WorldWideScience

Sample records for heat transfer cfd

  1. CFD ANALYSIS FOR HEAT TRANSFER BETWEEN COPPER ENCAPSULATED PHASE CHANGE MATERIAL AND HEAT TRANSFER FLUID

    National Research Council Canada - National Science Library

    M.Premkumar; S.Ramachandran

    2013-01-01

    .... In this study the analysis of heat transfer between PCM and heat transfer fluids (HTF) with Spherical and cylindrical finned encapsulations made of copper are done using computational fluid dynamic (CFD...

  2. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  3. CFD ANALYSIS FOR HEAT TRANSFER BETWEEN COPPER ENCAPSULATED PHASE CHANGE MATERIAL AND HEAT TRANSFER FLUID

    Directory of Open Access Journals (Sweden)

    M.Premkumar

    2013-03-01

    Full Text Available Heat transfer plays an important role in the enhancement of thermal energy storage in phase change material (PCM. The effective utilization of solar thermal energy can be obtained by proper storage of that energy. There are various techniques for the enhancement solar thermal storage in phase change material such as introductionof wire brushes, honey comb structure, fins and packed bed storage. In this study the analysis of heat transfer between PCM and heat transfer fluids (HTF with Spherical and cylindrical finned encapsulations made of copper are done using computational fluid dynamic (CFD analysis software GAMBIT and Fluent 6.2. The analysis is done in two modes as charging and discharging. During the charging mode the input is given in terms of temperature to the heat transfer fluid and the amount of heat transfer inside the PCM encapsulation is taken as output. During the discharging process the output temperature in the PCM is given as input and the amount of heat transferred to the heat transfer fluid is noted. The results from CFD analysis conclude that the heat transfer is more in finned encapsulations than that of without finned encapsulations and the copper sphere with fins is considered to be the best out of all other encapsulations.

  4. Evaluation of heat transfer surfaces for compact recuperator using a CFD code

    Science.gov (United States)

    Ashok Babu, T. P.; Talekala, Mohammad Shekoor

    2009-04-01

    Exhaust recovery recuperator is mandatory in order to realize a thermal efficiency of 30% or higher for micro turbines. In this work an attempt is made to select the cross corrugated heat transfer surface with minimum core volume of a recuperator matrix using a CFD code. Analysis is carried out for selected cross corrugated heat transfer surface configurations. The relation between the minimum core volume from design calculation and average skin friction coefficient from CFD analysis has been established.

  5. CFD modeling of heat transfer in a rectangular channel with dimplepin finning

    Directory of Open Access Journals (Sweden)

    Spokoiny M. Yu.

    2013-05-01

    Full Text Available Using the CFD modeling method, the authors have investigated conjugate heat transfer in a rectangular channel with dimple-pin finning with hight of pins, depth of cavities and Reynolds number values varying in the range, characteristic for heat exchangers designed for liquid cooling of microelectronic devices, such as microprocessors. Criterion dependencies for calculation of heat transfer under these conditions have been obtained.

  6. CFD Study of Deteriorated Turbulent Heat Transfer in Upward Flow

    Energy Technology Data Exchange (ETDEWEB)

    Nietiadi, Yohanes Setiawan; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Addad, Yacine [Khalifa University of Science and Technology and Research, Abu Dhabi (United Arab Emirates)

    2014-10-15

    DTHT regime can be induced by two effects: buoyancy and acceleration. Apart from these two deteriorating effects, another unique behavior of fluid in the DTHT regime is that the convective heat transfer rate will continue to deteriorate until it reaches certain point. The downstream of this point, is known as the recovery region, where the convective heat transfer rate returns back to the high values by recovering turbulence. We called this phenomena as re-turbulization.. The map of the DTHT regime can be seen from fig. 2, where the x-axis is the buoyancy parameter and y-axis is the acceleration parameter which is the agreed governing non-dimensional numbers among the researchers to illustrate the phenomena. The Buoyancy parameter is defind in Eq. (1) and the acceleration parameter is defined in Eq. (2), respectively. The threshold value for both effects to move from the forced turbulent heat transfer to the DTHT regime are found to be Bo* ≥ 2x10{sup -6}and Kv ≥ 2.5x10{sup -6} in the previous works. Bo{sup *}=Gr{sub q}/Re{sup 3}'.{sup 425} Pr{sup 0}'.{sup 8} (1). K{sub v}=4q{sup +}/Re (2). Many experiments and simulation have been done to investigate this phenomenon and the boundary of the regime. However, very limited number of experiment was conducted in the regime where buoyancy effect and acceleration effect are in the same order of magnitude and high enough to cause DTHT (mixed DTHT). Some important experimental researches that have been done in the gas DTHT regime is Lee et al. who investigated the heat transfer of gas flow in the range of buoyancy parameter from 3x10{sup -9} to 10{sup -5} and acceleration parameter span from 6x10{sup -8} to 5x10{sup -6} and presented the behavior of Nusselt number ratio from the experiment as fig. 3 and fig. 4. This paper will discuss a Computational Fluid Dynamics analysis on DTHT by assuming hypothetical boundary conditions especially on the mixed DTHT regime. It has been found that a gas cooled fast reactor

  7. Heat Transfer & Periodic Flow Analysis of Heat Exchanger by CFD with Nano Fluids

    Directory of Open Access Journals (Sweden)

    Mr.V.V.Ramakrishna

    2016-01-01

    Full Text Available Many heat transfer applications such as steam generators in a boiler or air cooling coil of an air conditioner, can be modelled in a bank of tubes containing a fluid flowing at one temperature that is immersed in a second fluid in a cross flow at different temperature. CFD simulations are a useful tool for understanding flow and heat transfer principles as well as for modelling these types of geometries. Both the fluids considered in the present study are CUO Nano fluids, and flow is classified as laminar and steady with Reynolds number between 100- 600.The mass flow rate of the cross flow and diameter has been varied (such as 0.05, 0.1, 0.15, 0.20, 0.25, 0.30 kg/sec and 0.8, 1.0.1.2 &1.4cm and the models are used to predict the flow and temperature fields that result from convective heat transfer. Due to symmetry of the tube bank and the periodicity of the flow inherent in the tube bank geometry, only a portion of the geometry will be modelled and with symmetry applied to the outer boundaries. The inflow boundary will be redefined as a periodic zone and the outflow boundary is defined as the shadow. The various static pressures, velocities, and temperatures obtained are reported. In this present project tubes of different diameters and different mass flow rates are considered to examine the optimal flow distribution. Further the problem has been subjected to effect of materials used for tubes manufacturing on heat transfer rate. Materials considered are copper and Nickle Chromium alloys. Results emphasize the utilization of alloys in place of copper as tube material serves better heat transfer with most economical way.

  8. CFD investigation of flow and heat transfer of nanofluids in isoflux spirally fluted tubes

    KAUST Repository

    Salama, Amgad

    2012-01-01

    In this work, the problem of flow and heat transfer of nanofluids in spirally fluted tubes is investigated numerically using the CFD code Fluent. The tube investigated in this work is characterized by the existence of helical ridging which is usually obtained by embossing a smooth tube. A tube of diameter of 15 mm, 1.5 mm groove depth and a single helix with pitch of 64 mm is chosen for simulation. This geometry has been chosen for simulation because it has been investigated experimentally for pure fluids and would, therefore, provide a verification framework with our CFD model. The result of our CFD investigation compares very well with the experimental work conducted on this tube geometry. Interesting patterns are highlighted and investigated including the existence of flow swirl as a result of the existence of the spirally enhanced ridges. This swirl flow enhances heat transfer characteristics of this system as reported in the literatures. This study also shows that further enhancement is achieved if small amount of nanoparticles are introduced to the fluid. These nanoparticles (metallic-based nanoparticles) when introduced to the fluid enhances its heat transfer characteristics.

  9. Finite element model for beef chilling using CFD-generated heat transfer coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Q.T. [University of New South Wales, Sydney, NSW 2052 (Australia); Trujillo, F.J. [Food Science Australia, 11 Julius Avenue, North Ryde, NSW 2113 (Australia); McPhail, N. [Food Science Australia, P.O. Box 3312, Tingalpa DC, Brisbane, QLD 4173 (Australia)

    2009-01-15

    A combined model of the beef chilling process is presented, in which computational fluid dynamics (CFD) was used to estimate the local heat and mass transfer coefficients, assuming uniform surface temperatures, and a set of 2-D finite element grids was used to solve the heat transfer equation in the product, which has an elongated shape. Another set of 1-D grids was used to solve the water transport equation near the surface of the meat. The surface transfer coefficients were calculated for various combinations of air orientations and speeds, and summarised in a set of regression equations. The model was verified by existing and new data on heat load, temperatures, weight loss and surface water activity. (author)

  10. Cfd Analysis of Heat Transfer in a Microtubular Solid Oxide Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2014-09-01

    Full Text Available The aim of this work was to achieve a deeper understanding of the heat transfer in a microtubular Solid Oxide Fuel Cell (mSOFC stack based on the results obtained by means of a Computational Fluid Dynamics tool. Stack performance predictions were based on simulations for a 16 anodesupported mSOFCs sub-stack, which was a component of the overall stack containing 64 fuel cells. The emphasis of the paper was put on steady-state modelling, which enabled identification of heat transfer between the fuel cells and air flow cooling the stack and estimation of the influence of stack heat losses. Analysis of processes for different heat losses and the impact of the mSOFC reaction heat flux profile on the temperature distribution in the mSOFC stack were carried out. Both radiative and convective heat transfer were taken into account in the analysis. Two different levels of the inlet air velocity and three different values of the heat losses were considered. Good agreement of the CFD model results with experimental data allowed to predict the operation trends, which will be a reliable tool for optimisation of the working setup and ensure sufficient cooling of the mSOFC stack.

  11. CFD Study on Wall/Nanoparticle Interaction in Nanofluids Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Tarybakhsh

    2013-01-01

    Full Text Available The Brownian motion of the nanoparticles in nanofluid is one of the potential contributors to enhance effective thermal conductivity and the mechanisms that might contribute to this enhancement are the subject of considerable discussion and debate. In this paper, the mixing effect of the base fluid in the immediate vicinity of the nanoparticles caused by the Brownian motion was analyzed, modeled, and compared with existing experimental data available in the literature. CFD was developed to study the effect of wall/nanoparticle interaction on forced convective heat transfer in a tube under constant wall temperature condition. The results showed that the motion of the particle near the wall which can decrease boundary layer and the hydrodynamics effects associated with the Brownian motion have a significant effect on the convection heat transfer of nanofluid.

  12. Parametric experiments and CFD analysis on condensation heat transfer performance of externally condensing tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byong Guk; Kim, Do Yun; Shin, Chang Wook; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2015-11-15

    Highlights: • Geometric effects of HXs on external condensation are experimentally observed. • Lower tube angle has higher heat transfer coefficients over vertical tubes by 15–30%. • 2.68 cmD tube has higher heat transfer coefficients over 4.91 cmD tube roughly by 10–20%. • CFD approach is validated against our experiments with good accuracy (error ∼7%). - Abstract: To ensure safe operation of nuclear power plants even in the case of a prolonged station blackout, advanced reactors adopt passive systems that can operate without electricity supply. In Korea, a passive auxiliary feedwater system was successfully validated, and a passive containment cooling system (PCCS) has recently attracted attention. To investigate the thermal performance of PCCSs, we perform various experiments with external heat exchangers, which condense steam externally, for PCCSs. Through experiments, we construct a database for the lower air mass fraction and perform a parametric study on the tube inclination and diameter. The operating ranges for the experiments are 0.24–0.38 MPa (pressure), 0.06–0.4 (air mass fraction), and 0–90° (tube inclination). A lower tube inclination and smaller tube diameter are found to yield higher heat-transfer coefficients, by approximately 20%. In the prediction of condensation heat-transfer coefficients, experimental correlations and the heat–mass transfer analogy have limitations in both accuracy and applicability. A computational-fluid-dynamics approach is used with the aid of user-defined functions to calculate the heat-transfer coefficients. The resulting predictions exhibit an average error of 7% when the air mass fraction is higher than 0.2.

  13. An assessment of CFD-based wall heat transfer models in piston engines

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States)

    2017-04-26

    The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictive submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.

  14. CFD Simulation and Experimental Analyses of a Copper Wire Woven Heat Exchanger Design to Improve Heat Transfer and Reduce the Size of Adsorption Beds

    Directory of Open Access Journals (Sweden)

    John White

    2016-02-01

    Full Text Available The chief objective of this study is the proposal design and CFD simulation of a new compacted copper wire woven fin heat exchanger and silica gel adsorbent bed used as part of an adsorption refrigeration system. This type of heat exchanger design has a large surface area because of the wire woven fin design. It is estimated that this will help improve the coefficient of performance (COP of the adsorption phase and increase the heat transfer in this system arrangement. To study the heat transfer between the fins and porous adsorbent reactor bed, two experiments were carried out and matched to computational fluid dynamics (CFD results.

  15. CFD modeling of convection heat transfer using 1.7 MHz and 24 kHz ultrasonic waves: a comparative study

    Science.gov (United States)

    Dehbani, Maryam; Rahimi, Masoud; Abolhasani, Mahdieh; Maghsoodi, Abbas; Afshar, Parisa Ghaderi; Dodmantipi, Ali Reza; Alsairafi, Ammar A.

    2014-09-01

    The effects of 24 kHz and 1.7 MHz ultrasonic waves on heat transfer from a thin platinum wire are investigated. The results revealed that the 1.7 MHz ultrasound waves could increase the heat transfer rate more efficiently than the lower frequency one. The CFD modeling of ultrasonication was performed to compare heat transfer, predict fluid flow patterns. The CFD results were validated by the experimental results with an excellent agreement.

  16. CFD SIMULATION OF THE HEAT TRANSFER PROCESS IN A CHEVRON PLATE HEAT EXCHANGER USING THE SST TURBULENCE MODEL

    Directory of Open Access Journals (Sweden)

    Jan Skočilas

    2015-08-01

    Full Text Available This paper deals with a computational fluid dynamics (CFD simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST k-! model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.

  17. CFD study on local fluid-to-wall heat transfer in packed beds and field synergy analysis

    Science.gov (United States)

    Peng, Wenping; Xu, Min; Huai, Xiulan; Liu, Zhigang

    2016-04-01

    To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio ( D/d pheat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid- to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics (CFD) at different Reynolds number for D/d p=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio.

  18. CFD modelling of supercritical water flow and heat transfer in a 2 × 2 fuel rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Podila, Krishna, E-mail: krishna.podila@cnl.ca; Rao, Yanfei, E-mail: yanfei.rao@cnl.ca

    2016-05-15

    Highlights: • Bare and wire wrapped 2 × 2 fuel rod bundles were modelled with CFD. • Sensitivity of predictions to SST k–ω, v{sup 2}–f and turbulent Prandtl number was tested. • CFD predictions were assessed with experimentally reported fuel wall temperatures. - Abstract: In the present assessment of the CFD code, two heat transfer experiments using water at supercritical pressures were selected: a 2 × 2 rod bare bundle; and a 2 × 2 rod wire-wrapped bundle. A systematic 3D CFD study of the fluid flow and heat transfer at supercritical pressures for the rod bundle geometries was performed with the key parameter being the fuel rod wall temperature. The sensitivity of the prediction to the steady RANS turbulence models of SST k–ω, v{sup 2}–f and turbulent Prandtl number (Pr{sub t}) was tested to ensure the reliability of the predicted wall temperature obtained for the current analysis. Using the appropriate turbulence model based on the sensitivity analysis, the mesh refinement, or the grid convergence, was performed for the two geometries. Following the above sensitivity analyses and mesh refinements, the recommended CFD model was then assessed against the measurements from the two experiments. It was found that the CFD model adopted in the current work was able to qualitatively capture the trends reported by the experiments but the degree of temperature rise along the heated length was underpredicted. Moreover, the applicability of turbulence models varied case-by-case and the performance evaluation of the turbulence models was primarily based on its ability to predict the experimentally reported fuel wall temperatures. Of the two turbulence models tested, the SST k–ω was found to be better at capturing the measurements at pseudo-critical and supercritical test conditions, whereas the v{sup 2}–f performed better at sub-critical test conditions. Along with the appropriate turbulence model, CFD results were found to be particularly sensitive to

  19. CFD analysis of heat transfer and pressure drop in helically coiled heat exchangers using Al{sub 2}O{sub 3} / water nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. C. Mukesh; Tamilarasan, R.; Sendihilnathan, S. [University College of Engineering Pattukkottai (India); Palanisamy, K. [M. Kumarasamy College of Engineering, Karur (India); Kumar, J. [Kalaivani College of Technology, Coimbatore (India)

    2015-02-15

    In this investigation, the heat transfer coefficient and pressure drop of a helically coiled tube heat exchanger handling Al{sub 2}O{sub 3} / water nanofluids is made by using computational fluid dynamics fluent (CFD) software package. This was done under laminar flow condition in the Dean number (De) range of 1650-2650 and the nanoparticles volume concentration of 0.1%, 0.4% and 0.8%. The effect of some important parameters such as nanoparticle volume concentration and Dean number (De) on heat transfer and pressure drop is studied. The coiled tube side Nusselt number (Nu) is found to be 30% higher than water at maximum De. The maximum pressure drop is found to be 9% higher than water. It is also found that the Nu and pressure drop significantly increase with increasing particle volume concentration and De. It is also found that the experimental friction factor increases with increasing the particle volume concentration and De. The CFD Nu and pressure drop results have been compared with the experimental and theoretical results. On comparison, it is found that the CFD simulation results show good agreement with the experimental and theoretical results. It is concluded that the CFD approach gives good prediction for heat transfer coefficient and pressure drop in a shell and helically coiled tube heat exchanger using Al{sub 2}O{sub 3} / water nanofluids. The average relative error between experimental Nu, pressure drop results and CFD results are found to be 8.5% and 9.5% respectively.

  20. Validation of GAMMA+ model for Evaluating Heat Transfer of VHTR core in Accident Conditions by CFD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dongho; Yoon, Sujong; Park, Gooncherl; Cho, Hyoungkyu [Seoul National Univ., Seoul (Korea, Republic of)

    2013-05-15

    KAERI has established a plan to demonstrate massive production of hydrogen using a VHTR by the early 2020s. In addition the GAMMA+ code is developed to analyze VHTR thermo-fluid transients at KAERI. One of the candidate reactor designs for VHTR is prismatic modular reactor (PMR), of which reference reactor is the 600MWth GT-MHR. This type of reactor has a passive safety system. During the High Pressure Conduction Cooling (HPCC) or Low Pressure Conduction Cooling (LPCC) accident, the core heats up by decay heat and then starts to cool down by conduction and radiation cooling to the Reactor Cavity Cooling System (RCCS) through the prismatic core. In this mechanism, the solid conduction occurs in graphite and fuel blocks, and the gas conduction and radiation occurs in coolant holes and bypass gaps. It is important to predict conduction and radiation heat transfer in the core for safety analysis. Effective thermal conductivity is derived by Maxwell's far-field methodology Radiation effect is expressed as corresponding conductivity and added to gas conductivity. In this study, ETC model used in GAMMA+ code is validated with the commercial CFD code, CFX-13. In this study, the effective thermal conductivity model of the GAMMA+ was evaluated by comparison of CFD analysis. The CFD analysis was conducted for various numbers and volume fractions of coolant holes and temperatures. Although slight disagreement was shown for the cases run with small number of holes, the result of GAMMA+ model is accurate for the large numbers of holes sufficiently. Since there are 102 coolant holes and 210 fuel holes in a fuel block, it is concluded that GAMMA+ model is proper formula for predicting effective thermal conductivity of the VHTR fuel block. However, in high temperature region above 500 .deg. C, the GAMMA+ model underestimates the effective thermal conductivity since radiation heat transfer is not reflected precisely. Further researches on it seem to be necessary.

  1. Study of dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer using CFD simulations

    Science.gov (United States)

    Kriaa, Wassim; Bejaoui, Salma; Mhiri, Hatem; Le Palec, Georges; Bournot, Philippe

    2014-02-01

    In this study, we developed a two-dimensional Computational Fluid Dynamics (CFD) model to simulate dynamic structure and heat and mass transfer of a vertical ceramic tiles dryer (EVA 702). The carrier's motion imposed the choice of a dynamic mesh based on two methods: "spring based smoothing" and "local remeshing". The dryer airflow is considered as turbulent ( Re = 1.09 × 105 at the dryer inlet), therefore the Re-Normalization Group model with Enhanced Wall Treatment was used as a turbulence model. The resolution of the governing equation was performed with Fluent 6.3 whose capacities do not allow the direct resolution of drying problems. Thus, a user defined scalar equation was inserted in the CFD code to model moisture content diffusion into tiles. User-defined functions were implemented to define carriers' motion, thermo-physical properties… etc. We adopted also a "two-step" simulation method: in the first step, we follow the heat transfer coefficient evolution (Hc). In the second step, we determine the mass transfer coefficient (Hm) and the features fields of drying air and ceramic tiles. The found results in mixed convection mode (Fr = 5.39 at the dryer inlet) were used to describe dynamic and thermal fields of airflow and heat and mass transfer close to the ceramic tiles. The response of ceramic tiles to heat and mass transfer was studied based on Biot numbers. The evolutions of averages temperature and moisture content of ceramic tiles were analyzed. Lastly, comparison between experimental and numerical results showed a good agreement.

  2. Experimental Analysis and Simultaneous Heat and Moisture Transfer with Coupled CFD Model for Convective Drying of Moist Object

    Science.gov (United States)

    Chandramohan, V. P.

    2016-01-01

    Convective drying of rectangular-shaped moist object has been analyzed both experimentally and numerically. Transient mass of the potato sample is measured experimentally. Moisture content, diffusivity, and density of the object are calculated at different drying air temperatures from 40°C to 70°C with an air velocity of 2 m/s. A three-dimensional (3D) finite volume method (FVM) based numerical model is developed to predict the temperature and moisture distribution. A computational fluid dynamics (CFD) code is used for predicting heat and mass transfer coefficients required in the boundary conditions of the heat and mass transfer model. The experimental and numerical data are compared and good agreement is observed.

  3. CFD analysis of the plate heat exchanger - Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger

    Science.gov (United States)

    Bojko, Marian; Kocich, Radim

    2016-06-01

    Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.

  4. CFD and experimental investigation on the heat transfer characteristics of alumina nanofluids under the laminar flow regime

    Directory of Open Access Journals (Sweden)

    A. Azari

    2014-06-01

    Full Text Available This study reports experimental and Computational Fluid Dynamics (CFD investigations of the laminar convective heat transfer coefficient of Al2O3/water nanofluids in a circular tube under uniform and constant heat flux on the wall. Three different models including a constant physical properties single-phase (CP-SP model, a variable physical properties single-phase (VP-SP model and a discrete particles two-phase model were developed. Particle agglomeration and cluster size distribution were considered in the two-phase model. Experimental and simulation results showed that the thermal performance of nanofluids is higher than that of the base fluid and the heat transfer enhancement increases with the particle volume concentration and Reynolds number. Furthermore, higher heat transfer coefficients were detected in the case of the VP-SP model and the two-phase model. The results demonstrated that the two-phase model prediction and experimental data match significantly and that the model can be employed with confidence for the prediction of any type of nanofluid.

  5. Experimental Studies of the Heat Transfer to RBCC Rocket Nozzles for CFD Application to Design Methodologies

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    1999-01-01

    Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.

  6. CFD Analysis of Convective Heat Transfer Coefficient on External Surfaces of Buildings

    Directory of Open Access Journals (Sweden)

    Andrea de Lieto Vollaro

    2015-07-01

    Full Text Available Convective heat transfer coefficients for external building surfaces are essential in building energy simulation (BES to calculate convective heat gains and losses from building facades and roofs to the environment. These coefficients are complex functions of: building geometry, building surroundings, local air flow patterns and temperature differences. A microclimatic analysis in a typical urban configuration, has been carried out using Ansys Fluent Version 14.0, an urban street canyon, with a given H/W ratio, has been considered to simulate a three-dimensional flow field and to calculate the thermal fluid dynamics parameters that characterize the street canyon. In this paper, the convective heat transfer coefficient values on the windward external façade of the canyon and on the windward and leeward inner walls are analyzed and a comparison with values from experimental and numerical correlations is carried out.

  7. CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube.

    Science.gov (United States)

    Davarnejad, Reza; Barati, Sara; Kooshki, Maryam

    2013-12-01

    The CFD simulation of heat transfer characteristics of a nanofluid in a circular tube under constant heat flux was considered using Fluent software (version 6.3.26) in the laminar flow. Al2O3 nanoparticles in water with concentrations of 0.5%, 1.0%, 1.5%, 2% and 2.5% were used in this simulation. All of the thermo-physical properties of nanofluids were assumed to be temperature independent. Two particle sizes with average size of 20 and 50 nm were used in this research. It was concluded that heat transfer coefficient increased by increasing the Reynolds number and the concentration of nanoparticles. The maximum convective heat transfer coefficient was observed at the highest concentration of nano-particles in water (2.5%). Furthermore, the two nanofluids showed higher heat transfer than the base fluid (water) although the nanofluid with particles size of 20 nm had the highest heat transfer coefficient.

  8. 3D CFD Electrochemical and Heat Transfer Model of an Integrated-Planar Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Grant Hawkes; James E. O' Brien

    2008-10-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  9. Method and software to solution of inverse and inverse design fluid flow and heat transfer problems is compatible with CFD-software

    Energy Technology Data Exchange (ETDEWEB)

    Krukovsky, P.G. [Institute of Engineering Thermophysics, National Academy of Sciences of Ukraine, Kiev (Ukraine)

    1997-12-31

    The description of method and software FRIEND which provide a possibility of solution of inverse and inverse design problems on the basis of existing (base) CFD-software for solution of direct problems (in particular, heat-transfer and fluid-flow problems using software PHOENICS) are presented. FRIEND is an independent additional module that widens the operational capacities of the base software unified with this module. This unifying does not require any change or addition to the base software. Interfacing of FRIEND and the base software takes place through input and output files of the base software. A brief description of the computational technique applied for the inverse problem solution, same detailed information on the interfacing of FRIEND and CFD-software and solution results for testing inverse and inverse design problems, obtained using the tandem CFD-software PHOENICS and FRIEND, are presented. (author) 9 refs.

  10. Experimental and CFD Heat Transfer Studies of Al2O3-Water Nanofluid in a Coiled Agitated Vessel Equipped with Propeller

    Institute of Scientific and Technical Information of China (English)

    Thangavelu Perarasu; Mahizhnan Arivazhagan; Palani Sivashanmugam

    2013-01-01

    This paper presents the heat transfer characteristics of Al2O3-water nanofluid in a coiled agitated vessel with propeller agitator. The experimental study was conducted using 0.10%, 0.20%and 0.30%volume concentra-tion of Al2O3-water nanofluids. The results showed considerable enhancement of convective heat transfer using the nanofluids. The empirical correlations developed for Nusselt number in terms of Reynolds number, Prandtl number, viscosity ratio and volume concentration fit with the experimental data within ±10%. The heat transfer characteris-tics were also simulated using computational fluid dynamics using FLUENT software with the standard k-εmodel and multiple reference frame were adopted. The computational fluid dynamics (CFD) predicted Nusselt number agrees well with the experimental value and the discrepancy is found to be less than ±8%.

  11. Heat transfer to a heavy liquid metal in curved geometry: Code validation and CFD simulation for the MEGAPIE lower target

    Science.gov (United States)

    Dury, Trevor V.

    2006-06-01

    The ESS and SINQ Heat Emitting Temperature Sensing Surface (HETSS) mercury experiments have been used to validate the Computational Fluid Dynamics (CFD) code CFX-4 employed in designing the lower region of the international liquid metal cooled MEGAPIE target, to be installed at SINQ, PSI, in 2006. Conclusions were drawn on the best turbulence models and degrees of mesh refinement to apply, and a new CFD model of the MEGAPIE geometry was made, based on the CATIA CAD design of the exact geometry constructed. This model contained the fill and drain tubes as well as the bypass feed duct, with the differences in relative vertical length due to thermal expansion being considered between these tubes and the window. Results of the mercury experiments showed that CFD calculations can be trusted to give peak target window temperature under normal operational conditions to within about ±10%. The target nozzle actually constructed varied from the theoretical design model used for CFD due to the need to apply more generous separation distances between the nozzle and the window. In addition, the bypass duct contraction approaching the nozzle exit was less sharp compared with earlier designs. Both of these changes modified the bypass jet penetration and coverage of the heated window zone. Peak external window temperature with a 1.4 mA proton beam and steady-state operation is now predicted to be 375 °C, with internal temperature 354.0 °C (about 32 °C above earlier predictions). Increasing bypass flow from 2.5 to 3.0 kg/s lowers these peak temperatures by about 12 °C. Stress analysis still needs to be made, based on these thermal data.

  12. Analyses on fluid flow and heat transfer inside Calandria vessel of CANDU-6 using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Manwoong [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)]. E-mail: mwkim@kins.re.kr; Yu, Seon-Oh [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Kim, Hho-Jung [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)

    2006-06-15

    In a CANada Deuterium Uranium (CANDU) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a loss of coolant accident (LOCA) with a coincidence of a loss of emergency core cooling (LOECC), as well as a normal operating condition. This study presents the assessments of moderator thermal-hydraulic characteristics in the normal operating condition and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. This study consists of two steps. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, in the second step, with the optimized scheme, the analyses for real CANDU-6 of normal operating condition and transition condition have been performed. The present model has successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of the real CANDU-6 with 380 fuel channels. Flow regime map with major parameters representing the flow pattern inside Calandria vessel has also proposed to be used as operational and/or regulatory guidelines.

  13. Correlation Equations of Heat Transfer in Nanofluid Al2O3-Water as Cooling Fluid in a Rectangular Sub Channel Based CFD Code

    Directory of Open Access Journals (Sweden)

    Anwar Ilmar Ramadhan

    2015-03-01

    Full Text Available Safety is a major concern in the design, operation and development of a nuclear reactor. One aspect of nuclear reactor safety factor is thermal-hydraulics aspect. In a PWR-type nuclear power plant has been used lighter fluid coolant is water or H2O. In this research, using nanofluid Al2O3-Water with volume fraction of (1%, (2% and also (3%, used as a cooling fluid in a nuclear reactor core with sub channel PWR fuel element rectangular arrangement. This research was carried out modeling of fuel elements are arranged rectangular, then performed numerical simulations using Computational Fluid Dynamics (CFD code. In order to obtain the characteristic pattern of flow velocity of each fluid, the fluid temperature distribution along the cylinder wall temperature distribution of the fuel element. Then analyzed the heat transfer in a nuclear reactor core with sub channel PWR fuel element rectangular arrangement, including heat transfer coefficient, Nusselt number (Nu, as well as heat transfer correlations. Heat transfer correlation for nanofluid Al2O3-Water (1%, (2% and also (3% proved to core of PWR nuclear reactor fuel element sub channel rectangular arrangement with the Reynolds number (Re is stretched, namely: 404 096 heat flux is 2600 W / m2, and the composition ratio (pitch / diameter 1.33.

  14. Assessment of the TiO2/water nanofluid effects on heat transfer characteristics in VVER-1000 nuclear reactor using CFD modeling

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Mousavizadeh

    2015-12-01

    Full Text Available The most important advantage of nanoparticles is the increased thermal conductivity coefficient and convection heat transfer coefficient so that, as a result of using a 1.5% volume concentration of nanoparticles, the thermal conductivity coefficient would increase by about twice. In this paper, the effects of a nanofluid (TiO2/water on heat transfer characteristics such as the thermal conductivity coefficient, heat transfer coefficient, fuel clad, and fuel center temperatures in a VVER-1000 nuclear reactor are investigated. To this end, the cell equivalent of a fuel rod and its surrounding coolant fluid were obtained in the hexagonal fuel assembly of a VVER-1000 reactor. Then, a fuel rod was simulated in the hot channel using Computational Fluid Dynamics (CFD simulation codes and thermohydraulic calculations (maximum fuel temperature, fluid outlet, Minimum Departure from Nucleate Boiling Ratio (MDNBR, etc. were performed and compared with a VVER-1000 reactor without nanoparticles. One of the most important results of the analysis was that heat transfer and the thermal conductivity coefficient increased, and usage of the nanofluid reduced MDNBR.

  15. Assessment of the TiO{sub 2}/water nanofluid effects on heat transfer characteristics in VVER-1000 nuclear reactor using CFD modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mousavizadeh, Seyed Mohammad; Ansarifar, Gholam Reza; Talebi, Mansour [Dept. of Nuclear Engineering, Faculty of Advanced Sciences and Technology, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2015-12-15

    The most important advantage of nanoparticles is the increased thermal conductivity coefficient and convection heat transfer coefficient so that, as a result of using a 1.5% volume concentration of nanoparticles, the thermal conductivity coefficient would increase by about twice. In this paper, the effects of a nanofluid (TiO2/water) on heat transfer characteristics such as the thermal conductivity coefficient, heat transfer coefficient, fuel clad, and fuel center temperatures in a VVER-1000 nuclear reactor are investigated. To this end, the cell equivalent of a fuel rod and its surrounding coolant fluid were obtained in the hexagonal fuel assembly of a VVER-1000 reactor. Then, a fuel rod was simulated in the hot channel using Computational Fluid Dynamics (CFD) simulation codes and thermohydraulic calculations (maximum fuel temperature, fluid outlet, Minimum Departure from Nucleate Boiling Ratio (MDNBR), etc.) were performed and compared with a VVER-1000 reactor without nanoparticles. One of the most important results of the analysis was that heat transfer and the thermal conductivity coefficient increased, and usage of the nanofluid reduced MDNBR.

  16. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  17. CFD study of forced convective heat transfer enhancement in a 90° bend duct of square cross section using nanofluid

    Indian Academy of Sciences (India)

    ASHOK K BARIK; PRASANTA K SATAPATHY; SUDHANSU S SAHOO

    2016-07-01

    In this paper, the forced convective heat transfer enhancement with nanofluids in a 90° pipe bend has been presented. Numerical investigation is carried out for the turbulent flow through the pipe employing finite volume method. The governing differential equations are discretized using hexahedral cells, and theresulting algebraic equations are solved using Commercial solver Fluent 6.3. In order to close the time averaged Navier–Stokes equations, the two-equation k–e turbulence model with a standard wall function have been used.The duct Reynolds number is varied in the range of 2,500–6,000. It is observed that the heat transfer is enhanced significantly by varying the volume fraction of the nanofluid. It is also found that the heat transfer is increased with Reynolds number. A strong secondary flow is observed due to the presence of the wall. Turbulent kinetic energy near outer wall is found to be higher than the inner wall of the bend. A comparative assessment for the heat transfer enhancement with different types of nanofluids is also presented. The computed results of areaweighted average Nusselt numbers are validated with some of the existing literature

  18. Boundary conditions for heat transfer and evaporative cooling in the trachea and air sac system of the domestic fowl: a two-dimensional CFD analysis.

    Science.gov (United States)

    Sverdlova, Nina S; Lambertz, Markus; Witzel, Ulrich; Perry, Steven F

    2012-01-01

    Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD) model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus) in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.

  19. Boundary conditions for heat transfer and evaporative cooling in the trachea and air sac system of the domestic fowl: a two-dimensional CFD analysis.

    Directory of Open Access Journals (Sweden)

    Nina S Sverdlova

    Full Text Available Various parts of the respiratory system play an important role in temperature control in birds. We create a simplified computational fluid dynamics (CFD model of heat exchange in the trachea and air sacs of the domestic fowl (Gallus domesticus in order to investigate the boundary conditions for the convective and evaporative cooling in these parts of the respiratory system. The model is based upon published values for respiratory times, pressures and volumes and upon anatomical data for this species, and the calculated heat exchange is compared with experimentally determined values for the domestic fowl and a closely related, wild species. In addition, we studied the trachea histologically to estimate the thickness of the heat transfer barrier and determine the structure and function of moisture-producing glands. In the transient CFD simulation, the airflow in the trachea of a 2-dimensional model is evoked by changing the volume of the simplified air sac. The heat exchange between the respiratory system and the environment is simulated for different ambient temperatures and humidities, and using two different models of evaporation: constant water vapour concentration model and the droplet injection model. According to the histological results, small mucous glands are numerous but discrete serous glands are lacking on the tracheal surface. The amount of water and heat loss in the simulation is comparable with measured respiratory values previously reported. Tracheal temperature control in the avian respiratory system may be used as a model for extinct or rare animals and could have high relevance for explaining how gigantic, long-necked dinosaurs such as sauropoda might have maintained a high metabolic rate.

  20. Heat transfer partitioning model of film boiling of particle cluster in a liquid pool: implementation in a CFD code

    Science.gov (United States)

    Mahapatra, Pallab S.; Ghosh, Koushik; Manna, Nirmal K.

    2015-08-01

    In the present work an effective heat transfer partitioning model of three phase (particles, liquid and vapour) flow and thermal interaction have been developed by a multi-fluid approach under film boiling condition. The in-house multiphase flow code is based on finite volume method of discretization and SIMPLE-based pressure correction algorithm. From consideration of mass, momentum and energy balance across the liquid-vapour interface, the vapour bubble generated from the vapour film have been modeled and incorporated in the code. Different interaction terms between each phase are incorporated depending upon the flow regime. The code is validated with in-house and available experimental results. Finally the effect of relevant parameters on void generation under film boiling condition of particles is estimated.

  1. Simulation of the heat transfer of a irradiated fuel storage container with code CFD STAR- CCM+; Simulacion de la transferencia de calor de un contenedor de almacenamiento de combustible irradiado con el codigo CFD STAR-CCM+

    Energy Technology Data Exchange (ETDEWEB)

    Barrera matalla, J. E.; Hernandez Gomez, J.; Riverala Gurruchaga, J.

    2012-07-01

    Irradiated fuel has become an object of interest in the industry by the importance of ensuring its safety during long periods of storage time. New containers, stores, methods and codes will be used to ensure a suitable cooling and residual heat removal, and secure the safety of fuel elements in dry storage. The codes CFD (Computational Fluid Dynamics) have great potential to help in design of containers and stores, improving thermal-hydraulic performance and the extraction of heat generated.

  2. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    Science.gov (United States)

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.

  3. Heat transfer

    CERN Document Server

    Holman, J P

    2010-01-01

    As one of the most popular heat transfer texts, Jack Holman's "Heat Transfer" is noted for its clarity, accessible approach, and inclusion of many examples and problem sets. The new tenth edition retains the straight-forward, to-the-point writing style while covering both analytical and empirical approaches to the subject. Throughout the book, emphasis is placed on physical understanding while, at the same time, relying on meaningful experimental data in those situations that do not permit a simple analytical solution. New examples and templates provide students with updated resources for computer-numerical solutions.

  4. CFD modeling and experimental validation of heat and mass transfer in wood poles subjected to high temperatures: a conjugate approach

    Science.gov (United States)

    Younsi, R.; Kocaefe, D.; Poncsak, S.; Kocaefe, Y.; Gastonguay, L.

    2008-03-01

    In this article, a coupling method is presented in the case of high thermal treatment of a wood pole and a three-dimensional numerical simulation is proposed. The conservation equations for the wood sample are obtained using diffusion equation with variables diffusion coefficients and the incompressible Reynolds averaged Navier Stokes equations have been solved for the flow field. The connection between the two problems is achieved by expressing the continuity of the state variables and their respective fluxes through the interface. Turbulence closure is obtained by the use of the standard k ɛ model with the usual wall function treatment. The model equations are solved numerically by the commercial package ANSYS-CFX10. The wood pole was subjected to high temperature treatment under different operating conditions. The model validation is carried out via a comparison between the predicted values with those obtained experimentally. The comparison of the numerical and experimental results shows good agreement, implying that the proposed numerical algorithm can be used as a useful tool in designing high-temperature wood treatment processes. A parametric study was also carried out to determine the effects of several parameters such as initial moisture content, wood aspect ratio and final gas temperature on temperature and moisture content distributions within the samples during heat treatment.

  5. Heat transfer

    CERN Document Server

    Jorge, Kubie; Thomas, Grassie

    2012-01-01

    A core task of engineers is to analyse energy related problems. The analytical treatment is usually based on principles of thermodynamics, fluid mechanics and heat transfer, but is increasingly being handled computationally.This unique resource presents a practical textbook, written for both undergraduates and professionals, with a series of over 60 computer workbooks on an accompanying CD.The book emphasizes how complex problems can be deconstructed into a series of simple steps. All thermophysical property computations are illustrated using diagrams within text and on the compani

  6. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  7. CFD Analysis of Plate Fin Tube Heat Exchanger for Various Fin Inclinations

    OpenAIRE

    2014-01-01

    ANSYS Fluent software is used for three dimensional CFD simulations to investigate heat transfer and fluid flow characteristics of six different fin angles with plain fin tube heat exchangers. The numerical simulation of the fin tube heat exchanger was performed by using a three dimensional numerical computation technique. Geometry of model is created and meshed by using ANSYS Workbench software. To solve the equation for the fluid flow and heat transfer analysis ANSYS FLUENT ...

  8. An Experimental, Numerical, and CFD Investigation into the Heat Transfer and Flow Characteristics in Porous Media Using a Thermal Non-Equilibrium Model

    Science.gov (United States)

    2005-10-01

    s/___________________________ MICHAEL R. UPDIKE , Lt Col, USAF Deputy Chief, Airbase Technologies Division This report is...Mechanics of Materials, 35, 2003, 1161-1176. 5. Burmeister, Louis C., Convective Heat Transfer, 2nd Edition, John Wiley & Sons, Inc., New York, 1993. 6...No. 8, 1995, 1387-1392. 11. Incropera, F.P., DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 3rd Edition, John Wiley & Sons, Inc., New York

  9. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  10. CFD simulations in heavy liquid metal flows for square lattice bare rod bundle geometries with a four parameter heat transfer turbulence model

    Energy Technology Data Exchange (ETDEWEB)

    Manservisi, Sandro, E-mail: sandro.manservisi@unibo.it; Menghini, Filippo, E-mail: filippo.menghini3@unibo.it

    2015-12-15

    Highlights: • Turbulent heat transfer with a κ–ϵ–κ{sub θ}–ϵ{sub θ} turbulence model is investigated. • Numerical simulations with different pitch-to-diameter ratios are performed. • The results are compared with SED model and a few available experimental correlations. - Abstract: The study of heat transfer in heavy liquid metals has gained more attention in the last several years due to their applications in new advanced nuclear reactors. These fluids are characterized by low Prandtl numbers and a peculiar heat transfer that cannot be accurately reproduced with standard turbulence approximations, such as the Simple Eddy Diffusivity model (SED), commonly used in commercial codes. In this paper we report the results obtained for the SED and a more advanced κ–ϵ–κ{sub θ}–ϵ{sub θ} four parameter turbulence model for simulations in square lattice bare rod bundle geometries with different pitch-to-diameter ratios. We compare these numerical results with the available experimental data and correlations for the prediction of the Nusselt number.

  11. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  12. Convective heat and mass transfer in rotating disk systems

    CERN Document Server

    Shevchuk, Igor V

    2009-01-01

    The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.

  13. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  14. Physically founded modelling of transient heat transfer in diesel engine combustion chambers with application of 3D-CFD calculations. Final report; Physikalisch fundierte Modellierung des instationaeren Wandwaermeueberganges im Brennraum von Dieselmotoren mit Applikation an 3D-CFD-Rechnungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Merker, G.P.; Lettmann, H.

    2003-05-01

    A phenomenological wall heat transfer model was developed for diesel engines, enhanced for application of the 3D-CFC code KIVA-3V, and implemented in the code. Further, the heat flow was measurement near the cylinder head, bushel and piston of a DI one-cylinder experimental diesel engine. The influence of soot radiation and convective heat transfer on the wall are modelled separately. The insulating effect of soot deposits on the walls during engine operation is taken into acount as well. The multizone model and the 3D model are in good agreement with the models by Han and Reitz (1997) and with experimental findings. The spatial resolution of heat flow at the wall further shows that both the radiative and convective heat flow are strongly locally dependent. The model presents a physically correct description of the heat flow at the wall of a diesel engine combustion chamber. [German] Im Rahmen des gesamten Forschungsvorhabens wurden ein phaenomenologisches Wandwaermeuebergangsmodell fuer Dieselmotoren entwickelt, dieses wurde fuer die Anwendung in den 3D-CFD-Code KIVA-3V erweitert und in den Code implementiert. Zusaetzlich sind Waermestrommessungen im Brennraum an Zylinderkopf, Laufbuchse und Kolben durchgefuehrt worden. Dafuer stand ein direkteinspritzender Einzylinder-Versuchsdieselmotor zur Verfuegung. Das im Rahmen dieses Vorhabens entwickelte Waermeuebergangsmodell bildet den Einfluss der Russstrahlung und des konvektiven Wandwaermeueberganges separat ab. Die isolierende Wirkung von Russwandablagerungen waehrend des gefeuerten Motorbetriebes wird dabei ebenfalls beruecksichtigt. Das Mehrzonenmodell sowie das 3D-Modell zeigen sehr gute Uebereinstimmungen des raeumlich gemittelten Wandwaermestroms mit den Modellen von Han und Reitz (1997) und den experimentellen Ergebnissen. Die raeumliche Aufloesung der Wandwaermestroeme zeigt weiter, dass auf der Brennraumoberflaeche die Strahlungswaermestroeme und die konvektiven Waermestroeme stark ortsabhaengig sind. Damit

  15. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  16. Flow prediction and heat transfer in a cooling square duch of a gas turbine blade using CFD; Predicciones de flujo y transferencia de calor en un conductor de alabe enfriado de turbina de gas utilizando CFD

    Energy Technology Data Exchange (ETDEWEB)

    Urquiza B, Gustavo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Sierra E, Fernando [Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico); Kubiak S, Janusz; Campos A, Rafael [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-10-15

    A numerical investigation has been conducted to study the turbulent flow and the heat transfer in a blade turbine coolant passage involving a 180 degrees turn. The study provides a comparison test for two turbulence models. The numerical solution was conducted employing two models for turbulence, the renormalization Group Theory (RNG) and the Reynolds Stress Model (RSM), using a refined grid to model with detail the recirculating flow. Computations are performed with a commercial finite volume code which solves three dimensional, incompressible, Navier-Stokes and Energy equations. At the passage turn, significant secondary flows are present, formed by a pair of symmetrical vortices. Results have been compared against published experimental data for Re = 53 000. Very good agreement is achieved for the prediction of the local static pressure distribution along the passage. A strong effect of rotation has been observed mainly in the flow field as described in detail in the paper. [Spanish] En este trabajo se presenta una investigacion numerica para estudiar el flujo turbulento y la transferencia de calor en un conducto de enfriamiento de un alabes de turbina de gas con giro de 180 grados. El estudio proporciona una comparacion de resultados para dos modelos de turbulencia. La solucion numerica emplea dos modelos de turbulencia: el modelo de esfuerzos de Reynolds (RSM) y el modelo de la teoria del grupo de renormalizacion (RNG), utilizando una malla refinada para modelar con detalle el flujo de recirculacion. Los calculos fueron realizados con un codigo comercial de volumenes finitos el cual resuelve las ecuaciones tridimensionales de Navier-Stoke y de energia para flujo incompresible. En la seccion de giro del conductor, aparecen flujos secundarios significativos, formados por un par de celulas simetricas. Los resultados han sido comparados contra datos experimentales de la literatura para Re = 53 000. se obtuvo un buen acuerdo para la prediccion de la distribucion de

  17. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren

    2005-01-01

    Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from...... the inlet increases, natural convection starts to dominate. The heat transfer between the wall of the inner hot water tank and the domestic water is governed by natural convection. The results of the CFD-calculations are used to determine improved heat transfer correlations based on dimensionless analysis...

  18. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Siegel, Robert

    2016-01-01

    Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.

  19. Heat transfer equipment design

    Science.gov (United States)

    Shah, R. K.; Subbarao, Eleswarapu Chinna; Mashelkar, R. A.

    A comprehensive presentation is made of state-of-the-art configurations and design methodologies for heat transfer devices applicable to industrial processes, automotive systems, air conditioning/refrigeration, cryogenics, and petrochemicals refining. Attention is given to topics in heat exchanger mechanical design, single-phase convection processes, thermal design, two-phase exchanger thermal design, heat-transfer augmentation, and rheological effects. Computerized analysis and design methodologies are presented for the range of heat transfer systems, as well as advanced methods for optimization and performance projection.

  20. CFD-based investigation of heat transfer characteristics of flue gas-water eat exchanger panels produced with a novel manufacturing proces

    NARCIS (Netherlands)

    Fukue, T.; Spitas, C.; Dwaikat, M.; Ishizuka, M.

    2013-01-01

    This study describes the characteristics of a panel geometry obtained by a novel manufacturing process for the development of ultra-compact flue gas-water condensing heat exchangers. In this process two stainless steel sheets are prepared and stacked and then brazed together in a special pattern out

  1. Heat transfer II essentials

    CERN Document Server

    REA, The Editors of

    1988-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Heat Transfer II reviews correlations for forced convection, free convection, heat exchangers, radiation heat transfer, and boiling and condensation.

  2. Advances in heat transfer

    CERN Document Server

    Hartnett, James P; Cho, Young I; Greene, George A

    2001-01-01

    Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.

  3. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  4. CFD simulation of a screw compressor including leakage flows and rotor heating

    Science.gov (United States)

    Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed

    2015-08-01

    Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.

  5. CFD Study on Inter-Action and Heat Transfer between Non-Isothermal Airflow of Momentum Source and Plume of Buoyancy Force in an Air-Conditioned Space

    Directory of Open Access Journals (Sweden)

    Wuwei Cao

    2010-10-01

    Full Text Available This paper presents indoor airflow and thermal environment which is formed by a cooling jet and a local heat source in a ventilated room. To illustrate the effects of the combined the plume and the jet-flow, a series of simulated values with different calculated conditions such as different buoyancy flux are analysed by Fluent simulation software. This paper presents an index θ to describe the physical phenomenon by the thermal interaction between the cold jetflow and the plume. It is concluded that if the heat source is increasing considerably, the buoyancy source will be a leading factor of the indoor thermal field, though its initial momentum is considered to be zero.

  6. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  7. Modelling of heat and mass transfer processes in neonatology

    Energy Technology Data Exchange (ETDEWEB)

    Ginalski, Maciej K [FLUENT Europe, Sheffield Business Park, Europa Link, Sheffield S9 1XU (United Kingdom); Nowak, Andrzej J [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland); Wrobel, Luiz C [School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: maciej.ginalski@ansys.com, E-mail: Andrzej.J.Nowak@polsl.pl, E-mail: luiz.wrobel@brunel.ac.uk

    2008-09-01

    This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.

  8. Modelling of heat and mass transfer processes in neonatology.

    Science.gov (United States)

    Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C

    2008-09-01

    This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.

  9. CFD Analysis of Plate Fin Tube Heat Exchanger for Various Fin Inclinations

    Directory of Open Access Journals (Sweden)

    Subodh Bahirat,

    2014-08-01

    Full Text Available ANSYS Fluent software is used for three dimensional CFD simulations to investigate heat transfer and fluid flow characteristics of six different fin angles with plain fin tube heat exchangers. The numerical simulation of the fin tube heat exchanger was performed by using a three dimensional numerical computation technique. Geometry of model is created and meshed by using ANSYS Workbench software. To solve the equation for the fluid flow and heat transfer analysis ANSYS FLUENT was used in the fin-tube heat exchanger. The fluid flow and heat transfer are simulated and result compared for both laminar and turbulent flow models k-epsilon and SST k-omega, with steady state solvers to calculate heat transfer, flow velocity and temperature fields of variable inclined fin angles (Ɵ = 00 ,100 , 200 , 300 , 400 ,500 . Model is validate by comparing the simulated value of velocity, temperature and colburn factor with experimental and numerical results investigated by WANG [1] and GHORI KIRAR [10]. Reasonable agreement is found between the simulations and other results, and the ANSYS Fluent software is sufficient for simulating the flow fields in tube fin heat exchanger.

  10. Digitized Heat Transfer

    Science.gov (United States)

    Mohseni, Kamran; Young, Patrick

    2007-11-01

    This presentation presents theoretical and numerical results describing digitized heat transfer (DHT), an active thermal management technique for high-power electronics and integrated micro systems. In digitized heat transfer discrete droplets are employed. The internal flow inside a discrete droplet is dominated by internal circulation imposed by the boundaries. This internal circulation imposes a new timescale for recirculating cold liquid from the middle of the droplet to the boundary. This internal circulation produces periodic oscillation in the overall convective heat transfer rate. Numerical simulations are presented for heat transfer in the droplet for both constant temperature and flux boundary conditions. The effectiveness of DHT for managing both localized temperature spikes and steady state cooling is demonstrated, identifying key parameters for optimization of the DHT method.

  11. Condensation heat transfer

    Science.gov (United States)

    Rose, J. W.

    The paper gives a brief description of some of the better understood aspects of condensation heat transfer and includes discussion of the liquid-vapour interface, natural and forced convection laminar film condensation and dropwise condensation.

  12. Analytical heat transfer

    CERN Document Server

    Han, Je-Chin

    2012-01-01

    … it will complete my library … [and] complement the existing literature on heat transfer. It will be of value for both graduate students and faculty members.-Bengt Sunden, Lund University, Sweden

  13. CFD analysis of the two-phase bubbly flow characteristics in helically coiled rectangular and circular tube heat exchangers

    Science.gov (United States)

    Hussain, Alamin; Fsadni, Andrew M.

    2016-03-01

    Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.

  14. LSST camera heat requirements using CFD and thermal seeing modeling

    Science.gov (United States)

    Sebag, Jacques; Vogiatzis, Konstantinos

    2010-07-01

    The LSST camera is located above the LSST primary/tertiary mirror and in front of the secondary mirror in the shadow of its central obscuration. Due to this position within the optical path, heat released from the camera has a potential impact on the seeing degradation that is larger than traditionally estimated for Cassegrain or Nasmyth telescope configurations. This paper presents the results of thermal seeing modeling combined with Computational Fluid Dynamics (CFD) analyzes to define the thermal requirements on the LSST camera. Camera power output fluxes are applied to the CFD model as boundary conditions to calculate the steady-state temperature distribution on the camera and the air inside the enclosure. Using a previously presented post-processing analysis to calculate the optical seeing based on the mechanical turbulence and temperature variations along the optical path, the optical performance resulting from the seeing is determined. The CFD simulations are repeated for different wind speeds and orientations to identify the worst case scenario and generate an estimate of seeing contribution as a function of camera-air temperature difference. Finally, after comparing with the corresponding error budget term, a maximum allowable temperature for the camera is selected.

  15. Elementary heat transfer analysis

    CERN Document Server

    Whitaker, Stephen; Hartnett, James P

    1976-01-01

    Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra

  16. A heat transfer textbook

    CERN Document Server

    Lienhard, John H

    2011-01-01

    This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' ins

  17. Heat and mass transfer

    CERN Document Server

    Karwa, Rajendra

    2017-01-01

    This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...

  18. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  19. Heat and mass transfer

    CERN Document Server

    Baehr, Hans Dieter

    2011-01-01

    This comprehensive textbook provides a solid foundation of knowledge on the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems.   The thoroughly revised 3rd edition includes an introduction to the numerical solution of Finite Elements. A new section on heat and mass transfer in porous media has also been added.   The book will be useful not only to upper-level and graduate students, but also to practicing scientists and engineers, offering a firm understanding of the principles of heat and mass transfer, and showing how to solve problems by applying modern methods. Many completed examples and numerous exercises with solutions facilitate learning and understanding, and an appendix includes data on key properties of important substances.

  20. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  1. Parametric CFD Analysis to Study the Influence of Fin Geometry on the Performance of a Fin and Tube Heat Exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2016-01-01

    Heat transfer and pressure loss characteristics of a fin and tube heat exchanger are numerically investigated based on parametric fin geometry. The cross-flow type heat exchanger with circular tubes and rectangular fin profile is selected as a reference design. The fin geometry is varied using...... a design aspect ratio as a variable parameter in a range of 0.1-1.0 to predict the impact on overall performance of the heat exchanger. In this paper, geometric profiles with a constant thickness of fin base are studied. Three-dimensional, steady state CFD model is developed using commercially available...... are determined. The best performed geometric fin profile based on the higher heat transfer and lower pressure loss is predicted. The study provides insights into the impact of fin geometry on the heat transfer performance which help escalate the understanding of heat exchanger designing and manufacturing...

  2. Solar Energy: Heat Transfer.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  3. Airflow and thermal simulation in a controlled test chamber with different heating configurations using CFD modeling

    Energy Technology Data Exchange (ETDEWEB)

    Candanedo, L.; Karava, P.; Bessoudo, M.; Tzempelikos, A.; Athienitis, A. [Concordia Univ., Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Handfield, L. [Inst. de Recherche d' Hydro-Quebec, Shawnigan, PQ (Canada)

    2007-07-01

    Efficient windows and facades can reduce perimeter heating and energy consumption costs in buildings. In this study, 3-D computational fluid dynamics (CFD) models were developed to model airflow and heat transfer in a controlled test chamber at a Hydro-Quebec laboratory. The aim of the study was to investigate thermofluidic phenomena in the vicinity of windows and facades for rooms heated with baseboard heaters and rooms heated with heated windows. The particle image velocimetry (PIV) technique was employed to study the airflow in a plane close to a window that was heated with either embedded heaters or indirectly with a baseboard heater. The PIV system was synchronized with a data acquisition system which collected temperature data from the 4 walls, ceiling, floor, and each of the 5 windows. Time-averaged values were used for boundaries. Navier-Stokes equations were used to calculate laminar flow and heat transfer. An indoor zero-equation turbulence model was used to characterize indoor airflow. The Rayleigh number was used to categorize the nature of the buoyancy-induced flow. The simulations showed good agreement with experimental data. The largest differences in air speed measurements were found in the cavity formed by the blind and the window glazing. 6 refs., 3 tabs., 11 figs.

  4. Geothermal Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Basmajian, V.V.

    1986-01-28

    This patent describes a heat transfer apparatus which consists of: heat exchanging means for orientation in the earth below ground substantially vertically, having a hollow conduit of length from top to bottom much greater than the span across the hollow conduit orthogonal to its length with a top, bottom and an intermediate portion contiguous and communicating with the top and bottom portions for allowing thermally conductive fluid to flow freely between the top, intermediate and bottom portions for immersion in thermally conductive fluid in the region around the heat exchanging means for increasing the heat flow between the latter and earth when inserted into a substantially vertical borehole in the earth with the top portion above the bottom portion. The heat exchanger consists of heat exchanging conduit means in the intermediate portion for carrying refrigerant. The heat exchanging conduit consisting of tubes of thermally conductive material for carrying the refrigerant and extending along the length of the hollow conduit for a tube length that is less than the length of the hollow conduit. The hollow conduit is formed with port means between the top and the plurality of tubes for allowing the thermally conductive fluid to pass in a flow path embracing the tubes, the bottom portion, an outer channel around the hollow conduit and the port means.

  5. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  6. Elements of heat transfer

    CERN Document Server

    Rathakrishnan, Ethirajan

    2012-01-01

    1 Basic Concepts and Definitions1.1 Introduction1.1.1 Driving Potential1.2 Dimensions and Units1.2.1 Dimensional Homogeneity1.3 Closed and Open Systems1.3.1 Closed System (ControlMass)1.3.2 Isolated System1.3.3 Open System (ControlVolume)1.4 Forms of Energy1.4.1 Internal Energy1.5 Properties of a System1.5.1 Intensive and Extensive Properties1.6 State and Equilibrium1.7 Thermal and Calorical Properties1.7.1 Specific Heat of an Incompressible Substance1.7.2 Thermally Perfect Gas 1.8 The Perfect Gas1.9 Summary1.10 Exercise ProblemsConduction Heat Transfer2.1 Introduction2.2 Conduction Heat Trans

  7. CFD analysis of a transfer matrix of exhaust muffler with mean flow and prediction of exhaust noise

    Institute of Scientific and Technical Information of China (English)

    Lian-yun LIU; Zhi-yong HAO; Chi LIU

    2012-01-01

    A multi-dimensional computational fluid dynamics (CFD) approach was proposed in this study aiming to calculate the transfer matrix of an engine exhaust muffler in the conditions with and without mean flow.The CFD model of the muffler with absorptive material defined as porous zone was calibrated with the measured noise reduction without mean flow,and was further employed to study the effect of the mean flow on the acoustic performance of the muffler.Furthermore,the exhaust acoustical source was derived from the calculated transfer matrices of six different additional acoustic loads obtained by the proposed CFD approach as well as the measured tail noise based on a multiload least squares method.Finally,the exhaust noise was predicted based on Thevenin's theorem.The proposed CFD approach was suggested to be able to predict the acoustic performance of a complex muffler considering mean flow (without and with mean flow) and heat transfer,and provide reasonable results of the exhaust noise.

  8. Optimization principle of operating parameters of heat exchanger by using CFD simulation

    Science.gov (United States)

    Mičieta, Jozef; Jiří, Vondál; Jandačka, Jozef; Lenhard, Richard

    2016-03-01

    Design of effective heat transfer devices and minimizing costs are desired sections in industry and they are important for both engineers and users due to the wide-scale use of heat exchangers. Traditional approach to design is based on iterative process in which is gradually changed design parameters, until a satisfactory solution is achieved. The design process of the heat exchanger is very dependent on the experience of the engineer, thereby the use of computational software is a major advantage in view of time. Determination of operating parameters of the heat exchanger and the subsequent estimation of operating costs have a major impact on the expected profitability of the device. There are on the one hand the material and production costs, which are immediately reflected in the cost of device. But on the other hand, there are somewhat hidden costs in view of economic operation of the heat exchanger. The economic balance of operation significantly affects the technical solution and accompanies the design of the heat exchanger since its inception. Therefore, there is important not underestimate the choice of operating parameters. The article describes an optimization procedure for choice of cost-effective operational parameters for a simple double pipe heat exchanger by using CFD software and the subsequent proposal to modify its design for more economical operation.

  9. Optimization principle of operating parameters of heat exchanger by using CFD simulation

    Directory of Open Access Journals (Sweden)

    Mičieta Jozef

    2016-01-01

    Full Text Available Design of effective heat transfer devices and minimizing costs are desired sections in industry and they are important for both engineers and users due to the wide-scale use of heat exchangers. Traditional approach to design is based on iterative process in which is gradually changed design parameters, until a satisfactory solution is achieved. The design process of the heat exchanger is very dependent on the experience of the engineer, thereby the use of computational software is a major advantage in view of time. Determination of operating parameters of the heat exchanger and the subsequent estimation of operating costs have a major impact on the expected profitability of the device. There are on the one hand the material and production costs, which are immediately reflected in the cost of device. But on the other hand, there are somewhat hidden costs in view of economic operation of the heat exchanger. The economic balance of operation significantly affects the technical solution and accompanies the design of the heat exchanger since its inception. Therefore, there is important not underestimate the choice of operating parameters. The article describes an optimization procedure for choice of cost-effective operational parameters for a simple double pipe heat exchanger by using CFD software and the subsequent proposal to modify its design for more economical operation.

  10. CFD simulation of a dry scroll vacuum pump with clearances, solid heating and thermal deformation

    Science.gov (United States)

    Spille-Kohoff, A.; Hesse, J.; Andres, R.; Hetze, F.

    2017-08-01

    Although dry scroll vacuum pumps (DSPV) are essential devices in many different industrial processes, the CFD simulation of such pumps is not widely used and often restricted to simplified cases due to its complexity: The working principle with a fixed and an orbiting scroll leads to working chambers that are changing in time and are connected through moving small radial and axial clearances in the range of 10 to 100 μm. Due to the low densities and low mass flow rates in vacuum pumps, it is important to include heat transfer towards and inside the solid components. Solid heating is very slow compared to the scroll revolution speed and the gas behaviour, thus a special workflow is necessary to reach the working conditions in reasonable simulation times. The resulting solid temperature is then used to compute the thermal deformation, which usually results in gap size changes that influence leakage flows. In this paper, setup steps and results for the simulation of a DSVP are shown and compared to theoretical and experimental results. The time-varying working chambers are meshed with TwinMesh, a hexahedral meshing programme for positive displacement machines. The CFD simulation with ANSYS CFX accounts for gas flow with compressibility and turbulence effects, conjugate heat transfer between gas and solids, and leakage flows through the clearances. Time-resolved results for torques, chamber pressure, mass flow, and heat flow between gas and solids are shown, as well as time- and space-resolved results for pressure, velocity, and temperature for different operating conditions of the DSVP.

  11. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  12. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  13. Numerical prediction of nucleate pool boiling heat transfer coefficient under high heat fluxes

    OpenAIRE

    Pezo Milada L.; Stevanović Vladimir D.

    2016-01-01

    This paper presents CFD (Computational Fluid Dynamics) approach to prediction of the heat transfer coefficient for nucleate pool boiling under high heat fluxes. Three-dimensional numerical simulations of the atmospheric saturated pool boiling are performed. Mathematical modelling of pool boiling requires a treatment of vapor-liquid two-phase mixture on the macro level, as well as on the micro level, such as bubble growth and departure from the heating surfa...

  14. Conduction heat transfer solutions

    Energy Technology Data Exchange (ETDEWEB)

    VanSant, J.H.

    1983-08-01

    This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.

  15. Computational fluid flow and heat transfer. An engineering tool

    Science.gov (United States)

    Salcudean, Martha

    1991-05-01

    The purpose, method, and potential of computational fluid dynamics (CFD) are discussed. Some examples of CFD and heat transfer applied to engineering problems are described. Simulation of casting in a permanent mold, gallium arsenide crystal growth, and the computation of discharge coefficients in film cooling of turbine blades are briefly described. It is shown the the CFD methods help to improve the understanding of the physics involved. They allow the influence of various parameters on the product or process to be investigated in a relatively inexpensive way. CFD constitutes a predictive tool which allows for product or process optimization. Discretization and solution methods used in the present examples are briefly described. Some limitations of the CFD methods are illustrated. The error introduced by false diffusion is shown for laminar flow around a bluff body. The improvement obtained by a higher order scheme is discussed. Some difficulties related to turbulence modelling are illustrated for the flow and heat transfer around the same bluff body. Turbulent swirling flow between concentric annuli is also discussed. Problems related to the slow convergence rate and major improvements obtained through applying multigrid convergence acceleration methods are shown for two and three dimensional opposing jets penetrating into a main flow.

  16. Heat transfer and fire spread

    Science.gov (United States)

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  17. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  18. Heat transfer physics

    CERN Document Server

    Kaviany, Massoud

    2014-01-01

    This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, statistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applications, including nano- and microscale size effects. Numerous examples, illustrations, and homework problems with answers that enhance learning are included. This new edition includes applications in energy conversion (including chemical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum tr...

  19. Tubing for augmented heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yampolsky, J.S.; Pavlics, P.

    1983-08-01

    The objectives of the program reported were: to determine the heat transfer and friction characteristics on the outside of spiral fluted tubing in single phase flow of water, and to assess the relative cost of a heat exchanger constructed with spiral fluted tubing with one using conventional smooth tubing. An application is examined where an isolation water/water heat exchanger was used to transfer the heat from a gaseous diffusion plant to an external system for energy recovery. (LEW)

  20. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  1. An analytical comparison of convective heat transfer correlations in supercritical hydrogen

    Science.gov (United States)

    Dziedzic, William M.; Jones, Stuart C.; Gould, Dana C.; Petley, Dennis H.

    1991-01-01

    Four correlations that cover the ranges of liquid to gas for turbulent flow convection of hydrogen are compared with CFD analysis over a range of expected design conditions for active cooling of hypersonic aircraft. Analysis of hydrogen cooling in a typical cooling panel shows how predicted design performance varies with the correlation utilized. The CFD heat transfer coefficient results for a heat spike differed significantly from all four correlations. An acceptable heat transfer coefficient can be calculated at the heat spike location by overlooking the coefficient at the spike and averaging the coefficient before and after the spike.

  2. Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD

    DEFF Research Database (Denmark)

    Bach, Christian; Yang, Jifeng; Larsson, Hilde Kristina

    2017-01-01

    transfer coefficients were determined from six Trichoderma reesei fermentations at different well-defined process conditions. Similarly the mass transfer was predicted by Higbie’s penetration model from two-phase CFD simulations using a correlation of bubble size and power input, and the overall mass...

  3. Heat transfer, thermal control, and heat pipes

    Science.gov (United States)

    Olstad, W. B.

    1980-01-01

    This volume provides information on recent progress in spacecraft thermal control and the supporting disciplines of conduction, thermal radiation, and heat pipe theory and application. Four problem areas are considered: conduction heat transfer, radiation heat transfer, thermal control, and heat pipes. The topics covered include finite-element methodology for transient conduction/forced-convection thermal analysis; effects of surface finish on thermal contact resistance between different materials; mathematical models for wide-band nongray gas radiation in spherical and cylindrical geometries; thermal design, analysis and testing of the Shuttle remote manipulator arm; porous heat pipe; and transient behavior of liquid trap heat-pipe thermal diodes. Also discussed is the thermal design concept for a high-resolution UV spectrometer.

  4. Heat transfer and thermal control

    Science.gov (United States)

    Crosbie, A. L.

    Radiation heat transfer is considered along with conduction heat transfer, heat pipes, and thermal control. Attention is given to the radiative properties of a painted layer containing nonspherical pigment, bidirectional reflectance measurements of specular and diffuse surfaces with a simple spectrometer, the radiative equilibrium in a general plane-parallel environment, and the application of finite-element techniques to the interaction of conduction and radiation in participating medium, a finite-element approach to combined conductive and radiative heat transfer in a planar medium. Heat transfer in irradiated shallow layers of water, an analytical and experimental investigation of temperature distribution in laser heated gases, numerical methods for the analysis of laser annealing of doped semiconductor wafers, and approximate solutions of transient heat conduction in a finite slab are also examined. Consideration is also given to performance testing of a hydrogen heat pipe, heat pipe performance with gravity assist and liquid overfill, vapor chambers for an atmospheric cloud physics laboratory, a prototype heat pipe radiator for the German Direct Broadcasting TV Satellite, free convection in enclosures exposed to compressive heating, and a thermal analysis of a multipurpose furnace for material processing in space.

  5. Heat Transfer Basics and Practice

    CERN Document Server

    Böckh, Peter

    2012-01-01

    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...

  6. Advances in industrial heat transfer

    CERN Document Server

    Minea, Alina Adriana

    2012-01-01

    Advances in Industrial Heat Transfer presents the basic principles of industrial heat transfer enhancement. Serving as a reference and guide for future research, this book presents a complete approach, from redesigning equipment to the use of nanofluids in industry. Based on the latest methods of the experiment and their interpretation, this book presents a unified conception of the industrial heat transfer process and procedures which will help decrease global energy consumption. Containing both theoretical and practical results, the book uses text, pictures, graphs, and definitions to illust

  7. CFD modeling of an arc-heated jet

    Science.gov (United States)

    Rostand, Phillipe; Mac Cormack, Robert W.

    1990-06-01

    On the basis of state-of-the-art numerical techniques and physical models, a new CFD program is developed for the simulation of a high-enthalpy reacting ionized thermally relaxing nitrogen plasma in a cylindrical plenum chamber. A preliminary validation by comparison with experimental results was obtained. The algorithm is shown to be very efficient, and the empirical modeling gave results of practical use for the configuration studied.

  8. Numerical prediction of micro-channel LD heat sink operated with antifreeze based on CFD method

    Science.gov (United States)

    Liu, Gang; Liu, Yang; Wang, Chao; Wang, Wentao; Wang, Gang; Tang, Xiaojun

    2014-12-01

    To theoretically study the feasibility of antifreeze coolants applied as cooling fluids for high power LD heat sink, detailed Computational Fluid Dynamics (CFD) analysis of liquid cooled micro-channels heat sinks is presented. The performance operated with antifreeze coolant (ethylene glycol aqueous solution) compared with pure water are numerical calculated for the heat sinks with the same micro-channels structures. The maximum thermal resistance, total pressure loss (flow resistance), thermal resistance vs. flow-rate, and pressure loss vs. flow-rate etc. characteristics are numerical calculated. The results indicate that the type and temperature of coolants plays an important role on the performance of heat sinks. The whole thermal resistance and pressure loss of heat sinks increase significantly with antifreeze coolants compared with pure water mainly due to its relatively lower thermal conductivity and higher fluid viscosity. The thermal resistance and pressure loss are functions of the flow rate and operation temperature. Increasing of the coolant flow rate can reduce the thermal resistance of heat sinks; meanwhile increase the pressure loss significantly. The thermal resistance tends to a limit with increasing flow rate, while the pressure loss tends to increase exponentially with increasing flow rate. Low operation temperature chiefly increases the pressure loss rather than thermal resistance due to the remarkable increasing of fluid viscosity. The actual working point of the cooling circulation system can be determined on the basis of the pressure drop vs. flow rate curve for the micro-channel heat sink and that for the circulation system. In the same system, if the type or/and temperature of the coolant is changed, the working point is accordingly influenced, that is, working flow rate and pressure is changed simultaneously, due to which the heat sink performance is influenced. According to the numerical simulation results, if ethylene glycol aqueous

  9. Sphere Drag and Heat Transfer.

    Science.gov (United States)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-20

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  10. CFD Analysis and Visualization of the Two Phase Flow in a Thermosyphon for a Passive Heat Removal System of a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Joseph; Lee, Jae Young [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    A thermosyphon, wickless heat pipe, is a heat transfer device of high thermal conductance that functions passively on the principle of evaporation and condensation of a working fluid. The heat-pipe concept was first proposed by Gaugler in 1942. After its independent invention by Grover in the early 1960s, serious development progress was made, and the heat pipe concept was studied intensively for both space and terrestrial applications, because of its beneficial characteristics. Annamalai and Ramalingam developed a CFD modeling for wick part of heat pipe using commercial code, ANSYS CFX. Khurram Kafeel numerically studied thermal hydraulic characteristics of thermosyphon in both transient and steady state. Bandar Fadhl et al. built a CFD modeling for boiling and condensing of thermosyphon using VOF method of ANSYS Fluent. They made user defined function (UDF) to define source term based on Lee model. In this study, CFD model of 1m-thermosyphon has been studied using VOF model. Unlike formal studies, vacuum pressure condition was applied because thermosyphon with vacuum inner pressure is much generally used. Furthermore, to check out hydraulic characteristics of the model, transparent thermosyphon experiment also has been conducted. The main purpose of this research is the investigation of CFD model of thermosyphon. Simulations using VOF method were performed to analyze evaporating, condensing and two phase flow of a thermosyphon. The simulation results show that complex phenomena inside of thermosyphon can be modeled using VOF method. Flow visualizations of working fluid matched well with transparent heat pipe experiment.

  11. Heat transfer, diffusion, and evaporation

    Science.gov (United States)

    Nusselt, Wilhelm

    1954-01-01

    Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.

  12. Heat-transfer thermal switch

    Science.gov (United States)

    Friedell, M. V.; Anderson, A. J.

    1974-01-01

    Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.

  13. CORRELATION OF EXPERIMENTAL AND THEORETICAL HEAT TRANSFER IN MANTLE TANKS USED IN LOW FLOW SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1998-01-01

    Experimental and theoretical investigations of vertical mantle tanks for solar domestic hot water systems have been carried out. Differently designed mantle tanks have been evaluated in a laboratory test facility and a transient three-dimensional CFD-model of one of the mantle tanks is developed...... in the CFD-program CFX 4.1. The model is validated against the experimental tests and good agreement between measured and calculated results are achieved. The results from the CFD-calculations are used to illustrate the thermal behaviour and the fluid dynamics in the mantle and in the inner tank. The CFD......-calculations are used to carry out a detailed analysis of the heat transfer from the solar collector fluid to the wall of the inner tank. The analysis has resulted in a local Nusselt-Rayleigh correlation for the heat transfer between the solar collector fluid and the wall of the inner tank....

  14. Advances in heat transfer enhancement

    CERN Document Server

    Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan

    2016-01-01

    This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  15. Heat Transfer Parametric System Identification

    Science.gov (United States)

    1993-06-01

    Transfer Parametric System Identification 6. AUTHOR(S Parker, Gregory K. 7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING ORGANIZATION...distribution is unlimited. Heat Transfer Parametric System Identification by Gregory K. Parker Lieutenant, United States Navy BS., DeVry Institute of...Modeling Concept ........ ........... 3 2. Lumped Parameter Approach ...... ......... 4 3. Parametric System Identification ....... 4 B. BASIC MODELING

  16. Enhanced heat transfer using nanofluids

    Science.gov (United States)

    Choi, Stephen U. S.; Eastman, Jeffrey A.

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  17. Experimental and CFD Analysis of Printed Circuit Heat Exchanger for Supercritical CO{sub 2} Power Cycle Application

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seungjoon; Kim, Hyeon Tae; Kim, Seong Gu; Lee, Jekyoung; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The supercritical carbon dioxide (S-CO{sub 2}) power cycle has been suggested as an alternative for the SFR power generation system. First of all, relatively mild sodium-CO{sub 2} interaction can reduce the accident probability. Also the S-CO{sub 2} power conversion cycle can achieve high efficiency with SFR core thermal condition. Moreover, the S-CO{sub 2} power cycle can reduce cycle footprint due to high density of the working fluid. Recently, various compact heat exchangers have been studied for developing an optimal heat exchanger. In this paper, the printed circuit heat exchanger was selected for S-CO{sub 2} power cycle applications and was closely investigated experimentally and analytically. Recently, design and performance prediction of PCHE received attention due to its importance in high pressure power systems such as S-CO{sub 2} cycle. To evaluate a PCHE performance with CO{sub 2} to water, KAIST research team designed and tested a lab-scale PCHE. From the experimental data and CFD analysis, pressure drop and heat transfer correlations are obtained. For the CFD analysis, Ansys-CFX commercial code was utilized with RGP table implementation. In near future, the turbulence model sensitivity study will be followed.

  18. A COMPARISON OF HEAT TRANSFER AROUND A SINGLE SERRATED FINNED TUBE AND A PLAIN FINNED TUBE

    Directory of Open Access Journals (Sweden)

    S.R.Mcilwain

    2010-02-01

    Full Text Available With comparable bundle geometry, serrated fin finned tube heat exchangers transfer more heat than plain finned ones. There are believed to be many factors in this behaviour, and this investigation used CFD to examine the heat transfer and fluid flow patterns around the fins to try to understand the magnitude of the differences in the processes. The study is a first step in developing a new theory-based method to predict the performance of serrated fin tube bundles.

  19. A COMPARISON OF HEAT TRANSFER AROUND A SINGLE SERRATED FINNED TUBE AND A PLAIN FINNED TUBE

    OpenAIRE

    2010-01-01

    With comparable bundle geometry, serrated fin finned tube heat exchangers transfer more heat than plain finned ones. There are believed to be many factors in this behaviour, and this investigation used CFD to examine the heat transfer and fluid flow patterns around the fins to try to understand the magnitude of the differences in the processes. The study is a first step in developing a new theory-based method to predict the performance of serrated fin tube bundles.

  20. CFD Modeling of Thermal Manikin Heat Loss in a Comfort Evaluation Benchmark Test

    DEFF Research Database (Denmark)

    Nilsson, Håkan O.; Brohus, Henrik; Nielsen, Peter V.

    2007-01-01

    and companies still use several in-house codes for their calculations. The validation and association with human perception and heat losses in reality is consequently very difficult to make. This paper is providing requirements for the design and development of computer manikins and CFD benchmark tests...

  1. Analytic corrections to CFD heating predictions accounting for changes in surface catalysis

    Science.gov (United States)

    Gnoffo, Peter A.; Inger, George R.

    1996-01-01

    Integral boundary-layer solution techniques applicable to the problem of determining aerodynamic heating rates of hypersonic vehicles in the vicinity of stagnation points and windward centerlines are briefly summarized. A new approach for combining the insight afforded by integral boundary-layer analysis with comprehensive (but time intensive) computational fluid dynamic (CFD) flowfield solutions of the thin-layer Navier-Stokes equations is described. The approach extracts CFD derived quantities at the wall and at the boundary layer edge for inclusion in a post-processing boundary-layer analysis. It allows a designer at a workstation to address two questions, given a single CFD solution. (1) How much does the heating change for a thermal protection system with different catalytic properties than was used in the original CFD solution? (2) How does the heating change at the interface of two different TPS materials with an abrupt change in catalytic efficiency? The answer to the second question is particularly important, because abrupt changes from low to high catalytic efficiency can lead to localized increase in heating which exceeds the usually conservative estimate provided by a fully catalytic wall assumption.

  2. Fundamental principles of heat transfer

    CERN Document Server

    Whitaker, Stephen

    1977-01-01

    Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int

  3. Heat transfer enhancement with nanofluids

    CERN Document Server

    Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz

    2015-01-01

    Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za

  4. Nanofluid impingement jet heat transfer.

    Science.gov (United States)

    Zeitoun, Obida; Ali, Mohamed

    2012-02-17

    Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters.

  5. Heat transfer. Basics and practice

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Thomas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Boeckh, Peter von

    2012-07-01

    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author's experience indicates that students, after 40 lectures and exercises of 45 minutes based on this textbook, have proved capable of designing independently complex heat exchangers such as for cooling of rocket propulsion chambers, condensers and evaporators for heat pumps. (orig.)

  6. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen; Amooie, Hossein [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-04-15

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  7. CFD Analysis of a Hybrid Heat Pipe for In-Core Passive Decay Heat Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Jeong Yeong Shin; Kim, Kyung Mo; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Station blackout (SBO) accident is the event that all AC power is totally lost from the failure of offsite and onsite power sources. Although electricity was provided from installed batteries for active system after shutdown, they were failed due to flooding after tsunami. The vulnerability of the current operating power plant's cooling ability during extended station blackout events is demonstrated and the importance of passive system becomes emphasized. Numerous researches about passive system have been studied for proper cooling residual heat after Fukushima nuclear power plant accident. Heat pipe is the effective passive heat transfer device that latent heat of vaporization is used to transport heat over long distance with even small temperature difference. Since liquid flows due to capillary force from wick structure and steam flows up due to buoyancy force, power is not necessary. Heat pipe is widely used in removal of local hot spot heat fluxes in CPU and thermal management in space crafts and satellites. Hybrid control rod, which consists of heat pipe with B{sub 4}C for wick structure material can be used for removing residual heat after. It can be applied to both for shutdown and cooling of decay heat in reactor. This concept is independent of external reactor situation like operator's mistake or malfunction of active cooling system. Heat pipe cooling system can be applied to Emergency Core Cooling System, In-Vessel Retention, containment and spent fuel cooling, contributing to decrease Core Damage Frequency.

  8. Numerical Heat Transfer Prediction for Laminar Flow in a Circular Pipe with a 90° Bend

    Science.gov (United States)

    Patro, Pandaba; Rout, Ani; Barik, Ashok

    2017-05-01

    Laminar air flow in a 90° bend has been studied numerically to investigate convective heat transfer, which is of practical relevance to electronic systems and refrigeration piping layout. CFD simulations are performed for Reynolds number in the range 200 to 1000 at different bend radius ratios (5, 10 and 20). The heat transfer characteristics are found to be enhanced in the curved pipe compared to a straight pipe, which are subjected to the same flow rate. The curvature and buoyancy effectively increase heat transfer in viscous laminar flows. The correlation between the flow structure and the heat transfer is found to be strong.

  9. Advances in heat transfer volume 21

    CERN Document Server

    Hartnett †, James P; Cho, Young I

    1991-01-01

    This volume in a series on heat transfer covers the modelling of the dynamics of turbulent transport processes, supercritical pressures, hydrodynamics, mass transfer near rotating surfaces, lost heat in entropy and the mechanics of heat transfer in a multifluid bubbling pool. Other related titles are "Advances in Heat Transfer", volumes 18, 19 and 20.

  10. Engineering heat transfer

    CERN Document Server

    Annaratone, Donatello

    2010-01-01

    This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone's books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practi

  11. Essentials of radiation heat transfer

    CERN Document Server

    Balaji

    2014-01-01

    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  12. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M

    2005-01-01

    initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C......The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both...

  13. CFD as a Design Tool for a Concentric Heat Exchanger

    NARCIS (Netherlands)

    Oosterhuis, J.P.; Bühler, S.; wilcox, D; Meer, van der T.H.

    2012-01-01

    A concentric gas-to-gas heat exchanger is designed for application as a recuperator in the domestic boiler industry. The recuperator recovers heat from the exhaust gases of a combustion process to preheat the ingoing gaseous fuel mixture resulting in increased fuel efficiency. This applied study sho

  14. Experimental research on heat transfer of pulsating heat pipe

    Institute of Scientific and Technical Information of China (English)

    LI Jia; Yan Li

    2008-01-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper,and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  15. Analysis of heat transfer in portable power supply

    Science.gov (United States)

    Abdullah, Mohd Azman; Ali, Ahmad Nazrin

    2016-03-01

    Portable power supply (PPS) is developed based on the necessity in supplying instant power to support domestic appliances during power shortage or in remote area. In this paper, the heat transfer inside the PPS is analyzed and demonstrated by temperature change during battery charging and discharging. The computational fluid dynamic (CFD) model of the PPS battery and housing are developed. The heat flow inside the PPS is studied at different conditions of battery and air flows. The increment of the temperature inside the PPS could cause the PPS system to damage and unsafe. Few elements are manipulated for the study, such as battery positions, holedimensions and fan models in order toimprove the design of PPS. Experimental approach is also conducted to validate the temperature and heat transfer in the PPS.

  16. THERMAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER USING CFD

    OpenAIRE

    Karthikeyan. D

    2016-01-01

    In present day shell and tube heat exchanger is the most common type heat exchanger widely use in oil refinery and other large chemical process, because it suits high pressure application. The process in solving simulation consists of modeling and meshing the basic geometry of...

  17. Experimental investigation and CFD analysis of a air cooled condenser heat pipe

    Directory of Open Access Journals (Sweden)

    Annamalai Selvan Arul

    2011-01-01

    Full Text Available In the present work a heat pipe of one meter length and 0.031m outer diameter was constructed and the experiments are conducted to determine the surface and vapour temperature at steady and transient conditions for two different input power in the evaporator section and cooling the condenser section by air. A CFD analysis was also carried and the results under steady state conditions are compared with the results obtained from the experiments and reported in this paper.

  18. Numerical analysis of heat transfer in the first wall of CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Deng, Weiping; Ge, Zhihao; Li, Yuanjie

    2016-04-15

    Highlights: • Detailed numerical analysis of heat transfer in a water-cooling first wall was carried out based on the conceptual design of CFETR WCSB blanket. • Investigation of the influences of buoyancy effect and surface roughness on heat transfer in the water-cooling first wall was presented. • Analysis of the effect of the front wall thickness on temperature was carried out for the water-cooling first wall design. • Simulation results of two 1D CFD methods were evaluated by the 3D CFD data. - Abstract: China Fusion Engineering Test Reactor (CFETR), the first fusion reactor experiment project planned in China, is now being investigated in detail. Recently, a conceptual structural design of the Water-Cooled-Solid-Breeder (WCSB) blanket was proposed as one of the breeding blanket candidates for CFETR. In this research, based on the present design of the CFETR WCSB blanket, the heat transfer performance in the first wall (FW) under the pressurized water cooling condition was analyzed. The 3D computational fluid dynamics (CFD) results show that the maximal temperature of the FW will not exceed the limited temperature under normal or even higher heat flux condition. In addition, the effect of buoyancy on heat transfer is negligible under both conditions. The influence of roughness becomes increasingly important when the roughness height lies in the fully turbulent regime. The maximal temperature increases approximately linearly as the thickness of the front wall increases. It is also found that the heat flux and the local heat transfer coefficient are extremely non-uniform in the circumferential direction. Two 1D CFD methods are also evaluated by 3D CFD data, with the conclusion that both 1D results have some differences with the 3D data. The improved 1D method is more accurate than the former one. However, we ascertain that 1D methods should be used with caution for the water-cooling FW design.

  19. Effects of Freestream Turbulence on Turbine Blade Heat Transfer

    Science.gov (United States)

    Boyle, Robert J.; Giel, Paul W.; Ames, Forrest E.

    2004-01-01

    Experiments have shown that moderate turbulence levels can nearly double turbine blade stagnation region heat transfer. Data have also shown that heat transfer is strongly affected by the scale of turbulence as well as its level. In addition to the stagnation region, turbulence is often seen to increase pressure surface heat transfer. This is especially evident at low to moderate Reynolds numbers. Vane and rotor stagnation region, and vane pressure surface heat transfer augmentation is often seen in a pre-transition environment. Accurate predictions of transition and relaminarization are critical to accurately predicting blade surface heat transfer. An approach is described which incorporates the effects of both turbulence level and scale into a CFD analysis. The model is derived from experimental data for cylindrical and elliptical leadng edges. Results using this model are compared to experimental data for both vane and rotor geometries. The comparisons are made to illustrate that using a model which includes the effects of turbulence length scale improves agreement with data, and to illustrate where improvements in the modeling are needed.

  20. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    Science.gov (United States)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  1. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  2. Transient Heat Transfer in Cylinpers.

    Directory of Open Access Journals (Sweden)

    M.G. Chopra

    2000-07-01

    Full Text Available A numerical solution has been obtained for transient heat transfer in cylinders by appropriate choice of body ,conforming grid points. The physical domain is transformed to computational domain using elliptic partial differential equation technique, wherein the grid spacing becomes uniform. The advantage of this method is that the discretisation of transformed equations. and accompanying boundary conditipns becdme very simple. The applicability of this method is very broad, as it can beused for carryinI giout study of any comple'x domain in contrast to finite difference methods, which have limited applicability. Detailedcalculations have been carried out to trace the evolution of temperaturedistribution frpm the initiial stages to the steadystate for circular cylinder, elliptical cylinder and square block with circular hole. This paper is aimed for general-shaped bodies and it has been applied to studytransient heat transfer in combustion-driven shock tube.

  3. Utilization of heat pipes for transfer heat from the flue gas into the heat transfer medium

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2014-03-01

    Full Text Available The contribution is listed possible application of heat pipes in systems for obtaining heat from flue gas of small heat sources. It is also stated in the contribution design an experimental device on which to study the impact of fill (the quantity, type of load at various temperature parameters (temperature heating and cooling thermal power transferred to the heat pipe. Is listed measurement methodology using heat pipes designed experimental facility, measurement results and analysis of the results obtained.

  4. Heat transfer enhancement by pin elements

    Energy Technology Data Exchange (ETDEWEB)

    Sahiti, N.; Durst, F.; Dewan, A. [LSTM-Erlangen, Institute of Fluid Mechanics, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Cauerstrasse 4, D-91058 Erlangen (Germany)

    2005-11-01

    Heat transfer enhancement is an active and important field of engineering research since increases in the effectiveness of heat exchangers through suitable heat transfer augmentation techniques can result in considerable technical advantages and savings of costs. Considerable enhancements were demonstrated in the present work by using small cylindrical pins on surfaces of heat exchangers. A partly quantitative theoretical treatment of the proposed method is presented. It uses simple relationships for the conductive and convective heat transfer to derive an equation that shows which parameters permit the achievement of heat transfer enhancements. Experiments are reported that demonstrate the effectiveness of the results of the proposed approach. It is shown that the suggested method of heat transfer enhancements is much more effective than existing methods, since it results in an increase in heat transfer area (like fins) and also an increase in the heat transfer coefficient. (author)

  5. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  6. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  7. Boiling heat transfer in dilute emulsions

    CERN Document Server

    Roesle, Matthew Lind

    2013-01-01

    Boiling Heat Transfer in Dilute Emulsions synthesizes recent advances and established understanding on the subject of boiling in dilute emulsions. Experimental results from various sources are collected and analyzed, including contemporary experiments that correlate visualization with heat transfer data. Published models of boiling heat transfer in dilute emulsions, and their implementation, are described and assessed against experimental data.

  8. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P [San Ramon, CA

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  9. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  10. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  11. Heat Transfer in a Thermoacoustic Process

    Science.gov (United States)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  12. Heat transfer in the Knudsen layer

    Science.gov (United States)

    Sharipov, Felix

    2004-06-01

    A concept of the surface heat conductivity determining a heat transfer in the Knudsen layer was introduced. It has the same order with respect to the Knudsen number as the bulk heat transfer and must be taken into account in practical calculations. Using the Onsager principle the coefficient of the surface heat conductivity was related to the thermal slip coefficient.

  13. Heat Transfer in a Thermoacoustic Process

    Science.gov (United States)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  14. CFD analysis of heat collection in a glazed gallery

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Maria Jose; Gutierrez, Antonio Jose; Pistono, Jorge; Blanco, Eduardo [Universidad de Oviedo, EDZE (Energia), Campus de Viesques, 33271 Gijon, Asturias (Spain)

    2011-01-15

    A glazed gallery in most old buildings is a space located on the first floor (and/or higher floors), facing south and almost fully glazed. As a result of the large glazed area and the orientation of the gallery, its temperature is warmer than the exterior and, in cold weather, it is used both as a space to insulate the adjacent rooms and as a leisure area, among other applications. In the framework of the ARFRISOL project (Bioclimatic Architecture and Solar Cooling), a demonstration container has been constructed in northern Spain (Asturias) which includes, among other bioclimatic elements, a glazed gallery. This gallery is considered as an element of Bioclimatic Architecture that enables solar radiation to be collected and the energy obtained to be used to support the building's air conditioning system. It consists of a south-facing glazed exterior wall, an intermediate space or passage and a partially glazed interior wall. Dampers located in the floor and ceiling of the intermediate space and connected to the air ducts enable the air circulating inside the gallery to be heated or cooled, depending on the season of the year, before it is further conditioned and conveyed to the rooms. This paper focuses on the three-dimensional numerical simulation of the airflow inside the gallery. The aim is to obtain a model to evaluate the thermal energy obtained in this architectural feature, integrating the effect of certain variables, such as the incident solar irradiation, the outdoor temperature and the air flow rate circulating in the gallery. (author)

  15. Heat transfer and heating rate of food stuffs in commercial shop ovens

    Indian Academy of Sciences (India)

    P Navaneethakrishnan; P S S Srinivasan; S Dhandapani

    2007-10-01

    The CFD analysis of flow and temperature distribution in heating ovens used in bakery shop, to keep the foodstuffs warm, is attempted using finite element technique. The oven is modelled as a two-dimensional steady state natural convection heat transfer problem. Effects of heater location and total heat input on temperature uniformity of foodstuffs are studied. Placing the heater at the bottom of the oven improves the air circulation rate by 17 times and 10 times than that at the top and side of the oven. But the top location provides better uniformity in foodstuff temperature than the other cases. Side location is not preferable. In the present ovens, the heating elements are located at the top. The analysis shows that if heaters are located at the bottom along with additional flow guidance arrangements, energy efficient oven configuration can be obtained.

  16. Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow using CFD

    Directory of Open Access Journals (Sweden)

    Raj Karuppa Thundil R.

    2012-01-01

    Full Text Available In this present study, attempts were made to investigate the impacts of various baffle inclination angles on fluid flow and the heat transfer characteristics of a shell-and-tube heat exchanger for three different baffle inclination angles namely 0°,10° and 20°. The simulation results for various shell and tube heat exchangers, one with segmental baffles perpendicular to fluid flow and two with segmental baffles inclined to the direction of fluid flow are compared for their performance. The shell side design has been investigated numerically by modeling a small shell-and-tube heat exchanger. The study is concerned with a single shell and single side pass parallel flow heat exchanger. The flow and temperature fields inside the shell are studied using non-commercial CFD software tool ANSYS CFX 12.1. For a given baffle cut of 36 %, the heat exchanger performance is investigated by varying mass flow rate and baffle inclination angle. From the CFD simulation results, the shell side outlet temperature, pressure drop, recirculation near the baffles, optimal mass flow rate and the optimum baffle inclination angle for the given heat exchanger geometry are determined.

  17. CFD simulation on critical heat flux of flow boiling in IVR-ERVC of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang, E-mail: zhangxiang3@snptc.com.cn [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Hu, Teng [State Nuclear Power Technology Research & Development Center, South Area, Future Science and Technology Park, Chang Ping District, Beijing 102209 (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China); Zhong, Yunke; Gao, Hong [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 400044 (China)

    2016-08-01

    Highlights: • CFD simulation on CHF of boiling two-phase flow in ERVC is proposed. • CFD simulation result of CHF agrees well with that of experimental result. • The characteristics of boiling two-phase flow and boiling crisis are analyzed. - Abstract: The effectiveness of in-vessel retention (IVR) by external reactor vessel cooling (ERVC) strongly depends on the critical heat flux (CHF). As long as the local CHF does not exceed the local heat flux, the lower head of the pressure vessel can be cooled sufficiently to prevent from failure. In this paper, a CFD simulation is carried out to investigate the CHF of ERVC. This simulation is performed by a CFD code fluent couple with a boiling model by UDF (User-Defined Function). The experimental CHF of ERVC obtained by State Nuclear Power Technology Research and Development Center (SNPTRD) is used to validate this CFD simulation, and it is found that the simulation result agrees well with the experimental result. Based on the CFD simulation, detailed analysis focusing on the pressure distribution, velocity distribution, void fraction distribution, heating wall temperature distribution are proposed in this paper.

  18. Transient PVT measurements and model predictions for vessel heat transfer. Part II.

    Energy Technology Data Exchange (ETDEWEB)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

    2010-07-01

    Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

  19. Computational study of the heat transfer of an avian egg in a tray.

    Science.gov (United States)

    Eren Ozcan, S; Andriessens, S; Berckmans, D

    2010-04-01

    The development of an embryo in an avian egg depends largely on its temperature. The embryo temperature is affected by its environment and the heat produced by the egg. In this paper, eggshell temperature and the heat transfer characteristics from one egg in a tray toward its environment are studied by means of computational fluid dynamics (CFD). Computational fluid dynamics simulations have the advantage of providing extensive 3-dimensional information on velocity and eggshell temperature distribution around an egg that otherwise is not possible to obtain by experiments. However, CFD results need to be validated against experimental data. The objectives were (1) to find out whether CFD can successfully simulate eggshell temperature from one egg in a tray by comparing to previously conducted experiments, (2) to visualize air flow and air temperature distribution around the egg in a detailed way, and (3) to perform sensitivity analysis on several variables affecting heat transfer. To this end, a CFD model was validated using 2 sets of temperature measurements yielding an effective model. From these simulations, it can be concluded that CFD can effectively be used to analyze heat transfer characteristics and eggshell temperature distribution around an egg. In addition, air flow and temperature distribution around the egg are visualized. It has been observed that temperature differences up to 2.6 degrees C are possible at high heat production (285 mW) and horizontal low flow rates (0.5 m/s). Sensitivity analysis indicates that average eggshell temperature is mainly affected by the inlet air velocity and temperature, flow direction, and the metabolic heat of the embryo and less by the thermal conductivity and emissivity of the egg and thermal emissivity of the tray.

  20. Heat transfer and fluid flow in biological processes advances and applications

    CERN Document Server

    Becker, Sid

    2015-01-01

    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  1. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    transfer coefficient but the ratio between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has......Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...

  2. Heat Transfer in Complex Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Mehrdad Massoudi

    2012-01-01

    fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a

  3. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W

    1974-01-01

    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  4. Numerical prediction of nucleate pool boiling heat transfer coefficient under high heat fluxes

    Directory of Open Access Journals (Sweden)

    Pezo Milada L.

    2016-01-01

    Full Text Available This paper presents CFD (Computational Fluid Dynamics approach to prediction of the heat transfer coefficient for nucleate pool boiling under high heat fluxes. Three-dimensional numerical simulations of the atmospheric saturated pool boiling are performed. Mathematical modelling of pool boiling requires a treatment of vapor-liquid two-phase mixture on the macro level, as well as on the micro level, such as bubble growth and departure from the heating surface. Two-phase flow is modelled by the two-fluid model, which consists of the mass, momentum and energy conservation equations for each phase. Interface transfer processes are calculated by the closure laws. Micro level phenomena on the heating surface are modelled with the bubble nucleation site density, the bubble resistance time on the heating wall and with the certain level of randomness in the location of bubble nucleation sites. The developed model was used to determine the heat transfer coefficient and results of numerical simulations are compared with available experimental results and several empirical correlations. A considerable scattering of the predictions of the pool boiling heat transfer coefficient by experimental correlations is observed, while the numerically predicted values are within the range of results calculated by well-known Kutateladze, Mostinski, Kruzhilin and Rohsenow correlations. The presented numerical modeling approach is original regarding both the application of the two-fluid two-phase model for the determination of heat transfer coefficient in pool boiling and the defined boundary conditions at the heated wall surface. [Projekat Ministarstva nauke Republike Srbije, br. 174014

  5. Change of heat transfer- and mass transfer-coefficients with simultaneous heat- and mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kast, W.

    1981-01-01

    The values of sensible and latent heat and of the resulting energy flow through laminar boundary layer have been developed for the four possible combinations of the directions of heat- and mass flows. When the values of heat- and mass flows are used with the correct sign according to the definitions of Fourier's law and Fick's law, the changes of heat transfer- and mass transfer coefficients can be described by one equation alone for all cases. The equations extended in that way are valid for arbitrary cases of countercurrent diffusing mass flows - not only for the well known case of Stefan diffusion.

  6. Research of Intercooler Heat Transfer Based on CFD

    Directory of Open Access Journals (Sweden)

    Wu Huajie

    2015-01-01

    Full Text Available The research object of this paper is intercooler used in vehicle. In the paper, the intercooler’s work area is divided into internal flow field and exterior flow field. The author analyzed the structure characteristics of the intercooler fin, and established finite element model in computational fluid dynamics software-Fluent. The unstructured grid is used to mesh. The finite element model is imported to Fluent before simulation. The temperature and pressure of intercooler is shown in result nephogram, and the results show the temperature in exit is higher than requirement. The paper provides scientific basis for structure and performance optimization to intercooler.

  7. Heat and mass transfer in particulate suspensions

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2013-01-01

    Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...

  8. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    张利斌; 李修伦

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  9. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum. The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  10. Heat Transfer in Gas Turbines

    Science.gov (United States)

    Garg, Vijay K.

    2001-01-01

    The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.

  11. Heat transfer in porous media

    Directory of Open Access Journals (Sweden)

    N. Amanifard

    2007-06-01

    Full Text Available In this work, the effects of electrical double layer (EDL near the solid/ liquid interface, on three dimensional heat transfer characteristic and pressure drop of water flow through a rectangular microchannel numerically are investigated. An additional body force originating from the existence of EDL is considered to modify the conventional Navier-stokes and energy equations. These modified equations are solved numerically for steady laminar flow on the basis of control volume approaches. Fluid velocity distribution and temperature with presence and absence of EDL effects are presented for various geometric cases and different boundary conditions. The results illustrate that, the liquid flow in rectangular microchannels is influenced significantly by the EDL, particularly in the high electric potentials, and hence deviates from flow characteristics described by classical fluid mechanics.

  12. A Numerical Study on Heat Transfer and Flow Characteristics of a Finned Downhole Coaxial Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chun Dong; Lee, Dong Hyun; Park, Byung-Sik; Choi, Jaejoon [Korea Institute of Energy Research (KIER), Daejeon (Korea, Republic of)

    2017-02-15

    In this study, the flow and heat transfer characteristics of the finned annular passage were investigated numerically. The annular passage simulates co-axial geothermal heat exchanger, and fins are installed on its inner wall to reduce heat loss from the production passage (annulus) to injection passage (inner pipe). A commercial CFD program, Ansys Fluent, was used with SST k-ω turbulence model. The effects of the geometric parameters of the fin on the inner tube were analyzed under the periodic boundary condition. The result indicated that most parameters had a tendency to increase with an increase in the height and angle of the fin. However, it was confirmed that the Nusselt number of the inner tube on the coaxial 15, 5, 0.3 was lower than that of the smooth tube. Additionally, the Nusselt number of the inner tube exhibited a tendency of decreasing with a decrease in the spacing in Coaxial 15, S{sub f}, 0.3.

  13. Thermal Regulation of Heat Transfer Processes

    Science.gov (United States)

    2014-10-02

    be approximately 320 m2g-1, 32 times higher than graphite flakes for more efficient heat transfer to the fluid. The evaporation rates of water...AFRL-OSR-VA-TR-2014-0249 THERMAL REGULATION OF HEAT TRANSFER PROCESSES GANG CHEN MASSACHUSETTS INSTITUTE OF TECHNOLOGY Final Report 10/02/2014...Prescribed by ANSI Std. Z39.18 FINAL REPORT FOR FA9550-11-1-0174 THERMAL REGULATION OF HEAT TRANSFER PROCESSES Principal Investigator: Gang Chen

  14. Radiative heat transfer between metallic nanoparticles

    OpenAIRE

    Chapuis, Pierre-Olivier; Laroche, Marine; Volz, Sebastian; Greffet, Jean-Jacques

    2008-01-01

    International audience; In this letter, we study the radiative heat transfer between two nanoparticles in the near field and in the far field. We find that the heat transfer is dominated by the electric dipole-dipole interaction for dielectric particles and by the magnetic dipole-dipole interaction for metallic nanoparticles. We introduce polarizabilities formulas valid for arbitrary values of the skin depth. While the heat transfer mechanism is different for metallic and dielectric nanoparti...

  15. Finite element simulation of heat transfer

    CERN Document Server

    Bergheau, Jean-Michel

    2010-01-01

    This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re

  16. Heat-transfer data for hydrogen

    Science.gov (United States)

    Mc Carthy, J. R.; Miller, W. S.; Okuda, A. S.; Seader, J. D.

    1970-01-01

    Information is given regarding experimental heat-transfer data compiled for the turbulent flow of hydrogen within straight, electrically heated, round cross section tubes. Tube materials, test conditions, parameters studied, and generalized conclusions are presented.

  17. Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2016-01-01

    Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at

  18. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  19. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's.......Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  20. Radiative heat transfer in porous uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)

    1992-12-01

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  1. CFD simulation and verification of heat exchanger characteristic for single well cycling groundwater heat pump%单井循环地下水源热泵换热特性CFD模拟与验证

    Institute of Scientific and Technical Information of China (English)

    宋伟; 倪龙; 姚杨

    2015-01-01

    针对单井循环地下换热系统CFD模拟研究的不足,建立了该系统多区域耦合的CFD模型用于研究其地下水流动和换热特性。结果表明,循环单井、抽灌同井和填砾抽灌同井CFD模型的抽水温度和含水层特征点温度模拟结果均与试验测试结果吻合较好,3种热源井25 min的累计取热量相对误差分别为12.1%、3.0%和8.2%。所建立的3种热源井CFD模型可以用于分析和预测实际单井循环地下换热系统中热源井特性、含水层流场和温度场的变化情况,并能提供较为准确的模拟数据。%Ground source heat pump (GSHP) systems are considered as an ideal approach to heat and cool building, due to their attractive advantages of high efficiency, low carbon emission and using renewable energy instead of electricity for heating and cooling. Many projects have been applied in residential and commercial buildings successfully. Single well groundwater heat pump (SWGWHP) systems are new member of GSHP system, which become increasingly popular for use because of their economic advantages. In general, SWGWHP systems included three different variations, i.e. standing column well (SCW) system, pumping & recharging well (PRW) system, and pumping & recharging well filled with gravel (PRWFG) system. Although there are some theoretical and experimental researches on SWGWHP systems, there are not many researches on Computational Fluid Dynamics (CFD) simulation about flow and thermal performance in these systems. CFD are well known for their capability to carry out in-depth analysis of fluid flow, heat transfer, mass transfer and several other related issues. They provide numerical solutions of partial differential equations governing fluid flow and heat transfer in a discretized form. CFD employs a very simple principle of resolving the entire system in small cells or grids and applying governing equations on these discrete elements to find numerical solutions regarding

  2. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  3. Heat transfer in window frames with internal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild

    2001-07-01

    Heat transfer in window frames with internal air cavities is studied in this thesis. Investigations focus on two- and three-dimensional natural convection effects inside air cavities, the dependence of the emissivity on the thermal transmittance, and the emissivity of anodized and untreated aluminium profiles. The investigations are mostly conducted on window frames which are the same size as real frames found in residential buildings. Numerical and experimental investigations were performed to study the effectiveness of one commercial Computational Fluid Dynamics (CFD) program for simulating combined natural convection and heat transfer in simple three-dimensional window frames with internal air cavities. The accuracy of the conjugate CFD simulations was evaluated by comparing results for surface temperature on the warm side of the specimens to results from experiments that use infrared (IR) thermography to map surface temperatures during steady-state thermal tests. In general, there was good agreement between the simulations and experiments. Two-dimensional computational fluid dynamic and conduction simulations are performed to study the difference between treating air cavities as a fluid and as a solid when calculating the thermal transmittance of window frames. The simulations show that traditional software codes, simulating only conduction and using equivalent conductivities for the air cavities, give Uvalues that compare well with results from fluid flow simulations. The difference between the two models are mostly limited to the temperature distribution inside air cavities. It is also found that cavities with an interconnection less than about 7 mm can be treated as separate cavities. Three-dimensional natural convection effects in simple and custom-made PVC and thermally broken aluminum window frames with one open internal cavity were studied, with the use of CFD simulations and thermography experiments. Focus was put on corner effects and heat transfer

  4. Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System

    Science.gov (United States)

    Ahmad, Rashid A.; Cash, Stephen F. (Technical Monitor)

    2002-01-01

    This simulation involved a two-dimensional axisymmetric model of a full motor initial grain of the Reusable Solid Rocket Motor (RSRM) of the Space Transportation System (STS). It was conducted with CFD (computational fluid dynamics) commercial code FLUENT. This analysis was performed to: a) maintain continuity with most related previous analyses, b) serve as a non-vectored baseline for any three-dimensional vectored nozzles, c) provide a relatively simple application and checkout for various CFD solution schemes, grid sensitivity studies, turbulence modeling and heat transfer, and d) calculate nozzle convective heat transfer coefficients. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, vacuum thrust and specific impulse, and measured chamber pressure drop. Matching these ballistic predictions was found to be good. This study was limited to convective heat transfer and the results compared favorably with existing theory. On the other hand, qualitative comparison with backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at constant pressure was made in a relative manner. This backed-out data was devised to match nozzle erosion that was a result of heat transfer (convective, radiative and conductive), chemical (transpirating), and mechanical (shear and particle impingement forces) effects combined.

  5. Dynamic Heat Transfer Model of Refrigerated Foodstuff

    DEFF Research Database (Denmark)

    Cai, Junping; Risum, Jørgen; Thybo, Claus

    2006-01-01

    their temperature relation. This paper discusses the dynamic heat transfer model of foodstuff inside the display cabinet, one-dimensional dynamic model is developed, and the Explicit Finite Difference Method is applied, to handle the unsteady heat transfer problem with phase change, as well as time varying boundary...

  6. Radiative heat transfer between metallic nanoparticles

    CERN Document Server

    Chapuis, Pierre-Olivier; Volz, Sebastian; Greffet, Jean-Jacques

    2008-01-01

    In this letter, we study the radiative heat transfer between two nanoparticles in the near field and in the far field. We find that the heat transfer is dominated by the electric dipole-dipole interaction for dielectric particles and by the magnetic dipole-dipole interaction for metallic nanoparticles. We introduce polarizabilities formulas valid for arbitrary values of the skin depth. While the heat transfer mechanism is different for metallic and dielectric nanoparticles, we show that the distance dependence is the same. However, the dependence of the heat flux on the particle radius is different.

  7. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  8. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  9. Heat transfer coefficient of cryotop during freezing.

    Science.gov (United States)

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  10. Forced convective heat transfer in curved diffusers

    Science.gov (United States)

    Rojas, J.; Whitelaw, J. H.; Yianneskis, M.

    1987-01-01

    Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.

  11. Pool Boiling Heat Transfer on structured Surfaces

    Science.gov (United States)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  12. Experimental and numerical investigation of pressure drop and heat transfer coefficient in converging-diverging microchannel heat sink

    Science.gov (United States)

    Chakravarthii, M. K. Dheepan; Mutharasu, D.; Shanmugan, S.

    2017-07-01

    The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of the devices. Microchannel heat sinks are efficient method to dissipate high heat flux. The pressure drop and heat transfer coefficient are the important parameters which determine the thermal-hydraulic performance of the microchannel heat sink. In this study, a converging-diverging (CD) microchannel heat sink was experimentally investigated for the variation of pressure drop and heat transfer coefficient. De-ionized water was considered as the working fluid. Experiments were conducted for single phase fluid flow with mass flow rate and heat flux ranging from 0.001232 to 0.01848 kg/s and 10-50 W/cm2 respectively. The fluid and solid temperature were measured to calculate the heat transfer coefficients. Numerical results were computed using the CFD software and validated against the experimental results. The CD microchannel possesses high heat transfer coefficient than the straight microchannels. Theoretical correlations were proposed for comparing the experimental Nusselt number of CD microchannel. Evaluation of thermal-hydraulic performance of CD microchannel is important to quantify its applications in electronics cooling.

  13. Experimental and numerical investigation of pressure drop and heat transfer coefficient in converging-diverging microchannel heat sink

    Science.gov (United States)

    Chakravarthii, M. K. Dheepan; Mutharasu, D.; Shanmugan, S.

    2017-01-01

    The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of the devices. Microchannel heat sinks are efficient method to dissipate high heat flux. The pressure drop and heat transfer coefficient are the important parameters which determine the thermal-hydraulic performance of the microchannel heat sink. In this study, a converging-diverging (CD) microchannel heat sink was experimentally investigated for the variation of pressure drop and heat transfer coefficient. De-ionized water was considered as the working fluid. Experiments were conducted for single phase fluid flow with mass flow rate and heat flux ranging from 0.001232 to 0.01848 kg/s and 10-50 W/cm2 respectively. The fluid and solid temperature were measured to calculate the heat transfer coefficients. Numerical results were computed using the CFD software and validated against the experimental results. The CD microchannel possesses high heat transfer coefficient than the straight microchannels. Theoretical correlations were proposed for comparing the experimental Nusselt number of CD microchannel. Evaluation of thermal-hydraulic performance of CD microchannel is important to quantify its applications in electronics cooling.

  14. Thermodynamics of Flow Boiling Heat Transfer

    Science.gov (United States)

    Collado, F. J.

    2003-05-01

    Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.

  15. Experimental and numerical study on unsteady natural convection heat transfer in helically coiled tube heat exchangers

    Science.gov (United States)

    Neshat, E.; Hossainpour, S.; Bahiraee, F.

    2014-06-01

    Both of experimental and numerical investigations were performed to understand unsteady natural convection from outer surface of helical coils. Four helical coils with two different curvature ratios were used. Each coil was mounted in the shell both vertically and horizontally. The cold water was entered the coil and the hot water in the shell was cooling by unsteady natural convection. A CFD code was developed to simulate natural convection heat transfer. Equations of tube and shell are solved simultaneously. Statistical analyses have been done on data points of temperature and natural convection Nusselt number. It was revealed that shell-side fluid temperature and the Nusselt number of the outer surface of coils are functions of in-tube fluid mass flow rate, specific heat of fluids and geometrical parameters including length, inner diameter of the tube and the volume of the shell, and time.

  16. A Lattice Boltzmann Model for Fluid-Solid Coupling Heat Transfer in Fractal Porous Media

    Institute of Scientific and Technical Information of China (English)

    CAI Jun; HUAI Xiu-Lan

    2009-01-01

    We report a lattice Boltzmann model that can be used to simulate fluid-solid coupling heat transfer in fractal porous media.A numerical simulation is conducted to investigate the temperature evolution under different ratios of thermal conductivity of solid matrix of porous media to that of fluid.The accordance of our simulation results with the solutions from the conventional CFD method indicates the feasibility and the reliability for the developed lattice Boltzmann model to reveal the phenomena and rules of fluid-solid coupling heat transfer in complex porous structures.

  17. A multi-fluid model to simulate heat and mass transfer in a PEM fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2011-01-01

    This article summarizes a multi-phase model of a polymer electrolyte membrane fuel cell based on the formerly commercial CFD code CFX-4. It is three-dimensional in nature and includes multiphase heat and mass transfer in porous media. An overview is given and some numerical issues are discussed...... heat and mass transfer properties are superior. Another important aspect of this study is the wetting status of the electrolyte menbrane and the effective drag of water through the menbrane, which indicates what fraction of the product water created at the cathode side diffuses through the membrane...

  18. Effect of Favorable Pressure Gradients on Turbine Blade Pressure Surface Heat Transfer

    Science.gov (United States)

    Boyle, Robert J.; Giel, P. W.

    2002-01-01

    Recent measurements on a turbine rotor showed significant relaminarization effects. These effects were evident on the pressure surface heat transfer measurements. The character of the heat transfer varied with Reynolds number. Data were obtained for exit Reynolds numbers between 500,000 and 880,000. Tests were done with a high level of inlet turbulence, 7.5%. At lower Reynolds numbers the heat transfer was similar to that for laminar flow, but at a level higher than for laminar flow. At higher Reynolds numbers the heat transfer was similar to turbulent flow, when the acceleration parameter, K, was sufficiently small. The proposed paper discusses the experimental results, and also discusses approaches to calculating the surface heat transfer for the blade surface. Calculations were done using a three-dimensional Navier-Stokes CFD analysis. The results of these tests, when compared with previous blade tests in the same facility, illustrate modeling difficulties that were encountered in CFD predictions. The two blades were in many ways similar. However, the degree of agreement between the same analysis and the experimental data was significantly different. These differences are highlighted to illustrate where improvements in modeling approaches are needed for transitional flows.

  19. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.

    Science.gov (United States)

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.

  20. Effect of orientation on heat transfer in pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Naumova A. M.

    2010-10-01

    Full Text Available The paper presents the results of experimental research of orientation effect on heat transfer characteristics of a pulsating heat pipe (PHP. It is shown that transport of either mass or heat depends on PHP orientation against it`s axis. As a consequence of comparing experimental data with other authors’ results it was concluded that PHP thermal resistance depends not only on orientation but on some other determinal factors such as device construction and thermophysical properties of heat carrier.

  1. Van der Waals Force Assisted Heat Transfer

    Science.gov (United States)

    Sasihithlu, K.; Pendry, J. B.; Craster, R. V.

    2017-02-01

    Phonons (collective atomic vibrations in solids) are more effective in transporting heat than photons. This is the reason why the conduction mode of heat transport in nonmetals (mediated by phonons) is dominant compared to the radiation mode of heat transport (mediated by photons). However, since phonons are unable to traverse a vacuum gap (unlike photons), it is commonly believed that two bodies separated by a gap cannot exchange heat via phonons. Recently, a mechanism was proposed [J. B. Pendry, K. Sasihithlu, and R. V. Craster, Phys. Rev. B 94, 075414 (2016)] by which phonons can transport heat across a vacuum gap - through the Van der Waals interaction between two bodies with gap less than the wavelength of light. Such heat transfer mechanisms are highly relevant for heating (and cooling) of nanostructures; the heating of the flying heads in magnetic storage disks is a case in point. Here, the theoretical derivation for modelling phonon transmission is revisited and extended to the case of two bodies made of different materials separated by a vacuum gap. Magnitudes of phonon transmission, and hence the heat transfer, for commonly used materials in the micro- and nano-electromechanical industry are calculated and compared with the calculation of conduction heat transfer through air for small gaps as well as the heat transfer calculation due to photon exchange.

  2. Heat transfer analyses using computational fluid dynamics in the air blast freezing of guava pulp in large containers

    Directory of Open Access Journals (Sweden)

    W. M. Okita

    2013-12-01

    Full Text Available Heat transfer during the freezing of guava pulp conditioned in large containers such as in stacked boxes (34 L and buckets (20 L and unstacked drums (200 L is discussed. The air velocities across the cross-section of the tunnel were measured, and the values in the outlet of the evaporator were used as the initial conditions in computational fluid dynamics (CFD simulations. The model tested was turbulent standard k-ε. The CFD-generated convective heat transfer coefficients were mapped on the surfaces for each configuration and used in procedures for the calculation of freezing-time estimates. These estimates were compared with the experimental results for validation. The results showed that CFD determined representative coefficients and produced good correlations between the predicted and experimental values when applied to the freezing-time estimates for the box and drum configurations. The errors depended on the configuration and the adopted mesh (3-D grid construction.

  3. Heat Transfer Augmentation for Electronic Cooling

    Directory of Open Access Journals (Sweden)

    Suabsakul Gururatana

    2012-01-01

    Full Text Available Problem statement: The performance of electronic devices has been improving along with the rapid technology development. Cooling of electronic systems is consequently essential in controlling the component temperature and avoiding any hot spot. The study aims to review the present electronic cooling methods which are widely used in electronic devices. Approach: There are several methods to cool down the electronics components such as the pin-fin heat sink, confined jet impingement, heat pipe, micro heat sink and so on. Results: The cooling techniques can obviously increase heat transfer rate. Nonetheless, for active and passive cooling methods the pressure drop could extremely rise, when the heat transfer rate is increased. Conclusion: When the cooling techniques are used, it is clearly seen that the heat transfer increases with pressure drop. To avoid excessive expense due to high pressure drop, optimization method is required to obtain optimum cost and cooling rate.

  4. Temperature Distribution and Heat Saturating Time of Regenerative Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Li JIA; Ying MAO; Lixin YANG

    2006-01-01

    In this paper, heat transfer of the ceramic honeycomb regenerator was numerically simulated based on the computational fluid dynamics numerical analysis software CFX5. The longitudinal temperature distribution of regenerator and gas were obtained. The variation of temperature with time was discussed. In addition, the effects of some parameters such as switching time, gas temperature at the inlet of regenerator, height of regenerator and specific heat of the regenerative materials on heat saturating time were discussed. It provided primarily theoretic basis for further study of regenerative heat transfer mechanism.

  5. Study of heat transfer in CI engine using heat transfer correlation based on intake jet velocity

    Energy Technology Data Exchange (ETDEWEB)

    Sharief, A. [Sri Siddharhta Inst. of Technology, Tumkur, Karnataka (India); Samaga, B.S.; Shrinivas Rao, B.R. [Nitte Mahalinga Adyantaya Institute of Technology, Karkala, Karnataka (India); JAntonyc, A. [Sahyadri Inst. of Technology, Mangalore, Karnataka (India)

    2009-07-01

    A reliable heat transfer formulation is needed to simulate reciprocating combustion engines. In order to reduce heat loss and improve thermal efficiency, it is necessary to calculate the rate of heat transfer from the working fluid to the combustion chamber walls. The thermal stresses in the engine components must also be determined. In this study, the author calculated heat transfer coefficient in a diesel engine using a heat transfer correlation based on intake jet velocity instead of mean piston speed. Experiments were conducted in a diesel engine with natural aspiration of hot air at 150 to 300 degrees C. Peak temperature was 1100 degrees C at various loads. The convective heat transfer coefficient and radiative heat transfer coefficient component was also determined separately at various loads. This model based on intake jet velocity instead of mean piston speed was found to be more realistic when considering the influence of gas velocities on the thermal boundary layer thickness. 11 refs., 12 figs.

  6. Heat transfer behavior of molten nitrate salt

    Science.gov (United States)

    Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.

    2016-05-01

    The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new

  7. Some Aspects Concerning Convective Circulation Mode of Heat Transfer in Furnace to Wood Heat Treatment

    Directory of Open Access Journals (Sweden)

    Nadia Potoceanu

    2007-10-01

    Full Text Available The paper presented the most aspects of convective circulate mode of heat transfer : heat transfer through the boundary layer formed at the surface of the heat generator; heat transfer in the heat carrier and heat transfer through the boundary layer formed at the heated surface

  8. An investigation of a compact heat exchanger unit using CFD with experimental support

    Directory of Open Access Journals (Sweden)

    Peukert Pavel

    2015-01-01

    Full Text Available The paper contains a comparison of a numerical simulation with a real experiment. In the measured and simulated device is located a heat exchanger with a centrifugal fan. Due to the fan and the geometrical arrangement the flow is relative uneven and so the heat transfer hard to predict. The simulation should be time and cost affordable, so a standard k-ϵ turbulence model and a relative simple mesh was used for the computations.

  9. An investigation of a compact heat exchanger unit using CFD with experimental support

    Science.gov (United States)

    Peukert, Pavel; Kolář, Jan; Adámek, Karel

    2015-05-01

    The paper contains a comparison of a numerical simulation with a real experiment. In the measured and simulated device is located a heat exchanger with a centrifugal fan. Due to the fan and the geometrical arrangement the flow is relative uneven and so the heat transfer hard to predict. The simulation should be time and cost affordable, so a standard k-ɛ turbulence model and a relative simple mesh was used for the computations.

  10. Fully coupled CEM/CFD modelling of microwave heating in a porous medium

    OpenAIRE

    2002-01-01

    Computational results for the microwave heating of a porous material are presented in this paper. Coupled finite difference time domain and finite volume methods are used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. These equations are nonlinearly coupled through the dielectric properties which depend both on temperature and moisture content. By investigating the resonant behaviour in two-dimensional microwave cavities, the FD-TD schem...

  11. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  12. Low-temperature heat transfer in nanowires

    OpenAIRE

    Glavin, B. A.

    2000-01-01

    The new regime of low-temperature heat transfer in suspended nanowires is predicted. It takes place when (i) only ``acoustic'' phonon modes of the wire are thermally populated and (ii) phonons are subject to the effective elastic scattering. Qualitatively, the main peculiarities of heat transfer originate due to appearance of the flexural modes with high density of states in the wire phonon spectrum. They give rise to the $T^{1/2}$ temperature dependence of the wire thermal conductance. The e...

  13. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  14. Convective Heat Transfer for Ship Propulsion.

    Science.gov (United States)

    1982-04-01

    RD-A124 Wi CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION (U) ARIZONA 112 UNIV TUCSON ENGINEERING EXPERIMENT STATION PARK ET AL. 01 APR 82 1248-9 N814...395 CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION Prepared for Office of Naval Research Code 431 Arlington, Virginia Prepared by J. S. Park, M. F...FOR SHIP PROPULSION By J. S. Park, M. F. Taylor and D. M. McEligot Aerospace and Mechanical Engineering Department University of Arizona Tucson

  15. Heat transfer mechanisms in microgravity flow boiling.

    Science.gov (United States)

    Ohta, Haruhiko

    2002-10-01

    The objective of this paper is to clarify the mechanisms of heat transfer and dryout phenomena in flow boiling under microgravity conditions. Liquid-vapor behavior in annular flow, encountered in the moderate quality region, has extreme significance for practical application in space. To clarify the gravity effect on the heat transfer observed for an upward flow in a tube, the research described here started from the measurement of pressure drop for binary gas-liquid mixture under various gravity conditions. The shear stress acting on the surface of the annular liquid film was correlated by an empirical method. Gravity effects on the heat transfer due to two-phase forced convection were investigated by the analysis of velocity and temperature profiles in the film. The results reproduce well the trends of heat transfer coefficients varying with the gravity level, quality, and mass velocity. Dryout phenomena in the moderate quality region were observed in detail by the introduction of a transparent heated tube. At heat fluxes just lower and higher than CHF value, a transition of the heat transfer coefficient was calculated from oscillating wall temperature, where a series of opposing heat transfer trends--the enhancement due to the quenching of dried areas or evaporation from thin liquid films and the deterioration due to the extension of dry patches--were observed between the passage of disturbance waves. The CHF condition that resulted from the insufficient decrease of wall temperature in the period of enhanced heat transfer was overcome by a temperature increase in the deterioration period. No clear effect of gravity on the mechanisms of dryout was observed within the range of experiments.

  16. A Review on Heat Transfer Improvent of Plate Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Abhishek Nandan

    2015-03-01

    Full Text Available Plate heat exchanger has found a wide range of application in various industries like food industries, chemical industries, power plants etc. It reduces the wastage of energy and improves the overall efficiency of the system. Hence, it must be designed to obtain the maximum heat transfer possible. This paper is presented in order to study the various theories and results given over the improvement of heat transfer performance in a plate heat exchanger. However, there is still a lack in data and generalized equations for the calculation of different parameters in the heat exchanger. It requires more attention to find out various possible correlations and generalized solutions for the performance improvement of plate heat exchanger.

  17. Evaluation of complex heat transfer coefficients for passive heating concepts

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, N.K.; Sodha, M.S.; Singh, S.P.; Ram, S.

    1987-01-01

    Passive heating concepts namely Trombe wall, Water wall and Trans wall have been analysed to obtain overall heat transfer coefficients for average values and for time-dependent variations. The numerical values have been obtained and tabulated for various wall thicknesses.

  18. Mass and Heat Transfer Enhancement of Chemical Heat Pumps

    Institute of Scientific and Technical Information of China (English)

    Gui-PingLin; Xiu-GanYuan

    1993-01-01

    An inert additive,expanded graphit(EG),has been prepared and used to enhance the heat and mass transfer process of chemical heat pumps.The effects of mixing ratio and mixing method on the chemical reaction time are investigated.

  19. Investigation on hydrodynamics and mass transfer characteristics of a gas-liquid ejector using three-dimensional CFD modeling

    Energy Technology Data Exchange (ETDEWEB)

    Utomo, Tony; Jin, Zhenhua; Rahman, MSq; Jeong, Hyo Min; Chung, Han Shik [Gyeongsang National University, Jinju (Korea, Republic of)

    2008-09-15

    An investigation of the gas-liquid ejector has been carried out to study the influence of operating conditions and ejector geometries on the hydrodynamics and mass transfer characteristics of the ejector by using three-dimensional CFD modeling. The CFD results were validated with experimental data. Flow field analysis and prediction of ejector performance were also conducted. Variations of the operating conditions were made by changing the gas-liquid flow rates ratio in the range of 0.2 to 1.2. The length to diameter ratio of mixing tube (L{sub M}/D{sub M}) was also varied from 4 to 10. CFD studies show that at L{sub M}/D{sub M}=5.5, the volumetric mass transfer coefficient increases with respect to gas flow rate. Meanwhile, at L{sub M}/D{sub M}=4, the plot of volumetric mass transfer coefficient to gas-liquid flow rate ratio reaches the maximum at gas-liquid flow rate ratio of 0.6. This study also shows that volumetric mass transfer coefficient decreases with the increase of mixing tube length

  20. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    OpenAIRE

    Giovanni Maria Carlomagno; Luigi de Luca; Gennaro Cardone; Tommaso Astarita

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dy...

  1. Interactive Heat Transfer Simulations for Everyone

    Science.gov (United States)

    Xie, Charles

    2012-01-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

  2. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  3. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  4. Interactive Heat Transfer Simulations for Everyone

    Science.gov (United States)

    Xie, Charles

    2012-01-01

    Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

  5. Theory of periodic conjugate heat transfer

    CERN Document Server

    Zudin, Yuri B

    2016-01-01

    This book presents the theory of periodic conjugate heat transfer in detail. It offers a simplified description of the interaction between a solid body and a fluid as a boundary value problem of the heat conduction equation for the solid body.

  6. Modelling of convective heat and mass transfer in rotating flows

    CERN Document Server

    Shevchuk, Igor V

    2016-01-01

     This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...

  7. Numerical study of forced convective heat transfer around airships

    Science.gov (United States)

    Dai, Qiumin; Fang, Xiande

    2016-02-01

    Forced convective heat transfer is an important factor that affects the thermal characteristics of airships. In this paper, the steady state forced convective heat transfer around an ellipsoid is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic (CFD) software over the extended Re range from 20 to 108 and the aspect ratio from 2 to 4. Based on the regression and optimization with software, a new piecewise correlation of the Nusselt number at constant wall temperature for ellipsoid is proposed, which is suitable for applications to airships and other ellipse shaped bodies such as elliptical balloons. The thermal characteristics of a stratospheric airship in midsummer located in the north hemisphere are numerical studied. The helium temperature predicated using the new correlation is compared to those predicted by correlations applicable for spheres and flat plates. The results show that the helium temperature obtained using the new correlation at noon is about 5.4 K lower than that using the correlation of spheres and about 2.1 K higher than that of flat plates.

  8. Bistable heat transfer in a nanofluid.

    Science.gov (United States)

    Donzelli, Gea; Cerbino, Roberto; Vailati, Alberto

    2009-03-13

    Heat convection in water can be suppressed by adding a small amount of highly thermophilic nanoparticles. We show that such suppression is not effective when a suspension with uniform concentration of nanoparticles is suddenly heated from below. At Rayleigh numbers smaller than a sample dependent threshold Ra;{*} we observe transient oscillatory convection. Unexpectedly, the duration of convection diverges at Ra;{*}. Above Ra;{*} oscillatory convection becomes permanent and the heat transferred exhibits bistability. Our results are explained only partially and qualitatively by existing theories.

  9. Heat transfer in a conical porous cylinder with partial heating

    Science.gov (United States)

    Yunus Khan, T. M.; Anjum Badruddin, Irfan; Quadir, G. A.

    2016-09-01

    The current work simulates the heat transfer across a porous medium fixed in an annular conical cylinder. The geometry is such that the lower part is conical annulus supporting a regular annular cylinder. The porous medium is fixed between inner and outer radius of conical annular cylinder. The inner radius until conical section is heated with constant temperature Th whereas the outer radius is cooled to isothermal temperature Tc such that Th>Tc . The heat transfer phenomenon in this case can be described by two coupled partial differential equations which are solved using finite element method by using 3-node triangular elements. The heat transfer characteristics in this case are quite different from other geometries being discussed in the literature. It is observed that the fluid flow is stronger in the conical section as compared to the cylindrical part of porous geometry. A very few isothermal lines penetrate into the cylindrical porous region as compared to that of conical section.

  10. Heat transfer with freezing and thawing

    CERN Document Server

    Lunardini, VJ

    1991-01-01

    This volume provides a comprehensive overview on the vast amount of literature on solidification heat transfer. Chapter one develops important basic equations and discusses the validity of considering only conductive heat transfer, while ignoring convection, in the large class of materials which make up the porous media. Chapters 2 to 4 deal with problems that can be expressed in plane (Cartesian) coordinates. These problems are further divided into boundary conditions of temperature, prescribed heat flux, and surface convection. Chapter 5 examines some plane geometries involving three-dime

  11. The Principles of Turbulent Heat Transfer

    Science.gov (United States)

    Reichardt, H.

    1957-01-01

    The literature on turbulent heat transfer has in the course of years attained a considerable volume. Since this very complicated problem has not as yet found a complete solution, further studies in this field may be expected. The heat engineer must therefore accomodate himself to a constantly increasing number of theories and formulas. Since the theories generally start from hypothetical assumptions, and since they contain true and false assertions, verified knowledge and pure suppositions often being intermingled in a manner difficult to tell them apart, the specialist had difficulty in forming a correct evaluation of the individual studies. The need therefore arises for a presentation of the problem of turbulent heat transfer which is not initially bound by hypothetical assumptions and in which uninvestigated can be clearly distinguished form each other. Such a presentation will be given in the present treatment. Brief remarks with regard to the development of the theory of local heat transfer are included.

  12. Nanowires for enhanced boiling heat transfer.

    Science.gov (United States)

    Chen, Renkun; Lu, Ming-Chang; Srinivasan, Vinod; Wang, Zhijie; Cho, Hyung Hee; Majumdar, Arun

    2009-02-01

    Boiling is a common mechanism for liquid-vapor phase transition and is widely exploited in power generation and refrigeration devices and systems. The efficacy of boiling heat transfer is characterized by two parameters: (a) heat transfer coefficient (HTC) or the thermal conductance; (b) the critical heat flux (CHF) limit that demarcates the transition from high HTC to very low HTC. While increasing the CHF and the HTC has significant impact on system-level energy efficiency, safety, and cost, their values for water and other heat transfer fluids have essentially remained unchanged for many decades. Here we report that the high surface tension forces offered by liquids in nanowire arrays made of Si and Cu can be exploited to increase both the CHF and the HTC by more than 100%.

  13. Heat transfer in rocket combustion chambers

    Science.gov (United States)

    Anderson, P.; Cheng, G.; Farmer, R.

    1993-01-01

    Complexities of liquid rocket engine heat transfer which involve the injector faceplate and film cooled walls are being investigated by computational analysis. A conjugate heat transfer analysis was used to describe localized heating phenomena associated with particular injector configurations and film coolant flows. These components were analyzed, and the analyses verified when appropriate test data were available. The component analyses are being synthesized into an overall flowfield/heat transfer model. A Navier-Stokes flow solver, the FDNS code, was used to make the analyses. Particular attention was given to the representation of the thermodynamic properties of the fluid streams. Unit flow models of specific coaxial injector elements have been developed and are being used to describe the flame structure near the injector faceplate.

  14. Sensible Heat Transfer during Droplet Cooling: Experimental and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Emanuele Teodori

    2017-06-01

    Full Text Available This study presents the numerical reproduction of the entire surface temperature field resulting from a water droplet spreading on a heated surface, which is compared with experimental data. High-speed infrared thermography of the back side of the surface and high-speed images of the side view of the impinging droplet were used to infer on the solid surface temperature field and on droplet dynamics. Numerical reproduction of the phenomena was performed using OpenFOAM CFD toolbox. An enhanced volume of fluid (VOF model was further modified for this purpose. The proposed modifications include the coupling of temperature fields between the fluid and the solid regions, to account for transient heat conduction within the solid. The results evidence an extremely good agreement between the temporal evolution of the measured and simulated spreading factors of the considered droplet impacts. The numerical and experimental dimensionless surface temperature profiles within the solid surface and along the droplet radius, were also in good agreement. Most of the differences were within the experimental measurements uncertainty. The numerical results allowed relating the solid surface temperature profiles with the fluid flow. During spreading, liquid recirculation within the rim, leads to the appearance of different regions of heat transfer that can be correlated with the vorticity field within the droplet.

  15. CFD Simulation Studies on the Performance of Rectangular Coil Heat Exchanger

    Science.gov (United States)

    Samsudeen, N.; Anantharaman, N.; Raviraj, Pol.

    2010-10-01

    The simulation studies are made to understand the concept of heat transfer by convection in a rectangular coiled type heat exchanger. The rectangular coil heat exchanger consists of inner and outer coil arrangements with several straight portions and bends so that the exterior flow is very similar to flow within tube-bundles. The present work focuses mainly on exploring the various flow pattern and temperature distribution through the pipe. Computer simulation studies were performed for four different angle of tube bundle inclination (0°, 30°, 60°, and 90°) with two set flow arrangements (inline and staggered arrangement) in the shell side of the heat exchanger. The simulation results show that the effect of the tube bundle inclination on the fluid velocity distribution and the heat transfer performance is observed maximum for the coil with tube bundle inclination angle between 30 degrees and 60 degrees with the staggered arrangement than with the inline arrangement due to proper mixing in the shell side and the outside flow over the tube bundle helps to create turbulence without increasing the velocity in the shell side of the heat exchanger.

  16. A heat transfer model of a horizontal ground heat exchanger

    Science.gov (United States)

    Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

    2016-04-01

    Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

  17. Microscale and nanoscale heat transfer fundamentals and engineering applications

    CERN Document Server

    Sobhan, CB

    2008-01-01

    Preface Introduction to Microscale Heat Transfer Microscale Heat Transfer: A Recent Avenue in Energy Transport State of the Art: Some Introductory Remarks Overview of Microscale Transport Phenomena Discussions on Size-Effect Behavior Fundamental Approach for Microscale Heat Transfer Introduction to Engineering Applications of Microscale Heat Transfer Microscale Heat Conduction Review of Conduction Heat Transfer Conduction at the Microscale Space and Timescales Fundamental Approach Thermal Conductivity Boltzmann Equation and Phonon Transport Conduction in Thin Films

  18. Simplified models for heat transfer in rooms

    Science.gov (United States)

    Graca, Guilherme C. C. Carrilho Da

    Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex

  19. Modeling microscale heat transfer using Calore.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  20. Enhancement of heat transfer coefficient multi-metallic nanofluid with ANFIS modeling for thermophysical properties

    Directory of Open Access Journals (Sweden)

    Balla Hyder H.

    2015-01-01

    Full Text Available Cu and Zn-water nanofluid is a suspension of the Cu and Zn nanoparticles with the size 50 nm in the water base fluid for different volume fractions to enhance its Thermophysical properties. The determination and measuring the enhancement of Thermophysical properties depends on many limitations. Nanoparticles were suspended in a base fluid to prepare a nanofluid. A coated transient hot wire apparatus was calibrated after the building of the all systems. The vibro-viscometer was used to measure the dynamic viscosity. The measured dynamic viscosity and thermal conductivity with all parameters affected on the measurements such as base fluids thermal conductivity, volume factions, and the temperatures of the base fluid were used as input to the Artificial Neural Fuzzy inference system to modeling both dynamic viscosity and thermal conductivity of the nanofluids. Then, the ANFIS modeling equations were used to calculate the enhancement in heat transfer coefficient using CFD software. The heat transfer coefficient was determined for flowing flow in a circular pipe at constant heat flux. It was found that the thermal conductivity of the nanofluid was highly affected by the volume fraction of nanoparticles. A comparison of the thermal conductivity ratio for different volume fractions was undertaken. The heat transfer coefficient of nanofluid was found to be higher than its base fluid. Comparisons of convective heat transfer coefficients for Cu and Zn nanofluids with the other correlation for the nanofluids heat transfer enhancement are presented. Moreover, the flow demonstrates anomalous enhancement in heat transfer nanofluids.

  1. A validated CFD model to predict O₂ and CO₂ transfer within hollow fiber membrane oxygenators.

    Science.gov (United States)

    Hormes, Marcus; Borchardt, Ralf; Mager, Ilona; Rode, Thomas Schmitz; Behr, Marek; Steinseifer, Ulrich

    2011-03-01

    Hollow fiber oxygenators provide gas exchange to and from the blood during heart surgery or lung recovery. Minimal fiber surface area and optimal gas exchange rate may be achieved by optimization of hollow fiber shape and orientation (1). In this study, a modified CFD model is developed and validated with a specially developed micro membrane oxygenator (MicroMox). The MicroMox was designed in such a way that fiber arrangement and bundle geometry are highly reproducible and potential flow channeling is avoided, which is important for the validation. Its small size (V(Fluid)=0.04 mL) allows the simulation of the entire bundle of 120 fibers. A non-Newtonian blood model was used as simulation fluid. Physical solubility and chemical bond of O₂ and CO₂ in blood was represented by the numerical model. Constant oxygen partial pressure at the pores of the fibers and a steady state flow field was used to calculate the mass transport. In order to resolve the entire MicroMox fiber bundle, the mass transport was simulated for symmetric geometry sections in flow direction. In vitro validation was achieved by measurements of the gas transfer rates of the MicroMox. All measurements were performed according to DIN EN 12022 (2) using porcine blood. The numerical simulation of the mass transfer showed good agreement with the experimental data for different mass flows and constant inlet partial pressures. Good agreement could be achieved for two different fiber configurations. Thus, it was possible to establish a validated model for the prediction of gas exchange in hollow fiber oxygenators.

  2. Numerical Investigation of the Fully-Developed Periodic Flow Field for Optimal Heat Transfer in Spirally Corrugated Tubes

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim

    Even though the corrugated tube is a widely used technique to enhance transfer heat, the exact heat transfer enhancing mechanism remains relatively un-documented. Most studies attribute the favourable heat transfer characteristics to a swirling flow being present at higher corrugation....... In this study, a systematic approach relying on Computational Fluid Dynamics (CFD) is used to study and compare the heat transfer characteristics with the detailed flow field in the spirally corrugated tubes. By comparing the flow in 12 different spirally corrugated tubes at a fixed Reynolds number of 5000......, this study compares the flow field with the surface averaged Nusselt number to gain valuable insight into which flow phenomena causes favourable heat transfer characteristics. While the flow at low corrugations approximates the non-corrugated tube, higher corrugations of h/D creates a significant tangential...

  3. Development of colburn ` j' factor and fanning friction factor ` f' correlations for compact heat exchanger plain fins by using CFD

    Science.gov (United States)

    Bala Sundar Rao, R.; Ranganath, G.; Ranganayakulu, C.

    2013-07-01

    A numerical model has been developed for plain fin of plate fin heat exchanger. Plain fin performance has been analyzed with the help of CFD by changing the various parameters of the fin, Colburn ` j' and fanning friction ` f' factors are calculated. These values compared with the standard values. The correlations have been developed between Reynolds number Re, fin height h, fin thickness t, fin spacing s, Colburn factor ` j' and friction factor ` f'.

  4. Heat transfer in suspensions of rigid particles

    Science.gov (United States)

    Brandt, Luca; Niazi Ardekani, Mehdi; Abouali, Omid

    2016-11-01

    We study the heat transfer in laminar Couette flow of suspensions of rigid neutrally buoyant particles by means of numerical simulations. An Immersed Boundary Method is coupled with a VOF approach to simulate the heat transfer in the fluid and solid phase, enabling us to fully resolve the heat diffusion. First, we consider spherical particles and show that the proposed algorithm is able to reproduce the correlations between heat flux across the channel, the particle volume fraction and the heat diffusivity obtained in laboratory experiments and recently proposed in the literature, results valid in the limit of vanishing inertia. We then investigate the role of inertia on the heat transfer and show an increase of the suspension diffusivity at finite particle Reynolds numbers. Finally, we vary the relativity diffusivity of the fluid and solid phase and investigate its effect on the effective heat flux across the channel. The data are analyzed by considering the ensemble averaged energy equation and decomposing the heat flux in 4 different contributions, related to diffusion in the solid and fluid phase, and the correlations between wall-normal velocity and temperature fluctuations. Results for non-spherical particles will be examined before the meeting. Supported by the European Research Council Grant No. ERC-2013- CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing).

  5. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  6. TO DEDUCTION OF MASS FLOW RATE FOR HELICAL HEAT EXCHANGER AT MULTIPLE CROSS-SECTIONS USING CFD

    OpenAIRE

    Surendra Kumar Vishwakarma*, Sanjay Kumbhare, K.K. Thakur

    2016-01-01

    Enhancing the heat transfer by the use of helical coils has been studied and researched by many researchers, because the fluid dynamics inside the pipes of a helical coil heat exchanger offer certain advantages over the straight tubes, shell and tube type heat exchanger, in terms of better heat transfer and mass transfer coefficients. Various configurations of coil structure are possible, and the configuration in which there is a series of vertically stacked helically coiled tubes is the most...

  7. Comparison of heat transfer efficiency between heat pipe and tube bundles heat exchanger

    Directory of Open Access Journals (Sweden)

    Wu Zhao-Chun

    2015-01-01

    Full Text Available A comparison of heat transfer efficiency between the heat pipe and tube bundles heat exchanger is made based on heat transfer principle and the analysis of thermal characteristics. This paper argues that although heat pipe has the feature of high axial thermal conductivity, to those cases where this special function of heat transfer is unnecessary, heat pipe exchanger is not a high efficient heat exchanger when it is just used as a conventional heat exchanger in the industrial fields. In turn, there are some deficiencies for heat pipe exchanger, such as complicated manufacturing process, critical requirements for manufacturing materials, etc. which leads to a higher cost in comparison to a tubular heat exchanger. Nonetheless, due to its diverse structural features and extraordinary properties, heat pipe exchanger still has wide applications on special occasions.

  8. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Hun [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); No, Hee Cheon [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)], E-mail: hcno@kaist.ac.kr; Lee, Jeong Ik; Jeon, Byong Guk [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2009-11-15

    The thermal-hydraulic performance of the PCHE was investigated using the KAIST helium test loop. Experiments were performed in the helium laminar region with 350 < Re < 1200. The hot/cold side inlet conditions were 25-550 {sup o}C/25-100 {sup o}C over the operating pressure of 1.5-1.9 MPa, respectively. Mass flow rates were controlled in the range of 40-100 kg/h. Pressure drop and temperature difference were measured at the inlet and outlet of the hot and cold sides. A global Fanning factor correlation and a global Nusselt number correlation were proposed using information only at the inlet and outlet of the hot and cold sides. A three-dimensional (3-D) numerical simulation was performed using FLUENT, a commercial computational fluid dynamics (CFD) code, to compare simulation results to the KAIST helium test data and to obtain the local Nusselt number in the PCHE. CFD predictions showed good agreement with experimental data. A local pitch-averaged Nusselt number correlation was proposed using local temperature, pressure, surface heat fluxes, and properties provided by CFD simulations. The system analysis code, GAMMA, was also utilized to identify which correlation was more applicable for system analysis. It turns out that the proposed local pitch-averaged Nusselt number correlation from CFD simulations is more appropriate than the global Nusselt number correlation developed from experimental data.

  9. Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles

    Science.gov (United States)

    1993-01-01

    A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.

  10. Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.

    2000-08-02

    A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.

  11. Numerical Prediction of Heat Transfer Characteristics of Nanofluids in a Minichannel Flow

    Directory of Open Access Journals (Sweden)

    Arjumand Adil

    2014-01-01

    Full Text Available CFD simulation of the heat transfer and pressure drop characteristics of different nanofluids in a minichannel flow has been explained using FLUENT version 6.3.26. Different nanofluids with nanoparticles of Al2O3, CuO, SiO2, and TiO2 have been used in the simulation process. A comparison of the experimental and computational results has been made for the heat transfer and pressure drop characteristics for the case of Al2O3-water nanofluid for the laminar flow. Also, computations have been made by considering Brownian motion as well as without considering Brownian motion of the nanoparticles. After verification of the computational model with the experimental results for Al2O3-water nanofluid, the simulations were performed for the same experimental readings for different nanofluids in the laminar flow regime to find out the heat transfer and pressure drop characteristics.

  12. Heat transfer law in leaching dump

    Institute of Scientific and Technical Information of China (English)

    WU Ai-xiang; WANG Hong-jiang; XI Yong; YANG Bao-hua; LI Jian-feng; YIN Sheng-hua; ZHA Ke-bing

    2005-01-01

    Based on the law of temperature changes in the leaching dump and the forming process of heat flux, the basic balance equation of heat flow in dump was established, the dissipated heat flow from dump to the atmosphere was analyzed to estimate the surface temperature of the ore particle in dump and discover the law of forced heat convection of heat flow transfer in dump. And the lixiviate flow formula taking a certain heat flow out of dump was deduced by using the inversion method. Through theoretic analysis, combining Dexing copper mine heap leaching production practice, the results show that the heat flow of chalcopyrite leaching emitted is not so great, but the heat flow of pyrite leaching and sulphur oxidation produced take up a higher proportion of total heat flow; the dissipated heat flow takes up a lower proportion, and most of heat flow is absorbed by itself, thus the inside temperature rises gradually; and the saturation flow form for leaching is adopted, which makes the lixiviate seepage in the transitional flow or even in the turbulent flow, so as to accelerate the heat flow diffusing and keep the leaching dump temperature suitable for bacteria living.

  13. Heat Transfer Mechanisms and Clustering in Nanofluids

    Directory of Open Access Journals (Sweden)

    Kaufui V. Wong

    2010-01-01

    Full Text Available This paper surveys heat transfer in nanofluids. It summarizes and analyzes the theories regarding heat transfer mechanisms in nanofluids, and it discusses the effects of clustering on thermal conductivity. The heat transfer associated with conduction is presented through various experiments followed by a discussion of the theories developed. Relationships between thermal conductivity and various factors such as temperature, concentration, and particle size are also displayed along with a discussion on clustering. There is a brief discussion on convection where the number of studies is limited. There is research currently being performed on the manipulation of the properties governing the thermal conductivity of nanofluids—the particle size, shape, and surface area. Other factors that affect heat transfer are the material of the nanoparticle, particle volume concentration, and the fluid used. Although the interest in this relatively new class of fluids has generated many experimental studies, there is still disagreement over several aspects of heat transfer in nanofluids, primarily concerning the mechanisms behind the increased thermal conductivity. Although nanoparticles have greatly decreased the risks, there is still evidence of unwanted agglomeration which causes erosion and affect the overall conductivity. Research is currently being conducted to determine how to minimize this unwanted clustering.

  14. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  15. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  16. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  17. Computer fluid dynamics (CFD) study of a plate heat exchanger working with nanofluids

    Science.gov (United States)

    Stan, Liviu-Constantin; Cǎlimǎnescu, Ioan

    2016-12-01

    The industry fosters many types of heat exchangers such double pipe or plate heat exchangers (HX), but lately the plate HX are gaining the high ground in many applications. Such a plate HX is made out of serial plate modules packed together allowing the warm and cold fluids to pass through and exchange the heat. The paper is demonstrating the functioning of a medium sized plate HX functioning with 10% Al2O3 and water nanofluids flowing in both cold and warm sides of the HX. The influence of the nanofluid properties will be investigated as impact upon the outlet temperature of the fluid leaving the HX. Using the RSM methodology. The main conclusion of this study is that there is a balance between the nanofluids increased conductivity and their increased viscosity. The nanofluids are working well for those applications where the flow is not impeded by narrow fluid passages where the bigger influence of the viscosity is actually worsening the heat transfer conditions instead of increasing it, since the influence of viscosity in that kind of applications is three time bigger. A nanofluid conductivity threshold was also detected over which the nanofluids say with 15$ or 20% alumina content is useless for the overall heat transfer conditions.

  18. Numerical and experimental investigation of enhancement of heat transfer in dimpled rib heat exchanger tube

    Science.gov (United States)

    Kumar, Anil; Maithani, Rajesh; Suri, Amar Raj Singh

    2017-06-01

    In this study, numerical and experimental investigation has been carried out for a range of system and operating parameters in order to analyse the effect of dimpled rib on heat and fluid flow behaviours in heat exchanger tube. Tube has, stream wise spacing (x/d d ) range of 15-35, span wise spacing (y/d d ) range of 15-35, ratio of dimpled depth to print diameter (e/d d ) of 1.0 and Reynolds number (Re n ) ranges from 4000 to 28,000. Simulations were carried out to obtain heat and fluid flow behaviour of smooth and rough tube, using commercial CFD software, ANSYS 16.0 (Fluent). Renormalization k - ɛ model was employed to assess the influence of dimpled on turbulent flow and velocity field. Simulation results show that, the enhancement of 3.18 times in heat transfer and 2.87 times enhancement in thermal hydraulic performance as a function of stream wise direction (x/d d ) of 15 and span wise direction (y/d d ) of 15 respectively. Comparison between numerical and experimental simulation results showed that good agreement as the data fell within ±10% error band.

  19. Electromagnetic Heat Transfer in Artificial Materials

    Science.gov (United States)

    Woods, Lilia; Drosdoff, David; Phan, Anh

    2014-03-01

    Electromagnetic energy exchange has found promising new opportunities by greatly enhancing the heat transfer between bodies via radiation in the near-field regime. The greatest heat transfer occurs when the bodies support surface plasmons or polaritons that share the same resonant frequency. It has been shown, however, that 2-D materials such as graphene can have their surface plasmons tuned by modifying the chemical potential and temperature. This allows for tuning its resonance with other systems. In this talk, we investigated the electromagnetic radiation in metamaterials characterized by a strong magnetic response. We study theoretically Pendry-like and magnetically active metamaterial/graphene composites. The possibility for enhancing or inhibiting the heat transfer via the graphene properties is investigated.

  20. Evaporative heat transfer in beds of sensible heat pellets

    Energy Technology Data Exchange (ETDEWEB)

    Arimilli, R.V.; Moy, C.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1989-03-01

    An experimental study of boiling/evaporative heat transfer from heated spheres in vertical packed beds with downward liquid-vapor flow of Refrigerant-113 was conducted. Surface superheats of 1 to 50{degrees}C, mass flow rates of 1.7 to 5.6 Kg/min, sphere diameters of 1.59 and 2.54 cm, quality (i.e., mass fraction of vapor) of the inlet flow of 0.02 to 1.0, and two surface conditions were considered. Instrumented smooth and rough aluminum spheres were used to measure the heat transfer coefficients under steady state conditions. Heat transfer coefficients were independently determined for each sphere at three values three values of surface superheat. The quantitative results of this extensive experimental study are successfully correlated. The correlation equation for the boiling heat transfer coefficients is presented in terms of a homogeneous model. The correlation may be used in the development of numerical models to simulate the transient thermal performance of packed bed thermal energy storage unit while operating as an evaporator. The boiling of the liquid-vapor flow around the spheres in the packed bed was visually observed with a fiber-optic baroscope and recorded on a videotape. The visualization results showed qualitatively the presence of four distinct flow regimes. One of these occurs under saturated inlet conditions and are referred to as the Low-quality, Medium-quality, and High-quality Regimes. The regimes are discussed in detail in this paper.

  1. CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe

    Science.gov (United States)

    Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin

    2017-08-01

    In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.

  2. Coupled Seepage and Heat Transfer Intake Model

    Institute of Scientific and Technical Information of China (English)

    WU Junhua; YOU Shijun; ZHANG Huan; LI Haishan

    2009-01-01

    In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water temperature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.

  3. Heat transfer applications for the practicing engineer

    CERN Document Server

    Theodore, Louis

    2011-01-01

    This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu

  4. Low-temperature heat transfer in nanowires.

    Science.gov (United States)

    Glavin, B A

    2001-05-07

    A new regime of low-temperature heat transfer in suspended nanowires is predicted. It takes place when (i) only "acoustic" phonon modes of the wire are thermally populated and (ii) phonons are subject to the effective elastic scattering. Qualitatively, the main peculiarities of heat transfer originate due to the appearance of the flexural modes with high density of states in the wire phonon spectrum. They give rise to the T(1/2) temperature dependence of the wire thermal conductance. Experimental situations where the new regime is likely to be detected are discussed.

  5. Convective heat transfer during dendritic growth

    Science.gov (United States)

    Glicksman, M. E.; Huang, S. C.

    1979-01-01

    Axial growth rate measurements were carried out at 17 levels of supercooling between 0.043 C and 2 C, a temperature range in which convection, instead of diffusion, becomes the controlling mechanism of heat transfer in the dentritic growth process. The growth velocity, normalized to that expected for pure diffusive heat transfer, displays a dependence on orientation. The ratio of the observed growth velocity to that for convection-free growth and the coefficients of supercooling are formulated. The dependence of normalized growth rate in supercooling is described for downward growing dendrites. These experimental correlations can be justified theoretically only to a limited extent.

  6. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  7. Experimental determination of stator endwall heat transfer

    Science.gov (United States)

    Boyle, Robert J.; Russell, Louis M.

    1989-01-01

    Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane possage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Resutls were obtained for Reynolds numbers based on inlet velocity and axial chord between 75,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

  8. Natural convective heat transfer from square cylinder

    Science.gov (United States)

    Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej

    2016-06-01

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable

  9. CFD Simulation of Hydrodynamic and Thermal Performance of a Micro Heat Exchanger Simulation numérique par CFD de l’hydrodynamique et des performances thermiques d’un micro échangeur de chaleur

    Directory of Open Access Journals (Sweden)

    Nastoll W.

    2010-10-01

    Full Text Available To evaluate the performances and limitations of compact heat exchanger with micro-structured plates, CFD simulations of hydrodynamics and thermal transfers have been performed inside a commercial micro heat exchanger from IMM operated in liquid/liquid flows. The hydrodynamic results show that the flow rate distribution over the plates is rather homogeneous with some velocity gradient at the channel inlet due to inertial effect in the distributor. Fluid temperature profiles are both influenced by convective transfer in the channels and in the distributing/collecting sections and by conductive transfer through the metal wall at the plate periphery especially at low flow rates. Due to undesired heat transfer by conduction, the fraction of heat power really transferred inside the channels varies from 75 to 85% in counter current flow configuration and between 35 and 70% in co-current flow configuration. Computational results are successfully compared to 2D experimental temperature profiles measured inside the heat exchanger. Pour évaluer les performances et les limitations d’un échangeur thermique compact composé de plaques micro-structurées, des simulations CFD de l’hydrodynamique et des transferts thermiques ont été effectués en écoulement liquide/liquide pour un micro-échangeur commercialisé par l’IMM. Les résultats de la simulation hydrodynamique montrent que la distribution des flux de l’écoulement liquide est plutôt homogène avec quelques gradients de vitesses à l’entrée des canaux à cause d’effets inertiels dans le distributeur. Les profils de température sont influencés à la fois par les transferts thermiques par convection dans les canaux et dans les zones de distribution et de collecte de l’écoulement et également par les transferts par conduction aux travers des parois métalliques situées entre les canaux et à la périphérie de la zone micro-structurée, en particulier pour les faibles d

  10. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  11. Heat flux sensors for infrared thermography in convective heat transfer.

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-11-07

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  12. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  13. Topology optimization for transient heat transfer problems

    DEFF Research Database (Denmark)

    Zeidan, Said; Sigmund, Ole; Lazarov, Boyan Stefanov

    The focus of this work is on passive control of transient heat transfer problems using the topology optimization (TopOpt) method [1]. The goal is to find distributions of a limited amount of phase change material (PCM), within a given design domain, which optimizes the heat energy storage [2]. Our......, TopOpt has later been extended to transient problems in mechanics and photonics (e.g. [5], [6] and [7]). In the presented approach, the optimization is gradient-based, where in each iteration the non-steady heat conduction equation is solved,using the finite element method and an appropriate time...

  14. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer.

    Science.gov (United States)

    Loh, Byoung-Gook; Hyun, Sinjae; Ro, Paul I; Kleinstreuer, Clement

    2002-02-01

    Acoustic streaming induced by ultrasonic flexural vibrations and the associated convection enhancement are investigated. Acoustic streaming pattern, streaming velocity, and associated heat transfer characteristics are experimentally observed. Moreover, analytical analysis based on Nyborg's formulation is performed along with computational fluid dynamics (CFD) simulation using a numerical solver CFX 4.3. Two distinctive acoustic streaming patterns in half-wavelength of the flexural vibrations are observed, which agree well with the theory. However, acoustic streaming velocities obtained from CFD simulation, based on the incompressible flow assumption, exceed the theoretically estimated velocity by a factor ranging from 10 to 100, depending upon the location along the beam. Both CFD simulation and analytical analysis reveal that the acoustic streaming velocity is proportional to the square of the vibration amplitude and the wavelength of the vibrating beam that decreases with the excitation frequency. It is observed that the streaming velocity decreases with the excitation frequency. Also, with an open-ended channel, a substantial increase in streaming velocity is observed from CFD simulations. Using acoustic streaming, a temperature drop of 40 degrees C with a vibration amplitude of 25 microm at 28.4 kHz is experimentally achieved.

  15. Heat transfer interface between a high temperature heat source and a heat sink

    Energy Technology Data Exchange (ETDEWEB)

    du Pre, F.K.; Jaspers, H.A.

    1977-10-11

    A heat-transfer interface between and separating a high temperature heat source and a heat sink is formed by the adjacent walls of the heat source and heat sink with a thin gap between these walls and helium gas sealed in the gap, the walls preferably defining concentric hemispheres; this interface being particularly feasible as separable walls of the heater portion of a Stirling engine and a heat source.

  16. Heat Transfer Coefficient Measurement for Downward Facing Flow Boiling Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jun Yeong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    To evaluate heat transfer capability of the ERVC, estimating heat transfer coefficient (HTC) is important. In this study, the HTCs were experimentally measured, and large break loss of coolant accident (LLOCA) was used as basic accident. At the lower head outer wall, heat transfer phenomenon was downward facing flow boiling heat transfer. Because, natural circulation occurred. Hence, to simulate the flow boiling, water loop was designed. The reactor vessel lower head was simulated as 2-D slice main heater. To simulate the heat transfer characteristics of material and geometry, the main heater was made of SA508 consisting the reactor vessel, and its radius curvature was 2.5 m. The main heater outer surface (facing to air) temperature was measured by infrared (IR) camera, and the inner surface (facing to working fluid) temperature was calculated by solving conduction equation of main heater. The main heater heat flux was under CHF value of previous research. The results of 60 .deg. and 90 .deg. were used as representative angular location data. LLOCA was used as basic accident. Through this experiment, the HTC data was produced for SA508 heat transfer surface material and 2.5 m of radius curvature. The HTCs result shown different trend at each angular location. The HTCs commonly increased with heat flux increment, but the trends were different for angular location.

  17. High-temperature thermocline TES combining sensible and latent heat - CFD modeling and experimental validation

    Science.gov (United States)

    Zavattoni, Simone A.; Geissbühler, Lukas; Barbato, Maurizio C.; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo

    2017-06-01

    The concept of combined sensible/latent heat thermal energy storage (TES) has been exploited to mitigate an intrinsic thermocline TES systems drawback of heat transfer fluid outflow temperature reduction during discharging. In this study, the combined sensible/latent TES prototype under investigation is constituted by a packed bed of rocks and a small amount of encapsulated phase change material (AlSi12) as sensible heat and latent heat sections respectively. The thermo-fluid dynamics behavior of the combined TES prototype was analyzed by means of a computational fluid dynamics approach. Due to the small value of the characteristic vessel-to-particles diameter ratio, the effect of radial void-fraction variation, also known as channeling, was accounted for. Both the sensible and the latent heat sections of the storage were modeled as porous media under the assumption of local thermal non-equilibrium (LTNE). The commercial code ANSYS Fluent 15.0 was used to solve the model's constitutive conservation and transport equations obtaining a fairly good agreement with reference experimental measurements.

  18. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    Science.gov (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  19. Endwall convective heat transfer for bluff bodies

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2012-01-01

    The endwall heat transfer characteristics of forced flow past bluff bodies have been investigated using liquid crystal thermography (LCT). The bluff body is placed in a rectangular channel with both its ends attached to the endwalls. The Reynolds number varies from 50,000 to 100,000. In this study...

  20. In-Cylinder Heat Transfer Modelling

    Directory of Open Access Journals (Sweden)

    Žák Zdeněk

    2016-12-01

    Full Text Available The goal of the paper is to discuss specific features of the in-cylinder heat transfer calculation based on widely used empirical formulas. The potential of in-house codes compared with commercially available software packages is presented. The principles of user models in the GT-SUITE environment are also explained. The results of calibrated models are briefly discussed.

  1. Heat Transfer and Thermodynamics: a Compilation

    Science.gov (United States)

    1974-01-01

    A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Studies include theories and mechanical considerations in the transfer of heat and the thermodynamic properties of matter and the causes and effects of certain interactions.

  2. Determination of the convective heat transfer coefficient

    NARCIS (Netherlands)

    Spierings, D.; Bosman, F.; Peters, T.; Plasschaert, F.

    1987-01-01

    The value of the convective heat transfer coefficient (htc) is determined under different loading conditions by using a computer aided method. The thermal load has been applied mathematically as well as experimentally to the coronal surface of an axisymmetric tooth model. To verify the assumptions m

  3. Heat transfer variations of bicycle helmets.

    Science.gov (United States)

    Brühwiler, P A; Buyan, M; Huber, R; Bogerd, C P; Sznitman, J; Graf, S F; Rösgen, T

    2006-09-01

    Bicycle helmets exhibit complex structures so as to combine impact protection with ventilation. A quantitative experimental measure of the state of the art and variations therein is a first step towards establishing principles of bicycle helmet ventilation. A thermal headform mounted in a climate-regulated wind tunnel was used to study the ventilation efficiency of 24 bicycle helmets at two wind speeds. Flow visualization in a water tunnel with a second headform demonstrated the flow patterns involved. The influence of design details such as channel length and vent placement was studied, as well as the impact of hair. Differences in heat transfer among the helmets of up to 30% (scalp) and 10% (face) were observed, with the nude headform showing the highest values. On occasion, a negative role of some vents for forced convection was demonstrated. A weak correlation was found between the projected vent cross-section and heat transfer variations when changing the head tilt angle. A simple analytical model is introduced that facilitates the understanding of forced convection phenomena. A weak correlation between exposed scalp area and heat transfer was deduced. Adding a wig reduces the heat transfer by approximately a factor of 8 in the scalp region and up to one-third for the rest of the head for a selection of the best ventilated helmets. The results suggest that there is significant optimization potential within the basic helmet structure represented in modern bicycle helmets.

  4. Free convection film flows and heat transfer

    CERN Document Server

    Shang, Deyi

    2010-01-01

    Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.

  5. Conjugate problems in convective heat transfer

    CERN Document Server

    Dorfman, Abram S

    2009-01-01

    The conjugate heat transfer (CHT) problem takes into account the thermal interaction between a body and fluid flowing over or through it, a key consideration in both mechanical and aerospace engineering. Presenting more than 100 solutions of non-isothermal and CHT problems, this title considers the approximate solutions of CHT problems.

  6. Determination of the convective heat transfer coefficient

    NARCIS (Netherlands)

    Spierings, D.; Bosman, F.; Peters, T.; Plasschaert, F.

    1987-01-01

    The value of the convective heat transfer coefficient (htc) is determined under different loading conditions by using a computer aided method. The thermal load has been applied mathematically as well as experimentally to the coronal surface of an axisymmetric tooth model. To verify the assumptions m

  7. Forced Convection Heat Transfer in Circular Pipes

    Science.gov (United States)

    Tosun, Ismail

    2007-01-01

    One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

  8. Convective heat transfer of nanofluids with correlations

    Institute of Scientific and Technical Information of China (English)

    Lazarus Godson Asirvatham; Balakrishnan Raja; Dhasan Mohan Lal; Somchai Wongwises

    2011-01-01

    To investigate the convective heat transfer of nanofluids,experiments were performed using silver-water nanofluids under laminar,transition and turbulent flow regimes in a horizontal 4.3 mm inner-diameter tube-in-tube counter-current heat transfer test section.The volume concentration of the nanoparticles varied from 0.3% to 0.9% in steps of 0.3%,and the effects of thermo-physical properties,inlet temperature,volume concentration,and mass flow rate on heat transfer coefficient were investigated.Experiments showed that the suspended nanoparticles remarkably increased the convective heat transfer coefficient,by as much as 28.7% and 69.3% for 0.3% and 0.9% of silver content,respectively.Based on the experimental results a correlation was developed to predict the Nusselt number of the silver-water nanofluid,with ±10% agreement between experiments and prediction.

  9. Heat Transfer Analysis of Fin Tube

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Cheng-Ryul [ELSOLTEC Co., Yongin (Korea, Republic of)

    2015-10-15

    This paper describes a preliminary numerical analysis of fin tube used for a heat exchanger of the air-water cooling system. The internal flow in a fin tube is steam and the external of the fin is cooled by air. Cooling system in a nuclear power plant can be divided into two categories; 1) active pump driven system powered by alternating current and 2) passive cooling system drived by natural circulation phenomena. After the accident in Hukushima Nuclear Power Plants, the importance of the passive cooling system that can provide a long-term cooling of reactor decay heat during station blackout condition is emphasized. However, the effectiveness of passive cooling system based on cooling water is limited by the capacity of water storage tank. To overcome the limit due to the exhaustion of the cooling water, an natural convection air cooling system is proposed. As the air operated cooling system utilizes natural circulation phenomena of air, it does not require cooling water. However, the heat transfer area of the air operated cooling system should be increased much as the heat removal capacity per unit area is much lower than that of water cooling system. The air-water combined cooling system can resolve this excess increase of the heat transfer area in the air operated cooling system. This air-water cooling system can be also used in the passive containment cooling system. The effect of design parameters such as fin tube arrangement, the fin height, and pitch has been analyzed and the chimney effect on the simulation of heat transfer in a heat exchanger is evaluated. The internal flows in a fin tube heat exchanger for natural circulation flow condition and forced convection (suction) condition were investigated.

  10. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  11. Enhanced heat transfer in confined pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Rops, C.M. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands)], E-mail: cor.rops@tno.nl; Lindken, R. [Laboratory for Aero and Hydrodynamics, Delft University of Technology (Netherlands); Velthuis, J.F.M. [TNO Science and Industry, P.O. Box 155, 2600 AD Delft (Netherlands); Westerweel, J. [Laboratory for Aero and Hydrodynamics, Delft University of Technology (Netherlands)

    2009-08-15

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found that a reduction of the pool diameter leads to an enhancement of the nucleate boiling heat flux for most of the boiling curve. Our experimental results indicate that this enhancement is not affected by the depth of the boiling pot, the material of the bounding wall, or the diameter of the inlet water supply. High-speed camera imaging shows that the heat transfer enhancement for the spatially confined pool boiling occurs in conjunction with a stable circulating flow, which is in contrast to the chaotic and mainly upward motion for boiling in larger pool diameters. An explanation for the enhancement of the heat transfer and the associated change in flow pattern is found in the singularisation of the nucleate boiling process.

  12. Heat transfer in high density electronics packaging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to get an insight into the thermal characteristic and to evaluate the thermal reliability of the "System in Packaging"(SIP), a new solution of electronics packaging, a heat transfer model of SIP was developed to predict the heat dissipation capacity and to investigate the effect of different factors on the temperature distribution in the electronics. The affecting parameters under consideration include the thermophysical properties of the substrates, the coefficient of convection heat transfer, the thickness of the chip, and the density of power dissipation. ALGOR, a kind of finite element analysis software,was used to do the model simulation. Based on the sinulation and analysis of the heat conduction and convection resistance, criteria for the thermal design were established and possible measurement for enhancing power dissipation was provided, The results show that the heat transfer model provides a new and effective way to the thermal design and thermal analysis of SIP and to the mechanical analysis for the further investigation of SIP.

  13. CFD and thermal analysis applications at General Motors

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.P. [General Motors Corp., Warren, Michigan (United States)

    2002-07-01

    The presentation will include a brief history of the growth of CFD and thermal analysis in GM's vehicle program divisions. Its relationship to the underlying computer infrastructure will be sketched. Application results will be presented for calculations in aerodynamics, flow through heat exchangers, engine compartment thermal studies, HVAC systems and others. Current technical challenges will be outlined including grid generation, turbulence modeling, heat transfer, and solution algorithms. The introduction of CFD and heat transfer results into Virtual Vehicle Reviews, and its potential impact on a company's CAE infrastructure will be noted. Finally, some broad comments will be made on the management of CFD and heat transfer technology across a global corporate enterprise. (author)

  14. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  15. Numerical study of heat transfer characteristics in BOG heat exchanger

    Science.gov (United States)

    Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

    2016-12-01

    In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

  16. Some stakes in heat transfer; Quelques enjeux en transferts thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Saulnier, J.B. [Ecole Nationale Superieure de Mecanique et d`Aerotechnique (ENSMA), 86 - Poitiers (France). Laboratoire d`Etudes Thermiques (LET)

    1998-10-01

    Heat transfer is strongly involved in many scientific and technologic domains and the French heat transfer laboratories and networks cooperating is this field are first located. The analysis of the main industrial activities demanding heat transfer competence helps on first to identify some up-to-date technological challenges. It appears clearly that connections are to be reinforced between disciplines like heat transfer, fluid mechanics, combustion, material science, optics, biology... Scientific objectives are then scanned through, by spitting the research activities between mature topics (radiation, particularly in semi-transparent media; convection and thermo-convective instabilities; heat transfer in porous media...), emerging (heat transfer with change of phase, convective heat transfer enhancement by active control in the boundary layer, inverse techniques...) and incipient ones. Among some promising new topics, let us mention microscale heat transfer, and also bio-heat transfer. (authors)

  17. Modelling of fluid flow and heat transfer in a reciprocating compressor

    Science.gov (United States)

    Tuhovcak, J.; Hejcik, J.; Jicha, M.

    2015-08-01

    Efficiency of reciprocating compressor is strongly dependent on several parameters. The most important are valve behaviour and heat transfer. Valves affect the flow through the suction and discharge line. Heat flow from the walls to working fluid increases the work of the cycle. Understanding of these phenomena inside the compressor is a necessary step in the development process. Commercial CFD tools offer wide range of opportunities how to simulate the flow inside the reciprocating compressor nowadays, however they are too demanding in terms of computational time and mesh creation. Several approaches using various correlation equation exist to describe the heat transfer inside the cylinder, however none of them was validated by measurements due to the complicated settings. The goal of this paper is to show a comparison between these correlations using in-house code based on energy balance through the cycle.

  18. Coupling Between Turbulent Boundary Layer and Radiative Heat Transfer Under Engine-Relevant Conditions

    Science.gov (United States)

    Sircar, A.; Paul, C.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.

    2016-11-01

    The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive CFD models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating conditions typical of heavy-duty CI engines, radiative emission can be as high as 40% of the wall heat losses, that molecular gas radiation can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number. NSF, DOE.

  19. Heat transfer characteristics of d-mannitol as a phase change material for a medium thermal energy system

    Science.gov (United States)

    Shibahara, Makoto; Liu, Qiusheng; Fukuda, Katsuya

    2016-09-01

    Melting process and heat transfer characteristics of d-mannitol were investigated experimentally and numerically to construct a fundamental database of the waste heat recovery systems for ships. d-Mannitol which has relatively high latent heat was selected in this study as a phase-change material for medium thermal energy storage. Experimental results indicate that the melting temperature and latent heat of d-mannitol were affected by the heating rate. The weight of d-mannitol did not decrease with the increase in temperature between 436 and 455 K. Moreover, numerical simulation was conducted using the commercial CFD code, ANSYS FLUENT. On the basis of the numerical simulation, melting process was affected by natural convection at the inner wall. As the heat flux of the cartridge heater input came from the inner wall, the liquid fraction increased from the inner wall to the outer wall through natural convection. The numerical result was compared with the experimental data. The temperature of the numerical simulation was approximately consistent with the experimental data. Moreover, the local heat transfer coefficients at the heater surface were calculated by the result of the numerical simulation. The heat transfer coefficients decreased during the phase change. It was considered that the heat transfer process changed from conductive heat transfer of solid state to natural convection heat transfer of liquid state as the liquid fraction increased with time.

  20. Intensification of Convective Heat Transfer in Heating Device of Mobile Heating System with BH-Heat Generator

    Directory of Open Access Journals (Sweden)

    N. Nesenchuk

    2013-01-01

    Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated  in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following  evaluation results of  heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.

  1. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected

  2. CFD modelling of longwall goaf gas flow to improve gas capture and prevent goaf self-heating

    Institute of Scientific and Technical Information of China (English)

    REN Ting-xiang

    2009-01-01

    CFD models have been developed to investigate the Iongwall goaf gas flow pat-terns under different mining and geological control conditions. The Iongwall goaf was treated as porous regions and gas flow was modelled as a momentum sink added to the momentum equation. Gas desorption from the caved goaf and destressed coal seams within the mining disturbed area was modelled as additional mass sources in the continu-ity equation. These CFD models were developed according to specific Iongwall layouts and calibrated against field monitoring data. Two case studies were presented demon-strating the application of CFD modelling of goaf gas flow characteristics for improved goaf gas capture and the reduction of oxygen ingress into the goaf areas for self-heating pre-vention. Results from the case studies indicate that the optimum goaf drainage strategy would be a combination of shallow (near the face) and deep holes to improve the overall drainage efficiency and gas purity. For gassy longwall faces retreating against the seam dip, it is recommended to conduct cross-measure roof hole drainage targeting the fractured zones overlying the return comer, rather than high capacity surface goaf drainage deep in the goaf.

  3. Experimental and Computational Study of Underexpanded Jet Impingement Heat Transfer

    Science.gov (United States)

    Rufer, Shann J.; Nowak, Robert J.; Daryabeigi, Kamran; Picetti, Donald

    2009-01-01

    An experiment was performed to assess CFD modeling of a hypersonic-vehicle breach, boundary-layer flow ingestion and internal surface impingement. Tests were conducted in the NASA Langley Research Center 31-Inch Mach 10 Tunnel. Four simulated breaches were tested and impingement heat flux data was obtained for each case using both phosphor thermography and thin film gages on targets placed inside the model. A separate target was used to measure the surface pressure distribution. The measured jet impingement width and peak location are in good agreement with CFD analysis.

  4. A comprehensive comparison on vibration and heat transfer of two elastic heat transfer tube bundles

    Institute of Scientific and Technical Information of China (English)

    闫柯; 葛培琪; 翟强

    2015-01-01

    Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid−structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.

  5. Heat transfer between graphene and amorphous SiO2.

    Science.gov (United States)

    Persson, B N J; Ueba, H

    2010-11-24

    We study the heat transfer between graphene and amorphous SiO(2). We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer results from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  6. Numerical calculation of combustion and heat transfer in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Grimsmo, B.; Lilleheie, N.I. [ComputIT (Norway)

    2001-07-01

    Advanced simulations have been used to optimise the retrofit of actual furnaces resulting in a 75 % reduction in NO{sub x} emissions. The simulations have been performed with the CFD code KAMELEON. The calculation method is based on a three-dimensional finite-volume solution of the Favre-averaged equations of fluid dynamics together with models for turbulence, combustion, soot, radiation, and formation of pollutants. Among these models, the EDC model of Magnussen is of particular importance. In this concept, the combustion mechanism is assumed closely related to the classical turbulence transfer and break-up theory. A criteria for combustion to take place is that fuel and air have to be mixed on a molecular level and that the mixture has to be sufficiently heated to react. With the EDC model, it is possible to handle the inhomogeneity in turbulent combustion. The high temperature in the fine structures and low-temperature phenomena in the surroundings are treated simultaneously. This approach corresponds to a bi-modal pdf. The inhomogeneous temperature and composition in turbulent flames have an important influence on the formation of soot and NO{sub x}. This is readily taken into account within the framework of the EDC model. For improved accuracy, the inhomogeneity is also taken into account when computing radiative heat transfer. A table-lookup technique is used to predict NO{sub x} formation. The methods used have been verified by comparisons with measurements in well-defined laboratory flames. By means of this simulation tool it is possible to reveal wanted and unwanted effects on the furnace, as well as on the environment. It will also be possible to foretell the effect of changes in design and operation parameters and hence be able to adopt the optimum configuration for high efficiency, reliability and low emissions.

  7. Magnetic Heat Transfer Enhancements on Fin-Tube Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yan SU; C.T. HSU

    2007-01-01

    通过DNS方法解耦合的三维非稳态流动和固流体能量方程组,本文研究了两平行磁质平板和圆管所组成的肋片式圆管换热器单元与震荡流体间的传热过程.对不同的磁场频率和振幅的三维动态流热场的模拟结果表明增强磁场频率和振幅能很有效地增加周期平均传热强度达到强化传热的目的.%Two narrowly-gapped magnetic parallel plates embedding a circular disk was considered as a unit-cell to represent the fin-tube heat exchanger where heat from a circular tube was dissipated by a series of parallel equally-spaced thin plates in normal to the tube. The unsteady 3-D continuity,Navier-Stokes and energy equations for fluids and solids describing the convective heat transfer for the unit-cell geometry were solved numerically with DNS method. The present study aims on using oscillating flows and magnetic fields to enhance the heat transfer for various amplitudes and frequencies of the magnetic field. Results from cycle-averaged heat fluxes from the cylinder wall show that the increase in magnetic amplitude and frequency will greatly enhance the heat transfer. The effects of the oscillating magnetic field were discussed and the three dimensional flow and temperature fields were also presented.

  8. Exergy Transfer Characteristics on Low Temperature Heat Exchangers

    Science.gov (United States)

    Wu, S. Y.; Yuan, X. F.; Li, Y. R.; Peng, L.

    By analyzing exergy transfer process of the low temperature heat exchangers operating below the surrounding temperature, the concept of exergy transfer coefficient is put forward and the expressions which involving relevant variables for the exergy transfer coefficient, the heat transfer units number and the ratio of cold to hot fluids heat capacity rate, etc. are derived. Taking the parallel flow, counter flow and cross flow low temperature heat exchangers as examples, the numerical results of exergy transfer coefficient are given and the comparison of exergy transfer coefficient with heat transfer coefficient is analyzed.

  9. Unsteady heat transfer during subcooled film boiling

    Science.gov (United States)

    Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

    2015-11-01

    Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

  10. Heat transfer simulation in solid substrate fermentation.

    Science.gov (United States)

    Saucedo-Castañeda, G; Gutiérrez-Rojas, M; Bacquet, G; Raimbault, M; Viniegra-González, G

    1990-04-01

    A mathematical model was developed and tested to simulate the generation and transfer of heat in solid substrate fermentation (SSF). The experimental studies were realized in a 1-L static bioreactor packed with cassava wet meal and inoculated with Aspergillus niger. A simplified pseudohomogeneous monodimensional dynamic model was used for the energy balance. Kinetic equations taking into account biomass formation (logistic), sugar consumption (with maintenance), and carbon dioxide formation were used. Model verification was achieved by comparison of calculated and experimental temperatures. Heat transfer was evaluated by the estimation of Biot and Peclet heat dimensionless numbers 5-10 and 2550-2750, respectively. It was shown that conduction through the fermentation fixed bed was the main heat transfer resistance. This model intends to reach a better understanding of transport phenomena in SSF, a fact which could be used to evaluate various alternatives for temperature control of SSF, i.e., changing air flow rates and increasing water content. Dimensionless numbers could be used as scale-up criteria of large fermentors, since in those ratios are described the operating conditions, geometry, and size of the bioreactor. It could lead to improved solid reactor systems. The model can be used as a basis for automatic control of SSF for the production of valuable metabolites in static fermentors.

  11. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes.

    Science.gov (United States)

    Sasmito, Agus Pulung; Kurnia, Jundika Candra; Mujumdar, Arun Sadashiv

    2011-05-09

    Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance.

  12. UNSTEADY HEAT TRANSFER IN AN ANNULAR PIPE. PART II: SWIRLING LAMINAR FLOW

    Directory of Open Access Journals (Sweden)

    Kelvin Ho Choon Seng

    2012-02-01

    Full Text Available The   heat  transfer   problem  in   magnetocaloric regenerators  during  magnetization  has  been  described  and investigated for convective heat transfer by means of axial flow in part I of this series.   This work will focus on enhancing the unsteady heat  transfer using swirling laminar flow generated using axial vanes.   The governing parameters for this  studyare,  the  D*  ratio  (Inner  diameter/Outer  diameter  and  the swirl number, S.   The study is conducted  using  dimensional analysis and commercial CFD codes provided by ANSYS CFX. The  hydrodynamics and the  heat transfer of the  model are compared with data from similar cases found in literature and is found to be in the vicinity of good agreement.Keywords-  Annular ducts; unsteady heat transfer;  magnetic refrigeration/cooling;   swirling   laminar    flow;    dimensional analysis.

  13. An experimental and numerical investigation of air side heat transfer and flow characteristics on finned plate configuration

    Science.gov (United States)

    Gu, Lihao; Ling, Xiang; Peng, Hao

    2012-10-01

    In this paper, a new type of finned plate heat exchanger (FPHE) is presented to recover the waste heat from exhaust flue gases. A finned plate configuration causes low pressure drop and it is especially appropriate for heat transfer at the flue gas side. Meanwhile, this paper presents a detailed experimental and numerical study of convection heat transfer and pressure drop of the new structure. Three-dimensional numerical simulation results using the CFD code FLUENT6.3 were compared with experimental data to select the best model. The heat transfer and pressure drop with different geometry pattern was then studied numerically using the selected model. And the velocity field and temperature distribution of air flow in the finned plate channel are presented with different geometry patterns. These results provide insight into improved designs of FPHEs.

  14. Piston surface heat transfer during combustion in large marine diesel engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    limited. The numerical investigation focused on the simulation of a hot turbulent gas jet impinging on a wall under very high pressure, thus approximating the process of the actual impingement of hot combustion gasses on the piston surface during combustion. The surface heat flux at the wall......In the design process of large marine diesel engines information on the maximum heat load on the piston surface experienced during the engine cycle is an important parameter. The peak heat load occurs during combustion when hot combustion products impinge on the piston surface. Although the maximum...... instrumentation and high engine running costs compared to automotive engines. Therefore the investigation in this work was carried out numerically with the use of a computational fluid dynamics (CFD) code. At the same time, numerical work on detailed in-cylinder wall heat transfer in engines has been quite...

  15. Ecological performance of a generalized irreversible Carnot heat engine with complex heat transfer law

    Directory of Open Access Journals (Sweden)

    Jun Li, Lingen Chen, Fengrui Sun

    2011-01-01

    Full Text Available The optimal ecological performance of a generalized irreversible Carnot heat engine with the losses of heat-resistance, heat leakage and internal irreversibility, in which the transfer between the working fluid and the heat reservoirs obeys a complex heat transfer law, including generalized convective heat transfer law and generalized radiative heat transfer law is derived by taking an ecological optimization criterion as the objective, which consists of maximizing a function representing the best compromise between the power and entropy production rate of the heat engine. The effects of heat transfer laws and various loss terms are analyzed. The obtained results include those obtained in many literatures.

  16. Investigation of heat transfer and pressure drop in an annular channel with heat transfer intensifiers

    Science.gov (United States)

    Boltenko, E. A.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Komov, A. T.; Malakhovskii, S. A.

    2015-03-01

    Results from systematic investigations of heat transfer and pressure drop for water flow in an annular channel using an efficient method for enhancing heat transfer on a convex heating surface are presented. The main technical data of the thermal-hydraulic experimental setup are given together with a brief description of the control, monitoring, and physical parameters measurement and recording systems, as well as primary experimental data processing and storage system. The test section, the enhancement method based on setting up swirl flows, the geometrical characteristics of intensifiers, their schematic design, and installation technology are described. The experimental data are obtained in a wide range of coolant flow parameters under the conditions of single-phase convection with using intensifiers having different shapes. The test measurements carried out on a smooth annular channel showed good agreement with the classic correlations both for heat transfer and pressure drop, thereby confirming reliability of the experimental data. A considerable improvement in heat removal efficiency on the convex heating surface is obtained. The value of heat transfer coefficient is a factor of 1.8 higher than it is for smooth annular channels. The region of the values of intensifier geometrical characteristics and Reynolds numbers for which the growth of heat transfer prevails over the growth of pressure drop is established. It is shown that the maximums of heat transfer and pressure drop are observed at quite definite values of intensifier geometrical characteristics. The primary experimental data are processed and presented as a dependence of the Nusselt number on the Reynolds number for different values of the intensifier's relative fin height Ḣ. The value of Ḣ at which heat transfer reaches its maximum is found. The experiments were carried out in the pressure range p = 3.0-10.0 MPa and at the constant temperature of liquid at the test section inlet equal to 100

  17. Development and validation of computational fluid dynamics models for prediction of heat transfer and thermal microenvironments of corals.

    Directory of Open Access Journals (Sweden)

    Robert H Ong

    Full Text Available We present Computational Fluid Dynamics (CFD models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching.

  18. HEAT TRANSFER ENHANCEMENT USING ALUMINA NANOFLUID IN CIRCULAR MICRO CHANNEL

    Directory of Open Access Journals (Sweden)

    K. S. ARJUN

    2017-01-01

    Full Text Available In this study, thermal and flow behavior models for circular microchannel using water and its nanofluids with alumina as a coolant fluid in single phase flow have been developed. A finite volume-based CFD technique is used and models are solved by using Fluent Solver. The 2D axis symmetric geometry with structured mesh and 100 x 18 nodes are used for single phase flow with Al2O3 nanoparticles of 23 nm average diameter. Viscous laminar and standard k-ε models are used to predict the steady temperature in laminar and turbulent zone. The heat transfer enhancement upto 83% in laminar and turbulent zones are obtained with the Re ranging from 5 to 11980 and particle volume concentration from 0 to 5%. Even though the pressure drop increases with increase in Re, it is comparatively less compared to the corresponding decrease in temperature. The increase in temperature depends on Re and Pe; but the temperature distribution is found to be independent of radial position even for very low Pe. Comparison with analytical results both in laminar and turbulent zone is provided to justify the assumptions introduced in the models and very close agreement is observed statistically. Nusselt number can well predict the analytical data.

  19. Heat transfer in earth science studies

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. (Lawrence Livermore National Lab., CA (United States)); Chu, T.Y. (Sandia National Labs., Albuquerque, NM (United States))

    1990-01-01

    Earth scientists have long recognized that quantitative models of heat and mass transfer are fundamental to understanding many geophysical phenomena. Transport models have been used to simulate a wide range of earth processes from the crystallization of rock melts to those global mechanisms responsible for driving lithospheric plates and the geodynamo. Since the elegant conductive cooling models of igneous instrusions by Lovering and Jaeger in the 1930's and 1940's, calculations have evolved in their sophistication with the realization of the importance of convective transport and the advent of new methods and supercomputers. Many of the modeling techniques currently used by geoscientists have been adapted from techniques that were originally developed to solve engineering problems. Processes, such as those involving magma transport in volcanic systems, may often be understood by establishing their dynamical similarity with a well-studied engineering application. This book contains a series of papers regarding heat transfer and earth science studies.

  20. Heat transfer modeling an inductive approach

    CERN Document Server

    Sidebotham, George

    2015-01-01

    This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...

  1. A diffuser heat transfer and erosion code

    Science.gov (United States)

    Buzzard, G. H.

    1985-10-01

    A computer code for diffuser heat transfer and erosion analysis (DHTE) has been developed which improves upon the earlier Rocket Engine Diffuser Thermal Analysis Program (REDTAP). Improvements contained within DHTE include provision for a radial temperature gradient within the diffuser wall, an improved model for the particle impingement accommodation coefficient, a model for particle debris shielding, and a model for wall erosion by particle impact. DHTE differs from an earlier diffuser heat transfer code (DHT) to the extent that it incorporates a simple erosion model and utilizes a more recent diffuser version of the JANNAF Standardized Plume Flow Field Model (SCP2ND). The 77-inch diffuser was instrumented to record the water side wall temperature and water jacket temperature at selected sites along the initial seven feet of the diffuser during routine test firings. Data is presented that supports the predictions of DHTE but is inadequate to validate the code.

  2. Numerical Simulation for Heat and Mass Transfer During Selective Laser Melting of Titanium alloys Powder

    Science.gov (United States)

    Li, Cheng-Jui; Tsai, Tsung-Wen; Tseng, Chien-Chou

    The purpose of this research is to analyse the complex phase change and the heat transfer behavior of the Ti-6Al-4 V powder particle during the Selective Laser Melting (SLM) process. In this study, the rapid melting and solidification process is presented by Computational Fluid Dynamics (CFD) approach under the framework of the volume-of-fluid (VOF) method. The interaction between the laser velocity and power to the solidification shape and defects of the metal components will be studied numerically as a guideline to improve quality and reduce costs.

  3. Heat removal (wetting, heat transfer, T/H, secondary circuit, code validation etc.)

    Energy Technology Data Exchange (ETDEWEB)

    Dury, T.; Siman-Tov, M.

    1996-06-01

    This working group provided a comprehensive list of feasibility and uncertainty issues. Most of the issues seem to fall into the `needed but can be worked out` category. They feel these can be worked out as the project develops. A few issues can be considered critical or feasibility issues (that must be proven to be feasible). Those include: (1) Thermal shock and its mitigation (>1 MW); how to inject the He bubbles (if used) - back pressure into He lines - mercury traces in He lines; how to maintain proper bubble distribution and size (static and dynamic; if used); vibrations and fatigue (dynamic); possibility of cavitation from thermal shock. (2) Wetting and/or non-wetting of mercury on containment walls with or without gases and its effect on heat transfer (and materials). (3) Prediction capabilities in the CFD code; bubbles behavior in mercury (if used) - cross stream turbulence (ESS only) - wetting/non-wetting effects. (4) Cooling of beam `windows`; concentration of local heat deposition at center, especially if beam is of parabolic profile.

  4. Heat Transfer in a Superelliptic Transition Duct

    Science.gov (United States)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  5. Principles of heat and mass transfer

    CERN Document Server

    Incropera, Frank P; Bergman, Theodore L; Lavine, Adrienne S

    2013-01-01

    Completely updated, the seventh edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.

  6. Heat transfer in multi-phase materials

    CERN Document Server

    Öchsner, Andreas

    2011-01-01

    This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).

  7. Review of nanofluids for heat transfer applications

    Institute of Scientific and Technical Information of China (English)

    Dongsheng Wen; Guiping Lin; Saeid Vafaei; Kai Zhang

    2009-01-01

    Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first repotted about a decade ago,though much controversy and inconsistency have been reported,and insufficient understanding of the formulation and mechanism of nanofluids further limits their applications.This work presents a critical review of research on heat transfer applications of nanofluids with the aim of identifying the limiting factors so as to push forward their further development.

  8. Radiation heat transfer shapefactors for combustion systems

    Science.gov (United States)

    Emery, A. F.; Johansson, O.; Abrous, A.

    1987-01-01

    The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.

  9. Numerical Study on Flow and Heat Transfer Performance of Rectangular Heat Sink with Compound Heat Transfer Enhancement Structures

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2014-04-01

    Full Text Available Modern gas turbine blade is operating at high temperature which requires abundant cooling. Considering both heat transfer rate and pumping power for internal passages, developing efficient cooling passages is of great importance. Ribbed channel has been proved as effective heat transfer enhancement technology for considerable heat transfer characteristics; however, the pressure loss is impressive. Dimple and protrusion are frequently considered as new heat transfer augmentation tools for their low friction loss in recent years. Numerical simulations are adopted to investigate the thermal performance of rectangular channel with compound heat transfer enhancement structures with ribs, dimples, and protrusions. Among all configurations, the nondimensional dimple/protrusion depths are 0.2. The results present the flow structures of all channel configurations. The Nu/Nu0 distributions of channel section are discussed for each case. The pressure penalty f/f0 and the thermal performance TP are also considered as important parameters for heat transfer enhancement. It can be concluded that the optimal structure of the compound heat transfer enhancement structure is rib + protrusion (D = 6 mm + dimple (D = 15 mm.

  10. Refrigeration. Heat Transfer. Part I: Evaporators and Condensers

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard

    2002-01-01

    The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation.......The note gives an introduction to heat transfer with phase shift. Pool Boiling, Flow Boiling, Condensation....

  11. Conjugate Problems in Convective Heat Transfer: Review

    Directory of Open Access Journals (Sweden)

    Abram Dorfman

    2009-01-01

    Full Text Available A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by the list of almost two hundred publications considering application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined in the groups of works studying similar problems so that each of the groups corresponds to one of selected analytical solutions considered in detail. Such structure of review gives the reader the understanding of early and current situation in conjugate convective heat transfer modeling and makes possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

  12. Enhanced condensation heat transfer with wettability patterning

    Science.gov (United States)

    Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.

  13. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array

    Energy Technology Data Exchange (ETDEWEB)

    Agyenim, Francis; Smyth, Mervyn [Centre for Sustainable Technologies, Ulster University, Newtownabbey BT37 0QB (United Kingdom); Eames, Philip [Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2010-01-15

    An experimental energy storage system has been designed using an horizontal shell and tube heat exchanger incorporating a medium temperature phase change material (PCM) with a melting point of 117.7 C. Two experimental configurations consisting of a control unit with one heat transfer tube and a multitube unit with four heat transfer tubes were studied. The thermal characteristics in the systems have been analysed using isothermal contour plots and temperature time curves. Temperature gradients along the three directions of the shell and tube systems; axial, radial and angular directions have been analysed and compared. The phase change in the multitube system was dominated by the effect of convective heat transfer compared to conductive heat transfer in the control system. The temperature gradient in the PCM during phase change was greatest in the radial direction for both the control and multitube systems. The temperature gradients recorded in the axial direction for the control and multitube systems during the change of phase were respectively 2.5 and 3.5% that of the radial direction, indicating essentially a two-dimensional heat transfer in the PCM. The onset of natural convection through the formation of multiple convective cells in the multitube system significantly altered the shape of the solid liquid interface fluid flow and indicates the requirement for an in-depth study of multitube arrangements. (author)

  14. Analysis of solid-liquid phase change heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    张寅平; 王馨

    2002-01-01

    Solid-liquid phase change processes have two important features: the process is an approximately isothermal process and the heat of fusion of phase change material tends to be much greater than its specific heat. Therefore, if any phase change material adjacent to a hot or cold surface undergoes phase change, the heat transfer rate on the surface will be noticeably enhanced. This paper presents a novel insight into the mechanisms of heat transfer enhancement induced by solid-liquid phase change based on the analogy analysis for heat conduction with an internal heat source and solid-liquid phase change heat transfer. Three degrees of surface heat transfer enhancement for different conditions are explored, and corresponding formulae are written to describe them. The factors influencing the degrees of heat transfer enhancement are clarified and their effects quantitatively analyzed. Both the novel insight and the analysis contribute to effective application of phase change heat transfer enhancement technique.

  15. 全尺寸单排翅管耦合换热的异步CFD模拟%Asynchronous CFD Simulation for Conjugate Heat Exchange of Full-size Single Row Finned Tube

    Institute of Scientific and Technical Information of China (English)

    白焰; 邓慧; 李欣欣; 张东明

    2016-01-01

    The single-row flat wave finned tube is widely applied as the unit tube by the direct air cooled condenser in power plants. Caused by the complicated body geometry in fin side, the vapour condensation involving phase transition, and the heat transfer from vapour zone to air zone conjugating on several interfaces, using computational fluid dynamics (CFD) method to simulate the heat transfer in both the vapour channel and the cooling air channel simultaneously, many challenges are encountered. A mathematical model to simulate the condensation of water vapour was developed counting the interfacial shear stress, the heat balance conditions on the interfacial boundaries of the conjugate heat were presented as well as the method to calculate the conjugate heat. The numerical simulation for the full-size finned tube was carefully separated to 282 CFD modules which share same boundaries each other. Based on the 282 CFD modules, the asynchronous strategy to calculate the conjugate heat of the finned tube in overall scale was successfully carried out. The results from the CFD simulations agree very well with the experimental results, which validates the proposed condensation model, also show the great potential of the asynchronous CFD approach as an effective tool for the full-size finned tube to predict the heat transfer in both sides. Based on the CFD results, the characteristics of flow field was also investigated in terms of both the cooling air and the vapour.%火电厂空冷凝汽器普遍使用单排蛇形翅管作为换热器基管.由于蛇形翅管翅侧几何特征复杂,管内凝结有相变相随,蒸汽到空气的传热经过多个耦合面,用计算流体动力学(computational fluid dynamics,CFD)同步模拟翅管双侧换热,存在很多困难.提出液膜表面剪切力条件下的管内冷凝模型,分析蒸汽至空气的耦合换热过程和换热面平衡条件,给出耦合换热量的计算方法.将全尺寸翅管换热的数值模拟分解成282个

  16. INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES

    OpenAIRE

    A. G. Kulakov

    2005-01-01

    Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of ope...

  17. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  18. Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles

    Science.gov (United States)

    Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.

    2010-01-01

    This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…

  19. Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles

    Science.gov (United States)

    Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.

    2010-01-01

    This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…

  20. CFD Analysis on the Passive Heat Removal by Helium and Air in the Canister of Spent Fuel Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.

  1. Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet

    CERN Document Server

    Harmand, Souad; Poncet, Sébastien; Shevchuk, Igor V; 10.1016/j.ijthermalsci.2012.11.009

    2013-01-01

    Fluid flow and convective heat transfer in rotor-stator configurations, which are of great importance in different engineering applications, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward air flow in the rotor-stator geometries with and without impinging jets and incorporates two main parts, namely, experimental/theoretical methodologies and geometries/results. Experimental methodologies include naphthalene sublimation techniques, steady state (thin layer) and transient (thermochromic liquid crystals) thermal measurements, thermocouples and infra-red cameras, hot-wire anemometry, laser Doppler and particle image velocimetry, laser plane and smoke generator. Theoretical approaches incorporate modern CFD computational tools (DNS, LES, RANS etc). Geometries and results part being mentioned starting from simple to complex elucidates cases of a free rotating disk, a single disk in the crossflow, single jets impinging onto stationary and rotating disk,...

  2. Two Phase Flow Models and Numerical Methods of the Commercial CFD Codes

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Won; Jeong, Jae Jun; Chang, Seok Kyu; Cho, Hyung Kyu

    2007-11-15

    The use of commercial CFD codes extend to various field of engineering. The thermal hydraulic analysis is one of the promising engineering field of application of the CFD codes. Up to now, the main application of the commercial CFD code is focused within the single phase, single composition fluid dynamics. Nuclear thermal hydraulics, however, deals with abrupt pressure changes, high heat fluxes, and phase change heat transfer. In order to overcome the CFD limitation and to extend the capability of the nuclear thermal hydraulics analysis, the research efforts are made to collaborate the CFD and nuclear thermal hydraulics. To achieve the final goal, the current useful model and correlations used in commercial CFD codes should be reviewed and investigated. This report gives the summary information about the constitutive relationships that are used in the FLUENT, STAR-CD, and CFX. The brief information of the solution technologies are also enveloped.

  3. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Geld, van der C.W.M.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall c

  4. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, Jos; van der Geld, C.W.M.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall

  5. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  6. Boiling Heat Transfer on Porous Surfaces with Vapor Channels

    Institute of Scientific and Technical Information of China (English)

    吴伟; 杜建华; 王补宣

    2002-01-01

    Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations showed that bubbles escaping from the channels enhanced the heat transfer. Three regimes were identified: liquid flooding, bubbles in the channel and the bottom drying out region. The maximum heat transfer occurred for an optimum vapor channel density and the boiling heat transfer performance was increased if the channels were open to the bottom of the porous coating.

  7. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.

  8. Mechanism and control of convective heat transfer-- Coordination of velocity and heat flow fields

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A second look has been given at the mechanism of convective heat transfer based on the analogy between convection and conduction with heat sources. The strength of convective heat transfer depends not only on the fluid velocity and fluid properties, but also on the coordination of fluid velocity and heat flow fields. Hence, based on the included angle of velocity and temperature gradient vectors, the presence of fluid motion may enhance or reduce heat transfer. With this concept, the known heat transfer phenomena may be understood in a deeper way. More important is that some novel approaches of heat transfer control can be developed.

  9. Theoretical and experimental research on heat transfer performance of the semi-open heat pipe

    Institute of Scientific and Technical Information of China (English)

    Hua ZHU; Bo ZHUANG; Jin-jun TAN; Rong-hua HONG

    2008-01-01

    This paper focuses on the heat transfer performance of semi-open heat pipe which is a new type of heat pipe. After analyzing its condensation heat transfer mechanisms theoretically, several semi-open heat pipes in different length ratios and upper hole diameters are studied experimentally and compared with the same dimensions closed heat pipes. Experimental results show that the heat transfer performance of semi-open heat pipe becomes better by increasing heat transfer rate. At the first transitional point, the heat transfer performance of semi-open heat pipe approaches the level of the closed heat pipe. It is suitable to choose upper small hole about 1 mm in diameter and length ratio larger than 0.6 for the semi-open heat pipe.

  10. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  11. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  12. [Mechanism of heat transfer in various regions of human body].

    Science.gov (United States)

    Luchakov, Iu I; Nozdrachev, A D

    2009-01-01

    The processes of heat transfer in a human body were studied with the use of a mathematical model. It has been shown that only conductive or only convective heat transfer may occur in different body areas. The rate of blood-mediated heat transfer in the presence of blood circulation is many times higher than heat transfer due to temperature gradient; therefore, the convective process prevails over the conductive process. The body core contains a variety of blood vessels, and the bulk of blood concentrates there in the norm. Hence, heat transfer in it is mainly convective. In surface tissues, where the rate of blood circulation is lower and the vasculature has certain specific features, heat transfer is mainly conductive. Hence, the core and surface tissues are absolutely different body zones in terms of heat transfer.

  13. Condensation heat transfer coefficient versus wettability

    Science.gov (United States)

    Roudgar, M.; De Coninck, J.

    2015-05-01

    In this paper we show how condensation on substrates can induce wetting behavior that is quite different from that of deposited or impinging drops. We describe surfaces with the same wettability in ambient conditions presenting different wetting behavior and growth of droplets in condensation. The experimental results show a rapid spread of droplets and formation of the film on the copper surface, while droplets on SU-8 surface remains on the regular shape while they grow within the time, without coalescence, as observed for Cu. Although the heat conductivity of SU-8 is much lower, due to a difference in wetting behavior, the heat transfer coefficient (h) is higher for dropwise condensation on Cu with a thin layer of SU-8 than filmwise on the bare copper.

  14. Convective heat transfer and infrared thermography.

    Science.gov (United States)

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  15. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  16. Heat transfer augmentation in nanofluids via nanofins

    Directory of Open Access Journals (Sweden)

    Vadasz Peter

    2011-01-01

    Full Text Available Abstract Theoretical results derived in this article are combined with experimental data to conclude that, while there is no improvement in the effective thermal conductivity of nanofluids beyond the Maxwell's effective medium theory (J.C. Maxwell, Treatise on Electricity and Magnetism, 1891, there is substantial heat transfer augmentation via nanofins. The latter are formed as attachments on the hot wire surface by yet an unknown mechanism, which could be related to electrophoresis, but there is no conclusive evidence yet to prove this proposed mechanism.

  17. Heat transfer augmentation in nanofluids via nanofins.

    Science.gov (United States)

    Vadasz, Peter

    2011-02-18

    Theoretical results derived in this article are combined with experimental data to conclude that, while there is no improvement in the effective thermal conductivity of nanofluids beyond the Maxwell's effective medium theory (J.C. Maxwell, Treatise on Electricity and Magnetism, 1891), there is substantial heat transfer augmentation via nanofins. The latter are formed as attachments on the hot wire surface by yet an unknown mechanism, which could be related to electrophoresis, but there is no conclusive evidence yet to prove this proposed mechanism.

  18. Porous media heat transfer for injection molding

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  19. Effect of Ablation on Heat Transfer & Performance of an Axisymmetric Supersonic Nozzle

    Science.gov (United States)

    Raza, M. A.

    The theoretical prediction of heat transfer effects in compressible turbulent flows is fundamentally complex phenomenon. Computational fluid dynamics (CFD) analysis is employed using Baldwin-Lomax turbulent model to simulate the effect of various nozzle geometry defects on the heat transfer state in supersonic nozzles. The study is done in terms of various heat transfer correlations and analogies by characteristic flow regimes numbers. Theses are calculated from modified Reynolds analogy for laminar flow over flat plate, the Dittus-Boelter correlation for fully developed turbulent flow, Sieder-Tate correlation for turbulent pipe flow with property variation and Bartz correlation for variable cross sections flow. In addition to these, modified Stanton correlation for high speed flows for pipe flow analogy is also used. The contribution of ablation on the formation of new nozzle contours at various regions is simulated using energy equation for charring ablators. The effect of heat transfer correlations on nozzle performance with various geometrical defects is also discussed. In addition to it, the supersonic flow behavior is also simulated in the nozzles in terms of pressure, temperature, Mach number and density distribution with ablated surfaces.

  20. Heat Transfer Modeling of Staggered Bundle with Round Tubes Screened by Mesh

    Directory of Open Access Journals (Sweden)

    Dymo B.V.

    2016-04-01

    Full Text Available The article presents the results of CFD modeling of heat transfer and aerodynamic drag for the first three rows of cross-flowed staggered bundle consisting of round tubes screened by wire mesh. Geometric model of this bundle was developed. Selection of optimal parameters of the bundle finite element model realizes on the base of transition shear stress transport model. Two separate geometric models for even and odd rows of bundle have been elaborated for the scope of computational resources optimization. The results of numerical modeling of heat transfer for the first three rows of the bundle were approximated with the criteria dependences. It has been established that heat transfer stabilization occurs from the second row of the bundle. Stabilized heat transfer is 15 % higher than that for the first row of the bundle and 1.2 … 1.7 times as large in comparison with equivalent bare-tube bundle in a range of Reynolds number from 5000 to 35000. Aerodynamic drag data for the first three rows of the bundle have been obtained.

  1. Experimental Heat Transfer Study of Endwall in a Linear Cascade with IR Thermography

    Directory of Open Access Journals (Sweden)

    Rojo Borja

    2014-03-01

    Full Text Available This abstract presents an endwall heat transfer experimental data of air flow going through outlet guide vanes (OGVs situated in a low speed linear cascade. The measurement technique for this experiment was infrared thermography. In order to calculate the heat transfer coefficient (HTC on the endwall, it has been used an instrumented window with a controlled constant temperature in one side of a 5 millimeter Plexiglass in order to generate high temperature gradients and, therefore, by measuring the surface temperature one the other side of the Plexiglass, it is calculated the HTC. Due to the fact that Plexiglass material has not good optical properties at infrared spectrum, it has been used a thin layer of black paint (10-12 μm which has high emissivity (0.973 in the range of temperature that we are working. The Reynolds number for this experiment is 300000 in on and off-design configuration of the OGVs (on-design 25° and off-design cases are 40° and -25° incident angle. Furthermore, the on-design case is run at two different Reynolds number, 300000 and 450000. During this experiments it can be seen how changing the inlet angle to the OGVs produces significant differences on the heat transfer along the endwall. The main objective for this investigation is to study the heat transfer along the endwall of a linear cascade so that it would be a well-defined test case for CFD validation.

  2. Research on Marine Boiler's Pressurized Combustion and Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Pingjian MING; Renqiu JIANG; Yanjun LI; Baozhi SUN

    2005-01-01

    The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.

  3. Heat and mass transfer in building services design

    CERN Document Server

    Moss, Keith

    1998-01-01

    Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *

  4. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  5. Heat Transfer Model of a Small-Scale Waste Glass Melter with Cold Cap Layer

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard

    2016-09-01

    At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surface of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative

  6. Heat and mass transfer during baking: product quality aspects

    NARCIS (Netherlands)

    Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.

    2005-01-01

    Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in

  7. Heat and mass transfer during baking: product quality aspects

    NARCIS (Netherlands)

    Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.

    2005-01-01

    Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in

  8. Active chimney effect using heated porous layers: optimum heat transfer

    Science.gov (United States)

    Mehiris, Abdelhak; Ameziani, Djamel-Edine; Rahli, Omar; Bouhadef, Khadija; Bennacer, Rachid

    2017-05-01

    The purpose of the present work is to treat numerically the problem of the steady mixed convection that occurs in a vertical cylinder, opened at both ends and filled with a succession of three fluid saturated porous elements, namely a partially porous duct. The flow conditions fit with the classical Darcy-Brinkman model allowing analysing the flow structure on the overall domain. The induced heat transfer, in terms of local and average Nusselt numbers, is discussed for various controlling parameters as the porous medium permeability, Rayleigh and Reynolds numbers. The efficiency of the considered system is improved by the injection/suction on the porous matrices frontier. The undertaken numerical exploration particularly highlighted two possible types of flows, with and without fluid recirculation, which principally depend on the mixed convection regime. Thus, it is especially shown that recirculation zones appear in some domain areas under specific conditions, obvious by a negative central velocity and a prevalence of the natural convection effects, i.e., turnoff flow swirls. These latter are more accentuated in the areas close to the porous obstacles and for weak permeability. Furthermore, when fluid injection or suction is considered, the heat transfer increases under suction and reduces under injection. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  9. Numerical analysis of the scavenge flow and convective heat transfer in large two-stroke marine diesel engines

    DEFF Research Database (Denmark)

    Sigurdsson, Eythor; Ingvorsen, Kristian Mark; Jensen, Michael Vincent

    2014-01-01

    A novel computational fluid dynamics (CFD) model is presented for the study of the scavenging processand convective heat transfer in a large two-stroke low-speed uniflow-scavenged marine diesel engine.The engine is modeled using a fully resolved 12 sector, corresponding to one scavenge port...... an effective scavenging and a low convective heat loss in agreement with experimental data forlarge marine diesel engines.© 2014 Elsevier Ltd. All rights reserved......., with cyclicboundaries in the tangential direction. The CFD model is strongly coupled to experiments and effectivelyprovides a high order ‘‘interpolation’’ of the engine processes through the solution of the Reynolds-AveragedNavier–Stokes (RANS) equations subject to boundary conditions obtained through experiments...

  10. Experimental and numerical investigation of heat transfer and pressure drop for innovative gas cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R., E-mail: rodrigo.leija@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz No. 1, 76344 Eggenstein-Leopoldshafen (Germany); Buchholz, S. [Gesellschaft für Anlagen- und Reaktorsicherheit GRS mbH, Boltzmannstraße 2, 85748 Garching (Germany); Suikkanen, H. [Lappeenranta University of Technology, LUT Energy, PO Box 20, FI-53851 Lappeenranta (Finland)

    2015-08-15

    Highlights: • Experimental results of the L-STAR within the first stage of THINS project. • CFD validation for the heat transfer and pressure losses in innovative gas cooled systems. • The results indicate a strong dependency Turbulent Prandtl at the rod wall temperature distribution. • Gas loop facility suitable for the investigation of thermohydraulic issues of GFR, however there might be flow instabilities when flow is very low. - Abstract: Heat transfer enhancement through turbulence augmentation is recognized as a key factor for improving the safety and economic conditions in the development of both critical and subcritical innovative advanced gas cooled fast reactors (GFR) and transmutation systems. The L-STAR facility has been designed and erected at the Karlsruhe Institute of Technology (KIT) to study turbulent flow behavior and its heat transfer enhancement characteristics in gas cooled annular channels under a wide range of conditions. The test section consists of an annular hexagonal cross section channel with an inner electrical heater rod element, placed concentrically within the test section, which seeks to simulate the flow area of a fuel rod element in a GFR. The long term objective of the experimental study is to investigate and improve the understanding of complex turbulent convective enhancement mechanisms as well as the friction loss penalties of roughened fuel rods compared to smooth ones and to generate an accurate database for further development of physical models. In the first step, experimental results of the fluid flow with uniform heat release conditions for the smooth heater rod are presented. The pressure drops, as well as the axial temperature profiles along the heater rod surface have been measured at Reynolds numbers in the range from 4000 to 35,000. The experimental results of the first stage were compared with independently conducted CFD analyses performed at Lappeenranta University of Technology (LUT) with the code ANSYS

  11. Transient critical heat flux and blowdown heat-transfer studies

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  12. Heat transfer and fluid flow in microchannels

    Science.gov (United States)

    Mala, Ghulam Mohiuddin

    Fluid flow and heat transfer characteristics in microchannels of different cross-sections; parallel plate, cylindrical and trapezoidal microchannels were studied. The trapezoidal microchannels were etched in silicon and glass by photolithographic techniques. The cylindrical microchannels of fused silica and stainless steel were readily available. Channels with depths of 18 μm to 300 μm were studied. The study was divided into three parts viz. theoretical modeling, numerical simulation and experimentation. Electrokinetic effects such as the effects of electrical double layer (EDL) at the solid-liquid interface and surface roughness effects were considered. An experimental apparatus was constructed and a procedure devised to measure the flow rate, pressure drop, temperatures and electrokinetic parameters like streaming potential, streaming current, and conductivity of the working fluid. Great care was taken so that the measurements were accurate and repeatable. For steady state laminar flow and heat transfer in microchannels, mathematical models were developed that consider the effects of electrical double layer and surface roughness at the microchannel walls. The non- linear, 2-D, Poisson-Boltzmann equation that describes the potential distribution at the solid liquid interface was solved numerically and results were compared with a linear approximate solution that overestimates the potential distribution for higher values of zeta potential. Effects of the EDL field at the solid-liquid interface, surface roughness at the microchannel walls and the channel size, on the velocity distribution, streaming potential, apparent viscosity, temperature distribution and heat transfer characteristics are discussed. The experimental results indicate significant departure in flow characteristics from the predictions of the Navier-Stokes equations, referred to as conventional theory. The difference between the experimental results and theoretical predictions decreases as the

  13. Boiling local heat transfer enhancement in minichannels using nanofluids.

    Science.gov (United States)

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  14. Heat Transfer in Flue Gas with Vapor Condensation

    Institute of Scientific and Technical Information of China (English)

    贾力; 彭晓峰

    2002-01-01

    This paper combines the film model with Nusselt's condensation theory to analyze the effects of water vapor condensation on the heat transfer performance of flue gas flowing through a vertical tube. The analysis compares the condensation and convective heat transfer rates. For the concentration range investigated, the water vapor condensation transfers more energy than the flue gas convection, but the convective heat transfer can not be neglected. The heat transfer intensification due to the condensation increased as the water vapor fraction increased. The theoretical results compared well with experimental data.

  15. Recent Advances in Heat Transfer Enhancements: A Review Report

    Directory of Open Access Journals (Sweden)

    M. Siddique

    2010-01-01

    Full Text Available Different heat transfer enhancers are reviewed. They are (a fins and microfins, (b porous media, (c large particles suspensions, (d nanofluids, (e phase-change devices, (f flexible seals, (g flexible complex seals, (h vortex generators, (i protrusions, and (j ultra high thermal conductivity composite materials. Most of heat transfer augmentation methods presented in the literature that assists fins and microfins in enhancing heat transfer are reviewed. Among these are using joint-fins, fin roots, fin networks, biconvections, permeable fins, porous fins, capsulated liquid metal fins, and helical microfins. It is found that not much agreement exists between works of the different authors regarding single phase heat transfer augmented with microfins. However, too many works having sufficient agreements have been done in the case of two phase heat transfer augmented with microfins. With respect to nanofluids, there are still many conflicts among the published works about both heat transfer enhancement levels and the corresponding mechanisms of augmentations. The reasons beyond these conflicts are reviewed. In addition, this paper describes flow and heat transfer in porous media as a well-modeled passive enhancement method. It is found that there are very few works which dealt with heat transfer enhancements using systems supported with flexible/flexible-complex seals. Eventually, many recent works related to passive augmentations of heat transfer using vortex generators, protrusions, and ultra high thermal conductivity composite material are reviewed. Finally, theoretical enhancement factors along with many heat transfer correlations are presented in this paper for each enhancer.

  16. 46 CFR 153.430 - Heat transfer systems; general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's...

  17. Measurement of heat transfer coefficient using termoanemometry methods

    Directory of Open Access Journals (Sweden)

    Dančová P.

    2014-03-01

    Full Text Available This work deals with a measurement of heat transfer from a heated flat plate on which a synthetic jet impacts perpendicularly. Measurement of a heat transfer coefficient (HTC is carried out using the hot wire anemometry method with glue film probe Dantec 55M47. The paper brings also results of velocity profiles measurements and turbulence intensity calculations.

  18. Influence of structural design condensing part of NH3 heat pipe to heat transfer

    Directory of Open Access Journals (Sweden)

    Vantúch Martin

    2014-03-01

    Full Text Available The article describes influence design heat exchangers to efficiency condensation liquid ammonia in the gravitational heat pipe. Analyse adverse factors in the operation and flow of ammonia in heat pipe. Also describes heat transfer characteristics of heat pipe in low-potential geothermal heat transport simulations.

  19. Heat and Mass Transfer in a Semi Infinite Porous

    Directory of Open Access Journals (Sweden)

    H. N. Narang

    1967-07-01

    Full Text Available Unsteady axially symmetric transfer of heat and mass in a semi-infinite porous circular cylinder initially at a constant temperature and mass transfer potential has been considered. The circular boundary of the porous cylinder is maintained at temperature and mass transfer potential which are functions of both axial co-ordinate and time, whereas the plane end is impervious to heat and mass transfer. Both the axial and radial components of heat and diffusive mass transfer have been taken into account. A particular case when the temperature and mass transfer potential are unit step functions has been discussed in detail and some results have been exhibited graphically.

  20. CFD Simulation of Thermal-Hydraulic Benchmark V1000CT-2 Using ANSYS CFX

    OpenAIRE

    2009-01-01

    Plant measured data from VVER-1000 coolant mixing experiments were used within the OECD/NEA and AER coupled code benchmarks for light water reactors to test and validate computational fluid dynamic (CFD) codes. The task is to compare the various calculations with measured data, using specified boundary conditions and core power distributions. The experiments, which are provided for CFD validation, include single loop cooling down or heating-up by disturbing the heat transfer in the steam gene...

  1. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  2. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    Science.gov (United States)

    Kılıç, Bayram; İpek, Osman

    2017-02-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  3. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU ZhiChun; GUO ZengYuan

    2009-01-01

    Based on the principle of field synergy for heat transfer enhancement, the concept of physical quantity synergy in the laminar flow field is proposed in the present study according to the physical mechanism of convective heat transfer between fluid and tube wall. The synergy regulation among physical quantities of fluid particle is revealed by establishing formulas reflecting the relation between synergy angles and heat transfer enhancement. The physical nature of enhancing heat transfer and reducing flow resistance, which is directly associated with synergy angles α,βγ,φ, θ and ψ, is also explained. Be-sides, the principle of synergy among physical quantities is numerically verified by the calculation of heat transfer and flow in a thin cylinder-interpolated tube, which may guide the optimum design for better heat transfer unit and high-efficiency heat exchanger.

  4. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  5. CFD Applications in Energy and Environment Sectors: Volume 1

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi and Hashim R. Abdol Hamid

    2012-01-01

    Full Text Available Chapter 1: Simulation and Modelling of Oxygen Coal Combustion with Flue Gas Recirculation. Chaouki Ghenai Chapter 2: The Choice of the Best Air Distribution Concept in Air-Conditioned Auditorium by Means of CFD Numerical Prediction. Barbara Lipska, Piotr Koper Chapter 3: CFD Applications in Natural Ventilation of Buildings and Air Quality Dispersion. N. Nikolopoulos, A. Nikolopoulos, I. Papadakis, K.-S. P. Nikas Chapter 4: CFD Modeling of Air Pollutant Transport and Dispersion. Labovský Juraj, Jelemenský Ľudovít Chapter 5: CFD Modeling of Multiphase Flow in Environmental Engineering. Masroor Mohajerani, Mehrab Mehrvar, Farhad Ein-Mozaffari Chapter 6: CFD Study on the Roles of Trees on Airflow and Pollutant Dispersion within Urban Street Canyons. Salim Mohamed Salim, Andrew Chan, Riccardo Buccolieri, Silvana Di Sabatino Chapter 7: Energy Efficiency and Air Quality in Hospitals Design. Essam E. Khalil Chapter 8: Application of CFD in Pulverized Fuel Combustion. M. Tayyeb Javed, Tahira Sultana Chapter 9: A Heat Transfer Model For Fluids Based on Cellular Automaton Application to an Air Conditioning of A Building. Andrés Saiz Martínez Chapter 10: CFD Application in Power Plants. Essam E. Khalil Chapter 11: Analysis and Computation of the Heat Charge/Discharge Behavior in Packed Bed Thermal Storage Systems. Pei-Wen Li, Jon Van Lew, Wafaa Karaki, Cho Lik Chan, Jake Stephens

  6. Numerical simulation on heat transfer inside rotating porous disk subjected to local heat flux

    Institute of Scientific and Technical Information of China (English)

    ZHU; XingDan; ZHANG; JingZhou; TAN; XiaoMing

    2013-01-01

    Numerical simulation was carried out to study the centrifugally-driven flow and heat transfer inside rotating metallic porous disk subjected to local heat flux. The effects of rotational speed, solid thermal conductivity and porosity on heat transfer were analyzed. The thermal transport coefficient, defined as the ratio of local heat flux to maximum temperature difference on the disk, was introduced to evaluate the thermal transport capacity in rotating porous disk. For convenience, the conjugation between convective heat transfer inside the rotating porous disk and convective heat transfer over the rotating disk surface was decoupled in the present study. Firstly, the convective heat transfer over the free rotating disk surface was investigated indi-vidually to determine the heat transfer coefficient over the disk surface to the ambient air. Then the convective heat transfer over a rotating disk surface was treated as the thermal boundary condition for the computation of convective heat transfer in-side rotating porous disk. Under the present research conditions, the results show that the centrifugally-driven flow is enhanced significantly with the increase of rotational speed. Consequently, the maximum temperature on the disk surface is decreased and the temperature distribution tends to be uniform. The thermal transport capacity in rotating porous disk is also enhanced with the increase of solid thermal conductivity or the decrease of solid porosity. In the rotating porous disk, the solid phase heat transfer is clearly the dominant mode of heat transport and the fluid phase makes an incremental contribution to the total heat transfer.

  7. FILM-30: A Heat Transfer Properties Code for Water Coolant

    Energy Technology Data Exchange (ETDEWEB)

    MARSHALL, THERON D.

    2001-02-01

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.

  8. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    Science.gov (United States)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  9. Modelling heat transfer in heterogeneous media using fractional calculus.

    Science.gov (United States)

    Sierociuk, Dominik; Dzielinski, Andrzej; Sarwas, Grzegorz; Petras, Ivo; Podlubny, Igor; Skovranek, Tomas

    2013-05-13

    This paper presents the results of modelling the heat transfer process in heterogeneous media with the assumption that part of the heat flux is dispersed in the air around the beam. The heat transfer process in a solid material (beam) can be described by an integer order partial differential equation. However, in heterogeneous media, it can be described by a sub- or hyperdiffusion equation which results in a fractional order partial differential equation. Taking into consideration that part of the heat flux is dispersed into the neighbouring environment we additionally modify the main relation between heat flux and the temperature, and we obtain in this case the heat transfer equation in a new form. This leads to the transfer function that describes the dependency between the heat flux at the beginning of the beam and the temperature at a given distance. This article also presents the experimental results of modelling real plant in the frequency domain based on the obtained transfer function.

  10. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  11. Numerical simulation of simultaneous heat and moisture transfer in a domestic refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Laguerre, O.; Benamara, S. [Cemagref, Refrigeration Process Engineering, Cemagref, BP. 44, 92163 Antony Cedex (France); Flick, D. [AgroParisTech, UMR 1145 Genie Industriel Alimentaire, F-91300 Massy (France)

    2010-11-15

    This study was carried out in order to gain a better insight into evaporation and condensation phenomena due to natural convection in a domestic refrigerator without a fan. A model refrigerator loaded with moist cylinders was studied initially. CFD simulations took into account air flow, heat transfer (convection, conduction and radiation) and mass transfer (water evaporation and condensation). The numerical results were compared with the experimental values. The position where evaporation and condensation occur was generally well predicted in spite of the fact that simulation underestimates the experimental values. The numerical methodology developed was then applied to a real refrigerator loaded with unpackaged products (susceptible to dehydration). The same phenomena as those in the model refrigerator were observed: condensation on the product located near to the evaporator, dehydration of the products located near the door and at the top. (author)

  12. Computational heat transfer analysis and combined ANN–GA optimization of hollow cylindrical pin fin on a vertical base plate

    Indian Academy of Sciences (India)

    C Balachandar; S Arunkumar; M Venkatesan

    2015-09-01

    In the devices like laptops, microprocessors, the electric circuits generate heat while performing work which necessitates the use of fins. In the present work, the heat transfer characteristics of hollow cylindrical pin fin array on a vertical rectangular base plate is studied using commercial CFD code ANSYS FLUENT© . The hollow cylindrical pin fins are arranged inline. The heat transfer augmentation is studied for different parameters such as inner radius, outer radius, height of the fins and number of pin fins. The base plate is supplied with a constant heat flux in the range of 20–500W. The base plate dimensions are kept constant. The base plate temperature is predicted using Artificial Neural Network (ANN) by training the network based on the results of numerical simulation. The trained ANN is used to analyse the fin in terms of enhanced heat transfer and weight reduction when compared to solid pin fin. Optimization of the hollow cylindrical pin fin parameters to obtain maximum heat transfer from the base plate is carried out using Genetic Algorithm (GA) applied on the trained neural network. The analysis using the numerical simulation and neural network shows that the hollow fins provide an increased heat transfer and a weight reduction of about 90% when compared to solid cylindrical pin fins.

  13. Nanofluids for heat transfer: an engineering approach.

    Science.gov (United States)

    Timofeeva, Elena V; Yu, Wenhua; France, David M; Singh, Dileep; Routbort, Jules L

    2011-02-28

    An overview of systematic studies that address the complexity of nanofluid systems and advance the understanding of nanoscale contributions to viscosity, thermal conductivity, and cooling efficiency of nanofluids is presented. A nanoparticle suspension is considered as a three-phase system including the solid phase (nanoparticles), the liquid phase (fluid media), and the interfacial phase, which contributes significantly to the system properties because of its extremely high surface-to-volume ratio in nanofluids. The systems engineering approach was applied to nanofluid design resulting in a detailed assessment of various parameters in the multivariable nanofluid systems. The relative importance of nanofluid parameters for heat transfer evaluated in this article allows engineering nanofluids with desired set of properties.

  14. Nanofluids for heat transfer: an engineering approach

    Directory of Open Access Journals (Sweden)

    France David

    2011-01-01

    Full Text Available Abstract An overview of systematic studies that address the complexity of nanofluid systems and advance the understanding of nanoscale contributions to viscosity, thermal conductivity, and cooling efficiency of nanofluids is presented. A nanoparticle suspension is considered as a three-phase system including the solid phase (nanoparticles, the liquid phase (fluid media, and the interfacial phase, which contributes significantly to the system properties because of its extremely high surface-to-volume ratio in nanofluids. The systems engineering approach was applied to nanofluid design resulting in a detailed assessment of various parameters in the multivariable nanofluid systems. The relative importance of nanofluid parameters for heat transfer evaluated in this article allows engineering nanofluids with desired set of properties.

  15. Nanofluids for heat transfer : an engineering approach.

    Energy Technology Data Exchange (ETDEWEB)

    Timofeeva, E. V.; Yu, W.; France, D. M.; Singh, D.; Routbort, J. L. (Energy Systems); ( NE); (Univ. of Illinois at Chicago)

    2011-02-28

    An overview of systematic studies that address the complexity of nanofluid systems and advance the understanding of nanoscale contributions to viscosity, thermal conductivity, and cooling efficiency of nanofluids is presented. A nanoparticle suspension is considered as a three-phase system including the solid phase (nanoparticles), the liquid phase (fluid media), and the interfacial phase, which contributes significantly to the system properties because of its extremely high surface-to-volume ratio in nanofluids. The systems engineering approach was applied to nanofluid design resulting in a detailed assessment of various parameters in the multivariable nanofluid systems. The relative importance of nanofluid parameters for heat transfer evaluated in this article allows engineering nanofluids with desired set of properties.

  16. Heat and mass transfer in flames

    Science.gov (United States)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  17. Analysis of the heat transfer in double and triple concentric tube heat exchangers

    Science.gov (United States)

    Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.

    2016-08-01

    The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.

  18. Heat transfer in bundles of finned tubes in crossflow

    Energy Technology Data Exchange (ETDEWEB)

    Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.; Hewitt, G.F.

    1986-01-01

    This book provides correlations of heat transfer and hydraulic data for bundles of finned tubes in crossflow at high Reynolds numbers. Results of studies of the effectiveness of the fin, local, and mean heat transfer coefficients are presented. The effect of geometric parameters of the fins and of the location of tubes in the bundle on heat transfer and hydraulic drag are described. The resistance of the finned tube bundles under study and other factors are examined.

  19. Condensation Heat Transfer Inside a Tube in a Microgravity Environment

    Institute of Scientific and Technical Information of China (English)

    LiuYuke; WangWeicheng

    1996-01-01

    This paper introduces a method for studying condensation heat transfer inside a tube in microgravity environment.The model assumes laminar flow in the condensate film and an annular flow pattern,The local heat transfer coefficinet is the calculated by gravitational acceleration,g,from 0 to 9.8m/s2.the model was tested indirectly by measuring condensation heat transfer inside a vertical tube in a normal gravity environment through experiments.

  20. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  1. Methods and problems in heat and mass transfer

    Science.gov (United States)

    Kotliar, Iakov Mikhailovich; Sovershennyi, Viacheslav Dmitrievich; Strizhenov, Dmitrii Sergeevich

    The book focuses on the mathematical methods used in heat and mass transfer problems. The theory, statement, and solution of some problems of practical importance in heat and mass transfer are presented, and methods are proposed for solving algebraic, transcendental, and differential equations. Examples of exact solutions to heat and mass transfer equations are given. The discussion also covers some aspects of the development of a mathematical model of turbulent flows.

  2. In - line determination of heat transfer coefficients in a plate heat exchanger

    Science.gov (United States)

    Sotelo, S. Silva; Domínguez, R. J. Romero

    This paper shows an in - line determination of heat transfer coefficients in a plate heat exchanger. Water and aqueous working solution of lithium bromide + ethylene glycol are considered. Heat transfer coefficients are calculated for both fluids. "Type T" thermocouples were used for monitoring the wall temperature in a plate heat exchanger, which is one of the main components in an absorption system. Commercial software Agilent HP Vee Pro 7.5 was used for monitoring the temperatures and for the determination of the heat transfer coefficients. There are not previous works for heat transfer coefficients for the working solution used in this work.

  3. Numerical Investigation of Heat Transfer with Thermal Radiation in an Enclosure in Case of Buoyancy Driven Flow

    Directory of Open Access Journals (Sweden)

    Christoph Hochenauer

    2014-08-01

    Full Text Available The purpose of this paper is to investigate state of the art approaches and their accuracy to compute heat transfer including radiation inside a closed cavity whereas buoyancy is the only driving force. This research is the first step of an all-embracing study dealing with underhood airflow and thermal management of vehicles. Computational fluid dynamic (CFD simulation results of buoyancy driven flow inside a simplified engine compartment are compared to experimentally gained values. The test rig imitates idle condition without any working fan. Thus, the airflow is only driven by natural convection. A conventional method used for these applications is to compute the convective heat transfer coefficient and air temperature using CFD and calculate the wall temperature separately by performing a thermal analysis. The final solution results from coupling two different software tools. In this paper thermal conditions inside the enclosure are computed by the use of CFD only. The impact of the turbulence model as well as the results of various radiation models are analyzed and compared to the experimental data.

  4. Novel Heat Transfer Issues Associated with the Design and Safe Operation of the MEGAPIE Spallation Source Target

    Institute of Scientific and Technical Information of China (English)

    Brian L.Smith

    2007-01-01

    Critical heat transfer problems are discussed in the context of the operation of a spallation source target, which represents a first demonstration of the feasibility of an innovative concept for generating energy using a particle accelerator. Within the framework of the umbrella project MEGAPIE, an R&D support group was organized to take responsibility for target cooling. This involved the use of advanced numerical methods - Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) - validated against suitable experimental data, and by means of appropriate benchmarking exercises. The design studies using CFD resulted in an optimum flow configuration being defined for the coolant circulation. Flow visualization tests were undertaken using a glass/water test section, with the velocity field mapped using optical and ultrasonic measuring techniques. These were followed by heat transfer tests, using the actual target materials (lead-bismuth-eutectic coolant and steel confinement). Further CFD/FEM work to analyze operational transients and accident sequences was also carried out, and is described in the paper.

  5. Numerical investigation of a heat transfer within the prismatic fuel assembly of a very high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Nam-il [Korea Atomic Energy Research Institute, 1045 Daedeok Street, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: takni@kaeri.re.kr; Kim, Min-Hwan; Lee, Won Jae [Korea Atomic Energy Research Institute, 1045 Daedeok Street, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2008-10-15

    The complex geometry of the hexagonal fuel blocks of the prismatic fuel assembly in a very high temperature reactor (VHTR) hinders accurate evaluations of the temperature profile within the fuel assembly without elaborate numerical calculations. Therefore, simplified models such as a unit cell model have been widely applied for the analyses and designs of prismatic VHTRs since they have been considered as effective approaches reducing the computational efforts. In a prismatic VHTR, however, the simplified models cannot consider a heat transfer within a fuel assembly as well as a coolant flow through a bypass gap between the fuel assemblies, which may significantly affect the maximum fuel temperature. In this paper, a three-dimensional computational fluid dynamics (CFD) analysis has been carried out on a typical fuel assembly of a prismatic VHTR. Thermal behaviours and heat transfer within the fuel assembly are intensively investigated using the CFD solutions. In addition, the accuracy of the unit cell approach is assessed against the CFD solutions. Two example situations are illustrated to demonstrate the deficiency of the unit cell model caused by neglecting the effects of the bypass gap flow and the radial power distribution within the fuel assembly.

  6. Heat transfer enhancement by application of nano-powder

    Energy Technology Data Exchange (ETDEWEB)

    Mosavian, M. T. Hamed, E-mail: mosavian@um.ac.ir; Heris, S. Zeinali [Ferdowsi University of Mashhad, Department of Chemical Engineering, Faculty of Engineering (Iran, Islamic Republic of); Etemad, S. Gh.; Esfahany, M. Nasr [Isfahan University of Technology, Department of Chemical Engineering (Iran, Islamic Republic of)

    2010-09-15

    In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al{sub 2}O{sub 3} (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.

  7. Heat transfer coefficient in serpentine coolant passage for CCDTL

    Energy Technology Data Exchange (ETDEWEB)

    Leslie, P.; Wood, R.; Sigler, F.; Shapiro, A.; Rendon, A.

    1998-12-31

    A series of heat transfer experiments were conducted to refine the cooling passage design in the drift tubes of a coupled cavity drift tube linac (CCDTL). The experimental data were then compared to numerical models to derive relationships between heat transfer rates, Reynold`s number, and Prandtl number, over a range of flow rates. Data reduction consisted of axisymmetric finite element modeling where the heat transfer coefficients were modified to match the experimental data. Unfortunately, the derived relationship is valid only for this specific geometry of the test drift tube. Fortunately, the heat transfer rates were much better (approximately 2.5 times) than expected.

  8. An introduction to heat transfer principles and calculations

    CERN Document Server

    Ede, A J; Ower, E

    1967-01-01

    An Introduction to Heat Transfer Principles and Calculations is an introductory text to the principles and calculations of heat transfer. The theory underlying heat transfer is described, and the principal results and formulae are presented. Available techniques for obtaining rapid, approximate solutions to complicated problems are also considered. This book is comprised of 12 chapters and begins with a brief account of some of the concepts, methods, nomenclature, and other relevant information about heat transfer. The reader is then introduced to radiation, conduction, convection, and boiling

  9. Influence of radiation heat transfer during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Cazares R, R. I.; Epinosa P, G.; Varela H, J. R.; Vazquez R, A. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Polo L, M. A., E-mail: ricardo-cazares@hotmail.com [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2016-09-15

    The aim of this work is to determine the influence of the radiation heat transfer on an average fuel channel during a severe accident of a BWR nuclear power plant. The analysis considers the radiation heat transfer in a participating medium, where the gases inside the system participate in the radiation heat transfer. We consider the steam-water mixture as an isothermal gray gas, and the boundaries of the system as a gray diffuse isothermal surface for the clad and refractory surfaces for the rest, and consider the average fuel channel as an enclosure system. During a severe accident, generation and diffusion of hydrogen begin at high temperature range (1,273 to 2,100 K), and the fuel rod cladding oxidation, but the hydrogen generated do not participate in the radiation heat transfer because it does not have any radiation properties. The heat transfer process in the fuel assembly is considered with a reduced order model, and from this, the convection and the radiation heat transfer is introduced in the system. In this paper, a system with and without the radiation heat transfer term was calculated and analyzed in order to obtain the influence of the radiation heat transfer on the average fuel channel. We show the behavior of radiation heat transfer effects on the temporal evolution of the hydrogen concentration and temperature profiles in a fuel assembly, where a stream of steam is flowing. Finally, this study is a practical complement for more accurate modeling of a severe accident analysis. (Author)

  10. Pool boiling heat transfer performance of Newtonian nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Saide; Etemad, Seyed Gholamreza [Isfahan University of Technology, Department of Chemical Engineering, Isfahan (Iran); Thibault, Jules [University of Ottawa, Department of Chemical and Biological Engineering, Ottawa, ON (Canada)

    2009-10-15

    Experimental measurements were carried out on the boiling heat transfer characteristics of {gamma}-Al{sub 2}O{sub 3}/water and SnO{sub 2}/water Newtonian nanofluids. Nanofluids are liquid suspensions containing nanoparticles with sizes smaller than 100 nm. In this research, suspensions with different concentrations of {gamma}-Al{sub 2}O{sub 3} and SnO{sub 2} nanoparticles in water were studied under nucleate pool boiling heat transfer conditions. Results show that nanofluids possess noticeably higher boiling heat transfer coefficients than the base fluid. The boiling heat transfer coefficients depend on the type and concentration of nanoparticles. (orig.)

  11. CarbAl Heat Transfer Material

    Science.gov (United States)

    Fink, Richard

    2015-01-01

    The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.

  12. Heat Transfer of DE-Series MOSFETs

    Directory of Open Access Journals (Sweden)

    Arthur James Swart

    2011-01-01

    Full Text Available MOSFET devices have developed significantly over the past few years to become the number one choice for high-power applications in power electronics and electronic communication. Commercially available devices (such as the IXYS RF manufactured now operate into the VHF range with output RF powers of up to 300 W. They are optimized for linear operation and suitable for broadcast and communication applications. This paper presents the heat transfer out of an IXZ210N50L MOSFET which is sandwiched between two identical heatsinks. The results reveal a linear decrease in heat flowing away from the top of the MOSFET when compared to the bottom of the MOSFET for each step increase of drain current. Two graphs (representing the top and bottom heatsinks connected to the MOSFET device contrast the temperature rise for the Bisink technique when the drain current through the IXZ210N50L MOSFET is kept constant at 5 A. The Bisink technique has the advantages of lower on-state resistances and higher output powers when compared to the traditional mounting using only one heatsink, resulting in improved reliability and performance. Results further reveal that the ambient temperature must be measured in the vicinity of the heatsink.

  13. Heat transfer characteristics of igniter output plumes

    Science.gov (United States)

    Evans, N. A.; Durand, N. A.

    Seven types of pyrotechnic igniters were each mounted at one end of a closed cylindrical bore hole representative of the center hole in a thermal battery. Measurements of local bore wall temperature, T(sub w), using commercially available, fast response (10 microsec) sheathed chromel-constantan thermocouples allowed calculation of local heat transfer rates, q, and wall heat flows, Q. The principal charge constituents of all these igniters were titanium and potassium perchlorate, while three types also contained barium styphnate as an ignition sensitizer. Igniter closure disc materials included glass-ceramic, glass, metal (plain, scored, with and without capture cone), and kapton/RTV. All igniters produced the lowest values of T(sub w) and q at the beginning of the bore, and, except for the igniter with the kapton/RTV closure disc, these quantities increased with distance along the bore. For igniters containing only titanium/potassium perchlorate, the rates of increase of Q along the bore length, compared with those for T(sub w) and q, were generally lower and more variable. The inclusion of barium styphnate produced rates of change in Q that were essentially constant to the end of the bore. The highest overall average wall temperatures were achieved by two igniter types with metal closure discs and no capture cone. No clear correlation was established between peak bore pressure and maximum wall temperature.

  14. Heat transfer characteristics of igniter output plumes

    Energy Technology Data Exchange (ETDEWEB)

    Evans, N.A.; Durand, N.A.

    1989-01-01

    Seven types of pyrotechnic igniters were each mounted at one end of a closed cylindrical bore hole representative of the center hole in a thermal battery. Measurements of local bore wall temperature, T/sub w/, using commercially available, fast response (10 /mu/sec) sheathed chromel-constantan thermocouples allowed calculation of local heat transfer rates, q, and wall heat flows, Q. The principal charge constituents of all these igniters were titanium and potassium perchlorate, while three types also contained barium styphnate as an ignition sensitizer. Igniter closure disc materials included glass-ceramic, glass, metal (plain, scored, with and without capture cone), and kapton/RTV. All igniters produced the lowest values of T/sub w/ and q at the beginning of the bore, and, except for the igniter with the kapton/RTV closure disc, these quantities increased with distance along the bore. For igniters containing only titanium/potassium perchlorate, the rates of increase of Q along the bore length, compared with those for T/sub w/ and q, were generally lower and more variable. The inclusion of barium styphnate produced rates of change in Q that were essentially constant to the end of the bore. The highest overall average wall temperatures were achieved by two igniter types with metal closure discs and no capture cone. No clear correlation was established between peak bore pressure and maximum wall temperature. 3 refs., 8 figs., 1 tab.

  15. Personalized recommendation based on heat bidirectional transfer

    Science.gov (United States)

    Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

    2016-02-01

    Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

  16. On some experiments of heat transfer On some experiments of heat transfer

    Directory of Open Access Journals (Sweden)

    M. P. Murgai

    1954-04-01

    Full Text Available This note describes the results of some experiments on the heat transfer, in an earthenware vessel, used for storing and cooling water in the summer season, and depending for its cooling effect on the evaporative loss. This vessel makes a good approach to a human body; all covered with sweat, and lends itself to an alternative method of measurement of the parameters, in the basic equation of the heat balance of the human body. The results obtained are comparable to those of Brunt, got by observations on human beings.

  17. Bubble Coalescence Heat Transfer During Subcooled Nucleate Pool Boiling

    Institute of Scientific and Technical Information of China (English)

    Abdoulaye Coulibaly; LIN Xipeng; Bi Jingliang; David M Christopher

    2012-01-01

    Bubble coalescence during subcooled nucleate pool boiling was investigated experimentally using constant wall temperature boundary conditions while the wall heat flux was measured at a various locations to understand the effects of coalescence on the heat transfer. The observations showed that the coalesced bubble moved and oscillated on the heater surface with significant heat transfer variations prior to departure. Some observations also showed coalescence with no increase in the heat transfer rate. The heat flux for boiling with coalescence fluctuated much more than for single bubble boiling due to the vaporization of the liquid layer trapped between the bubbles.

  18. INFLUENCE OF REFRIGERANT DISTRIBUTION ON HEAT TRANSFER IN EVAPORATORS

    Institute of Scientific and Technical Information of China (English)

    高原; 田怀璋; 曾艳; 袁秀玲

    2003-01-01

    Objective To prevent the maldistribution of two-phase refrigerant in dry expansion evaporators composed of parallel coils, a distributor is needed to supply refrigerant into the coils. Methods A simplified model of dry expansion evaporator was proposed. The flow and heat transfer in distributing pipes and evaporator coils were simulated with a numerical method. Results The heat flow rate decreases while the refrigerant is distributed unequally to evaporator coils. Conclusion In order to maintain the heat flow rate, larger heat transfer area should be arranged to make up the effect of maldistribution. The larger the discrepancy of mass flow rate is, the more heat transfer area is needed.

  19. Analysis on Heat Transfer of Outlet Nozzle and Steam Cavity for SCWR RPV Using CFD%超临界水冷堆压力容器出口接管和蒸汽腔室热流性能数值分析

    Institute of Scientific and Technical Information of China (English)

    李玉光; 王小彬; 罗英; 杨敏; 李翔; 付强

    2013-01-01

    Based on Super-Critical Water Reactor (SCWR) conceptual configuration design, with the shell made by 508-Ⅲ low alloy forging and the outlet nozzle and steam cavity made by Inconel 690 forging, this paper focuses on the application of Computational Fluid Dynamics (CFD) in the numerical simulation of SCWR outlet nozzle and steam cavity structural design.The temperature distribution of outlet nozzle and steam cavity on the Super-Critical condition has been obtained in this study.The simulation results indicate that the maximum temperature reaches 547K at welding line between 508-Ⅲ shell and Inconel 690 nozzle, thereby it is feasible for conceptual configuration design and materials of SCWR outlet nozzle and steam cavity, and it will assist in validating the direction of configuration optimization and material selection for the design activities.%基于超临界水冷堆(SCWR)概念结构设计(简体材料为508-Ⅲ钢、出口接管和蒸汽腔室材料为Inconel 690),使用计算流体力学(CFD)方法对SCWR出口接管和蒸汽腔室结构设计进行数值分析,得到超临界工况下的压力容器出口接管和蒸汽腔室的稳态温度分布.结果表明:508-Ⅲ简体和Inconel 690出口接管焊缝处的最高温度为547 K,现有的SCWR出口接管和蒸汽腔室概念结构设计和材料具备可行性.

  20. Heat transfer enhancement using tip and junction vortices

    Science.gov (United States)

    Gentry, Mark Cecil

    1998-10-01

    Single-phase convective heat transfer can be enhanced by modifying the heat transfer surface to passively generate streamwise vortices. The swirling flow of the vortices modifies the temperature field, thinning the thermal boundary layer and increasing surface convection. Tip vortices generated by delta wings and junction vortices generated by hemispherical protuberances were studied in laminar flat-plate and developing channel flows. Local and average convective measurements were obtained, and the structure of the vortices was studied using quantitative flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement was also investigated. Tip vortices generated by delta wings enhanced local convection by as much as 300% over a flat-plate boundary layer flow. Vortex strength increased with Reynolds number based on chord length, wing aspect ratio, and wing angle of attack. As the vortices were advected downstream, they decayed because of viscous interactions. In the developing channel flow, tip vortices produced a significant local heat transfer enhancement on both sides of the channel. The largest spatially averaged heat transfer enhancement was 55%; it was accompanied by a 100% increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator. Junction vortices created by hemispherical surface protuberances provided local heat transfer enhancements as large as 250%. Vortex strength increased with an increasing ratio of hemisphere radius to local boundary layer thickness on a flat plate. In the developing channel flows, heat transfer enhancements were observed on both sides of the channel. The largest spatially averaged heat transfer enhancement was 50%; it was accompanied by a 90% pressure drop penalty relative to the same channel flow with no hemispherical vortex generator. This research is important in compact heat exchanger design. Enhancing heat transfer can lead to

  1. Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) Study of Mass-Transfer Mechanisms in Riser Flow

    Science.gov (United States)

    2017-01-01

    We report a computational fluid dynamics–discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas–solid contact efficiencies. Cluster gas–solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors. PMID:28553011

  2. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.

  3. Evaluation of FSK models for radiative heat transfer under oxyfuel conditions

    Science.gov (United States)

    Clements, Alastair G.; Porter, Rachael; Pranzitelli, Alessandro; Pourkashanian, Mohamed

    2015-01-01

    Oxyfuel is a promising technology for carbon capture and storage (CCS) applied to combustion processes. It would be highly advantageous in the deployment of CCS to be able to model and optimise oxyfuel combustion, however the increased concentrations of CO2 and H2O under oxyfuel conditions modify several fundamental processes of combustion, including radiative heat transfer. This study uses benchmark narrow band radiation models to evaluate the influence of assumptions in global full-spectrum k-distribution (FSK) models, and whether they are suitable for modelling radiation in computational fluid dynamics (CFD) calculations of oxyfuel combustion. The statistical narrow band (SNB) and correlated-k (CK) models are used to calculate benchmark data for the radiative source term and heat flux, which are then compared to the results calculated from FSK models. Both the full-spectrum correlated k (FSCK) and the full-spectrum scaled k (FSSK) models are applied using up-to-date spectral data. The results show that the FSCK and FSSK methods achieve good agreement in the test cases. The FSCK method using a five-point Gauss quadrature scheme is recommended for CFD calculations in oxyfuel conditions, however there are still potential inaccuracies in cases with very wide variations in the ratio between CO2 and H2O concentrations.

  4. Effect of different magnetic field distributions on laminar ferroconvection heat transfer in horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhnejad, Yahya; Hosseini, Reza, E-mail: hoseinir@aut.ac.ir; Saffar-avval, Majid

    2015-09-01

    The forced convection heat transfer of ferrofluid steady state laminar flow through a circular axisymmetric horizontal pipe under different magnetic field is the focus of this study. The pipe is under constant heat flux while different linear axial magnetic fields were applied on the ferrofluid with equal magnetic energy. In this scenario, viscosity of ferrofluid is temperature dependent, to capture ferrofluid real behavior a nonlinear Langevin equation was considered for equilibrium magnetization. For this purpose, the set of nonlinear governing PDEs was solved using proper CFD techniques: the finite volume method and SIMPLE algorithm were used to discretize and numerically solve the governing equation in order to obtain thermohydrodynamic flow characteristics. The numerical results show a promising enhancement of up to 135.7% in heat transfer as a consequence of the application of magnetic field. The magnetic field also increases pressure loss of up to 77% along the pipe; but effectiveness (favorable to unfavorable effect ratio) of the magnetic field as a performance index economically justifies its application such that higher magnetic field intensity causes higher effectiveness of up to 1.364. - Highlights: • In this numerical study, the thermohydrodynamic characteristics of a laminar steady state ferroconvection was investigated in circular axisymmetric pipe under constant heat flux. • A magnetic field causes an increase in both pressure loss and heat transfer such that performance index remain acceptable for all linear distributions. • In constant total magnetic energy, an increase of magnetic field gradient tends to decrease the effectiveness slightly. • Magnetic field of lower gradient with high intensity is the best choice for both saving energy and heat transfer enhancement increase of up to 1.3638 and 135.65% respectively.

  5. Turbulent Heat Transfer Behavior of Nanofluid in a Circular Tube Heated under Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Shuichi Torii

    2010-01-01

    Full Text Available The aim of the present study is to disclose the forced convective heat transport phenomenon of nanofluids inside a horizontal circular tube subject to a constant and uniform heat flux at the wall. Consideration is given to the effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region. It is found that (i heat transfer enhancement is caused by suspending nanoparticles and becomes more pronounced with the increase of the particle volume fraction, (ii its augmentation is affected by three different nanofluids employed here, and (iii the presence of particles produces adverse effects on viscosity and pressure loss that also increases with the particle volume fraction.

  6. Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Natural Convection Condition in Tank

    Directory of Open Access Journals (Sweden)

    Qiming Men

    2014-01-01

    Full Text Available Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX, experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.

  7. Investigation of the effects of baffle orientation, baffle cut and fluid viscosity on shell side pressure drop and heat transfer coefficient in an e-type shell and tube heat exchanger

    OpenAIRE

    Mohammadi, Koorosh

    2011-01-01

    The commercial CFD code FLUENT is used to determine the effect of baffle orientation and baffle cut as well as viscosity of the working fluid on the shell-side heat transfer and pressure drop of a shell and tube heat exchanger. The shell and tube heat exchangers considered follow the TEMA standards. The investigation has been completed in three stages: 1. The shell and tube heat exchanger consists of 660 plain tubes with fixed outside diameter which are arranged in a triangular layout. Hor...

  8. Validation of CFD simulation for flat plate solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Selmi, Mohamed; Al-Khawaja, Mohammed J.; Marafia, Abdulhamid [Department of Mechanical Engineering, University of Qatar, P.O. Box 2713, Doha, State of Qatar (Qatar)

    2008-03-15

    The problem of flat plate solar energy collector with water flow is simulated and analyzed using computational fluid dynamics (CFD) software. The considered case includes the CFD modeling of solar irradiation and the modes of mixed convection and radiation heat transfer between tube surface, glass cover, side walls, and insulating base of the collector as well as the mixed convective heat transfer in the circulating water inside the tube and conduction between the base and tube material. The collector performance, after obtaining 3-D temperature distribution over the volume of the body of the collector, was studied with and without circulating water flow. An experimental model was built and experiments were performed to validate the CFD model. The outlet temperature of water is compared with experimental results and there is a good agreement. (author)

  9. CFD analysis of a diaphragm free-piston Stirling cryocooler

    Science.gov (United States)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-10-01

    This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.

  10. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    QUAN ZhenHua; CHEN YongChang; MA ChongFang

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface.The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su-persaturated solution.Based on experimental results of the fouling process,the deposition and removal rates of the mixing fouling were expressed.Furthermore,the coupling effect of temperature with the fouling process was considered in the physics model.As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions.The results showed that the present model could give a good prediction of fouling process,and the deviation was less than 15% of the experimental data in most cases.The new model is credible to predict the fouling process.

  11. Non intrusive measurement of the convective heat transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Rebay, M.; Mebarki, G.; Padet, J. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Arfaoui, A. [Reims Univ., Reims (France). Faculty of Science, GRESPI Thermomechanical Lab; Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM; Maad, B.R. [Tunis Univ., Tunis (Tunisia). Faculty of Science, EL MANAR, LETTM

    2010-07-01

    The efficiency of cooling methods in thermal systems such as radiators and heat exchangers must be improved in order to enhance performance. The evaluation of the heat transfer coefficients between a solid and a fluid is necessary for the control and the dimensioning of thermal systems. In this study, the pulsed photothermal method was used to measure the convective heat transfer coefficient on a solid-fluid interface, notably between an air flow and a heated slab mounted on a PVC flat plate. This configuration simulated the electronic air-cooling inside enclosures and racks. The influence of the deflector's inclination angle on the enhancement of heat transfer was investigated using 2 newly developed identification models. The first model was based on a constant heat transfer coefficient during the pulsed experiment, while the second, improved model was based on a variable heat transfer coefficient. The heat transfer coefficient was deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab. Temperature evolutions were derived by infrared thermography, a camera for cartography and a detector for precise measurement in specific locations. The results show the improvement of measurement accuracies when using a model that considers the temporal evolution of the convective heat transfer coefficient. The deflection of air flow on the upper surface of the heated slab demonstrated better cooling of the slab by the deflection of air flow. 11 refs., 1 tab., 8 figs.

  12. Computational Fluid Dynamics (CFD Analysis of Natural Convection of Convergent-Divergent Fins in Marine Environments

    Directory of Open Access Journals (Sweden)

    K. Alawadhi

    2014-12-01

    Full Text Available Computational Fluid Dynamics (CFD analysis was carried out for the convergent-divergent fins arranged inline and staggered on the base plate as per the experimental setup provided in the technical paper [1]. This paper reports on the validation of results of modeling and simulation in CFD. The simulation was carried out using the ANSYS 12.0 as the CFD modeling software. The main objective of the CFD analysis was to calculate the temperature distribution on the surface of the base plate and surface of the convergent-divergent fins for the given inline and staggered arrangement of fins due to the effect of natural convection heat transfer for different heat power inputs, and also to compare the CFD results with the experimental results.

  13. Heat transfer of suspended carbon nanotube yarn to gases

    Science.gov (United States)

    Wada, Yukiko; Kita, Koji; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji

    2016-08-01

    We investigate the pressure dependence of heat transfer to ambient gases for a suspended carbon nanotube yarn. The heat transport of the yarn including the heat exchange with surrounding gases is investigated using a simple one-dimensional heat transport model under Joule heating of the yarn. It is revealed that the effective diameter of the yarn for heat exchange is much smaller than the geometrical diameter of the yarn. This smaller effective diameter for heat exchange should contribute to realizing higher sensitivity and sensing over a wider range of pressures for heat-exchange-type vacuum gauges and flow sensors.

  14. HEAT TRANSFER ANALYSIS OF HEAT GENERATING WIRE USING FINITE ELEMENT METHOD

    OpenAIRE

    Dipak J. Parmar; Bhargav M. Chavda

    2000-01-01

    This paper describes the numerical results of the heat transfer from heat generating wire at different conditions by finite element method. The parametric effects on heat transfer were investigated. The varied parameters included ambient conditions, as well as the shape of the cross-section. The numerical results show that the type of the medium where the heat generating wire immerges has strong effects on the heatdissipation rate. As the size of the diameter the heat dis...

  15. NUMERICAL INVESTIGATION FOR THE HEAT TRANSFER ENHANCEMENT IN HELICAL CONE COILS OVER ORDINARY HELICAL COILS

    Directory of Open Access Journals (Sweden)

    M. M. ABO ELAZM

    2013-02-01

    Full Text Available This numerical research is introducing the concept of helical cone coils and their enhanced heat transfer characteristics compared to the ordinary helical coils. Helical and spiral coils are known to have better heat and mass transfer than straight tubes, which is attributed to the generation of a vortex at the helical coil known as Dean Vortex. The Dean number which is a dimensionless number used to describe the Dean vortex is a function of Reynolds number and the square root of the curvature ratio, so varying the curvature ratio for the same coil would vary the Dean number. Two scenarios were adopted to study the effect of changing the taper angle (curvature ratio on the heat transfer characteristics of the coil; the commercial software FLUENT was used in the investigation. It was found that Nusselt number increased with increasing the taper angle. A MATLAB code was built based on empirical correlation of Manlapaz and Churchill for ordinary helical coils to calculate the Nusselt number at each coil turn, and then calculate the average Nusselt number for the entire coil turns, the CFD simulation results were found acceptable when compared with the MATLAB results.

  16. Investigation of the effect of using tube inserts for the intensification of heat transfer

    Science.gov (United States)

    Goodarzi, K.; Goudarzi, S. Y.; Zendehbudi, Gh.

    2015-01-01

    In this work, heat transfer in channels containing inserts of different shapes was investigated using computational fluid dynamics (CFD) modeling techniques taking a gaslight water heater as an example. Three types of devices inserted in the water heater tube (flow swirlers) were investigated: star-shaped, coiled wire, and classic ones in the form of twisted tapes. In the present study, the RNG k-ɛ turbulence model is used to model the turbulent flow regime. This numerical simulation has been performed over a Reynolds number range of 5800-18500. In the studied range of Reynolds number the maximum thermal performance factor was obtained by the starry inserts with A star/ A inlet = 0.50. The results have exposed that also the use of all tube inserts leads to a considerable increase in heat transfer and pressure drop over the smooth tube. In addition, the results revealed that both heat transfer rate and friction factor in the tube equipped with starry insert were significantly higher than those in the tube fitted with the coiled wire inserts and classic twisted tape.

  17. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  18. Experimental and CFD-PBM Study of Oxygen Mass Transfer Coefficient in Different Impeller Configurations and Operational Conditions of a Two-Phase Partitioning Bioreactor.

    Science.gov (United States)

    Moradkhani, Hamed; Izadkhah, Mir-Shahabeddin; Anarjan, Navideh

    2017-02-01

    In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard "k-ε" Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie's penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).

  19. Improving Heat Transfer Performance of Printed Circuit Boards

    Science.gov (United States)

    Schatzel, Donald V.

    2009-01-01

    This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

  20. Experimental Investigation of Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Jensen, Rasmus Lund; Manz, H.

    2010-01-01

    is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night...

  1. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  2. Convective heat transfer measurement involving flow past stationary circular disks

    Energy Technology Data Exchange (ETDEWEB)

    Wedekind, G.L. (Oakland Univ., Rochester, MI (United States))

    1989-11-01

    Considerable empirical data exist in the literature for forced convection heat transfer involving external flow over a variety of geometries, and for various ranges of Reynolds number. This author is not aware of any published empirical data for forced convection heat transfer involving flow past a simple stationary circular disk, whose axis is perpendicular to the flow. Such is the purpose of this paper.

  3. Analytical Evalution of Heat Transfer Conductivity with Variable Properties

    DEFF Research Database (Denmark)

    Rahimi, Masoume; Hosseini, Mohammad Javad; Barari, Amin

    2011-01-01

    The homotopy analysis method (HAM) as a new technique which is powerful and easy-to-use, is applied to solve heat transfer problems. In this paper, we use HAM for heat transfer conductivity equation with variable properties which may contain highly nonlinear terms. The obtained results are also...

  4. Temperature fields in machining processes and heat transfer models

    Energy Technology Data Exchange (ETDEWEB)

    Palazzo, G.; Pasquino, R. [University of Salerno Via Ponte Donmelillo, Fisciano (Italy). Department of Mechanical Engineering; Bellomo, N. [Politecnico Torino Corso Duca degli Abruzzi, Torino (Italy). Department of Mathematics

    2002-07-01

    This paper deals with the modelling of the heat transfer process with special attention to the characterization of the thermal field during turning processes. Specifically, the measurement of the thermal field and the selection of the proper heat transfer models are dealt with. The analysis is developed in view of the solution of direct and inverse problems. (author)

  5. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  6. Enhanced radiative heat transfer between nanostructured gold plates

    CERN Document Server

    Guérout, R; Rosa, F S S; Hugonin, J -P; Dalvit, D A R; Greffet, J -J; Lambrecht, A; Reynaud, S

    2012-01-01

    We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

  7. A modified stanton number for heat transfer through fabric surface

    Directory of Open Access Journals (Sweden)

    Zhang Shen-Zhong

    2015-01-01

    Full Text Available The Stanton number was originally proposed for describing heat transfer through a smooth surface. A modified one is suggested in this paper to take into account non-smooth surface or fractal surface. The emphasis is put on the heat transfer through fabrics.

  8. Improving Heat Transfer Performance of Printed Circuit Boards

    Science.gov (United States)

    Schatzel, Donald V.

    2009-01-01

    This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

  9. THE ELECTRONIC COURSE OF HEAT AND MASS TRANSFER

    Directory of Open Access Journals (Sweden)

    Alexander P. Solodov

    2013-01-01

    Full Text Available The Electronic course of heat and mass transfer in power engineering is presented containing the full Electronic book as the structured hypertext document, the full set of Mathcad-documents with the whole set of educative computer models of heat and mass transfer, the computer labs, and selected educational presentations. 

  10. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  11. Similarity of Heat Transfer on Heat Source Elements in the Entrance Region in Electronic Equipment

    Institute of Scientific and Technical Information of China (English)

    Jane Z. Jiang; Sui Lin

    2001-01-01

    A similarity equation for heat transfer on heat source elements situated in the entrance region in electronic equipment is developed based on the experimental data obtained by Sparrow et al.[4]. The characteristic of the similarity equation is that the ratio of the heat transfer coefficient at the entrance region to that at the fully developed region is independent of the Reynolds number. It depends only on the row number of the elements situated in the entrance region. An example of the usefulness of the similarity equation is presented that determines the heat transfer on heat source elements in a power unit that contains only a small number of the heat source elements.

  12. HEAT TRANSFER ENHANCEMENT OF SMALL SCALE HEAT SINKS USING VIBRATING PIN FIN

    Directory of Open Access Journals (Sweden)

    Suabsakul Gururatana

    2013-01-01

    Full Text Available Heat sinks are widely adopted in electronics cooling together with different technologies to enhance the cooling process. For the small electronics application, the small scale pin fins heat sinks are extensively used to dissipate heat in electronics devices. Due to the limit of space in the small devices, it is impossible to increase heat transfer area. In order to improve the heat transfer performance, the applying the forced vibration is one of challenging method. This study applies the vibration frequency between 50 to 1,000 Hz to pin fins heat sinks. The results of numerical simulation clearly show satisfied heat transfer augmentation. However, the Pressure drop significantly increases with frequency. This phenomenon affects the heat transfer enhancement performance that it increases with frequency until certain value then it drops rapidly. The results of this study can help designing heat sinks for electronics cooling by employing the concept of vibration.

  13. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  14. Hydrodynamic and Heat Transfer Characteristics of Magnetofluidized Beds

    Institute of Scientific and Technical Information of China (English)

    S.C.Saxena; R.Z.Qian

    1994-01-01

    To investigate the flow and heat-transfer behaviors of magnetofluidized beds,an experimental facility was designed.A constant uniform magnetic field is produced by a Helmhotz electromagnet.The nature of fluidization and heat-transfer characteristics,of a horizontal electrically heated tube immersed in the bed were measured.The bed material is iron shots.Depending upon the intensity of magneticfield(weak,moderate and strong),the bed pressure drop and heat transfer coefficient are classified into three ranges of magnetic fields.The range of variation of maximum magnetic-field intensity is from 0 to about 20690 A/m.

  15. Heat Transfer Performance of Absorber of Absorption Refrigerating Machine

    Science.gov (United States)

    Kunugi, Yoshifumi; Ouchi, Tomihisa; Usui, Sanpei; Fukuda, Tamio

    Experimental studies on heat transfer performance of absorber for lithium bromide-water absorption refrigerating machine are presented in this paper. Experimental apparatus for 35 kW evaporator and absorber, and outer grooved tubes are used. As a result, over-al1 coefficient of heat transmission of absorber has a maximum value, in the case of heat transfer area ratio of absorber to evaporator, is about 0.8. Heat transfer rate of absorber is increased by 60% by using the outer grooved tube compared with the plane surfaced tube.

  16. Fem Formulation of Coupled Partial Differential Equations for Heat Transfer

    Science.gov (United States)

    Ameer Ahamad, N.; Soudagar, Manzoor Elahi M.; Kamangar, Sarfaraz; Anjum Badruddin, Irfan

    2017-08-01

    Heat Transfer in any field plays an important role for transfer of energy from one region to another region. The heat transfer in porous medium can be simulated with the help of two partial differential equations. These equations need an alternate and relatively easy method due to complexity of the phenomenon involved. This article is dedicated to discuss the finite element formulation of heat transfer in porous medium in Cartesian coordinates. A triangular element is considered to discretize the governing partial differential equations and matrix equations are developed for 3 nodes of element. Iterative approach is used for the two sets of matrix equations involved representing two partial differential equations.

  17. Second Law Analysis in Convective Heat and Mass Transfer

    Directory of Open Access Journals (Sweden)

    A. Ben Brahim

    2006-02-01

    Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.

  18. Numerical investigation of flow and heat transfer in a novel configuration multi-tubular fixed bed reactor for propylene to acrolein process

    Science.gov (United States)

    Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming

    2015-01-01

    In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.

  19. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

    Science.gov (United States)

    Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; Woodiga, Sudesh

    2012-01-01

    This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

  20. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface......A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...

  1. Bed-to-wall heat transfer in a downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, P.; Wirth, K-E. [Erlangen-Nuremberg Univ., Lehrstuhl Mechanische Verfahrenstechnik, Erlangen (Germany)

    1999-04-01

    The effects of superficial gas velocity, solid circulating rate, suspension density and particle sizes on the bed-to-wall heat transfer coefficient have been determined in a downer reactor 3.5 m high , with an internal diameter of 0.1 m. Results showed an increase in the bed-to-wall heat transfer coefficient with increasing suspension density. The heat transfer coefficient by gas convection was found to play a significant role, especially at lower solid circulation rates or suspension densities and larger particle sizes. It was determined that at a given particle suspension density in the downer reactor, the heat transfer coefficient increase with decreasing particle size. A model was proposed to determine the bed-to-wall heat transfer coefficient in a downer reactor. 24 refs., 1 tab., 8 figs.

  2. Phononic heat transfer across an interface: thermal boundary resistance.

    Science.gov (United States)

    Persson, B N J; Volokitin, A I; Ueba, H

    2011-02-02

    We present a general theory of phononic heat transfer between two solids (or a solid and a fluid) in contact at a flat interface. We present simple analytical results which can be used to estimate the heat transfer coefficient (the inverse of which is usually called the 'thermal boundary resistance' or 'Kapitza resistance'). We present numerical results for the heat transfer across solid-solid and solid-liquid He contacts, and between a membrane (graphene) and a solid substrate (amorphous SiO(2)). The latter system involves the heat transfer between weakly coupled systems, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  3. Modelling of Heat Transfer in Single Crystal Growth

    CERN Document Server

    Zhmakin, Alexander I

    2014-01-01

    An attempt is made to review the heat transfer and the related problems encountered in the simulation of single crystal growth. The peculiarities of conductive, convective and radiative heat transfer in the different melt, solution, and vapour growth methods are discussed. The importance of the adequate description of the optical crystal properties (semitransparency, specular reflecting surfaces) and their effect on the heat transfer is stresses. Treatment of the unknown phase boundary fluid/crystal as well as problems related to the assessment of the quality of the grown crystals (composition, thermal stresses, point defects, disclocations etc.) and their coupling to the heat transfer/fluid flow problems is considered. Differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated. The problems of the code verification and validation are discussed; a brief review of the experimental techniques for the study of heat transfer and flow structu...

  4. Heat transfer between elastic solids with randomly rough surfaces.

    Science.gov (United States)

    Volokitin, A I; Lorenz, B; Persson, B N J

    2010-01-01

    We study the heat transfer between elastic solids with randomly rough surfaces.We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the non-contact regions.We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.

  5. CFD Studies on Multi Lead Rifled [MLR] Boiler Tubes

    Directory of Open Access Journals (Sweden)

    Dr T C Mohankumar

    2013-09-01

    Full Text Available This paper reports the merits of multi lead rifled [MLR] tubes in vertical water tube boiler using CFD tool. Heat transfer enhancement of MLR tubes was mainly taken in to consideration. Performance of multi lead rifled tube was studied by varying its influencing geometrical parameter like number of rifling, height of rifling, length of pitch of rifling for a particular length. The heat transfer analysis was done at operating conditions of an actual coal fired water tube boiler situated at Apollo Tyres LTD, Chalakudy, India for saturated process steam production. The results showed that the heat transfer increased when compared with existing inner plane wall water tubes.

  6. Flow and heat transfer in compact offset strip fin surfaces

    Institute of Scientific and Technical Information of China (English)

    Junqi DONG; Jiangping CHEN; Zhijiu CHEN

    2008-01-01

    Experimental studies of air-side heat transfer and pressure drop characteristics of offset strip fins and flat tube heat exchangers were performed. A series of tests were conducted for 9 heat exchangers with different fin space, fin height, fin strip length and flow length, at a constant tube-side water flow rate of 2.5 m3/h. The char-acteristics of the heat transfer and pressure drop of differ-ent fin space, fin height and fin length were analyzed and compared. The curves of the heat transfer coefficients vs. The pumping power per unit frontal area were then plot-ted. Moreover, the enhanced heat transfer mechanism of offset strip fins was analyzed using field synergy theory. The results showed that fin length and flow length have more obviously effect on the thermal hydraulic character-istics of offset strip fins.

  7. Conjugate heat transfer with the entropic lattice Boltzmann method.

    Science.gov (United States)

    Pareschi, G; Frapolli, N; Chikatamarla, S S; Karlin, I V

    2016-07-01

    A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.

  8. Heat transfer to finned tubes exposed to hot waste gas

    Energy Technology Data Exchange (ETDEWEB)

    Scholand, E.; Kremer, H.

    1975-05-01

    Transfer of heat by forced convection to finned tubes, particularly to those with an elliptical center pipe, is described. These pipes are used in gas-fired water heaters, boilers, and heat exchangers. Finned tubes in a test tunnel were exposed to a stream of waste gas from a gas/air mixture at different Reynolds numbers. Mathematical relationships showing the dependence of the Nusselt number on the Reynolds number and on the geometry of the tubes were derived. The single pipe showed a significant drop in the heat-transfer coefficient as the gap between fins became closer. The results of the measurement of heat transfer by forced convection to finned tubes were expressed in a standard form for all tubes. The same heat transfer law can be applied to electrically heated finned tubes exposed to a stream of cooling air.

  9. Non-Uniform Heat Transfer in Thermal Regenerators

    DEFF Research Database (Denmark)

    Jensen, Jesper Buch

    This thesis presents investigations on the heat transfer in complex heat ex- changers in general and in regenerative heat exchangers (regenerators) in par- ticular. The motivation for this work is a result of inconsistencies obeserved in the results from a series of experiments on active magnetic...... regenerators (AMRs) with parallel plates. The results suggest that random variations in the regenerator geometries causes maldistributed fluid flow inside the regener- ators, which affects the regenerator performance. In order to study the heat transfer processes in regenerators with non-uniform geometries......, a numerical model, which simulates a single-blow operation in a parallel-plate regenerator, was developed and used to model the heat transfer under various conditions. In addition to the modeling of the heat transfer, a series of experiments on passive regenerators with non-uniform, but precisely controlled...

  10. Experimental investigation of heat transfer and pressure drop in fin-tube waste heat recovery heat exchangers

    OpenAIRE

    2014-01-01

    The aim of this master thesis was to investigate heat transfer and pressure drop of fin-tube heat exchangers. Experimental investigations of heat transfer and pressure drop in fin-tube bundles has been performed. The main focus was to investigate the influence of the fin height and the fin tip clearance. The effect of the uneven heat transfer distribution on the heat transfer coefficient has been analyzed.A literature survey has been dedicated to investigate the influence of the fin height an...

  11. Analysis of mass transfer characteristics in a tubular membrane using CFD modeling.

    Science.gov (United States)

    Yang, Jixiang; Vedantam, Sreepriya; Spanjers, Henri; Nopens, Ingmar; van Lier, Jules B

    2012-10-01

    In contrast to the large amount of research into aerobic membrane bioreactors, little work has been reported on anaerobic membrane bioreactors (AMBRs). As to the application of membrane bioreactors, membrane fouling is a key issue. Membrane fouling generally occurs more seriously in AMBRs than in aerobic membrane bioreactors. However, membrane fouling could be managed through the application of suitable shear stress that can be introduced by the application of a two-phase flow. When the two-phase flow is applied in AMBRs, little is known about the mass transfer characteristics, which is of particular importance, in tubular membranes of AMBRs. In our present work, we have employed fluid dynamic modeling to analyze the mass transfer characteristics in the tubular membrane of a side stream AMBR in which, gas-lift two-phase flow was applied. The modeling indicated that the mass transfer capacity at the membrane surface at the noses of gas bubbles was higher than the mass transfer capacity at the tails of the bubbles, which is in contrast to the results when water instead of sludge is applied. At the given mass transfer rate, the filterability of the sludge was found to have a strong influence on the transmembrane pressure at a steady flux. In addition, the model also showed that the shear stress in the internal space of the tubular membrane was mainly around 20 Pa but could be as high as about 40 Pa due to gas bubble movements. Nonetheless, at these shear stresses a stable particle size distribution was found for sludge particles.

  12. Mathematical Model of Moving Heat-Transfer Agents

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2010-01-01

    Full Text Available A mathematical model of moving heat-transfer agents which is applied in power systems and plants has been developed in the paper. A paper presents the mathematical model as a closed system of differential convective heat-transfer equations that includes a continuity equation, a motion equation, an energy equation.Various variants of boundary conditions on the surfaces of calculation flow and heat exchange zone are considered in the paper.

  13. Laser Measurement Of Convective-Heat-Transfer Coefficient

    Science.gov (United States)

    Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

    1994-01-01

    Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

  14. Heat transfer in Rockwool modelling and method of measurement. The effect of natural convection on heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For large thickness dimensions the resulting heat transfer through the

  15. Flow characteristics and heat transfer in wavy walled channels

    Science.gov (United States)

    Mills, Zachary; Shah, Tapan; Monts, Vontravis; Warey, Alok; Balestrino, Sandro; Alexeev, Alexander

    2013-11-01

    Using lattice Boltzmann simulations, we investigated the effects of wavy channel geometry on the flow and heat transfer within a parallel plate heat exchanger. We observed three distinct flow regimes that include steady flow with and without recirculation and unsteady time-periodic flow. We determined the critical Reynolds numbers at which the flow transitions between different flow regimes. To validate our computational results, we compared the simulated flow structures with the structures observed in a flowing soap film. Furthermore, we examine the effects of the wavy channel geometry on the heat transfer. We find that the unsteady flow regime drastically enhances the rate of heat transfer and show that heat exchangers with wavy walls outperform currently used heat exchangers with similar volume and power characteristics. Results from our study point to a simple and efficient method for increasing performance in compact heat exchangers.

  16. Some observations on the historical development of conduction heat transfer

    Science.gov (United States)

    Cheng, Kwo Chang

    An attempt is made to obtain historical perspectives on the development of the mathematical theory of heat conduction considering Newton's law of cooling (1701) and its close connection with Fourier's work from 1807 to 1822 resulting in his epoch-making treatise on "The Analytical Theory of Heat". Fourier was the principal architect of the heat conduction theory. Fourier's work established a new methodology for the formulation and solution of physical problems, based on partial differential equations and marked a major turning point in the history of physics. The developments in the periods 1822 to 1900 and 1900 to 1950 are also briefly reviewed as are the classical (analytical) and numerical methods of solution for heat conduction problems. The analogy in heat, momentum, and mass transfer for transport phenomena is discussed. A list of recent conduction heat transfer books is presented to show the scope of recent developments. Some observations on conduction heat transfer are noted.

  17. Convective heat transfer enhancement using Carbon nanofibers (CNFs): influence of amorphous carbon layer on heat transfer performance

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2013-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic

  18. Convective heat transfer enhancement using Carbon nanofibers (CNFs): influence of amorphous carbon layer on heat transfer performance

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, L.; Meer, van der T.H.

    2013-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic

  19. A heterogeneous model for heat transfer in packed beds

    NARCIS (Netherlands)

    Wijngaarden, R.J.; Westerterp, K.R.

    1993-01-01

    If transient heat transfer occurs in a packed bed or a reaction is carried out on the pellets, the heterogeneity of the bed is essential because of the heat flow between pellets and gas. Global heat parameters for the packed bed, such as λeff and αw, are usually derived from homogeneous models. Ther

  20. Heat Transfer Analysis for Industrial AC Electric Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    (U)nal (C)amdali; Murat Tun(c)

    2005-01-01

    The heat transfer analysis was performed for an AC electric arc furnace (EAF). Heat losses by conduction, convection and radiation from outer surface, roof, bottom and electrodes of EAF were determined in detail. Some suggestions about decreasing heat losses were presented.

  1. Anode heat transfer in a constricted tube arc.

    Science.gov (United States)

    Lukens, L. A.; Incropera, F. P.

    1971-01-01

    The complex energy exchange mechanisms occurring on the most severely heated component of an arc constrictor, the anode, have been investigated. Measurements performed to determine the anode heat flux for a cascade, atmospheric argon arc of the Maecker type are described. The results are used to check the validity of an existing anode heat transfer model.

  2. Investigation of heat transfer for extruded polymers cooled in water

    CSIR Research Space (South Africa)

    Kumar, R

    2015-10-01

    Full Text Available part, the time taken by PE, PP and PLA to lose heat in water was analyzed theoretically with the help of MATLAB software package by taking into account the density, thermal conductivity, heat transfer coefficient and specific heat. The time taken...

  3. The heat transfer mechanisms in fluidized beds; Laemmoensiirtomekanismit leijukerroksessa

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C.J.; Blomster, A.M.; Kojola, H. [Helsinki Univ. of Technology, Espoo (Finland)

    1996-12-01

    The goal of the research project is to improve the accuracy of the heat transfer correlation in circulating fluidized beds and to define how the heat transfer is distributed in radiation and convection in the different parts of the fluidized bed. This will be carried out by studying the behaviour and heat transfer of the fluidized bed in the boundary layer near the wall. The total and radiative heat transfer as well as the particle concentration will be measured. Based on the data a correlation will be created. Two different measurement systems are used. The particle concentration is measured by a image-analysis system. A video camera and a Super VHS recorder are used to capture live images from the bed. The images are digitized and stored on a PC. The system has been used in previous research projects at our laboratory. In earlier projects all measurements have been carried out in cold environments. In this project the system will be modified for hot environments. The radiative heat transfer is measured by a radiative heat transfer probe connected to a PC via an A/D converter. The probe consists of a heat flow detector which is isolated from the bed by a sapphire window so that only the radiative part of the heat transfer is detected. The probe will be calibrated in a black body oven so that the effect of the conduction and the sapphire window can be separated. (author)

  4. Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network

    Science.gov (United States)

    Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

    2015-12-01

    Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.

  5. Simulation of Heat Transfer to the Gas Coolant with Low Prandtl Number Value

    Directory of Open Access Journals (Sweden)

    T. N. Kulikova

    2015-01-01

    Full Text Available The work concerns the simulating peculiarities of heat transfer to the gas coolants with low values of the Prandtl number, in particular, to the binary mixtures of inert gases.The paper presents simulation results of heat transfer to the fully established flow of a helium-xenon mixture in the round tube of 6 mm in diameter with the boundary condition of the second kind. It considers a flow of three helium-xenon mixtures with different helium content and molecular Prandtl numbers within the range 0.239–0.322 and with Reynolds numbers ranged from 10000 to 50000. During numerical simulation a temperature factor changed from 1.034 to 1.061. CFD-code STAR-CCM+ that is designed for solving a wide range of problems of hydrodynamics, heat transfer and stress was used as the primary software.The applicability of the five models for the turbulent Prandtl number is examined. It is shown that the choice of the model has a significant influence on the heat transfer coefficient. The paper presents structural characteristics of the flow in the wall region. It estimates a thermal stabilization section to be approximately as long as 30 diameters of tube.Simulation results are compared with the known data on heat transfer to gas coolants with low values of the Prandtl number. It is shown that V2F low-Reynolds number -ε turbulence model with an approximation for the turbulent Prandtl number used according Kays-CrawfordWeigand gives the best compliance with the results predicted by relationships of Kays W.M. and Petukhov B.S. The approximating correlation summarizes a set of simulation results.Application of the work results is reasonable when conducting the numerical simulation of heat transfer to binary gas mixtures in channels of different forms. The presented approximating correlation allows rapid estimate of heat transfer coefficients to the gas coolants with a low value of the molecular Prandl number within the investigated range with a flow through the

  6. Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel

    Institute of Scientific and Technical Information of China (English)

    M.M.RASHIDI; A.HOSSEINI; I.POP; S.KUMAR; N.FREIDOONIMEHR

    2014-01-01

    The main purpose of this study is to survey numerically comparison of two-phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature field in the single phase and two-phase models are greater than those in the hydrodynamic field. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.

  7. The Effective Convectivity Model for Simulation of Molten Metal Layer Heat Transfer in a Boiling Water Reactor Lower Head

    Directory of Open Access Journals (Sweden)

    Chi-Thanh Tran

    2013-01-01

    Full Text Available This paper is concerned with the development of approaches for assessment of core debris heat transfer and Control Rod Guide Tube (CRGT cooling effectiveness in case of a Boiling Water Reactor (BWR severe accident. We consider a hypothetical scenario with stratified (metal layer atop melt pool in the lower plenum. Effective Convectivity Model (ECM and Phase-Change ECM (PECM are developed for the modeling of molten metal layer heat transfer. The PECM model takes into account reduced convection heat transfer in mushy zone and compositional convection that enables simulations of noneutectic binary mixture solidification and melting. The ECM and PECM are (i validated against relevant experiments for both eutectic and noneutectic mixtures and (ii benchmarked against CFD-generated data including the local heat transfer characteristics. The PECM is then applied to the analysis of heat transfer in a stratified heterogeneous debris pool taking into account CRGT cooling. The PECM simulation results show apparent efficacy of the CRGT cooling which can be utilized as Severe Accident Management (SAM measure to protect the vessel wall from focusing effect caused by metallic layer.

  8. Identification of interfacial heat transfer between molten metal and green sand by inverse heat conduction method

    Science.gov (United States)

    Ke, Quanpeng

    Heat flux and heat transfer coefficients at the interfaces of castings and molds are important parameters in the mold design and computer simulations of the solidification process in foundry operations. A better understanding of the heat flux and heat transfer coefficient between the solidifying casting and its mold can promote model design and improve the accuracy of computer simulation. The main purpose of the present dissertation involves the estimation of the heat flux and heat transfer coefficient at the interface of the molten metal and green sand. Since the inverse heat conduction method requires temperature measurement data to deduce the missing surface information, it is suitable for the present research. However, heat transfer inside green sand is complicated by the migration of water vapor and zonal temperature distribution results. This makes the solution of the inverse heat conduction problem more challenging. In this dissertation, Galerkin's method of Weighted Residual together with the front tracking technique is used in the development of a forward solver. Beck's future time step method incorporated with the Gaussian iterative minimization method is used as the inverse solver. The mathematical descriptions of the sensitivity coefficient for both the direct heat flux and direct heat transfer coefficient estimation are derived. The variations of the sensitivity coefficients with time are revealed. From the analysis of sensitivity coefficients, the concept of blank time period is proposed. This blank time period makes the inverse problem much more difficult. A total energy balance criterion is used to combat this. Numerical experiments confirmed the accuracy and robustness of both the direct heat flux estimation algorithm and the direct heat transfer coefficient estimation algorithm. Finally, some pouring experiments are carried out. The inverse algorithms are applied to the estimation of the heat flux and heat transfer coefficient at the interface of

  9. Numerical Simulation on Flow and Heat Transfer Performance of Air-cooler for a Natural Gas Storage Compressor Unit

    Science.gov (United States)

    Liu, Biyuan; Zhang, Feng; Ma, Zenghui; Zheng, Zilong; Feng, Jianmei

    2017-08-01

    Heat transfer efficiency has been a key issue for large size air coolers with the noise reducers used in natural gas storage compressor unit, especially operated in summer with cooling air at a high temperature. The 3-D numerical simulation model of the whole air cooler was established to study the flow field characteristic with different inlet and outlet structures by CFD software. The system pressure loss distributions were calculated. The relationship was obtained among heat exchange efficiency, resistance loss, and the structure of air cooler, the results presented some methods to improve cooling air flow rate and heat exchange efficiency. Based on the results, some effective measures were proposed to improve heat exchanger efficiency and were implemented in the actual operation unit.

  10. A combined study of heat and mass transfer in an infant incubator with an overhead screen.

    Science.gov (United States)

    Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C

    2007-06-01

    The main objective of this study is to investigate the major physical processes taking place inside an infant incubator, before and after modifications have been made to its interior chamber. The modification involves the addition of an overhead screen to decrease radiation heat losses from the infant placed inside the incubator. The present study investigates the effect of these modifications on the convective heat flux from the infant's body to the surrounding environment inside the incubator. A combined analysis of airflow and heat transfer due to conduction, convection, radiation and evaporation has been performed, in order to calculate the temperature and velocity fields inside the incubator before and after the design modification. Due to the geometrical complexity of the model, computer-aided design (CAD) applications were used to generate a computer-based model. All numerical calculations have been performed using the commercial computational fluid dynamics (CFD) package FLUENT, together with in-house routines used for managing purposes and user-defined functions (UDFs) which extend the basic solver capabilities. Numerical calculations have been performed for three different air inlet temperatures: 32, 34 and 36 degrees C. The study shows a decrease of the radiative and convective heat losses when the overhead screen is present. The results obtained were numerically verified as well as compared with results available in the literature from investigations of dry heat losses from infant manikins.

  11. Numerical Simulation of Heat Transfer in a Gas Solid Crossflow Moving Packed Bed Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    Anyuan Liu; Shi Liu; Yufeng Duan; Zhonggang Pan

    2001-01-01

    The mechanism of heat transfer in a crossfiow moving packed bed heat transfer exchanger is analyzed and a two dimensional heat transfer mathematical model has been developed based on the two fluid model (TFM) approach, in which both phases are considered to be continuous and fully interpenetrating. This model is solved by means of numerical method and the results are approximately in agreement with the experimental ones.

  12. Benchmarking the Performance of the ANSYS-FLUENT Standard k- ε Turbulence Model in Fluid Flow and Heat Transfer Predictions for Complex Flows around Circular Pin-Fins Using Various near Wall Functions

    Directory of Open Access Journals (Sweden)

    A. Al-Witry

    2013-05-01

    Full Text Available This study compares CFD analyses of the fluid flow and heat transfer phenomena in a popular pin-fin geometry of X/D = 2.5, S/D = 2.5 and H/D = 1 for a range of Re = 5,000 to 30,000 to those from experiment to aid in the benchmarking the performance of the CFD code FLUENT. The CFD analyses use three ANSYS-FLUENT (version 13 near wall treatments available within the code: 1 the Standard Wall Function (SWF, 2 the Non-Equilibrium Wall Function (NEWF and 3 the enhanced wall treatment. Experimental data used in this study were obtained from two papers: 1 by Chyu et al. (1998 for heat transfer predictions and another 2 by Metzgeret al. (1984 for pressure loss predictions, both for the same setup. The study also differentiates between the heat transfer occurring by the body of the pin-fin itself and that by the end-wall areas surrounding it. Results from the CFD analyses based on the fourth pin-fin from the inlet (commonly assumed to have a stable flow around it, show very good prediction accuracies of heat transfer coefficients for the pin-fin body itself but rather low accuracies for the end-wall areas (based on heat flux and inlet temperature values. Better accuracies were obtained when using the enhanced wall treatment where pin-fin body heat transfer coefficients were almost identical between the CFD and experimental results. An alternative definition of heat transfer based on the averaged local temperatures around the fourth pin-fin showed that the heat transfer coefficient then (with CFD's capability to establish the local thermal field is really between 1.5 to 3.5 times that predicted by using the inlet temperature in deducing the local h values. The same accuracies cannot be said about its predictions of pressure loss coefficients where CFD results tended to be lower by 50-100%h.

  13. Heat transfer in flow past a continuously moving porous flat plate with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sarma, Y.V.B.

    The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...

  14. Calculating mass transfer from vertical wet fabrics using a free convection heat transfer correlation

    Energy Technology Data Exchange (ETDEWEB)

    Tafreshi, H. Vahedi; Ercan, E.; Pourdeyhimi, B. [North Carolina State University, Nonwovens Cooperative Research Center, Raleigh, NC (United States)

    2006-07-15

    In this note, the evaporation rate from a vertical wet fabric sheet is calculated using a free convection heat transfer correlation. Chilton-Colburn analogy is used to derive a mass transfer correlation from a heat transfer correlation proposed by Churchill and Chu for free convection from a vertical isothermal plate. The mass transfer rate obtained from this expression has shown excellent agreement with experimental data. (orig.)

  15. Coupled TRNSYS-CFD simulations evaluating the performance of PCM plate heat exchangers in an Airport Terminal building displacement conditioning system

    OpenAIRE

    Gowreesunker, BL; Tassou, SA; Kolokotroni, M

    2013-01-01

    This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier. This paper reports on the energy performance evaluation of a displacement ventilation (DV) system in an airport departure hall, with a conventional DV diffuser and a diffuser retrofitted with a phase change material storage heat exchanger (PCM-HX). A TRNSYS-CFD quasi-dynamic coupled simulation method was employed for the analysis, whereby TRNSYS® sim...

  16. Analytical approach for the effect of melting heat transfer on nanofluid heat transfer

    Science.gov (United States)

    Sheikholeslami, M.; Nimafar, M.; Ganji, D. D.

    2017-09-01

    In this article, the impact of melting heat transfer on nanofluid flow in the presence of Lorentz forces is reported. Different shapes of nanoparticles are considered. The impacts of Joule heating, viscous dissipation and thermal radiation are added in the governing equations. The Homotopy Analysis Method (HAM) is selected to solve Ordinary Differential Equations (ODEs). The roles of nanofluid volume fraction, shape of the nanoparticles, Hartmann number, porosity parameter, melting parameter, Eckert number are presented graphically. The results reveal that choosing a platelet shape leads to the maximum Nusselt number. The temperature reduces with the rise of the melting parameter but velocity increases with the increase of the melting parameter. Nu augments with the increase of the Lorentz forces while it reduces with the augment of porosity and melting parameters.

  17. Analytical Solution of Coupled Laminar Heat-Mass Transfer in a Tube with Uniform Heat Flux

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    Analytical solution is obtained of coupled laminar heat-mass transfer in a tube with uniform heat flux.This corresponds to the case when a layer of sublimable material is coated on the inner surface of a tube with its outer surface heated by uniform heat flux and this coated material will sublime as gas flows throught the tube.

  18. Simulation of Heat Transfer of Heating-System and Water Pipelines Under Northern Conditions

    Science.gov (United States)

    Stepanov, A. V.; Egorova, G. N.

    2016-09-01

    A mathematical model of joint laying of water pipelines and of city-block heating-system pipelines is considered. The effect of radiation on the process of combined heat transfer in the heat insulation jacket between the construction elements is investigated. The results of mathematical simulation of heat losses with account of the radiant component are given.

  19. Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device

    OpenAIRE

    Veidenbergs, I; Blumberga, D; Vīgants, E; Kozuhars, G

    2010-01-01

    The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the Microsoft Office Excel environment...

  20. Oil Circulation Effects on Evaporation Heat Transfer in Brazed Plate Heat Exchanger using R134A

    OpenAIRE

    Jang, Jaekyoo; Chang, Youngsoo; Kang, Byungha

    2012-01-01

    Experimental study was performed for oil circulation effects on evaporation heat transfer in the brazed type plate heat exchangers using R134A. In this study, distribution device was installed to ensure uniform flow distribution in the refrigerant flow passage, which enhances heat transfer performance of plate type heat exchanger. Tests were conducted for three evaporation temperature; 33℃, 37℃, and 41℃ and several oil circulation conditions. The nominal conditions of refrigerant are as follo...