temperature non-uniformity of the porous element.
Experimental study on convective heat transfer with thin porous bodies
International Nuclear Information System (INIS)
Nishi, Yoshihisa; Kinoshita, Izumi; Furuya, Masahiro
2001-01-01
Experimental studies are made on the convective heat transfer of three types of thin porous bodies. Heat transfer performances, flow patterns and temperature profiles near the porous bodies are compared with each other. The heat transfer performance of porous bodies with the largest pore diameter is large. It became clear that the high heat transfer performance depends on an excellent heat transportation ability inside the pore and near the surface of the porous bodies. (author)
Topology optimization for transient heat transfer problems
DEFF Research Database (Denmark)
Zeidan, Said; Sigmund, Ole; Lazarov, Boyan Stefanov
The focus of this work is on passive control of transient heat transfer problems using the topology optimization (TopOpt) method [1]. The goal is to find distributions of a limited amount of phase change material (PCM), within a given design domain, which optimizes the heat energy storage [2]. Our......, TopOpt has later been extended to transient problems in mechanics and photonics (e.g. [5], [6] and [7]). In the presented approach, the optimization is gradient-based, where in each iteration the non-steady heat conduction equation is solved,using the finite element method and an appropriate time......-stepping scheme. A PCM can efficiently absorb heat while keeping its temperature nearly unchanged [8]. The use of PCM ine.g. electronics [9] and mechanics [10], yields improved performance and lower costs depending on a.o., the spatial distribution of PCM.The considered problem consists in optimizing...
Experimental determinations of the performances of heat transfer surfaces
International Nuclear Information System (INIS)
Pirovano, Alain; Viannay, Stephane; Mazeas, C.Y.
1974-01-01
With the help of flow schemes and of assumptions on the heat transfer, it is possible, in some cases, to predict the thermal and aerodynamical performances of a new heat transfer surface with moderate accuracy. These estimates, valid for an approximate classification of a new surface among known surfaces, are not accurate enough to be taken as a basis for the design of heat exchangers. In the present state of knowledge, the performances of a new heat transfer surface can only be determined accurately with experimental measurements. Bertin and Co have at their disposal two air test rigs especially designed for this purpose. The first one, more directly concerned with the measurements on tube bundles with fluid flow perpendicular to the generatrices of the tubes, is a semi-closed loop equipped with a high-efficiency ejector which amplifies the air flow rate supplied by an external source and thus allows high values of Reynolds number to be reached. The second one is adapted to other types of surfaces: tubes with external flow parallel to the generatrices, tubes with sophisticated cross section and with internal flow, compact surfaces with finned plates, etc. Both test rigs, the relevant equipment, the methods of data acquisition and of test results analysis are described in this paper. During the 5 past years, 60 configurations were tested. It was possible to compare some of the test results with the results of measurements performed later, on entire heat exchangers working with numbers of tubes, fluids, and temperature levels different from those prevailing during the tests on the small scale mock-up; the agreement is quite good [fr
Heat Transfer in Health and Healing.
Diller, Kenneth R
2015-10-01
Our bodies depend on an exquisitely sensitive and refined temperature control system to maintain a state of health and homeostasis. The exceptionally broad range of physical activities that humans engage in and the diverse array of environmental conditions we face require remarkable strategies and mechanisms for regulating internal and external heat transfer processes. On the occasions for which the body suffers trauma, therapeutic temperature modulation is often the approach of choice for reversing injury and inflammation and launching a cascade of healing. The focus of human thermoregulation is maintenance of the body core temperature within a tight range of values, even as internal rates of energy generation may vary over an order of magnitude, environmental convection, and radiation heat loads may undergo large changes in the absence of any significant personal control, surface insulation may be added or removed, all occurring while the body's internal thermostat follows a diurnal circadian cycle that may be altered by illness and anesthetic agents. An advanced level of understanding of the complex physiological function and control of the human body may be combined with skill in heat transfer analysis and design to develop life-saving and injury-healing medical devices. This paper will describe some of the challenges and conquests the author has experienced related to the practice of heat transfer for maintenance of health and enhancement of healing processes.
Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer
Energy Technology Data Exchange (ETDEWEB)
Kwak, K M; Chang, J S; Bai, C H; Chung, M [Yeungnam University, Kyungsan (Korea)
1999-11-01
To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52 mm and 7.0 mm, respectively. Used microfin tubes have different shape and number of fins with each other. The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film. 17 refs., 14 figs., 3 tabs.
Film boiling heat transfer in liquid helium
International Nuclear Information System (INIS)
Inai, Nobuhiko
1979-01-01
The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)
Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe
International Nuclear Information System (INIS)
Mameli, Mauro; Marengo, Marco; Khandekar, Sameer
2014-01-01
A compact Closed Loop Pulsating Heat Pipe (CLPHP), filled with ethanol (65% v/v), made of four transparent glass tubes forming the adiabatic section and connected with copper U-turns in the evaporator and condenser sections respectively, is designed in order to perform comprehensive thermal-hydraulic performance investigation. Local heat transfer coefficient is estimated by measurement of tube wall and internal fluid temperatures in the evaporator section. Simultaneously, fluid pressure oscillations are recorded together with the corresponding flow patterns. The thermal performances are measured for different heat input levels and global orientation of the device with respect to gravity. One exploratory test is also done with azeotropic mixture of ethanol and water. Results show that a stable device operation is achieved (i.e. evaporator wall temperatures can reach a pseudo-steady-state) only when a circulating flow mode is established superimposed on local pulsating flow. The heat transfer performance strongly depends on the heat input level and the inclination angle, which, in turn, also affect the ensuing flow pattern. The spectral analysis of the pressure signal reveals that even during the stable performance regimes, characteristic fluid oscillation frequencies are not uniquely recognizable. Equivalent thermal conductivities of the order of 10-15 times that of pure copper are achieved. Due to small number of turns horizontal mode operation is not feasible. Preliminary results indicate that filling azeotropic mixture of ethanol and water as working fluid does not alter the thermal performance as compared to pure ethanol case. (authors)
Two Dimensional CFD Analyses on the Heat Transfer for a Supercritical Pressure CO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Cho, Bong Hyun; Kim, Young In; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2005-07-01
The Supercritical Water Cooled Reactor(SCWR) operates in a pressure around 25MPa and temperature of 293{approx}510 .deg. C. In order to study the heat transfer behaviors and good comparisons between the various fluids, a heat transfer test loop(SPHINX) using CO{sub 2} has been constructed in KAERI as a part of international research program, I-NERI. At a supercritical pressure, the heat transfer coefficient is much larger than that estimated from the Dittus-Boelter correlation for a relatively large flow rate with moderate wall heat flux conditions. This phenomenon was explained by the rapid variations of the physical properties near the wall with the temperature. On the contrary, the heat transfer becomes worse when the bulk fluid enthalpy is below the pseudo-critical enthalpy under a low flow rate with large heat flux conditions. This phenomenon is called 'deteriorated heat transfer', and which is explained as the modification of the shear stress distribution across the tube to a buoyancy and/or acceleration in a low density layer near the wall, with the consequence of a turbulence. The upward vertical flow of CO{sub 2} through a uniformly heated tube of 4.4 mm in diameter and 3m long(heated length is 2.1m) was investigated numerically using the CFD code, FLUENT. Through the numerical simulations, we have attempted to obtain a physically meaningful insight into the heat transfer mechanisms at a supercritical pressure.
Can we observe open loop transfer functions in a stochastic feedback system ?
International Nuclear Information System (INIS)
Kishida, Kuniharu; Suda, Nobuhide.
1991-01-01
There are two kinds of problems concerning open loop and closed loop transfer functions in a feedback system. One is a problem even in the deterministic case, and the other is in the stochastic case. In the deterministic case it is guaranteed under a necessary and sufficient condition that total sum of degrees of sub-transfer functions coincides to the degree of the total system. In the stochastic case a systematic understanding of a physical state model, a theoretical innovation model and a data-oriented innovation model is indispensable for determination of open loop transfer functions from time series data. Undesirable factors appear in determination of open loop transfer functions, since a transfer function matrix from input noises to output variables has a redundancy factor of diagonal matrix. (author)
International Nuclear Information System (INIS)
Gunnasegaran, P; Yusoff, M Z; Abdullah, M Z
2015-01-01
This paper discusses the impact of diamond nanofluid on heat transfer characteristics in a Loop Heat Pipe (LHP). In this study, diamond nanoparticles in water with particle mass concentration ranged from 0% to 3% is considered as the operational fluid within the LHP. The experiments are carried out by manufacturing the LHP, in which the setup consists of a water tank with pump, a flat evaporator, condenser installed with two pieces of fans, two transportation lines (vapor and liquid lines), copper pipe sections for attachment of the thermocouples and power supply. The uniqueness of the current experimental setup is the vapor line of LHP which is made of transparent plastic tube to visualize the fluid flow patterns. The experimental results are verified by Finite Element (FE) simulation using a three-dimensional (3D) model based on the heat transfer by conduction where the LHP as a whole is modeled by assuming it as a conducting medium without taking into account the events occurring inside the LHP. The LHP performance is evaluated in terms of transient temperature distribution and total thermal resistance (R t ). The experimental and simulation results are found in good agreement. (paper)
Analysis on the heat balance between CEFR and the primary loop system
International Nuclear Information System (INIS)
Liu Shangbo; Yang Hongyi; Li Jing; Wang Xiongying
2013-01-01
The heat balance ability of reactor is very important to design and operation. Special heat balance analysis and calculation software shall be available. This article analyzes and calculates in details the heat source and cooling power of the main cooling system of the primary loop in China Experimental Faster Reactor (CEFR), and develops a calculation code. By using the steady state heat balance data of 26.5% Pn and 40% Pn in CEFR during power start-up, the heat balance ability of the primary loop is verified. The results show that the calculation model is reliable, and can provide technical support to building heat balance in CEFR operation. (authors)
Heat transfer in an evaporation-condensation system in simulated weightlessness conditions
Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.
2017-10-01
The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.
Heat transfer studies in waste repository design
International Nuclear Information System (INIS)
Boehm, R.F.; Chen, Y.T.; Izzeldin, A.; Kuharic, W.; Sudan, N.
1994-01-01
The main task of this project is the development of visualization methods in heat transfer through porous media. Experiments have been performed related to the determination of the wavelength that gives equality of the refractive indices of the porous material and the liquid. The work has been accomplished using the calibration setup consisting of a 2-in. long test cell filled with 2-mm diameter soda-lime glass beads. A supplemental task is an unsaturated flow experiment with heat transfer in porous media. For this work the medium of interest in quartz beads. Essentially two-dimensional flows of admitted water are able to be examined. During this quarter, the setup and calibration of the experimental instrumentation was done. Also the modification of the main experimental tank and the inflow system was carried out. Initial testing was done
Double diffusive conjugate heat transfer: Part I
Azeem, Soudagar, Manzoor Elahi M.
2018-05-01
The present work is undertaken to investigate the effect of solid wall being placed at left of square cavity filled with porous medium. The presence of a solid wall in the porous medium turns the situation into a conjugate heat transfer problem. The boundary conditions are such that the left vertical surface is maintained at highest temperature and concentration whereas right vertical surface at lowest temperature and concentration in the medium. The top and bottom surfaces are adiabatic. The additional conduction equation along with the regular momentum and energy equations of porous medium are solved in an iterative manner with the help of finite element method. It is seen that the heat and mass transfer rate is lesser due to smaller thermal and concentration gradients.
Heat transfer modeling an inductive approach
Sidebotham, George
2015-01-01
This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...
Experimental study on operating parameters of miniature loop heat pipe with flat evaporator
International Nuclear Information System (INIS)
Wang Shuangfeng; Huo Jiepeng; Zhang Xianfeng; Lin Zirong
2012-01-01
Miniature loop heat pipe (MLHP) with flat evaporator has been proved that it has the capability to fulfill the demand for the thermal management of high-power electronic system. To employ MLHP into practical application and obtain the best operating parameters, a copper-water MLHP with flat evaporator of 8 mm thick was fabricated and tested in the condition of different condenser locations and operating orientations. The results show that the condenser located close to the evaporator outlet and adverse orientation have positive impact on the operating temperature of the loop, but negative impact on the cooling capability of condenser. For better understanding of their effect on the heat transfer characteristics of MLHP, the start-up behaviors, thermal performance and the operating regimes are explored in detail. - Highlights: ► A copper-water MLHP with flat evaporator of only 8 mm thick was fabricated. ► The MLHP can be applied to electronic cooling. ► The effect of condenser locations was investigated for the first time. ► The experimental results were discussed and analyzed comprehensively. ► Some practical solutions for disadvantages of LHP operation were provided.
Low-melting point heat transfer fluid
Cordaro, Joseph Gabriel; Bradshaw, Robert W.
2010-11-09
A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.
Computer graphics in heat-transfer simulations
International Nuclear Information System (INIS)
Hamlin, G.A. Jr.
1980-01-01
Computer graphics can be very useful in the setup of heat transfer simulations and in the display of the results of such simulations. The potential use of recently available low-cost graphics devices in the setup of such simulations has not been fully exploited. Several types of graphics devices and their potential usefulness are discussed, and some configurations of graphics equipment are presented in the low-, medium-, and high-price ranges
The Winfrith 9MW heat transfer rig
International Nuclear Information System (INIS)
Obertelli, J.D.
1976-01-01
The Winfrith 9MW Rig is used for studying heat transfer and flow resistance in a variety of test sections at system pressures up to 68 bar. The basic rig and its instrumentation are discussed together with the characteristics of the test section design. The rig has been used in studies involving the full scale simulation of Steam Generating Heavy Water (SGHW) fuel assemblies and the paper discusses the measurements made in this type of study. (author)
Principles of heat and mass transfer
Incropera, Frank P; Bergman, Theodore L; Lavine, Adrienne S
2013-01-01
Completely updated, the seventh edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.
Heat transfer in multi-phase materials
Öchsner, Andreas
2011-01-01
This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).
Heat transfer studies on spiral plate heat exchanger
Directory of Open Access Journals (Sweden)
Rajavel Rangasamy
2008-01-01
Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.
Conjugate Problems in Convective Heat Transfer: Review
Directory of Open Access Journals (Sweden)
Abram Dorfman
2009-01-01
Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.
Experimental heat transfer in tube bundle
International Nuclear Information System (INIS)
Khattab, M.; Mariy, A.; Habib, M.
1983-01-01
Previous work has looked for the problem of heat transfer with flow parallel to rod bundle either by treating each rod individually as a separate channel or by treating the bundle as one unit. The present work will consider the existence of both the central and corner rods simultaneously inside the cluster itself under the same working conditions. The test section is geometrically similar to the fuel assembly of the Egyptian Research Reactor-1. The hydro-thermal performance of bundle having 16 - stainless steel tubes arranged in square array of 1.5 pitch to diameter ratio is investigated. Surface temperature and pressure distributions are determined. Average heat transfer coefficient for both central and corner tubes are correlated. Also, pressure drop and friction factor correlations are predicted. The maximum experimental range of the measured parameters are determined in the nonboiling region at 1400 Reynolds number and 3.64 W/cm 2 . It is found that the average heat transfer coefficient of the central tube is higher than that of the corner tube by 27%. Comparison with the previous work shows satisfactory agreement particularly with the circular tubes correlation - Dittus et al. - at 104 Reynolds number
Theory of energy level and its application in water-loop heat pump system
International Nuclear Information System (INIS)
Yu, Qi Dong
2017-01-01
Highlights: • Novel theory of saving energy and its application in water loop heat pump. • Reverse energy caused by units to water loop and its solution. • New method for determining the energy-saving range of water loop heat pump. • Capacity model of auxiliary heat source and its size for all building types. • Advice for reducing total energy consumption of water loop heat pump. - Abstract: It is a difficult problem to how to determine the reverse energy caused by units to water loop when a water-loop heat pump (WLHP) is in cooling and heating simultaneous mode, which not only has a great impact on energy-saving rate but also decides the use of auxiliary heat source in winter. This paper presents a theory of energy level to improve the research on WLHP system by using the relationship among building, circulating water and units. In this theory, the circulating water replaces building load as a new method to convert the reverse energy into energy change of circulating water and the equation of energy level also is built to determine the energy-saving range of WLHP system and report the capacity model of auxiliary heat source for all building types. An office building with different auxiliary powers is tested to analyze system operation characteristic and the effect of auxiliary heat source on unit and system and the results validate previous conclusions and suggest that an energy balance should be considered between units and auxiliary power to improve overall operation.
An introduction to heat transfer. 2. rev. ed.
International Nuclear Information System (INIS)
Hell, F.
1979-01-01
This book represents a fundamental introduction to heat transfer. Practical problems and tables make the book useful for engeneers and students. The chapters include detailed informations together with exercises of convection, radiat heat transfer, thermal conduction and condensation. (CDS)
Refrigeration. Heat Transfer. Part I: Evaporators and Condensers
DEFF Research Database (Denmark)
Knudsen, Hans-Jørgen Høgaard
2002-01-01
The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation.......The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation....
Heat transfer coefficients during quenching of steels
Energy Technology Data Exchange (ETDEWEB)
Hasan, H.S.; Jalil, J.M. [University of Technology, Department of Electromechanical Engineering, Baghdad (Iraq); Peet, M.J.; Bhadeshia, H.K.D.H. [University of Cambridge, Department of Materials Science and Metallurgy, Cambridge (United Kingdom)
2011-03-15
Heat transfer coefficients for quenching in water have been measured as a function of temperature using steel probes for a variety of iron alloys. The coefficients were derived from measured cooling curves combined with calculated heat-capacities. The resulting data were then used to calculate cooling curves using the finite volume method for a large steel sample and these curves have been demonstrated to be consistent with measured values for the large sample. Furthermore, by combining the estimated cooling curves with time-temperature-transformation (TTT) diagrams it has been possible to predict the variation of hardness as a function of distance via the quench factor analysis. The work should prove useful in the heat treatment of the steels studied, some of which are in the development stage. (orig.)
Heat transfer at a beam port corner
International Nuclear Information System (INIS)
Krinsky, S.
Along the general run of the vacuum chamber synchrotron radiation strikes the wall at a glancing angle of about 5.6 0 . The heat source is well-approximated by a ribbon of uniform power density having a small vertical height and an infinite azimuthal length. The heat transfer problem reduces to one in two-dimensions and it has been considered in a previous note. At the corner of a beam port the angle of incidence becomes 90 0 , so the temperature rises much higher than elsewhere. Since the power density at the corner is not uniform in its azimuthal dependence, but is strongly peaked at the point of normal incidence, two-dimensional heat flow is not a good approximation. The rectangular 3d problem is considered. This is easily solved and yields a good first estimate of the temperature rise at the corner
Heat transfer operators associated with quantum operations
International Nuclear Information System (INIS)
Aksak, C; Turgut, S
2011-01-01
Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a Hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this paper is to investigate the relation between the HTOs and the associated quantum operations. Since any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This paper is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations, however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.
Heat transfer characteristics of induced mixed convection
International Nuclear Information System (INIS)
Weiss, Y.; Lahav, C.; Szanto, M.; Shai, I.
1996-01-01
In the present work we focus our attention on the opposed Induced Mixed Convection case, i.e. the flow field structure in a vertical cylinder, closed at its bottom, opens at the top, and being heated circumferentially. The paper reports an experimental study of this complex heat transfer process. For a better understanding of the flow field and the related heat transfer process, two different experimental systems were built. The first was a flow visualization system, with water as the working fluid, while the second system enabled quantitative measurements of the temperature field in air. All the experiments were performed in the turbulent flow regime. In order to learn about all possible flow regimes, the visualization tests were conducted in three different length-to-diameter ratios (1/d=1,5,10). Quantitative measurements of the cylindrical wall temperature, as well as the radial and axial temperature profiles in the flow field, were taken in the air system. Based on the visualization observation and the measured wall temperature profile, it was found that the OIMC can be characterized by three main regimes: a mixing regime at the top, a central turbulent core and a boundary layer type of flow adjacent to the heated wall. (authors)
High performance passive solar heating system with heat pipe energy transfer and latent heat storage
Dijk, van H.A.L.; Galen, van E; Hensen, J.L.M.; Wit, de M.H.
1983-01-01
Preliminar results are reported from a current project on the development of a high performance passive solar heating system. Two special components are introduced: a. A heat pipe as a thermal diode tube for the efficient transfer of collected solar heat from the absorber plate to behind an
A Review of Wettability Effect on Boiling Heat Transfer Enhancement
International Nuclear Information System (INIS)
Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong
2012-01-01
Critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are the key parameters characterizing pool boiling heat transfer. These variables are complicatedly related to thermal-hydraulic parameters of surface wettability, nucleation site density, bubble departure diameter and frequency, to mention a few. In essence, wettability effect on pool boiling heat transfer has been a major fuel to enhance the CHF. Often, however, the improved wettability effect hinders the nucleate boiling. Thus a comprehensive review of such wettability effect may enlighten a further study in this boiling heat transfer area. Phan et al. described surface wettability effects on boiling heat transfer
Subcooled boiling heat transfer on a finned surface
International Nuclear Information System (INIS)
Kowalski, J.E.; Tran, V.T.; Mills, P.J.
1992-01-01
Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)
International Nuclear Information System (INIS)
Xu, Weiguo; Ren, Depeng; Ye, Qing; Liu, Guodong; Lu, Huilin; Wang, Shuai
2016-01-01
Graphical abstract: Predicted laminar Nusselt number using regression correlation of Therminol-55 heat transfer fluid is in agreement with experiments in the rifled tube. - Highlights: • Heat transfer coefficient and friction factor are measured and predicted in the rifled tube. • Correlations for Nusselt number and friction factor are proposed. • The roughness height of 0.425 mm in transition SST model is suggested as an input parameter. • k–kl–ω transition and transition SST models are recommended for laminar–turbulent transition. • Thermal enhancement factor and synergy angle are predicted in the rifled tube. - Abstract: Simulations and experiments of flow and heat transfer behavior of Therminol-55 heat transfer fluid have been conducted in a horizontal rifled tube with outer diameter and inner diameter 25.0 and 20.0 mm, pitch and rib height of 12.0 and 1.0 mm, respectively. Numerical simulations of three-dimensional flow behavior of Therminol-55 heat transfer fluid are carried out using FLUENT code in the rifled tube. Experimental results show that the heat transfer and thermal performance of Therminol-55 heat transfer fluid in the rifled tube are considerably improved compared to those of the smooth tube. The Nusselt number increases with the increase of Reynolds number, and is from 3.5 to 5.1 times over the smooth tube. Also, the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.2 and 4.2 times over the smooth tube. Predictive Nusselt number and friction factor correlations have been presented. The numerical results show that the laminar flow model is valid only at lower Reynolds number in the developed laminar flow of rifled tube. The k–kl–ω transition model and transition SST model with roughness of 0.425 mm are recommended for the predictions of transition process from laminar to turbulent flow in the rifled tube.
Numerical simulations and analyses of temperature control loop heat pipe for space CCD camera
Meng, Qingliang; Yang, Tao; Li, Chunlin
2016-10-01
As one of the key units of space CCD camera, the temperature range and stability of CCD components affect the image's indexes. Reasonable thermal design and robust thermal control devices are needed. One kind of temperature control loop heat pipe (TCLHP) is designed, which highly meets the thermal control requirements of CCD components. In order to study the dynamic behaviors of heat and mass transfer of TCLHP, particularly in the orbital flight case, a transient numerical model is developed by using the well-established empirical correlations for flow models within three dimensional thermal modeling. The temperature control principle and details of mathematical model are presented. The model is used to study operating state, flow and heat characteristics based upon the analyses of variations of temperature, pressure and quality under different operating modes and external heat flux variations. The results indicate that TCLHP can satisfy the thermal control requirements of CCD components well, and always ensure good temperature stability and uniformity. By comparison between flight data and simulated results, it is found that the model is to be accurate to within 1°C. The model can be better used for predicting and understanding the transient performance of TCLHP.
Heating and dynamics of two flare loop systems observed by AIA and EIS
Energy Technology Data Exchange (ETDEWEB)
Li, Y.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Qiu, J., E-mail: yingli@nju.edu.cn [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)
2014-02-01
We investigate heating and evolution of flare loops in a C4.7 two-ribbon flare on 2011 February 13. From Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) imaging observations, we can identify two sets of loops. Hinode/EUV Imaging Spectrometer (EIS) spectroscopic observations reveal blueshifts at the feet of both sets of loops. The evolution and dynamics of the two sets are quite different. The first set of loops exhibits blueshifts for about 25 minutes followed by redshifts, while the second set shows stronger blueshifts, which are maintained for about one hour. The UV 1600 observation by AIA also shows that the feet of the second set of loops brighten twice. These suggest that continuous heating may be present in the second set of loops. We use spatially resolved UV light curves to infer heating rates in the few tens of individual loops comprising the two loop systems. With these heating rates, we then compute plasma evolution in these loops with the 'enthalpy-based thermal evolution of loops' model. The results show that, for the first set of loops, the synthetic EUV light curves from the model compare favorably with the observed light curves in six AIA channels and eight EIS spectral lines, and the computed mean enthalpy flow velocities also agree with the Doppler shift measurements by EIS. For the second set of loops modeled with twice-heating, there are some discrepancies between modeled and observed EUV light curves in low-temperature bands, and the model does not fully produce the prolonged blueshift signatures as observed. We discuss possible causes for the discrepancies.
Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad
2016-07-01
This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.
Heat transfer and flow in solar energy and bioenergy systems
Xu, Ben
culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected
Heat Transfer Characteristics of the Supercritical CO{sub 2} Flowing in a Vertical Annular Channel
Energy Technology Data Exchange (ETDEWEB)
Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-05-15
Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO{sub 2} flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI
Heat Transfer Characteristics of the Supercritical CO2 Flowing in a Vertical Annular Channel
International Nuclear Information System (INIS)
Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol
2010-01-01
Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO 2 at several test sections with a different geometry. The loop uses CO 2 because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO 2 in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO 2 flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI
Enhancement of heat and mass transfer by cavitation
International Nuclear Information System (INIS)
Zhang, Y N; Du, X Z; Xian, H Z; Zhang, Y N
2015-01-01
In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment
Low-Flow Film Boiling Heat Transfer on Vertical Surfaces
DEFF Research Database (Denmark)
Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.
1976-01-01
The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....
Unravelling convective heat transfer in the Rotated Arc Mixer
Speetjens, M.F.M.; Baskan, O.; Metcalfe, G.; Clercx, H.J.H.
2014-01-01
Thermal homogenization is essentially a transient problem and convective heat transfer by (chaotic) advection is known to accelerate this process. Convective heat transfer traditionally is examined in terms of heat-transfer coefficients at domain walls and characterised by Nusselt relations.
Visualisation of heat transfer in 3D unsteady flows
Speetjens, M.F.M.; Steenhoven, van A.A.
2010-01-01
Heat transfer in fluid flows traditionally is examined in terms oftemperature field and heat-transfer coefficients at non-adiabaticwalls. However, heat transfer may alternatively be considered asthe transport of thermal energy by the total convective-conductiveheat flux in a way analogous to the
Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles
Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.
2010-01-01
This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…
Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube
International Nuclear Information System (INIS)
Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance
1997-03-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)
Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow
International Nuclear Information System (INIS)
Boscary, J.
1995-10-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs
Transient turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru
2011-01-01
The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the
Transient turbulent heat transfer for heating of water in a short vertical tube
International Nuclear Information System (INIS)
Hata, Koichi; Kai, Naoto; Shirai, Yasuyuki; Masuzaki, Suguru
2011-01-01
The transient turbulent heat transfer coefficients in a short vertical Platinum test tube were systematically measured for the flow velocities (u=4.0 to 13.6 m/s), the inlet liquid temperatures (T in =296.93 to 304.81 K), the inlet pressures (P in =794.39 to 858.27 kPa) and the increasing heat inputs (Q 0 exp(t/τ), exponential periods, τ, of 18.6 ms to 25.7 s) by an experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The Platinum test tubes of test tube inner diameters (d=3 and 6 mm), heated lengths (L=66.5 and 69.6 mm), effective lengths (L eff =56.7 and 59.2 mm), ratios of heated length to inner diameter (L/d=22.16 and 11.6), ratios of effective length to inner diameter (L eff /d=18.9 and 9.87) and wall thickness (δ=0.5 and 0.4 mm) with average surface roughness (Ra=0.40 and 0.45 μm) were used in this work. The surface heat fluxes between the two potential taps were given the difference between the heat generation rate per unit surface area and the rate of change of energy storage in the test tube obtained from the faired average temperature versus time curve. The heater inner surface temperature between the two potential taps was also obtained by solving the unsteady heat conduction equation in the test tube under the conditions of measured average temperature and heat generation rate per unit surface area of the test tube. The transient turbulent heat transfer data for Platinum test tubes were compared with the values calculated by authors' correlation for the steady state turbulent heat transfer. The influence of inner diameter (d), ratio of effective length to inner diameter (L eff /d), flow velocity (u) and exponential period (τ) on the transient turbulent heat transfer is investigated into details and the widely and precisely predictable correlation of the transient turbulent heat transfer for heating of water in a short vertical tube is given based on the experimental data and authors' studies for the
Transfer coefficients in elliptical tubes and plate fin heat exchangers
International Nuclear Information System (INIS)
Saboya, S.M.
1979-09-01
Mean transfer coefficients in elliptical tubes and plate fin heat exchangers were determined by application of heat and mass transfer analogy in conjunction with the naphthalene sublimation technique. The transfer coefficients are presented in a dimensionless form as functions of the Reynolds number. By using the least squares method analytical expressions for the transfer coefficients were determined with low scattering. (E.G.) [pt
46 CFR 153.430 - Heat transfer systems; general.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...
Transfer of heat to fluidized-solids beds
Energy Technology Data Exchange (ETDEWEB)
1952-10-16
The improvement in the method described and claimed in patent application 14,363/47 (136,186) for supplying heat to a dense turbulent mass of solid fluidized by a gas flowing upwardly therethrough and subjected to a high temperature in a treating zone, by heat transfer through heat-transfer surfaces of heat-transfer elements in contact with the said turbulent mass of finely divided solid and heated by means of a fluid heating medium, including burning fuels comprising contacting the said heat-transfer surfaces with a fuel and a combustion supporting gas under such conditions that the combustion of the fuel is localized in the heat-transfer element near the point of entry of the fuel and combustion-supporting gas and a substantial temperature gradient is maintained along the path of said fuel combustion-supporting gas and combustion products through the said heat-transfer element.
Heat transfer, condensation and fog formation in crossflow plastic heat exchangers
Brouwers, H.J.H.
1996-01-01
In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall
Heat transfer model for quenching by submerging
International Nuclear Information System (INIS)
Passarella, D N; Varas, F; MartIn, E B
2011-01-01
In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.
Heat transfer model for quenching by submerging
Energy Technology Data Exchange (ETDEWEB)
Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)
2011-05-01
In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.
Heat transfer unit and method for prefabricated vessel
Tamburello, David A.; Kesterson, Matthew R; Hardy, Bruce J.
2017-11-07
Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one of the plurality of peripheral rods.
Flow and heat transfer in a curved channel
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
Loop Heat Pipe Manufacturing via DMLS for CubeSAT Applications, Phase II
National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT) proposes to develop a low-cost Loop Heat Pipe (LHP) evaporator using a technique known as Direct Metal Laser Sintering...
Loop Heat Pipe Manufacturing via DMLS for CubeSAT Applications, Phase I
National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT) proposes to develop a low-cost Loop Heat Pipe (LHP) evaporator using a technique known as Direct Metal Laser Sintering...
Ion cyclotron resonant heating 2 x 1700 loop antenna for the Tandem Mirror Experiment-Upgrade
International Nuclear Information System (INIS)
Brooksby, C.A.; Ferguson, S.W.; Molvik, A.W.; Barter, J.
1985-01-01
This paper reviews the mechanical design and improvements that have taken place on the loop type ion cyclotron resonance heating (ICRH) antennas that are located in the center cell region of the Tandem Mirror Experiment-Upgrade (TMX-U)
PLASMA SLOSHING IN PULSE-HEATED SOLAR AND STELLAR CORONAL LOOPS
Energy Technology Data Exchange (ETDEWEB)
Reale, F., E-mail: fabio.reale@unipa.it [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)
2016-08-01
There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (∼20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.
Convective heat transfer and infrared thermography.
Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro
2002-10-01
Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.
Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit
International Nuclear Information System (INIS)
Gunes, M.
1998-01-01
In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically
Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating
Ku, Jentung; Garrison, Matt; Patel, Deepak; Robinson, Frank; Ottenstein, Laura
2015-01-01
The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.
International Nuclear Information System (INIS)
Zhang, Xingxing; Shen, Jingchun; He, Wei; Xu, Peng; Zhao, Xudong; Tan, Junyi
2015-01-01
Highlights: • We proposed a liquid–vapour separator incorporated gravity-assisted loop heat pipe. • Comparative study of the thermal performance of three heat pipes were conducted. • A dedicated steady-state thermal model of three heat pipes were developed. • Optimum operational settings of the new loop heat pipe were recommended. • The new loop heat pipe could achieve a significantly enhanced heat transfer effect. - Abstract: Aim of the paper is to investigate the thermal performance of a novel liquid–vapour separator incorporated gravity-assisted loop heat pipe (GALHP) (T1), against a conventional GALHP (T2) and a gravitational straight heat pipe (T3), from the conceptual and theoretical aspects. This involved a dedicated conceptual formation, thermo-fluid analyses, and computer modelling and results discussion. The innovative feature of the new GALHP lies in the integration of a dedicated liquid–vapour separator on top of its evaporator section, which removes the potential entrainment between the heat pipe liquid and vapour flows and meanwhile, resolves the inherent ‘dry-out’ problem exhibited in the conventional GALHP. Based on this recognised novelty, a dedicated steady-state thermal model covering the mass continuity, energy conservation and Darcy equations was established. The model was operated at different sets of conditions, thus generating the temperature/pressure contours of the vapour and liquid flows at the evaporator section, the overall thermal resistance, the effective thermal conductivity, and the flow resistances across entire loop. Comparison among these results led to determination of the optimum operational settings of the new GALHP and assessment of the heat-transfer enhancement rate of the new GALHP against the conventional heat pipes. It was suggested that the overall thermal resistance of the three heat pipes (T1, T2, and T3) were 0.10 °C/W, 0.49 °C/W and 0.22 °C/W, while their effective thermal conductivities were
Porous media heat transfer for injection molding
Beer, Neil Reginald
2016-05-31
The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.
Computational fluid mechanics and heat transfer
Pletcher, Richard H; Anderson, Dale
2012-01-01
""I have always considered this book the best gift from one generation to the next in computational fluid dynamics. I earnestly recommend this book to graduate students and practicing engineers for the pleasure of learning and a handy reference. The description of the basic concepts and fundamentals is thorough and is crystal clear for understanding. And since 1984, two newer editions have kept abreast to the new, relevant, and fully verified advancements in CFD.""-Joseph J.S. Shang, Wright State University""Computational Fluid Mechanics and Heat Transfer is very well written to be used as a t
Thermal conductivity and heat transfer in superlattices
Energy Technology Data Exchange (ETDEWEB)
Chen, G; Neagu, M; Borca-Tasciuc, T
1997-07-01
Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.
Heat Transfer Model for Hot Air Balloons
Llado-Gambin, Adriana
A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.
Experimental study on external condensation heat transfer characteristics of bellows
International Nuclear Information System (INIS)
Feng Dianyi; Hu Jiansheng
2008-01-01
Flow model and heat transfer of condensation flow outside of bellows have been theoretically and experimentally studied. The formula for calculation of condensation heat transfer coefficient was deduced, and corrected through experiment. The calculation results are accordant with the experimental ones, and the errors is less than 10%. The effect of bellows structure parameters and pipe diameter on the enhancement heat transfer has been investigated. It is found that in the steady flow region, the average condensation heat transfer coefficient in a bellows is 3 ∼ 5 times than that in a straight tube under the same conditions, and when considering the increasing in heat transfer area, the effectiveness of enhancement heat transfer is 5 ∼ 7 times than that in a straight tube. To facilitate the engineering design and application of bellows, the formula for the calculation of the average heat transfer coefficient of a fluid in a bellows was also given. (authors)
Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal
International Nuclear Information System (INIS)
Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol
2014-01-01
The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete
Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2014-10-15
The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete
International Nuclear Information System (INIS)
Sarkar, J.; Bhattacharyya, Souvik
2007-01-01
In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems
Method of calculating heat transfer in furnaces of small power
Directory of Open Access Journals (Sweden)
Khavanov Pavel
2016-01-01
Full Text Available This publication presents the experiences and results of generalization criterion equation of importance in the analysis of the processes of heat transfer and thermal calculations of low-power heat generators cooled combustion chambers. With generalizing depending estimated contribution of radiation and convective heat transfer component in the complex for the combustion chambers of small capacity boilers. Determined qualitative and quantitative dependence of the integrated radiative-convective heat transfer from the main factors working combustion chambers of small volume.
Heat and mass transfer in building services design
Moss, Keith
1998-01-01
Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *
Research on Marine Boiler's Pressurized Combustion and Heat Transfer
Institute of Scientific and Technical Information of China (English)
Pingjian MING; Renqiu JIANG; Yanjun LI; Baozhi SUN
2005-01-01
The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.
Heat Transfer Phenomena in Supercritical Water Nuclear Reactors
International Nuclear Information System (INIS)
Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht
2007-01-01
A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in a circular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mass velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel
Heat Transfer Phenomena in Supercritical Water Nuclear Reactors
Energy Technology Data Exchange (ETDEWEB)
Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht
2007-10-03
A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.
Heat and mass transfer during baking: product quality aspects
Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.
2005-01-01
Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in
EFLOD code for reflood heat transfer
International Nuclear Information System (INIS)
Gay, R.R.
1979-01-01
A computer code called EFLOD has been developed for simulation of the heat transfer and hydrodynamics of a nuclear power reactor during the reflood phase of a loss-of-coolant accident. EFLOD models the downcomer, lower plenum, core, and upper plenum of a nuclear reactor vessel using seven control volumes assuming either homogeneous or unequal-velocity, unequal-temperature (UVUT) models of two-phase flow, depending on location within the vessel. The moving control volume concept in which a single control volume models the quench region in the core and moves with the core liquid level was developed and implemented in EFLOD so that three control volumes suffice to model the core region. A simplified UVUT model that assumes saturated liquid above the quench front was developed to handle the nonhomogeneous flow situation above the quench region. An explicit finite difference routine is used to model conduction heat transfer in the fuel, gap, and cladding regions of the fuel rod. In simulation of a selected FLECHT-SET experimental run, EFLOD successfully predicted the midplane maximum temperature and turnaround time as well as the time-dependent advance of the core liquid level. However, the rate of advancement of the quench level and the ensuing liquid entrainment were overpredicted during the early part of the transient
Post CHF heat transfer and quenching
International Nuclear Information System (INIS)
Nelson, R.A.; Condie, K.G.
1980-01-01
This paper describes quantitatively new mechanisms in the post-CHF regime which provide understanding and predictive capability for several current two-phase forced convective heat transfer problems. These mechanisms are important in predicting rod temperature turnaround and quenching during the reflood phase of either a hypothetical loss-of-coolant accident (LOCA) or the FLECHT and Semiscale experiments. The mechanisms are also important to the blowdown phase of a LOCA or the recent Loss-of-Fluid Test (LOFT) experiments L2-2 and L2-3, which were 200% cold leg break transients. These LOFT experiments experienced total core quenching in the early part of the blowdown phase at high (1000 psia) pressures. The mechanisms are also important to certain pressurized water reactor (PWR) operational transients where the reactor may operate in the post-CHF regime for short periods of time. Accurate prediction of the post-CHF heat transfer including core quench during these transients is of prime importance to limit maximum cladding temperatures and prevent cladding deformation
International Nuclear Information System (INIS)
Park, Young Hark; Jung, Eui Guk; Boo, Joon Hong
2007-01-01
A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges from 200 to 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. The study deals with a solar receiver incorporating high-temperature sodium heat pipe as well as typical one that employs a molten-salt circulation loop. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm. For the molten-salt circulation type receiver, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The molten salt fed through the channels by forced convection using a special pump. For the heat pipe receiver, the channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver
Consideration of heat transfer performance of helium-gas/water coolers in HENDEL
International Nuclear Information System (INIS)
Inagaki, Yoshiyuki; Miyamoto, Yoshiaki
1986-10-01
The helium engineering loop (HENDEL) has four helium-gas/water coolers, where the cooling water flows in the tubes and the helium gas flows on the shell side. Their cooling performance depends on mainly the heat transfer of helium gas on the shell side. This report describes the operational data of the coolers and the consideration of the heat transfer performance which is important for the design of coolers. It becomes clear that Donohue's equation is close to the operational data and conservative for the segmental baffle type cooler and preduction by Fishenden-Saunders or Zukauskas' equation is conservation for the step-up baffle type cooler. (author)
Molten Chloride Salts for Heat Transfer in Nuclear Systems
Ambrosek, James Wallace
2011-12-01
A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to
Technology transfer of operator-in-the-loop simulation
Yae, K. H.; Lin, H. C.; Lin, T. C.; Frisch, H. P.
1994-01-01
The technology developed for operator-in-the-loop simulation in space teleoperation has been applied to Caterpillar's backhoe, wheel loader, and off-highway truck. On an SGI workstation, the simulation integrates computer modeling of kinematics and dynamics, real-time computational and visualization, and an interface with the operator through the operator's console. The console is interfaced with the workstation through an IBM-PC in which the operator's commands were digitized and sent through an RS-232 serial port. The simulation gave visual feedback adequate for the operator in the loop, with the camera's field of vision projected on a large screen in multiple view windows. The view control can emulate either stationary or moving cameras. This simulator created an innovative engineering design environment by integrating computer software and hardware with the human operator's interactions. The backhoe simulation has been adopted by Caterpillar in building a virtual reality tool for backhoe design.
Study on enhancement of heat transfer of RVACS
International Nuclear Information System (INIS)
Nishi, Yoshihisa; Kinoshita, Izumi
1989-01-01
As for the enhancement of heat transfer on Reactor Vessel Auxiliary Cooling System (RVACS), utilization of high porosity porous bodies have been proposed by the last report. This report describe the experimental results to evaluate heat transfer performance of the porous bodies and to estimate the extrapolation to long heat transfer surface such as reactor scale. Following are typical results. (1) Usually the Heat Transfer coefficient at the lower reaches is smoller than that of the upper reaches. But Using with the high porosity porous bodies, the Heat Transfer coefficient at the lower reaches remains a constant value against distance from entrance point or a increase slightly compared to that of the upper reaches because of the effect of thermal radiation. (2) From the results of Heat Transfer coefficients against distance from the entrance point, the increasing ratio of enhancement of heat removal in the case of reactor scale is about 1.3. (author)
Nucleate boiling heat transfer on horizontal tubes in bundles
International Nuclear Information System (INIS)
Fujital, Y.; Ohta, H.; Hidaka, S.; Nishikawa, K.
1986-01-01
In order to clarify the heat transfer mechanisms of the flooded type horizontal tube bundle evaporator, heat transfer characteristics of tube bundles of experimental scale which consist both of smooth and enhanced tubes were investigated in detail. The experiments of saturated nucleate boiling were performed by using Freon 113 under pressures 0.1 to 1 MPa, and the effects of various parameters, for example, bundle arrangement, heat flux, pressure on the characteristics of an individual tube are clarified. Experimental data is reproduced well by a proposed heat transfer model in which convective heat transfer coefficients due to rising bubbles are estimated as a function of their volumetric flow rate
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.
1992-12-29
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.
Evaluation of Advanced Models for PAFS Condensation Heat Transfer in SPACE Code
Energy Technology Data Exchange (ETDEWEB)
Bae, Byoung-Uhn; Kim, Seok; Park, Yu-Sun; Kang, Kyung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Tae-Hwan; Yun, Byong-Jo [Pusan National University, Busan (Korea, Republic of)
2015-10-15
The PAFS (Passive Auxiliary Feedwater System) is operated by the natural circulation to remove the core decay heat through the PCHX (Passive Condensation Heat Exchanger) which is composed of the nearly horizontal tubes. For validation of the cooling and operational performance of the PAFS, PASCAL (PAFS Condensing Heat Removal Assessment Loop) facility was constructed and the condensation heat transfer and natural convection phenomena in the PAFS was experimentally investigated at KAERI (Korea Atomic Energy Research Institute). From the PASCAL experimental result, it was found that conventional system analysis code underestimated the condensation heat transfer. In this study, advanced condensation heat transfer models which can treat the heat transfer mechanisms with the different flow regimes in the nearly horizontal heat exchanger tube were analyzed. The models were implemented in a thermal hydraulic safety analysis code, SPACE (Safety and Performance Analysis Code for Nuclear Power Plant), and it was evaluated with the PASCAL experimental data. With an aim of enhancing the prediction capability for the condensation phenomenon inside the PCHX tube of the PAFS, advanced models for the condensation heat transfer were implemented into the wall condensation model of the SPACE code, so that the PASCAL experimental result was utilized to validate the condensation models. Calculation results showed that the improved model for the condensation heat transfer coefficient enhanced the prediction capability of the SPACE code. This result confirms that the mechanistic modeling for the film condensation in the steam phase and the convection in the condensate liquid contributed to enhance the prediction capability of the wall condensation model of the SPACE code and reduce conservatism in prediction of condensation heat transfer.
SCALING LAWS AND TEMPERATURE PROFILES FOR SOLAR AND STELLAR CORONAL LOOPS WITH NON-UNIFORM HEATING
International Nuclear Information System (INIS)
Martens, P. C. H.
2010-01-01
The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of active regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a set of temperature- and pressure-dependent heating functions that encompass heating concentrated at the footpoints, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution-not sufficiently to be of significant diagnostic value-and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the Rosner-Tucker-Vaiana scaling law (P 0 L ∼ T 3 max ) depending on the specific heating function. Furthermore, quasi-static solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the results to a set of solutions for strands with a functionally prescribed variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are accurate and stable.
Rahman, Md. Lutfor; Swarna, Anindita Dhar; Ahmed, Syed Nasif Uddin; Perven, Sanjida; Ali, Mohammad
2016-07-01
Pulsating Heat Pipes, the new two-phase heat transfer devices, with no counter current flow between liquid and vapor have become a modern topic for research in the field of thermal management. This paper focuses on the performance of methanol and distilled water as working fluid in a closed loop pulsating heat pipe (CLPHP). This performances are compared in terms of thermal resistance, heat transfer co-efficient, and evaporator and condenser wall temperature with variable heat inputs. Methanol and Distilled water are selected for their lower surface tension, dynamic viscosity and sensible heat. A closed loop PHP made of copper with 2mm ID and 2.5mm OD having total 8 loops are supplied with power input varied from 10W to 60W. During the experiment the PHP is kept vertical, while the filling ratio (FR) is increased gradually from 40% to 70% with 10% increment. The optimum filling ratio for a minimum thermal resistance is found to be 60% and 40% for distilled water and methanol respectively and methanol is found to be the better working fluid compared to distilled water in terms of its lower thermal resistance and higher heat transfer coefficient.
Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger
International Nuclear Information System (INIS)
Mokamati, S.V.; Prasad, R.C.
2003-01-01
In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)
On the heat transfer correlation for membrane distillation
International Nuclear Information System (INIS)
Wang, Chi-Chuan
2011-01-01
Research highlights: → Heat transfer coefficients applicable for membrane distillation. → Data reduction for heat transfer coefficient for membrane distillation method. → Uncertainty of permeate side due to large magnitude of membrane resistance. → Increase accuracy of heat transfer coefficient by modified Wilson plot technique. -- Abstract: The present study examines the heat transfer coefficients applicable for membrane distillation. In the available literatures, researchers often adopt some existing correlations and claim the suitability of these correlations to their test data or models. Unfortunately this approach is quite limited and questionable. This is subject to the influences of boundary conditions, geometrical configurations, entry flow conditions, as well as some influences from spacer or support. The simple way is to obtain the heat transfer coefficients from experimentation. However there is no direct experimental data for heat transfer coefficients being reported directly from the measurements. The main reasons are from the uncertainty of permeate side and of the comparatively large magnitude of membrane resistance. Additional minor influence is the effect of mass transfer on the heat transfer performance. In practice, the mass transfer effect is negligible provided the feed side temperature is low. To increase the accuracy of the measured feed side heat transfer coefficient, it is proposed in this study to exploit a modified Wilson plot technique. Through this approach, one can eliminate the uncertainty from permeate side and reduce the uncertainty in membrane to obtain a more reliable heat transfer coefficients at feed side from the experimentation.
Review of PCMS and heat transfer enhancement methods applied ...
African Journals Online (AJOL)
Most available PCMs have low thermal conductivity making heat transfer enhancement necessary for power applications. The various methods of heat transfer enhancement in latent heat storage systems were also reviewed systematically. The review showed that three commercially - available PCMs are suitable in the ...
Measurement of heat transfer coefficient using termoanemometry methods
Dančová, P.; Sitek, P.; Vít, T.
2014-03-01
This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC) is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.
Measurement of heat transfer coefficient using termoanemometry methods
Directory of Open Access Journals (Sweden)
Dančová P.
2014-03-01
Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.
Heat or mass transfer from an open cavity
Kuiken, H.K.
1978-01-01
This paper presents a mathematical model for heat or mass transfer from an open cavity. It is assumed that the Péclet number, based on conditions at the cavity, and the Prandtl number are both large. The model assumes heat- or mass-transfer boundary layers at the rim of the cavity vortex flow. Heat
Heat transfer enhancement with condensation by surface rotation
Energy Technology Data Exchange (ETDEWEB)
Vasiliev, L L; Khrolenok, V V [A.V. Luikov Heat and Mass Transfer Inst., Minsk (Belarus)
1993-11-01
Process intensification relies on many unit operations on enhanced heat transfer. One technique for the enhancement of condensation heat transfer is the use of surface rotation. This is particularly effective in reducing the condensate film thickness. The formulae and relationships given in this paper are concerned with rotating discs and tubes, and can be used for developing advanced heat exchanger concepts. (Author)
Heat transfer enhancement for fin-tube heat exchanger using vortex generators
International Nuclear Information System (INIS)
Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun
2002-01-01
Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared
Natural convection heat transfer in a rectangular pool with volumetric heat sources
International Nuclear Information System (INIS)
Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.
2003-01-01
Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)
34th UIT Heat Transfer Conference 2016
International Nuclear Information System (INIS)
2017-01-01
The annual UIT Heat Transfer Conference of the “Unione Italiana di Termofluidodinamica” aims at promoting cooperation in the field of heat transfer and thermal sciences, by bringing together scientists and engineers working in related areas. Several issues of interest are addressed, namely natural, forced and mixed convection, conduction, radiation, multi-phase fluid dynamics and interface phenomena, computational fluid dynamics, micro- and nano-scales, efficiency in energy systems, environmental technologies and buildings, heat transfer in fire engineering. The 34th UIT Conference was held in Ferrara (FE), Italy, 4–6 July, 2015 in the spaces of the Scientific and Technological Center of The University of Ferrara. The response has been enthusiastic: 61 abstracts, 36 oral and 18 poster presentations, 48 papers published on the Proceedings To encourage the debate, the Conference Program has scheduled ample poster sessions and invited lectures from the best experts in the field along with a few of the most talented researchers. Keynote Lectures were given by Professor Giovanni S. Barozzi (University of Modena), Professor Paolo Di Marco (University of Pisa) and Professor Nicola Bianco (University of Napoli Federico II). This special volume collects a selection of the scientific contributions discussed during this conference; these works give a good overview of the state-of-the art Italian research in the field of Heat Transfer related topics. I would like to thank sincerely the authors for presenting their works at the conference and in this special issue. I would also like to extend my thanks to the Scientific Committee and the authors for their accurate review process of each paper for this special issue. Special thanks go to the organizing committee. Professor Stefano Piva (president of The Organizing Committee) About UIT (Unione Italiana Termofluidodinamica) The Italian Union of Thermal-Fluid Dynamics (UIT) was founded in Bologna on December 19, 1984
International Nuclear Information System (INIS)
Sandor, P.; Soroka, B.; Kudryavtsev, V.; Zgurskyy, V.
2009-01-01
The research program was stipulated by reduction the service life of the tube recuperators of reheating furnaces at DUNAFERR metallurgical works in Dunaujvaros (Hungary) while replacement the natural gas by coke - oven gas as a furnace fuel took place and air preheating temperature was increased. The tests procedure consists in comparison of temperature and pressure distributions by air flows preheating under air moving inside the tube loops. Advantages of new recuperator design compared to ordinary one have been proven by validation of concept for adequacy to the testing results. The first tests have demonstrated enhancement of local specific and total heat fluxes transferred from flue gases to air flow within the MD tube loops in comparison with those for BD loops by 25 to 45% - dependence on temperature level within the heating (furnace) chamber and on preheated air flow rate. (author)
Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space
Lekan, Jack F.; Allen, Jeffrey S.
1998-01-01
Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design
RELAP4/MOD6 reflood heat transfer and data comparison
International Nuclear Information System (INIS)
Nelson, R.A.; Sullivan, L.H.
1981-01-01
This discussion of RELAP4/MOD6 will be limited to the reflood heat transfer models and evaluation of these models by comparison of calculation with results from three reflood experiments. The discussion of the model includes the heat transfer surface concept, the heat transfer correlations, the superheat model and the entrainment model which presents both the two-phase heat transfer and hydraulic models. In the discussion of the reflood heat transfer, the mathematical concept of a multidimensional surface is used to represent the heat flux of a given heat transfer correlation or correlations dependent upon such variables as quality, wall superheat and flux. This concept has been used to investigate the characteristics of the correlations, which are discusssed in detail, and the way they are applied to the two-phase mixture. Of primary importance in the reflood core heat transfer is the consideration of thermal nonequilibrium between the phases and the liquid entrainment, and its distribution up the core. Results obtained to date show the heat transfer and hydraulics to be closely coupled. Comparison of the RELAP4/MOD6 reflood calculations with the data from the forced feed FLECHT and gravity feed FLECHT-SET and Semiscale reflood experiments indicates that the heat transfer and hydraulic models are operational and yield good results
A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers
de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries
2014-01-01
A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic
Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN
Pereira, H; Silva, P; Wu, J; Koettig, T
2010-01-01
The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of existing ones. A large spectrum of cryogenic temperatures can be covered by choosing appropriate working fluids. For high luminosity upgrades of existing experiments installed at the Large Hadron Collider (LHC) (TOTEM) and planned ones (FP420) [2-3] being in the design phase, radiation-hard solutions are studied with noble gases as working fluids to limit the radiolysis effect on molecules detrimental to the functioning of the LHP. The installation compactness requirement of experiments such as the CAST frame-store CCD d...
Interfacial heat transfer - State of the art
International Nuclear Information System (INIS)
Yadigaroglu, G.
1987-01-01
Interfacial heat exchanges control the interfacial mass exchange rate, depend on the interfacial area, and are tied to the prediction of thermal nonequilibrium. The nature of the problem usually requires the formulation of mechanistic laws and precludes the general use of universal correlations. This is partly due to the fact that the length scale controlling the interfacial exchanges varies widely from one situation to another and has a strong influence on the exchange coefficients. Within the framework of the ''two-fluid models'', the exchanges occurring at the interfaces are explicitly taken into consideration by the jump condition linking the volumetric mass exchange (evaporation) rate between the phases, to the interfacial energy transfer rates
FILM-30: A Heat Transfer Properties Code for Water Coolant
International Nuclear Information System (INIS)
MARSHALL, THERON D.
2001-01-01
A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating
Corrosion of heat exchanger materials under heat transfer conditions
International Nuclear Information System (INIS)
Tapping, R.L.; Lavoie, P.A.; Disney, D.J.
1987-01-01
Severe pitting has occurred in moderator heat exchangers tubed with Incoloy-800 in Pickering Nuclear Generating Station. The pitting originated on the cooling side (outside) of the tubes and perforation occurred in less than two years. It was known from corrosion testing at CRNL that Incoloy-800 was not susceptible to pitting in Lake Ontario water under isothermal conditions. Corrosion testing with heat transfer across the tube wall was carried out, and it was noted that severe pitting could occur under deposits formed on the tubes in silty Lake Ontario water. Subsequent testing, carried out in co-operation with Ontario Hydro Research Division, investigated the pitting resistance of other candidate tubing alloys: Incoloy-825, 904 L stainless steel, AL-6X, Inconel-625, 70:30 Cu:Ni, titanium, Sanicro-30 and Sanicro-28 1 . Of these, only titanium and Sanicro-28 have not suffered some degree of pitting attack in silt-containing Lake Ontario Water. In the absence of silt, and hence deposits, no pitting took place on any of the alloys tested
Influence of short heat pulses on the helium boiling heat transfer rate
International Nuclear Information System (INIS)
Andreev, V.K.; Deev, V.I.; Savin, A.N.; Kutsenko, K.V.
1987-01-01
Investigation results on heat transfer in the process of helium boiling on a heated wall under conditions of pulsed heat effect are described. Results of the given study point to one of possible ways of heat exchange intensification in boiling helium by supplying short heat pulse to the heater. Even short-time noncontrolled or incidental increase in the heater capacity during experiment with boiling helium can result in a considerable disagreement of experimental data on heat transfer
Personalized recommendation based on heat bidirectional transfer
Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo
2016-02-01
Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.
Fink, Richard
2015-01-01
The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.
On the heat transfer in packed beds
International Nuclear Information System (INIS)
Sordon, G.
1988-09-01
The design of a fusion reactor blanket concept based on a bed of lithium containing ceramic pebbles or a mixture of ceramic and beryllium pebbles demands the knowledge of the effective thermal conductivity of pebble beds, including beds formed by a binary mixture of high conducting metallic pebbles and poorly conducting pebbles. In this work, binary mixtures of spheres of same diameter and different conductivities as well as beds formed by one type of spheres were investigated. The experimental apparatus consists of a stainless steel cylinder with a heating rod along the symmetry axis. Experiments with stagnant and flowing gas were performed. The pebbles were of Al 2 O 3 (diameter = 1, 2, 4 mm), of Li 4 SO 4 (diameter = 0.5 mm) of Al (diameter = 2 mm) and of steel (diameter = 2, 4 mm). Experimental values of the thermal conductivity and of the wall heat transfer coefficient are compared with the predicted ones. Modifications of already existing models were suggested. (orig.) [de
TACO: a finite element heat transfer code
International Nuclear Information System (INIS)
Mason, W.E. Jr.
1980-02-01
TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code
Supercritical water gasification with decoupled pressure and heat transfer modules
Dibble, Robert W.; Ng, Kim Choon; Sarathy, Mani
2017-01-01
decouples the function of containing high pressure from the high temperature function. The present invention allows the heat transfer function to be conducted independently from the pressure transfer function such that the system equipment can be designed
Analysis of heat transfer in plain carbon steels
International Nuclear Information System (INIS)
Han, Heung Nam; Lee, Kyung Jong
1999-01-01
During cooling of steels, the heat transfer was controlled by radiation, convection, conduction and heat evolution from phase transformation. To analyze the heat transfer during cooling precisely, the material constants such as density, heat capacity and the heat evolved during transformation were obtained as functions of temperature and chemical composition for each phase observed in plain carbon steel using a thermodynamic analysis based on the sublattice model of Fe-C-Mn system. The results were applied to 0.049 wt% and 0.155 wt% carbon steels with an austenitic stainless steel as reference by developing a proper heat transfer governing equation. The equation was solved using the lumped system method. In addition, using a transformation dilatometer with adequate experimental conditions to clarify the individual heat transfer effect, the transformation heat evolved during cooling and the transformation behavior as well as the temperature change were observed. The predicted temperature profiles during cooling were well agreed with the measured ones
Analysis of the heat transfer in double and triple concentric tube heat exchangers
Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.
2016-08-01
The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.
Influence of radiation heat transfer during a severe accident
Energy Technology Data Exchange (ETDEWEB)
Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)
2016-09-15
The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)
Heat Transfer Modelling of Glass Media within TPV Systems
Bauer, Thomas; Forbes, Ian; Penlington, Roger; Pearsall, Nicola
2004-11-01
Understanding and optimisation of heat transfer, and in particular radiative heat transfer in terms of spectral, angular and spatial radiation distributions is important to achieve high system efficiencies and high electrical power densities for thermophtovoltaics (TPV). This work reviews heat transfer models and uses the Discrete Ordinates method. Firstly one-dimensional heat transfer in fused silica (quartz glass) shields was examined for the common arrangement, radiator-air-glass-air-PV cell. It has been concluded that an alternative arrangement radiator-glass-air-PV cell with increased thickness of fused silica should have advantages in terms of improved transmission of convertible radiation and enhanced suppression of non-convertible radiation.
Influence of radiation heat transfer during a severe accident
International Nuclear Information System (INIS)
Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A.; Polo L, M. A.
2016-09-01
The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)
An introduction to heat transfer principles and calculations
Ede, A J; Ower, E
1967-01-01
An Introduction to Heat Transfer Principles and Calculations is an introductory text to the principles and calculations of heat transfer. The theory underlying heat transfer is described, and the principal results and formulae are presented. Available techniques for obtaining rapid, approximate solutions to complicated problems are also considered. This book is comprised of 12 chapters and begins with a brief account of some of the concepts, methods, nomenclature, and other relevant information about heat transfer. The reader is then introduced to radiation, conduction, convection, and boiling
A study on the heat transfer characteristics of a self-oscillating heat pipe
International Nuclear Information System (INIS)
Yoon, Seok Hun; Oh, Cheol; Choi, Jae Hyuk
2002-01-01
In this paper, the heat transfer characteristics of a self-oscillating heat pipe are experimentally investigated for the effect of various working fluid fill charge ratios and heat loads. The characteristics of temperature oscillations of the working fluid are also analysed based on chaotic dynamics. The heat pipe is composed of a heating section, a cooling section and an adiabatic section, and has a 0.002m internal diameter, a 0.34m length in each turn and consists of 19 turns. The heating and the cooling portion of each turn has a length of 70mm. A series of experiments was carried out to measure the temperature distributions and the pressure variations of the heat pipe. Furthermore, heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients are calculated for various operating conditions. Experimental results show the efficacy of this type of heat pipe
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-08-15
The purpose of this study is to confirm the heat transfer characteristics of the air cooler (AC) of the Fast Breeder Reactor(FBR) which has a function to remove the residual heat of the reactor by heat exchange between sodium and air in natural convection region if electric power would be lost. In order to confirm the characteristics of the AC installed in the FBR plant, the heat transfer test by using the AC which is installed in the sodium test loop owned by Toshiba Corporation has been planned. In this study, the heat transfer characteristic tests were performed by using the AC in sodium test loop, and the CFD analyses were conducted to evaluate the test results and the heat transfer characteristics of the plant scale AC at the condition of natural convection. In addition, the elemental tests to confirm the influence of the heat transfer tube placement by using the heat transfer tube of the same specification as the AC of Monju were performed. (author)
Neutron behavior, reactor control, and reactor heat transfer. Volume four
International Nuclear Information System (INIS)
Anon.
1986-01-01
Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)
INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES
Directory of Open Access Journals (Sweden)
A. G. Kulakov
2005-01-01
Full Text Available Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of operating parameters is given in the paper.
International Nuclear Information System (INIS)
Banerjee, S.; Hassan, Y.A.
1995-01-01
Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology's (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values
Energy Technology Data Exchange (ETDEWEB)
Banerjee, S.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)
1995-09-01
Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.
LOOP-3, Hydraulic Stability in Heated Parallel Channels
Energy Technology Data Exchange (ETDEWEB)
Davies, A L [AEEW, Dorset (United Kingdom)
1968-02-01
1 - Nature of physical problem solved: Hydraulic stability in parallel channels. 2 - Method of solution: Calculation of transfer functions developed in reference (10 below). 3 - Restrictions on the complexity of the problem: Only due to assumptions in analysis (see ref.)
Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids
Cutbirth, J. Michael
2012-01-01
A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.
Non intrusive measurement of the convective heat transfer coefficient
Energy Technology Data Exchange (ETDEWEB)
Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM
2010-07-01
The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.
Surface wettability and subcooling on nucleate pool boiling heat transfer
Suroto, Bambang Joko; Kohno, Masamichi; Takata, Yasuyuki
2018-02-01
The effect of varying surface wettabilities and subcooling on nucleate pool boiling heat transfer at intermediate heat flux has been examined and investigated. The experiments were performed using pure water as the working fluid and subcooling ranging from 0, 5 and 10 K, respectively. The three types of heat transfer block were used that are bare surface/hydrophilic (polished copper), superhydrophilic/TiO2-coated on copper and hydrophobic/PTFE surface. The experimental results will be examined by the existing model. The results show that the heat transfer performance of surfaces with PTFE coating is better at low heat flux. While for an intermediate heat flux, superhydrophilic surface (TiO2) is superior compared to hydrophilic and hydrophobic surfaces. It is observed that the heat transfer performance is decreasing when the sub cooling degree is increased.
Transfer coefficients for plate fin and elliptical tube heat exchangers
International Nuclear Information System (INIS)
Saboya, S.M.; Saboya, F.E.M.
1981-01-01
In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author) [pt
Thermal responses in a coronal loop maintained by wave heating mechanisms
Matsumoto, Takuma
2018-05-01
A full 3-dimensional compressible magnetohydrodynamic (MHD) simulation is conducted to investigate the thermal responses of a coronal loop to the dynamic dissipation processes of MHD waves. When the foot points of the loop are randomly and continuously forced, the MHD waves become excited and propagate upward. Then, 1-MK temperature corona is produced naturally as the wave energy dissipates. The excited wave packets become non-linear just above the magnetic canopy, and the wave energy cascades into smaller spatial scales. Moreover, collisions between counter-propagating Alfvén wave packets increase the heating rate, resulting in impulsive temperature increases. Our model demonstrates that the heating events in the wave-heated loops can be nanoflare-like in the sense that they are spatially localized and temporally intermittent.
International Nuclear Information System (INIS)
Guangming, Xiao; Yanxia, Du; Yewei, Gui; Lei, Liu; Xiaofeng, Yang; Dong, Wei
2014-01-01
The theories of heat transfer, thermodynamics and fluid dynamics are employed to develop the coupled heat transfer analytical methods for the heat-pipe-cooled thermal protection structure (HPC TPS), and a three-dimensional numerical method considering the sonic limit of heat pipe is proposed. To verify the calculation correctness, computations are carried out for a typical heat pipe and the results agree well with experimental data. Then, the heat transfer characteristics and limitations of HPC TPS are mainly studied. The studies indicate that the use of heat pipe can reduce the temperature at high heat flux region of structure efficiently. However, there is a frozen startup period before the heat pipe reaching a steady operating state, and the sonic limit will be a restriction on the heat transfer capability. Thus, the effects of frozen startup must be considered for the design of HPC TPS. The simulation model and numerical method proposed in this paper can predict the heat transfer characteristics of HPC TPS quickly and exactly, and the results will provide important references for the design or performance evaluation of HPC TPS. - Highlights: • Numerical methods for the heat-pipe-cooled thermal protection structure are studied. • Three-dimensional simulation model considering sonic limit of heat pipe is proposed. • The frozen startup process of the embedded heat pipe can be predicted exactly. • Heat transfer characteristics of TPS and limitations of heat pipe are discussed
International Nuclear Information System (INIS)
Cheng, XueTao; Liang, XinGang
2013-01-01
The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer
CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING?
International Nuclear Information System (INIS)
Lionello, Roberto; Linker, Jon A.; Mikić, Zoran; Alexander, Caroline E.; Winebarger, Amy R.
2016-01-01
The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delay is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored
Effect of different heat transfer models on HCCI engine simulation
International Nuclear Information System (INIS)
Neshat, Elaheh; Saray, Rahim Khoshbakhti
2014-01-01
Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply
Faes, L; Porta, A; Cucino, R; Cerutti, S; Antolini, R; Nollo, G
2004-06-01
Although the concept of transfer function is intrinsically related to an input-output relationship, the traditional and widely used estimation method merges both feedback and feedforward interactions between the two analyzed signals. This limitation may endanger the reliability of transfer function analysis in biological systems characterized by closed loop interactions. In this study, a method for estimating the transfer function between closed loop interacting signals was proposed and validated in the field of cardiovascular and cardiorespiratory variability. The two analyzed signals x and y were described by a bivariate autoregressive model, and the causal transfer function from x to y was estimated after imposing causality by setting to zero the model coefficients representative of the reverse effects from y to x. The method was tested in simulations reproducing linear open and closed loop interactions, showing a better adherence of the causal transfer function to the theoretical curves with respect to the traditional approach in presence of non-negligible reverse effects. It was then applied in ten healthy young subjects to characterize the transfer functions from respiration to heart period (RR interval) and to systolic arterial pressure (SAP), and from SAP to RR interval. In the first two cases, the causal and non-causal transfer function estimates were comparable, indicating that respiration, acting as exogenous signal, sets an open loop relationship upon SAP and RR interval. On the contrary, causal and traditional transfer functions from SAP to RR were significantly different, suggesting the presence of a considerable influence on the opposite causal direction. Thus, the proposed causal approach seems to be appropriate for the estimation of parameters, like the gain and the phase lag from SAP to RR interval, which have a large clinical and physiological relevance.
Heat transfer analysis of parabolic trough solar receiver
International Nuclear Information System (INIS)
Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.
2011-01-01
Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.
Improving Heat Transfer Performance of Printed Circuit Boards
Schatzel, Donald V.
2009-01-01
This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.
An inverse heat transfer problem for optimization of the thermal ...
Indian Academy of Sciences (India)
This paper takes a different approach towards identiﬁcation of the thermal process in machining, using inverse heat transfer problem. Inverse heat transfer method allows the closest possible experimental and analytical approximation of thermal state for a machining process. Based on a temperature measured at any point ...
Transient heat transfer in longitudinal fins of various profiles with ...
Indian Academy of Sciences (India)
Transient heat transfer through a longitudinal ﬁn of various proﬁles is studied. The thermal conductivity and heat transfer coefficients are assumed to be temperature dependent. The resulting partial differential equation is highly nonlinear. Classical Lie point symmetry methods are employed and some reductions are ...
Heat transfer and thermal stress analysis in grooved tubes
Indian Academy of Sciences (India)
Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...
Analytical Evalution of Heat Transfer Conductivity with Variable Properties
DEFF Research Database (Denmark)
Rahimi, Masoume; Hosseini, Mohammad Javad; Barari, Amin
2011-01-01
The homotopy analysis method (HAM) as a new technique which is powerful and easy-to-use, is applied to solve heat transfer problems. In this paper, we use HAM for heat transfer conductivity equation with variable properties which may contain highly nonlinear terms. The obtained results are also...
Two dimensional finite element heat transfer models for softwood
Hongmei Gu; John F. Hunt
2004-01-01
The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential directions and have not differentiated the effects of cellular alignment, earlywood/latewood...
Heat transfer in high-level waste management
International Nuclear Information System (INIS)
Dickey, B.R.; Hogg, G.W.
1979-01-01
Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed
Study of coupled heat and mass transfer during absorption of ...
Indian Academy of Sciences (India)
(iii) The gas phase is ideal from thermodynamic point of view. (iv) Only mass transfer and no heat transfer takes place through the porous filter. (v) The thermal conductivity and specific heat of the hydride bed are assumed to be constant. This assumption underestimates the bed performance slightly, because in actual case ...
Enhancement of heat transfer using varying width twisted tape inserts
African Journals Online (AJOL)
user
enhancement of heat transfer with twisted tape inserts as compared to plain ... studies for heat transfer and pressure drop of laminar flow in horizontal tubes ... flow in rectangular and square plain ducts and ducts with twisted-tape inserts .... presence of the insert in the pipe causes resistance to flow and increases turbulence.
Analysis of heat transfer in a centrifugal film evaporator
Bruin, S.
1970-01-01
Heat transfer in a centrifugal film evaporator with a conical heating surface is analyzed. Two regions of transfer can be distinguished: an entrance region, where the temp. profile in the film develops, and an evapn. region, where \\"surface evapn.\\" takes place. Relations are derived for liq.-film
A modified stanton number for heat transfer through fabric surface
Directory of Open Access Journals (Sweden)
Zhang Shen-Zhong
2015-01-01
Full Text Available The Stanton number was originally proposed for describing heat transfer through a smooth surface. A modified one is suggested in this paper to take into account non-smooth surface or fractal surface. The emphasis is put on the heat transfer through fabrics.
Study of coupled heat and mass transfer during absorption of ...
Indian Academy of Sciences (India)
2.3 Hydrogen mass balance ε. ∂ρg. ∂t. + div(ρgVg) ... staggered grids to catch the heat transfer across the control volume by convection effectively. .... temperature decreases due to fall in the reaction rate and increase in heat transfer from the.
THE ELECTRONIC COURSE OF HEAT AND MASS TRANSFER
Directory of Open Access Journals (Sweden)
Alexander P. Solodov
2013-01-01
Full Text Available The Electronic course of heat and mass transfer in power engineering is presented containing the full Electronic book as the structured hypertext document, the full set of Mathcad-documents with the whole set of educative computer models of heat and mass transfer, the computer labs, and selected educational presentations.
Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators
Energy Technology Data Exchange (ETDEWEB)
Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering
1996-12-31
Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)
Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators
Energy Technology Data Exchange (ETDEWEB)
Yanagihara, J I; Rodriques, R Jr [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering
1997-12-31
Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)
Effect of surface etching on condensing heat transfer
Energy Technology Data Exchange (ETDEWEB)
Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)
2016-02-15
This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.
Proceedings of the 33rd national heat transfer conference NHTC'99
International Nuclear Information System (INIS)
Jensen, M.K.; Di Marzo, M.
1999-01-01
The papers in this conference were divided into the following sections: Radiation Heat Transfer in Fires; Computational Fluid Dynamics Methods in Two-Phase Flow; Heat Transfer in Microchannels; Thin Film Heat Transfer; Thermal Design of Electronics; Enhanced Heat Transfer I; Porous Media Convection; Contact Resistance Heat Transfer; Materials Processing in Solidification and Crystal Growth; Fundamentals of Combustion; Challenging Modeling Aspects of Radiative Transfer; Fundamentals of Microscale Transport; Laser Processing and Diagnostics for Manufacturing and Materials Processing; Experimental Studies of Multiphase Flow; Enhanced Heat Transfer II; Heat and Mass Transfer in Porous Media; Heat Transfer in Turbomachinery and Gas Turbine Systems; Conduction Heat Transfer; General Papers; Open Forum on Combustion; Combustion and Instrumentation and Diagnostics I; Radiative Heat Transfer and Interactions in Participating and Nonparticipating Media; Applications of Computational Heat Transfer; Heat Transfer and Fluid Aspects of Heat Exchangers; Two-Phase Flow and Heat Transfer Phenomena; Fundamentals of Natural and Mixed Convection Heat Transfer I; Fundamental of Natural and Mixed Convection Heat Transfer II; Combustion and Instrumentation and Diagnostics II; Computational Methods for Multidimensional Radiative Transfer; Process Heat Transfer; Advances in Computational Heat and Mass Transfer; Numerical Methods for Porous Media; Transport Phenomena in Manufacturing and Materials Processing; Practical Combustion; Melting and Solidification Heat Transfer; Transients in Dynamics of Two-Phase Flow; Basic Aspects of Two-Phase Flow; Turbulent Heat Transfer; Convective Heat Transfer in Electronics; Thermal Problems in Radioactive and Mixed Waste Management; and Transport Phenomena in Oscillatory Flows. Separate abstracts were prepared for most papers in this conference
Burnout detector design for heat transfer experiments
International Nuclear Information System (INIS)
Dias, H.F.
1992-01-01
This paper describes the design of an burnout detector for heat transfer experiments, applied during tests for optimization of fuel elements for PWR reactors. The burnout detector avoids the fuel rods destruction during the experiments at the Centro de Desenvolvimento da Tecnologia Nuclear. The detector evaluates the temperature changes over the fuel rods in the temperature changes over the fuel rods in the area where the burnout phenomenon could be anticipated. As soon as the phenomenon appears, the system power supply is turned off. The thermal Circuit No. 1, during the experiments, had been composed by nine fuel rods feed parallelly by the same power supply. Fine copper wires had been attached at the centre and at the ends of the fuel rod to take two Wheat stone bridge arms. The detector had been applied across the bridge diagonals, which must be balanced the burnout excursion can be detected as a small but fast increase of the signal over the detector. Large scale experiments had been carried out to compare the resistance bridge performance against a thermocouple attached through the fuel rod wall. These experiments had been showed us the advantages of the first method over the last, because the bridge evaluates the whole fuel rod, while the thermocouple evaluates only the area where it had been attached. (author)
Heat loss prediction of a confined premixed jet flame using a conjugate heat transfer approach
Gövert, S.; Mira, D.; Zavala-Ake, M.; Kok, J.B.W.; Vázquez, M.; Houzeaux, G.
2017-01-01
The presented work addresses the investigation of the heat loss of a confined turbulent jet flame in a lab-scale combustor using a conjugate-heat transfer approach and large-eddy simulation. The analysis includes the assessment of the principal mechanisms of heat transfer in this combustion chamber:
Heat transfer in the thermal entrance region of a circular tube with axial heat conduction
International Nuclear Information System (INIS)
Zhang Changquan.
1985-01-01
This paper recounts the effects of axial heat conduction and convective boundary conditions on the heat transfer in the thermal entrance region of a circular tube under uniform flow, and the corresponding calculation is made. It will be profitable for the heat transfer studies on the pipe entrance region of low Prandtl number (liquid metal), or flow of low Peclet number. (author)
OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING
Energy Technology Data Exchange (ETDEWEB)
Dahlburg, R. B.; Taylor, B. D. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Einaudi, G. [Berkeley Research Associates, Inc., Beltsville, MD 20705 (United States); Ugarte-Urra, I. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Rappazzo, A. F. [Advanced Heliophysics, Pasadena, CA 91106 (United States); Velli, M., E-mail: rdahlbur@lcp.nrl.navy.mil [EPSS, UCLA, Los Angeles, CA 90095 (United States)
2016-01-20
The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.
Second Law Analysis in Convective Heat and Mass Transfer
Directory of Open Access Journals (Sweden)
A. Ben Brahim
2006-02-01
Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.
Blowdown heat transfer surface in RELAP4/MOD6
International Nuclear Information System (INIS)
Nelson, R.A.; Sullivan, L.H.
1978-01-01
New heat transfer correlations for both PWR and BWR blowdowns have been implemented in the RELAP4/MOD6 program. The concept of a multidimensional surface is introduced with the heat flux from a given heat transfer correlation or correlations depicted as a mathematical surface that is dependent upon quality, wall superheat, mass flow and pressure. The heat transfer logic has been modularized to facilitate replacing boiling curves for future correlation data comparisons and investigations. To determine the validity of the blowdown surface, comparison has been performed using data from the Semiscale experimental facility. (author)
International Nuclear Information System (INIS)
Boyer, B.D.; Parlatan, Y.; Slovik, G.C.
1995-01-01
RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba's Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to ±5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes
Energy Technology Data Exchange (ETDEWEB)
Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others
1995-09-01
RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.
Heat transfer analysis of liquid piston compressor for hydrogen applications
DEFF Research Database (Denmark)
Kermani, Nasrin Arjomand; Rokni, Masoud
2015-01-01
A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...
Comparison of heat transfer models for reciprocating compressor
International Nuclear Information System (INIS)
Tuhovcak, J.; Hejcik, J.; Jicha, M.
2016-01-01
Highlights: • Comparison of integral heat transfer models. • Influence of heat transfer model on volumetric and isentropic efficiency. • Various gases used as working fluid. - Abstract: One of the main factors affecting the efficiency of reciprocating compressor is heat transfer inside the cylinder. An analysis of heat transfer could be done using numerical models or integral correlations developed mainly from approaches used in combustion engines; however their accuracy is not completely verified due to the complicated experimental set up. The goal of this paper is to analyse the effect of heat transfer on compressor efficiency. Various integral correlations were compared for different compressor settings and fluids. CoolProp library was used in the code to obtain the properties of common coolants and gases. A comparison was done using the in-house code developed in Matlab, based on 1st Law of Thermodynamics.
Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel
Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo;
2012-01-01
This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.
Natural convection heat transfer from a vertical circular tube sheet
International Nuclear Information System (INIS)
Dharne, S.P.; Gaitonde, U.N.
1996-01-01
Experiments were conducted to determine natural convection heat transfer coefficients (a) on a plain vertical circular plate, and (b) on a similar plate with a square array of non-conducting tubes fixed in it. The experiments were carried out using air as the heat transfer medium. The diameter of the brass plates used was 350 mm. The diameter of the bakelite tubes used was 19.2 mm. The range of Rayleigh numbers was from 1.06x10 8 to 1.66x10 8 . The results show that the heat transfer coefficients in case (a) are very close to those obtained using standard correlations for vertical flat plates, whereas for case (b) the heat transfer coefficients are at least 50 percent higher than those predicted by the Churchill-Chu correlation. It is hence concluded that the disturbance to boundary layer caused by the presence of tubes enhances the heat transfer coefficient significantly. (author). 4 refs., 3 figs
The Heating of Solar Coronal Loops by Alfvén Wave Turbulence
Energy Technology Data Exchange (ETDEWEB)
Van Ballegooijen, A. A. [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Asgari-Targhi, M.; Voss, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2017-11-01
In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magnetohydrodynamic model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in the chromosphere and corona. For a particular combination of model parameters we find that AWT can produce enough heat to maintain a peak temperature of about 2.5 MK, somewhat lower than the temperatures of 3–4 MK observed in the cores of active regions. The heating rates vary strongly in space and time, but the simulated heating events have durations less than 1 minute and are unlikely to reproduce the observed broad differential emission measure distributions of active regions. The simulated spectral line nonthermal widths are predicted to be about 27 km s{sup −1}, which is high compared to the observed values. Therefore, the present AWT model does not satisfy the observational constraints. An alternative “magnetic braiding” model is considered in which the coronal field lines are subject to slow random footpoint motions, but we find that such long-period motions produce much less heating than the shorter-period waves launched within the flux tubes. We discuss several possibilities for resolving the problem of producing sufficiently hot loops in active regions.
Non-Uniform Heat Transfer in Thermal Regenerators
DEFF Research Database (Denmark)
Jensen, Jesper Buch
, a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled....... Additionally, the experiments gave real comparative results, whereas the model to a certain degree more served to provide insight to the heat transfer processes taking place inside the regenera- tors, something that would be - if not impossible - then highly impractical to do experimentally. It has been found......This thesis presents investigations on the heat transfer in complex heat ex- changers in general and in regenerative heat exchangers (regenerators) in par- ticular. The motivation for this work is a result of inconsistencies obeserved in the results from a series of experiments on active magnetic...
Direct contact heat transfer characteristics between melting alloy and water
International Nuclear Information System (INIS)
Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro
1995-01-01
As a candidate for an innovative steam generator for fast breeder reactors, a heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The evaluation of heat transfer characteristics of this heat exchanger is one of the research subjects for the design and development of the steam generator. In this study, the effect of the pressure on heat transfer characteristics and the required degree of superheating of melting alloy above water saturation temperature are evaluated during the direct contact heat transfer experiment by injecting water into Wood's alloy. In the experiment, the pressure, the temperature of the Wood's alloy, the flow rate of feed water, and the depth of the feed water injection point are varied as parameters. As a result of the experiment, the product of the degree of Wood's alloy superheating above water saturation temperature and the depth of the feed water injection point is constant for each pressure. This constant increases as the pressure rises. (author)
Numerical investigation of heat transfer effects in small wave rotor
International Nuclear Information System (INIS)
Deng, Shi; Okamoto, Koji; Teramoto, Susumu
2015-01-01
Although a wave rotor is expected to enhance the performance of the ultra-micro gas turbine, the device itself may be affected by downsizing. Apart from the immediate effect of viscosity on flow dynamics when downscaled, the effects of heat transfer on flow field increase at such small scales. To gain an insight into the effects of heat transfer on the internal flow dynamics, numerical investigations were carried out with adiabatic, isothermal and conjugate heat transfer boundary treatments at the wall, and the results compared and discussed in the present study. With the light shed by the discussion of adiabatic and conjugate heat transfer boundary treatments, this work presents investigations of the heat flux distributions, as well as the effects of heat transfer on the internal flow dynamics and the consequent charging and discharging processes for various sizes. When heat transfer is taken into account, states of fluid in the cell before compression process varies, shock waves in compression process are found to be weaker, and changes in the charging and discharging processes are observed. Heat transfer differences between conjugate heat transfer boundary treatment and isothermal boundary treatment are addressed through comparisons of local wall temperature and heat flux. As a result, the difference in discharging temperature of high pressure fluid is noticeable in all sizes investigated, and the rapid increase of differences between results of isothermal and conjugate heat transfer boundary treatment in small size reveals that for certain small sizes (length of cell < 23 mm) the thermal boundary treatment should be taken care of.
Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael
2006-01-01
This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.
International Nuclear Information System (INIS)
Sakurai, K.; Ko, H.S.; Okamoto, K.; Madarame, H.
2001-01-01
For development of new reactor, supercritical water is expected to be used as coolant to improve thermal efficiency. However, the thermal characteristics of supercritical fluid is not revealed completely because its difficulty for experiment. Specific phenomena tend to occur near the pseudo-boiling point which is characterised by temperature corresponding to the saturation point in ordinary fluid. Around this point, the physic properties such as density, specific heat and thermal conductivity are drastically varying. Although there is no difference between gas and liquid phases in supercritical fluids, phenomena similar to boiling (with heat transfer deterioration) can be observed round the pseudo-boiling point. Experiments of heat transfer have been done for supercritical fluid in forced convective condition. However, these experiments were mainly realised inside stainless steel cylinder pipes, for which flow visualisation is difficult. Consequently, this work has been devoted to the development of method allowing the visualisation of supercritical flows. The experiment setup is composed of main loop and test section for the visualisation. Carbon dioxide is used as test fluid. Supercritical carbon dioxide flows upward in rectangular channel and heated by one-side wall to generate forced convection heat transfer. Through window at mid-height of the test section, shadowgraphy was applied to visualize density gradient distribution. The behavior of the density wave in the channel is visualized and examined through the variation of the heat transfer coefficient. (author)
RELAP5 analysis of reflux condensation behavior in heat transfer tube bundle of a steam generator
International Nuclear Information System (INIS)
Minami, Noritoshi; Chikusa, Toshiaki; Nagae, Takashi; Murase, Michio
2007-01-01
In case of loss of the residual heat removal system and other alternative cooling methods under mid-loop operation during shutdown of the pressurized water reactor plant, reflux condensation in the steam generator (SG) may be an effective heat removal mechanism. In reflux condensation experiments 7.2c with injection of nitrogen gas using the BETHSY facility in France, which is a scale model of a pressurized water reactor plant, 34 heat transfer tubes were divided into two kinds of flow patterns, which were steam forward flow and nitrogen reverse flow. In this study, we simulated the BETHSY experiments using the transient analysis code RELAP5. Modifying calculation equations for interfacial friction force and wall friction force between the inlet plenum and heat transfer tubes, nitrogen reverse flow was successfully simulated. In calculations with alteration of the flow area ratio to two flow channels for the heat transfer tube bundle, the number of active tubes with the maximum nitrogen recirculation flow rate agreed rather well with the observed number of active tubes. In calculations with three flow channels for the heat transfer tube bundle, the average number of active tubes in several calculations with different flow area ratios of the three flow channels predicted the number of active tubes well. (author)
Heat transfer and mechanical interactions in fusion nuclear systems
International Nuclear Information System (INIS)
Nygren, R.E.
1984-01-01
This general review of design issues in heat transfer and mechanical interactions of the first wall, blanket and shield systems of tokamak and mirror fusion reactors begins with a brief introduction to fusion nuclear systems. The design issues are summarized in tables and the following examples are described to illustrate these concerns: the surface heating of limiters, heat transfer from solid breeders, MHD effects in liquid metal blankets, mechanical loads from electromagnetic transients and remote maintenance
Energy Technology Data Exchange (ETDEWEB)
Dyrboel, Susanne
1998-05-01
Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the
International symposium on radiative heat transfer: Book of abstracts
International Nuclear Information System (INIS)
1995-01-01
The international symposium on radiative heat transfer was held on 14-18 August 1995 Turkey. The specialists discussed radiation transfer in materials processing and manufacturing, solution of radiative heat transfer equation, transient radiation problem and radiation-turbulence interactions, raditive properties of gases, atmospheric and stellar radiative transfer , radiative transfer and its applications, optical and radiative properties of soot particles, inverse radiation problems, partticles, fibres,thermophoresis and waves and modelling of comprehensive systems at the meeting. Almost 79 papers were presented in the meeting
Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.
2013-01-01
In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic
International Nuclear Information System (INIS)
Jung, B. R.; Park, H. S.; Chung, D. M.; Baik, S. J.
1999-01-01
The computer program SAFE has been used to size and analyze the performance of a steam generator which has two types of heat transfer regions in Korean Standard Nuclear Power Plants (KSNP) and Korean Next Generation Reactor (KNGR) design. The SAFE code calculates the analytical boiling heat transfer area using the modified form of the saturated nucleate pool boiling correlation suggested by Rohsenow. The predicted heat transfer area in the boiling region is multiplied by a constant to obtain a final analytical heat transfer area. The inclusion of the multiplier in the analytical calculation has some disadvantage of loss of complete correlation by the governing heat transfer equation. Several comparative analyses have been performed quantitatively to evaluate the possibility of removing the multiplier in the analytical calculation in the SAFE code. The evaluation shows that the boiling correlation and multiplier used in predicting the boiling region heat transfer area can be replaced with other correlations predicting nearly the same heat transfer area. The removal of multiplier included in the analytical calculation will facilitate a direct use of a set of concerned analytical sizing values that can be exactly correlated by the governing heat transfer equation. In addition this will provide more reasonable basis for the steam generator thermal sizing calculation and enhance the code usability without loss of any validity of the current sizing procedure. (author)
Enhanced two phase flow in heat transfer systems
Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D
2013-12-03
A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa
Energy Technology Data Exchange (ETDEWEB)
Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)
1996-12-01
The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)
Validation of heat transfer models for gap cooling
International Nuclear Information System (INIS)
Okano, Yukimitsu; Nagae, Takashi; Murase, Michio
2004-01-01
For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)
International Nuclear Information System (INIS)
2015-01-01
The conference covered various aspects of heat and mass transfer like Aero-thermodynamics, Atmospheric flows, Biological heat and mass transfer, Combustion and reactive flows, Cryogenics, Electronic and photonic cooling, Energy engineering, Environmental engineering, Experimental techniques, Heat transfer enhancement, Heat transfer equipment's, Heat transfer in nuclear applications, Mass transfer, Materials processing and manufacturing, Microscale and nanoscale transport, Multiphase transport and phase change, Multi mode heat transfer, Numerical methods, Refrigeration and air conditioning, Space heat transfer, Transport phenomena in porous media, and Turbulent transport. Papers relevant to INIS are indexed separately
International Nuclear Information System (INIS)
Stafford, Jason; Walsh, Ed; Egan, Vanessa
2009-01-01
Convective heat transfer, due to axial flow fans impinging air onto a heated flat plate, is investigated with infrared thermography to assess the heated-thin-foil technique commonly used to quantify two-dimensional heat transfer performance. Flow conditions generating complex thermal profiles have been considered in the analysis to account for dominant sources of error in the technique. Uncertainties were obtained in the measured variables and the influences on the resultant heat transfer data are outlined. Correction methods to accurately account for secondary heat transfer mechanisms were developed and results show that as convective heat transfer coefficients and length scales decrease, the importance of accounting for errors increases. Combined with flow patterns that produce large temperature gradients, the influence of heat flow within the foil on the resultant heat transfer becomes significant. Substantial errors in the heat transfer coefficient are apparent by neglecting corrections to the measured data for the cases examined. Methods to account for these errors are presented here, and demonstrated to result in an accurate measurement of the local heat transfer map on the surface
Investigations on post-dryout heat transfer in bilaterally heated annular channels
International Nuclear Information System (INIS)
Tian, W.X.; Qiu, S.Z.; Jia, D.N.
2006-01-01
Post-dryout heat transfer in bilaterally heated vertical narrow annular channels with 1.0, 1.5 and 2.0 mm gap size has been experimentally investigated with deionized water under the condition of pressure ranging from 1.38 to 5.9 MPa and low mass flow rate from 42.9 to 150.2 kg/m 2 s. The experimental data was compared with well known empirical correlations including Groeneveld, Mattson, etc., and none of them gave an ideal prediction. Theoretical investigations were also carried out on post-dryout heat transfer in annular channels. Based on analysis of heat exchange processes arising among the droplets, the vapor and two tube walls of annular channel, a non-equilibrium mechanistic heat transfer model was developed. Comparison indicated that the present model prediction showed a good agreement with our experimental data. Theoretical calculation result showed that the forced convective heat transfer between the heated wall and vapor dominate the overall heat transfer. The heat transfer caused by the droplets direct contact to the wall and the interfacial convection/evaporation of droplets in superheated vapors also had an indispensable contribution. The radiation heat transfer would be neglected because of its small contribution (less than 0.11%) to the total heat transfer
Study on boiling heat transfer of high temperature liquid sodium
International Nuclear Information System (INIS)
Sakurai, Akira
1978-01-01
In the Intitute of Atomic Energy, Kyoto University, fundamental studies on steady state and non-steady state heat flow are underway in connection with reactor design and the safety in a critical accident in a sodium-cooled fast breeder reactor. First, the experimental apparatus for sodium heat transfer and the testing system are described in detail. The apparatus is composed of sodium-purifying section including the plugging meter for measuring purity and cold trap, the pool boiling test section for experimenting natural convection boiling heat transfer, the forced convection boiling test section for experimenting forced convection boiling heat transfer, and gas system. Next, the experimental results by the author and the data obtained so far are compared regarding heat transfer in sodium natural convection and stable nucleating boiling and critical heat flux. The effect of liquid head on a heater on boiling heat transfer coefficient and critical heat flux under the condition of low system pressure in most fundamental pool boiling was elucidated quantitatively, which has been overlooked in previous studies. It was clarified that this is the essentially important problem that can not be overlooked. From this point of view, expressions on heat transfer were also re-investigated. (Wakatsuki, Y.)
International Nuclear Information System (INIS)
Berrichon, J.D.; Louahlia-Gualous, H.; Bandelier, Ph.; Bariteau, N.
2014-01-01
Highlights: • Theoretical model for condensation heat transfer at very low pressure is developed using only one iterative loop. • Experimental results on steam and air steam condensation heat transfer at very low pressure are presented. • The developed model gives the good predictions for local condensation heat transfer at low pressure. • A maximal deterioration of 50% in condensation heat transfer is obtained at low pressure for air fraction of 4%. • A new correlation including effect of a wavy film surface for steam condensation at low pressure is suggested. - Abstract: This paper presents experimental investigation on the influence of very low pressure on local and average condensation heat transfer in a vertical tube. Furthermore, this paper develops an analytical study for film condensation heat transfer coefficient in the presence of non-condensable gas inside a vertical tube. The condensate film thickness is calculated for each location in a tube using mass and heat transfer analogy. The effects of interfacial shear stress and waves on condensate film surface are included in the model. The comparative studies show that the present model well predicts the experimental data of Khun et al. [1]for local condensation of steam air mixture at high pressure. Different correlations defined for condensation heat transfer are evaluated. It is found that the correlations of Cavallini and Zecchin [2] and Shah [3] are the closest to the calculated steam condensation local heat transfer coefficient. The model gives a satisfactory accuracy with the experimental results for condensation heat transfer at very low pressure. The mean deviation between the predictions of the theoretical model with the measurements for pure saturated vapor is 12%. Experimental data show that the increase of air fraction to 4% deteriorates condensation heat transfer at low pressure up to 50%
DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C
International Nuclear Information System (INIS)
Winebarger, Amy R.; Moore, Ronald; Cirtain, Jonathan; Walsh, Robert W.; De Pontieu, Bart; Title, Alan; Hansteen, Viggo; Golub, Leon; Korreck, Kelly; Weber, Mark; Kobayashi, Ken; DeForest, Craig; Kuzin, Sergey
2013-01-01
The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 Å channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at one footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool (∼10 5 K), dense (∼10 10 cm –3 ) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere.
DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C
Energy Technology Data Exchange (ETDEWEB)
Winebarger, Amy R.; Moore, Ronald; Cirtain, Jonathan [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Walsh, Robert W. [University of Central Lancashire, Preston, Lancashire PR1 2HE (United Kingdom); De Pontieu, Bart; Title, Alan [Lockheed Martin Solar and Astrophysics Lab, 3251 Hanover St., Org. A0215, Bldg. 252, Palo Alto, CA 94304 (United States); Hansteen, Viggo [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Golub, Leon; Korreck, Kelly; Weber, Mark [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kobayashi, Ken [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Dr, Huntsville, AL 35805 (United States); DeForest, Craig [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Kuzin, Sergey, E-mail: amy.r.winebarger@nasa.gov [P.N. Lebedev Physical institute of the Russian Academy of Sciences, Leninskii prospekt 53 119991, Moscow (Russian Federation)
2013-07-01
The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 A channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at one footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool ({approx}10{sup 5} K), dense ({approx}10{sup 10} cm{sup -3}) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere.
Water loop heat pump and its characteristics%水环热泵及其特点
Institute of Scientific and Technical Information of China (English)
冯润娣
2011-01-01
This paper introduces the definition and working principle of water loop beat pump, and describes its development condition at home and abroad. Through analyzing the characteristics of water loop heat pump, it points out the water loop heat pump is a kind of economic, energy saving and environment protection air-conditioning system, and has great application prospect.%阐述了水环热泵的定义及工作原理，介绍了水环热泵在国内外的发展概况，通过分析水环热泵的特点，指出其是一种经济、节能、环保的空调系统，有着广阔的应用前景。
Heat Load Sharing in a Capillary Pumped Loop with Multiple Evaporators and Multiple Condensers
Ku, Jentung
2005-01-01
This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instruments is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed. Some constraints of heat load sharing are also addressed.
Directory of Open Access Journals (Sweden)
Luanfang Duan
2018-03-01
Full Text Available In the present work, the contact heat transfer between the granular materials and heating plates inside plate rotary heat exchanger (PRHE was investigated. The heat transfer coefficient is dominated by the contact heat transfer coefficient at hot wall surface of the heating plates and the heat penetration inside the solid bed. A plot scale PRHE with a diameter of Do = 273 mm and a length of L = 1000 mm has been established. Quartz sand with dp = 2 mm was employed as the experimental material. The operational parameters were in the range of ω = 1 – 8 rpm, and F = 15, 20, 25, 30%, and the effect of these parameters on the time-average contact heat transfer coefficient was analyzed. The time-average contact heat transfer coefficient increases with the increase of rotary speed, but decreases with the increase of the filling degree. The measured data of time-average heat transfer coefficients were compared with theoretical calculations from Schlünder’s model, a good agreement between the measurements and the model could be achieved, especially at a lower rotary speed and filling degree level. The maximum deviation between the calculated data and the experimental data is approximate 10%. Keywords: Rotary heat exchanger, Contact heat transfer, Granular material, Heating plate, Overloaded
International Nuclear Information System (INIS)
Rahman, Md. Lutfor; Nourin, Farah Nazifa; Salsabil, Zaimaa; Yasmin, Nusrat; Ali, Mohammad
2016-01-01
Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2 mm,outer diameter is 2.5 mm and 250 mm long. The CLPHP has 8 loops where the evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.
Energy Technology Data Exchange (ETDEWEB)
Rahman, Md. Lutfor; Nourin, Farah Nazifa, E-mail: farahnazifanourin@gmail.com; Salsabil, Zaimaa; Yasmin, Nusrat, E-mail: nusratyasmin015@gmail.com [Military Institute of Science and Technology, Mirpur Cantonment, Dhaka -1216 (Bangladesh); Ali, Mohammad [Bangladesh University of Engineering and Technology, Dhaka -1000 (Bangladesh)
2016-07-12
Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2 mm,outer diameter is 2.5 mm and 250 mm long. The CLPHP has 8 loops where the evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.
Rahman, Md. Lutfor; Nourin, Farah Nazifa; Salsabil, Zaimaa; Yasmin, Nusrat; Ali, Mohammad
2016-07-01
Thermal control is an important topic for thermal management of small electrical and electronic devices. Closed loop pulsating heat pipe (CLPHP) arises as the best solution for thermal control. The aim of this experimental study is to search a CLPHP of better thermal performance for cooling different electrical and electronic devices. In this experiment, methanol is used as working fluid. The effect of using methanol as a working fluid is studied on thermal performance in different filling ratios and angles of inclination. A copper capillary tube is used where the inner diameter is 2mm,outer diameter is 2.5mm and 250mm long. The CLPHP has 8 loops where the evaporation section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is done using FR of 40%-70% with 10% of interval and angles of inclination 0° (vertical), 30°, 45°, 60° varying heat input. The results are compared on the basis of evaporator temperature, condenser temperature and their differences, thermal resistance, heat transfer co-efficient, power input and pulsating time. The results demonstrate the effect of methanol in different filling ratios and angles of inclination. M ethanol shows better performance at 30° inclination with 40% FR.
Heat transfer in flow past a continuously moving porous flat plate with heat flux
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Sarma, Y.V.B.
The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...
Generalized irreversible heat-engine experiencing a complex heat-transfer law
International Nuclear Information System (INIS)
Chen Lingen; Li Jun; Sun Fengrui
2008-01-01
The fundamental optimal relation between optimal power-output and efficiency of a generalized irreversible Carnot heat-engine is derived based on a generalized heat-transfer law, including a generalized convective heat-transfer law and a generalized radiative heat-transfer law, q ∝ (ΔT n ) m . The generalized irreversible Carnot-engine model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat-leak, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities, besides heat resistance, are characterized by a constant parameter and a constant coefficient. The effects of heat-transfer laws and various loss terms are analyzed. The results obtained corroborate those in the literature
Measurements of loop antenna loading in RF heating experiments on the KT-5C tokamak
International Nuclear Information System (INIS)
Zhai Kan; Deng Bihe; Wen Yizhi; Wan Shude; Liu Wandong; Yu Wen; Yu Changxun
1997-01-01
A new method to measure the loop antenna loadings in the RF wave heating experiments (IBWH at reasonable RF power with relatively low frequency) on the KT-5C device is presented. The method is characterized by determining the RF current ratio only, so it eases the needs of instruments and simplifies the requirements for calibration and data processing in the experiments
Handbook of heat and mass transfer. Volume 2
International Nuclear Information System (INIS)
Cheremisinoff, N.P.
1986-01-01
This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors
Radiative heat transfer in low-dimensional systems -- microscopic mode
Woods, Lilia; Phan, Anh; Drosdoff, David
2013-03-01
Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.
Heat transfer and flow characteristics on a gas turbine shroud.
Obata, M; Kumada, M; Ijichi, N
2001-05-01
The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.
Measurement of heat transfers in cryogenic tank with several configurations
International Nuclear Information System (INIS)
Khemis, O.; Bessaieh, R.; Ait Ali, M.; Francois, M.X.
2004-01-01
The work presented here concerns the measurement of heat transfer in a cryogenic tank with several configurations. The experimental test incorporates the conductive heat in the neck, the convection heat transfers between the inner wall of the neck and the ascending vapor resulting from boiling, and the radiation heat transfers between the external envelope and the tank through a vacuum of 10 -8 mm Hg. An experimental prototype was produced in collaboration with the nuclear center of Orsay in France according to a didactic design, which takes into account the Wexler effect and the importance of the radiation compared to the conduction-convection heat transfer. The addition of a screen radiative ventilated with variable position on the neck (which can effectively replace several tens of floating screens), in order to find the optimal position, which minimizes the radiation flux, is presented in this paper
Experimental investigation of heat transfer performance for a novel microchannel heat sink
International Nuclear Information System (INIS)
Wang, Y; Ding, G-F
2008-01-01
We demonstrated a novel microchannel heat sink with a high local heat transfer efficiency contributed by a complicated microchannel system, which comprises parallel longitudinal microchannels etched in a silicon substrate and transverse microchannels electroplated on a copper heat spreader. The thermal boundary layer develops in transverse microchannels. Meanwhile, the heat transfer area is increased compared with the conventional microchannel heat sink only having parallel longitudinal microchannels. Both benefits yield high local heat transfer efficiency and enhance the overall heat transfer, which is attractive for the cooling of high heat flux electronic devices. Infrared tests show the temperature distribution in the test objects. The effects of flow rate and heat flux levels on heat transfer characteristics are presented. A uniform temperature distribution is obtained through the heating area. The reference temperatures decrease with the increasing flow rate from 0.64 ml min −1 to 6.79 ml min −1 for a constant heat flux of 10.4 W cm −2 . A heat flux of 18.9 W cm −2 is attained at a flow rate of 6.79 ml min −1 for assuring the maximum temperature of the microchannel heat sink less than the maximum working temperature of electronic devices
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.