WorldWideScience

Sample records for heat storage medium

  1. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  2. Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix

    International Nuclear Information System (INIS)

    Kumar, Ashish; Saha, Sandip K.

    2016-01-01

    Graphical abstract: I. Metal matrix is used as the thermal conductivity enhancers (TCE) in PCM-based TES. II. Time evolution second law analysis is evaluated for different porosities and pore diameters. III. Reduction in fluctuation in HTF temperature is significantly affected by the change in porosity (ε) shown in figure. IV. Maximum energy and exergy efficiencies are obtained for porosity of 0.85. V. Effect of pore diameter on first law and second law efficiencies is found to be marginal. - Abstract: Thermal energy storage system in a concentrating solar plant (CSP) reduces the gap between energy demand and supply caused by the intermittent behaviour of solar radiation. In this paper, detailed exergy and energy analyses of shell and tube type latent heat thermal storage system (LHTES) for medium temperature solar thermal power plant (∼200 °C) are performed to estimate the net useful energy during the charging and discharging period in a cycle. A commercial-grade organic phase change material (PCM) is stored inside the annular space of the shell and the heat transfer fluid (HTF) flows through the tubes. Thermal conductivity enhancer (TCE) in the form of metal matrix is embedded in PCM to augment heat transfer. A numerical model is developed to investigate the fluid flow and heat transfer characteristics using the momentum equation and the two-temperature non-equilibrium energy equation coupled with the enthalpy method to account for phase change in PCM. The effects of storage material, porosity and pore-diameter on the net useful energy that can be stored and released during a cycle, are studied. It is found that the first law efficiency of sensible heat storage system is less compared to LHTES. With the decrease in porosity, the first law and second law efficiencies of LHTES increase for both the charging and discharging period. There is no significant variation in energy and exergy efficiencies with the change in pore-diameter of the metal matrix.

  3. Trial production of ceramic heat storage unit and study on thermal properties and thermal characteristics of the heat storage unit. Mixed salts of Na2CO3, MgCl2 and CaCl2 as heat storage medium

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    1998-12-01

    Heat storage technique of high temperature and high density latent heat can be applied to an accumulator of heat generated by nuclear power plant in the night and to a thermal load absorber. For the practical use of the heat storage technique, it is important to improve heat exchange characteristics between heat storage medium, such as molten salts, and heat transfer fluid because of low thermal conductivity of the molten salts, to improve durability among molten salt and structure materials and to develop the molten salt with stable thermal properties for a long period. Considering the possibility for the improvement of heat exchange characteristics of phase change heat storage system by absorbing molten salt in porous ceramics with high thermal conductivity, high temperature proof and high resistance to corrosion, several samples of the ceramics heat storage unit were made. Basic characteristics of the samples (strength, thermal properties, temperature characteristics during phase change) were measured experimentally and analytically to study the utility and applicability of the samples for the heat storage system. The results show that the heat storage unit should be used in inactive gas condition because water in the air absorbed in the molten salts would yield degeneration of properties and deterioration of strength and that operation temperature should be confined near fusion temperature because some molten salts would be vaporized and mass would be decreased in considerable high temperature. The results also show that when atmospheric temperature changes around the melting temperature, change in ceramic temperature becomes small. This result suggests the possibility that ceramic heat storage unit could be used as thermal load absorber. (J.P.N.)

  4. A basic study on Thermosyphon-type thermal storage unit (TSU) using Nanofluid as the heat transfer medium

    Science.gov (United States)

    Li, Shuang-Fei; Wang, Ping-Yang; Liu, Zhen-hua

    2017-11-01

    This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.

  5. A basic study on Thermosyphon-type thermal storage unit (TSU) using Nanofluid as the heat transfer medium

    Science.gov (United States)

    Li, Shuang-Fei; Wang, Ping-Yang; Liu, Zhen-hua

    2018-05-01

    This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.

  6. Use of salt hydrates as a heat storage medium for loading latent heat stores

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1985-05-15

    The use of salt hydrate melting in the loading process is not favourable from the technical and energy point of view. According to the invention, a saturated solution is filled into the store at the required phase conversion point. This can be done by neutralization (e.g. a reaction between H/sub 3/PO4/NaOH/H/sub 2/O in the mol ratio of 1/2/10 gives Na/sub 2/HPO/sub 4/.12H/sub 2/O corresponding to Na/sub 2/SO/sub 4/.10H/sub 2/O), or by conversion of acid/basic salts with bases/acids respectively (e.g.Na/sub 3/PO/sub 4//H/sub 3/PO/sub 4//H/sub 2/O in the ratio 2/1/36 to Na/sub 2/HPO/sub 4/.12H/sub 2/O, analogous to K/sub 3/PO/sub 4/.7H/sub 2/O, KF.4H/sub 2/O or CaCl/sub 2/.6H/sub 2/O). During the process one must ensure accurate dosing and good mixing. A saturated solution is also available by dissolving salts free of water/or with little water in appropriate quantities of water below the melting point of the required hydrate. Such systems are used where the phase change heat exceeds the heat capacity of the water at this temperature and the hydrates should contain at least three crystal water molecules more than the nearest hydrate.

  7. Natural convection along a heated vertical plate immersed in a nonlinearly stratified medium: application to liquefied gas storage

    Science.gov (United States)

    Forestier, M.; Haldenwang, P.

    We consider free convection driven by a heated vertical plate immersed in a nonlinearly stratified medium. The plate supplies a uniform horizontal heat flux to a fluid, the bulk of which has a stable stratification, characterized by a non-uniform vertical temperature gradient. This gradient is assumed to have a typical length scale of variation, denoted Z0, while 0, and the physical properties of the medium.We then apply the new theory to the natural convection affecting the vapour phase in a liquefied pure gas tank (e.g. the cryogenic storage of hydrogen). It is assumed that the cylindrical storage tank is subject to a constant uniform heat flux on its lateral and top walls. We are interested in the vapour motion above a residual layer of liquid in equilibrium with the vapour. High-precision axisymmetric numerical computations show that the flow remains steady for a large range of parameters, and that a bulk stratification characterized by a quadratic temperature profile is undoubtedly present. The application of the theory permits a comparison of the numerical and analytic results, showing that the theory satisfactorily predicts the primary dynamical and thermal properties of the storage tank.

  8. Passive Residential Houses with the Accumulation Properties of Ground as a Heat Storage Medium

    Science.gov (United States)

    Ochab, Piotr; Kokoszka, Wanda; Kogut, Janusz; Skrzypczak, Izabela; Szyszka, Jerzy; Starakiewicz, Aleksander

    2017-12-01

    Solar radiation is the primary source of life energy on Earth. The irradiance of the upper atmosphere is about 1360 W/m2, and it is estimated that about 1000 W/m2 reaches the ground. Long-term storage of heat energy is related to the use of a suitable thermal energy carrier. It may be either artificial or natural water tank, or artificial gravel-water tank, or aquifer or soil. It is justified to store the generated energy in large heating systems due to the nature of solar thermal energy. Typically, in such a solution storage space is a large solar collector farm. The reason for this is the proportionally small unit profits, which only in the case of large number of units provides sufficient energy that can be accumulated. It should be noted that Poland, a country located in a temperate and less harsh climate such as Scandinavia and Canada, has a relatively high potential for solar revenue. In the last decade, it has caused mainly small and individual heating installations. However, much of the municipal and industrial economy continues to rely on energy from non-renewable resources. This is due not only to the lack of a high-efficiency alternative to non-renewable energy resources, but also to the thermal state of buildings throughout the country, where old buildings require thermomodernization. This has the effect of both polluting the environment and the occurrence of smog, as well as pollutants in water and soil. This directly affects the occurrence of civilization diseases and other societal health problems. Therefore, the surplus of thermal clean energy that occurs during the spring and summer period should not only be used on a regular basis, but also stored for later winter use. The paper presents the concept of housing estate, which consists of 32 twin housing units. The solid character of buildings consistently refers to passive construction, and the materials meet the requirements for the passive buildings.

  9. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  10. Fundamental research on the gravity assisted heat pipe thermal storage unit (GAHP-TSU) with porous phase change materials (PCMs) for medium temperature applications

    International Nuclear Information System (INIS)

    Hu, Bo-wen; Wang, Qian; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel gravity-assisted heat pipe thermal storage unit (GAHP-TSU) is presented and tested. • Composite granular solid–liquid PCM is piled up as the porous medium layer in GAHP-TSU. • GAHP-TSU avoids the major obstacle of low thermal conductivity of the PCM. • GAHP-TSU enables the thermal storage unit with outstanding heat transfer performance. - Abstract: In this study, a novel gravity-assisted heat pipe type thermal storage unit (GAHP-TSU) has been presented for the potential application in solar air conditioning and refrigeration systems, in which composite granular solid–liquid PCMs compounded by RT100 and high-density polyethylene with phase change temperature of 100 °C are piled up as a porous PCMs medium layer. Water is used as heat transfer fluid in the GAHP-TSU. The heat transfer mechanism of heat storage/release in the GAHP-TSU is similar to that of the gravity-assisted heat pipe, which is superior to traditional direct-contact or indirect-contact thermal storage units. The properties of start-up, heat transfer characteristics on the stages of heat absorption and release of the GAHP-TSU are studied in detailed, including necessary calculations based on heat transfer theory. The results show that the whole system is almost isothermal at the temperature over 70 °C and the heat transfer properties are excellent both for heat absorption and release stages. The GAHP-TSU device with low thermal conductivity of the PCMs is promising in potential industry applications

  11. Underground storage of heat

    International Nuclear Information System (INIS)

    Despois, J.; Nougarede, F.

    1976-01-01

    The interest laying in heat storage is envisaged taking account of the new energy context, with a view to optimizing the use of production means of heat sources hardly modulated according to the demand. In such a way, a natural medium, without any constructions cost but only an access cost is to be used. So, porous and permeable rocky strata allowing the use of a pressurized water flow as a transfer fluid are well convenient. With such a choice high temperatures (200 deg C) may be obtained, that are suitable for long transmissions. A mathematical model intended for solving the conservation equations in the case of heat storage inside a confined water layer is discussed. An approach of the operating conditions of storage may involve either a line-up arrangement (with the hot drilling at the center, the cold drillings being aligned on both sides) or a radial arrangement (with cold drillings at the peripheral edge encircling the hot drilling at the center of the layer). The three principal problems encountered are: starting drilling, and the circuit insulation and control [fr

  12. Co-generation and innovative heat storage systems in small-medium CSP plants for distributed energy production

    Science.gov (United States)

    Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico

    2017-06-01

    CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.

  13. Heat transport and storage

    International Nuclear Information System (INIS)

    Despois, J.

    1977-01-01

    Recalling the close connections existing between heat transport and storage, some general considerations on the problem of heat distribution and transport are presented 'in order to set out the problem' of storage in concrete form. This problem is considered in its overall plane, then studied under the angle of the different technical choices it involves. The two alternatives currently in consideration are described i.e.: storage in a mined cavity and underground storage as captive sheet [fr

  14. Recordable storage medium with protected data area

    NARCIS (Netherlands)

    2005-01-01

    The invention relates to a method of storing data on a rewritable data storage medium, to a corresponding storage medium, to a corresponding recording apparatus and to a corresponding playback apparatus. Copy-protective measures require that on rewritable storage media some data must be stored which

  15. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  16. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure

    Science.gov (United States)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  17. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  18. Optimum heat storage design for heat integrated multipurpose batch plants

    CSIR Research Space (South Africa)

    Stamp, J

    2011-01-01

    Full Text Available procedure is presented tha journal homepage: www All rights reserved. ajozi T, Optimum heat storage grated multipurpose batch plants , South Africa y usage in multipurpose batch plants has been in published literature most present methods, time... � 2pL?u?kins ? 1 h3A3?u?cu?U (36) The internal area for heat loss by convection from the heat transfer medium is given by Constraint (37) and the area for convective heat transfer losses to the environment is given in Constraint (38). A1?u? ? 2...

  19. Investigation of exergy and yield of a passive solar water desalination system with a parabolic concentrator incorporated with latent heat storage medium

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Elkelawy, Medhat; Alm El Din, Hagar; Alghrubah, Adel

    2017-01-01

    Highlights: • The impact of PCM and solar concentrator on the production of solar still studied experimentally under Egyptian conditions. • Exergetic analysis studied for passive solar still in winter and summer at different water depth. • Experimental study of water depth effect on solar still with PCM and solar concentrator. • A comparison between improved still with and usual still is carried out for winter and summer. - Abstract: In the present study, two solar stills were assembled and experienced to evaluate the yield and energy performance of an improved passive solar desalination system compared to a conventional one. The improved still is incorporated with a latent heat thermal energy storage medium and a parabolic solar concentrator. A parabolic solar concentrator was added to concentrate and increase the amount of solar irradiance absorbed by the still basin. Paraffin wax was applied as phase change material (PCM) in the solar still bottom plate. In the current study also, the effect of impure water profundity inside the still on still’s accumulated yield have been assessed. The following study involved a mathematical analysis for calculation of the exergetic proficiency as an efficient tool for the optimization, and yield evaluation of any energy systems and solar stills as well. Experimental research conducted in steady days of summer and winter at six different values of impure water profundity inside the solar still basin. The salinity of the impure water tested was about 3000–5000 ppm, while the salinity for the resulted drinkable water was about 550–500 ppm. The performed outcomes revealed that during summer, exergetic efficiency is higher than its qualified value in winter with approximately (10–15%) for the same water profundity. Results also disclosed that, the exergetic efficiency is higher when the water profundity in the basin is lower with approximately (6–9%). The experimental findings reveals that, the solar still with

  20. Studies on heat storage, 9

    International Nuclear Information System (INIS)

    Taoda, Hiroshi; Hayakawa, Kiyoshi; Kawase, Kaoru; Kosaka, Mineo

    1985-01-01

    To estimate the extent of thermal oxidative aging of the crosslinked and surface coated polyethylene pellets used as a latent heat thermal storage material, their deterioration was investigated by applying the heating-cooling cycle which simulated the daily insolation over 6 months (8-hour holding at 150 deg C as the highest temperature in a day followed by 5-hour holding at 30 deg C as the lowest one). The degradation, e.g., the lowering of heat of crystallization and in crystallization temperature, is thought to be caused by both the decrease in molecular weight of polyethylene due to thermal oxidative decomposition and the crosslinking between produced radicals. With the increase in the degree of crosslinking and branching in a molecular chain which has low bond dissociation energy, thermal deterioration of polyethylene proceeds more rapidly. Polyethylene pellets can endure long periods of practical heat cycling as a thermal storage material when they are treated with radical scavengers under proper control of their crosslinking degrees. The repeating heat storage experiments by using the developed polyethylene thermal storage material were performed and very promising results were obtained. (author)

  1. Heating of the intracluster medium

    International Nuclear Information System (INIS)

    Just, A.; Deiss, B.M.; Kegel, W.H.; Boehringer, H.; Morfill, G.E.

    1990-01-01

    The gravitational interaction of the system of galaxies and the ICM are treated by fluctuation theory. Fluctuation theory seems to be more adequate to describe the gravitational interaction than local theories used up to now, because gravitation is a long-range force. Therefore, the dynamical friction and energy transfer depends mainly on the global structure of the gravitational wakes induced by the galaxies in the ICM. The ICM is described hydrodynamically by a nonpolytropic gas. The heating rate is derived as a local quantity on scales characteristic for cluster properties in quasi-linear approximation. The parameter dependence is given explicitly. The Coma cluster is taken as an example to show that mechanical heating by fluctuations may be essential for the structure of the cluster halos and cooling flows. 19 refs

  2. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  3. Latent Heat Storage Through Phase Change Materials

    Indian Academy of Sciences (India)

    IAS Admin

    reducing storage volume for different materials. The examples are numerous: ... Latent heat is an attractive way to store solar heat as it provides high energy storage density, .... Maintenance of the PCM treated fabric is easy. The melted PCM.

  4. EPR ohmic heating energy storage

    International Nuclear Information System (INIS)

    Heck, F.M.; Stillwagon, R.E.; King, E.I.

    1977-01-01

    The Ohmic Heating (OH) Systems for all the Experimental Power Reactor (EPR) designs to date have all used temporary energy storage to assist in providing the OH current charge required to build up the plasma current. The energies involved (0.8 x 10 9 J to 1.9 x 10 9 J) are so large as to make capacitor storage impractical. Two alternative approaches are homopolar dc generators and ac generators. Either of these can be designed for pulse duty and can be made to function in a manner similar to a capacitor in the OH circuit and are therefore potential temporary energy storage devices for OH systems for large tokamaks. This study compared total OH system costs using homopolar and ac generators to determine their relative merits. The total system costs were not significantly different for either type of machine. The added flexibility and the lower maintenance of the ac machine system make it the more attractive approach

  5. Heat storage in alloy transformations

    Science.gov (United States)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  6. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  7. Heat transfer efficient thermal energy storage for steam generation

    International Nuclear Information System (INIS)

    Adinberg, R.; Zvegilsky, D.; Epstein, M.

    2010-01-01

    A novel reflux heat transfer storage (RHTS) concept for producing high-temperature superheated steam in the temperature range 350-400 deg. C was developed and tested. The thermal storage medium is a metallic substance, Zinc-Tin alloy, which serves as the phase change material (PCM). A high-temperature heat transfer fluid (HTF) is added to the storage medium in order to enhance heat exchange within the storage system, which comprises PCM units and the associated heat exchangers serving for charging and discharging the storage. The applied heat transfer mechanism is based on the HTF reflux created by a combined evaporation-condensation process. It was shown that a PCM with a fraction of 70 wt.% Zn in the alloy (Zn70Sn30) is optimal to attain a storage temperature of 370 deg. C, provided the heat source such as solar-produced steam or solar-heated synthetic oil has a temperature of about 400 deg. C (typical for the parabolic troughs technology). This PCM melts gradually between temperatures 200 and 370 deg. C preserving the latent heat of fusion, mainly of the Zn-component, that later, at the stage of heat discharge, will be available for producing steam. The thermal storage concept was experimentally studied using a lab scale apparatus that enabled investigating of storage materials (the PCM-HTF system) simultaneously with carrying out thermal performance measurements and observing heat transfer effects occurring in the system. The tests produced satisfactory results in terms of thermal stability and compatibility of the utilized storage materials, alloy Zn70Sn30 and the eutectic mixture of biphenyl and diphenyl oxide, up to a working temperature of 400 deg. C. Optional schemes for integrating the developed thermal storage into a solar thermal electric plant are discussed and evaluated considering a pilot scale solar plant with thermal power output of 12 MW. The storage should enable uninterrupted operation of solar thermal electric systems during additional hours

  8. Unregulated heat output of a storage heater

    OpenAIRE

    Lysak, Oleg Віталійович

    2017-01-01

    In the article the factors determining the heat transfer between the outer surfaces of a storage heater and the ambient air. This heat exchange is unregulated, and its definition is a precondition for assessing heat output range of this type of units. It was made the analysis of the literature on choosing insulating materials for each of the external surfaces of storage heaters: in foreign literature, there are recommendations on the use of various types of insulation depending on the type of...

  9. Heat storage in the Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sastry, J.S.

    Heat storage in the Andaman Sea in upper 20 m, where a strong halocline seems to inhibit vertical heat transport has been evaluated and discussed in relation to the other parameters of heat budget. Estimation of annual evaporation gives rise to 137...

  10. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  11. OPTIMUM HEAT STORAGE DESIGN FOR SDHW SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    Two simulation models have been used to analyse the heat storage design’s influence on the thermal performance of solar domestic hot water (SDHW) systems. One model is especially designed for traditional SDHW systems based on a heat storage design where the solar heat exchanger is a built-in spiral....... The other model is especially designed for low flow SDHW systems based on a mantle tank.The tank design’s influence on the thermal performance of the SDHW systems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct analysis...

  12. Optimum heat storage design for SDHWsystems

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1997-01-01

    -in spiral. The other model is especially designed for low flow SDHWsystems based on a mantle tank.The tank design's influence on the thermal performance of the SDHWsystems has been investigated in a way where only one tank parameter has been changed at a time in the calculations. In this way a direct......Two simulation models have been used to analyse the heat storage design's influence on the thermal performance of solar domestic hot water systems, SDHWsystems. One model is especially designed for traditional SDHWsystems based on a heat storage design where the solar heat exchanger is a built...

  13. Thermal contact resistance in carbon nanotube enhanced heat storage materials

    NARCIS (Netherlands)

    Zhang, H.; Nedea, S.V.; Rindt, C.C.M.; Smeulders, D.M.J.

    2015-01-01

    Solid-liquid phase change is one of the most favorable means of compact and economical heat storage in the built environment. In such storage systems, the vast available solar heat is stored as latent heat in the storage materials. Recent studies suggest using sugar alcohols as seasonal heat storage

  14. Cyclic high temperature heat storage using borehole heat exchangers

    Science.gov (United States)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  15. Experimental research on thermal characteristics of a hybrid thermocline heat storage system

    International Nuclear Information System (INIS)

    Yin, Huibin; Ding, Jing; Yang, Xiaoxi

    2014-01-01

    Considering the high-temperature thermal utilization of solar energy as the research background in this paper and focussing on the heat storage process, a kind of hybrid thermocline heat storage method in multi-scale structure and relevant experimental systems are designed by using the mixed molten nitrate salt as the heat storage medium and two representative porous materials, i.e. zirconium ball and silicon carbide (SiC) foam, as the heat storage fillers. The fluid flow and heat storage performance of molten salt in multi-scale structure are experimentally investigated. The results show that the theoretical heat storage efficiencies amongst the three experimental heat storage manners are less than 80% because of the existence of thermocline layers. Comparing to the single-phase molten salt heat storage, the two hybrid thermocline heat storage manners with porous fillers lead to a certain decrease in the effective heat storage capacity. The presence of porous fillers can also help to maintain the molten salt fluid as ideal gravity flow or piston flow and partially replace expensive molten salt. Therefore, it requires a combination of heat storage capacity and economical consideration for optimization design when similar spherical particles or foam ceramics are employed as the porous fillers. -- Highlights: • A hybrid thermocline heat storage method in multi-scale structure is developed. • The fluid flow and heat storage performance are experimentally investigated. • Stable thermocline can form in single tank for the experimental cases. • The hybrid thermocline heat storage with porous filler is promising

  16. Storage facility for solid medium level waste at Eurochemic

    International Nuclear Information System (INIS)

    Balseyro-Castro, M.

    1976-01-01

    An engineered surface storage facility is described; it will serve for the interim storage of solid and solidified medium-level waste resulting from the reprocessing of irradiated fuels. Up till now, two storage bunkers have been constructed. Each of them is 64 m long, 12 m wide and 8 m high and can take up to about 5,000 drums of 220 1 volume. The drums are stored in a vertical position and in four layers. The waste product drums are transported by a wagon to the entrance of the bunkers from where they are transferred in to the bunker by an overhead crane which is remotely controlled by high-frequency modulated laser beams. A closed-circuit camera is used to watch the handling operations. The waste stored is fully retrievable, either by means of an overhead crane of a lift-truck and can then be transported to an ultimate storage site

  17. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  18. Thermochemical heat storage for high temperature applications. A review

    Energy Technology Data Exchange (ETDEWEB)

    Felderhoff, Michael [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany); Urbanczyk, Robert; Peil, Stefan [Institut fuer Energie- und Umwelttechnik e.V. (IUTA), Duisburg (Germany)

    2013-07-01

    Heat storage for high temperature applications can be performed by several heat storage techniques. Very promising heat storage methods are based on thermochemical gas solid reactions. Most known systems are metal oxide/steam (metal hydroxides), carbon dioxide (metal carbonates), and metal/hydrogen (metal hydrides) systems. These heat storage materials posses high gravimetric and volumetric heat storage densities and because of separation of the reaction products and their storage in different locations heat losses can be avoided. The reported volumetric heat storage densities are 615, 1340 and 1513 [ kWh m{sup -3}] for calcium hydroxide Ca(OH){sub 2}, calcium carbonate CaCO{sub 3} and magnesium iron hydride Mg{sub 2}FeH{sub 6} respectively. Additional demands for gas storage decrease the heat storage density, but metal hydride systems can use available hydrogen storage possibilities for example caverns, pipelines and chemical plants. (orig.)

  19. Heat transfer and thermal storage performance of an open thermosyphon type thermal storage unit with tubular phase change material canisters

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Hu, Bo-Wen; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel open heat pipe thermal storage unit is design to improve its performance. • Mechanism of its operation is phase-change heat transfer. • Tubular canisters with phase change material were placed in thermal storage unit. • Experiment and analysis are carried out to investigate its operation properties. - Abstract: A novel open thermosyphon-type thermal storage unit is presented to improve design and performance of heat pipe type thermal storage unit. In the present study, tubular canisters filled with a solid–liquid phase change material are vertically placed in the middle of the thermal storage unit. The phase change material melts at 100 °C. Water is presented as the phase-change heat transfer medium of the thermal storage unit. The tubular canister is wrapped tightly with a layer of stainless steel mesh to increase the surface wettability. The heat transfer mechanism of charging/discharging is similar to that of the thermosyphon. Heat transfer between the heat resource or cold resource and the phase change material in this device occurs in the form of a cyclic phase change of the heat-transfer medium, which occurs on the surface of the copper tubes and has an extremely high heat-transfer coefficient. A series of experiments and theoretical analyses are carried out to investigate the properties of the thermal storage unit, including power distribution, start-up performance, and temperature difference between the phase change material and the surrounding vapor. The results show that the whole system has excellent heat-storage/heat-release performance

  20. Prototype thermochemical heat storage with open reactor system

    NARCIS (Netherlands)

    Zondag, H.A.; Kikkert, B.; Smeding, S.F.; Boer, de R.; Bakker, M.

    2013-01-01

    Thermochemical (TC) heat storage is an interesting technology for future seasonal storage of solar heat in the built environment. This technology enables high thermal energy storage densities and low energy storage losses. A small-scale laboratory prototype TC storage system has been realized at

  1. Theoretical Study of Heat Transfer through a Sun Space Filled with a Porous Medium

    Directory of Open Access Journals (Sweden)

    Ahmed Tawfeeq Ahmed Al-Sammarraie

    2016-10-01

    Full Text Available A theoretical study had been conducted to detect the effect of using a porous medium in sunspace to reduce  heating  load  and  overcoming  coldness  of  winter  in  the  cold  regions.  In  this  work,  the  heat transferred and stored in the storage wall was investigated. The mathematical model was unsteady, heat conduction equation with nonlinear boundary conditions was solved by using finite difference method and the solution technique  of heat conduction had based  on the  Crank Nicholson method. The results had adopted  on  the  aspect  ratio  (H/L=30,  Darcy  number  (Da=10-3,  porosity  (φ=0.35  and  particle  to  fluid thermal conductivity ratio (kp/kf=38.5. The results showed that using the porous medium had enhanced the heat transferred and stored in the storage wall. For   the outside storage wall temperature, an increase of 19.7%  was achieved by using the porous medium instead of the air, while it was 20.3%  for the inside storage wall temperature.

  2. Solar thermoelectricity via advanced latent heat storage

    Science.gov (United States)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  3. German central solar heating plants with seasonal heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, D.; Marx, R.; Nussbicker-Lux, J.; Ochs, F.; Heidemann, W. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Mueller-Steinhagen, H. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Institute of Technical Thermodynamics (ITT), German Aerospace Centre (DLR), Stuttgart (Germany)

    2010-04-15

    Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (in Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)

  4. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  5. Intergalactic medium heating by dark matter

    NARCIS (Netherlands)

    Ripamonti, E.; Mapelli, M.; Ferrara, A.

    2006-01-01

    Abstract: We derive the evolution of the energy deposition in the intergalactic medium (IGM) by dark matter (DM) decays/annihilations for both sterile neutrinos and light dark matter (LDM) particles. At z > 200 sterile neutrinos transfer a fraction f_abs~0.5 of their rest mass energy into the IGM;

  6. Comprehensive thermodynamic analysis of a renewable energy sourced hybrid heating system combined with latent heat storage

    International Nuclear Information System (INIS)

    Utlu, Zafer; Aydın, Devrim; Kıncay, Olcay

    2014-01-01

    Highlights: • An experimental thermal investigation of hybrid renewable heating system is presented. • Analyses were done by using real data obtained from a prototype structure. • Exergy efficiency of system components investigated during discharging period are close to each other as 32%. • The average input energy and exergy rates to the LHS were 0.770 and 0.027 kW. • Overall total energy and exergy efficiencies of LHS calculated as 72% and 28.4%. - Abstract: In this study an experimental thermal investigation of hybrid renewable heating system is presented. Latent heat storage stores energy, gained by solar collectors and supplies medium temperature heat to heat pump both day time also night time while solar energy is unavailable. In addition to this an accumulation tank exists in the system as sensible heat storage. It provides supply–demand balance with storing excess high temperature heat. Analyses were done according to thermodynamic’s first and second laws by using real data obtained from a prototype structure, built as part of a project. Results show that high percent of heat loses took place in heat pump with 1.83 kW where accumulator-wall heating cycle followed it with 0.42 kW. Contrarily highest break-down of exergy loses occur accumulator-wall heating cycle with 0.28 kW. Averagely 2.42 kW exergy destruction took place in whole system during the experiment. Solar collectors and heat pump are the promising components in terms of exergy destruction with 1.15 kW and 1.09 kW respectively. Exergy efficiency of system components, investigated during discharging period are in a close approximately of 32%. However, efficiency of solar collectors and charging of latent heat storage are 2.3% and 7% which are relatively low. Average overall total energy and exergy efficiencies of latent heat storage calculated as 72% and 28.4% respectively. Discharging energy efficiency of latent heat storage is the highest through all system components. Also heat

  7. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Andersen, Elsa

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change...... material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module......, recommendations on how best to transfer heat to and from the seasonal heat storage module are given....

  8. Current status of ground source heat pumps and underground thermal energy storage in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B. [Justus Liebig University, Giessen (Germany). Institute of Applied Geosciences; Karytsas, C.; Mendrinos, D. [Center for Renewable Energy Sources, Pikermi (Greece); Rybach, L. [Geowatt AG, Zurich (Switzerland)

    2003-12-01

    Geothermal Heat Pumps, or Ground Coupled Heat Pumps (GCHP), are systems combining a heat pump with a ground heat exchanger (closed loop systems), or fed by ground water from a well (open loop systems). They use the earth as a heat source when operating in heating mode, with a fluid (usually water or a water-antifreeze mixture) as the medium that transfers the heat from the earth to the evaporator of the heat pump, thus utilising geothermal energy. In cooling mode, they use the earth as a heat sink. With Borehole Heat Exchangers (BHE), geothermal heat pumps can offer both heating and cooling at virtually any location, with great flexibility to meet any demands. More than 20 years of R and D focusing on BUE in Europe has resulted in a well-established concept of sustainability for this technology, as well as sound design and installation criteria. Recent developments are the Thermal Response Test, which allows in-situ-determination of ground thermal properties for design purposes, and thermally enhanced grouting materials to reduce borehole thermal resistance. For cooling purposes, but also for the storage of solar or waste heat, the concept of underground thermal energy storage (UTES) could prove successful. Systems can be either open (aquifer storage) or can use BHE (borehole storage). Whereas cold storage is already established on the market, heat storage, and, in particular, high temperature heat storage (> 50{sup o}C) is still in the demonstration phase. Despite the fact that geothermal heat pumps have been in use for over 50 years now (the first were in the USA), market penetration of this technology is still in its infancy, with fossil fuels dominating the space heating market and air-to-air heat pumps that of space cooling. In Germany, Switzerland, Austria, Sweden, Denmark, Norway, France and the USA, large numbers of geothermal heat pumps are already operational, and installation guidelines, quality control and contractor certification are now major issues

  9. Fem Formulation of Heat Transfer in Cylindrical Porous Medium

    Science.gov (United States)

    Azeem; Khaleed, H. M. T.; Soudagar, Manzoor Elahi M.

    2017-08-01

    Heat transfer in porous medium can be derived from the fundamental laws of flow in porous region ass given by Henry Darcy. The fluid flow and energy transport inside the porous medium can be described with the help of momentum and energy equations. The heat transfer in cylindrical porous medium differs from its counterpart in radial and axial coordinates. The present work is focused to discuss the finite element formulation of heat transfer in cylindrical porous medium. The basic partial differential equations are derived using Darcy law which is the converted into a set of algebraic equations with the help of finite element method. The resulting equations are solved by matrix method for two solution variables involved in the coupled equations.

  10. Cooperative heat transfer and ground coupled storage system

    Science.gov (United States)

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  11. Central solar heating plants with seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Chuard, D; Hadorn, J C; Van Gilst, J; Aranovitch, E; Hardacre, A G; Ofverholm, E [eds.

    1982-09-14

    On May 9, 1979, the Federal Department for Buildings released instructions concerning the use of alternative energies. The federal energy policy is to be as much as possible independent on oil imports. The canton Fribourg decided to equip the new maintenance and service center for the national high-road N12, with alternative energy, resources, and to apply new concepts with respect to passive and active solar energy. The project uses active solar energy with an earth-storage and heat pump. A conventional oil-heating system provides energy for peak-loads and can be operated in stand-by. A delay in the construction of the earth storage sub system was requested because it was intended to optimize the system with respect to the solar sub system, and heat pump sub system. The design work was done by SORANE which also is the coordinator for Switzerland in the I.E.A. Task VII. However, the preplanning of the project started in 1978 before the I.E.A. Task VII started. As a consequence, many design parameters were determined before 1980. The optimization of the solar collector, heat-pump etc. sub system was performed by a simulation approach developed by SORANE. The Vaulruz service center has been commissioned during the winter 1981/82.

  12. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Emanuela Mastronardo

    2017-01-01

    Full Text Available For the thermochemical performance implementation of Mg(OH2 as a heat storage medium, several hybrid materials have been investigated. For this study, high-performance hybrid materials have been developed by exploiting the authors’ previous findings. Expanded graphite (EG/carbon nanotubes (CNTs-Mg(OH2 hybrid materials have been prepared through Mg(OH2 deposition-precipitation over functionalized, i.e., oxidized, or un-functionalized EG or CNTs. The heat storage performances of the carbon-based hybrid materials have been investigated through a laboratory-scale experimental simulation of the heat storage/release cycles, carried out by a thermogravimetric apparatus. This study offers a critical evaluation of the thermochemical performances of developed materials through their comparison in terms of heat storage and output capacities per mass and volume unit. It was demonstrated that both EG and CNTs improves the thermochemical performances of the storage medium in terms of reaction rate and conversion with respect to pure Mg(OH2. With functionalized EG/CNTs-Mg(OH2, (i the potential heat storage and output capacities per mass unit of Mg(OH2 have been completely exploited; and (ii higher heat storage and output capacities per volume unit were obtained. That means, for technological applications, as smaller volume at equal stored/released heat.

  13. Fiscal 1993 investigational report on heat pump heat storage technology; 1993 nendo heat pump chikunetsu gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is for an investigation into the heat pump (HP) use heat storage technology, with the aim of clarifying the present status of HP heat storage technology, the utilization status, and the developmental trend of technology and of contributing to the spread of heat energy effective use using HP heat storage technology and to the promotion of the technical development. Accordingly, the evaluation of the following was made: sensible heat (SH), latent heat (LH), chemical heat storage technology (CH), and heat storage technology (HS). Investigations were made on the sensible heat use heat storage technology of water, brine, stone, soil, etc. in terms of SH; the phase change sensible heat use heat storage technology of ice, hydrate salt, paraffins, etc. in terms of LH; hydration, hydroxide, 2-propanol pyrolysis, adsorption of silica gel, zeolite and water, and heat storage technology using metal hydride, etc. in terms of CH. In terms of HS, the following were studied and evaluated from the study results of the heat storage system in which HP is applied to the sensible heat and latent heat type heat storage technology: contribution to the power load levelling and the reduction of heat source capacity, heat recovery and the use of unused energy, improvement of the system efficiency by combining HP and heat storage technology. 24 refs., 242 figs., 56 tabs.

  14. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  15. Heat and Mass Transfer Model in Freeze-Dried Medium

    Science.gov (United States)

    Alfat, Sayahdin; Purqon, Acep

    2017-07-01

    There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.

  16. Latent heat coldness storage; Stockage du froid par chaleur latente

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, J.P. [Pau Univ., Lab. de Thermodynamique et Energetique, LTE, 64 (France)

    2002-07-01

    This article presents the advantages of latent heat storage systems which use the solid-liquid phase transformation of a pure substance or of a solution. The three main methods of latent heat storage of coldness are presented: ice boxes, encapsulated nodules, and ice flows: 1 - definition of the thermal energy storage (sensible heat, latent heat, thermochemical storage); 2 - advantages and drawbacks of latent heat storage; 3 - choice criteria for a phase-change material; 4 - phenomenological aspect of liquid-solid transformations (phase equilibrium, crystallisation and surfusion); 5 - different latent heat storage processes (ice boxes, encapsulated nodules, two-phase refrigerating fluids); 6 - ice boxes (internal and external melting, loop, air injection, measurement of ice thickness); 7 - encapsulated nodules (nodules, tank, drainage, advantage and drawbacks, charge and discharge); 8 - two-phase refrigerating fluids (composition, ice fabrication, flow circulation, flow storage, exchangers). (J.S.)

  17. Experimental device for the residential heating with heat pipe and electric heat storage blocks

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Boldak, I M; Domorod, L S; Rabetsky, M I; Schirokov, E I [AN Belorusskoj SSR, Minsk (Belarus). Inst. Teplo- i Massoobmena

    1992-01-01

    Residential heating using electric heat storage blocks nowadays is an actual problem from the point of view of heat recovery and nature protection. In the Luikov Heat and Mass Transfer Institute a new residential electrical heater capable of heating chambers by controlling air temperature and heat output using heat pipes and an electric heat storage block was developed. This heater (BETA) is fed from the source of energy and during 7 h of night time accumulates energy sufficiently to heat 10 m{sup 3} during 24 h. Heating device BETA has a ceramic thermal storage block, electric heaters and a heat pipe with evaporator inside the ceramic block and constant temperature (65{sup o}C) finned condenser outside it. The condenser temperature could be controlled easily. BETA is compact, has high thermal response, accurate air temperature control and safe operation. Such types of residential heaters are necessary for heating residential and office building in the Mogilev and Gomel regions in Byelorussia which suffered after the Chernobyl catastrophe. (Author).

  18. Long-term heat storage in calcium sulfoaluminate cement (CSA) based concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Josef P.; Winnefeld, Frank [Empa Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland). Lab. for Concrete and Construction Chemistry

    2011-07-01

    In general, the selection of materials proposed for solar heat storage is based on one of two principal processes: sensible heat storage or latent heat storage. Sensible heat storage utilizes the specific heat capacity of a material, while latent heat storage is based on the change in enthalpy (heat content) associated with a phase change of the material. Long time sensible heat storage requires excellent thermal insulation whereas latent heat storage allows permanent (seasonal) storage without significant energy losses and any special insulation. Ettringite, one of the cement hydration products, exhibits a high dehydration enthalpy. Calcium sulfoaluminate cement based concrete containing a high amount of ettringite is henceproposed as an efficient latent heat storage material. Compared to conventional heat storage materials this innovative concrete mixture has a high loss-free storage energy density (> 100-150 kWh/m{sup 3}) which is much higher than the one of paraffin or the (loss-sensitive) sensible heat of water. Like common concrete the CSA-concrete is stable and even may carry loads. The dehydration of the CSA-concrete is achieved at temperatures below 100 C. The rehydration process occurs as soon as water (liquid or vapor) is added. In contrast to paraffin, the phase change temperature is not fixed and the latent heat may be recovered at any desired temperature. Furthermore the heat conductivity of this material is high, so that the energy transfer from/to an exchange medium is easy. Additionally CSA-concrete is not flammable and absolutely safe regarding any health aspects. The cost of such CSA-concrete isin the order of normal concrete. The main application is seen in house heating systems. Solar heat, mostly generated during the summer period by means of roof collectors, can be stored in CSA-concrete until the winter. A part or even the whole annual heatingenergy may be produced and saved locally by the householder himself. Additional applications may be

  19. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  20. The energy efficiency ratio of heat storage in one shell-and-one tube phase change thermal energy storage unit

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2015-01-01

    Highlights: • A parameter to indicate the energy efficiency ratio of PCTES units is defined. • The characteristics of the energy efficiency ratio of PCTES units are reported. • A combined parameter of the physical properties of the working mediums is found. • Some implications of the energy efficiency ratio in design of PCTES units are analyzed. - Abstract: From aspect of energy consuming to pump heat transfer fluid, there is no sound basis on which to create an optimum design of a thermal energy storage unit. Thus, it is necessary to develop a parameter to indicate the energy efficiency of such unit. This paper firstly defines a parameter that indicates the ratio of heat storage of phase change thermal energy storage unit to energy consumed in pumping heat transfer fluid, which is called the energy efficiency ratio, then numerically investigates the characteristics of this parameter. The results show that the energy efficiency ratio can clearly indicate the energy efficiency of a phase change thermal energy storage unit. When the fluid flow of a heat transfer fluid is in a laminar state, the energy efficiency ratio is larger than in a turbulent state. The energy efficiency ratio of a shell-and-tube phase change thermal energy storage unit is more sensitive to the outer tube diameter. Under the same working conditions, within the heat transfer fluids studied, the heat storage property of the phase change thermal energy storage unit is best for water as heat transfer fluid. A combined parameter is found to indicate the effects of both the physical properties of phase change material and heat transfer fluid on the energy efficiency ratio

  1. Device for storage of radio-nuclide configurations releasing heat

    International Nuclear Information System (INIS)

    Schoenfeld, R.; Jeschar, R.; Tenhumberg, M.

    1985-01-01

    In dry intermediate storage of burnt-up fuel elements and HAN, the storage shafts have cooling air flowing through them in the axial direction. The lids of the storage cells are made into heat exchangers via the outer cooling air circulation. Inside the storage cells, vertical, spatially and functionally separate updraught and downdraught chimneys are situated at the openings of the storage shafts. To force a convection flow of the right direction inside the storage cells, the lid or the storage shafts are inclined in the direction of the downdraught chimney or the storage shafts are provided with flow obstructions favouring one direction. (orig./HP) [de

  2. Heat pumps combined with cold storage; Warmtepompen gecombineerd met koudeopslag

    Energy Technology Data Exchange (ETDEWEB)

    Van Ingen, M.A. [Techniplan Adviseurs, Rotterdam (Netherlands)

    1999-09-01

    The architects of the new Nike head office building in Hilversum, Netherlands, opted for a heat pump combined with a cold storage system. The most efficient design was found to be a single central location for the production of heat and cold, with distribution lines to each of the five buildings. The cold storage system provides direct cooling and indirect heating: the heat pump raises the low-temperature heat from the cold storage to a usable temperature (augmented by district heating when necessary). In addition, the heat pump generates cold as a by-product in winter, which can be stored in the sources system and utilised during the following summer. The heat pump can also be used for cooling, for peak load supply and for any short-term storage requirement in emergencies

  3. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  4. An experimental investigation of performance of a double pass solar air heater with thermal storage medium

    Directory of Open Access Journals (Sweden)

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The performance of a double pass solar air heater was experimentally investigated using four different configurations. First configuration contained only absorber plate whereas copper tubes filled with thermal storage medium (paraffin wax were added on the absorber plate in the second configuration. Aluminum and steel rods as thermal enhancer were inserted in the middle of paraffin wax of each tube for configurations three and four respectively. Second configuration provided useful heat for about 1.5 hours after the sunset compared to first configuration. Configurations three and four provided useful heat for about 2 hours after the sunset. The maximum efficiency of about 96% was achieved using configuration three (i.e. using Aluminum rods in the middle of copper tubes filled with paraffin wax.

  5. Wind power integration using individual heat pumps – Analysis of different heat storage options

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Mathiesen, Brian Vad; Lund, Henrik

    2012-01-01

    Significant installations of individual heat pumps are expected in future energy systems due to their economic competitiveness. This case study of the Danish energy system in 2020 with 50% wind power shows that individual heat pumps and heat storages can contribute to the integration of wind power....... Heat accumulation tanks and passive heat storage in the construction are investigated as two alternative storage options in terms of their ability to increase wind power utilisation and to provide cost-effective fuel savings. Results show that passive heat storage can enable equivalent to larger...... reductions in excess electricity production and fuel consumption than heat accumulation tanks. Moreover, passive heat storage is found to be significantly more cost-effective than heat accumulation tanks. In terms of reducing fuel consumption of the energy system, the installation of heat pumps is the most...

  6. Experimental investigation for the optimization of heat pipe performance in latent heat thermal storage

    Energy Technology Data Exchange (ETDEWEB)

    Ladekar, Chandrakishor; Choudhary, S. K. [RTM Nagpur University, Wardha (India); Khandare, S. S. [B. D. College of Engineering, Wardha (India)

    2017-06-15

    We investigated the optimum performance of heat pipe in Latent heat thermal energy storage (LHTES), and compared it with copper pipe. Classical plan of experimentation was used to optimize the parameters of heat pipe. Heat pipe fill ratio, evaporator section length to condenser section length ratio i.e., Heat pipe length ratio (HPLR) and heat pipe diameter, was the parameter used for optimization, as result of parametric analysis. Experiment with flow rate of 10 lit./min. was conducted for different fill ratio, HPLR and different diameter. Fill ratio of 80 %, HPLR of 0.9 and heat pipe with diameter of 18 mm showed better trend in charging and discharging. Comparison between the storage tank with optimized heat pipe and copper pipe showed almost 186 % improvement in charging and discharging time compared with the copper pipe embedded thermal storage. Heat transfer between Heat transferring fluid (HTF) and Phase change material (PCM) increased with increase in area of heat transferring media, but storage density of storage tank decreased. Storage tank with heat pipe embedded in place of copper pipe is a better option in terms of charging and discharging time as well heat storage capacity due to less heat lost. This justifies the better efficiency and effectiveness of storage tank with embedded optimized heat pipe.

  7. Fem Formulation for Heat and Mass Transfer in Porous Medium

    Science.gov (United States)

    Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan

    2017-08-01

    Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.

  8. Nonlinear throughflow and internal heating effects on vibrating porous medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-06-01

    Full Text Available The effect of vertical throughflow and internal heating effects on fluid saturated porous medium under gravity modulation is investigated. The amplitude of modulation is considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weakly nonlinear stability analysis is proposed to study stationary convection. The Nusselt number is obtained numerically to present the results of heat transfer while using Ginzburg–Landau equation. The vertical throughflow has dual effect either to destabilize or to stabilize the system for downward or upward directions. The effect of internal heat source (Ri>0 enhances or sink (Ri<0 diminishes heat transfer in the system. The amplitude and frequency of modulation have the effects of increasing or diminishing heat transport. For linear model Venezian approach suggested that throughflow and internal heating have both destabilizing and stabilizing effects for suitable ranges of Ω. Further, the study establishes that heat transport can be controlled effectively by a mechanism that is external to the system throughflow and gravity modulation.

  9. Experimental and numerical investigation of a scalable modular geothermal heat storage system

    Science.gov (United States)

    Nordbeck, Johannes; Bauer, Sebastian; Beyer, Christof

    2017-04-01

    Storage of heat will play a significant role in the transition towards a reliable and renewable power supply, as it offers a way to store energy from fluctuating and weather dependent energy sources like solar or wind power and thus better meet consumer demands. The focus of this study is the simulation-based design of a heat storage system, featuring a scalable and modular setup that can be integrated with new as well as existing buildings. For this, the system can be either installed in a cellar or directly in the ground. Heat supply is by solar collectors, and heat storage is intended at temperatures up to about 90°C, which requires a verification of the methods used for numerical simulation of such systems. One module of the heat storage system consists of a helical heat exchanger in a fully water saturated, high porosity cement matrix, which represents the heat storage medium. A lab-scale storage prototype of 1 m3 volume was set up in a thermally insulated cylinder equipped with temperature and moisture sensors as well as flux meters and temperature sensors at the inlet and outlet pipes in order to experimentally analyze the performance of the storage system. Furthermore, the experimental data was used to validate an accurate and spatially detailed high-resolution 3D numerical model of heat and fluid flow, which was developed for system design optimization with respect to storage efficiency and environmental impacts. Three experiments conducted so far are reported and analyzed in this work. The first experiment, consisting of cooling of the fully loaded heat storage by heat loss across the insulation, is designed to determine the heat loss and the insulation parameters, i.e. heat conductivity and heat capacity of the insulation, via inverse modelling of the cooling period. The average cooling rate experimentally found is 1.2 °C per day. The second experiment consisted of six days of thermal loading up to a storage temperature of 60°C followed by four days

  10. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  11. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Cook, J D

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  12. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  13. Heat storage. Role in the energy system of the future

    International Nuclear Information System (INIS)

    Hauer, Andreas; Woerner, Antje; Kranz, Stefan; Schumacher, Patrick; Gschwander, Stefan; Appen, Jan von; Hidalgo, Diego; Gross, Bodo; Grashof, Katherina

    2015-01-01

    For the implementation of the energy transition in Germany can contribute in a variety of applications thermal energy storage. Both at the integration of renewable energy sources, as well as in increasing the energy efficiency in the building sector and industry can utilize heat and cold storage great potential. For this diverse storage technologies are available. In Germany numerous research and development projects are running currently, covering the broad possibilities of thermal energy storage. [de

  14. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  15. Integration of Decentralized Thermal Storages Within District Heating (DH Networks

    Directory of Open Access Journals (Sweden)

    Schuchardt Georg K.

    2016-12-01

    Full Text Available Thermal Storages and Thermal Accumulators are an important component within District Heating (DH systems, adding flexibility and offering additional business opportunities for these systems. Furthermore, these components have a major impact on the energy and exergy efficiency as well as the heat losses of the heat distribution system. Especially the integration of Thermal Storages within ill-conditioned parts of the overall DH system enhances the efficiency of the heat distribution. Regarding an illustrative and simplified example for a DH system, the interactions of different heat storage concepts (centralized and decentralized and the heat losses, energy and exergy efficiencies will be examined by considering the thermal state of the heat distribution network.

  16. Experimental determination of the heat transfer and cold storage characteristics of a microencapsulated phase change material in a horizontal tank

    International Nuclear Information System (INIS)

    Allouche, Yosr; Varga, Szabolcs; Bouden, Chiheb; Oliveira, Armando C.

    2015-01-01

    Highlights: • Cold storage characteristics in latent and sensible heat storage mediums were studied. • Thermo-physical characterization of the phase change material was carried out. • A non-Newtonian shear thickening behavior of the phase change material was observed. • An energy storage enhancement (53%) was observed in the latent heat storage medium. - Abstract: In the present paper, the performance of a microencapsulated phase change material (in 45% w/w concentration) for low temperature thermal energy storage, suitable for air conditioning applications is studied. The results are compared to a sensible heat storage unit using water. Thermo-physical properties such as the specific heat, enthalpy variation, thermal conductivity and density are also experimentally determined. The non-Newtonian shear-thickening behavior of the phase change material slurry is quantified. Thermal energy performance is experimentally determined for a 100 l horizontal tank. The heat transfer between the heat transfer fluid and the phase change material was provided by a tube-bundle heat exchanger inside the tank. The results show that the amount of energy stored using the phase change material is 53% higher than for water after 10 h of charging, for the same storage tank volume. It was found that the heat transfer coefficient between the phase change material and the tube wall increases during the phase change temperature range, however it remains smaller than the values obtained for water

  17. Low and medium heating value coal gas catalytic combustor characterization

    Science.gov (United States)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  18. Heat-pump cool storage in a clathrate of freon

    Science.gov (United States)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  19. A state-of-the-art review on hybrid heat pipe latent heat storage systems

    International Nuclear Information System (INIS)

    Naghavi, M.S.; Ong, K.S.; Mehrali, M.; Badruddin, I.A.; Metselaar, H.S.C.

    2015-01-01

    The main advantage of latent heat thermal energy storage systems is the capability to store a large quantity of thermal energy in an isothermal process by changing phase from solid to liquid, while the most important weakness of these systems is low thermal conductivity that leads to unsuitable charging/discharging rates. Heat pipes are used in many applications – as one of the most efficient heat exchanger devices – to amplify the charging/discharging processes rate and are used to transfer heat from a source to the storage or from the storage to a sink. This review presents and critically discusses previous investigations and analysis on the incorporation of heat pipe devices into latent heat thermal energy storage with heat pipe devices. This paper categorizes different applications and configurations such as low/high temperature solar, heat exchanger and cooling systems, analytical approaches and effective parameters on the performance of hybrid HP–LHTES systems.

  20. Cosmic-Ray Feedback Heating of the Intracluster Medium

    Energy Technology Data Exchange (ETDEWEB)

    Ruszkowski, Mateusz [Department of Astronomy, University of Michigan, 1085 South University Avenue, 311 West Hall, Ann Arbor, MI 48109 (United States); Yang, H.-Y. Karen; Reynolds, Christopher S., E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: chris@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-07-20

    Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We find that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (i) CRs come into contact with the ambient ICM and efficiently heat it, (ii) streaming instability heating dominates over Coulomb and hadronic heating, (iii) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (iv) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.

  1. Analysis of an underground electric heating system with short-term energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, B.H. [Michigan State Univ., East Lansing, MI (United States). Dept. of Mechanical Engineering

    1994-12-31

    The principal commercially active heat storage application in which concrete is used as the storage medium is in the use of subfloor electric heaters embedded in a layer of sand. The resistance heaters are energized when utility offpeak rates are in effect. The sand bed and the concrete floor are then heated to some predetermined temperature, and the floor releases heat slowly and remains warm during the subsequent period of high demand. Analysis of the slab-heating system for varying design parameters, such as the depth of the placement of the heaters, the sand properties, the energy input, and the insulation thickness, was considered. The system was also optimized based on life-cycle costs. The suitability of using this system for heating a warehouse in four representative cities in the United States was also considered The response of the system was found to be greatly influenced by the depth of the placement of the heaters, the sand`s moisture content, and the heating strategy. Optimum insulation levels were determined for the prototypical building in all four of the representative cities. Because of the difficulty of controlling the energy release from the heating mats, this system may not be suitable for heating residential and office buildings but may be more appropriate for heating maintenance and storage facilities.

  2. CESARR V.2 manual: Computer code for the evaluation of surface storage of low and medium level radioactive waste

    International Nuclear Information System (INIS)

    Moya Rivera, J.A.; Bolado Lavin, R.

    1997-01-01

    CESARR (Code for the safety evaluation of low and medium level radioactive waste storage). This code was developed for the safety probabilistic evaluations in the facilities of low-and medium level radioactive waste storage

  3. Alternatives for metal hydride storage bed heating and cooling

    International Nuclear Information System (INIS)

    Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

    1991-01-01

    The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development

  4. Heat storage in forest biomass improves energy balance closure

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  5. A central solar-industrial waste heat heating system with large scale borehole thermal storage

    NARCIS (Netherlands)

    Guo, F.; Yang, X.; Xu, L.; Torrens, I.; Hensen, J.L.M.

    2017-01-01

    In this paper, a new research of seasonal thermal storage is introduced. This study aims to maximize the utilization of renewable energy source and industrial waste heat (IWH) for urban district heating systems in both heating and non-heating seasons through the use of large-scale seasonal thermal

  6. A control model for district heating networks with storage

    NARCIS (Netherlands)

    Scholten, Tjeert; De Persis, Claudio; Tesi, Pietro

    2014-01-01

    In [1] pressure control of hydraulic networks is investigated. We extend this work to district heating systems with storage capabilities and derive a model taking the topology of the network into account. The goal for the derived model is that it should allow for control of the storage level and

  7. Workshop on Hydrogen Storage and Generation for Medium-Power and -Energy Applications

    National Research Council Canada - National Science Library

    Matthews, Michael

    1998-01-01

    This report summarizes the Workshop on Hydrogen Storage and Generation Technologies for Medium-Power and -Energy Applications which was held on April 8-10, 1997 at the Radisson Hotel Orlando Airport in Orlando, Florida...

  8. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  9. Secure data storage by three-dimensional absorbers in highly scattering volume medium

    International Nuclear Information System (INIS)

    Matoba, Osamu; Matsuki, Shinichiro; Nitta, Kouichi

    2008-01-01

    A novel data storage in a volume medium with highly scattering coefficient is proposed for data security application. Three-dimensional absorbers are used as data. These absorbers can not be measured by interferometer when the scattering in a volume medium is strong enough. We present a method to reconstruct three-dimensional absorbers and present numerical results to show the effectiveness of the proposed data storage.

  10. High-temperature acquifer thermal storage and underground heat storage; IEA ECES Annex 12: Hochtemperatur-Erdwaermesonden- und Aquiferwaermespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B.; Knoblich, K. [Giessen Univ. (Germany). Inst. fuer Angewandte Geowissenschaften; Koch, M.; Adinolfi, M. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete und Abfallwirtschaft

    1998-12-31

    Heat storage is essential for the reconciliation of heat supply and demand. The earth has already proved to be an excellent medium for storing large amounts of heat over longer periods of time, for instance during the cold and hot season. The efficiency of the storage is the better the lower storage losses are at high temperature levels. Unfortunately this can not be easily achieved. While thermal underground stores, which are widely used for cold storage, have proved to perform quite well at temperatures between 10 C - 40 C, it has been rather difficult to achieve similar results at higher temperatures up to 150 C as test and demonstration plants of the 1980s proved. This issue has again attracted so much interest that the IEA launched a project on high temperature underground storage in December 1998. (orig.) [Deutsch] Waermespeicherung ist von entscheidender Bedeutung, wenn es darum geht, ein Waermeangebot mit einer Waermenachfrage zeitlich zur Deckung zu bringen. Der Untergrund hat sich schon seit vielen Jahren als ein geeignetes Medium erwiesen, groessere Waermepumpen ueber laengere Zeitraeume wie etwa die kalten und warmen Jahreszeiten zu speichern. Die Effizienz eines solchen Speichers steigt mit der Hoehe des erreichten Temperaturniveaus und mit sinkenden Speicherverlusten, was leider eher gegenlaeufige Erscheinungen sind. Waehrend thermische Untergrundspeicher im Temperaturbereich von 10-40 C inzwischen erfolgreich demonstriert wurden und vor allem zur Kaeltespeicherung auch bereits vielfach eingesetzt werden, haben hoehere Temperaturen bis etwa 150 C in den Versuchs- und Demonstrationsanlagen der 80er Jahre vielfaeltige Probleme bereitet. Im Gefolge eines erneuten Interesses an unterirdischer thermischer Energiespeicherung wurde im Dezember 1997 ein Vorhaben des IEA Energiespeicherprogramms zu Untergrund-Waermespeichern hoeherer Temperatur eingerichtet. (orig.)

  11. Performance of a Polarized Deuterium Internal Target in a Medium-Energy Electron Storage Ring.

    NARCIS (Netherlands)

    Zhou, Z.L.; Ferro Luzzi, M.M.E.; van den Brand, J.F.J.; Bulten, H.J.; Alarcon, R.; van Bommel, R.; Botto, T.; Bouwhuis, M.; Buchholz, M.; Choi, S.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Gaulard, C.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Miller, M.A.; Passchier, E.; Passchier, I.; Poolman, H.R.; Six, E.; Steijger, J.J.M.; Unal, O.; de Vries, H.

    1996-01-01

    A polarized deuterium target internal to a medium-energy electron storage ring is described in the context of spindependent (e, e′d) and (e ,e′p) experiments. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used

  12. Are carbon nanostructures an efficient hydrogen storage medium?

    NARCIS (Netherlands)

    Hirscher, M.; Becher, M.; Haluska, M.; Zeppelin, von F.; Chen, X.; Dettlaff-Weglikowska, U.; Roth, S.

    2003-01-01

    Literature data on the storage capacities of hydrogen in carbon nanostructures show a scatter over several orders of magnitude which cannot be solely explained by the limited quantity or purity of these novel nanoscale materials. With this in mind, this article revisits important experiments.

  13. Microencapsulated Phase-Change Materials For Storage Of Heat

    Science.gov (United States)

    Colvin, David P.

    1989-01-01

    Report describes research on engineering issues related to storage and transport of heat in slurries containing phase-change materials in microscopic capsules. Specific goal of project to develop lightweight, compact, heat-management systems used safely in inhabited areas of spacecraft. Further development of obvious potential of technology expected to lead to commercialization and use in aircraft, electronic equipment, machinery, industrial processes, and other sytems in which requirements for management of heat compete with severe restrictions on weight or volume.

  14. Rapid charging of thermal energy storage materials through plasmonic heating.

    Science.gov (United States)

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-09-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.

  15. Aquifer thermal energy (heat and chill) storage

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, E.A. (ed.)

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  16. Process for adapting a heat source and a thermal machine by temporary heat storage

    International Nuclear Information System (INIS)

    Cahn, R.P.; Nicholson, E.W.

    1975-01-01

    The process described is intended to ensure the efficient use of the heat from a nuclear reactor or from a furnace burning fossil fuel at constant power, and of a boiler in a power station comprising a multi-stage steam turbine, the steam extracted from the turbine being used for pre-heating the boiler feed water. This process is most flexible with a varying load. It includes the high temperature storage of the excess heat energy in a low vapor pressure storage liquid (hydrocarbon oils, molten salts or liquid metals) at atmospheric pressure when the demand is low; then, when the energy demand is at its height, the reduction of steam extraction from the turbine with simultaneous utilisation of the hot heat storage liquid for the various maintenance heating functions of the power station by heat exchange, so that the heat can expand totally in the turbine with generation of energy [fr

  17. Tetrahydroborates: Development and Potential as Hydrogen Storage Medium

    Directory of Open Access Journals (Sweden)

    Julián Puszkiel

    2017-10-01

    Full Text Available The use of fossil fuels as an energy supply becomes increasingly problematic from the point of view of both environmental emissions and energy sustainability. As an alternative, hydrogen is widely regarded as a key element for a potential energy solution. However, different from fossil fuels such as oil, gas, and coal, the production of hydrogen requires energy. Alternative and intermittent renewable sources such as solar power, wind power, etc., present multiple advantages for the production of hydrogen. On one hand, the renewable sources contribute to a remarkable reduction of pollutants released to the air. On the other hand, they significantly enhance the sustainability of energy supply. In addition, the storage of energy in form of hydrogen has a huge potential to balance an effective and synergetic utilization of the renewable energy sources. In this regard, hydrogen storage technology presents a key roadblock towards the practical application of hydrogen as “energy carrier”. Among the methods available to store hydrogen, solid-state storage is the most attractive alternative both from the safety and the volumetric energy density points of view. Because of their appealing hydrogen content, complex hydrides and complex hydride-based systems have attracted considerable attention as potential energy vectors for mobile and stationary applications. In this review, the progresses made over the last century on the development in the synthesis and research on the decomposition reactions of homoleptic tetrahydroborates is summarized. Furthermore, theoretical and experimental investigations on the thermodynamic and kinetic tuning of tetrahydroborates for hydrogen storage purposes are herein reviewed.

  18. Cu-Si bilayers as storage medium in optical recording

    International Nuclear Information System (INIS)

    Kuiper, A.E. T.; Vullers, R.J.M.; Pasquariello, D.; Naburgh, E.P.

    2005-01-01

    Instead of a phase change or a dye layer, a Cu/Si bilayer can be applied as the recording medium in a write-once Blu-ray Disc. The write process basically comprises the formation of a CuSi alloy containing 25-30 at. % Si, while any excess of Si is left behind as unreacted film. Auger analyses of the laser-written layers indicate that recording consists primarily of the diffusion of Si into Cu. The data allow for discrimination between the various models presented in literature for Cu/Si-based recording and to optimize the stack. Very low jitter levels of typically 4% proved to be achievable with equally thick films of Cu and Si as recording medium

  19. Efficient numerical simulation of heat storage in subsurface georeservoirs

    Science.gov (United States)

    Boockmeyer, A.; Bauer, S.

    2015-12-01

    The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and

  20. Conversion of medium and low temperature heat to power

    Science.gov (United States)

    Fischer, Johann; Wendland, Martin; Lai, Ngoc Anh

    2013-04-01

    Presently most electricity is produced in power plants which use high temperature heat supplied by coal, oil, gas or nuclear fission and Clausius-Rankine cycles (CRC) with water as working fluid (WF). On the other hand, geo-, solar-, ocean-, and biogenic-heat have medium and low temperatures. At these temperatures, however, the use of other WF and/or other cycles can yield higher efficiencies than those of the water-CRC. For an assessment of the efficiency we model systems which include the heat transfer to and from the WF and the cycle. Optimization criterion is the exergy efficiency defined as the ratio of the net power output to the incoming exergy flow of the heat carrier. First, for a better understanding we discuss some thermodynamic properties of the WFs: 1) the critical point parameters, 2) the shape of the vapour- liquid coexistence curve in the temperature vs entropy (T,s)-diagram which may be either bell-shaped or overhanging [1,2], and 3) the shape of sub- and supercritical isobars for pure fluids and fluid mixtures. Second, we show that the problems of a CRC with water at lower temperatures are 1) the shape of the T,s-diagram and 2) the exergy loss during heat transfer to the WF. The first problem can be overcome by using an organic working fluid in the CRC which then is called organic Rankine cycle (ORC). The second problem is reduced by supercritical organic Rankine cycles (sORC) [1,2], trilateral cycles (TLC) and the more general power-flash cycles (PFC) [2], and organic flash cycles (OFC) [3]. Next, selected results for systems with the above mentioned cycles will be presented. The heat carrier inlet temperatures THC range from 120°C to 350°C.The pure working fluids are water, refrigerants, alkanes, aromates and siloxanes and have to be selected to match with THC. It is found that TLC with water have the highest efficiencies but show very large volume flows at lower temperatures. Moreover, expansion machines for TLC and PFC are still under

  1. Testing of PCM Heat Storage Modules with Solar Collectors as Heat Source

    DEFF Research Database (Denmark)

    Englmair, Gerald; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    A latent heat storage based on the phase change material Sodium Acetate Trihydrate (SAT) has been tested as part of a demonstration system. The full heat storage consisted of 4 individual modules each containing about 200 kg of sodium acetate trihydrate with different additives. The aim...... was to actively utilize the ability of the material to supercool to obtain long storage periods. The modules were charged with solar heat supplied by 22.4 m2 evacuated tubular collectors. The investigation showed that it was possible to fully charge one module within a period of 270 minutes with clear skies...

  2. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger

    International Nuclear Information System (INIS)

    Fopah-Lele, Armand; Rohde, Christian; Neumann, Karsten; Tietjen, Theo; Rönnebeck, Thomas; N'Tsoukpoe, Kokouvi Edem; Osterland, Thomas; Opel, Oliver

    2016-01-01

    A lab-scale thermochemical heat storage reactor was developed in the European project “thermal battery” to obtain information on the characteristics of a closed heat storage system, based on thermochemical reactions. The present type of storage is capable of re-using waste heat from cogeneration system to produce useful heat for space heating. The storage material used was SrBr 2 ·6H 2 O. Due to agglomeration or gel-like problems, a structural element was introduced to enhance vapour and heat transfer. Honeycomb heat exchanger was designed and tested. 13 dehydration-hydration cycles were studied under low-temperature conditions (material temperatures < 100 °C) for storage. Discharging was realized at water vapour pressure of about 42 mbar. Temperature evolution inside the reactor at different times and positions, chemical conversion, thermal power and overall efficiency were analysed for the selected cycles. Experimental system thermal capacity and efficiency of 65 kWh and 0.77 are respectively obtained with about 1 kg of SrBr 2 ·6H 2 O. Heat transfer fluid recovers heat at a short span of about 43 °C with an average of 22 °C during about 4 h, acceptable temperature for the human comfort (20 °C on day and 16 °C at night). System performances were obtained for a salt bed energy density of 213 kWh·m 3 . The overall heat transfer coefficient of the honeycomb heat exchanger has an average value of 147 W m −2  K −1 . Though promising results have been obtained, ameliorations need to be made, in order to make the closed thermochemical heat storage system competitive for space heating. - Highlights: • Lab-scale thermochemical heat storage is designed, constructed and tested. • The use of honeycomb heat exchanger as a heat and vapour process enhancement. • Closed system (1 kg SrBr 2 ·6H 2 O) able to give back 3/4 of initial thermal waste energy. • System storage capacity and thermal efficiency are respectively 65 kWh and 0.77.

  3. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003

    International Nuclear Information System (INIS)

    Hadorn, J.-C.; Renaud, P.

    2003-01-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD+D projects

  4. HYBRID INDIRECT SOLAR COOKER WITH LATENT HEAT STORAGE

    OpenAIRE

    Benazeer Hassan K. Ibrahim *, Victor Jose

    2016-01-01

    Solar cooking is the simplest, safest, most convenient way to cook food without consuming fuels or heating up the kitchen. All the conventional solar cooker designs have the disadvantage of inability to cook during off-shine and night hours.This disadvantage can be eliminated if the solar cooker is designed with thermal storage arrangement. In this paper, a hybrid solar cooker with evacuated tube collector and latent thermal storage unit and alternate electric heatingsource is simulated. The...

  5. Investigation of Heat Pump Operation Strategies with Thermal Storage in Heating Conditions

    Directory of Open Access Journals (Sweden)

    Wangsik Jung

    2017-12-01

    Full Text Available A heat pump with thermal storage system is a system that operates a heat pump during nighttime using inexpensive electricity; during this time, the generated thermal energy is stored in a thermal storage tank. The stored thermal energy is used by the heat pump during daytime. Based on a model of a dual latent thermal storage tank and a heat pump, this study conducts control simulations using both conventional and advanced methods for heating in a building. Conventional methods include the thermal storage priority method and the heat pump priority method, while advanced approaches include the region control method and the dynamic programming method. The heating load required for an office building is identified using TRNSYS (Transient system simulation, used for simulations of various control methods. The thermal storage priority method shows a low coefficient of performance (COP, while the heat pump priority method leads to high electricity costs due to the low use of thermal storage. In contrast, electricity costs are lower for the region control method, which operates using the optimal part load ratio of the heat pump, and for dynamic programming, which operates the system by following the minimum cost path. According to simulation results for the winter season, the electricity costs using the dynamic programming method are 17% and 9% lower than those of the heat pump priority and thermal storage priority methods, respectively. The region control method shows results similar to the dynamic programming method with respect to electricity costs. In conclusion, advanced control methods are proven to have advantages over conventional methods in terms of power consumption and electricity costs.

  6. Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications

    Directory of Open Access Journals (Sweden)

    Azharul Karim

    2018-04-01

    Full Text Available A large amount of energy is consumed by heating and cooling systems to provide comfort conditions for commercial building occupants, which generally contribute to peak electricity demands. Thermal storage tanks in HVAC systems, which store heating/cooling energy in the off-peak period for use in the peak period, can be used to offset peak time energy demand. In this study, a theoretical investigation on stratified thermal storage systems is performed to determine the factors that significantly influence the thermal performance of these systems for both heating and cooling applications. Five fully-insulated storage tank geometries, using water as the storage medium, were simulated to determine the effects of water inlet velocity, tank aspect ratio and temperature difference between charging (inlet and the tank water on mixing and thermocline formation. Results indicate that thermal stratification enhances with increased temperature difference, lower inlet velocities and higher aspect ratios. It was also found that mixing increased by 303% when the temperature difference between the tank and inlet water was reduced from 80 °C to 10 °C, while decreasing the aspect ratio from 3.8 to 1.0 increased mixing by 143%. On the other hand, increasing the inlet water velocity significantly increased the storage mixing. A new theoretical relationship between the inlet water velocity and thermocline formation has been developed. It was also found that inlet flow rates can be increased, without increasing the mixing, after the formation of the thermocline.

  7. Economics of long-distance transmission, storage, and distribution of heat from nuclear plants with existing and newer techniques

    International Nuclear Information System (INIS)

    Margen, P.H.

    1978-01-01

    Conventional and newer types of hot-water pipes are applied to the bulk transport of reject heat from central nuclear power plants to the district heating network of cities or groups of cities. With conventional pipes, the transport of 300 to 2000 MW of heat over distances of 30 to 100 km can be justified, while with newer pipe types, even longer distances would often be economic. For medium-size district heating schemes, low-temperature heat transport from simple heat-only reactors suitable for closer location to cities is of interest. For daily storage of heat on district heating systems, steel heat accumulators are currently used in Sweden. The development of more advanced cheaper heat accumulators, such as lake storage schemes, could make even seasonal heat storage economic. Newer distribution technology extends the economic field of penetration of district heating even to suburban one-family house districts. With proper design and optimization, nuclear district heating can be competitive in a wide market and achieve very substantial fossil-fuel savings

  8. Heat pipe solar receiver with thermal energy storage

    Science.gov (United States)

    Zimmerman, W. F.

    1981-01-01

    An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.

  9. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...

  10. Numerical Analysis of Heat Storage and Heat Conductivity in the Concrete Hollow Core Deck Element

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    extent these simplified models estimate the heat storage potential of precast hollow-core concrete decks correctly. This study investigates various approaches on how to model the heat transfer within the air void in the deck. Furthermore, it is analysed how different heat transfer models influence...... the overall heat transfer and heat storage in the hollow-core decks. The presented results allow comparison between detailed results from 2D-COMSOL simulations and simple 1D calculations from the whole building simulation tool such as BSim program and moreover, it is possible to validate the calculation...... method in BSim for the concrete deck element with air voids. Finally, this paper presents a comparison of the calculated heat conductivity of the hollow-core concrete deck and the measured heat conductivity for the same deck by using hot box apparatus....

  11. Energetic and Exergy Efficiency of a Heat Storage Unit for Building Heating

    International Nuclear Information System (INIS)

    Hazami, Mejdi; Kooli, Sami; Lazaar, Meriem; Farhat, Abdelhamid; Belghith, Ali

    2009-01-01

    This paper deals with a numerical and experimental investigation of a daily solar storage system conceived and built in Laboratoire de Maitrise des Technologies de l Energie (LMTE, Borj Cedria). This system consists mainly of the storage unit connected to a solar collector unit. The storage unit consists of a wooden case with dimension of 5 m 3 (5 m x 1m x 1m) filed with fin sand. Inside the wooden case was buried a network of a polypropylene capillary heat exchanger with an aperture area equal to 5 m 2 . The heat collection unit consisted of 5 m 2 of south-facing solar collector mounted at a 37 degree tilt angle. In order to evaluate the system efficiency during the charging period (during the day) and discharging period (during the night) an energy and exergy analyses were applied. Outdoor experiments were also carried out under varied environmental conditions for several consecutive days. Results showed that during the charging period, the average daily rates of thermal energy and exergy stored in the heat storage unit were 400 and 2.6 W, respectively. It was found that the net energy and exergy efficiencies in the charging period were 32 pour cent and 22 pour cent, respectively. During the discharging period, the average daily rates of the thermal energy and exergy recovered from the heat storage unit were 2 kW and 2.5 kW, respectively. The recovered heat from the heat storage unit was used for the air-heating of a tested room (4 m x 3 m x 3 m). The results showed that 30 pour cent of the total heating requirement of the tested room was obtained from the heat storage system during the whole night in cold seasons

  12. [Alterations in the metabolism of cornmeal epithelium during medium-term storage (author's transl)].

    Science.gov (United States)

    Schmidt-Martens, F W; Hennighausen, U; Wirz, K; Teping, C

    1977-08-08

    Freshly prepared bovine corneas were stored in medium TC 199 with penicillin and fetal calf serum at +4 degrees C over a storage period of 168h. Every 24h, the levels of glucose, lactate, and pyruvate in the corneal epithelium were estimated. Also the glucose levels in the corneal epithelium and stroma were compared at the same time intervals. Furthermore, alterations in the enzyme pattern of the epithelial cells during storage were observed.

  13. Thermal performance and heat transport in aquifer thermal energy storage

    Science.gov (United States)

    Sommer, W. T.; Doornenbal, P. J.; Drijver, B. C.; van Gaans, P. F. M.; Leusbrock, I.; Grotenhuis, J. T. C.; Rijnaarts, H. H. M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as their thermal performance. Furthermore, the increasing density of systems generates concern regarding thermal interference between the wells of one system and between neighboring systems. An assessment is made of (1) the thermal storage performance, and (2) the heat transport around the wells of an existing ATES system in the Netherlands. Reconstruction of flow rates and injection and extraction temperatures from hourly logs of operational data from 2005 to 2012 show that the average thermal recovery is 82 % for cold storage and 68 % for heat storage. Subsurface heat transport is monitored using distributed temperature sensing. Although the measurements reveal unequal distribution of flow rate over different parts of the well screen and preferential flow due to aquifer heterogeneity, sufficient well spacing has avoided thermal interference. However, oversizing of well spacing may limit the number of systems that can be realized in an area and lower the potential of ATES.

  14. Day-to-night heat storage in greenhouses

    NARCIS (Netherlands)

    Seginer, Ido; Straten, van Gerrit; Beveren, van Peter J.M.

    2017-01-01

    Day-to-night heat storage in water tanks (buffers) is common practice in cold-climate greenhouses, where gas is burned during the day for carbon dioxide enrichment. In Part 1 of this study, an optimal control approach was outlined for such a system, the basic idea being that the virtual value

  15. Building with integral solar-heat storage--Starkville, Mississippi

    Science.gov (United States)

    1981-01-01

    Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.

  16. Rock bed storage with heat pump. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, H.E.; Mills, G.L.

    1979-05-01

    The study, Rock Bed Storage with Heat Pump, established the feasibility of mating a heat pump to a rock bed storage to effect optimal performance at the lowest cost in single family residences. The operating characteristics of off-the-shelf components of heat pump/rock bed storage systems were studied, and the results were used to formulate configurations of representative systems. These systems were modeled and subsequently analyzed using the TRNSYS computer program and a life cycle cost analysis program called LCCA. A detailed load model of a baseline house was formulated as part of the TRNSYS analysis. Results of the analysis involved the development of a technique to confine the range of heat pump/rock bed storage systems to those systems which are economical for a specific location and set of economic conditions. Additionally, the results included a comparison of the detailed load model with simple UA models such as the ASHRAE bin method. Several modifications and additions were made to the TRNSYS and LCCA computer programs during the course of the study.

  17. An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material

    Directory of Open Access Journals (Sweden)

    Ashish Agarwal

    2016-03-01

    Full Text Available In the presented study the shell and tube type latent heat storage (LHS has been designed for solar dryer and paraffin wax is used as heat storage material. In the first part of the study, the thermal and heat transfer characteristics of the latent heat storage system have been evaluated during charging and discharging process using air as heat transfer fluid (HTF. In the last section of the study the effectiveness of the use of an LHS for drying of food product and also on the drying kinetics of a food product has been determined. A series of experiments were conducted to study the effects of flow rate and temperature of HTF on the charging and discharging process of LHS. The temperature distribution along the radial and longitudinal directions was obtained at different time during charging process to analyze the heat transfer phenomenon in the LHS. Thermal performance of the system is evaluated in terms of cumulative energy charged and discharged, during the charging and discharging process of LHS, respectively. Experimental results show that the LHS is suitable to supply the hot air for drying of food product during non-sunshine hours or when the intensity of solar energy is very low. Temperature gain of air in the range of 17 °C to 5 °C for approximately 10 hrs duration was achieved during discharging of LHS.

  18. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span

  19. Nanoscale heat transfer in carbon nanotube - sugar alcohol composites as heat storage materials

    NARCIS (Netherlands)

    Zhang, H.; Rindt, C.C.M.; Smeulders, D.M.J.; Gaastra - Nedea, S.V.

    2016-01-01

    Nanoscale carbon structures such as graphene and carbon nanotubes (CNTs) can greatly improve the effective thermal conductivity of thermally sluggish heat storage materials, such as sugar alcohols (SAs). The specific improvement depends on the heat transfer rate across the carbon structure. Besides,

  20. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  1. Liquid neon heat intercept for superconducting energy storage magnets

    International Nuclear Information System (INIS)

    Khalil, A.; McIntosh, G.E.

    1982-01-01

    Previous analyses of heat intercept solutions are extended to include both insulation and strut heat leaks. The impact of using storable, boiling cryogens for heat intercept fluids, specifically liquid neon and nitrogen, is also examined. The selection of fluid for the heat intercepts is described. Refrigeration power for 1000 and 5000 MWhr SMES units is shown with optimum refrigeration power for each quantity shown in tables. Nitrogen and Neon cooled intercept location for minimum total refrigeration power for a 5000 MWhr SMES are each shown, as well as the location of nitrogen and neon cooled intercepts for minimum total refrigeration power for 5000 MWhr SMES. Cost comparisons are itemized and neon cost and availability discussed. For a large energy storage magnet system, liquid neon is a more effective heat intercept fluid than liquid nitrogen. Reasons and application of the conclusion are amplified

  2. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  3. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  4. An optimisation framework for thermal energy storage integration in a residential heat pump heating system

    International Nuclear Information System (INIS)

    Renaldi, R.; Kiprakis, A.; Friedrich, D.

    2017-01-01

    Highlights: • An integrated framework for the optimal design of low carbon heating systems. • Development of a synthetic heat demand model with occupancy profiles. • Linear model of a heat pump with thermal energy storage heating system. • Evaluation of domestic heating system from generally available input parameters. • The lower carbon heating system can be cost competitive with conventional systems. - Abstract: Domestic heating has a large share in the UK total energy consumption and significant contribution to the greenhouse gas emissions since it is mainly fulfilled by fossil fuels. Therefore, decarbonising the heating system is essential and an option to achieve this is by heating system electrification through heat pumps (HP) installation in combination with renewable power generation. A potential increase in performance and flexibility can be achieved by pairing HP with thermal energy storage (TES), which allows the shifting of heat demand to off peak periods or periods with surplus renewable electricity. We present a design and operational optimisation model which is able to assess the performance of HP–TES relative to conventional heating systems. The optimisation is performed on a synthetic heat demand model which requires only the annual heat demand, temperature and occupancy profiles. The results show that the equipment and operational cost of a HP system without TES are significantly higher than for a conventional system. However, the integration of TES and time-of-use tariffs reduce the operational cost of the HP systems and in combination with the Renewable Heating Incentive make the HP systems cost competitive with conventional systems. The presented demand model and optimisation procedure will enable the design of low carbon district heating systems which integrate the heating system with the variable renewable electricity supply.

  5. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M.

    Sorption heat storage can potentially store thermal energy for long time periods with a higher energy density compared to conventional storage technologies. A performance comparison in terms of energy density and storage capacity costs of different sorption system concepts used for seasonal heat

  6. Studies on irradiated BNFL culture medium for decontamination and longer storage

    International Nuclear Information System (INIS)

    Singh, Antaryami; Malodia, P.; Jain, S.K.; Ram Gopal

    2001-01-01

    The feasibility of gamma radiation for microbial decontamination and shelf-life extension of culture medium was studied. Changes in total viable count, coliform count and fungal count on exposure to 5, 10, 15, 20 and 25 kGy of gamma radiation were examined. The total viable counts were reduced on irradiation. Complete destruction of bacterial and fungal contamination was observed at 20 kGy. Studies were conducted to examine the changes in microbial contamination of the medium during storage. There was no post irradiation proliferation of microorganisms. Also, no significant change in the efficiency of the irradiated culture medium was observed. Thus, irradiation is extremely useful for longer storage and quality-assurance. (author)

  7. Flexibility of a combined heat and power system with thermal energy storage for district heating

    International Nuclear Information System (INIS)

    Nuytten, Thomas; Claessens, Bert; Paredis, Kristof; Van Bael, Johan; Six, Daan

    2013-01-01

    Highlights: ► A generic model for flexibility assessment of thermal systems is proposed. ► The model is applied to a combined heat and power system with thermal energy storage. ► A centrally located storage offers more flexibility compared to individual units. ► Increasing the flexibility requires both a more powerful CHP and a larger buffer. - Abstract: The trend towards an increased importance of distributed (renewable) energy resources characterized by intermittent operation redefines the energy landscape. The stochastic nature of the energy systems on the supply side requires increased flexibility at the demand side. We present a model that determines the theoretical maximum of flexibility of a combined heat and power system coupled to a thermal energy storage solution that can be either centralized or decentralized. Conventional central heating, to meet the heat demand at peak moments, is also available. The implications of both storage concepts are evaluated in a reference district. The amount of flexibility created in the district heating system is determined by the approach of the system through delayed or forced operation mode. It is found that the distinction between the implementation of the thermal energy storage as a central unit or as a collection of local units, has a dramatic effect on the amount of available flexibility

  8. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Science.gov (United States)

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  10. Saline Cavern Adiabatic Compressed Air Energy Storage Using Sand as Heat Storage Material

    Directory of Open Access Journals (Sweden)

    Martin Haemmerle

    2017-03-01

    Full Text Available Adiabatic compressed air energy storage systems offer large energy storage capacities and power outputs beyond 100MWel. Salt production in Austria produces large caverns which are able to hold pressure up to 100 bar, thus providing low cost pressurized air storage reservoirs for adiabatic compressed air energy storage plants. In this paper the results of a feasibility study is presented, which was financed by the Austrian Research Promotion Agency, with the objective to determine the adiabatic compressed air energy storage potential of Austria’s salt caverns. The study contains designs of realisable plants with capacities between 10 and 50 MWel, applying a high temperature energy storage system currently developed at the Institute for Energy Systems and Thermodynamics in Vienna. It could be shown that the overall storage potential of Austria’s salt caverns exceeds a total of 4GWhel in the year 2030 and, assuming an adequate performance of the heat exchanger, that a 10MWel adiabatic compressed air energy storage plant in Upper Austria is currently feasible using state of the art thermal turbomachinery which is able to provide a compressor discharge temperature of 400 °C.

  11. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    Science.gov (United States)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  12. Heat storage system utilizing phase change materials government rights

    Science.gov (United States)

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  13. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  14. Energy density enhancement of chemical heat storage material for magnesium oxide/water chemical heat pump

    International Nuclear Information System (INIS)

    Myagmarjav, Odtsetseg; Zamengo, Massimiliano; Ryu, Junichi; Kato, Yukitaka

    2015-01-01

    A novel candidate chemical heat storage material having higher reaction performance and higher thermal conductivity used for magnesium oxide/water chemical heat pump was developed in this study. The material, called EML, was obtained by mixing pure Mg(OH)_2 with expanded graphite (EG) and lithium bromide (LiBr), which offer higher thermal conductivity and reactivity, respectively. With the aim to achieve a high energy density, the EML composite was compressed into figure of the EML tablet (ϕ7.1 mm × thickness 3.5 mm). The compression force did not degrade the reaction conversion, and furthermore it enabled us to achieve best heat storage and output performances. The EML tablet could store heat of 815.4 MJ m_t_a_b"−"3 at 300 °C within 120 min, which corresponded to almost 4.4 times higher the heat output of the EML composite, and therefore, the EML tablet is the solution which releases more heat in a shorter time. A relatively larger volumetric gross heat output was also recorded for the EML tablet, which was greater than one attained for the EML composite at certain temperatures. As a consequence, it is expected that the EML tablet could respond more quickly to sudden demand of heat from users. It was concluded that the EML tablet demonstrated superior performances. - Highlights: • A new chemical heat storage material, donated as EML, was developed. • EML composite made from pure Mg(OH)_2, expanded graphite and lithium bromide. • EML tablet was demonstrated by compressing the EML composite. • Compression force did not degrade the conversion in dehydration and hydration. • EML tablet demonstrated superior heat storage and output performances.

  15. Economic analyses of central solar heating systems with seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D; Keinonen, R.S.

    1986-10-01

    Economic optimization of large active community solar heating systems with annual thermal storage is discussed. The economic evaluation is based on a thermal performance simulation model employing one hour time steps and on detailed up-date data. Different system configurations and sub-system sizes have been considered. For Northern European weather conditions (60/sup 0/N) and with at least 400-500 residential units, the life-cycle cost of delivered solar heat was 6.5-7.5 c/kWh for 50% fraction of non-purchased energy. For a solar fraction of 70%, the solar energy price would be 8 c/kWh.

  16. Effect of partial heating at mid of vertical plate adjacent to porous medium

    Science.gov (United States)

    Mulla, Mohammed Fahimuddin; Pallan, Khalid. M.; Al-Rashed, A. A. A. A.

    2018-05-01

    Heat and mass transfer in porous medium due to heating of vertical plate at mid-section is analyzed for various physical parameters. The heat and mass transfer in porous medium is modeled with the help of momentum, energy and concentration equations in terms of non-dimensional partial differential equations. The partial differential equations are converted into simpler form of algebraic equations with the help of finite element method. A computer code is developed to assemble the matrix form of algebraic equations into global matrices and then to solve them in an iterative manner to obtain the temperature, concentration and streamline distribution inside the porous medium. It is found that the heat transfer behavior of porous medium heated at middle section is considerably different from other cases.

  17. Thermochemical Heat Storage: from Reaction Storage Density to System Storage Density

    NARCIS (Netherlands)

    Jong, A.J. de; Vliet, L.D. van; Hoegaerts, C.L.G.; Roelands, C.P.M.; Cuypers, R.

    2016-01-01

    Long-term and compact storage of solar energy is crucial for the eventual transition to a 100% renewable energy economy. For this, thermochemical materials provide a promising solution. The compactness of a long-term storage system is determined by the thermochemical reaction, operating conditions,

  18. Wallboard with Latent Heat Storage for Passive Solar Applications; TOPICAL

    International Nuclear Information System (INIS)

    Kedl, R.J.

    2001-01-01

    Conventional wallboard impregnated with octadecane paraffin[melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications

  19. Integrated heat exchanger design for a cryogenic storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  20. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    Science.gov (United States)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  1. Modeling Pumped Thermal Energy Storage with Waste Heat Harvesting

    Science.gov (United States)

    Abarr, Miles L. Lindsey

    This work introduces a new concept for a utility scale combined energy storage and generation system. The proposed design utilizes a pumped thermal energy storage (PTES) system, which also utilizes waste heat leaving a natural gas peaker plant. This system creates a low cost utility-scale energy storage system by leveraging this dual-functionality. This dissertation first presents a review of previous work in PTES as well as the details of the proposed integrated bottoming and energy storage system. A time-domain system model was developed in Mathworks R2016a Simscape and Simulink software to analyze this system. Validation of both the fluid state model and the thermal energy storage model are provided. The experimental results showed the average error in cumulative fluid energy between simulation and measurement was +/- 0.3% per hour. Comparison to a Finite Element Analysis (FEA) model showed heat transfer. The system model was used to conduct sensitivity analysis, baseline performance, and levelized cost of energy of a recently proposed Pumped Thermal Energy Storage and Bottoming System (Bot-PTES) that uses ammonia as the working fluid. This analysis focused on the effects of hot thermal storage utilization, system pressure, and evaporator/condenser size on the system performance. This work presents the estimated performance for a proposed baseline Bot-PTES. Results of this analysis showed that all selected parameters had significant effects on efficiency, with the evaporator/condenser size having the largest effect over the selected ranges. Results for the baseline case showed stand-alone energy storage efficiencies between 51 and 66% for varying power levels and charge states, and a stand-alone bottoming efficiency of 24%. The resulting efficiencies for this case were low compared to competing technologies; however, the dual-functionality of the Bot-PTES enables it to have higher capacity factor, leading to 91-197/MWh levelized cost of energy compared to 262

  2. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System.

    Science.gov (United States)

    Nemś, Magdalena; Nemś, Artur; Kasperski, Jacek; Pomorski, Michał

    2017-08-12

    This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system's working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage.

  3. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System

    Science.gov (United States)

    Nemś, Magdalena; Nemś, Artur; Kasperski, Jacek; Pomorski, Michał

    2017-01-01

    This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system’s working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage. PMID:28805703

  4. Method and equipment to utilize solar heat. [paraffin used as heat storage material

    Energy Technology Data Exchange (ETDEWEB)

    Poellein, H

    1976-09-16

    In this process, solar radiation is converted into heat by means of absorbers. The heat transferred to a liquid is led in forced circulation, first into a heat storage device and then into a water heater. The cooled-down liquid is rercirculated. The storage material used here is paraffin. A measuring and control device is provided to switch from periods with solar radiation to periods where only stored energy is consumed. This device consists of a photocell measuring the incoming sunlight and a temperarure sensor. The control system is put into operation by a combination of the two measured values. The heat accumulator consists of several elements connected in parallel. A control device makes sure that only one accumulator element at a time is part of the circuit. The absorbers, as usual, consists of the absorber plate proper and a cover plate.

  5. Preparation of fine powdered composite for latent heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Fořt, Jan, E-mail: jan.fort.1@fsv.cvut.cz; Trník, Anton, E-mail: anton.trnik@fsv.cvut.cz; Pavlíková, Milena, E-mail: milena.pavlikova@fsv.cvut.cz; Pavlík, Zbyšek, E-mail: pavlikz@fsv.cvut.cz [Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic); Pomaleski, Marina, E-mail: marina-pomaleski@fsv.cvut.cz [Faculty of Civil Engineering, Architecture and Urbanism, University of Campinas, R. Saturnino de Brito 224, 13083-889 Campinas – SP (Brazil)

    2016-07-07

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.

  6. On the specific heat in a limited medium

    International Nuclear Information System (INIS)

    Suzuki, A.T.

    1980-03-01

    The specific heat of solids is studied, following the usual approach in which the solid is considered as an elastic, isotropic and continuum system which bears normal modes of characteristic frequency. (L.C.) [pt

  7. Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Yu, Wenhua; Zhao, Weihuan; Kim, Taeil; France, David M.; Smith, Roger K.

    2018-01-01

    Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degrees C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.

  8. Effect of medium and post-irradiation storage on rooting of irradiated onions

    International Nuclear Information System (INIS)

    Singh, Rita

    2000-01-01

    Rooting test for detection of irradiation in onion bulbs was studied. Onions were exposed to different dose levels of 30, 60, 90, 120 and 150 Gy. The effects of irradiation dose, cultivar difference, rooting medium and post-irradiation storage on the rooting were investigated. The number and the length of the roots formed in onions were found to decrease on irradiation. The effect was more at higher doses. The effect of irradiation on rooting was also evident after 120 days of storage. (author)

  9. Examination of thermophotovoltaic GaSb cell technology in low and medium temperatures waste heat

    Science.gov (United States)

    Utlu, Z.; Önal, B. S.

    2018-02-01

    In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at low and medium temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The low and medium temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.

  10. A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses

    DEFF Research Database (Denmark)

    Haller, M.Y.; Yazdanshenas, Eshagh; Andersen, Elsa

    2010-01-01

    process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged......A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification...

  11. Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications

    International Nuclear Information System (INIS)

    Tuncbilek, Kadir; Sari, Ahmet; Tarhan, Sefa; Erguenes, Gazanfer; Kaygusuz, Kamil

    2005-01-01

    Palmitic acid (PA, 59.8 deg. C) and lauric acid (LA, 42.6 deg. C) are phase change materials (PCM) having quite high melting temperatures which can limit their use in low temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of the lauric and the palmitic acids. In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 69.0 wt% LA and 31 wt% PA forms a eutectic mixture having melting temperature of 35.2 deg. C and the latent heat of fusion of 166.3 J g -1 . This study also considers the experimental determination of the thermal characteristics of the eutectic mixture during the heat charging and discharging processes. Radial and axial temperature distribution, heat transfer coefficient between the heat transfer fluid (HTF) pipe and the PCM, heat recovery rate and heat charging and discharging fractions were experimentally established employing a vertical concentric pipe-in-pipe energy storage system. The changes of these characteristics were evaluated with respect to the effect of inlet HTF temperature and mass flow rate. The DSC thermal analysis and the experimental results indicate that the LA-PA eutectic mixture can be a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics

  12. Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Andersen, Elsa

    2012-01-01

    A number of heat storage modules for seasonal heat storages based on stable supercooling of a sodium acetate water mixture have been tested by means of experiments in a heat storage test facility. The modules had different volumes and designs. Further, different methods were used to transfer heat...... to and from the sodium acetate water mixture in the modules. By means of the experiments: • The heat exchange capacity rates to and from the sodium acetate water mixture in the heat storage modules were determined for different volume flow rates. • The heat content of the heat storage modules were determined....... • The reliability of the supercooling was elucidated for the heat storage modules for different operation conditions. • The reliability of a cooling method used to start solidification of the supercooled sodium acetate water mixture was elucidated. The method is making use of boiling CO2 in a small tank in good...

  13. The Cabril: The Spanish Storage Site for Low and medium Level Radioactive Wastes

    International Nuclear Information System (INIS)

    Zuloaga, P.

    1993-01-01

    The new installations at El Cabril are one of the most modern storage sites for low and medium level radioactive wastes worldwide. The site was conceived in such a way that it is possible its reutilization without any radiological restriction after its current surveillance period of 300 years. Additionally, the installations have enough of a capacity to store all the medium and low level wastes to be produced in Spain during the next 30 years plus all the already gathered ones at the three old installations. In order to achieve all the objectives a storage system, a control network and installations for sewage water treatment are available. An incinerator to burn biological and organic wastes from hospitals and a laboratory of wastes characterization complete the variety of installations

  14. Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels

    Directory of Open Access Journals (Sweden)

    Harisha S. R.

    2018-01-01

    Full Text Available The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to low carbon steels. From the last two decades a number of research scholars reported the use of verity of heat treatments to tailor the properties of medium carbon steels. Spheroidizing is the novel industrial heat treatment employed to improve formability and machinability of medium/high carbon low alloy steels. This exclusive study covers procedure, the effects and possible outcomes of various heat treatments on medium carbon steels. In the present work, other related heat treatments like annealing and special treatments for property alterations which serve as pretreatments for spheroidizing are also reviewed. Medium carbon steels with property alterations by various heat treatment processes are finding increased responsiveness in transportation, aerospace, space, underwater along with other variegated fields. Improved tribological and mechanical properties consisting of impact resistance, stiffness, abrasion and strength are the main reasons for the increased attention of these steels in various industries. In the present scenario for the consolidation of important aspects of various heat treatments and effects on mechanical properties of medium carbons steel, a review of different research papers has been attempted. This review may be used as a guide to provide practical data for heat treatment industry, especially as a tool to enhance workability and tool life.

  15. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  16. Experimental and theoretic investigations of thermal behavior of a seasonal water pit heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Chatzidiakos, Angelos

    Seasonal heat storages are considered essential for district heating systems because they offer flexibility for the system to integrate different fluctuating renewable energy sources. Water pit thermal storages (PTES) have been successfully implemented in solar district heating plants in Denmark....... Thermal behavior of a 75,000 m3 water pit heat storage in Marstal solar heating plant was investigated experimentally and numerically. Temperatures at different levels of the water pit storage and temperatures at different depths of the ground around the storage were monitored and analyzed. A simulation...... model of the water pit storage is built to investigate development of temperatures in and around the storage. The calculated temperatures are compared to the monitored temperatures with an aim to validate the simulation model. Thermal stratification in the water pit heat storage and its interaction...

  17. Improvement in Performance of a Thermochemical Heat Storage System by Implementing an Internal Heat Recovery System

    NARCIS (Netherlands)

    Gaeini, M.; Saris, L.; Zondag, H.A.; Rindt, C.C.M.

    A lab-scale prototype of a thermochemical heat storage system, employing a water-zeolite 13X as the working pair, is designed and optimized for providing hot tap water. During the hydration process, humid air is introduced to the packed bed reactor filled with dehydrated zeolite 13X, and the

  18. Laboratory Testing of Solar Combi System with Compact Long Term PCM Heat Storage

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Englmair, Gerald; Dannemand, Mark

    2016-01-01

    To enable the transition from fossil fuels as a primary heat source for domestic hot water preparation and space heating solar thermal energy has great potential. The heat from the sun has the disadvantage that it is not always available when there is a demand. To solve this mismatch a thermal...... seasonal storage can be used to store excess heat from the summer to the winter when the demand is higher than the supply. Installing a long term thermal storage in a one family house it needs to be compact and sensible heat storages are not suitable. A latent heat storage with a phase change material (PCM...

  19. Heating of the Intracluster Medium by Quasar Outflows Suparna ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    evidence of an entropy excess with respect to the level expected from gravitational heating in the centres of groups. The candidate process which has been looked into as a source for this “preheating” are strong galactic winds driven by supernovae. However Valageas & Silk (1999) showed that the energy provided by ...

  20. Pomegranate juice (punica granatum: a new storage medium for avulsed teeth.

    Directory of Open Access Journals (Sweden)

    Sara Tavassoli-Hojjati

    2014-04-01

    Full Text Available There is evidence indicating that pomegranate juice contains many of the essential properties necessary to retain cell viability and cell proliferation. These properties indicate that pomegranate juice is a suitable storage medium for avulsed teeth. However, this idea has not yet been tested. In this study, the capacity of pomegranate juice (PJ as a storage medium for retaining avulsed teeth was evaluated.PDL fibroblasts were obtained from healthy human premolars and cultured in Dulbecco's Modified Eagle's Medium (DMEM. Cultured cells were subjected to different concentrations of pomegranate juice (PJ, 1% Hank's balanced salt solution (HBSS and tap water for 1, 3, 6 and 24 hours. PDL cell viability was assessed by the neutral red uptake assay.The results indicated that 7.5% PJ was the most effective solution for maintaining PDL cell viability amongst all the experimental solution's and time intervals (P<0.05. The results also showed that 1% PJ was as effective as HBSS for maintaining PDL cell viability. The amount of cell viability increased with increasing concentration of PJ at all time intervals (P<0.001. This effect is suggestive of the proliferative potential of PJ solution.In conclusion, PJ can be recommended as a suitable transport medium for avulsed teeth.

  1. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  2. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  3. Development of evaluation method for heat removal design of dry storage facilities. pt. 1. Heat removal test on vault storage system of cross flow type

    International Nuclear Information System (INIS)

    Sakamoto, Kazuaki; Koga, Tomonari; Wataru, Masumi; Hattori, Yasuo

    1997-01-01

    The report describes the result of heat removal test of passive cooling vault storage system of cross flow type using 1/5 scale model. Based on a prospect of steady increase in the amount of spent fuel, it is needed to establish large capacity dry storage technologies for spent fuel. Air flow patterns, distributions of air temperature and velocity were measured, by which heat removal characteristics of the system were made clear. Air flow patterns in the storage module depended on the ratio of the buoyant force to the inertial force; the former generated by the difference of air temperatures and the height of the storage module, the latter by the difference of air densities between the outlet of the storage module and ambience and the height of the chimney of the storage facility. A simple method to estimate air flow patterns in the storage module was suggested, where Ri(Richardson) number was applied to represent the ratio. Moreover, heat transfer coefficient from a model of storage tube to cooling air was evaluated, and it was concluded that the generalized expression of heat transfer coefficient for common heat exchangers could be applied to the vault storage system of cross flow type, in which dozens of storage tubes were placed in a storage module. (author)

  4. Nanoparticles for heat transfer and thermal energy storage

    Science.gov (United States)

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  5. Thermal energy storage for industrial waste heat recovery

    Science.gov (United States)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  6. Annex to Solar heat storages in district heating networks. Comprehensive list of Danish literature and R and D projects

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This annex relates to the report 'Solar heat storages in district heating networks', which has been elaborated to inform about the Danish experiences and findings on the use of central solar heating plants in district heating networks, especially with the focus on the development of the storage part of the systems. The report has been funded as part of the IEE PREHEAT cooperation and by Energinet.dk, project no. 2006-2-6750. (au)

  7. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    Energy Technology Data Exchange (ETDEWEB)

    Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  8. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    International Nuclear Information System (INIS)

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-01-01

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter

  9. Development of Latent Heat Storage Phase Change Material Containing Plaster

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2016-05-01

    Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.

  10. Study of thermal energy storage using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T. E.; Shannon, L. J.; Ananth, K. P.

    1980-01-01

    The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.

  11. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  12. Parametrical analysis of latent heat and cold storage for heating and cooling of rooms

    International Nuclear Information System (INIS)

    Osterman, E.; Hagel, K.; Rathgeber, C.; Butala, V.; Stritih, U.

    2015-01-01

    One of the problems we are facing today is the energy consumption minimization, while maintaining the indoor thermal comfort in buildings. A potential solution to this issue is use of phase change materials (PCMs) in thermal energy storage (TES), where cold gets accumulated during the summer nights in order to reduce cooling load during the day. In winter, on the other hand, heat from solar air collector is stored for evening and morning hours when solar radiation is not available. The main objective of the paper is to examine experimentally whether it is possible to use such a storage unit for heating as well as for cooling. For this purpose 30 plates filled with paraffin (melting point around 22°C) were positioned into TES and applied with the same initial and boundary conditions as they are expected in reality. Experimental work covered flow visualization, measurements of air velocity in the channels between the plates, parametric analysis in conjunction with TES thermal response and measurements of the pressure drops. The results indicate that this type of storage technology could be advantageously used in real conditions. For optimized thermal behavior, only plate thickness should be reduced. - Highlights: • Thermal properties of paraffin RT22HC were measured. • Flow visualization was carried out and velocity between plates was measured. • Thermal and pressure drop analysis were performed. • Melting times are too long however, use of storage tank for heating and cooling looks promising

  13. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2006-01-01

    to achieve 100% coverage of space heating and domestic hot water in a low energy house in a Danish climate with a solar heating system with 36 m² flat plate solar collector and approximately 10 m³ storage with sodium acetate. A traditional water storage solution aiming at 100% coverage will require a storage...... of the storage to cool down below the melting point without solidification preserving the heat of fusion energy. If the supercooled storage reaches the surrounding temperature no heat loss will take place until the supercooled salt is activated. The investigation shows that this concept makes it possible...

  14. Phase Change Energy Storage Material Suitable for Solar Heating System

    Science.gov (United States)

    Li, Xiaohui; Li, Haihua; Zhang, Lihui; Liu, Zhenfa

    2018-01-01

    Differential scanning calorimetry (DSC) was used to investigate the thermal properties of palmitic acid, myristic acid, laurel acid and the binary composite of palmitic/laurel acid and palmitic/myristic acid. The results showed that the phase transition temperatures of the three monomers were between 46.9-65.9°C, and the latent heats were above 190 J/g, which could be used as solar energy storage material. When the mass ratio of Palmitic acid and myristic was 1:1, the eutectic mixture could be formed. The latent heat of the eutectic mixture was 186.6 J/g, the melting temperature and the solidification temperature was 50.6°C and 43.8°C respectively. The latent heat of phase change and the melting temperature had not obvious variations after 400 thermal cycles, which proved that the binary composite had good thermal stability and was suitable for solar floor radiant heating system.

  15. Flat plate solar air heater with latent heat storage

    Science.gov (United States)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  16. Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, S.M., E-mail: saleh_shalaby@yahoo.com; Bek, M. A.

    2014-07-01

    Highlights: • The performance of a novel indirect solar dryer is investigated experimentally. • PCM, paraffin wax, is used as energy storage medium. • The novel ISD is suitable for drying medical plants. • Ocimum and Thevetia are dried at their prescribed drying temperatures. • The novel design maintains the desired temperature for 7 consecutive h/day. - Abstract: A novel indirect solar dryer (ISD) design using phase change material (PCM) as energy storage medium was experimentally investigated. The system consists of two identical solar air heaters, drying compartment, PCM storage units and a blower. The ISD was tested under no load with and without PCM at a wide range of mass flow rates (0.0664–0.2182 kg/s). It is found that after using the PCM, the temperature of the drying air is higher than ambient temperature by 2.5–7.5 °C after sunset for five hours at least. In addition, the mass flow rates of 0.1204 and 0.0894 kg/s give the peak values of the drying temperature when the ISD is operated with and without PCM, respectively. The novel design successfully maintains the desired temperature for seven consecutive hours every day. This helps reaching the final moisture content of Ocimum Basilicum and Thevetia Neriifolia after 12 and 18 h, respectively.

  17. Central unresolved issues in thermal energy storage for building heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Swet, C.J.; Baylin, F.

    1980-07-01

    This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

  18. Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale

    Science.gov (United States)

    Auad, Guillermo; Miller, Arthur J.; White, Warren B.

    1998-11-01

    We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content

  19. High performance passive solar heating system with heat pipe energy transfer and latent heat storage

    NARCIS (Netherlands)

    Dijk, van H.A.L.; Galen, van E; Hensen, J.L.M.; Wit, de M.H.

    1983-01-01

    Preliminar results are reported from a current project on the development of a high performance passive solar heating system. Two special components are introduced: a. A heat pipe as a thermal diode tube for the efficient transfer of collected solar heat from the absorber plate to behind an

  20. Investigation of heat of fusion storage for solar low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2005-01-01

    This paper describes a theoretical investigation by means of TRNSYS simulations of a partly heat loss free phase change material (PCM) storage solution for solar heating systems. The partly heat loss free storage is obtained by controlled used of super cooling in a mixture of sodium acetate...

  1. Effect of kinetics on the thermal performance of a sorption heat storage reactor

    NARCIS (Netherlands)

    Gaeini, M.; Zondag, H.A.; Rindt, C.C.M.

    2016-01-01

    To reach high solar fractions for solar thermal energy in the built environment, long-term heat storage is required to overcome the seasonal mismatch. A promising method for long term heat storage is to use thermochemical materials, TCMs. In this research, a lab-scale test thermochemical heat

  2. Modeling and Control of Heat Networks with Storage : the Single-Producer Multiple-Consumer Case

    NARCIS (Netherlands)

    Scholten, Tjeert Wobko; De Persis, Claudio; Tesi, Pietro

    2015-01-01

    In heat networks, energy storage is a viable approach to balance demand and supply. In such a network, a heat carrier is used in the form of water, where heat is injected and extracted through heat exchangers. The network can transport and store heated water in stratification tanks to shift loads in

  3. Modeling and control of heat networks with storage: The single-producer multiple-consumer case.

    NARCIS (Netherlands)

    Scholten, Tjardo; De Persis, Claudio; Tesi, Pietro

    2015-01-01

    In heat networks, energy storage is a viable approach to balance demand and supply. In such a network, a heat carrier is used in the form of water, where heat is injected and extracted through heat exchangers. The network can transport and store heated water in stratification tanks to shift loads in

  4. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    International Nuclear Information System (INIS)

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions

  5. Heat transfer prediction in a square porous medium using artificial neural network

    Science.gov (United States)

    Ahamad, N. Ameer; Athani, Abdulgaphur; Badruddin, Irfan Anjum

    2018-05-01

    Heat transfer in porous media has been investigated extensively because of its applications in various important fields. Neural network approach is applied to analyze steady two dimensional free convection flows through a porous medium fixed in a square cavity. The backpropagation neural network is trained and used to predict the heat transfer. The results are compared with available information in the literature. It is found that the heat transfer increases with increase in Rayleigh number. It is further found that the local Nusselt number decreases along the height of cavity. The neural network is found to predict the heat transfer behavior accurately for given parameters.

  6. Effects of preincubation heating of broiler hatching eggs during storage, flock age, and length of storage period on hatchability.

    Science.gov (United States)

    Gucbilmez, M; Ozlü, S; Shiranjang, R; Elibol, O; Brake, J

    2013-12-01

    The effects of heating of eggs during storage, broiler breeder age, and length of egg storage on hatchability of fertile eggs were examined in this study. Eggs were collected from Ross 344 male × Ross 308 broiler breeders on paper flats, held overnight (1 d) at 18°C and 75% RH, and then transferred to plastic trays. In experiment 1, eggs were obtained at 28, 38, and 53 wk of flock age. During a further 10 d of storage, eggs either remained in the storage room (control) or were subjected to a heat treatment regimen of 26°C for 2 h, 37.8°C for 3 h, and 26°C for 2 h in a setter at d 5 of storage. In experiment 2, eggs from a flock at 28 wk of age were heated for 1 d of a 6-d storage period. Eggs from a 29-wk-old flock were either heated at d 1 or 5 of an 11-d storage period in experiment 3. In experiment 4, 27-wk-old flock eggs were heated twice at d 1 and 5 of an 11-d storage period. Control eggs stored for 6 or 11 d were coincubated as appropriate in each experiment. Heating eggs at d 5 of an 11-d storage period increased hatchability in experiment 1. Although no benefit of heating 28-wk-old flock eggs during 6 d of storage in experiment 2 was observed, heating eggs from a 29-wk-old flock at d 1 or 5 of an 11-d storage period increased hatchability in experiment 3. Further, heating eggs from a 27-wk-old flock twice during 11 d of storage increased hatchability in experiment 4. These effects were probably due to the fact that eggs from younger flocks had been reported to have many embryos at a stage of development where the hypoblast had not yet fully developed (less than EG-K12 to EG-K13), such that heating during extended storage advanced these embryos to a more resistant stage.

  7. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    Science.gov (United States)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  8. Thermal diffusivity measurement of erythritol and numerical analysis of heat storage performance on a fin-type heat exchanger

    International Nuclear Information System (INIS)

    Zamengo, Massimiliano; Funada, Tomohiro; Morikawa, Junko

    2017-01-01

    Highlights: • Thermal diffusivity of Erythritol was measured by temperature wave method. • Thermal diffusivity was measured in function of temperature and during phase change. • Database of temperature-dependent thermal properties is used for numerical analysis. • Heat transfer and heat storage were analyzed in a fin-type heat exchanger. • Use of temperature-dependent properties in calculations lead to longer melting time. - Abstract: Temperature dependency of thermal diffusivity of erythritol was measured by temperature wave analysis (TWA) method. This modulating technique allowed measuring thermal diffusivity continuously, even during the phase transition solid-liquid. Together with specific heat capacity and specific enthalpy measured by differential scanning calorimetry, the values of measured properties were utilized in a bi-dimensional numerical model for analysis of heat transfer and heat storage performance. The geometry of the model is representative of a cross section of a fin-type heat exchanger, in which erythritol is filling the interspaces between fins. Time-dependent temperature change and heat storage performance were analyzed by considering the variation of thermophysical properties as a function of temperature. The numerical method can be utilized for a fast parametric analysis of heat transfer and heat storage performance into heat storage systems of phase-change materials and composites.

  9. Initial Development of a Combined PCM and TABS Solution for Heat Storage and Cooling

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    to their significant thermal energy storage capabilities. The TABS has a potential for increasing the exploitation of the thermal mass of the building, which is rarely exposed for heat transfer.The main objective of this study is to optimize the location and amount of PCM in a hollow core deck in order to optimize...... heat storage capacity. A series of simulations were conducted using the COMSOL program to obtain knowledge regarding the dynamic heat storage capacity of the investigated hollow core deck element as a function of the amount and location of PCM. Furthermore, the dynamic heat storage capacity...

  10. Delayed replantation of rat teeth after use of reconstituted powdered milk as a storage medium.

    Science.gov (United States)

    dos Santos, Cláudia Letícia Vendrame; Sonoda, Celso Koogi; Poi, Wilson Roberto; Panzarini, Sônia Regina; Sundefeld, Maria Lúcia Marçal Mazza; Negri, Márcia Regina

    2009-02-01

    Minimal extraoral dry storage period and moist storage for the avulsed tooth are identified as key steps for the treatment protocol of tooth replantation. Among the possible moist storage media, bovine milk has stood out because of its capacity of preserving the integrity of the periodontal ligament (PDL) fibers. This condition has attracted the attention to investigate the use of powdered milk, which is one of the presentation forms of bovine milk, as a feasible storage medium in cases of delayed tooth replantation. The aim of this study was to evaluate the healing process after delayed replantation of rat teeth stored in reconstituted powdered milk and long shelf-life (ultra high temperature) whole milk. Forty maxillary right rat incisors were assigned to four groups (n = 10): group I--the teeth were extracted and immediately replanted into theirs sockets; group II--the teeth were stored for 60 min in 200 ml of freshly reconstituted powdered milk; group III--the teeth were stored for 60 min in 200 ml of long shelf-life whole milk; group IV--the teeth were kept dry for the same time. All procedures were performed at room temperature. Next, the root canals of teeth in groups II, III, and IV were instrumented, filled with a calcium hydroxide-based paste, and replanted into their sockets. All animals received systemic antibiotic therapy and were killed by anesthetic overdose 60 days after replantation. The pieces containing the replanted teeth were removed, fixed, decalcified, and paraffin-embedded. Semi-serial 6-microm-thick sections were obtained and stained with hematoxylin and eosin for histomorphological analysis. There was statistically significant difference (P < 0.05) between groups I and IV regarding the presence of replacement resorption and PDL remnants on root surface. The powdered milk and long shelf-life whole milk presented similar results to each other and may be indicated as storage media for avulsed teeth.

  11. Development of small and medium reactors for power and heat production

    International Nuclear Information System (INIS)

    Becka, J.

    1978-01-01

    Data are given on the current state of development of small and medium-power reactors designed mainly for electric power production in small power grids, for heat production for small- and medium-power desalination plants with possible electric power generation, for process steam production and heat development for district heating systems, again combined with electric power generation, and for propelling big and fast passenger ships. A diagram is shown of the primary system of an integrated PWR derived from the Otto Hahn reactor. The family is listed of the standard sizes of the integral INTERATOM company pressurized water reactors. Also listed are the specifications and design of CAS 2CG and AS 3G type reactors used mainly for long-distance heating systems. (J.B.)

  12. Efficiency improvement of a concentrated solar receiver for water heating system using porous medium

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.

  13. Steam-based charging-discharging of a PCM heat storage | Tesfay ...

    African Journals Online (AJOL)

    ... the intermittent solar energy for continuous and near isothermal applications. ... The storage has the capacity of storing up to 250ºC heat and supply this heat ... which includes bread baking, kita (large pancake) baking and water boiling.

  14. Lactated Ringer-based storage solutions are equally well suited for the storage of fresh osteochondral allografts as cell culture medium-based storage solutions.

    Science.gov (United States)

    Harb, Afif; von Horn, Alexander; Gocalek, Kornelia; Schäck, Luisa Marilena; Clausen, Jan; Krettek, Christian; Noack, Sandra; Neunaber, Claudia

    2017-07-01

    Due to the rising interest in Europe to treat large cartilage defects with osteochondrale allografts, research aims to find a suitable solution for long-term storage of osteochondral allografts. This is further encouraged by the fact that legal restrictions currently limit the use of the ingredients from animal or human sources that are being used in other regions of the world (e.g. in the USA). Therefore, the aim of this study was A) to analyze if a Lactated Ringer (LR) based solution is as efficient as a Dulbecco modified Eagle's minimal essential medium (DMEM) in maintaining chondrocyte viability and B) at which storage temperature (4°C vs. 37°C) chondrocyte survival of the osteochondral allograft is optimally sustained. 300 cartilage grafts were collected from knees of ten one year-old Black Head German Sheep. The grafts were stored in four different storage solutions (one of them DMEM-based, the other three based on Lactated Ringer Solution), at two different temperatures (4 and 37°C) for 14 and 56days. At both points in time, chondrocyte survival as well as death rate, Glycosaminoglycan (GAG) content, and Hydroxyproline (HP) concentration were measured and compared between the grafts stored in the different solutions and at the different temperatures. Independent of the storage solutions tested, chondrocyte survival rates were higher when stored at 4°C compared to storage at 37°C both after short-term (14days) and long-term storage (56days). At no point in time did the DMEM-based solution show a superior chondrocyte survival compared to lactated Ringer based solution. GAG and HP content were comparable across all time points, temperatures and solutions. LR based solutions that contain only substances that are approved in Germany may be just as efficient for storing grafts as the USA DMEM-based solution gold standard. Moreover, in the present experiment storage of osteochondral allografts at 4°C was superior to storage at 37°C. Copyright © 2017

  15. Investigation of diffusional transport of heat and its enhancement in phase-change thermal energy storage systems

    International Nuclear Information System (INIS)

    Saraswat, Amit; Bhattacharjee, Rajdeep; Verma, Ankit; Das, Malay K.; Khandekar, Sameer

    2017-01-01

    Thermal energy storage in general, and phase-change materials (PCMs) in particular, have been a major topic of research for the last thirty years. Due to their favorable thermo-dynamical characteristics, such as high density, specific heat and latent heat of fusion, PCMs are usually employed as working fluids for thermal storage. However, low thermal conductivities of organic PCMs have posed a continuous challenge in its large scale deployment. This study focuses on experimental and numerical investigation of the melting process of industrial grade paraffin wax inside a semi-cylindrical enclosure with a heating strip attached axially along the center of semi-cylinder. During the first part of the study, the solid-liquid interface location, the liquid flow patterns in the melt pool, and the spatial and temporal variation of PCM temperature were recorded. For numerical simulation of the system, open source library OpenFOAM® was used in order to solve the coupled Navier-Stokes and energy equations in the considered system. It is seen that the enthalpy-porosity technique implemented on OpenFOAM® is reasonably well suited for handling melting/solidification problems and can be employed for system level design. Next, to overcome the inherent thermal limitations of PCM storage material, the study further explored the potential of coupling the existing heat source with copper-water heat pipes, so as to help augment the rate of heat dissipation within the medium by increasing the effective system-level thermal conductivity. Integration of heat pipes led to enhanced transport, and hence, a substantial decrease in the total required melting time. The study provides a framework for designing of large systems with integration of heat pipes with PCM based thermal storage systems.

  16. Dragon's Blood Sap (Croton Lechleri) As Storage Medium For Avulsed Teeth: In Vitro Study Of Cell Viability.

    Science.gov (United States)

    Martins, Christine Men; Hamanaka, Elizane Ferreira; Hoshida, Thayse Yumi; Sell, Ana Maria; Hidalgo, Mirian Marubayashi; Silveira, Catarina Soares; Poi, Wilson Roberto

    2016-01-01

    Tooth replantation success depends on the condition of cementum periodontal ligament after tooth avulsion; which is influenced by storage medium. The dragon's blood (Croton lechleri) sap has been suggested as a promising medium because it supports collagen formation and exhibits healing, anti-inflammatory and antimicrobial properties. Thus, the aim of this study was to evaluate the efficacy of dragon's blood sap as a storage medium for avulsed teeth through evaluation of functional and metabolic cell viability. This in vitro study compared the efficacy of different storage media to maintain the viability of human peripheral blood mononuclear and periodontal ligament cells. A 10% dragon's blood sap was tested while PBS was selected as its control. Ultra pasteurized whole milk was used for comparison as a commonly used storage medium. DMEM and distilled water were the positive and negative controls, respectively. The viability was assessed through trypan blue exclusion test and colorimetric MTT assay after 1, 3, 6, 10 and 24 h of incubation. The dragon's blood sap showed promising results due to its considerable maintenance of cell viability. For trypan blue test, the dragon's blood sap was similar to milk (psap showed better results than all storage media, even better than milk (psap was as effective as milk, the gold standard for storage medium. The experimental sap preserved the membrane of all cells and the functional viability of periodontal ligament cells.

  17. Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank

    Directory of Open Access Journals (Sweden)

    Juan Zhao

    2017-12-01

    Full Text Available A physical model and dynamic simulation models of a solar phase-change heat storage heating system with a plate solar collector, phase-change material (PCM storage tank, plate heat exchanger, and auxiliary heat sources were established. A control strategy and numerical models for each of seven different operation modes that cover the entire heating season of the system were developed for the first time. The seven proposed operation modes are Mode 1: free cooling; Mode 2: reservation of heat absorbed by the solar collector in the PCM storage tank when there is no heating demand; Mode 3: direct supply of the heating demand by the solar collector; Mode 4: use of the heat absorbed by the solar collector to meet the heating demands, with the excess heat stored in the PCM storage tank; Mode 5: use of heat stored in the PCM storage tank to meet the heating demands, Mode 6: combined use of heat stored in the PCM storage tank and the auxiliary heating sources to meet the heating demands; and Mode 7: exclusive use of the auxiliary heat sources in order to meet the heating demands. Mathematical models were established for each of the above seven operation modes, taking into consideration the effects of the outdoor meteorological parameters and terminal load on the heating system. The real-time parameters for the entire heating season of the system with respect to the different operation modes can be obtained by solving the simulation models, and used as reference for the optimal design and operation of the actual system.

  18. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  19. Slow heat release - solid fuel stove with acetat-trihydrate heat storage sodium; Slow heat release - Braendeovn med salthydratvarmelager

    Energy Technology Data Exchange (ETDEWEB)

    Zielke, U.; Bjerrum, M.; Noergaard, T. (Teknologisk Institut, Aarhus (Denmark))

    2012-07-01

    Of the 700,000 solid fuel stoves in Denmark, 600,000 are installed in permanent residences, and 100,000 are installed in summer cottages. Recent examinations have shown that in the heating season, these stoves contribute with a not negligible share of air pollution in the cities. The reason is often inexpedient firing and an inappropriate performance of the stove. In many cases the thermal output of the stove exceeds the heating demand of a modern residence; and the user typically reduces the stove's combustion air supply with the purpose of lowering the temperature of the accommodation space. The result is a sooting combustion followed by undesired and environmentally damaging emissions. In worst case the user fires throughout the night reducing the air to an absolutely minimum. In these situations the fuel smoulders all night, and the stove emits large amounts of undesirable and unhealthy emissions. By constructing the stove with a heat storage that can accumulate the heat from the stove and emit the heat later (when not firing), the problem with the unhealthy ''night firings'' should be eliminated. The project started with a pre-examination regarding suitable materials for a heat storage and a literature study of the subject. By using an OGC material, in this case sodiumacetat-trihydrat, the weight of the stove, in spite of the heat storage, could be held within reasonable frames, since 130 kg PCM can contain the same heat amount as 1,200 kg stone. The great challenge was to compensate for PCM's poor heat conductivities, to distribute the heat in the whole heat storage, making it melt regularly without generating local boiling. This problem was solved by construction measures. The system with sodiumacetat-trihydrat, which melts by 58 deg. C, came to function satisfactorily. 14 hours after the last firing, the temperature of the heat storage was 30 deg. C. The tests with PCM were followed by an extensive emission measuring program

  20. Deep reversible storage. Design options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This report aims at presenting a synthesis of currently studied solutions for the different components of the project of deep geological radioactive waste storage centre. For each of these elements, the report indicates the main operational objectives to be taken into account in relationship with safety functions or with reversibility. It identifies the currently proposed design options, presents the technical solutions (with sometime several possibilities), indicates industrial references (in the nuclear sector, in underground works) and comments results of technological tests performed by the ANDRA. After a description of functionalities and of the overall organisation of storage components, the different following elements and aspects are addressed: surface installations, underground architecture, parcel transfer between the surface and storage cells, storage container for medium-activity long-life (MAVL) waste, storage cell for medium-activity long-life waste, handling of MAVL parcels in storage cells, storage container for high-activity (HA) waste, storage cell for HA waste, handling of HA parcels in storage cells, and works for site closing

  1. Pre-banking microbial contamination of donor conjunctiva and storage medium for penetrating keratoplasty.

    Science.gov (United States)

    Inomata, Takenori; Ono, Koichi; Matsuba, Tsuyoshi; Shiang, Tina; Di Zazzo, Antonio; Nakatani, Satoru; Yamaguchi, Masahiro; Ebihara, Nobuyuki; Murakami, Akira

    2017-09-01

    The aims of this study were to investigate the incidence of positive donor tissue cultures before transfer to preservation medium (Optisol™-GS) for penetrating keratoplasty, to verify the efficacy of antibiotics contained in Optisol™-GS by examining the drug susceptibility and to assess the relationship between the results of our microbial assessments as well as donor factors and the incidence of contamination. We conducted a retrospective, cross-sectional study using Juntendo Eye Bank records for all corneal transplantations. Two hundred donor conjunctiva harvestings and storage medium (EP-II ® ) cultures were performed between July 2008 and June 2011. We analyzed the associations between donor factors (age, gender, history of cataract surgery, death-to-preservation interval, cause of death) and contamination rates using multivariate analysis by the generalized estimating equation model. We obtained positive bacterial cultures from 154 of the 200 eyes (77.0%). The isolated bacteria were indigenous, such as coagulase-negative Staphylococci, Corynebacterium sp., and methicillin-resistant Staphylococcus aureus (MRSA). There was significant resistance to levofloxacin (18 eyes, 9.0%) and gentamicin (12 eyes, 6.0%), and no vancomycin-resistant bacteria were detected. The donor factors did not correlate with the prevalence of bacterial contamination in our criteria. Pre-banking microbial assessment allows for microbial detection, bacterial susceptibility and resistance testing. This is useful for developing preservation mediums containing effective spectrum antibiotic agents for high quality control of corneal banking.

  2. Heat of fusion storage systems for combined solar systems in low energy buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2004-01-01

    Solar heating systems for combined domestic hot water and space heating has a large potential especially in low energy houses where it is possible to take full advantage of low temperature heating systems. If a building integrated heating system is used – e.g. floor heating - the supply temperature...... from solid to liquid form (Fig. 1). Keeping the temperature as low as possible is an efficient way to reduce the heat loss from the storage. Furthermore, the PCM storage might be smaller than the equivalent water storage as more energy can be stored per volume. If the PCM further has the possibility...... systems through further improvement of water based storages and in parallel to investigate the potential of using storage designs with phase change materials, PCM. The advantage of phase change materials is that large amounts of energy can be stored without temperature increase when the material is going...

  3. Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems

    Science.gov (United States)

    Lurio, Charles A.

    1992-01-01

    MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollary tests showed that the MgF2 supercooled by 10-30 K and 50-90 K.

  4. Studies on split heat pipe type adsorption ice-making test unit for fishing boats: Choice of heat pipe medium and experiments under unsteady heating sources

    International Nuclear Information System (INIS)

    Wang, L.W.; Wang, R.Z.; Lu, Z.S.; Chen, C.J.

    2006-01-01

    The split heat pipe type compound adsorption ice maker for fishing boats not only has the advantage of large volume cooling density but also has the advantage of less power consumption and high heat transfer performance. The available heat pipe media for the split heat pipe type compound adsorption ice maker, which are methanol, acetone and water are studied and compared in this paper, and the heat pipe medium of water shows the better performance for the reason of its stable heating and cooling process and high heat transfer performance. Considering the waste heat recovered from the diesel engine on fishing boats varies when the velocity of the fishing boat changes, the refrigeration performances at the condition of different values of heating power are studied while water is used as the heat pipe medium. Results show that the cooling power, as while as COP and SCP decrease when the heating power decreases. The highest COP and SCP are 0.41 and 731 W/kg, respectively, at the highest heating power of 4.2 kW, and the values decrease by 22% and 33%, respectively, when the heating power decreases by 15%. The values decrease by 32% and 51%, respectively, when the heating power decreases by 30%. The performance of the adsorption ice maker for the fishing boat with the 6160A type diesel engine is estimated, and the results show that the cooling power and ice productivity are as high as 5.44 kW and 1032 kg ice per day, respectively, even if the recovered waste heat decreases by 30% compared with the normal value. It can satisfy the ice requirements of such a fishing boat

  5. Implementation of heat production and storage technology and devices in power systems

    International Nuclear Information System (INIS)

    Romanovsky, G.; Mutale, J.

    2012-01-01

    Implementation of heat storage devices and technologies at power generation plants is a promising way to provide more efficient use of natural energy resources. Heat storage devices can partly replace conventional heating technologies (such as direct use of fossil fuels) during peak energy demand or in the situations where heat and electricity supply and demand do not coincide and to obtain low cost heat energy which can be further transmitted to industrial, commercial and domestic consumers. This paper presents the innovative Heat Production and Storage Device and its application at conventional, nuclear and renewable power generation plants for optimization and balancing of electricity grids. The Heat Production and Storage Device is a vessel type induction-immersion heat production and storage device which produces pre-heated water under pressure for heat energy conservation. Operation of this device is based on simultaneous and/or sequential action of an inductor and an immersion heater and can be easily connected to the electricity network as a single or a three phase unit. Heat energy accumulated by the Heat Production and Storage Device can be utilized in different industrial technological processes during periods of high energy prices. - Highlights: ► Heat Production and Storage Device for energy conservation within low load hours. ► Simultaneous and/or sequential operation of the inductor and immersion heater. ► Transform the energy of low frequency electrical current (50 Hz) into heat energy. ► Connection to the electricity network either in single or three phase unit. ► Heat Production and Storage Device will enhance the economic value of the system.

  6. A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation

    International Nuclear Information System (INIS)

    Chan, C.W.; Ling-Chin, J.; Roskilly, A.P.

    2013-01-01

    A major cause of energy inefficiency is a result of the generation of waste heat and the lack of suitable technologies for cost-effective utilisation of low grade heat in particular. The market potential for surplus/waste heat from industrial processes in the UK is between 10 TWh and 40 TWh, representing a significant potential resource which has remained unexploited to date. This paper reviews selected technologies suitable for utilisation of waste heat energy, with specific focus on low grade heat, including: (i) chemical heat pumps, such as adsorption and absorption cycles for cooling and heating; (ii) thermodynamic cycles, such as the organic Rankine cycle (ORC), the supercritical Rankine cycle (SRC) and the trilateral cycle (TLC), to produce electricity, with further focus on expander and zeotropic mixtures, and (iii) thermal energy storage, including sensible and latent thermal energy storages and their corresponding media to improve the performance of low grade heat energy systems. - Highlights: ► The review of various thermal technologies for the utilisation of under exploited low grade heat. ► The analyses of the absorption and adsorption heat pumps possibly with performance enhancement additives. ► The analyses of thermal energy storage technologies (latent and sensible) for heat storage. ► The analyses of low temperature thermodynamic cycles to maximise power production.

  7. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part B

    Energy Technology Data Exchange (ETDEWEB)

    Quadir, G. A., E-mail: Irfan-magami@Rediffmail.com, E-mail: gaquadir@gmail.com [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia); Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia)

    2016-06-08

    This work is continuation of the paper Part A. Due to large number of results, the paper is divided into two section with section-A (Part A) discussing the effect of various parameters such as heat transfer coefficient parameter, thermal conductivity ratio etc. on streamlines and isothermal lines. Section-B highlights the heat transfer characteristics in terms of Nusselt number The Darcy model is employed to simulate the flow inside the medium. It is assumed that the heat transfer takes place by convection and radiation. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method.

  8. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  9. Effectiveness of solar heating systems for the regeneration of adsorbents in recessed fruit and vegetable storages

    International Nuclear Information System (INIS)

    Khuzhakulov, S.M.; Uzakov, G.N.; Vardiyashvili, A.B

    2013-01-01

    A new method for the regeneration of adsorbents using solar heating systems is proposed. It provides energy saving through the control of the gas composition and humidity in recessed fruit and vegetable storages. The effectiveness of solar heating systems, such as a 'hot box' for the regeneration of adsorbents in fruit and vegetable storages is shown. (author)

  10. Mobile heat storage containers and their transport by rail or road

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-10-15

    Mobile heat storage containers are capable of making a contribution to the meaningful use of energy which is needed for use at a location other than where it originates. The study presented in this report outlines the technology of mobile heat storage and analyses an example of its transport by rail or road. (orig.)

  11. Comparison of temperature estimates from heat transport model and electrical resistivity tomography during a shallow heat injection and storage experiment

    OpenAIRE

    Hermans, Thomas; Daoudi, Moubarak; Vandenbohede, Alexander; Robert, Tanguy; Caterina, David; Nguyen, Frédéric

    2012-01-01

    Groundwater resources are increasingly used around the world as geothermal systems. Understanding physical processes and quantification of parameters determining heat transport in porous media is therefore important. Geophysical methods may be useful in order to yield additional information with greater coverage than conventional wells. We report a heat transport study during a shallow heat injection and storage field test. Heated water (about 50°C) was injected for 6 days at the rate of 80 l...

  12. Effect of radiation on the laminar convective heat transfer through a layer of highly porous medium

    International Nuclear Information System (INIS)

    Lee, K.; Howell, J.R.

    1986-01-01

    A numerical investigation is reported of the coupled forced convective and radiative transfer through a highly porous medium. The porosity range investigated is high enough that the fluid inertia terms in the momentum equation cannot be neglected; i.e., the simple form of Darcy's law is invalid. The geometry studied is a plane layer of highly porous medium resting on one impermeable boundary and exposed to a two-dimensional laminar external flow field. The objective is to determine the effective overall heat transfer coefficients for such a geometry. The results are applicable to diverse situations, including insulation batts exposed to external flow, the heat loss and drying rates of grain fields and forest areas, and the drying of beds of porous material exposed to convective and radiative heating

  13. Conception of a heat storage system for household applications. Category: New product innovations

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Thomas [Leuphana Univ. Lueneburg (Germany); Rammelberg, Holger U.; Roennebeck, Thomas [and others

    2012-07-01

    Almost 90% of the energy consumption of private households in Germany is used for heating. Thus, an efficient, sustainable and reliable heat management is one of the main challenges in the future. Heat storage will become a key technology when considering the daily, weekly, seasonal and unpredictable fluctuations of energy production with renewables. The storage of heat is much more volume- and energy-efficient as well as more economical than electricity storage. However, transport of heat over long distances is coupled with high losses, compared with electricity transport. Therefore, we propose the use of micro CHP in combination with volume-efficient and nearly loss-free heat storage to counteract electricity fluctuations. Focus of this contribution the conception of the large-scale project ''Thermal Battery'', funded by the European Union and the Federal State of Lower Saxony. The underlying principle is the utilization of reversible thermochemical reactions, such as dehydration and rehydration of salt hydrates for heat storage. The main goal is the development of a prototypical storage tank, which is capable of storing 80 kWh of heat with a system volume of less than 1 m{sup 3}. Importantly, the Vattenfall New Energy Services as a collaboration partner will support the development of an application-oriented heat storage device. This project is being carried out by an interdisciplinary team of engineers, chemists, physicists and environmental scientists.

  14. Characteristics of phytoplankton in Lake Karachay, a storage reservoir of medium-level radioactive waste.

    Science.gov (United States)

    Atamanyuk, Natalia I; Osipov, Denis I; Tryapitsina, Galina A; Deryabina, Larisa V; Stukalov, Pavel M; Ivanov, Ivan A; Pryakhin, Evgeny A

    2012-07-01

    The status of the phytoplankton community in Lake Karachay, a storage reservoir of liquid medium-level radioactive waste from the Mayak Production Association, Chelyabinsk Region, Russia, is reviewed. In 2010, the concentration of Sr in water of this reservoir was found to be 6.5 × 10(6) Bq L, the concentration of 137Cs was 1.6 × 10(7) Bq L, and total alpha activity amounted to 3.0 × 10(3) Bq L. An increased level of nitrates was observed in the reservoir-4.4 g L. It has been demonstrated that in this reservoir under the conditions of the maximum contamination levels known for aquatic ecosystems in the entire biosphere, a phytoplankton community exists that has a pronounced decline in species diversity, almost to the extent of a monoculture of widely-spread thread eurytopic cyanobacteria Geitlerinema amphibium.

  15. Procedures for the site location of an storage centre of medium and low level radioactive wastes

    International Nuclear Information System (INIS)

    Pena G, P.; Garcia B, M.

    2001-01-01

    In order to establish the procedures for the location of a new and definitive storage center for medium and low level radioactive wastes which will be the place where confining, controlling and keeping those waste products of radioactive materials which were used in the hospitable centers, clinics and institutions (research and techniques development) as well as those obtained from industry. The site studies for nuclear facilities, require the participation of a several professionals with different specialities to be able to make use of competence in different disciplines. The result is the exclusion of unacceptable zones followed them by a pre-selection, a selection and a systematic comparison of those sites which are in the remaining zones considered as acceptable. (Author)

  16. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  17. Energetic and Exergetic Analysis of Low and Medium Temperature District Heating Network Integration

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can ...... will reduce the amount of water supply from the MTDH network and improve the system energy conversion efficiency. Through the simulation, the system energetic and exergetic efficiencies based on the two network integration approaches were calculated and evaluated.......In this paper, energetic and exergetic approaches were applied to an exemplary low temperature district heating (LTDH) network with supply/return water temperature at 55oC/25 oC. The small LTDH network is annexed to a large medium temperature district heating (MTDH) network. The LTDH network can...... be supplied through upgrading the return water from the MTDH network with a small centralized heat pump. Alternatively, the supply and return water from the MTDH network can be mixed with a shunt at the junction point to supply the LTDH network. Comparing with the second approach, the heat pump system...

  18. Ukrainian brown-coal tars recovered at low-temperature carbonization with solid heating medium

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, V I; Govorova, R P; Fadeicheva, A G; Kigel, T B; Chernykh, M K

    1955-01-01

    Three samples of tar were recovered in the laboratory from brown coals carbonized at 375/sup 0/ to 456/sup 0/ +- 25/sup 0/ in a retort with inner heating by solid circulating medium, namely, semicoke (ratio: 4 or 3:1) first heated to 700/sup 0/. One comparative (parallel) experiment was carried out in a retort with inner heating by inert gases entering the retort at 580/sup 0/ to 600/sup 0/ and leaving it at 115/sup 0/ to 120/sup 0/. The tars that were recovered from the retort with the solid heating medium contained a high percentage of coal dust and moisture, which were separated from the tars in supercentrifuges (15,000 rpm). Four samples of cleaned tars were fractionated in a Cu flask with a 2-ball fractional column. The tars from the retort with the solid-heating medium are characterized by increased yield of the petroleum-ether fraction (16.3 or 19.3%) and decreased yield of the paraffin fraction (15.1 to 21.2%) in comparison with those of tar from the retort with gas heating (5.9% of the petroleum ether fraction and 36.5% of paraffin fraction). The yield of paraffin from the paraffin fraction also decreased from 90.6% to 62.6-74.3%. This result shows that in the first case the carbonized products were cracked to a higher degree than those from the retort with gas heating. In raw phenols recovered from fractions of investigated tars, the yield of the phenol-cresol fraction (182/sup 0/ to 204/sup 0/) decreased from 25.9% to 13.0-18.9%.

  19. PATCHY BLAZAR HEATING: DIVERSIFYING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Lamberts, Astrid; Chang, Philip; Pfrommer, Christoph; Puchwein, Ewald; Broderick, Avery E.; Shalaby, Mohamad

    2015-01-01

    TeV-blazars potentially heat the intergalactic medium (IGM) as their gamma rays interact with photons of the extragalactic background light to produce electron–positron pairs, which lose their kinetic energy to the surrounding medium through plasma instabilities. This results in a heating mechanism that is only weakly sensitive to the local density, and therefore approximately spatially uniform, naturally producing an inverted temperature–density relation in underdense regions. In this paper we go beyond the approximation of uniform heating and quantify the heating rate fluctuations due to the clustered distribution of blazars and how this impacts the thermal history of the IGM. We analytically compute a filtering function that relates the heating rate fluctuations to the underlying dark matter density field. We implement it in the cosmological code GADGET-3 and perform large-scale simulations to determine the impact of inhomogeneous heating. We show that because of blazar clustering, blazar heating is inhomogeneous for z ≳ 2. At high redshift, the temperature–density relation shows an important scatter and presents a low temperature envelope of unheated regions, in particular at low densities and within voids. However, the median temperature of the IGM is close to that in the uniform case, albeit slightly lower at low redshift. We find that blazar heating is more complex than initially assumed and that the temperature–density relation is not unique. Our analytic model for the heating rate fluctuations couples well with large-scale simulations and provides a cost-effective alternative to subgrid models

  20. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems

    DEFF Research Database (Denmark)

    Finck, Christian; Li, Rongling; Kramer, Rick

    2018-01-01

    restricted by power-to-heat conversion such as heat pumps and thermal energy storage possibilities of a building. To quantify building demand flexibility, it is essential to capture the dynamic response of the building energy system with thermal energy storage. To identify the maximum flexibility a building......’s energy system can provide, optimal control is required. In this paper, optimal control serves to determine in detail demand flexibility of an office building equipped with heat pump, electric heater, and thermal energy storage tanks. The demand flexibility is quantified using different performance...... of TES and power-to-heat in any case of charging, discharging or idle mode. A simulation case study is performed showing that a water tank, a phase change material tank, and a thermochemical material tank integrated with building heating system can be designed to provide flexibility with optimal control....

  1. Heat pipe based cold energy storage systems for datacenter energy conservation

    International Nuclear Information System (INIS)

    Singh, Randeep; Mochizuki, Masataka; Mashiko, Koichi; Nguyen, Thang

    2011-01-01

    In the present paper, design and economics of the novel type of thermal control system for datacenter using heat pipe based cold energy storage has been proposed and discussed. Two types of cold energy storage system namely: ice storage system and cold water storage system are explained and sized for datacenter with heat output capacity of 8800 kW. Basically, the cold energy storage will help to reduce the chiller running time that will save electricity related cost and decrease greenhouse gas emissions resulting from the electricity generation from non-renewable sources. The proposed cold energy storage system can be retrofit or connected in the existing datacenter facilities without major design changes. Out of the two proposed systems, ice based cold energy storage system is mainly recommended for datacenters which are located in very cold locations and therefore can offer long term seasonal storage of cold energy within reasonable cost. One of the potential application domains for ice based cold energy storage system using heat pipes is the emergency backup system for datacenter. Water based cold energy storage system provides more compact size with short term storage (hours to days) and is potential for datacenters located in areas with yearly average temperature below the permissible cooling water temperature (∼25 o C). The aforesaid cold energy storage systems were sized on the basis of metrological conditions in Poughkeepsie, New York. As an outcome of the thermal and cost analysis, water based cold energy storage system with cooling capability to handle 60% of datacenter yearly heat load will provide an optimum system size with minimum payback period of 3.5 years. Water based cold energy storage system using heat pipes can be essentially used as precooler for chiller. Preliminary results obtained from the experimental system to test the capability of heat pipe based cold energy storage system have provided satisfactory outcomes and validated the proposed

  2. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T.; Shannon, L.

    1980-06-01

    A rotary cement kiln and an electric arc furnace were chosen for evaluation to determine the applicability of a fluid bed heat exchanger (FBHX) for thermal energy storage (TES). Multistage shallow bed FBHX's operating with high temperature differences were identified as the most suitable for TES applications. Analysis of the two selected conceptual systems included establishing a plant process flow configuration, an operational scenario, a preliminary FBHX/TES design, and parametric analysis. A computer model was developed to determine the effects of the number of stages, gas temperatures, gas flows, bed materials, charge and discharge time, and parasitic power required for operation. The maximum national energy conservation potential of the cement plant application with TES is 15.4 million barrels of oil or 3.9 million tons of coal per year. For the electric arc furnance application the maximum national conservation potential with TES is 4.5 million barrels of oil or 1.1 million tons of coal per year. Present time of day utility rates are near the breakeven point required for the TES system. Escalation of on-peak energy due to critical fuel shortages could make the FBHX/TES applications economically attractive in the future.

  3. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating and dome......The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating...... and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...... storage parts already melted to cool down to surrounding temperature without solidification in which state that part of the storage will be heat loss free but still will hold the latent heat in form of the heat of fusion. At the time of energy demand the solidification of the super-cooled storage part...

  4. Experimental evaluation on natural convection heat transfer of microencapsulated phase change materials slurry in a rectangular heat storage tank

    International Nuclear Information System (INIS)

    Zhang Yanlai; Rao Zhonghao; Wang Shuangfeng; Zhang Zhao; Li Xiuping

    2012-01-01

    Highlights: ► It gives heat transfer characteristics in a rectangular heat storage tank as the basic unit for reservoir of thermal storage. ► Onset of natural convection gets easier for the MPCMS with a higher mass concentration. ► It enhances the heat transfer ability of natural convection for the MPCMS. ► Obtained the relationship between Ra and Nu of the MPCMS. - Abstract: The main purpose of this experiment is to evaluate natural convection heat transfer characteristics of microencapsulated PCM (phase change material) slurry (MPCMS) during phase change process in a rectangular heat storage tank heated from the bottom and cooled at the top. The microencapsulated PCM is several material compositions of n-paraffin waxes (mainly nonadecane) as the core materials, outside a layer of a melamine resin wrapped. In the present study, its slurry is used mixing with water. And the specific heat capacity with latent heat shows a peak value at the temperature of about T = 31 °C. We investigate the influences of the phase change process of the MPCMS on natural convection heat transfer. The experimental results indicate that phase change process of the MPCMS promote natural convection heat transfer. The local maximum heat transfer enhancement occurs at approximately T H = 34 °C corresponding to the heated plate temperature. With high mass concentration C m , the onset of natural convection gets easier for the MPCMS. The temperature gradient is larger near top plate and bottom plate of a rectangular heat storage tank. Heat transfer coefficient increases with the phase change of the PCM. And it summarizes that the phase change process of the PCM promote the occurrence of natural convection.

  5. FY 1989 Report on heat pump/storage markets in Australia and New Zealand by the survey team; 1989 nendo Australia New Zealand heat pump chikunetsu shijo chosadan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    Inspections/surveys are conducted on the markets of heat pumps and heat storage systems in Australia and New Zealand, spread of these systems, R and D situations, energy-related problems and policies, and so on. In Australia, heat pumps are mainly used for air conditioning. Several heat pump units are in service in NSW, including the one in Grosvnor Place Building, which is combined with an ice heat storage system. It seems that no waste heat is utilized. Use of heat pumps in this country is possible, in particular for industrial purposes. Use of fluorochlorohydrocarbons is restricted in Australia, in spite of their small quantities actually used, which is accepted as a political consideration. No system of discounted late-nigh rate is adopted in this country, but heat storage is planned as a measure to level power consumption, because the power rate is increased when the consumption exceeds the contracted level. Water is replaced by ice as the heat storage medium. (NEDO)

  6. Radiative and conductive heat transfer in a nongrey semitransparent medium. Application to fire protection curtains

    Energy Technology Data Exchange (ETDEWEB)

    Berour, Nacer; Lacroix, David E-mail: david.lacroix@lemta.uhp-nancy.fr; Boulet, Pascal; Jeandel, Gerard

    2004-06-01

    This paper deals with heat transfer in nongrey media which scatter, absorb and emit radiation. Considering a two dimensional geometry, radiative and conductive phenomena through the medium have been taken into account. The radiative part of the problem was solved using the discrete ordinate method with classical S{sub n} quadratures. The absorption and scattering coefficients involved in the radiative transfer equation (RTE) were obtained from the Mie theory. Conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model has been achieved with several simulation of water spray curtains used as fire protection walls.

  7. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  8. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    Science.gov (United States)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  9. Heat sink design considerations in medium power electronic applications with long power cycles

    CERN Document Server

    AUTHOR|(SzGeCERN)744611; Papastergiou, Konstantinos; Thiringer, Torbjörn; Bongiorno, Massimo

    2015-01-01

    The aim of this work is to investigate the impact of the heat sink thickness and material, as well as, of the convection coefficient of the water cooling system on the power-electronics module thermal stressing. The heat extraction capability of different thicknesses is tested. It is concluded that the thickest heat sink results in marginally lower temperature variation at the junction level compared to the second thickest one. In the thickest heat sink case, the linear dependence of the thermal resistance on the thickness counteracts the benefit of the increased thermal capacitance. The increase in the cooling medium flow rate, which corresponds to an increase in the convection coefficient between the heat sink bottom surface and the water, can be avoided by increasing the thickness of the heat sink. In this way, the energy consumption of the cooling system is reduced. The increase in the flow rate drastically reduces the thermal stressing in the thinnest heat sink case. The increase of the heat sink thickne...

  10. Physical properties and heat transfer characteristics of materials for krypton-85 storage

    International Nuclear Information System (INIS)

    Christensen, A.B.

    1977-09-01

    Krypton-85 decay results in heat generation, and the subsequent temperature increase in the krypton-85 storage media must be evaluated. This report compiles the physical properties of krypton and of potential krypton-85 storage materials which are required to calculate the maximum temperature developed during storage. Temperature calculations were made for krypton-85 stored as a gas or immobilized solid in steel storage cylinders. The effects of krypton-85 loading, cylinder radius, storage media properties, and exterior cooling on storage temperature were shown

  11. Re-energizing energy supply: Electrolytically-produced hydrogen as a flexible energy storage medium and fuel for road transport

    Science.gov (United States)

    Emonts, Bernd; Schiebahn, Sebastian; Görner, Klaus; Lindenberger, Dietmar; Markewitz, Peter; Merten, Frank; Stolten, Detlef

    2017-02-01

    "Energiewende", which roughly translates as the transformation of the German energy sector in accordance with the imperatives of climate change, may soon become a byword for the corresponding processes most other developed countries are at various stages of undergoing. Germany's notable progress in this area offers valuable insights that other states can draw on in implementing their own transitions. The German state of North Rhine-Westphalia (NRW) is making its own contribution to achieving the Energiewende's ambitious objectives: in addition to funding an array of 'clean and green' projects, the Virtual Institute Power to Gas and Heat was established as a consortium of seven scientific and technical organizations whose aim is to inscribe a future, renewable-based German energy system with adequate flexibility. Thus, it is tasked with conceiving of and evaluating suitable energy path options. This paper outlines one of the most promising of these pathways, which is predicated on the use of electrolytically-produced hydrogen as an energy storage medium, as well as the replacement of hydrocarbon-based fuel for most road vehicles. We describe and evaluate this path and place it in a systemic context, outlining a case study from which other countries and federated jurisdictions therein may draw inspiration.

  12. Benchmark numerical solutions for radiative heat transfer in two-dimensional medium with graded index distribution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn

    2006-11-15

    In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.

  13. High Temperature Gas-to-Gas Heat Exchanger Based on a Solid Intermediate Medium

    Directory of Open Access Journals (Sweden)

    R. Amirante

    2014-04-01

    Full Text Available This paper proposes the design of an innovative high temperature gas-to-gas heat exchanger based on solid particles as intermediate medium, with application in medium and large scale externally fired combined power plants fed by alternative and dirty fuels, such as biomass and coal. An optimization procedure, performed by means of a genetic algorithm combined with computational fluid dynamics (CFD analysis, is employed for the design of the heat exchanger: the goal is the minimization of its size for an assigned heat exchanger efficiency. Two cases, corresponding to efficiencies equal to 80% and 90%, are considered. The scientific and technical difficulties for the realization of the heat exchanger are also faced up; in particular, this work focuses on the development both of a pressurization device, which is needed to move the solid particles within the heat exchanger, and of a pneumatic conveyor, which is required to deliver back the particles from the bottom to the top of the plant in order to realize a continuous operation mode. An analytical approach and a thorough experimental campaign are proposed to analyze the proposed systems and to evaluate the associated energy losses.

  14. Application of latent heat storage devices and thermal solar collectors; Einsatz von Latentwaermespeichern und Solarthermie

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Corinna; Mueller, Dirk [RWTH Aachen, E.ON Energieforschungszentrum, Lehrstuhl fuer Gebaeude- und Raumklimatechnik (Germany)

    2010-12-15

    Modern heating systems for buildings need a supply temperature of approximately 35 C. In this temperature range it is possible to use low temperature storage systems. Therefore the heat losses over the envelope can be reduced because of the smaller temperature difference between the ambient air and the storage. In order to use the existing technique of the buffer storages more efficiently, latent heat storage devices are put into the storage volume. For the operating temperature range of 30 to 40 C paraffins or salt hydrates can be used. Because of the low operating temperature it is possible to integrate solar thermal systems in the heating system (especially in spring and autumn). The overall system performance will be analysed. (Copyright copyright 2010 Ernst and Sohn Verlag fuer Architektur und technische Wissenschaften GmbH and Co. KG, Berlin)

  15. Performance analysis of phase-change material storage unit for both heating and cooling of buildings

    Science.gov (United States)

    Waqas, Adeel; Ali, Majid; Ud Din, Zia

    2017-04-01

    Utilisation of solar energy and the night ambient (cool) temperatures are the passive ways of heating and cooling of buildings. Intermittent and time-dependent nature of these sources makes thermal energy storage vital for efficient and continuous operation of these heating and cooling techniques. Latent heat thermal energy storage by phase-change materials (PCMs) is preferred over other storage techniques due to its high-energy storage density and isothermal storage process. The current study was aimed to evaluate the performance of the air-based PCM storage unit utilising solar energy and cool ambient night temperatures for comfort heating and cooling of a building in dry-cold and dry-hot climates. The performance of the studied PCM storage unit was maximised when the melting point of the PCM was ∼29°C in summer and 21°C during winter season. The appropriate melting point was ∼27.5°C for all-the-year-round performance. At lower melting points than 27.5°C, declination in the cooling capacity of the storage unit was more profound as compared to the improvement in the heating capacity. Also, it was concluded that the melting point of the PCM that provided maximum cooling during summer season could be used for winter heating also but not vice versa.

  16. Evaporation of liquefied natural gas in conditions of compact storage containers heating

    Science.gov (United States)

    Telgozhayeva, D. S.

    2014-08-01

    Identical by its power, but located in different parts of the external surface of the tank, the heating sources are different intensity heat transfer modes is heating up, respectively, times of vapour pressure rise to critical values. Developed mathematical model and method of calculation can be used in the analysis of conditions of storage tanks for liquefied gases.

  17. Operation of heat pumps for smart grid integrated buildings with thermal energy storage

    NARCIS (Netherlands)

    Finck, C.J.; Li, R.; Zeiler, W.

    2017-01-01

    A small scale office building consisting of radiant heating, a heat pump, and a water thermal energy storage tank is implemented in an optimal control framework. The optimal control aims to minimize operational electricity costs of the heat pump based on real-time power spot market prices. Optimal

  18. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  19. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only...... moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load...

  20. Quantification of the reactions in heat storage systems in the Malm aquifer

    Science.gov (United States)

    Ueckert, Martina; Baumann, Thomas

    2017-04-01

    Combined heat and power plants (CHP) are efficient and environmentally friendly because excess heat produced during power generation is used for heating purposes. While the power demand remains rather constant throughout the year, the heat demand shows seasonal variations. In a worst-case scenario, the heat production in winter is not sufficient, and the power production in summer has to be ramped down because the excess heat cannot be released to the environment. Therefore, storage of excess heat of CHP is highly beneficial from an economic and an ecological point of view. Aquifer thermal energy storage (ATES) is considered as a promising technology for energy storage. In a typical setting, water from an aquifer is produced, heated up by excess heat from the CHP and injected through a second borehole back into the aquifer. The carbonate rocks of the upper Jurrasic in the Molasse Basin seem to be promising sites for aquifer heat storage because of their high transmissivity combined with a typical geological setting with tight caprock. However, reactions in the aquifer cannot be neglected and may become the limiting process of the whole operation. While there have been several studies performed in clastic aquifers and for temperatures below 100°C, the knowledge about high injection temperatures and storage into a carbonatic aquifer matrix is still limited. Within a research project funded by the Bavarian State Ministry for Economic Affairs and the BMW Group, the storage and recuperation of excess heat energy into the Bavarian Malm aquifer with flow rates of 15 L/s and temperatures of up to 110°C was investigated. The addition of {CO_2} was used to prevent precipitations. Data from the field site was backed up by autoclave experiments and used to verify a conceptional hydrogeochemical model with PhreeqC for the heat storage operation. The model allows to parametrize the operation and to predict possible reactions in the aquifer.

  1. An experimental study on the heat transfer characteristics of a heat pipe heat exchanger with latent heat storage. Part II: Simultaneous charging/discharging modes

    International Nuclear Information System (INIS)

    Liu Zhongliang; Wang Zengyi; Ma Chongfang

    2006-01-01

    In this part of the paper, the performance of the simultaneous charging/discharging operation modes of the heat pipe heat exchanger with latent heat storage is experimentally studied. The experimental results show that the device may operate under either the fluid to fluid heat transfer with charging heat to the phase change material (PCM) or the fluid to fluid heat transfer with discharging heat from the PCM modes according to the initial temperature of the PCM. The melting/solidification curves, the performances of the heat pipes and the device, the influences of the inlet temperature and the mass flow rate of the cold water on the operation performance are investigated by extensive experiments. The experimental results also disclose that under the simultaneous charging/discharging operation mode, although the heat transfer from the hot water directly to the cold water may vary, it always takes up a major part of the total heat recovered by the cold water due to the very small thermal resistance compared with the thermal resistance of the PCM side. The melting/solidification processes taking place in the simultaneous charging/discharging operation are compared with those in the charging only and discharging only processes. By applying a simplified thermal resistance analysis, a criterion for predicting the exact operation modes was derived and used to explain the observed experimental phenomena

  2. Finite element method for radiation heat transfer in multi-dimensional graded index medium

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium

  3. Solar-Biomass hybrid system for process heat supply in medium scale hotels in Sri Lanka

    OpenAIRE

    Abeywardana, Asela M.A.J.

    2016-01-01

    This study aimed at evaluating and demonstrating the feasibility of using Concentrated Solar Thermal technology combined with biomass energy technology as a hybrid renewable energy system to supply the process heat requirements in small scale industries in Sri Lanka. Particularly, the focus was to apply the concept to the expanding hotel industry, for covering the thermal energy demand of a medium scale hotel. Solar modules utilize the rooftop area of the building to a valuable application. L...

  4. Effects of Irrigation Methods on the Growth of Petunia Grown in Heat Fusion Polyester Fiber Hardened Medium without Polythylene Pot

    OpenAIRE

    後藤, 丹十郎; 島, 浩二; 東, 千里; 森下, 照久; 藤井, 一徳; 元岡, 茂治

    2006-01-01

    Recenty, polyethylene pots(PP) present a significant environmental issue for waste disposal. To develop bedding plant production system without PP, properties of compacted medium hardened by heat fusion polyester fiber were investigated. Effects of irrigation methods on the growth of vegetative propagated petunia grown in medium without PP were investigated. The effect of medium type was not as significant as the difference in water loss per pot. Water loss per pot of medium without PP was ab...

  5. Sensitivity Analysis of Depletion Parameters for Heat Load Evaluation of PWR Spent Fuel Storage Pool

    International Nuclear Information System (INIS)

    Kim, In Young; Lee, Un Chul

    2011-01-01

    As necessity of safety re-evaluation for spent fuel storage facility has emphasized after the Fukushima accident, accuracy improvement of heat load evaluation has become more important to acquire reliable thermal-hydraulic evaluation results. As groundwork, parametric and sensitivity analyses of various storage conditions for Kori Unit 4 spent fuel storage pool and spent fuel depletion parameters such as axial burnup effect, operation history, and specific heat are conducted using ORIGEN2 code. According to heat load evaluation and parametric sensitivity analyses, decay heat of last discharged fuel comprises maximum 80.42% of total heat load of storage facility and there is a negative correlation between effect of depletion parameters and cooling period. It is determined that specific heat is most influential parameter and operation history is secondly influential parameter. And decay heat of just discharged fuel is varied from 0.34 to 1.66 times of average value and decay heat of 1 year cooled fuel is varied from 0.55 to 1.37 times of average value in accordance with change of specific power. Namely depletion parameters can cause large variation in decay heat calculation of short-term cooled fuel. Therefore application of real operation data instead of user selection value is needed to improve evaluation accuracy. It is expected that these results could be used to improve accuracy of heat load assessment and evaluate uncertainty of calculated heat load.

  6. Current status of and problems in ice heat storage systems contributing to improving load rate. Proliferation of the ice heat storage type air conditioning system and roles of the Heat Pump and Heat Storage Center; Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Kori chikunetsushiki kucho system no fukyu to heat pump chikunetsu center no yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, T.

    1998-02-01

    This paper introduces the roles played by the `Heat Pump and Heat Storage Center`. This foundation had been performing research and development and international information exchange in devices and equipment as the `Heat Pump Technology Development Center`. Development of heat storage type air conditioning systems as a measure for load leveling, and efforts of their proliferation and enlightenment were added to the business activities. As a result, the foundation`s name was changed to the present name. Its activities being planned and performed include: interest supplementing operation for installation of an air conditioning system of the heat pump system using storage of latent heat such as ice heat storage, holding seminars for promoting proliferation of the ice heat storage type air conditioning system, opening the home page, participation in exhibitions of various types, and preparation of different publicity tools. More specifically, carrying series advertisements in newspapers and magazines, holding nation-wide symposiums tying up with Japan Economic Press, publishing an organ newspaper targeted at both of experts and general people, and preparation of general pamphlets to introduce comprehensively the information about heat storage. 3 figs., 1 tab.

  7. Efficiency of Castor Oil as a Storage Medium for Avulsed Teeth in Maintaining the Viability of Periodontal Ligament Cells.

    Science.gov (United States)

    Nabavizadeh, Mohammadreza; Abbaszadegan, Abbas; Khodabakhsi, Afrooz; Ahzan, Shamseddin; Mehrabani, Davood

    2018-03-01

    Researchers always seek a new storage medium for avulsed teeth. Castor oil is a vegetable oil with several advantages such as antimicrobial and antioxidant properties, low toxicity, and glutathione preservation capability, low cost, and high availability. The purpose of this study was to evaluate and compare the capacity of castor oil as a new storage medium in preserving the viability of periodontal ligament (PDL) cells compared to Hank's balanced salt solution (HBSS) and milk. Forty freshly extracted human teeth were divided into 3 experimental and 2 control groups. The experimental teeth were stored dry for 30 min and then immersed for 45 min in one of the following media; castor oil, HBSS, and milk. The positive and negative control groups were exposed to 0 min and 2 h of dry time respectively with no immersion in any storage medium. The teeth were then treated with dispase grade II and collagenase and the number of viable PDL cells were counted. Data were analyzed using Kruskal- Wallis test. The percentage of viable cells treated with castor oil, HBSS and milk counted immediately after removal from these media were 46.93, 51.02 and 55.10 % respectively. The statistical analysis revealed that the value for castor oil was significantly lower than HBSS and milk ( p > 0.05). Within the parameters of this study, it appears that castor oil cannot be served as an ideal medium for storage of avulsed tooth. More investigations under in vivo conditions are required to justify the results of this study.

  8. Thermodynamic analysis of the heat regenerative cycle in porous medium engine

    International Nuclear Information System (INIS)

    Liu Hongsheng; Xie Maozhao; Wu Dan

    2009-01-01

    The advantages of homogeneous combustion in internal combustion engines are well known all over the world. Recent years, porous medium (PM) engine has been proposed as a new type engine based on the technique of combustion in porous medium, which can fulfils all requirements to perform homogeneous combustion. In this paper, working processes of a PM engine are briefly introduced and an ideal thermodynamic model of the PM heat regeneration cycle in PM engine is developed. An expression for the relation between net work output and thermal efficiency is derived for the cycle. In order to evaluate of the cycle, the influences of the expansion ratio, initial temperature and limited temperature on the net work and efficiency are discussed, and the availability terms of the cycle are analyzed. Comparing the PM heat regenerative cycle of the PM engine against Otto cycle and Diesel cycle shows that PM heat regenerative cycle can improve net work output greatly with little drop of efficiency. The aim of this paper is to predict the thermodynamic performance of PM heat regeneration cycle and provide a guide to further investigations of the PM engine

  9. Application of porous medium for efficiency improvement of a concentrated solar air heating system

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    The objective of this study is to evaluate the thermal efficiency of a concentrated solar collector for a high temperature air heating system. The proposed system consists of a 25-m2 focused multi-flat-mirror solar heliostat equipped with a porous medium solar collector/receiver which was installed on the top of a 3-m tower, called ‘tower receiver’. To know how the system efficiency cloud be improved by using porous medium, the proposed system with and without porous medium were tested and the comparative study was performed. The experimental results reveal that, for the proposed system, application of porous medium is promising, the efficiency can be increased about 2 times compared to the conventional one. In addition, due to the porous medium used in this study was the waste material with very low cost. It can be summarized that the substantial efficiency improvement with very low investment cost of the proposed system seem to be a vital measures for addressing the energy issues.

  10. Throughflow and non-uniform heating effects on double diffusive oscillatory convection in a porous medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-03-01

    Full Text Available A weak nonlinear oscillatory mode of thermal instability is investigated while deriving a non autonomous complex Ginzburg–Landau equation. Darcy porous medium is considered in the presence of vertical throughflow and time periodic thermal boundaries. Only infinitesimal disturbances are considered. The disturbances in velocity, temperature and solutal fields are treated by a perturbation expansion in powers of amplitude of applied temperature field. The effect of throughflow has either to stabilize or to destabilize the system for stress free and isothermal boundary conditions. Nusselt and Sherwood numbers are obtained numerically and presented the results on heat and mass transfer. It is found that, throughflow and thermal modulation can be used alternatively to control the heat and mass transfer. Further, it is also found that oscillatory flow enhances the heat and mass transfer than stationary flow. Effect of modulation frequency and phase angle on mean Nusselt number is also discussed.

  11. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process.

    Science.gov (United States)

    Hassanpour, Saeid; Saboonchi, Ahmad

    2016-12-01

    This paper aims to evaluate the role of small vessels in heat transfer mechanisms of a tissue-like medium during local intensive heating processes, for example, an interstitial hyperthermia treatment. To this purpose, a cylindrical tissue with two co- and counter-current vascular networks and a central heat source is introduced. Next, the energy equations of tissue, supply fluid (arterial blood), and return fluid (venous blood) are derived using porous media approach. Then, a 2D computer code is developed to predict the temperature of blood (fluid phase) and tissue (solid phase) by conventional volume averaging method and a more realistic solution method. In latter method, despite the volume averaging the blood of interconnect capillaries is separated from the arterial and venous blood phases. It is found that in addition to blood perfusion rate, the arrangement of vascular network has considerable effects on the pattern and amount of the achieved temperature. In contrast to counter-current network, the co-current network of vessels leads to considerable asymmetric pattern of temperature contours and relocation of heat affected zone along the blood flow direction. However this relocation can be prevented by changing the site of hyperthermia heat source. The results show that the cooling effect of co-current blood vessels during of interstitial heating is more efficient. Despite much anatomical dissimilarities, these findings can be useful in designing of protocols for hyperthermia cancer treatment of living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material

    Directory of Open Access Journals (Sweden)

    S F Hosseinizadeh

    2011-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.

  13. The Characteristic of Molten Heat Salt Storage System Utilizing Solar Energy Combined with Valley Electric

    Directory of Open Access Journals (Sweden)

    LI .Jiu-ru

    2017-02-01

    Full Text Available With the environmental pollution and energy consumption clue to the large difference between peak and valley of power grid,the molten salt heat storage system(MSHSS utilizing solar Energy combined with valley electric is presented for good energy saving and low emissions. The costs of MSHSS utilizing solar Energy combined with valley electric are greatly reduced. The law of heat transfer in molten salt heat storage technology is studied with the method of grey correlation analysis. The results show the effect of elbow sizes on surface convective heat transfer coefficient with different flow velocities.

  14. Thermal performance and heat transport in aquifer thermal energy storage

    NARCIS (Netherlands)

    Sommer, W.T.; Doornenbal, P.J.; Drijver, B.C.; Gaans, van P.F.M.; Leusbrock, I.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Aquifer thermal energy storage (ATES) is used for seasonal storage of large quantities of thermal energy. Due to the increasing demand for sustainable energy, the number of ATES systems has increased rapidly, which has raised questions on the effect of ATES systems on their surroundings as well as

  15. On energy optimisation in multipurpose batch plants using heat storage

    CSIR Research Space (South Africa)

    Majozi, T

    2010-10-01

    Full Text Available time interval. Indirect heat integration makes use of a heat transfer fluid for storing energy and allows heat integration of processes regardless of the time interval. This is possible as long as the source process takes place before the sink process...

  16. Energy-Storage Modules for Active Solar Heating and Cooling

    Science.gov (United States)

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  17. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  18. Solar powered absorption cycle heat pump using phase change materials for energy storage

    Science.gov (United States)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  19. Heating and cooling system for an on-board gas adsorbent storage vessel

    Science.gov (United States)

    Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio

    2017-06-20

    In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.

  20. Application of thermal energy storage to process heat recovery in the aluminum industry

    Science.gov (United States)

    Mccabe, J.

    1980-01-01

    The economic viability and the institutional compatibility of a district heating system in the city of Bellingham, Washington are assessed and the technical and economic advantages of using thermal energy storage methods are determined.

  1. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2009-08-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation nearly perfectly. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy

  2. Optimal study of a solar air heating system with pebble bed energy storage

    International Nuclear Information System (INIS)

    Zhao, D.L.; Li, Y.; Dai, Y.J.; Wang, R.Z.

    2011-01-01

    Highlights: → Use two kinds of circulation media in the solar collector. → Air heating and pebble bed heat storage are applied with different operating modes. → Design parameters of the system are optimized by simulation program. → It is found that the system can meet 32.8% of the thermal energy demand in heating season. → Annual solar fraction aims to be 53.04%. -- Abstract: The application of solar air collectors for space heating has attracted extensive attention due to its unique advantages. In this study, a solar air heating system was modeled through TRNSYS for a 3319 m 2 building area. This air heating system, which has the potential to be applied for space heating in the heating season (from November to March) and hot water supply all year around in North China, uses pebble bed and water storage tank as heat storage. Five different working modes were designed based on different working conditions: (1) heat storage mode, (2) heating by solar collector, (3) heating by storage bed, (4) heating at night and (5) heating by an auxiliary source. These modes can be operated through the on/off control of fan and auxiliary heater, and through the operation of air dampers manually. The design, optimization and modification of this system are described in this paper. The solar fraction of the system was used as the optimization parameter. Design parameters of the system were optimized by using the TRNSYS program, which include the solar collector area, installation angle of solar collector, mass flow rate through the system, volume of pebble bed, heat transfer coefficient of the insulation layer of the pebble bed and water storage tank, height and volume of the water storage tank. The TRNSYS model has been verified by data from the literature. Results showed that the designed solar system can meet 32.8% of the thermal energy demand in the heating season and 84.6% of the energy consumption in non-heating season, with a yearly average solar fraction of 53.04%.

  3. Uses of the waste heat from the interim fuel storage facility

    International Nuclear Information System (INIS)

    Wehrum, A.

    It was the objective of this study to investigate the possibilities of a convenient use of the waste heat from the designed interim fuel storage at Ahaus. In this sense the following possibilities have been investigated: district heating, heat for industrial processes, fish-production, green house-heating, production of methane from original waste, agrotherm (agricultur field heating). It has been shown, that an economical behaviour for nearly all variations is not given without the financial help of the government, because of the high costs for heat transport and out-put. The most economical project is the intensive fish production plant. (orig.) [de

  4. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should...... be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...... of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments....

  5. Steam-based Charging-Discharging of a PCM Heat Storage

    African Journals Online (AJOL)

    fire7-

    2016-11-10

    Nov 10, 2016 ... 2Department of Energy and Process Engineering, Norwegian University of Science and. Technology ... Keywords: Solar energy, PCM storage, Latent heat storage, Two-phase thermosyphon. 1. ..... principle, with water as the working fluid at about 35-bar pressure. ... generator as applied to PTC systems.

  6. Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage

    NARCIS (Netherlands)

    Pathak, A.D.; Gaastra-Nedea, S.V.; Duin, van A.C.T.; Zondag, H.A.; Rindt, C.C.M.; Smeulders, D.M.J.

    2016-01-01

    MgCl2 hydrates are considered as high-potential candidates for seasonal heat storage materials. These materials have high storage capacity and fast dehydration kinetics. However, as a side reaction to dehydration, hydrolysis may occur. Hydrolysis is an irreversible reaction, which produces HCl gas

  7. Influence of heat treatment and veneering on the storage modulus and surface of zirconia ceramic

    NARCIS (Netherlands)

    Siavikis, G.; Behr, M.; van der Zel, J.M.; Feilzer, A.J.; Rosentritt, M.

    2011-01-01

    Objectives: Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of

  8. Experimental and in silico characterization of xylitol as seasonal heat storage material

    NARCIS (Netherlands)

    Zhang, H.; Duquesne, M.; Godin, A.; Niedermaier, S.; Palomo del Barrio, E.; Gaastra - Nedea, S.V.; Rindt, C.C.M.

    Solid-liquid phase change is one of the most favorable means of compact heat storage in the built environment. Recent studies propose C4-C6 polyalcohols for seasonal storage applications, for their high latent melting enthalpy, evident supercooling effect, and low environmental impact. In this

  9. Heat transfer modelling in a spent-fuel dry storage system

    International Nuclear Information System (INIS)

    Ritz, J.B.; Le Bonhomme, S.

    2001-01-01

    The purpose of this paper is to present a numerical modelling of heat transfers in a Spent-Fuel horizontal dry storage. The horizontal dry storage is an interesting issue to momentary store spent fuel containers before the final storage. From a thermal point of view, the cooling of spent fuel container by natural convection is a suitable and inexpensive process but it necessitates to well define the dimensions of the concept due to the difficulty to control the thermal environment. (author)

  10. Experimental study on heat storage system using phase-change material in a diesel engine

    International Nuclear Information System (INIS)

    Park, Sangki; Woo, Seungchul; Shon, Jungwook; Lee, Kihyung

    2017-01-01

    Engines usually use only about 25% of the total fuel energy for power, and the rest is discarded to the cooling water and exhaust gas. Therefore, a technique for utilizing external waste heat is required to improve fuel efficiency in terms of total energy consumption. In this study, a heat storage system was built using a phase-change material in order to recover about 30% of the thermal energy wasted through engine cooling. The components of the heat storage system were divided into phase-change material, a heat exchanger, and a heat-insulating container. For each component, a phase-change material that is suitable for use in vehicles was selected based on the safety, thermal properties, and durability. As a result, a stearic acid of a fatty acid series with natural extracts was determined to be appropriate. In order to measure the reduction in engine fuel consumption, a thermal storage system designed for the actual engine was applied to realize a quick warm-up by releasing stored heat energy directly on the coolant during a cold start. This technique added about 95 calories of heat storage device warm-up time compared to the non-added state, which was reduced by about 18.1% to about 27.1%. - Highlights: • The diesel engine used phase-change material with heat storage system. • The thermal storage system designed for the actual engine. • A stearic acid of a fatty acid series was determined to be appropriate. • Applied heat storage system was reduced by about 18.1%–27.1%.

  11. Parametric Study on the Dynamic Heat Storage Capacity of Building Elements

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2007-01-01

    as their interrelation. The potential of increasing thermal mass by using phase change materials (PCM) was estimated assuming increased thermal capacity. The results show a significant impact of the heat transfer coefficient on heat storage capacity, especially for thick, thermally heavy elements. The storage capacity...... of onedimensional heat conduction in a slab with convective boundary condition was applied to quantify the dynamic heat storage capacity of a particular building element. The impact of different parameters, such as slab thickness, material properties and the heat transfer coefficient was investigated, as well......In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning systems are often used even in moderate and cold climates. Particularly in this case, passive cooling by night-time ventilation seems to offer considerable...

  12. Natural element method for radiative heat transfer in a semitransparent medium with irregular geometries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Yi, Hong-Liang, E-mail: yihongliang@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping, E-mail: tanheping@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)

    2013-05-15

    This paper develops a numerical solution to the radiative heat transfer problem coupled with conduction in an absorbing, emitting and isotropically scattering medium with the irregular geometries using the natural element method (NEM). The walls of the enclosures, having temperature and mixed boundary conditions, are considered to be opaque, diffuse as well as gray. The NEM as a meshless method is a new numerical scheme in the field of computational mechanics. Different from most of other meshless methods such as element-free Galerkin method or those based on radial basis functions, the shape functions used in NEM are constructed by the natural neighbor interpolations, which are strictly interpolant and the essential boundary conditions can be imposed directly. The natural element solutions in dealing with the coupled heat transfer problem for the mixed boundary conditions have been validated by comparison with those from Monte Carlo method (MCM) generated by the authors. For the validation of the NEM solution to radiative heat transfer in the semicircular medium with an inner circle, the results by NEM have been compared with those reported in the literatures. For pure radiative transfer, the upwind scheme is employed to overcome the oscillatory behavior of the solutions in some conditions. The steady state and transient heat transfer problem combined with radiation and conduction in the semicircular enclosure with an inner circle are studied. Effects of various parameters such as the extinction coefficient, the scattering albedo, the conduction–radiation parameter and the boundary emissivity are analyzed on the radiative and conductive heat fluxes and transient temperature distributions.

  13. Critical heat flux data in a vertical tube at low and medium pressures

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, A [Institut de Genie Nucleaire, Ecole Polytechnique, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7 (Canada); Olekhnowitch, A [Institut de Genie Nucleaire, Ecole Polytechnique, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7 (Canada); Tapucu, A [Institut de Genie Nucleaire, Ecole Polytechnique, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7 (Canada); Champagne, P [Institut de Genie Nucleaire, Ecole Polytechnique, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7 (Canada); Groeneveld, D [Chalk River Laboratories, AECL Research, Chalk River (Canada)

    1994-09-01

    AECL Research and Ecole Polytechnique have been cooperating on the validation of the critical heat flux (CHF) look-up table (D.C. Groeneveld et al., Heat Transfer Eng. 7(1-2) (1986) 46-62). For low and medium pressures the values in the table have been obtained by extrapolation and curve fitting; therefore, errors could be expected. To reduce these possible extrapolation errors, CHF experiments are being carried out in water cooled 8mm internal diameter (ID) tubes, at conditions where the data are scarce. This paper presents some of the experimental CHF data obtained for vertical up flow in an 8mm ID test section, for a wide range of exit qualities (5-70%) and the exit pressure ranging from 5 to 30bar. The experiments were carried out for heated lengths of 0.75, 1, 1.4 and 1.8m. In general, the collected data show parametric trends similar to those described in the open literature. However, it was observed that for low pressure conditions CHF depends on the heated length; this dependence begins to disappear for exit pressure of about 30bar. The CHF data have also been compared with predictions of well-known correlations (L. Biasi et al., Energia Nucl. 14(9) (1967) 530-536; R. Bowring, Br. Report AEEW-R789, Winfrith, UK, 1972; Y. Khatto and H. Ohno, Int. J. Heat Mass Transfer 27 (1984) 1641-1648) and those of the look-up table given by Groeneveld et al. For low pressures and low mass fluxes the look-up table seems to yield better predictions of the CHF than the correlations. However, for medium pressures and mass fluxes the correlations perform better than the look-up table; among those tested, Katto and Ohno's correlation gives the best results. ((orig.))

  14. Experimental Study and Modeling of Ground-Source Heat Pumps with Combi-Storage in Buildings

    Directory of Open Access Journals (Sweden)

    Wessam El-Baz

    2018-05-01

    Full Text Available There is a continuous growth of heat pump installations in residential buildings in Germany. The heat pumps are not only used for space heating and domestic hot water consumption but also to offer flexibility to the grid. The high coefficient of performance and the low cost of heat storages made the heat pumps one of the optimal candidates for the power to heat applications. Thus, several questions are raised about the optimal integration and control of heat pump system with buffer storages to maximize its operation efficiency and minimize the operation costs. In this paper, an experimental investigation is performed to study the performance of a ground source heat pump (GSHP with a combi-storage under several configurations and control factors. The experiments were performed on an innovative modular testbed that is capable of emulating a ground source to provide the heat pump with different temperature levels at different times of the day. Moreover, it can emulate the different building loads such as the space heating load and the domestic hot water consumption in real-time. The data gathered from the testbed and different experimental studies were used to develop a simulation model based on Modelica that can accurately simulate the dynamics of a GSHP in a building. The model was validated based on different metrics. Energetically, the difference between the developed model and the measured values was only 3% and 4% for the heat generation and electricity consumption, respectively.

  15. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  16. Performance analysis of a soil-based thermal energy storage system using solar-driven air-source heat pump for Danish buildings sector

    DEFF Research Database (Denmark)

    Jradi, M.; Veje, C.; Jørgensen, B. N.

    2017-01-01

    and the economic and environmental aspects. However, the intermittent nature of solar energy and the lack of high solar radiation intensities in various climates favour the use of various energy storage techniques to eliminate the discrepancy between energy supply and demand. The current work presents an analysis......, Denmark, in addition to charging the soil storage medium in summer months when excess electric power is generated. The stored heat is discharged in December and January to provide the space heating and domestic hot water demands of the residential project without the utilization of an external heating...... losses and the surrounding soil temperature variation throughout the year. It was found that the overall system heating coefficient of performance is around 4.76, where the reported energetic efficiency is 5.88% for the standalone PV system, 19.1% for the combined PV-ASHP system, and 22...

  17. Energy conservation indicators cold and heat storage. Revision factsheet cold and heat storage 2009; Besparingskentallen koude- en warmteopslag. Herziening factsheet koude- en warmteopslag 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bosselaar, L. [SenterNovem, Utrecht (Netherlands); Koenders, M.J.B.; Van Helden, M.J.C.; Kleinlugtenbelt, J.H. [IF Technology, Arnhem (Netherlands)

    2009-08-15

    The aim of the title revision is to update the existing indicators for cold and heat storage as given in the Protocol Monitoring Sustainable Energy [Dutch] Het doel van het onderzoek is om de bestaande set van kentallen voor koude- en warmteopslag uit het Protocol Monitoring Duurzame Energie te actualiseren.

  18. Simulation of Reynolds number influence on heat exchange in turbulent flow of medium slurry

    Science.gov (United States)

    Bartosik, A.

    2016-10-01

    The paper deals with the numerical simulation of mass and heat exchange in turbulent flow of solid-liquid mixture in the range of averaged solid particle diameter from 0.10mm to 0.80mm, named further as the medium slurry. Physical model assumes that dispersed phase is fully suspended and a turbulent flow is hydro-dynamically, and thermally developed in a straight horizontal pipeline. Taking into account the aforementioned assumptions the slurry is treated as a single-phase flow with increased density, while viscosity is equals to a carrier liquid viscosity. The mathematical model constitutes time averaged momentum equation in which the turbulent stress tensor was designated using a two-equation turbulence model, which makes use of the Boussinesq eddy-viscosity hypothesis. Turbulence damping function in the turbulence model was especially designed for the medium slurry. In addition, an energy equation has been used in which a convective term was determined from the energy balance acting on a unit pipe length, assuming linear changes of temperature in main flow direction. Finally, the mathematical model of non-isothermal medium slurry flow comprises four partial differential equations, namely momentum and energy equations, equations of kinetic energy of turbulence and its dissipation rate. Four partial differential equations were solved by a finite difference scheme using own computer code. The objective of the paper is to examine the influence of Reynolds number on temperature profiles and Nusselt number in turbulent flow of medium slurry in the range of solids concentration from 0% to 30% by volume. The effect of influential factors on heat transfer between the pipe and slurry is analysed. The paper demonstrates substantial impact of Reynolds number and solids volume fraction on the Nusselt number. The results of numerical simulation are reviewed.

  19. Combined effect of thermal dispersion and variable viscosity of non-darcy convection heat transfer in a fluidsaturated porous medium

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; El-Amin, Ammaarah A.; Gorla, Rama Subba Reddy

    2013-01-01

    In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension

  20. The relation of collector and storage tank size in solar heating systems

    International Nuclear Information System (INIS)

    Çomaklı, Kemal; Çakır, Uğur; Kaya, Mehmet; Bakirci, Kadir

    2012-01-01

    Highlights: ► A storage tank is used in many solar water heating systems for the storage of hot water. ► Using larger storage tanks decrease the efficiency and increases the cost of the system. ► The optimum tank size for the collector area is very important for economic solar heating systems. ► The optimum sizes of the collectors and the storage tank are determined. - Abstract: The most popular method to benefit from the solar energy is to use solar water heating systems since it is one of the cheapest way to benefit from the solar energy. The investment cost of a solar water heating system is very low, and the maintenance costs are nearly zero. Using the solar energy for solar water heating (SWH) technology has been greatly improved during the past century. A storage tank is used in many solar water heating systems for the conservation of heat energy or hot water for use when some need it. In addition, domestic hot water consumption is strongly variable in many buildings. It depends on the geographical situation, also on the country customs, and of course on the type of building usage. Above all, it depends on the inhabitants’ specific lifestyle. For that reason, to provide the hot water for consumption at the desirable temperature whenever inhabitants require it, there must be a good relevance between the collectors and storage tank. In this paper, the optimum sizes of the collectors and the storage tank are determined to design more economic and efficient solar water heating systems. A program has been developed and validated with the experimental study and environmental data. The environmental data were obtained through a whole year of operation for Erzurum, Turkey.

  1. Heat removal tests on dry storage facilities for nuclear spent fuels

    International Nuclear Information System (INIS)

    Wataru, M.; Saegusa, T.; Koga, T.; Sakamoto, K.; Hattori, Y.

    1999-01-01

    In Japan, spent fuel generated in NPP is controlled and stored in dry storage facility away-from reactor. Natural convection cooling system of the storage facility is considered advantageous from both safety and economic point of view. In order to realize this type of facility it is necessary to develop an evaluation method for natural convection characteristics and to make a rational design taking account safety and economic factors. Heat removal tests with the reduces scale models of storage facilities (cask, vault and silo) identified the the flow pattern in the test modules. The temperature and velocity distributions were obtained and the heat transfer characteristics were evaluated

  2. Simulation of Porous Medium Hydrogen Storage - Estimation of Storage Capacity and Deliverability for a North German anticlinal Structure

    Science.gov (United States)

    Wang, B.; Bauer, S.; Pfeiffer, W. T.

    2015-12-01

    Large scale energy storage will be required to mitigate offsets between electric energy demand and the fluctuating electric energy production from renewable sources like wind farms, if renewables dominate energy supply. Porous formations in the subsurface could provide the large storage capacities required if chemical energy carriers such as hydrogen gas produced during phases of energy surplus are stored. This work assesses the behavior of a porous media hydrogen storage operation through numerical scenario simulation of a synthetic, heterogeneous sandstone formation formed by an anticlinal structure. The structural model is parameterized using data available for the North German Basin as well as data given for formations with similar characteristics. Based on the geological setting at the storage site a total of 15 facies distributions is generated and the hydrological parameters are assigned accordingly. Hydraulic parameters are spatially distributed according to the facies present and include permeability, porosity relative permeability and capillary pressure. The storage is designed to supply energy in times of deficiency on the order of seven days, which represents the typical time span of weather conditions with no wind. It is found that using five injection/extraction wells 21.3 mio sm³ of hydrogen gas can be stored and retrieved to supply 62,688 MWh of energy within 7 days. This requires a ratio of working to cushion gas of 0.59. The retrievable energy within this time represents the demand of about 450000 people. Furthermore it is found that for longer storage times, larger gas volumes have to be used, for higher delivery rates additionally the number of wells has to be increased. The formation investigated here thus seems to offer sufficient capacity and deliverability to be used for a large scale hydrogen gas storage operation.

  3. Analytical Solution of Flow and Heat Transfer over a Permeable Stretching Wall in a Porous Medium

    Directory of Open Access Journals (Sweden)

    M. Dayyan

    2013-01-01

    Full Text Available Boundary layer flow through a porous medium over a stretching porous wall has seen solved with analytical solution. It has been considered two wall boundary conditions which are power-law distribution of either wall temperature or heat flux. These are general enough to cover the isothermal and isoflux cases. In addition to momentum, both first and second laws of thermodynamics analyses of the problem are investigated. The governing equations are transformed into a system of ordinary differential equations. The transformed ordinary equations are solved analytically using homotopy analysis method. A comprehensive parametric study is presented, and it is shown that the rate of heat transfer increases with Reynolds number, Prandtl number, and suction to the surface.

  4. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Science.gov (United States)

    Tsolakoglou, Nikolas P.; Koukou, Maria K.; Vrachopoulos, Michalis Gr.; Tachos, Nikolaos; Lymberis, Kostas; Stathopoulos, Vassilis

    2017-11-01

    This work investigates melting and solidification processes of four different Phase Change Materials (PCM) used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF). Both charging (melting) and discharging (solidification) processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates). Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  5. Experimental process investigation of a latent heat energy storage system with a staggered heat exchanger with different phase change materials for solar thermal energy storage applications

    Directory of Open Access Journals (Sweden)

    Tsolakoglou Nikolas P.

    2017-01-01

    Full Text Available This work investigates melting and solidification processes of four different Phase Change Materials (PCM used as latent heat thermal storage system. The experimental rig was consisted of an insulated tank, filled with the under investigation PCM, a staggered heat exchanger to supply or extract heat from the PCM cavity and a water pump to circulate Heat Transfer Fluid (HTF. Both charging (melting and discharging (solidification processes were conducted for two different HTF flow rates. The main scope of this work was to develop a first approach and to investigate the behaviour of PCM under various load conditions (different HTF flow rates. Results show that different HTF flow rates affect melting and solidification time periods; in both processes time was reduced while HTF flow rate was increased but in differentways due to the transition from conduction to convection heat transfer mechanisms.

  6. Thermal energy storage - A review of concepts and systems for heating and cooling applications in buildings

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    period required, economic viability, and operating conditions. One of the main issues impeding the utilization of the full potential of natural and renewable energy sources, e.g., solar and geothermal, for space heating and space cooling applications is the development of economically competitive......The use of thermal energy storage (TES) in buildings in combination with space heating and/or space cooling has recently received much attention. A variety of TES techniques have developed over the past decades. TES systems can provide short-term storage for peak-load shaving as well as long......-term (seasonal) storage for the introduction of natural and renewable energy sources. TES systems for heating or cooling are utilized in applications where there is a time mismatch between the demand and the most economically favorable supply of energy. The selection of a TES system mainly depends on the storage...

  7. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2017-02-01

    Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.

  8. An integrated heat pipe-thermal storage design for a solar receiver

    Science.gov (United States)

    Keddy, E.; Sena, J. T.; Woloshun, K.; Merrigan, M. A.; Heidenreich, G.

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power System (ORC-SDPS) receiver for the Space Station application. The operating temperature of the heat pipe elements is in the 770 to 810 K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability.

  9. Maxwell-Cattaneo Heat Convection and Thermal Stresses Responses of a Semi-Infinite Medium to High-Speed Laser Heating due to High Speed Laser Heating

    Directory of Open Access Journals (Sweden)

    Abdallah I. A.

    2009-07-01

    Full Text Available Based on Maxwell-Cattaneo convection equation, the thermoelasticity problem is in- vestigated in this paper. The analytic solution of a boundary value problem for a semi- infinite medium with traction free surface heated by a high-speed laser-pulses have Dirac temporal profile is solved. The temperature, the displacement and the stresses distributions are obtained analytically using the Laplace transformation, and discussed at small time duration of the laser pulses. A numerical study for Cu as a target is performed. The results are presented graphically. The obtained results indicate that the small time duration of the laser pulses has no e ect on the finite velocity of the heat con- ductivity, but the behavior of the stress and the displacement distribution are affected due to the pulsed heating process and due to the structure of the governing equations.

  10. Laboratory test of a prototype heat storage module based on stable supercooling of sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Fan, Jianhua

    2015-01-01

    Laboratory test of a long term heat storage module utilizing the principle of stable supercooling of 199.5 kg of sodium acetate water mixture has been carried out. Avoiding phase separation of the incongruently melting salt hydrate by using the extra water principle increased the heat storage...... capacity. An external expansion vessel minimized the pressure built up in the module while heating and reduced the risk of instable supercooling. The module was stable supercooled at indoor ambient temperature for up to two months after which it was discharged. The energy discharged after activating...

  11. Occupational exposure in small and medium scale industry with specific reference to heat and noise

    Directory of Open Access Journals (Sweden)

    Lakhwinder Pal Singh

    2010-01-01

    Full Text Available This study was undertaken to assess heat and noise exposure and occupational safety practices in small and medium scale casting and forging units (SMEs of Northern India. We conducted personal interviews of 350 male workers of these units through a comprehensive questionnaire and collected information on heat and noise exposure, use of protective equipment, sweat loss and water intake, working hour. The ambient wet bulb globe temperature (WBGT index was measured using quest temp 34/36o area heat stress monitor. A-weighted Leq ambient noise was measured using a quest sound level meter "ANSI SI. 43-1997 (R 2002 type-1 model SOUNDPRO SE/DL". We also incorporated OSHA norms for hearing conservation which include - an exchange rate of 5dB(A, criterion level at 90dB(A, criterion time of eight hours, threshold level is equal to 80dB(A, upper limit is equal to 140dB(A and with F/S response rate. Results of the study revealed that occupational heat exposure in melting, casting, forging and punching sections is high compared to ACGIH/NIOSH norms. Ambience noise in various sections like casting / molding, drop forging, cutting presses, punching, grinding and barreling process was found to be more than 90dB(A. About 95% of the workers suffered speech interference where as high noise annoyance was reported by only 20%. Overall, 68% workers were not using any personal protective equipment (PPE. The study concluded that the proportion of SME workers exposed to high level heat stress and noise (60 - 72 hrs/week is high. The workers engaged in forging and grinding sections are more prone to noise induced hearing loss (NIHL at higher frequencies as compared to workers of other sections. It is recommended that there is a strong need to implement the standard of working hours as well as heat stress and noise control measures.

  12. Daily heat storage for a concentrating solar cooker; Tages-Hitzespeicher fuer einen konzentrierenden Solarkocher

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, M.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes a project that concerned the development and testing of two storage heating elements for automatic parabolic solar cookers. The first variant is made of solid aluminium and stores sensible heat; the second one is filled with tin and uses the latent heat of the solid-liquid phase-change of the tin as well as the storage of sensible heat, too. Various materials for use in heat storage - metals and salts - were examined. Tin was finally chosen for further experiments. The author concludes that the storage units work well, whereby the tin variant was more flexible for changing-weather conditions because of its latent heat storage. Because of their weight, however, the mobile use of the units is restricted. Suggestions for further development are made, including the integration of the units in the bases of solar cookers and the simplification of their construction. The article also reviews the development and application of concentrating-mirror solar cooking systems in India, where large-scale use can be found.

  13. Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Kong, Weiqiang

    2016-01-01

    Latent heat storage units utilizing stable supercooling of sodium acetate trihydrate (SAT) composites were tested in a laboratory. The stainless steel units were 1.5 m high cylinders with internal heat exchangers of tubes with fins. One unit was tested with 116 kg SAT with 6% extra water. Another...... in the thickened phase change material after melting. The heat content in the fully charged state and the heat released after solidification of the supercooled SAT mixtures at ambient temperature was higher for the unit with the thickened SAT mixture. The heat discharged after solidification of the supercooled SAT...

  14. Flexibility of Large-Scale Solar Heating Plant with Heat Pump and Thermal Energy Storage

    DEFF Research Database (Denmark)

    Luc, Katarzyna Marta; Heller, Alfred; Rode, Carsten

    2017-01-01

    to decrease biomass use in a district heating system. The paper focuses on the renewable energy-based district heating system in Marstal, Denmark, with heat produced in central solar heating plant, wood pellet boiler, heat pump and bio-oil boiler. The plant has been the object of research and developments...

  15. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    Science.gov (United States)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the

  16. Inherently safe aircooling for the storage of self-heating configurations of radionuclides

    International Nuclear Information System (INIS)

    Hame, W.; Klein, D.; Pirk, H.

    1980-01-01

    NUKEM developed a technical concept of a radionuclide storage facility based on aircooling, which provides that - the radionuclides, i.e. spent fuel elements, are tightly canned in steel canisters - the canned elements are put into individual cooling channels, which form the storage rack within the storage cell - the produced heat is removed from the surface of the canisters through free convection. This cooling concept shows the following advantages: - The cooling is inherently safe, as the driving force of the coolant is reliably supplied by the heat production of the system to be cooled. - The system is self-controlled and self-regulated because of the physically based correlation of heat production, heat transfer coefficients and air flow resistances. (orig.) 891 RB/orig. 892 MKO [de

  17. Development of a thermal storage system based on the heat of adsorption of water in hygroscopic materials

    NARCIS (Netherlands)

    Wijsman, A.J.T.M.; Oosterhaven, R.; Ouden, C. den

    1979-01-01

    A thermal storage system based on the heat of adsorption of water in hygroscopic materials has been studied as a component of a solar space heating system. The aim of this project is to decrease the storage volume in comparison with a rock-bed storage system by increasing the stored energy density.

  18. Using Heat Pump Energy Storages in the Power Grid

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2011-01-01

    The extensive growth of installed wind energy plants lead to increasing balancing problems in the power grid due to the nature of wind fields and diurnal variations in consumption. One way to overcome these problems is to move consumption to times where wind power otherwise cause overproduction...... and large fluctuations in prices. The paper presents a method which takes advantage of heat capacity in single-family houses using heat pumps which are anticipated to be installed in large numbers in Denmark in next decade. This type of heating gives a large time constant and it is shown possible to move...

  19. Heat removal characteristics of waste storage tanks. Revision 1

    International Nuclear Information System (INIS)

    Kummerer, M.

    1995-10-01

    A topical report that examines the relationship between tank heat load and maximum waste temperatures. The passive cooling response of the tanks is examined, and loss of active cooling in ventilated tanks is investigated

  20. Smart electric storage heating and potential for residential demand response

    OpenAIRE

    Darby, S

    2017-01-01

    Low-carbon transition plans for temperate and sub-polar regions typically involve some electrification of space heating. This poses challenges to electricity system operation and market design, as it increases overall demand and alters the temporal patterns of that demand. One response to the challenge is to ‘smarten’ electrical heating, enabling it to respond to network conditions by storing energy at times of plentiful supply, releasing it in response to customer demands and offering rapid-...

  1. Maximizing Storage Flexibility in an Aggregated Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.; Andersen, Palle

    2014-01-01

    for storage capability. It is of great importance to move energy consumption in time to balance the grid. In this paper a portfolio of houses are modelled and controlled using an aggregated model and a model free scheduling algorithm. Flexibility and ability to trade on the intra-day regulating market...

  2. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  3. SERODS: a new medium for high-density optical data storage

    Science.gov (United States)

    Vo-Dinh, Tuan; Stokes, David L.

    1998-10-01

    A new optical dada storage technology based on the surface- enhanced Raman scattering (SERS) effect has been developed for high-density optical memory and three-dimensional data storage. With the surface-enhanced Raman optical data storage (SERODS) technology, the molecular interactions between the optical layer molecules and the nanostructured metal substrate are modified by the writing laser, changing their SERS properties to encode information as bits. Since the SERS properties are extremely sensitive to molecular nano- environments, very small 'spectrochemical holes' approaching the diffraction limit can be produced for the writing process. The SERODS device uses a reading laser to induce the SERS emission of molecules on the disk and a photometric detector tuned to the frequency of the RAMAN spectrum to retrieve the stored information. The results illustrate that SERODS is capable of three-dimensional data storage and has the potential to achieve higher storage density than currently available optical data storage systems.

  4. Numerical simulation of a heat pump assisted regenerative solar still with PCM heat storage for cold climates of Kazakhstan

    Directory of Open Access Journals (Sweden)

    Shakir Yessen

    2017-01-01

    Full Text Available A numerical model has been proposed in this work for predicting the energy performances of the heat pump assisted regenerative solar still with phase changing material heat storage under Kazakhstan climates. The numerical model is based on energy and mass balance. A new regenerative heat pump configuration with phase changing material heat storage is proposed to improve the performance. A comparison of results has been made between the conventional solar still and heat pump assisted regenerative solar still with phase changing material. The numerical simulation was performed for wide range of ambient temperatures between -30 and 30°C with wide range of solar intensities between 100 and 900 W/m2. The numerical simulation results showed that heat pump assisted regenerative solar still is more energy efficient and produce better yield when compared to the conventional simple solar still. The influences of solar intensity, ambient temperature, different phase changing materials, heat pump operating temperatures are discussed. The predicted values were found to be in good agreement with experimental results reported in literature.

  5. Work Rate during Self-paced Exercise is not Mediated by the Rate of Heat Storage.

    Science.gov (United States)

    Friesen, Brian J; Périard, Julien D; Poirier, Martin P; Lauzon, Martin; Blondin, Denis P; Haman, Francois; Kenny, Glen P

    2018-01-01

    To date, there have been mixed findings on whether greater anticipatory reductions in self-paced exercise intensity in the heat are mediated by early differences in rate of body heat storage. The disparity may be due to an inability to accurately measure minute-to-minute changes in whole-body heat loss. Thus, we evaluated whether early differences in rate of heat storage can mediate exercise intensity during self-paced cycling at a fixed rate of perceived exertion (RPE of 16; hard-to-very-hard work effort) in COOL (15°C), NORMAL (25°C), and HOT (35°C) ambient conditions. On separate days, nine endurance-trained cyclists exercised in COOL, NORMAL, and HOT conditions at a fixed RPE until work rate (measured after first 5 min of exercise) decreased to 70% of starting values. Whole-body heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Total exercise time was shorter in HOT (57 ± 20 min) relative to both NORMAL (72 ± 23 min, P = 0.004) and COOL (70 ± 26 min, P = 0.045). Starting work rate was lower in HOT (153 ± 31 W) compared with NORMAL (166 ± 27 W, P = 0.024) and COOL (170 ± 33 W, P = 0.037). Rate of heat storage was similar between conditions during the first 4 min of exercise (all P > 0.05). Thereafter, rate of heat storage was lower in HOT relative to NORMAL and COOL until 30 min of exercise (last common time-point between conditions; all P exercise. No differences were measured at end exercise. We show that rate of heat storage does not mediate exercise intensity during self-paced exercise at a fixed RPE in cool to hot ambient conditions.

  6. Transient modelling of heat loading of phase change material for energy storage

    Directory of Open Access Journals (Sweden)

    Asyraf W.M.

    2017-01-01

    Full Text Available As the development of solar energy is getting advance from time to time, the concentration solar technology also get the similar attention from the researchers all around the globe. This technology concentrate a large amount of energy into main spot. To collect all the available energy harvest from the solar panel, a thermal energy storage is required to convert the heat energy to one of the purpose such as electrical energy. With the idea of energy storage application that can be narrow down to commercial application such as cooking stove. Using latent heat type energy storage seem to be appropriate with the usage of phase change material (PCM that can release and absorb heat energy at nearly constant temperature by changing its state. Sodium nitrate (NaNO3 and potassium nitrate (KNO3 was selected to use as PCM in this project. This paper focus on the heat loading process and the melting process of the PCM in the energy storage using a computer simulation. The model of the energy storage was created as solid three dimensional modelling using computer aided software and the geometry size of it depend on how much it can apply to boil 1 kg of water in cooking application. The materials used in the tank, heat exchanger and the heat transfer fluid are stainless steel, copper and XCELTHERM MK1, respectively. The analysis was performed using a commercial simulation software in a transient state. The simulation run on different value of velocity but kept controlled under laminar state only, then the relationship of velocity and heat distribution was studied and the melting process of the PCM also has been analyzed. On the effect of heat transfer fluid velocity, the higher the velocity resulted in higher the rate of heat transfer. The comparison between the melting percentages of the PCMs under test conditions show that NaNO3 melts quite faster than KNO3.

  7. Energy Storage Characteristic Analysis of Voltage Sags Compensation for UPQC Based on MMC for Medium Voltage Distribution System

    Directory of Open Access Journals (Sweden)

    Yongchun Yang

    2018-04-01

    Full Text Available The modular multilevel converter (MMC, as a new type of voltage source converter, is increasingly used because it is a distributed storage system. There are many advantages of using the topological structure of the MMC on a unified power quality controller (UPQC, and voltage sag mitigation is an important use of the MMC energy storage system for the power quality compensation process. In this paper, based on the analysis of the topology of the MMC, the essence of energy conversion in a UPQC of voltage sag compensation is analyzed; then, the energy storage characteristics are calculated and analyzed to determine the performance index of voltage sag compensation; in addition, the simulation method is used to verify the voltage sag compensation characteristics of the UPQC; finally, an industrial prototype of the UPQC based on an MMC for 10 kV of medium voltage distribution network has been developed, and the basic functions of UPQC have been tested.

  8. Nuclear combined cycle gas turbines for variable electricity and heat using firebrick heat storage and low-carbon fuels

    International Nuclear Information System (INIS)

    Forsberg, Charles; Peterson, Per F.; McDaniel, Patrick; Bindra, Hitesh

    2017-01-01

    The world is transitioning to a low-carbon energy system. Variable electricity and industrial energy demands have been met with storable fossil fuels. The low-carbon energy sources (nuclear, wind and solar) are characterized by high-capital-costs and low-operating costs. High utilization is required to produce economic energy. Wind and solar are non-dispatchable; but, nuclear is the dispatchable energy source. Advanced combined cycle gas turbines with firebrick heat storage coupled to high-temperature reactors may enable economic variable electricity and heat production with constant full-power reactor output. Such systems efficiently couple to fluoride-salt-cooled high-temperature reactors (FHRs) with solid fuel and clean salt coolants, molten salt reactors (MSRs) with fuel dissolved in the salt coolant and salt-cooled fusion machines. Open Brayton combined cycles allow the use of natural gas, hydrogen, other fuels and firebrick heat storage for peak electricity production with incremental heat-to-electricity efficiencies from 66 to 70+% efficient. There are closed Brayton cycle options that use firebrick heat storage but these have not been investigated in any detail. Many of these cycles couple to high-temperature gas-cooled reactors (HTGRs). (author)

  9. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  10. Evaluation of the HB&L System for the Microbiological Screening of Storage Medium for Organ-Cultured Corneas.

    Science.gov (United States)

    Camposampiero, D; Grandesso, S; Zanetti, E; Mazzucato, S; Solinas, M; Parekh, M; Frigo, A C; Gion, M; Ponzin, D

    2013-01-01

    Aims. To compare HB&L and BACTEC systems for detecting the microorganisms contaminating the corneal storage liquid preserved at 31°C. Methods. Human donor corneas were stored at 4°C followed by preservation at 31°C. Samples of the storage medium were inoculated in BACTEC Peds Plus/F (aerobic microorganisms), BACTEC Plus Anaerobic/F (anaerobic microorganisms), and HB&L bottles. The tests were performed (a) after six days of storage, (b) end of storage, and (c) after 24 hours of preservation in deturgescent liquid sequentially. 10,655 storage and deturgescent media samples were subjected to microbiological control using BACTEC (6-day incubation) and HB&L (24-hour incubation) systems simultaneously. BACTEC positive/negative refers to both/either aerobic and anaerobic positives/negatives, whereas HB&L can only detect the aerobic microbes, and therefore the positives/negatives depend on the presence/absence of aerobic microorganisms. Results. 147 (1.38%) samples were identified positive with at least one of the two methods. 127 samples (134 identified microorganisms) were positive with both HB&L and BACTEC. 14 HB&L+/BACTEC- and 6 BACTEC+/HB&L- were identified. Sensitivity (95.5%), specificity (99.8%), and positive (90.1%) and negative predictive values (99.9%) were high with HB&L considering a 3.5% annual contamination rate. Conclusion. HB&L is a rapid system for detecting microorganisms in corneal storage medium in addition to the existing methods.

  11. A chemical heat pump based on the reaction of calcium chloride and methanol for solar heating, cooling and storage

    Science.gov (United States)

    Offenhartz, P. O.

    1981-03-01

    An engineering development test prototype of the CaCl2-CheOH chemical heat pump was tested. The unit, which has storage capacity in excess of 100,000 BTU, completed over 100 full charge-discharge cycles. Cycling data show that the rate of heat pumping depends strongly on the absorber-evaporator temperature difference. These rates are more than adequate for solar heating or for solar cooling using dry ambient air heat rejection. Performance degradation after 100 cycles, expressed as a contact resistance, was less than 2 C. The heat exchangers showed some warpage due to plastic flow of the salt, producing the contact resistance. The experimental COP for cooling was 0.52, close to the theoretically predicted value.

  12. Development of a revolving drum reactor for open-sorption heat storage processes

    International Nuclear Information System (INIS)

    Zettl, Bernhard; Englmair, Gerald; Steinmaurer, Gerald

    2014-01-01

    To evaluate the potential of an open sorption storage process using molecular sieves to provide thermal energy for space heating and hot water, an experimental study of adsorption heat generation in a rotating reactor is presented. Dehydrated zeolite of the type 4A and MSX were used in form of spherical grains and humidified room air was blown through the rotating bed. Zeolite batches of about 50 kg were able to generate an adsorption heat up to 12 kWh and temperature shifts of the process air up to 36 K depending on the inlet air water content and the state of dehydration of the storage materials. A detailed study of the heat transfer effects, the generated adsorption heat, and the evolving temperatures show the applicability of the reactor and storage concept. - Highlights: • Use of an open adsorption concept for domestic heat supply was proved. • A rotating heat drum reactor concept was successfully applied. • Zeolite batches of 50 kg generated up to 12 kWh adsorption heat (580 kJ/kg). • Temperature shift in the rotating material bed was up to 60 K during adsorption

  13. Low and medium temperature solar thermal collector based in innovative materials and improved heat exchange performance

    International Nuclear Information System (INIS)

    Fernández, A.; Dieste, J.A.

    2013-01-01

    Highlights: • We designed, built and tested 2 different prototypes of thermal collector. • We included polymeric materials and suppressed pipes for freeform optimization. • Efficiency of the collector achieved values as high as commercial ones. • We provided a low cost and high volume production product. - Abstract: A low and medium temperature solar thermal collector for economical supply of heat between 40 and 90 °C has been developed. It is based on solar concentrating systems, heat transfer optimization and substitution of metallic materials by plastic ones. The basic concept is the integration of a flat absorber strip inside semicircular reflector channels in contact with heated water without pressurization. This collector is intended to be more efficient and cheaper than what actual commercial collectors usually are so that the access to a clean and renewable energy would be more quickly redeemable and its use more effective during its life cycle, expanding its common application range. The substitution of traditional materials by surface treated Aluminum with TiNOx for the absorber and chromed thermoformed ABS for the reflector simplifies the production and assembly process. The definitive prototype has an aperture area of 0.225 m 2 . It was tested in Zaragoza (Spain) and the accumulated efficiency was between 41% and 57%, and the instantaneous efficiency reached 98% depending on the weather conditions. As all trials were made in parallel with a commercial collector, in several cases the performance was over the commercial one

  14. N-1-Alkylated Pyrimidine Films as a New Potential Optical Data Storage Medium

    DEFF Research Database (Denmark)

    Lohse, Brian; Hvilsted, Søren; Berg, Rolf Henrik

    2006-01-01

    storage. Their dimerization efficiency was compared, in solution, with uracil as a reference, and as films, to investigate the correlation between solution and film. Films of good quality displaying excellent thermal and optical stability can be fabricated. A significant optical contrast between...... grating storage are also demonstrated in the films. Writing and reading of the gray scale can be performed at the same wavelength....

  15. PBMR spent fuel bulk dry storage heat removal - HTR2008-58170

    International Nuclear Information System (INIS)

    De Wet, G. J.; Dent, C.

    2008-01-01

    A low decay heat (implying Spent Fuel (SF) pebbles older than 8-9 years) bulk dry storage section is proposed to supplement a 12-tank wet storage section. Decay heat removal by passive means must be guaranteed, taking into account the fact that dry storage vessels are under ground and inside the building footprint. Cooling takes place when ambient air (drawn downwards from ground level) passes on the outside of the 6 tanks' vessel containment (and gamma shielding), which is in a separate room inside the building, but outside PBMR building confinement and open to atmosphere. Access for loading/unloading of SF pebbles is only from the top of a tank, which is inside PBMR building confinement. No radioactive substances can therefore leak into atmosphere, as vessel design will take into account corrosion allowance. In this paper, it is shown (using CFD (Computational Fluid Dynamics) modelling and analytical analyses) that natural convection and draught induced flow combine to remove decay heat in a self-sustaining process. Decay heat is the energy source, which powers the draught inducing capability of the dry storage modular cell system: the more decay heat, the bigger the drive to expel heated air through a higher outlet and entrain cool ambient air from ground level to the bottom of the modular cell. (authors)

  16. Storage vessel for radiation contaminated container

    International Nuclear Information System (INIS)

    Sakatani, Tadatsugu.

    1996-01-01

    In a storage vessel of the present invention, a plurality of radiation contaminated material containing bodies are vertically stacked in a cell chamber. Then, the storage vessel comprises a containing tube for containing a plurality of the containing bodies, cooling coils wound around the containing tube, a cooling medium circulating system connected to the cooling coils and circulating cooling medium, and a heat exchanger interposed to the cooling medium circulating system for removing heat of the cooling medium. Heat of the radioactive material containing bodies is transferred to cooling air and cooling coils by way of the container tube, thereby cooling the containing bodies. By the operation of circulating pumps in a cooling medium circulation system, the cooling medium circulates through a circulation channel comprising a cooling medium transfer pipes, cooling medium branching tubes, cooling coils and the heat exchanger, then heat of the cooling medium is transferred to a heat utilizing system by way of the heat exchanger to attain effective utilization of the heat. In this case, heat can be taken out stably even when the storage amount fluctuates and heat releasing amount is reduced, and improvement of heat transfer promotes the cooling of the containing bodies, which enables minimization of the size of the storage vessel. (T.M.)

  17. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  18. Development of evaluation method for heat removal design of dry storage facilities. Pt. 4. Numerical analysis on vault storage system of cross flow type

    International Nuclear Information System (INIS)

    Sakamoto, Kazuaki; Hattori, Yasuo; Koga, Tomonari; Wataru, Masumi

    1999-01-01

    On the basis of the result of the heat removal test on vault storage system of cross flow type using the 1/5 scale model, an evaluation method for the heat removal design was established. It was composed of the numerical analysis for the convection phenomena of air flow inside the whole facility and that for the natural convection and the detailed turbulent mechanism near the surface of the storage tube. In the former analysis, air temperature distribution in the storage area obtained by the calculation gave good agreement within ±3degC with the test result. And fine turbulence models were introduced in the latter analysis to predict the separation flow in the boundary layer near the surface of the storage tube and the buoyant flow generated by the heat from the storage tube. Furthermore, the properties of removing the heat in a designed full-scale storage facility, such as flow pattern in the storage area, temperature and heat transfer rate of the storage tubes, were evaluated by using each of three methods, which were the established numerical analysis method, the experimental formula demonstrated in the heat removal test and the conventional evaluation method applied to the past heat removal design. As a result, the safety margin and issues included in the methods were grasped, and the measures to make a design more rational were proposed. (author)

  19. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  20. Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems

    International Nuclear Information System (INIS)

    Arteconi, A.; Hewitt, N.J.; Polonara, F.

    2013-01-01

    Heat pumps are seen as a promising technology for load management in the built environment, in combination with the smart grid concept. They can be coupled with thermal energy storage (TES) systems to shift electrical loads from high-peak to off-peak hours, thus serving as a powerful tool in demand-side management (DSM). This paper analyzes heat pumps with radiators or underfloor heating distribution systems coupled with TES with a view to showing how a heat pump system behaves and how it influences the building occupants' thermal comfort under a DSM strategy designed to flatten the shape of the electricity load curve by switching off the heat pump during peak hours (16:00–19:00). The reference scenario for the analysis was Northern Ireland (UK). The results showed that the heat pump is a good tool for the purposes of DSM, also thanks to the use of TES systems, in particular with heating distribution systems that have a low thermal inertia, e.g. radiators. It proved possible to achieve a good control of the indoor temperature, even if the heat pump was turned off for 3 h, and to reduce the electricity bill if a “time of use” tariff structure was adopted. -- Highlights: ► Heat pump heating systems with thermal energy storage are considered. ► System behavior is investigated during a DSM strategy for reducing peak energy demand. ► Heat pump heating systems demonstrate to be able to have an active role in DSM programs. ► A TES system must be coupled with the heat pump in presence of low thermal inertia heating distribution systems. ► Central role played by incentives schemes to promote this technology

  1. Theoretical evaluation on the impact of heat exchanger in Advanced Adiabatic Compressed Air Energy Storage system

    International Nuclear Information System (INIS)

    Yang, Ke; Zhang, Yuan; Li, Xuemei; Xu, Jianzhong

    2014-01-01

    Highlights: • A multi-stage AA-CAES system model is established based on thermodynamic theory. • Four Cases about pressure loss and effectiveness of heat exchanger are investigated. • The impact of pressure loss on conversion of heat energy in TES is more sensitive. • The impact of heat exchanger effectiveness in charge process on system is stronger. • Pressure loss in heat exchanger affects the change trends of system efficiency. - Abstract: Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is a large-scale energy storage system based on gas turbine technology and thermal energy storage (TES). Electrical energy can be converted into internal energy of air and heat energy in TES during the charge process, while reverse energy conversion proceeds during discharge process. The performance of AA-CAES system requires further improvement in order to increase efficiency. In this paper, a multi-stage AA-CAES system model is established, and the influence of effectiveness and pressure loss in heat exchanger on energy conversion and utilization efficiency of AA-CAES system is analyzed theoretically based on the theory of thermodynamics. Four Cases about effectiveness and pressure loss of heat exchanger are investigated and compared with each other. It is found that effectiveness and pressure loss of heat exchanger are directly related to energy conversion and utilization in AA-CAES system. System efficiency changes with the variation of heat exchanger effectiveness and the impact of pressure loss on conversion of heat energy in TES is more sensitive than that of internal energy of air. Pressure loss can cause the complexity of system efficiency change. With appropriate selection of the values of heat exchanger effectiveness for both charge and discharge processes, an AA-CAES system with a higher efficiency could be expected

  2. Thermal convection around a heat source embedded in a box containing a saturated porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Himasekhar, K.; Bau, H.H. (Univ. of Pennsylvania, Philadelphia (USA))

    1988-08-01

    A study of the thermal convection around a uniform flux cylinder embedded in a box containing a saturated porous medium is carried out experimentally and theoretically. The experimental work includes heat transfer and temperature field measurements. It is observed that for low Rayleigh numbers, the flow is two dimensional and time independent. Once a critical Rayleigh number is exceeded, the flow undergoes a Hopf bifurcation and becomes three dimensional and time dependent. The theoretical study involves the numerical solution of the two-dimensional Darcy-Oberbeck-Boussinesq equations. The complicated geometry is conveniently handled by mapping the physical domain onto a rectangle via the use of boundary-fitted coordinates. The numerical code can easily be extended to handle diverse geometric configurations. For low Rayleigh numbers, the theoretical results agree favorably with the experimental observations. However, the appearance of three-dimensional flow phenomena limits the range of utility of the numerical code.

  3. Numerical Simulation of Transient Free Convection Flow and Heat Transfer in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Rajesh Sharma

    2013-01-01

    Full Text Available The coupled momentum and heat transfer in unsteady, incompressible flow along a semi-infinite vertical porous moving plate adjacent to an isotropic porous medium with viscous dissipation effect are investigated. The Darcy-Forchheimer nonlinear drag force model which includes the effects of inertia drag forces is employed. The governing differential equations of the problem are transformed into a system of nondimensional differential equations which are solved numerically by the finite element method (FEM. The non-dimensional velocity and temperature profiles are presented for the influence of Darcy number, Forchheimer number, Grashof number, Eckert number, Prandtl number, plate velocity, and time. The Nusselt number is also evaluated and compared with finite difference method (FDM, which shows excellent agreement.

  4. Tooth replantation after use of Euro-Collins solution or bovine milk as storage medium: a histomorphometric analysis in dogs.

    Science.gov (United States)

    Sottovia, André Dotto; Sottovia Filho, Dagoberto; Poi, Wilson Roberto; Panzarini, Sônia Regina; Luize, Danielle Shima; Sonoda, Celso Koogi

    2010-01-01

    Euro-Collins solution was developed for the preservation of organs for transplantation, whose characteristics have raised interest for its use as a storage medium for avulsed teeth before replantation. This study evaluated histologically and morphometrically the healing process of dog teeth replanted after storage in Euro-Collins solution or bovine milk. Eighty roots of 4 young adult mongrel dogs were randomly assigned to 4 groups (n = 20) and the root canals were instrumented and obturated with gutta-percha and a calcium hydroxide-based sealer. After 2 weeks, the teeth were extracted and subjected to the following protocols: GI (negative control), replantation immediately after extraction; GII (positive control), bench-drying for 2 hours before replantation; GIII and GIV, immersion in 10 mL of whole bovine milk and Euro-Collins solution at 4 degrees C, respectively, for 8 hours before replantation. The animals were sacrificed 90 days postoperatively. The pieces containing the replanted teeth were subjected to routine processing for histologic and histometric analyses under light microscopy and polarized light microscopy. Root resorption was observed in all groups. GII exhibited the greatest loss of dental structure (P < .01), and inflammatory resorption was predominant in this group. Storage in milk showed poorer results than immediate replantation and storage in Euro-Collins solution (P < .01). The teeth stored in Euro-Collins solution presented similar extension of root resorption and periodontal ligament reorganization to those of immediately replanted teeth. The findings of this study suggest that the Euro-Collins solution is an adequate storage medium for keeping avulsed teeth for up to 8 hours before replantation.

  5. Continued development of a semianalytical solution for two-phase fluid and heat flow in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, C.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.

  6. Temperature dependency of the thermal conductivity of porous heat storage media

    Science.gov (United States)

    Hailemariam, Henok; Wuttke, Frank

    2018-04-01

    Analyzing the variation of thermal conductivity with temperature is vital in the design and assessment of the efficiency of sensible heat storage systems. In this study, the temperature variation of the thermal conductivity of a commercial cement-based porous heat storage material named - Füllbinder L is analyzed in saturated condition in the temperature range between 20 to 70°C (water based storage) with a steady state thermal conductivity and diffusivity meter. A considerable decrease in the thermal conductivity of the saturated sensible heat storage material upon increase in temperature is obtained, resulting in a significant loss of system efficiency and slower loading/un-loading rates, which when unaccounted for can lead to the under-designing of such systems. Furthermore, a new empirical prediction model for the estimation of thermal conductivity of cement-based porous sensible heat storage materials and naturally occurring crystalline rock formations as a function of temperature is proposed. The results of the model prediction are compared with the experimental results with satisfactory results.

  7. The impact of short-term heat storage on the ice-albedo feedback loop

    Science.gov (United States)

    Polashenski, C.; Wright, N.; Perovich, D. K.; Song, A.; Deeb, E. J.

    2016-12-01

    The partitioning of solar energy in the ice-ocean-atmosphere environment is a powerful control over Arctic sea ice mass balance. Ongoing transitions of the sea ice toward a younger, thinner state are enhancing absorption of solar energy and contributing to further declines in sea ice in a classic ice-albedo feedback. Here we investigate the solar energy balance over shorter timescales. In particular, we are concerned with short term delays in the transfer of absorbed solar energy to the ice caused by heat storage in the upper ocean. By delaying the realization of ice melt, and hence albedo decline, heat storage processes effectively retard the intra-season ice-albedo feedback. We seek to quantify the impact and variability of such intra-season storage delays on full season energy absorption. We use in-situ data collected from Arctic Observing Network (AON) sea ice sites, synthesized with the results of imagery processed from high resolution optical satellites, and basin-scale remote sensing products to approach the topic. AON buoys are used to monitor the storage and flux of heat, while satellite imagery allows us to quantify the evolution of surrounding ice conditions and predict the aggregate scale solar absorption. We use several test sites as illustrative cases and demonstrate that temporary heat storage can have substantial impacts on seasonal energy absorption and ice loss. A companion to this work is presented by N. Wright at this meeting.

  8. Durability of a fin-tube latent heat storage using high density polyethylene as PCM

    Science.gov (United States)

    Zauner, Christoph; Hengstberger, Florian; Etzel, Mark; Lager, Daniel; Hofmann, Rene; Walter, Heimo

    2017-10-01

    Polymers have rarely been used as storage materials in latent heat storages up to now. Thus, we systematically screened all polymers available on a large-scale, selected promising ones based on their theoretical properties and experimentally tested more than 50 candidates. We found that polyethylene, polyoxymethylene and polyamides are promising even as recycled material. Especially high density polyethylene (HDPE) turned out to be suitable as was shown by detailed thermophysical characterization including more than 1000 heating and cooling cycles for INEOS Rigidex HD6070EA. We built a storage with 170 kg HDPE and a total mass of 600 kg based on a fin-tube heat exchanger and characterized its energy capacity, power characteristics and temperature profiles using a thermal oil test rig. In total we performed 30 melting and crystallization cycles where the whole storage was above 100 °C for more than 140 hours. After usage we examined the interior of the storage by cutting it into various pieces. A thin layer of degradation was observed on the surfaces of the PCM which is most likely related to thermo-oxidative degeneration of HDPE. However, the bulk of the PCM is still intact as well as the heat exchanger itself.

  9. Adaptive heat pump and battery storage demand side energy management

    Science.gov (United States)

    Sobieczky, Florian; Lettner, Christian; Natschläger, Thomas; Traxler, Patrick

    2017-11-01

    An adaptive linear model predictive control strategy is introduced for the problem of demand side energy management, involving a photovoltaic device, a battery, and a heat pump. Moreover, the heating influence of solar radiation via the glass house effect is considered. Global sunlight radiation intensity and the outside temperature are updated by weather forecast data. The identification is carried out after adapting to a time frame witch sufficiently homogeneous weather. In this way, in spite of the linearity an increase in precision and cost reduction of up to 46% is achieved. It is validated for an open and closed loop version of the MPC problem using real data of the ambient temperature and the global radiation.

  10. Smart solar tanks - Heat storage of the future?

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1997-01-01

    energy supply system to a required temperature in periods with hot water demand. The tank is heated by the auxiliary energy supply system from the top so that the volume of water heated to the required temperature can be controlled in a flexible way. In periods with a large hot water demand the volume...... can be large and in periods with a small hot water demand the volume can be small. For instance, the energy supply system can be controlled on measurements of the energy content of the tank during all hours of the week and based on a required hot water consumption and consumption pattern which can...... recommendations for future development work are given....

  11. Thermal energy storage for electricity-driven space heating in a day-ahead electricity market

    DEFF Research Database (Denmark)

    Pensini, Alessandro

    2012-01-01

    Thermal Energy Storage (TES) in a space heating (SH) application was investigated. The study aimed to determine the economic benefits of introducing TES into an electricity-driven SH system under a day-ahead electricity market. The performance of the TES was assessed by comparing the cost...... of electricity in a system with a TES unit to the case where no storage is in use and the entire heat requirement is fulfilled by purchasing electricity according to the actual load. The study had two goals: 1. Determining how the size – in terms of electricity input (Pmax) and energy capacity (Emax...

  12. Compressed air energy storage with waste heat export: An Alberta case study

    International Nuclear Information System (INIS)

    Safaei, Hossein; Keith, David W.

    2014-01-01

    Highlights: • Export of compression waste heat from CAES facilities for municipal heating can be profitable. • D-CAES concept has a negative abatement cost of −$40/tCO 2 e under the studied circumstances. • Economic viability of D-CAES highly depends on distance between air storage site and heat load. - Abstract: Interest in compressed air energy storage (CAES) technology has been renewed driven by the need to manage variability form rapidly growing wind and solar capacity. Distributed CAES (D-CAES) design aims to improve the efficiency of conventional CAES through locating the compressor near concentrated heating loads so capturing additional revenue through sales of compression waste heat. A pipeline transports compressed air to the storage facility and expander, co-located at some distance from the compressor. The economics of CAES are strongly dependant on electricity and gas markets in which they are embedded. As a case study, we evaluated the economics of two hypothetical merchant CAES and D-CAES facilities performing energy arbitrage in Alberta, Canada using market data from 2002 to 2011. The annual profit of the D-CAES plant was $1.3 million more on average at a distance of 50 km between the heat load and air storage sites. Superior economic and environmental performance of D-CAES led to a negative abatement cost of −$40/tCO 2 e. We performed a suite of sensitivity analyses to evaluate the impact of size of heat load, size of air storage, ratio of expander to compressor size, and length of pipeline on the economic feasibility of D-CAES

  13. Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage

    International Nuclear Information System (INIS)

    Xiao, X.; Zhang, P.; Li, M.

    2015-01-01

    Highlights: • Thermal conductivity of nitrate/EG composite was accurately measured by considering thermal contact resistance. • Heat storage and retrieval tests were conducted with binary nitrates and nitrates/EG composites. • A comprehensive model was built to interpret the heat transfer characteristics. - Abstract: Eutectic molten salt can be used as the latent thermal energy storage medium in solar energy applications. Nitrates and their binary mixtures are suitable phase change material (PCM) for solar energy applications in middle-temperature-range of 200–300 °C. In the present study, binary nitrate (50 wt.% NaNO_3, 50 wt.% KNO_3) with a melting temperature of about 220 °C was employed as the PCM, and expanded graphite (EG) with the mass fraction of 5%, 10% or 20% was used to enhance the thermal conductivity. The thermal conductivities of pure nitrates and nitrate/EG shape-stabilized composites were measured with a steady-state test rig firstly. Results showed that the addition of EG significantly enhanced the thermal conductivities, e.g., the thermal conductivities of sodium nitrate/20 wt.% EG composite PCM were measured to be 6.66–7.70 W/(m K) in the temperature range of 20–120 °C, indicating about seven times larger than those of pure sodium nitrate. Furthermore, pure binary nitrate and nitrate/EG composite PCM were encapsulated in a cylindrical storage unit with a diameter of 70.0 mm and a length of 280.0 mm. Heat storage and retrieval tests were conducted extensively at different heating temperatures of 250 °C, 260 °C and 270 °C, and different cooling temperatures of 30 °C, 70 °C and 110 °C. Time-durations from temperature evolutions showed that both the melting and solidification processes were accelerated by EG, and the heat transfer characteristics were interpreted by the numerical analysis based on enthalpy–porosity and volume-of-fluid models. The evolution of nitrate/air interface caused by volume expansion ascended gradually

  14. Do encapsulated heat storage materials really retain their original thermal properties?

    Science.gov (United States)

    Chaiyasat, Preeyaporn; Noppalit, Sayrung; Okubo, Masayoshi; Chaiyasat, Amorn

    2015-01-14

    The encapsulation of Rubitherm®27 (RT27), which is one of the most common commercially supplied heat storage materials, by polystyrene (PS), polydivinyl benzene (PDVB) and polymethyl methacrylate (PMMA) was carried out using conventional radical microsuspension polymerization. The products were purified to remove free RT27 and free polymer particles without RT27. In the cases of PS and PDVB microcapsules, the latent heats of melting and crystallization for RT27 ( and , J/g-RT27) were clearly decreased by the encapsulation. On the other hand, those of the PMMA microcapsules were the same as pure RT27. A supercooling phenomenon was observed not only for PS and PDVB but also for the PMMA microcapsules. These results indicate that the thermal properties of the heat storage materials encapsulated depend on the type of polymer shells, i.e., encapsulation by polymer shell changes the thermal properties of RT27. This is quite different from the idea of other groups in the world, in which they discussed the thermal properties based on the ΔHm and ΔHc values expressed in J/g-capsule, assuming that the thermal properties of the heat storage materials are not changed by the encapsulation. Hereafter, this report should raise an alarm concerning the "wrong" common knowledge behind developing the encapsulation technology of heat storage materials.

  15. Evaluation of a ground thermal energy storage system for heating and cooling of an existing dwelling

    Energy Technology Data Exchange (ETDEWEB)

    Leong, W.H; Lawrence, C.J. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering; Tarnawski, V.R. [Saint Mary' s Univ., Halifax, NS (Canada). Dept. of Engineering; Rosen, M.A. [University of Ontario Institute of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2006-07-01

    A ground-coupled heat pump (GCHP) system for heating and cooling a residential house in Ontario was simulated. The system uses the surface ground as a thermal energy storage for storing thermal energy in the summer for later use in the winter. In the summer, the ground receives both solar energy and the heat rejected by the system during cooling operation. The relationship between a heat pump and the ground is a ground heat exchanger (GHE). This presentation described the vertical and horizontal configurations of the GHE, which are the 2 basic configurations. It also described the modelling and analysis of the GCHP system. The modelling involved both simplified and comprehensive models. The simplified models of heating and cooling loads of a building, a heat pump unit, and heat transfer at the ground heat exchanger provided a direct link to the comprehensive model of heat and moisture transfer in the ground, based on the finite element method. This combination of models provided an accurate and practical simulation tool for GCHP systems. The energy analysis was used to evaluate the performance of the system. The use of a horizontal ground heat exchanging pipe and the impact of heat deposition and extraction through it in the ground were also studied with reference to the length of pipe, depth of pipe and layout of the pipe loop. The objective of the analysis was to find ways to optimize the thermal performance of the system and environmental sustainability of the ground. 14 refs., 3 tabs., 5 figs.

  16. Latent heat increases storage capacity. Heat transport by truck; Latente warmte vergroot opslagcapaciteit. Warmtetransport per vrachtauto is soms heel slim

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.

    2012-11-15

    The project-group Biomass CHP (combined production of heat and power) organized a tour with a workshop in Dortmund, Germany, September 26, 2012, on storage and transport of heat and biogas. There are several projects in Germany involving road transport of heat by means of containers. A swimming pool in Dortmund already is using this option since 2008. Waste heat from a CHP-installation for landfill gas is collected from a waste dump [Dutch] De projectgroep Biomassa en WKK organiseerde 26 September een excursie met workshop in Dortmund over opslag en transport van warmte en biogas. Er zijn in Duitsland al meerdere projecten waarbij warmte per container over de weg wordt vervoerd. Een Dortmunds zwembad werkt hier al sinds 2008 mee. De restwarmte van een wkk op stortgas wordt opgehaald bij een afvalstortplaats.

  17. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. [Bavarian Center for Applied Energy Research (ZAE Bayern) (Germany)

    2009-06-15

    Absorption cooling systems based on water/lithium bromide (LiBr) solution typically require an open wet cooling tower to transfer the reject heat to the ambient. Yet, water consumption, the need for water make-up and cleaning, formation of fog, and the risk of Legionella bacteria growth are hindering factors for the implementation of small solar cooling systems. The application of a latent heat storage supporting the heat rejection of the absorption chiller in conjunction with a dry cooling system allows eliminating the wet cooling tower. By that means heat rejection of the chiller is shifted to periods with lower ambient temperatures, i.e. night time or off-peak hours. The system concept and the hydraulic scheme together with an analysis of the energetic performance of the system are presented, followed by a report on the operation of a first pilot installation. (author)

  18. NUMERICAL ANALYSIS OF HEAT STORAGE OF SOLAR HEAT IN FLOOR CONSTRUCTION

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Holck, Ole; Svendsen, Svend

    2003-01-01

    with the highest energy con-sumption. The reduction depends on the solar collector area, distribution of the insulation thickness, heat-ing demand and control strategy, but not on pipe spacing and layer thickness and material. Finally, it is shown that the system can also be used for comfort heating of tiled...

  19. Field evaluation and assessment of thermal energy storage for residential space heating

    Science.gov (United States)

    Hersh, H. N.

    1982-02-01

    A data base was developed based on two heating seasons and 45 test and 30 control homes in Maine and Vermont. Based on first analysis of monitored temperatures and electrical energy used for space heating, fuel bills and reports of users and utilities, the technical performance of TES ceramic and hydronic systems is deemed to be technically satisfactory and there is a high degree of customer acceptance and positive attitudes towards TES. Analysis of house data shows a high degree of variability in electric heat energy demand for a given degree-day. An analysis is underway to investigate relative differences in the efficiency of electricity utilization of storage and direct heating devices. The much higher price of storge systems relative to direct systems is an impediment to market penetration. A changing picture of rate structures may encourage direct systems at the expense of storage systems.

  20. Dynamic modeling of а heating system using geothermal energy and storage tank

    Directory of Open Access Journals (Sweden)

    Milanović Predrag D.

    2012-01-01

    Full Text Available This paper analyzes a greenhouse heating system using geothermal energy and storage tank and the possibility of utilization of insufficient amount of heat from geothermal sources during the periods with low outside air temperatures. Crucial for these analyses is modelling of the necessary yearly energy requirements for greenhouse heating. The results of these analyses enable calculation of an appropriate storage tank capacity so that the energy efficiency of greenhouse heating system with geothermal energy could be significantly improved. [Acknowledgement. This work was supported by Ministry of Science and Technology Development of the Republic of Serbia through the National Energy Efficiency Program (Grant 18234 A. The authors are thankful to the stuff and management of the Company “Farmakom MB PIK 7. juli - Debrc” for their assistance during the realization of this project.

  1. Thermal storage in a heat pump heated living room floor for urban district power balancing - effects on thermal comfort, energy loss and costs for residents

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; de Wit, J.B.; Fink, J.; Smit, Gerardus Johannes Maria

    2014-01-01

    For the Dutch smart grid demonstration project Meppelenergie, the effects of controlled thermal energy storage within the floor heating structure of a living room by a heat pump are investigated. Storage possibilities are constrained by room operative and floor temperatures. Simulations indicate

  2. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    OpenAIRE

    Shestakov, Igor; Dolgova, Anastasia; Maksimov, Vyacheslav Ivanovich

    2015-01-01

    The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characte...

  3. Analysis of the Storage Capacity in an Aggregated Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergård

    2015-01-01

    Energy storages connected to the power grid will be of great importance in the near future. A pilot project has investigated more than 100 single family houses with heat pumps all connected to the internet. The houses have large heat capacities and it is possible to move energy consumption to sui...... (scheduling) algorithm. The properties of this scheduling are investigated in the paper especially the flexibility and ability to trade on the intra-day regulating market is in focus....

  4. Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity

    International Nuclear Information System (INIS)

    Arabkoohsar, A.; Dremark-Larsen, M.; Lorentzen, R.; Andresen, G.B.

    2017-01-01

    Highlights: •A new configuration of compressed air energy storage system is proposed and analyzed. •This system, so-called subcooled-CAES, offers cogeneration of electricity, heat and cooling. •A pseudo-dynamic energy, exergy and economic analysis of the system for an entire year is presented. •The annual power, cooling and heat efficiencies of the system are around 31%, 32% and 92%. •The overall energy and exergy performance coefficients of the system are 1.55 and 0.48, respectively. -- Abstract: Various configurations of compressed air energy storage technology have received attention over the last years due to the advantages that this technology offers relative to other power storage technologies. This work proposes a new configuration of this technology aiming at cogeneration of electricity, heat and cooling. The new system may be very advantageous for locations with high penetration of renewable energy in the electricity grid as well as high heating and cooling demands. The latter would typically be locations with district heating and cooling networks. A thorough design, sizing and thermodynamic analysis of the system for a typical wind farm with 300 MW capacity in Denmark is presented. The results show a great potential of the system to support the local district heating and cooling networks and reserve services in electricity market. The values of power-to-power, power-to-cooling and power-to-heat efficiencies of this system are 30.6%, 32.3% and 92.4%, respectively. The exergy efficiency values are 30.6%, 2.5% and 14.4% for power, cooling and heat productions. A techno-economic comparison of this system with two of the most efficient previous designs of compressed air energy storage system proves the firm superiority of the new concept.

  5. Influence of Austempering Heat Treatment on Microstructure and Mechanical Properties of Medium Carbon High Silicon Steel

    Science.gov (United States)

    Palaksha, P. A.; Ravishankar, K. S.

    2017-08-01

    In the present investigation, the influence of austempering heat treatment on the microstructure and mechanical properties of medium carbon high silicon steel was evaluated. The test specimens were machined from the as-received steel and were first austenitised at 900 °C for 45 minutes, followed by austempering heat treatment in salt bath at various temperatures 300 °C, 350 °C and 400 °C for a fixed duration of two hours, after that those specimens were air-cooled to room temperature. The characterization studies were carried out using optical microscope, scanning electron microscope (SEM) and x-ray diffractometer (XRD) and then correlated to the hardness and tensile properties. Results indicate that, the specimens austempered at lower temperature i.e. at 300 °C, which offered high hardness, tensile strength and lower ductility (1857 MPa and 13.3 %) due to the presence of acicular bainite i.e. lower bainite and also some martensite in the microstructure. At 350 °C, reduction in the tensile strength and hardness was observed, but comparatively higher ductility, which was favored by the presence of bainite laths i.e. upper bainitic structure along with higher retained austenite content. Finally at 400 °C, reduction in both ductility and tensile strength was observed, which is due to the precipitation of carbides between the banite laths, however good strain hardening response was observed at austempering temperatures of 350 °C and 400 °C.

  6. Development of a solar thermal storage system suitable for the farmhouse heating in northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M.K. [Shenyang Agricultural Univ., Shenyang (China)

    2010-07-01

    This study reported on the performance of a passive solar radiant floor heating system designed for standard energy-saving farmhouses in northeast China. Weather data in the region was analyzed in terms of solar radiation, temperature, humidity and light levels. The heating characteristics of the building materials such as windows, doors, walls and roofs were also analyzed along with the indoor thermal environment of the farmhouse. The heating load was then calculated along with the size of the thermal storage element and the area of the collector element. The passive solar radiant floor heating system was designed for heating during the winter and cooling in summer. According to the results, the heating characteristics of the system have the potential to improve farming villages environment and the use of renewable energy.

  7. Thermal energy storage system using phase change materials: Constant heat source

    Directory of Open Access Journals (Sweden)

    Reddy Meenakshi R.

    2012-01-01

    Full Text Available The usage of phase change materials (PCM to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation paraffin and stearic acid are employed as PCMs in thermal energy storage (TES system to store the heat as sensible and latent heat also. A constant heat source is used to supply heat transfer fluid (HTF at constant temperature to the TES system. In the TES system PCMs are stored in the form of spherical capsules of 38 mm diameter made of high density poly ethylene (HDPE. The results of the investigation are related to the charging time and recovery of stored energy from the TES system.

  8. Integration of solar heat storage in the ground floor; Bygningsintegreret varmelagring af solvarme i terraendaek

    Energy Technology Data Exchange (ETDEWEB)

    Weitzmann, P.; Holck, O.; Svendsen, S.

    2001-07-01

    In this report the thermal properties of heat storage of solar heating in floors is examined. The floor examined is built using two decks, where the lower can be used for heat storage. It is the purpose of the work that has been carried out, to be able to quantify the potential for a reduction of the heating demand in a house, through the use of heat storage of solar heating. The report starts out with an introduction to the problem that is to be examined, namely to perform detailed calculations of the temperature and heat flows in floors. A description of the theory for the implementation of the model for solar collector, solar tank, floor, foundation and control strategies, can be found. The model described here has been implemented into the programming language Matlab and Simulink. Especially the model of the floor is described in great detail. The section begins with a description of the floor construction. It is then described how the floor construction is implemented into a detailed finite element model, and converted into a less detailed RC-model, where the temperature is calculated only in a few points. Each of the points had a heat capacity, and between the points a thermal resistance is included. The reason for using a RC-model is, that it proved impossible to do yearly calculations using the finite element model because of unacceptably long calculation times. Instead the procedure for the conversion between the two models is shown. After the conversion results from the two methods are compared to estimate the error introduced by this conversion to a less detailed model. The two methods are found to differ only by around 5%. The coefficients to be used in the RC-model are shown for seven different layouts of the floor concerning pipe spacing, distribution of insulation, thickness of heat storage layer and type of heat storage layer (sand or concrete). A number of different control strategies for the distribution of flow in solar tank and heat storage

  9. Experimental studies on seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Fan, Jianhua

    2011-01-01

    to transfer heat to and from the module have been tested. Further, a solidification start method, based on a strong cooling of a small part of the salt water mixture in the module by boiling CO2 in a small brass tank in good thermal contact to the outer side of the module wall, has been tested. Tests......Laboratory tests of a 230 l seasonal heat storage module with a sodium acetate water mixture have been carried out. The aim of the tests is to elucidate how best to design a seasonal heat storage based on the salt water mixture, which supercools in a stable way. The module can be a part...... of a seasonal heat storage, that will be suitable for solar heating systems which can fully cover the yearly heat demand of Danish low energy buildings. The tested module has approximately the dimensions 2020 mm x 1285 mm x 80 mm. The module material is steel and the wall thickness is 2 mm. Different methods...

  10. Energy efficiency model for small/medium geothermal heat pump systems

    Directory of Open Access Journals (Sweden)

    Staiger Robert

    2015-06-01

    Full Text Available Heating application efficiency is a crucial point for saving energy and reducing greenhouse gas emissions. Today, EU legal framework conditions clearly define how heating systems should perform, how buildings should be designed in an energy efficient manner and how renewable energy sources should be used. Using heat pumps (HP as an alternative “Renewable Energy System” could be one solution for increasing efficiency, using less energy, reducing the energy dependency and reducing greenhouse gas emissions. This scientific article will take a closer look at the different efficiency dependencies of such geothermal HP (GHP systems for domestic buildings (small/medium HP. Manufacturers of HP appliances must document the efficiency, so called COP (Coefficient of Performance in the EU under certain standards. In technical datasheets of HP appliances, these COP parameters give a clear indication of the performance quality of a HP device. HP efficiency (COP and the efficiency of a working HP system can vary significantly. For this reason, an annual efficiency statistic named “Seasonal Performance Factor” (SPF has been defined to get an overall efficiency for comparing HP Systems. With this indicator, conclusions can be made from an installation, economy, environmental, performance and a risk point of view. A technical and economic HP model shows the dependence of energy efficiency problems in HP systems. To reduce the complexity of the HP model, only the important factors for efficiency dependencies are used. Dynamic and static situations with HP´s and their efficiency are considered. With the latest data from field tests of HP Systems and the practical experience over the last 10 years, this information will be compared with one of the latest simulation programs with the help of two practical geothermal HP system calculations. With the result of the gathered empirical data, it allows for a better estimate of the HP system efficiency, their

  11. Same magnetic nanoparticles, different heating behavior: Influence of the arrangement and dispersive medium

    Energy Technology Data Exchange (ETDEWEB)

    Andreu, Irene [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, María de Luna, 3, 50018 Zaragoza (Spain); Natividad, Eva, E-mail: evanat@unizar.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, María de Luna, 3, 50018 Zaragoza (Spain); Solozábal, Laura [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, María de Luna, 3, 50018 Zaragoza (Spain); Roubeau, Olivier [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, 50009 Zaragoza (Spain)

    2015-04-15

    The heating ability of the same magnetic nanoparticles (MNPs) dispersed in different media has been studied in the 170–310 K temperature range. For this purpose, the biggest non-twinned nanoparticles have been selected among a series of magnetite nanoparticles of increasing sizes synthesized via a seeded growth method. The sample with nanoparticles dispersed in n-tetracosane, thermally quenched from 100 °C and solid in the whole measuring range, follows the linear response theoretical behavior for non-interacting nanoparticles, and displays a remarkably large maximum specific absorption rate (SAR) value comparable to that of magnetosomes at the alternating magnetic fields used in the measurements. The other samples, with nanoparticles dispersed either in alkane solvents of sub-ambient melting temperatures or in epoxy resin, display different thermal behaviors and maximum SAR values ranging between 11 and 65% of that achieved for the sample with n-tetracosane as dispersive medium. These results highlight the importance of the MNPs environment and arrangement to maintain optimal SAR values, and may help to understand the disparity sometimes found between MNPs heating performance measured in a ferrofluid and after injection in an animal model, where MNP arrangement and environment are not the same. - Highlights: • We synthetize a series of Fe{sub 3}O{sub 4} nanoparticles by the seeded-growth method. • We characterize the heating ability of 13.9 nm particles dispersed in several media. • We apply SAR(T) characterization to locate the onset of superparamagnetic behavior. • The highest SAR values are obtained in low-concentration solid-alkane dispersion. • Acquired arrangements in different media strongly modify SAR trends and values.

  12. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  13. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  14. Evaluating work/recovery schedules in terms of whole body heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, S.G. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories; Stapleton, J.M.; Kenny, G.P. [Ottawa Univ., Ottawa, ON (Canada). School of Human Kinetics, Human and Environmental Physiology Research Unit; Allen, C. [Vale Inco, Copper Cliff, ON (Canada)

    2010-07-01

    This paper reported on heat stress related research aimed at better managing the heat exposure of underground miners. The potential for underground miners to experience heat stress or strain is increasing due to greater mining depth; mechanization, and a trend towards larger diesel equipment; an aging workforce; an increasing amount of personal protective equipment worn to prevent injuries (that has led to most of the miner's body being covered) and increases in the surface climate that are superimposed through the underground workplace. This paper focused on research involving metabolic heat storage and the possibility of heat strain from elevated core temperatures. It targeted work/recovery cycles and the recovery strategies between work bouts. The first study examined the cumulative change in body heat content for a moderate metabolic rate and increasing the recovery allocation as per the TLV screening criteria to offset an increase in the wet bulb globe temperature (WBGT). The second study examined strategies that could be used between work bouts and how they affect the thermoregulatory system, heat generation or losses and net cumulative heat storage. The calorimeter based work suggested that a miner's clothing may be improved to promote evaporative cooling, and that work recovery regimes could be modified to maximize recovery. 10 refs., 1 tab., 6 figs.

  15. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, R. Naresh, E-mail: rnaresh7708@gmail.com; Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu (India); Kannan, R. [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Materials Science and Engineering, Cornell University, Ithaca 14850, New York (United States)

    2016-05-23

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  16. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    International Nuclear Information System (INIS)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-01-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138–175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  17. Hexagonal boron nitride nanoparticles decorated halloysite clay nanotubes as a potential hydrogen storage medium

    Science.gov (United States)

    Muthu, R. Naresh; Rajashabala, S.; Kannan, R.

    2016-05-01

    The light weight and compact hydrogen storage materials is still prerequisite for the carbon free hydrogen fuel cell technology. In this work, the hydrogen storage performance of acid treated halloysite clay nanotubes (A-HNTs) and hexagonal boron nitride (h-BN) nanoparticles decorated acid treated halloysite nanoclay composite (A-HNT-h-BN) are demonstrated, where facile ultrasonic technique is adopted for the synthesis of A-HNT-h-BN nanoclay composite. Hydrogen storage studies were carried out using Sieverts-like hydrogenation setup. The A-HNTs and A-HNT-h-BN nanoclay composite were analyzed by XRD, FTIR, HRTEM, EDX, CHNS-elemental analysis and TGA. The A-HNT-h-BN nanoclay composite shows superior storage capacity of 2.19 wt% at 50 °C compared to the A-HNTs (0.58 wt%). A 100% desorption of stored hydrogen is noted in the temperature range of 138-175 °C. The average binding energy of hydrogen was found to be 0.34 eV for the prepared A-HNT-h-BN nanoclay composite. The excellent storage capability of A-HNT-h-BN nanoclay composite towards hydrogen at ambient temperature may find bright perspective in hydrogen fuel cell technology in near future.

  18. Outline of a method for final storage of low- and medium-active waste from possible Danish power reactors

    International Nuclear Information System (INIS)

    Brodersen, K.; Jensen, J.; Oestergaard, K.

    1977-02-01

    A method is outlined for the final storage of Danish low-and medium-active power reactor waste. The waste drums are contained in large concretre blocks placed just below the ground surface. A plant for storing waste by means of this method is sketched. It consists of a system of reinforced concrete pits with the top level with the ground surface. Each pit measures c. 5 x 5 m and is c. 6 m deep. The pits are envisaged cast with a permanent inside, step-like shuttering of thin steel plates. The volume between the drums will be cast with concrete when a pit is filled. Calculations are given of the construction and running costs. It is estimated that the final storage of reactor wastes is only a small problem regarding economy and space, and also that there is hardly doubt that full safety can be achieved. (B.P.)

  19. Second law analysis of a diesel engine waste heat recovery with a combined sensible and latent heat storage system

    International Nuclear Information System (INIS)

    Pandiyarajan, V.; Chinnappandian, M.; Raghavan, V.; Velraj, R.

    2011-01-01

    The exhaust gas from an internal combustion engine carries away about 30% of the heat of combustion. The energy available in the exit stream of many energy conversion devices goes as waste. The major technical constraint that prevents successful implementation of waste heat recovery is due to intermittent and time mismatched demand for and availability of energy. The present work deals with the use of exergy as an efficient tool to measure the quantity and quality of energy extracted from a diesel engine and stored in a combined sensible and latent heat storage system. This analysis is utilized to identify the sources of losses in useful energy within the components of the system considered, and provides a more realistic and meaningful assessment than the conventional energy analysis. The energy and exergy balance for the overall system is quantified and illustrated using energy and exergy flow diagrams. In order to study the discharge process in a thermal storage system, an illustrative example with two different cases is considered and analyzed, to quantify the destruction of exergy associated with the discharging process. The need for promoting exergy analysis through policy decision in the context of energy and environment crisis is also emphasized. - Highlights: → WHR with TES system eliminates the mismatch between the supply of energy and demand. → A saving of 15.2% of energy and 1.6% of exergy is achieved with PCM storage. → Use of multiple PCMs with cascaded system increases energy and exergy efficiency.

  20. Cancer mortality and incidence survey around the Aube's low- and medium-activity radioactive waste storage site

    International Nuclear Information System (INIS)

    2010-01-01

    This report presents the main results of a survey performed in 2010 to describe the health status of the population around the Aube's low- and medium-activity radioactive waste storage site. The aim of this survey was to determine whether the frequencies of death and hospitalization on account of cancer are different for this population (15 km around the site) with respect to two reference populations (the population of the Champagne-Ardennes region and the French metropolitan population). Results of mortality, hospitalization, and lung cancer are presented under the form of maps and tables giving global data or data for males, females, adults, or children

  1. Thermal energy storage for low grade heat in the organic Rankine cycle

    Science.gov (United States)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  2. Verification of heat removal capability of a concrete cask system for spent fuel storage

    International Nuclear Information System (INIS)

    Sakai, Mikio; Fujiwara, Hiroaki; Sakaya, Tadatugu

    2001-01-01

    The reprocessing works comprising of a center of nuclear fuel cycle in Japan is now under construction at Rokkasho-mura in Aomori prefecture, which is to be operated in 2005. However, as reprocessing capacity of the works is under total forming amount of spent nuclear fuels, it has been essential to construct a new facility intermediately to store them at a period before reprocessing them because of prediction to reach limit of pool storage in nuclear power stations. There are some intermediate storage methods, which are water pool method for wet storage, and bolt method, metal cask method, silo method and concrete cask method for dry storage. Among many methods, the dry storage is focussed at a standpoint of its operability and economy, the concrete cask method which has a lot of using results in U.S.A. has been focussed as a method expectable in its cost reduction effect among it. The Ishikawajima-Harima Heavy Industries Co., Ltd. produced, in trial, a concrete cask with real size to confirm productivity when advancing design work on concrete cask. By using the trial product, a heat removal test mainly focussing temperature of concrete in the cask was carried out to confirm heat conductive performances of the cask. And, analysis of heat conductivity was also carried out to verify validity of its analysis model. (G.K.)

  3. Hydration of Magnesium Carbonate in a Thermal Energy Storage Process and Its Heating Application Design

    Directory of Open Access Journals (Sweden)

    Rickard Erlund

    2018-01-01

    Full Text Available First ideas of applications design using magnesium (hydro carbonates mixed with silica gel for day/night and seasonal thermal energy storage are presented. The application implies using solar (or another heat source for heating up the thermal energy storage (dehydration unit during daytime or summertime, of which energy can be discharged (hydration during night-time or winter. The applications can be used in small houses or bigger buildings. Experimental data are presented, determining and analysing kinetics and operating temperatures for the applications. In this paper the focus is on the hydration part of the process, which is the more challenging part, considering conversion and kinetics. Various operating temperatures for both the reactor and the water (storage tank are tested and the favourable temperatures are presented and discussed. Applications both using ground heat for water vapour generation and using water vapour from indoor air are presented. The thermal energy storage system with mixed nesquehonite (NQ and silica gel (SG can use both low (25–50% and high (75% relative humidity (RH air for hydration. The hydration at 40% RH gives a thermal storage capacity of 0.32 MJ/kg while 75% RH gives a capacity of 0.68 MJ/kg.

  4. Basic study on solar heat storage based on concentration difference

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Ishine; Higuchi, Akon; Ohashi, Yoshiaki

    1986-12-01

    An experimental study is performed for water solution of calcium chloride, a suitable solution for the captioned subject, and the condensation of the solution using hydrophobic film comparing to the semipermeable membrane. The relationship between saturated steam pressure and temperature, in regard to a water solution of 30-50 wt percent is clarified after testing the effect of solution concentration to the increase of boiling point. Next, the state of precipitated solute is examined as a possible problem to encounter during film condensation. The experiment reveals that solidification heat is instantaneously evolved when the solute is precipitated. Performance characteristics of the hydrophobic film are tested with a cylindrical water solution tank in which a PTFE porous film of 0.6 Mum hole diameter is sandwitched at one end. Test result reveals relationships between solution temperature, surface temperature in the steam side of the cooling plate and the quantity of condensed liquid in transmitted steam. (5 refs, 6 figs, 2 tabs)

  5. Modeling and Control of Heat Networks With Storage : The Single-Producer Multiple-Consumer Case

    NARCIS (Netherlands)

    Scholten, Tjardo; De Persis, Claudio; Tesi, Pietro

    In heat networks, energy storage in the form of hot water in a tank is a viable approach to balancing supply and demand. In order to store a desired amount of energy, both the volume and temperature of the water in the tank need to converge to desired setpoints. To this end, we provide a provably

  6. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques.

    Science.gov (United States)

    F.C. Meinzer; J.R. Brooks; J.-C. Domec; B.L. Gartner; J.M. Warren; D.R. Woodruff; K. Bible; D.C. Shaw

    2006-01-01

    The volume and complexity of their vascular systems make the dynamics of tong-distance water transport in large trees difficult to study. We used heat and deuterated water (D20) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the coniferous species Pseudotsuga menziesii...

  7. A predictive model for smart control of a domestic heat pump and thermal storage

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; Gebhardt, I.; de Wit, J.B.; Smit, Gerardus Johannes Maria

    The purpose of this paper is to develop and validate a predictive model of a thermal storage which is charged by a heat pump and used for domestic hot water supply. The model is used for smart grid control purposes and requires measurement signals of flow and temperature at the inlet and outlet of

  8. Latent heat storage by silica-coated polymer beads containing organic phase change materials

    Czech Academy of Sciences Publication Activity Database

    Feczkó, T.; Trif, L.; Horák, Daniel

    2016-01-01

    Roč. 132, July (2016), s. 405-414 ISSN 0038-092X R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : latent heat storage * phase change materials * porous beads by suspension polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.018, year: 2016

  9. Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures

    DEFF Research Database (Denmark)

    Dannemand, Mark; Dragsted, Janne; Fan, Jianhua

    2016-01-01

    Laboratory tests of two heat storage units based on the principle of stable supercooling of sodium acetate trihydrate (SAT) mixtures were carried out. One unit was filled with 199.5 kg of SAT with 9% extra water to avoid phase separation of the incongruently melting salt hydrate. The other unit...

  10. Characterization of sugar alcohols as seasonal heat storage media - experimental and theoretical investigations

    NARCIS (Netherlands)

    Zhang, H.; van Wissen, R.M.J.; Nedea, S.V.; Rindt, C.C.M.

    2014-01-01

    Sugar alcohols are under investigation as phase change materials for long term heat storage applications. The thermal performance in such systems is strongly dominated by the nucleation and crystal growth kinetics, which is further linked to the crystal-melt interfacial free energy (surface

  11. The use of solar energy for heating an asphalt storage tank.

    Science.gov (United States)

    1984-01-01

    10,000 gal. asphalt storage tank was equipped with a solar heating system and instrumented to determine its effectiveness over a 12.5-month period. An evaluation of the data indicated that the solar system conserved 25,126 kWh of electrical power dur...

  12. Use of infrared thermography for the evaluation of heat losses during coal storage

    NARCIS (Netherlands)

    Fierro, V.; Miranda, J.L.; Romero, C.; Andrés, J.M.; Pierrot, A.; Gómez-Landesa, E.; Arriaga, A.; Schmal, D.

    1999-01-01

    The exothermic processes during coal storage reduce the calorific value of the coal which in turn results in financial losses. An accurate and easy calculation of the losses may be an efficient tool to evaluate the effectiveness of the measures taken to reduce the spontaneous heating of coal and to

  13. heat storage in upper and lower body during high-intensity exercise ...

    African Journals Online (AJOL)

    Research on heat storage differences between the upper body and ... effects of two cooling strategies (pre-cooling and cooling during exercise) on .... Subject. Age. Height. (cm). Weight. (kg). VO2 peak l.min. -1. Body fat. (%). 1 ..... Effects of two.

  14. Forced convection on a heated horizontal flat plate with finite thermal conductivity in a non-Darcian porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Luna, N. [Direccion de Operacion Petrolera, Direccion General de Exploracion y Explotacion de Hidrocarburos, Secretaria de Energia, 03100 Mexico DF (Mexico); Mendez, F. [Facultad de Ingenieria, UNAM, 04510 Mexico DF (Mexico)

    2005-07-01

    The steady-state analysis of conjugated heat transfer process for the hydrodynamically developed forced convection flow on a heated flat plate embedded in a porous medium is studied. The governing equations for the fluid-saturated porous medium are solved analytically using the integral boundary layer approximation. This integral solution is coupled to the energy equation for the flat plate, where the longitudinal heat conduction effects are taken into account. The resulting equations are then reduced to an integro-differential equation which is solved by regular perturbation techniques and numerical methods. The analytical and numerical predictions for the temperature profile of the plate and appropriate local and average Nusselt numbers are plotted for finite values of the conduction parameter, {alpha}, which represents the presence of the longitudinal heat conduction effects. (authors)

  15. Increasing RES Penetration and Security of Energy Supply by Use of Energy Storages and Heat Pumps in Croatian Energy System

    DEFF Research Database (Denmark)

    Krajačić, Goran; Mathiesen, Brian Vad; Duić, Neven

    2010-01-01

    electricity, heat and transport demands, and including renewable energy, power plants, and combined heat and power production (CHP) for district heating. Using the 2007 energy system the wind power share is increased by two energy storage options: Pumped hydro and heat pumps in combination with heat storages....... The results show that such options can enable an increased penetration of wind power. Using pumped hydro storage (PHS) may increase wind power penetration from 0.5 TWh, for existing PHS installations and up to 6 TWh for very large installations. Using large heat pumps and heat storages in combination...... with specific regulation of power system could additionally increase wind penetration for 0.37 TWh. Hence, with the current technologies installed in the Croatian energy system the installed pumped hydro-plant may facilitate more than 10% wind power in the electricity system. Large-scale integration of wind...

  16. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  17. Dimensionless groups for multidimensional heat and mass transfer in adsorbed natural gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Sphaier, L.A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Mecanica Teorica e Aplicada], E-mail: lasphaier@mec.uff.br

    2010-07-01

    This paper provides a new methodology for analyzing heat and mass transfer in gas storage via adsorption. The foundation behind the proposed methodology comprises a set of physically meaningful dimensionless groups. A discussion regarding the development of such groups is herein presented, providing a fully normalized multidimensional formulation for describing the transport mechanisms involved in adsorbed gas storage. After such presentation, data from previous literature studies associated with the problem of adsorbed natural gas storage are employed for determining realistic values for the developed parameters. Then, a one-dimensional test-case problem is selected for illustrating the application of the dimensionless formulation for simulating the operation of adsorbed gas reservoirs. The test problem is focused on analyzing an adsorbed gas discharge operation. This problem is numerically solved, and the solution is verified against previously published literature data. The presented results demonstrate how a higher heat of sorption values lead to reduced discharge capacities. (author)

  18. Evaluation of an earth heat storage system in a solar energy greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Langrell, J.; Boris, R. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Biosystems Engineering

    2010-07-01

    Greenhouses store solar energy in the walls and floors during the daytime and release the stored energy back to the greenhouse at night. In this study, an earth heat storage system was constructed and tested in a solar energy greenhouse in order to enhance energy storage. The system consisted of a network of perforated pipes buried in the soil at depths from 0.3 to 1 m. The warm air near the greenhouse ceiling was drawn to the buried pipes. Soil and air temperatures were recorded at various locations by a network of thermocouples. The energy balance was analyzed in order to evaluate the effectiveness of the earth heat storage system. The temperature profiles in the soil were used to determine the summer recharge and winter energy depletion behaviour of the system.

  19. A numerical investigation of combined heat storage and extraction in deep geothermal reservoirs

    DEFF Research Database (Denmark)

    Major, Márton; Poulsen, Søren Erbs; Balling, Niels

    2018-01-01

    Heat storage capabilities of deep sedimentary geothermal reservoirs are evaluated through numerical model simulations. We combine storage with heat extraction in a doublet well system when storage phases are restricted to summer months. The effects of stored volume and annual repetition on energy...... recovery are investigated. Recovery factors are evaluated for several different model setups and we find that storing 90 °C water at 2500 m depth is capable of reproducing, on average 67% of the stored energy. In addition, ambient reservoir temperature of 75 °C is slightly elevated leading to increased...... efficiency. Additional simulations concerning pressure build-up in the reservoir are carried out to show that safety levels may not be reached. Reservoir characteristics are inspired by Danish geothermal conditions, but results are assumed to have more general validity. Thus, deep sedimentary reservoirs...

  20. EXPERIMENTAL INVESTIGATION OF HEAT STORAGE CHARACTERISTIC OF UREA AND BORAX SALT GRADIENT SOLAR PONDS

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2006-03-01

    Full Text Available Salt gradient solar ponds are simple and low cost solar energy system for collecting and storing solar energy. In this study, heat storage characteristic of urea and borax solutions in the solar pond were examined experimentally. Establishing density gradients in different concentration, variations in the temperature and density profiles were observed in four different experiments. Maximum storage temperatures were measured as 28ºC and 36 ºC for the ponds with urea and borax solution, respectively. The temperature difference between the bottom and the surface of the pond were measured as 13 ºC for urea and 17 ºC for borax- solutions. According to these results, heat storage characteristic of the solar pond with borax solution was found to be better than urea solution.

  1. Geothermal probes for the development of medium-deep geothermal heating; Erdwaermesonden zur Erschliessung der mitteltiefen Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Stuckmann, Uwe [REHAU AG + Co, Erlangen (Germany)

    2012-07-01

    Compared to the near-surface geothermal energy, in the medium-deep geothermal between between 400 and 1,000 meters higher temperature levels may opened up. Thus the efficiency of geothermal power plants can be increased. The possibly higher installation costs are significantly higher yield compared to the yields and withdrawal benefits. At higher thermal gradient of the underground it even is possible to dispense entirely on the heat pump and to heat directly.

  2. Performance investigation of a lab–scale latent heat storage prototype – Numerical results

    International Nuclear Information System (INIS)

    Niyas, Hakeem; Prasad, Sunku; Muthukumar, P.

    2017-01-01

    Highlights: • Developed a numerical tool for analyzing a shell-and-tube LHS system. • Effective heat capacity method is used for incorporating the latent heat. • Number of heat transfer fluid tubes and fins are optimized. • Partial charging/discharging is efficient than complete charging/discharging. • Numerically predicted values match well with the experimental results. - Abstract: In the current study, numerical analysis of the charging and discharging characteristics of a lab-scale latent heat storage (LHS) prototype is presented. A mathematical model is developed to analyze the performance characteristics of the LHS prototype of shell and tube heat exchanger configuration. Effective heat capacity (EHC) method is implemented to consider the latent heat of the phase change material (PCM) and Boussinesq approximation is used to incorporate the buoyancy effect of the molten layer of the PCM in the model. For proper modeling of velocities in the PCM, Darcy law’s source term is added. The governing equations involved in the model are solved using a finite element based software product, COMSOL Multiphysics 4.3a. The number of embedded tubes and fins on the embedded tubes are optimized based on the discharging time of the model. Various performance parameters such as charging/discharging time, energy storage/discharge rate and melt fraction are evaluated. Numerically predicted temperature variations of the model during charging and discharging processes were compared with the experimental data extracted from the lab-scale LHS prototype and a good agreement was found between them.

  3. Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization

    DEFF Research Database (Denmark)

    Dominkovic, D. F.; Gianniou, P.; Münster, M.

    2018-01-01

    on the energy supply of district heating. Results showed that longer preheating time increased the possible duration of cut-off events. System optimization showed that the thermal mass for storage was used as intra-day storage. Flexible load accounted for 5.5%–7.7% of the total district heating demand...

  4. Dynamic Heat Storage and Cooling Capacity of a Concrete Deck with PCM and Thermally Activated Building System

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    This paper presents a heat storage and cooling concept that utilizes a phase change material (PCM) and a thermally activated building system (TABS) implemented in a hollow core concrete deck. Numerical calculations of the dynamic heat storage capacity of the hollow core concrete deck element...... in the article highlight the potential of using TABS and PCM in a prefabricated concrete deck element....

  5. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  6. Material Research on Salt Hydrates for Seasonal Heat Storage Application in a Residential Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; Zondag, H.A.; De Boer, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    Water vapor sorption in salt hydrates is a promising method to realize seasonal solar heat storage in the residential sector. Several materials already showed promising performance for this application. However, the stability of these materials needs to be improved for long-term (30 year) application in seasonal solar heat storages. The purpose of this article is to identify the influence of the material properties of the salt hydrates on the performance and the reaction kinetics of the sorption process. The experimental investigation presented in this article shows that the two salt hydrates Li2SO4.H2O and CuSO4.5H2O can store and release heat under the operating conditions of a seasonal solar heat storage in a fully reversible way. However, these two materials show differences in terms of energy density and reaction kinetics. Li2SO4.H2O can release heat with an energy density of around 0.80 GJ/m{sup 3} within 4 hours of rehydration at 25C, while CuSO4.5H2O needs around 130 hours at the same temperature to be fully rehydrated and reaches an energy density of 1.85 GJ/m{sup 3}. Since the two salts are dehydrated and hydrated under the same conditions, this difference in behavior is directly related to the intrinsic properties of the materials.

  7. Modeling of District Heating Networks for the Purpose of Operational Optimization with Thermal Energy Storage

    Science.gov (United States)

    Leśko, Michał; Bujalski, Wojciech

    2017-12-01

    The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way - allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.

  8. Heating with ice. Efficient heating source for heat pumps. Primary source storage. Alternative to soil sensors and soil collectors; Heizen mit Eis. Effiziente Waermequelle fuer Waermepumpen. Primaerquellenspeicher, Alternative zu Erdsonden und Erdkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Tippelt, Egbert [Viessmann, Allendorf (Germany)

    2011-12-15

    For several years heat pumps have taken up a fixed place in the mix of annually installed thermal generators. Thus, in the year 2010 every tenth newly installed heater was a heat pump. A new concept for the development and utilization of natural heat now makes this technology even more attractive. From this perspective, the author of the contribution under consideration reports on a SolarEis storage. This SolarEis storage consists of a cylindrical concrete tank with two heat exchangers consiting of plastic pipes. The SolarEis storage uses outdoor air, solar radiation and soil as heat sources for brine / water heat pumps simultaneously.

  9. Thermal performance analysis of a phase change thermal storage unit for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W. [Institute for Sustainable Systems and Technologies School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2011-01-15

    This paper presents the results of a comprehensive numerical study on the thermal performance of an air based phase change thermal storage unit (TSU) for space heating. The unit is designed for integration into space heating and cooling systems. The unit consists of a number of one dimensional phase change material (PCM) slabs contained in a rectangular duct where air passes between the slabs. The numerical analysis was based on an experimentally validated model. A parametric study has been carried out including the study on the effects of charge and discharge temperature differences, air mass flow rate, slab thicknesses, air gaps and slab dimensions on the air outlet temperatures and heat transfer rates of the thermal storage unit. The paper introduces and discusses quantities called charge and discharge temperature differences which play an important role in the melting and freezing processes. (author)

  10. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    Directory of Open Access Journals (Sweden)

    Shestakov Igor A.

    2015-01-01

    Full Text Available The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characterize the basic regularities of the processes are obtained. Circulating flows are determined and carried out the analysis of vortices formation mechanism and the temperature distribution in solution at conditions of natural convection when the Grashof number (Gr = 106. A significant influence of heat transfer rate on solutions boundary on flow structure and temperature field in LNG storage tanks.

  11. High-Temperature Thermal Energy Storage for electrification and district heating

    DEFF Research Database (Denmark)

    Pedersen, A. Schrøder; Engelbrecht, K.; Soprani, S.

    stability upon thermal cycling. The most promising material consists of basalt, diabase, and magnetite, whereas the less suited rocks contain larger proportions of quartz and mica. An HT-TES system, containing 1.5 m3 of rock pieces, was constructed. The rock bed was heated to 600 ˚C using an electric heater......The present work describes development of a High Temperature Thermal Energy Storage (HT-TES) system based on rock bed technology. A selection of rocks was investigated by thermal analysis in the range 20-800 ˚C. Subsequently, a shortlist was defined primarily based on mechanical and chemical...... to simulate thermal charging from wind energy. After complete heating of the rock bed it was left fully charged for hours to simulate actual storage conditions. Subsequently the bed discharging was performed by leading cold air through the rock bed whereby the air was heated and led to an exhaust. The results...

  12. [The design of heat dissipation of the field low temperature box for storage and transportation].

    Science.gov (United States)

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.

  13. GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Seneviratne, S.I.; Hinderer, J.

    2005-01-01

    water storage depletion observed from GRACE can be related to the record-breaking heat wave that occurred in central Europe in 2003. We validate the measurements from GRACE using two independent hydrological estimates and direct gravity observations from superconducting gravimeters in Europe. All...... datasets agree well with the GRACE measurements despite the disparity of the employed information; the difference between datasets tends to be within GRACE margin of error. The April-to-August terrestrial water storage depletion is found to be significantly larger in 2003 than in 2002 from both models......The GRACE twin satellites reveal large inter-annual terrestrial water-storage variations between 2002 and 2003 for central Europe. GRACE observes a negative trend in regional water storage from 2002 to 2003 peaking at -7.8 cm in central Europe with an accuracy of 1 cm. The 2003 excess terrestrial...

  14. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review

    International Nuclear Information System (INIS)

    Raam Dheep, G.; Sreekumar, A.

    2014-01-01

    Highlights: • Classification of phase change materials. • Studies on phase change properties of various phase change materials. • Influence of nanomaterials on properties of phase change materials. - Abstract: Thermal energy storage system plays a critical role in developing an efficient solar energy device. As far as solar thermal devices are concerned, there is always a mismatch between supply and demand due to intermittent and unpredictable nature of solar radiation. A well designed thermal energy storage system is capable to alleviate this demerit by providing a constant energy delivery to the load. Many research works is being carried out to determine the suitability of thermal energy storage system to integrate with solar thermal gadgets. This review paper summarizes the numerous investigations on latent heat thermal energy storage using phase change materials (PCM) and its classification, properties, selection criteria, potential research areas and studies involved to analyze the thermal–physical properties of PCM

  15. Thermal energy storage with geothermal triplet for space heating and cooling

    Science.gov (United States)

    Bloemendal, Martin; Hartog, Niels

    2017-04-01

    Many governmental organizations and private companies have set high targets in avoiding CO2 emissions and reducing energy (Kamp, 2015; Ministry-of-Economic-affairs, 2016). ATES systems use groundwater wells to overcome the discrepancy in time between the availability of heat (during summer) and the demand for heat (during winter). Aquifer Thermal Energy Storage is an increasingly popular technique; currently over 2000 ATES systems are operational in the Netherlands (Graaf et al., 2016). High temperature ATES may help to improve performance of these conventional ATES systems. ATES systems use heat pumps to get the stored heat to the required temperature for heating of around 40-50°C and to produce the cold water for cooling in summer. These heat pumps need quite a lot of power to run; on average an ATES system produces 3-4 times less CO2 emission compared to conventional. Over 60% of those emission are accounted for by the heat pump (Dekker, 2016). This heat pump power consumption can be reduced by utilizing other sources of sustainable heat and cooling capacity for storage in the subsurface. At such operating temperatures the required storage temperatures do no longer match the return temperatures in the building systems. Therefore additional components and an additional well are required to increase the groundwater temperature in summer (e.g. solar collectors) and decrease it in winter (e.g. dry coolers). To prevent "pollution" of the warm and cold well return water from the building can be stored in a third well until weather conditions are suitable for producing the required storage temperature. Simulations and an economical evaluation show great potential for this type of aquifer thermal energy storage; economic performance is better than normal ATES while the emissions are reduce by a factor ten. At larger temperature differences, also the volume of groundwater required to pump around is much less, which causes an additional energy saving. Research now

  16. Exchanging and Storing Energy. Reducing Energy Demand through Heat Exchange between Functions and Temporary Storage

    Energy Technology Data Exchange (ETDEWEB)

    Sillem, E.

    2011-06-15

    As typical office buildings from the nineties have large heating and cooling installations to provide heat or cold wherever and whenever needed, more recent office buildings have almost no demand for heating due to high internal heat loads caused by people, lighting and office appliances and because of the great thermal qualities of the contemporary building envelope. However, these buildings still have vast cooling units to cool down servers and other energy consuming installations. At the same time other functions such as dwellings, swimming pools, sporting facilities, archives and museums still need to be heated most of the year. In the current building market there is an increasing demand for mixed-use buildings or so called hybrid buildings. The Science Business Centre is no different and houses a conference centre, offices, a museum, archives, an exhibition space and a restaurant. From the initial program brief it seemed that the building will simultaneously house functions that need cooling most of the year and functions that will need to be heated the majority of the year. Can this building be equipped with a 'micro heating and cooling network' and where necessary temporarily store energy? With this idea a research proposal was formulated. How can the demand for heating and cooling of the Science Business Centre be reduced by using energy exchange between different kinds of functions and by temporarily storing energy? In conclusion the research led to: four optimized installation concepts; short term energy storage in pavilion concept and museum; energy exchange between the restaurant and archives; energy exchange between the server space and the offices; the majority of heat and cold will be extracted from the soil (long term energy storage); the access heat will be generated by the energy roof; PV cells from the energy roof power all climate installations; a total energy plan for the Science Business Centre; a systematic approach for exchanging

  17. Combined Heat and Power Dispatch Considering Heat Storage of Both Buildings and Pipelines in District Heating System for Wind Power Integration

    Directory of Open Access Journals (Sweden)

    Ping Li

    2017-06-01

    Full Text Available The strong coupling between electric power and heat supply highly restricts the electric power generation range of combined heat and power (CHP units during heating seasons. This makes the system operational flexibility very low, which leads to heavy wind power curtailment, especially in the region with a high percentage of CHP units and abundant wind power energy such as northeastern China. The heat storage capacity of pipelines and buildings of the district heating system (DHS, which already exist in the urban infrastructures, can be exploited to realize the power and heat decoupling without any additional investment. We formulate a combined heat and power dispatch model considering both the pipelines’ dynamic thermal performance (PDTP and the buildings’ thermal inertia (BTI, abbreviated as the CPB-CHPD model, emphasizing the coordinating operation between the electric power and district heating systems to break the strong coupling without impacting end users’ heat supply quality. Simulation results demonstrate that the proposed CPB-CHPD model has much better synergic benefits than the model considering only PDTP or BTI on wind power integration and total operation cost savings.

  18. A model predictive framework of Ground Source Heat Pump coupled with Aquifer Thermal Energy Storage System in heating and cooling equipment of a building

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Bloemendal, J.M.; Keviczky, T.

    2017-01-01

    This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed
    mathematical representations of building thermal dynamics, ATES system dynamics, heat

  19. Characteristics on the heat storage and recovery by the underground spiral heat exchange pipe; Chichu maisetsu spiral kan ni yoru chikunetsu shunetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, I [Kure National College of Technology, Hiroshima (Japan); Taga, M [Kinki University, Osaka (Japan)

    1996-10-27

    The consistency between the experimental value of a soil temperature and the calculation value of a soil temperature given by a non-steady heat conduction equation was confirmed. The experimental value is obtained by laying a spiral heat exchange pipe in the heat-insulated soil box and circulating hot water forcibly in the pipe. The temperature conductivity in soil significantly influences the heat transfer in soil. The storage performance is improved when the temperature conductivity increases because of the contained moisture. As the difference between the initial soil temperature and circulating water temperature becomes greater, the heat storage and recovery values increase. A thermal core heat transfer is done in the spiral pipe. Therefore, the diameter of the pipe little influences the heat storage performance, and the pitch influences largely. About 50 hours after heat is stored, the storage performance is almost the same as for a straight pipe that uses the spiral diameter as a pipe diameter. To obtain the same heat storage value, the spiral pipe is made of fewer materials than the straight pipe and low in price. The spiral pipe is more advantageous than the straight pipe in the necessary motive power and supply heat of a pump. 1 ref., 11 figs., 1 tab.

  20. Evaluation of the dependence of heat transfer coefficient on the particle diameter of a metal porous medium in a heat removal system using liquid nitrogen

    International Nuclear Information System (INIS)

    Sasaki, Shunsuke; Ito, Satoshi; Hashizume, Hidetoshi

    2015-01-01

    Cryogenic cooling system using a bronze-particle-sintered porous medium has been studied for a re mountable high-temperature superconducting magnet. This study evaluates boiling curve of subcooled liquid nitrogen as flowing in a bronze porous medium as a function of the particle diameter of the medium. We obtained Departure from Nuclear Boiling (Dnb) point from the boiling curve and discussed growth of nitrogen vapor bubble inferred from measured pressure drop. The pressure drop decreased significantly at wall superheat before reaching the DNB point whereas that slightly decreased after reaching the DNB point compared to the smallest wall superheat. This result could consider DNB rises with an increase in the particle diameter because larger particle makes vapor to move easily from the heated pore region. The influence of the particle diameter on the heat transfer performance is larger than that of coolant's degree of subcooling. (author)

  1. Homogenization of a storage and/or disposal site in an underground damage or fractured medium

    International Nuclear Information System (INIS)

    Khvoenkova, N.

    2007-07-01

    The aim of this work was to model the flow and the transport of a radionuclide in a fractured rock. In order to be able to simulate numerically these phenomena in an industrial context, it has been chosen to apply the homogenization method. The theoretical study has consisted in 1)determining a microscopic model in the fractured medium 2)homogenizing the microscopic model. In this study, two media have been studied: a granitic medium and a calcareous medium. With the obtained experimental data, six possible microscopic models have been deduced for each type of medium and in terms of the choice of the fracturing (thin or thick) and of the relation between the porosities and the delay coefficients. With the homogenization, three types of exchange of pollutant between the fractures and the porous blocks have been revealed: 1)the instantaneous exchange for which the presence of the porous blocks has no influence on the global behaviour of the system 2)the instantaneous exchange for which the porous blocks absorb a non-negligible quantity of pollutant. This influence is only determined by the fractures system 3)the non-instantaneous exchange. These homogenized models have been numerically studied (resolution with the Cast3M code). The simulation of the homogenized models has given results similar to those of the direct models. Moreover, the study of the homogenized diffusion tensor has shown that the homogenized model takes into account the dispersion produced by the fractures system. By all these results, it can be concluded that the risk estimation of the contamination of the fractured rock is possible for long times by the use of homogenized models. (O.M.)

  2. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  3. An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources

    International Nuclear Information System (INIS)

    Fiaschi, Daniele; Lifshitz, Adi; Manfrida, Giampaolo; Tempesti, Duccio

    2014-01-01

    Highlights: • Explotation of medium temperature geothermal resource with ORC–CHP is investigated. • A new CHP configuration to provide higher temperature to thermal user is proposed. • Several organic fluids and wide range of heat demand are studied. • The system produces higher power (almost 55%) in comparison to typical layouts. • Optimal working fluids vary with the characteristics of the heat demand. - Abstract: Medium temperature (up to 170 °C), water dominated geothermal resources are the most widespread in the world. The binary geothermal-ORC power plants are the most suitable energy conversion systems for this kind of resource. Specifically, combined heat and power (CHP) systems have the potential to improve the efficiency in exploiting the geothermal resources by cascading the geothermal fluid heat carrier to successively lower temperature users, thus increasing first and second law efficiency of the entire power plant. However, geothermal CHPs usually extract heat from the geofluid either in parallel or in series to the ORC, and usually provide only low temperature heat, which is seldom suitable for industrial use. In this paper, a new CHP configuration, called Cross Parallel CHP, has been proposed and analyzed. It aims to provide higher temperature heat suitable for industrial use, allowing the exploitation of geothermal resources even in areas where district heating is not needed. The proposed CHP allows the reduction of the irreversibilities in the heat exchangers and the loss to the environment related to the re-injection of geofluid, thus producing higher electric power output while satisfying, at the same time, the heat demand of the thermal utility for a wide range of temperatures and mass flow rates (80–140 °C; 3–13 kg/s). Several organic fluids are investigated and the related optimizing working conditions are found by a built in procedure making use of genetic algorithms. The results show that the optimal working fluids and

  4. Composite heat transfer in a pipe with thermal radiation of two-dimensional propagation - in connection with the temperature rise in flowing medium upstream from heating section

    International Nuclear Information System (INIS)

    Echigo, R.; Hasegawa, S.; Kamiuto, K.

    1975-01-01

    An analytical procedure is presented for simultaneous convective and radiative heat transfer with a fully developed laminar flow in a pipe by taking account of the two-dimensional propagation of radiative transfer and also shows the numerical results on the temperature profiles and the heat-transfer characteristics. In order to solve the energy equation with two-dimensional radiative transfer the entire ranges of the temperature field have to be solved simultaneously both along the radial and flow directions. Moreover, the heat flux by thermal radiation emitted from the heating wall propagates upstream so that it is necessary to examine the temperature profiles of the flowing medium to a certain distance upstream from the entrance of the heating section. In this way in order to attempt to solve the governing equation numerically by a finite difference method the dimension of matrix becomes extremely large provided that a satisfactory validity of numerical calculation is required Consequently the band matrix method is used and the temperature profiles of the medium in both regions upstream and downstream from the entrance of the heating section are illustrated and the heat transfer results are discussed in some detail by comparing with those of the one-dimensional transfer of radiation.(auth)

  5. Heating of a thermally conducting stratified medium. II. A simple plane model of an atmosphre

    International Nuclear Information System (INIS)

    Lerche, I.; Low, B.C.

    1980-01-01

    Exact solutions of the following theroretical problem are present: A plane atmosphere is in hydrostatic equilibrium with a uniform gravity. The ideal gas law is assumed. Heat is generated everywhere at a rate proportional to the local density. The atmosphere is maintained in a steady state through cooling by thermal conduction and radiation. This problem is reducible to quadratures for a thermal conductivity which is an arbitrary, but prescribed, function of the temperature, and for a radiative loss which is expressible as the product of the density and an arbitrary, but prescribed, function of the pressure. The analysis is carried out for the case of power law thermal conductivity, and a radiative loss proportional to the square of the density and to the first power of the temperature. The radiative cooling function adopted here has the basic mathematical form for an optically thin medium. The solutions reproduce the macroscopic ordering of a hot ''corona'' separated from a ''photosphere'' by a layer of temperature minimum. The analytic solutions allow direct illustration of the interplay between steady energy transport and the requirements of hydorstatic equilibrium

  6. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2015-02-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  7. Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system

    DEFF Research Database (Denmark)

    Englmair, Gerald; Moser, Christoph; Furbo, Simon

    2018-01-01

    acetate trihydrate composites to conserve the latent heat of fusion for long-term heat storage. A control strategy directed heat from a solar collector array to either the PCM storage or a water buffer storage. Several PCM units had to be charged in parallel when the solar collector output peaked at 16 k......A solar heating system with 22.4m2 of solar collectors, a heat storage prototype consisting of four 200 kg phase-change material (PCM) storage units, and a 735 L water tank was designed to improve solar heat supply in single-family houses. The PCM storage utilized stable supercooling of sodium......W. A single unit was charged with 27.4 kWh of heat within four hours on a sunny day, and the PCM temperature increased from 20 °C to 80 °C. The sensible heat from a single PCM unit was transferred to the water tank starting with about 32 kW of thermal power after it had fully melted at 80 °C. A mechanical...

  8. Thermal Analysis of Fluidized Bed and Fixed Bed Latent Heat Thermal Storage System

    Science.gov (United States)

    Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.

    2017-05-01

    Thermal energy storage technology is essential because its stores available energy at low cost. Objective of the work is to store the thermal energy in a most efficient method. This work is deal with thermal analysis of fluidized bed and fixed bed latent heat thermal storage (LHTS) system with different encapsulation materials (aluminium, brass and copper). D-Mannitol has been used as phase change material (PCM). Encapsulation material which is in orbicular shape with 4 inch diameter and 2 mm thickness orbicular shaped product is used. Therminol-66 is used as a heat transfer fluid (HTF). Arrangement of encapsulation material is done in two ways namely fluidized bed and fixed bed thermal storage system. Comparison was made between the performance of fixed bed and fluidized bed with different encapsulation material. It is observed that from the economical point of view aluminium in fluidized bed LHTS System has highest efficiency than copper and brass. The thermal energy storage system can be analyzed with fixed bed by varying mass flow rate of oil paves a way to find effective heat energy transfer.

  9. Study of a Coil Heat Exchanger with an Ice Storage System

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-12-01

    Full Text Available In this study, a coil heat exchanger with an ice storage system is analyzed by theoretical analysis, numerical analysis, and experimental analysis. The dynamic characteristics of ice thickness variation is studied by means of unstable heat conduction theory in cylindrical coordinates, and the change rule of the ice layer thickness is obtained. The computational fluid dynamics method is employed to simulate the flow field and ice melting process of the coil heat exchanger. The effect of the agitator height on the flow characteristics and heat transfer characteristics is investigated. The numerical results show that the turbulence intensity of the fluid near the wall of the heat exchanger is the largest with an agitator height of 80 mm. Furthermore, the process of ice melting is analyzed. The ice on the outer side of the evaporator tube close to the container wall melts faster than the inner side and this agrees well with the experimental result. The experimental study on the process of the operational period and deicing of the coil heat exchanger is conducted and the temperature variation curves are obtained by the arrangement of thermocouples. It is found that the temperature of the evaporating tube increases with increasing height in the process of ice storage.

  10. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  11. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    Institute of Scientific and Technical Information of China (English)

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong

    2009-01-01

    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  12. The Aube low- and medium activity waste storage Centre. 2009 annual report

    International Nuclear Information System (INIS)

    2010-01-01

    After a brief presentation of the ANDRA (the French national agency for the management of radioactive wastes), this report presents the Aube storage Centre installations and main results for the year 2009. It describes the various measures implemented and obtained results in terms of nuclear safety and of radioprotection. It indicates the different incidents which occurred in these installations in 2009, presents the activities in the field of control of the environment and of the releases. It describes how wastes are managed and actions undertaken for information transparency

  13. HEAT STORAGE SYSTEM WITH PHASE CHANGE MATERIALS IN COGENERATION UNITS: STUDY OF PRELIMINARY MODEL

    Directory of Open Access Journals (Sweden)

    Claudio Caprara

    2008-12-01

    Full Text Available The continuous increase in the mechanization of farm activities, the rise in fuel prices and the environmental aspects concerning gas emissions are the main driving forces behind efforts toward more effective use of renewable energy sources and cogeneration systems even in agricultural and cattle farms. Nevertheless these systems are still not very suitable for this purpose because of their little flexibility in following the changing energy demand as opposed to the extremely various farm load curves, both in daytime and during the year. In heat recovery systems, the available thermal energy supply is always linked to power production, thus it does not usually coincide in time with the heat demand. Hence some form of thermal energy storage (TES is necessary in order to reach the most effective utilization of the energy source. This study deals with the modelling of a packed bed latent heat TES unit, integrating a cogeneration system made up of a reciprocating engine. The TES unit contains phase change materials (PCMs filled in spherical capsules, which are packed in an insulated cylindrical storage tank. Water is used as heat transfer fluid (HTF to transfer heat from the tank to the final uses, and exhausts from the engine are used as thermal source. PCMs are considered especially for their large heat storage capacity and their isothermal behaviour during the phase change processes. Despite their high energy storage density, most of them have an unacceptably low thermal conductivity, hence PCMs encapsulation technique is adopted in order to improve heat transfer. The special modular configuration of heat exchange tubes and the possibility of changing water flow through them allow to obtain the right amount of thermal energy from the tank, according to the hourly demand of the day. The model permits to choose the electrical load of the engine, the dimensions of the tank and the spheres, thickness and diameter of heat exchanger and the nature of

  14. Study of the valorisation of thermal storage and of power-to-heat. Study report + Study synthesis

    International Nuclear Information System (INIS)

    Canal, Patrick; Gerbaud, Manon; Mouret, Sylvain; Chammas, Maxime; Attard, Pierre; Bucy, Jacques de; Lochmann, Hugo; Le Gars, Loic; Payen, Luc; Lesueur, Herve

    2016-11-01

    This study aimed at assessing the potential of thermal storage and of power-to-heat in France, and at identifying relevant technological sectors by 2030. In order to do so, the study aimed at quantifying the value of these sectors for applications considered as relevant, this value lying in the valorisation of heat or electric power excesses, in the power arbitration, and in investment savings. Analyses have have been performed on case studies through an assessment of storage value and of P2H (Power-to-Heat) for the collectivity, a joint optimisation of fleet sizing and management, a modelling of power system fundamentals, an analysis of the profitability of storage and P2H projects, and an assessment of the technical source and of the impact on jobs. Thus, after an overview of thermal storage and power-to-heat technologies, and a presentation of the adopted methodology (definition of case studies, case study methodology, modelling hypotheses related to production and consumption, and modelling of the power system), the authors report the study of the sizing of biomass boilers in an urban heat network (determination of the storage value for the community), the study of development of an urban heat network (storage value for the community and for the operator, technological perspective by 2030), the study of the use of power-to-heat and storage for an urban heat network (value for the community, profitability and business model, perspective by 2030), the study of unavoidable heat recovery on an industrial site (value, profitability and business model, perspective by 2030), the study of co-generation and thermal storage on an industrial site (value, impact on income), the study of domestic thermal storage and of the flexibility of the French electric power system (impact of thermal water heaters on the flexibility), and the study of the impact on employment (jobs related to the domestic market and to the development of an exporting sector). Appendices propose sheets

  15. APPLICATIONS OF THERMAL ENERGY STORAGE TO WASTE HEAT RECOVERY IN THE FOOD PROCESSING INDUSTRY, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, W. L.; Christenson, James A.

    1979-07-31

    A project is discussed in which the possibilities for economical waste heat recovery and utilization in the food industry were examined. Waste heat availability and applications surveys were performed at two manufacturing plants engaged in low temperature (freezing) and high temperature (cooking, sterilizing, etc.) food processing. The surveys indicate usable waste heat is available in significant quantities which could be applied to existing, on-site energy demands resulting in sizable reductions in factory fuel and energy usage. At the high temperature plant, the energy demands involve the heating of fresh water for boiler make-up, for the food processes and for the daily clean-up operation. Clean-up poses an opportunity for thermal energy storage since waste heat is produced during the one or two production shifts of each working day while the major clean-up effort does not occur until food production ends. At the frozen food facility, the clean-up water application again exists and, in addition, refrigeration waste heat could also be applied to warm the soil beneath the ground floor freezer space. Systems to recover and apply waste heat in these situations were developed conceptually and thermal/economic performance predictions were obtained. The results of those studies indicate the economics of waste heat recovery can be attractive for facilities with high energy demand levels. Small factories, however, with relatively low energy demands may find the economics marginal although, percentagewise, the fuel and energy savings are appreciable.

  16. Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2016-01-01

    Highlights: • The discharging process of a latent heat thermal energy storage system is studied. • The thermal energy storage system is assisted by finned heat pipes. • The influences of heat pipe spacing and fins geometrical features are studied. • Smaller heat pipe spacing enhances the solidification rate. • Better heat pipe and fin arrangements are determined. - Abstract: This paper presents the results of a numerical study conducted to investigate the discharging process of a latent heat thermal energy storage system assisted by finned heat pipes. A two-dimensional finite volume based numerical model along with enthalpy-porosity technique is employed to simulate the phase change of storage media during the discharging mode. The thermal energy storage system in this study consists of a square container, finned heat pipes, and potassium nitrate (KNO 3 ) as the phase change material. The charging process of the same thermal energy storage system was reported in an early paper by the authors. This paper reports the results of discharging process of the thermal energy storage system. The influences of heat pipe spacing, fin geometry and quantities as well as the effects of natural convection heat transfer on the thermal performance of the storage system were studied. The results indicate that the phase change material solidification process is hardly affected by the natural convection. Decreasing the heat pipe spacing results in faster discharging process and higher container base wall temperature. Increasing the fins length does not change the discharging time but yields higher base wall temperature. Using more fins also accelerates the discharging process and increases the container base wall temperature.

  17. Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores.

    Science.gov (United States)

    Esteban, María-Dolores; Huertas, Juan-Pablo; Fernández, Pablo S; Palop, Alfredo

    2013-05-01

    In recent years, highly thermo-resistant mesophilic spore-forming bacteria belonging to the species Bacillus sporothermodurans have caused non-sterility problems in industrial sterilization processes. The aim of this research was to evaluate the effect of the heating medium characteristics (pH and buffer/food) on the thermal inactivation of B. sporothermodurans spores when exposed to isothermal and non-isothermal heating and cooling treatments and the suitability of non-linear Weibull and Geeraaerd models to predict the survivors of these thermal treatments. Thermal treatments were carried out in pH 3, 5 and 7 McIlvaine buffer and in a courgette soup. Isothermal survival curves showed shoulders that were accurately characterized by means of both models. A clear effect of the pH of the heating medium was observed, decreasing the D120 value from pH 7 to pH 3 buffer down to one third. Differences in heat resistance were similar, regardless of the model used and were kept at all temperatures tested. The heat resistance in courgette soup was similar to that shown in pH 7 buffer. When the heat resistance values obtained under isothermal conditions were used to predict the survival in the non-isothermical experiments, the predictions estimated the experimental data quite accurately, both with Weibull and Geeraerd models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Manfrida, Giampaolo; Secchi, Riccardo; Stańczyk, Kamil

    2016-01-01

    Highlights: • A mathematical model of a Latent Heat Storage system was developed. • Energy and exergy analysis of the storage system were carried out. • A solar powered ORC unit coupled with the Latent Heat Storage was studied. • The dynamic performance of the overall plant was simulated with TRNSYS. - Abstract: Solar energy is one of the most promising renewable energy sources, but is intermittent by its nature. The study of efficient thermal heat storage technologies is of fundamental importance for the development of solar power systems. This work focuses on a robust mathematical model of a Latent Heat Storage (LHS) system constituted by a storage tank containing Phase Change Material spheres. The model, developed in EES environment, provides the time-dependent temperature profiles for the PCM and the heat transfer fluid flowing in the storage tank, and the energy and exergy stored as well. A case study on the application of the LHS technology is also presented. The operation of a solar power plant associated with a latent heat thermal storage and an ORC unit is simulated under dynamic (time-varying) solar radiation conditions with the software TRNSYS. The performance of the proposed plant is simulated over a one week period, and the results show that the system is able to provide power in 78.5% of the time, with weekly averaged efficiencies of 13.4% for the ORC unit, and of 3.9% for the whole plant (from solar radiation to net power delivered by the ORC expander).

  19. Ultra high temperature latent heat energy storage and thermophotovoltaic energy conversion

    OpenAIRE

    Datas Medina, Alejandro; Ramos Cabal, Alba; Martí Vega, Antonio; Cañizo Nadal, Carlos del; Luque López, Antonio

    2016-01-01

    A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and a...

  20. Cold storage condensation heat recovery system with a novel composite phase change material

    International Nuclear Information System (INIS)

    Xia, Mingzhu; Yuan, Yanping; Zhao, Xudong; Cao, Xiaoling; Tang, Zhonghua

    2016-01-01

    Highlights: • Cold storage condensation heat recovery system using PCM was proposed. • CW with a phase change temperature of nearly 80 °C was selected as the potential PCM. • The optimal mass ratio between the CW and EG was 10:1. • The thermal and physical performances of the CW/EG were investigated. • The thermal reliability was demonstrated by 1000 cycles. - Abstract: Using condensation heat from cold storage refrigeration systems to provide heat for domestic hot water preparation and industrial hot water supply promotes energy conservation. However, few studies have investigated cold storage condensation heat recovery using phase change materials (PCMs). In this study, a cold storage condensation heat recovery system that uses PCMs has been designed and analysed. According to the principle of energy cascade recycling, different operation modes could be effectively switched to recycle condensation heat. Furthermore, a novel and suitable phase change composite material is developed for cold storage condensation heat recovery, which has a relatively large latent heat, high thermal conductivity, and an appropriate phase change temperature (i.e. 80 °C). With carnauba wax (CW) as the PCM and expanded graphite (EG) as the additive, a composite was developed with an optimal mass ratio of CW:EG = 10:1. The thermal and physical properties and the interior structure of the composite were then investigated using a scanning electron microscope (SEM), thermal constants analyser (Hot Disk), differential scanning calorimeter (DSC), and Fourier transform infrared spectrometer (FT-IR). Furthermore, experiments on the melting and solidification processes and accelerated thermal cycling were also conducted. It was found that at the optimal mass ratio of 10:1, the temperatures of the CW/EG composite in the melting and solidification processes were 81.98 °C and 80.43 °C, respectively, while the corresponding latent heats were 150.9 J/g and 142.6 J/g, respectively

  1. Design of a thermochemical heat storage system for tap water heating in the built environment

    NARCIS (Netherlands)

    Gaeini, M.; de Jong, E.C.J.; Zondag, H.A.; Rindt, C.C.M.

    2014-01-01

    Replacing the use of fossil fuel by solar energy, as one of the most promising sustainable energy sources, is of high interest, because of climate change and depletion of fossil resources. However, to reach high solar fractions and to overcome the mismatch between supply and demand of solar heat,

  2. Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems

    Science.gov (United States)

    Kerslake, Thomas W.; Jacqmin, David A.

    1998-01-01

    Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.

  3. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    International Nuclear Information System (INIS)

    Xi Peng; Gu Xiaohua; Cheng Bowen; Wang Yufei

    2009-01-01

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, 1 H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  4. Advances in Large-Scale Solar Heating and Long Term Storage in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    According to (the) information from the European Large-Scale Solar Heating Network, (See http://www.hvac.chalmers.se/cshp/), the area of installed solar collectors for large-scale application is in Europe, approximately 8 mill m2, corresponding to about 4000 MW thermal power. The 11 plants...... the last 10 years and the corresponding cost per collector area for the final installed plant is kept constant, even so the solar production is increased. Unfortunately large-scale seasonal storage was not able to keep up with the advances in solar technology, at least for pit water and gravel storage...... of the total 51 plants are equipped with long-term storage. In Denmark, 7 plants are installed, comprising of approx. 18,000-m2 collector area with new plants planned. The development of these plants and the involved technologies will be presented in this paper, with a focus on the improvements for Danish...

  5. Options for the ultimate storage of low and medium level radioactive wastes produced at Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Emeterio, Miguel

    1991-01-01

    The devoted time and still to be expend in prepare, execute and teach permanent and safe solutions to the problem of the evaluation of radioactive wastes reflects the political, economic and environmental importance with respect to public health and safety invested in this task, as well as, its technological challenges. In the case of Laguna Verde nuclear power plant, its low and medium level radioactive wastes are stored in the beginning in a temporal store with a capacity of 2000 m 3 sufficient to four years of normal operation; according to what it is necessary to select one of different ways of waste storage. Different technologies has been evaluated and the preliminary conclusion is that for Mexico the more feasible way to store radioactive wastes is in tumulus (Author)

  6. Gravity-driven flow and heat transfer in a spent nuclear fuel storage pool

    International Nuclear Information System (INIS)

    Gay, R.R.

    1983-01-01

    The GFLOW code analyzes a three-dimensional rectangular porous medium by dividing the porous medium into a number of nodes or cells specified by the user. The finite difference form of the fluid conservation equations is solved for each node by application of a modified ''marker and cell'' numerical technique. The existence of spent nuclear fuel in any node is modeled by using a porosity value less than unity in that node and by including a surface heat transfer term in the fluid energy equation. In addition, local pressure losses due to grid spaces or other planar flow obstructions can be modeled by local loss coefficients. Heat conduction in the fuel is simulated by a fast running implicit finite difference model of the fuel, gap, and clad regions of the fuel rod

  7. Development of floating cover constructions for pond heat storage; Udvikling af flydende laagkonstruktioner til damvarmelagre. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Duer, K. (ed.)

    2000-07-01

    The purpose of the project was to carry out a sketch project of the new cover designs for heat storage in ponds that were developed in phase II of the project. In parallel to the sketch project minor laboratory tests were carried out in order to investigate critical details of the floating cover designs. Two types of floating covers were investigated: One of plastics and two versions based on steel. (EHS)

  8. Bed geometries, fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications: A review

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Dornheim, Martin; Sloth, Michael

    2014-01-01

    This review presents recent developments for effective heat management systems to be integrated in metal hydride storage tanks, and investigates the performance improvements and limitations of each particular solution. High pressures and high temperatures metal hydrides can lead to different design...... given to metal hydride storage tanks for light duty vehicles, since this application is the most promising one for such storage materials and has been widely studied in the literature. Enhancing cooling/heating during hydrogen uptake and discharge has found to be essential to improve storage systems...

  9. Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.R.

    1980-01-01

    The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

  10. Influence of wind power, plug-in electric vehicles, and heat storages on power system investments

    International Nuclear Information System (INIS)

    Kiviluoma, Juha; Meibom, Peter

    2010-01-01

    Due to rising fuel costs, the substantial price for CO 2 emissions and decreasing wind power costs, wind power might become the least expensive source of power for an increasing number of power systems. This poses the questions of how wind power might change optimal investments in other forms of power production and what kind of means could be used to increase power system flexibility in order to incorporate the variable power production from wind power in a cost-effective manner. We have analysed possible effects using an investment model that combines heat and power production and simulates electric vehicles. The model runs in an hourly time scale in order to accommodate the impact of variable power production from wind power. Electric vehicles store electricity for later use and can thus serve to increase the flexibility of the power system. Flexibility can also be upgraded by using heat storages with heat from heat pumps, electric heat boilers and combined heat and power (CHP) plants. Results show that there is great potential for additional power system flexibility in the production and use of heat. (author)

  11. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  12. Performance study of solar stills with various absorbing materials and a sensible heat storage medium

    Directory of Open Access Journals (Sweden)

    Perumal Prakash

    2016-01-01

    Full Text Available In this paper, the productivity of the solar stills is enhanced by placing different wick materials on the inner walls of the basin. The experiments are conducted with three different wick materials, namely cotton cloth, jute cloth, and sponges. The wick materials are painted with black to increase the absorptivity. The productivity of the still with cotton cloth, jute cloth, and sponges are 38.56%, 31.37%, and 24.50%, respectively, more than the conventional still. The stills are also tested with wicks and pebbles and compared with the conventional still. The productivity of the still with cotton cloth with pebbles, jute cloth with pebbles and sponge with pebbles are 55.66%, 43.68%, and 33.33%, respectively, more than the conventional still.

  13. Development of latent heat storage systems. New storage materials and concepts for solar energy, efficient use, and spaceflight applications. Entwicklung von Latentwaermespeichern. Neue Speichermaterialien und Konzepte fuer Solarenergie, rationelle Energienutzung und Raumfahrtanwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Glueck, A.; Krause, S.; Lindner, F.; Staehle, H.J.; Tamme, R. (DLR, Stuttgart (Germany). Inst. fuer Technische Thermodynamik)

    1991-11-01

    To extend the operational range of thermal energy storage systems and to provide access to new fields of applications, it is necessary to develop storage systems with higher energy densities than can be achieved with conventional materials. Advanced storage concepts such as latent heat storage and chemical storage are suitable for this. (orig.).

  14. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads

    International Nuclear Information System (INIS)

    Ettouney, Hisham; Alatiqi, Imad; Al-Sahali, Mohammad; Al-Hajirie, Khalida

    2006-01-01

    Energy storage is an attractive option to conserve limited energy resources, where more than 50% of the generated industrial energy is discarded in cooling water and stack gases. This study focuses on the evaluation of heat transfer enhancement in phase change energy storage units. The experiments are performed using spherical capsules filled with paraffin wax and metal beads. The experiments are conducted by inserting a single spherical capsule filled with wax and metal beads in a stream of hot/cold air. Experimental measurements include the temperature field within the spherical capsule and in the air stream. To determine the enhancement effects of the metal beads, the measured data is correlated against those for a spherical capsule filled with pure wax. Data analysis shows a reduction of 15% in the melting and solidification times upon increasing the number and diameter of the metal beads. This reduction is caused by a similar decrease in the thermal load of the sphere due to replacement of the wax by metal beads. The small size of the spherical capsule limits the enhancement effects; this is evident upon comparison of the heat transfer in a larger size, double pipe energy storage unit, where 2% of the wax volume is replaced with metal inserts, result in a three fold reduction in the melting/solidification time and a similar enhancement in the heat transfer rate

  15. Thermal energy storage for building heating and cooling applications. Quarterly progress report, April--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, H.W.; Kedl, R.J.

    1976-11-01

    This is the first in a series of quarterly progress reports covering activities at ORNL to develop thermal energy storage (TES) technology applicable to building heating and cooling. Studies to be carried out will emphasize latent heat storage in that sensible heat storage is held to be an essentially existing technology. Development of a time-dependent analytical model of a TES system charged with a phase-change material was started. A report on TES subsystems for application to solar energy sources is nearing completion. Studies into the physical chemistry of TES materials were initiated. Preliminary data were obtained on the melt-freeze cycle behavior and viscosities of sodium thiosulfate pentahydrate and a mixture of Glauber's salt and Borax; limited melt-freeze data were obtained on two paraffin waxes. A subcontract was signed with Monsanto Research Corporation for studies on form-stable crystalline polymer pellets for TES; subcontracts are being negotiated with four other organizations (Clemson University, Dow Chemical Company, Franklin Institute, and Suntek Research Associates). Review of 10 of 13 unsolicited proposals received was completed by the end of June 1976.

  16. Colony formation by sublethally heat-injured Zygosaccharomyces rouxii as affected by solutes in the recovery medium and procedure for sterilizing medium.

    Science.gov (United States)

    Golden, D A; Beuchat, L R

    1990-01-01

    Recovery and colony formation by healthy and sublethally heat-injured cells of Zygosaccharomyces rouxii as influenced by the procedure for sterilizing recovery media (YM agar [YMA], wort agar, cornmeal agar, and oatmeal agar) were investigated. Media were supplemented with various concentrations of glucose, sucrose, glycerol, or sorbitol and sterilized by autoclaving (110 degrees C, 15 min) and by repeated treatment with steam (100 degrees C). An increase in sensitivity was observed when heat-injured cells were plated on glucose-supplemented YMA at an aw of 0.880 compared with aws of 0.933 and 0.998. Colonies which developed from unheated and heated cells on YMA at aws of 0.998 and 0.933 generally exceeded 0.5 mm in diameter within 3.5 to 4 days of incubation at 25 degrees C, whereas colonies formed on YMA at an aw of 0.880 typically did not exceed 0.5 mm in diameter until after 5.5 to 6.5 days of incubation. The number of colonies exceeding 0.5 mm in diameter which were formed by heat-injured cells on YMA at an aw of 0.880 was 2 to 3 logs less than the total number of colonies detected, i.e., on YMA at an aw of 0.933 and using no limits of exclusion based on colony diameter. A substantial portion of cells which survived heat treatment were sublethally injured as evidenced by increased sensitivity to a suboptimum aw (0.880). In no instance was recovery of Z. rouxii significantly affected by medium sterilization procedure when glucose or sorbitol was used as the aw-suppressing solute.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2403251

  17. Colony formation by sublethally heat-injured Zygosaccharomyces rouxii as affected by solutes in the recovery medium and procedure for sterilizing medium.

    Science.gov (United States)

    Golden, D A; Beuchat, L R

    1990-08-01

    Recovery and colony formation by healthy and sublethally heat-injured cells of Zygosaccharomyces rouxii as influenced by the procedure for sterilizing recovery media (YM agar [YMA], wort agar, cornmeal agar, and oatmeal agar) were investigated. Media were supplemented with various concentrations of glucose, sucrose, glycerol, or sorbitol and sterilized by autoclaving (110 degrees C, 15 min) and by repeated treatment with steam (100 degrees C). An increase in sensitivity was observed when heat-injured cells were plated on glucose-supplemented YMA at an aw of 0.880 compared with aws of 0.933 and 0.998. Colonies which developed from unheated and heated cells on YMA at aws of 0.998 and 0.933 generally exceeded 0.5 mm in diameter within 3.5 to 4 days of incubation at 25 degrees C, whereas colonies formed on YMA at an aw of 0.880 typically did not exceed 0.5 mm in diameter until after 5.5 to 6.5 days of incubation. The number of colonies exceeding 0.5 mm in diameter which were formed by heat-injured cells on YMA at an aw of 0.880 was 2 to 3 logs less than the total number of colonies detected, i.e., on YMA at an aw of 0.933 and using no limits of exclusion based on colony diameter. A substantial portion of cells which survived heat treatment were sublethally injured as evidenced by increased sensitivity to a suboptimum aw (0.880). In no instance was recovery of Z. rouxii significantly affected by medium sterilization procedure when glucose or sorbitol was used as the aw-suppressing solute.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Performance Evaluation of a Demonstration System with PCM for Seasonal Heat Storage: Charge with Evacuated Tubular Collectors

    DEFF Research Database (Denmark)

    Englmair, Gerald; Furbo, Simon; Kong, Weiqiang

    with sunshine, the storage system performance was evaluated regarding charge with solar heat. It shows the system behavior during typical operation resulting from the control strategy. Heat transfer rates from the solar collector array (22.4 m2 aperture area) to the heat stores reached a peak of 19 kW, when PCM......A seasonal heat storage with phase change material (PCM) for a solar space heating and domestic hot water combisystem was tested in automated operation during charge with solar collectors. A water tank was operating as buffer heat storage. Based on measurements during a representative day...... temperatures were increasing with the state of charge. This is in contrast to maximization of solar yield. However, the energy conversion efficiency (65 %) of the collector array was satisfying. By considering pump electricity consumption, an overall performance ratio of 30.8 was obtained....

  19. Entrapment of krypton in sputter deposited metals: a storage medium for radioactive gases

    International Nuclear Information System (INIS)

    Tingey, G.L.; McClanahan, E.D.; Bayne, M.A.; Moss, R.W.

    1979-04-01

    Sputter deposition of metals with a negative substrate bias results in a deposit containing relatively large concentrations of the sputtering gas. This phenomenon has been applied as a technique for storage of the radioactive gas, 85 Kr, which is generated in nuclear fuels for power production. Alloys which sputter to yield an amorphous product have been shown to contain up to 12 atom % Kr [42 cm 3 of Kr(STP)/g of deposit; concentration equivalent to a gas at 4380 psi pressure]. Release from these metals occurs at so low a rate that extrapolation to long times yields a 85 Kr release at 300 0 C of about 0.06% in 100 years. A preliminary evaluation of the engineering feasibility and economics of the sputtering process indicates that 85 Kr can be effectively trapped in a solid matrix with currently available techniques on a scale required for handling DOE-generated waste or commercial reprocessed fuels and that the cost should not be a limiting factor

  20. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  1. Simultaneous estimation of strength and position of a heat source in a participating medium using DE algorithm

    International Nuclear Information System (INIS)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P.M.V.

    2013-01-01

    An inverse heat transfer problem is discussed to estimate simultaneously the unknown position and timewise varying strength of a heat source by utilizing differential evolution approach. A two dimensional enclosure with isothermal and black boundaries containing non-scattering, absorbing and emitting gray medium is considered. Both radiation and conduction heat transfer are included. No prior information is used for the functional form of timewise varying strength of heat source. The finite volume method is used to solve the radiative transfer equation and the energy equation. In this work, instead of measured data, some temperature data required in the solution of the inverse problem are taken from the solution of the direct problem. The effect of measurement errors on the accuracy of estimation is examined by introducing errors in the temperature data of the direct problem. The prediction of source strength and its position by the differential evolution (DE) algorithm is found to be quite reasonable. -- Highlights: •Simultaneous estimation of strength and position of a heat source. •A conducting and radiatively participating medium is considered. •Implementation of differential evolution algorithm for such kind of problems. •Profiles with discontinuities can be estimated accurately. •No limitation in the determination of source strength at the final time

  2. MHD flow of a micropolar fluid over a stretchable disk in a porous medium with heat and mass transfer

    Directory of Open Access Journals (Sweden)

    A. Rauf

    2015-07-01

    Full Text Available This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.

  3. MHD flow of a micropolar fluid over a stretchable disk in a porous medium with heat and mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Meraj, M. A. [Department of Mathematics, CIIT Sahiwal 57000 (Pakistan); Ashraf, M.; Batool, K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Hussain, M. [Department of Sciences & Humanities, National University of computer & Emerging Sciences, Islamabad 44000 (Pakistan)

    2015-07-15

    This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.

  4. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

    Science.gov (United States)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2017-07-01

    We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

  5. Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

    Directory of Open Access Journals (Sweden)

    Yannan Zhang

    2016-10-01

    Full Text Available To store low-temperature heat below 100 °C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES system, thermochemical characterizations were implemented through simulative sorption experiments at 30 °C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

  6. Assessment of adsorbate density models for numerical simulations of zeolite-based heat storage applications

    International Nuclear Information System (INIS)

    Lehmann, Christoph; Beckert, Steffen; Gläser, Roger; Kolditz, Olaf; Nagel, Thomas

    2017-01-01

    Highlights: • Characteristic curves fit for binderless Zeolite 13XBFK. • Detailed comparison of adsorbate density models for Dubinin’s adsorption theory. • Predicted heat storage densities robust against choice of density model. • Use of simple linear density models sufficient. - Abstract: The study of water sorption in microporous materials is of increasing interest, particularly in the context of heat storage applications. The potential-theory of micropore volume filling pioneered by Polanyi and Dubinin is a useful tool for the description of adsorption equilibria. Based on one single characteristic curve, the system can be extensively characterised in terms of isotherms, isobars, isosteres, enthalpies etc. However, the mathematical description of the adsorbate density’s temperature dependence has a significant impact especially on the estimation of the energetically relevant adsorption enthalpies. Here, we evaluate and compare different models existing in the literature and elucidate those leading to realistic predictions of adsorption enthalpies. This is an important prerequisite for accurate simulations of heat and mass transport ranging from the laboratory scale to the reactor level of the heat store.

  7. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture

    Science.gov (United States)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  8. Nuclear heat-load limits for above-grade storage of solid transuranium wastes

    International Nuclear Information System (INIS)

    Clontz, B.G.

    1978-06-01

    Nuclear safety and heat load limits were established for above-grade storage of transuranium (TRU) wastes. Nuclear safety limits were obtained from a study by J.L. Forstner and are summarized. Heat load limits are based on temperature calculations for TRU waste drums stored in concrete containers (hats), and results are summarized. Waste already in storage is within these limits. The limiting factors for individual drum heat load limits were (1) avoidance of temperatures in excess of 190 0 F (decomposition temperature of anion resin) when anion resin is present in a concrete hat, and (2) avoidance of temperatures in excess of 450 0 F (ignition temperature of paper) at any point inside a waste drum. The limiting factor for concrete had heat load limits was avoidance of temperatures in excess of 265 0 F (melt point of high density polyethylene) at the drum liners. A temperature profile for drums and hats filled to recommended limits is shown. Equations and assumptions used were conservative

  9. Fiscal 1980 Sunshine Project research report. Development of hydrothermal power plant. Development of binary cycle power plant (Research on heat cycle, heat medium, material and heat medium turbine); 1980 nendo nessui riyo hatsuden plant no kaihatsu seika hokokusho. Binary cycle hatsuden plant no kaihatsu (netsu cycle oyobi netsubaitai no kenkyu, zairyo no kenkyu narabini netsubaitai turbine no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report summarizes the fiscal 1980 research result on each element of the next 10MW class geothermal binary cycle power plant, following last year. In the research on heat cycle and heat medium, measurement was made on the liquid density, vapor density, liquid specific heat, vapor specific heat and thermal conductivity of 8 heat media to prepare the precise pressure enthalpy chart. The thermal stability of each medium was also measured under a flow condition. The heat cycle of each medium was calculated in a hydrothermal temperature range of 120-160 degrees C for evaluation of its output. In the research on material, field corrosion test and laboratory simulation were made on 3 kinds of heat exchanger martials for acidic hot water to study the corrosion behavior of welding members. In the research on heat medium turbine, study was made on sealing characteristics such as differential pressure, flow rate and friction of sealing oil for oil film seal and mechanical seal as shaft seal devices of heat medium turbines for the 10MW class geothermal plant. (NEDO)

  10. Ion-implanted PLZT ceramics: a new high-sensitivity image storage medium

    International Nuclear Information System (INIS)

    Peercy, P.S.; Land, C.E.

    1980-01-01

    Results were presented of our studies of photoferroelectric (PFE) image storage in H- and He-ion implanted PLZT (lead lanthanum zirconate titanate) ceramics which demonstrate that the photosensitivity of PLZT can be significantly increased by ion implantation in the ceramic surface to be exposed to image light. More recently, implantations of Ar and Ar + Ne into the PLZT surface have produced much greater photosensitivity enhancement. For example, the photosensitivity after implantation with 1.5 x 10 14 350 keV Ar/cm 2 + 1 x 10 15 500 keV Ne/cm 2 is increased by about four orders of magnitude over that of unimplanted PLZT. Measurements indicate that the photosensitivity enhancement in ion-implanted PLZT is controlled by implantation-produced disorder which results in marked decreases in dielectric constant and dark conductivity and changes in photoconductivity of the implanted layer. The effects of Ar- and Ar + Ne-implantation are presented along with a phenomenological model which describes the enhancement in photosensitivity obtained by ion implantation. This model takes into account both light- and implantation-induced changes in conductivity and gives quantitative agreement with the measured changes in the coercive voltage V/sub c/ as a function of near-uv light intensity for both unimplanted and implanted PLZT. The model, used in conjunction with calculations of the profiles of implantation-produced disorder, has provided the information needed for co-implanting ions of different masses, e.g., Ar and Ne, to improve photosensitivity

  11. Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate

    International Nuclear Information System (INIS)

    Wang, Wei-Wei; Wang, Liang-Bi; He, Ya-Ling

    2016-01-01

    Highlights: • The parameter effect on the performance of PCTES unit using fins is reported. • The configurations of PCTES unit using fins in optimum performance are suggested. • Two parameters to indicate the effects of PCM and tube material properties are found. • The working conditions of PCTES unit using fins in optimum performance are analyzed. - Abstract: The performance of a phase change thermal energy storage (PCTES) unit using circular finned tube is affected by many parameters. Thorough studies of the parameter effect on the performance of PCTES unit are strongly required in its optimum design process. Based on a reported energy efficiency ratio and a newly defined parameter named the heat storage rate, the parameter effect on the performance of PCTES unit using circular finned tube is numerically investigated. When the fin pitch is greater than 4 times of the inner radius of the tube, the fin height and the fin thickness have little effect on the energy efficiency ratio and the heat storage rate. When the fin pitch is small, the performance of PCTES unit becomes better using large fin height and width. The energy efficiency ratio and the heat storage rate are more sensitive to the outer tube diameter. The performance of PCTES unit using circular finned tube is best when water is used as the heat transfer fluid (HTF). When the fluid flow of HTF is in a laminar state, the energy efficiency ratio and the heat storage rate are larger than that in a turbulent state.

  12. Freestanding, heat resistant microporous film for use in energy storage devices

    Science.gov (United States)

    Pekala, Richard W.; Cherukupalli, Srinivas; Waterhouse, Robert R.

    2018-02-20

    Preferred embodiments of a freestanding, heat resistant microporous polymer film (10) constructed for use in an energy storage device (70, 100) implements one or more of the following approaches to exhibit excellent high temperature mechanical and dimensional stability: incorporation into a porous polyolefin film of sufficiently high loading levels of inorganic or ceramic filler material (16) to maintain porosity (18) and achieve low thermal shrinkage; use of crosslinkable polyethylene to contribute to crosslinking the polymer matrix (14) in a highly inorganic material-filled polyolefin film; and heat treating or annealing of biaxially oriented, highly inorganic material-filled polyolefin film above the melting point temperature of the polymer matrix to reduce residual stress while maintaining high porosity. The freestanding, heat resistant microporous polymer film embodiments exhibit extremely low resistance, as evidenced by MacMullin numbers of less than 4.5.

  13. Retrospective dosimetry: dose evaluation using unheated and heated quartz from a radioactive waste storage building

    International Nuclear Information System (INIS)

    Jain, M.; Boetter-Jensen, L.; Murray, A.S.; Jungner, H.

    2002-01-01

    In the assessment of dose received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using heated materials such as household ceramics and bricks. However, unheated materials such as mortar and concrete are more commonly found in industrial sites and particularly in nuclear installations. These materials contain natural dosemeters such as quartz, which usually is less sensitive than its heated counterpart. The potential of quartz extracted from mortar is a wall of a low-level radioactive-waste storage facility containing distributed sources of 60 Co and 13C s has been investigated. Dose-depth profiles based on small aliquots and single grains from the quartz extracted from the mortar samples are reported here. These are compared with results from heated quartz and polymineral fine grains extracted from an adjacent brick, and the integrated dose recorded by environmental TLDs. (author)

  14. Retrospective dosimetry: Dose evaluation using unheated and heated quartz from a radioactive waste storage building

    DEFF Research Database (Denmark)

    Jain, M.; Bøtter-Jensen, L.; Murray, A.S.

    2002-01-01

    In the assessment of dose received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using heated materials such as household ceramics and bricks. However, unheated materials such as mortar and concrete are more commonly found in industrial sites......-137 has been investigated. Dose-depth profiles based on small aliquots and single grains from the quartz extracted from the mortar samples are reported here. These are compared with results from heated quartz and polymineral fine grains extracted from an adjacent brick, and the integrated dose...... and particularly in nuclear installations. These materials contain natural dosemeters Such as quartz. which usually is less sensitive than its heated counterpart. The potential of quartz extracted from mortar in a wall of a low-level radioactive-waste storage facility containing distributed sources of Co-60 and Cs...

  15. Computational modeling of latent-heat-storage in PCM modified interior plaster

    Energy Technology Data Exchange (ETDEWEB)

    Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek [Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague (Czech Republic)

    2016-06-08

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.

  16. Heat transfer from aluminum to He II: application to superconductive magnetic energy storage

    International Nuclear Information System (INIS)

    Van Sciver, S.W.; Boom, R.W.

    1979-01-01

    Heat transfer problems associated with large scale Superconductive Magnetic Energy Storage (SMES) are unique due to the proposed size of a unit. The Wisconsin design consists of a cryogenically stable magnet cooled with He II at 1.8 K. The special properties of He II (T 2 at 1.91 K and a recovery at 0.7 W/cm 2 . The advantages of operating the magnet under subcooled conditions are exemplified by improved heat transfer. The maximum at 1.89 K and 1.3 atm pressure is 2.3 W/cm 2 with recovery enhanced to 1.9 W/cm 2 . A conservative maximum heat flux of 0.5 W/cm 2 with an associated temperature difference of 0.5 K has been chosen for design. Elements of the experimental study as well as the design will be discussed

  17. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material

    International Nuclear Information System (INIS)

    Tiari, Saeed; Qiu, Songgang; Mahdavi, Mahboobe

    2015-01-01

    Highlights: • A finned heat pipe-assisted latent heat thermal energy storage system is studied. • The effects of heat pipes spacing and fins geometrical features are investigated. • Smaller heat pipes spacing and longer fins improve the melting rate. • The optimal heat pipe and fin arrangements are determined. - Abstract: In the present study, the thermal characteristics of a finned heat pipe-assisted latent heat thermal energy storage system are investigated numerically. A transient two-dimensional finite volume based model employing enthalpy-porosity technique is implemented to analyze the performance of a thermal energy storage unit with square container and high melting temperature phase change material. The effects of heat pipe spacing, fin length and numbers and the influence of natural convection on the thermal response of the thermal energy storage unit have been studied. The obtained results reveal that the natural convection has considerable effect on the melting process of the phase change material. Increasing the number of heat pipes (decreasing the heat pipe spacing) leads to the increase of melting rate and the decrease of base wall temperature. Also, the increase of fin length results in the decrease of temperature difference within the phase change material in the container, providing more uniform temperature distribution. It was also shown that number of the fins does not have a significant effect on the performance of the system

  18. Two-dimensional nonlinear heat conduction wave in a layer-inhomogeneous medium and the characteristics of heat transfer in laser thermonuclear fusion targets

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Doskach, I Ya

    1999-01-01

    An analytical solution is obtained to the problem of propagation of a 2-D nonlinear heat conduction wave from a cylindrical energy source, which acts in a planar layer of a material surrounded by a medium with different mass density and degree of ionisation. A theoretical justification is given of several interesting phenomena of 2-D thermal wave propagation through an inhomogeneous medium. These phenomena are related to the difference between the thermal wave velocities in the media with different thermal diffusivities. When the mass density in a layer experiencing the action of an energy source exceeds the density of the surrounding medium, the thermal wave front is shown to glide along the layer boundaries with a spatial velocity exceeding the velocity of the wave inside the layer. Moreover, there is a possibility of 'themal flow' of a layer across the boundaries between the layer and the surrounding medium in front of a thermal wave propagating inside the layer. The problems of heat transfer in multilayer targets for laser thermonuclear fusion are considered as an application. (interaction of laser radiation with matter. laser plasma)

  19. Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; Wolfe, Edward [MAHLE Behr Troy Inc.; LaClair, Tim J. [ORNL; Gao, Zhiming [ORNL; Levin, Michael [Ford Motor Company; Demitroff, Danrich [Ford Motor Company; Shaikh, Furqan [Ford Motor Company

    2017-03-01

    It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work.The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements. The final system development for EV implementation has occurred on a mid-range EV and has been evaluated for its capability to extend the driving range. Both simulated driving in a climatic tunnel and actual road testing have been carried out. The ePATHS has demonstrated its ability to supply the entire cabin heating needs for a round trip commute totaling 46 minutes, including 8 hours of parking, at an ambient temperature of -10°C.

  20. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    Science.gov (United States)

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  1. Performance of a day/night water heat storage system for heating and cooling of semi-closed greenhouses in mild winter climate

    NARCIS (Netherlands)

    Baeza, E.J.; Pérez Parra, J.J.; López, J.C.; Gázquez, J.C.; Meca, D.E.; Stanghellini, C.; Kempkes, F.L.K.; Montero, J.I.

    2012-01-01

    A novel system for heating/cooling greenhouses based on air/water heat exchangers connected to a thermally stratified water storage tank was tested in a small greenhouse compartment at the Experimental Station of the Cajamar Foundation in Almería, Spain. The system maintained a closed greenhouse (no

  2. Solar district heating and seasonal heat storage - state of the art; Solare Nahwaerme und Saisonale Waermespeicherung - Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    Pfeil, M.; Hahne, E. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany). Geschaeftsbereich Solarthermische Energietechnik; Lottner, V. [BEO Biologie, Energie Oekologie, Juelich (Germany); Schulz, M. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik

    1998-02-01

    Solar energy technology becomes more and more important for space and water heating of residential buildings. Compared to small systems for single-family houses, the specific investment cost of big solar plants is lower and a higher contribution of solar energy can be achieved. In central solar heating plants with seasonal storage (CSHPSS), more than 50% of the total heat demand of residential areas can be covered by solar energy. The first pilot plants for CSHPSS are operating in Germany since 1996. The first results of the accompanying monitoring program show good agreement between calculated and actual solar contribution. (orig.) [Deutsch] Die Nutzung solarer Niedertemperaturwaerme zur Brauchwassererwaermung und zur Beheizung von Wohngebaeuden erfaehrt in Deutschland ein immer groesseres Interesse. Solare Grossanlagen haben gegenueber solaren Kleinanlagen den Vorteil, dass mit geringeren Investitions- und Waermekosten groessere Anlagenertraege erzielt werden koennen. In Verbindung mit saisonaler Waermespeicherung erreichen solare Grossanlagen Deckungsanteile von 50% und darueber am Gesamtwaermebedarf von Wohnsiedlungen. Die ersten Pilotanlagen zur solaren Nahwaerme mit saisonalem Waermespeicher gingen 1996 in Betrieb und werden derzeit detailliert vermessen. Erste Ergebnisse zeigen, dass die vorausberechneten Werte fuer den Jahresenergieertrag erreicht werden koennen. (orig.)

  3. Solar cooker of the portable parabolic type incorporating heat storage based on PCM

    International Nuclear Information System (INIS)

    Lecuona, Antonio; Nogueira, José-Ignacio; Ventas, Rubén; Rodríguez-Hidalgo, María-del-Carmen; Legrand, Mathieu

    2013-01-01

    Highlights: ► A portable utensil for commercial paraboloid type solar cookers is proposed. ► It includes heat storage with phase change materials (PCMs). ► The utensil is stored indoors in a thermally insulating box after charging. ► A thermal 1-D model predicts its performance in sunny days. ► The set allows cooking lunch, dinner and next day the breakfast for a family. - Abstract: This paper reviews relevant issues on solar cooking in order to define and evaluate an innovative layout of a portable solar cooker of the standard concentrating parabolic type that incorporates a daily thermal storage utensil. This utensil is formed by two conventional coaxial cylindrical cooking pots, an internal one and a larger external one. The void space between the two coaxial pots is filled with a phase change material (PCM) forming an intermediate jacket. The ensemble is thermally simulated using 1-D finite differences. A lumped elements model with convective heat transfer correlations is used for the internal behavior of the utensil, subjected to external radiation. This numerical model is used to study its transient behavior for the climatic conditions of Madrid, and validated with experimental data. Two options have been checked as possible PCMs: technical grade paraffin and erythritol. The results indicate that cooking the lunch for a family is possible simultaneously with heat storage along the day. Keeping afterwards the utensil inside an insulating box indoors allows cooking the dinner with the retained heat and also the next day breakfast. This expands the applicability of solar cooking and sustains the possibility of all the day around cooking using solar energy with a low inventory cost

  4. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  5. Advice on Sustainable Use of the Underground for Heat and Cold Storage; Advies Duurzaam Gebruik van de Bodem voor WKO

    Energy Technology Data Exchange (ETDEWEB)

    Oomes, J.

    2009-09-15

    Insights and ideas are given and discussed with regard to sustainable use of soil and underground for heat and cold storage. Also attention is paid to the marginal conditions for the application of heat and cold storage [Dutch] Inzichten en ideeen worden gegeven en besproken over duurzaam gebruik van de bodem voor warmte- koudeopslag (WKO). Daarnaast worden ook de randvoorwaarden van WKO in kaart gebracht.

  6. A mathematical model for two-phase water, air, and heat flow around a linear heat source emplaced in a permeable medium

    International Nuclear Information System (INIS)

    Doughty, C.; Pruess, K.

    1991-03-01

    A semianalytical solution for transient two-phase water, air, and heat flow in a uniform porous medium surrounding a constant-strength linear heat source has been developed, using a similarity variable η=r/√t (r is radial distance, t is time). Although the similarity transformation requires a simplified radial geometry, all the physical mechanisms involved in two-phase fluid and heat flow may be taken into account in a rigorous way. The solution includes nonlinear thermophysical fluid and material properties, such as relative permeability and capillary pressure variations with saturation, and density and viscosity variations with temperature and pressure. The resulting governing equations form a set of coupled nonlinear ODEs, necessitating numerical integration. The solution has been applied to a partially saturated porous medium initially at a temperature well below the saturation temperature, which is the setting for the potential nuclear waste repository site at Yucca Mountain, Nevada. The resulting heat and fluid flows provide a stringent test of many of the capabilities of numerical simulation models, making the similarity solution a useful tool for model verification. Comparisons to date have shown excellent agreement between the TOUGH2 simulator and the similarity solution for a variety of conditions. 13 refs., 6 figs., 1 tab

  7. Current status of and problems in ice heat storage systems contributing to improving load rate. Air conditioning system utilizing ice heat storage and building frame storage (Takenaka Corporation); Fukaritsu kaizen ni kokensuru kori chikunetsu system no genjo to kadai. Kori chikunetsu to kutai chikunetsu wo riyoshita kucho system

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y.; Yoshitake, Y. [Takenaka Corp., Osaka (Japan)

    1998-02-01

    Development was made on a new air conditioning system, `building frame heat storage air conditioning system`, which combines an ice heat storage system with a building frame heat storage. With the building frame heat storage system, a damper is installed on an indoor device to blow cold air from the air conditioner onto slabs on the upper floor during nighttime power generating period. Heat is stored in beams, pillars and walls, and the shell absorbs and dissipates heat during daytime. Since general office buildings consume primary energy at 22.8% for heat source and 26.9% for transportation, which is greater, a natural coolant circulation type air conditioning system was developed as an air conditioning system for the secondary side. This made the building frame heat regeneration possible for the first time. With regard to heat storage quantity and heat dissipation quantity, the quantity of heat which can be stored during nighttime (10 hours) and dissipated during air conditioning using period in daytime (10 hours) is 80% of the stored heat quantity. This system was installed in a building in Kobe City. As a result of the measurement, it was found that indoor heat load reduction rate as a result of using the building frame heat storage was 24% or more in summer and 80% or more in winter. 7 figs., 2 tabs.

  8. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical...... power.This paper combines a dynamic model based on empirical data of the HP/ORC system with lessons learned from 140 heat pump installations operating in real-life conditions in a cold climate. These installations were monitored for a period up to 5 years.Based on the aforementioned model and real......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water...

  9. Thermal energy storage in the form of heat or cold with using of the PCM-based accumulation panels

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2016-01-01

    Full Text Available This article describes the usage of thermal energy storage in the form of heat and cold with an adaptation of the special device which is composed of the thermal panels. These panels are based on the phase change materials (PCM for normal inner environment temperature in buildings. The energy for the thermal energy storage is possible to get from built-in electric heating foil or from the tube heat exchanger, which is build in the thermal panels. This technology is able to use renewable energy sources, for example, solar thermal collectors and air-to-water heat pump as a source of heat for heating of the hot water tank. In the cooling mode, there is able to use the heat pump or photovoltaics panels in combination with thermoelectric coolers for cooling.

  10. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; WolfeIV, Edward [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; LaClair, Tim J [ORNL; Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  11. A Preliminary Study on Rock Bed Heat Storage from Biomass Combustion for Rice Drying

    Science.gov (United States)

    Nelwan, L. O.; Wulandani, D.; Subrata, I. D. M.

    2018-05-01

    One of the main constraints of biomass fuel utilization in a small scale rice drying system is the operating difficulties related to the adjustment of combustion/feeding rate. Use of thermal storage may reduce the problem since combustion operation can be accomplished in a much shorter time and then the use of heat can be regulated by simply adjusting the air flow. An integrated biomass furnace-rock bed thermal storage with a storage volume of 540 L was designed and tested. There were four experiments conducted in this study. Charging was performed within 1-2 hours with a combustion rate of 11.5-15.5 kg/h. In discharging process, the mixing of air passing through the rock bed and ambient air were regulated by valves. Without adjusting the valve during the discharging process, air temperature increased up to 80°C, which is not suitable for rice batch drying process. Charging with sufficiently high combustion rate (14 kg/h) within 1 hour continued by adjusting the valve during discharging process below 60°C increased the discharge-charge time ratio (DCTR) up to 5.33 at average air temperature of 49°C and ambient temperature of 33°C.The efficiency of heat discharging was ranged from 34.5 to 45.8%. From the simulation, as much as 156.8-268.8 kg of rice was able to be dried by the discharging conditions.

  12. Heat storage in the Hettangian aquifer in Berlin - results from a column experiment

    Science.gov (United States)

    Milkus, Chri(Sch)augott

    2015-04-01

    Aquifer Thermal Energy Storage (ATES) is a sustainable alternative for storage and seasonal availability of thermal energy. However, its impact on the subsurface flow regime is not well known. In Berlin (Germany), the Jurassic (Hettangian) sandstone aquifer with highly mineralized groundwater (TDS 27 g/L) is currently used for heat storage. The aim of this study was to examine the hydrogeochemical changes that are caused by the induced temperature shift and its effects on the hydraulic permeability of the aquifer. Column experiments were conducted, in which stainless steel columns were filled with sediment from the aquifer and flushed with native groundwater for several weeks. The initial temperature of the experiment was 20°C, comparable to the in-situ conditions within the aquifer. After reaching equilibrium between sediment and water, the temperature was increased to simulate heating of the aquifer. During the experiment, physical and chemical parameters (pH, ORP, dissolved oxygen and dissolved carbon dioxide) were measured at the outflow of the column and the effluent water was sampled. Using a Scanning Electron Microscope, the deposition of precipitated minerals and biofilm on sediment grains was analyzed. Changes in hydraulic properties of the sediment were studied by the use of tracer tests with Uranin.

  13. Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy converters associated with a medium scale local energy storage

    International Nuclear Information System (INIS)

    Babarit, A.; Clement, A.H.; Duclos, G.; Ben Ahmed, H.; Debusschere, V.; Multon, B.; Robin, G.

    2006-01-01

    The problem of sizing an electricity storage for a 5000 inhabitants island supplied by both marine renewables (offshore wind and waves) and the mainland grid is addressed by a case study based on a full year resource and consumption data. Generators, transmission lines and battery storage are accounted for through basic simplified models while the focus is put on electricity import/export budget. Self-sufficiency does not seem a reasonable goal to pursue, but partial autonomy provided by renewable sources and a medium size storage would probably be profitable to the island community. (author)

  14. Heat storage in Asian elephants during submaximal exercise: behavioral regulation of thermoregulatory constraints on activity in endothermic gigantotherms.

    Science.gov (United States)

    Rowe, M F; Bakken, G S; Ratliff, J J; Langman, V A

    2013-05-15

    Gigantic size presents both opportunities and challenges in thermoregulation. Allometric scaling relationships suggest that gigantic animals have difficulty dissipating metabolic heat. Large body size permits the maintenance of fairly constant core body temperatures in ectothermic animals by means of gigantothermy. Conversely, gigantothermy combined with endothermic metabolic rate and activity likely results in heat production rates that exceed heat loss rates. In tropical environments, it has been suggested that a substantial rate of heat storage might result in a potentially lethal rise in core body temperature in both elephants and endothermic dinosaurs. However, the behavioral choice of nocturnal activity might reduce heat storage. We sought to test the hypothesis that there is a functionally significant relationship between heat storage and locomotion in Asian elephants (Elephas maximus), and model the thermoregulatory constraints on activity in elephants and a similarly sized migratory dinosaur, Edmontosaurus. Pre- and post-exercise (N=37 trials) measurements of core body temperature and skin temperature, using thermography were made in two adult female Asian elephants at the Audubon Zoo in New Orleans, LA, USA. Over ambient air temperatures ranging from 8 to 34.5°C, when elephants exercised in full sun, ~56 to 100% of active metabolic heat production was stored in core body tissues. We estimate that during nocturnal activity, in the absence of solar radiation, between 5 and 64% of metabolic heat production would be stored in core tissues. Potentially lethal rates of heat storage in active elephants and Edmontosaurus could be behaviorally regulated by nocturnal activity.

  15. Combined effect of thermal dispersion and variable viscosity of non-darcy convection heat transfer in a fluidsaturated porous medium

    KAUST Repository

    El-Amin, Mohamed

    2013-01-01

    In this paper, the effects of thermal dispersion and variable viscosity on the non-Darcy free, mixed, and forced convection heat transfer along a vertical flat plate embedded in a fluid-saturated porous medium are investigated. Forchheimer extension is employed in the flow equation to express the non-Darcy model. The fluid viscosity varies as an inverse linear function of temperature. The coefficient of thermal diffusivity has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. Similarity solutions of the governing equations, for an isothermally heated plate, are obtained. Effects of the physical parameters, which govern the problem, on the rate of heat transfer in terms of Nusselt number, the slip velocity, and the boundary layer thickness, for the two cases Darcy and non-Darcy, are shown on graphs or entered in tables. © 2013 by Begell House, Inc.

  16. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    Science.gov (United States)

    Bhadauria, B. S.; Singh, M. K.; Singh, A.; Singh, B. K.; Kiran, P.

    2016-12-01

    In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  17. Stability Analysis and Internal Heating Effect on Oscillatory Convection in a Viscoelastic Fluid Saturated Porous Medium Under Gravity Modulation

    Directory of Open Access Journals (Sweden)

    Bhadauria B.S.

    2016-12-01

    Full Text Available In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.

  18. Influence of heat transfer on Poiseuille flow of MHD Jeffrey fluid through porous medium with slip boundary conditions

    Science.gov (United States)

    Ramesh, K.

    2017-07-01

    In the current article, we have discussed the Poiseuille flow of an incompressible magnetohydrodynamic Jeffrey fluid between parallel plates through homogeneous porous medium using slip boundary conditions under the effect of heat transfer. The equations governing the fluid flow are modeled in Cartesian coordinate system. The energy equation is considered under the effects viscous dissipation and heat generation. Analytical solutions for the velocity and temperature profiles are obtained. The effects of the various involved parameters on the velocity and temperature profiles are studied and the results are presented through the graphs. It is observed from our analysis that, with increase of slip parameter and pressure gradient increase the velocity. The temperature is an increasing function of heat generation parameter, Brinkman number, thermal slip parameter and non-Newtonian fluid parameter.

  19. Thermal analysis of heat storage canisters for a solar dynamic, space power system

    Science.gov (United States)

    Wichner, R. P.; Solomon, A. D.; Drake, J. B.; Williams, P. T.

    1988-01-01

    A thermal analysis was performed of a thermal energy storage canister of a type suggested for use in a solar receiver for an orbiting Brayton cycle power system. Energy storage for the eclipse portion of the cycle is provided by the latent heat of a eutectic mixture of LiF and CaF2 contained in the canister. The chief motivation for the study is the prediction of vapor void effects on temperature profiles and the identification of possible differences between ground test data and projected behavior in microgravity. The first phase of this study is based on a two-dimensional, cylindrical coordinates model using an interim procedure for describing void behavor in 1-g and microgravity. The thermal analysis includes the effects of solidification front behavior, conduction in liquid/solid salt and canister materials, void growth and shrinkage, radiant heat transfer across the void, and convection in the melt due to Marangoni-induced flow and, in 1-g, flow due to density gradients. A number of significant differences between 1-g and o-g behavior were found. This resulted from differences in void location relative to the maximum heat flux and a significantly smaller effective conductance in 0-g due to the absence of gravity-induced convection.

  20. Heat storage in underground caverns - measurements and simulations; Speicherung von Waerme in Grubenraeumen - Messung und Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schaberg, A; Krause, H; Poetke, W [TU Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Technische Thermodynamik

    1997-12-01

    Among the different discussed underground concepts for longterm storing of solar or waste heat old waterfilled mines can be an interesting solution. To examine the temperature behaviour of this storage type a testing store is built in a mine belonging to the Freiberg University of Mining and Technology in Saxonia. In a longterm project temperatures are measured inside the water volume and in the adjacent rock. The temperature behaviour depends on the operating conditions. Inside the water volume temperature stratification can be observed. During loading and standstill heat is transported into the rock surrounding. A certain part of this amount of heat can be discharged again. For designing and optimizing this storage type a numerical modell is developed. The modell is validated with experimental data from the testing plant. (orig.) [Deutsch] Unter den verschiedenen, in der Diskussion stehenden Untegrund-Waermespeichern fuer Solarwaerme oder Abwaerme bieten sich auch geflutete Gruben als Waermespeicher an. Zur Untersuchung des Temperaturverhaltens dieses Speichertyps ist im Saechsischen Lehr- und Besucherbergwerk der TU Bergakademie Freiberg ein Versuchsspeicher errichtet worden. In einem Langzeitversuch wird das Temperaturfeld im Wasser und im angrenzenden Gestein aufgezeichnet. Das Temperaturverhalten ist von den Betriebsgroessen abhaengig. Im Grubenwasser stellt sich eine stabile Temperaturschichtung ein. Waehrend der Beladung und der Stillstandszeiten wird Waerme in die Gesteinsumgebung transportiert. Ein Teil dieser Waermemenge kann wider entspeichert werden. Zur Auslegung und Optimierung von Gruben-Waermespeichern ist ein numerisches Modell entwickelt worden. Das Modell ist anhand der Messergebnisse des Versuchsspeichers validiert worden. (orig.)

  1. FY 17 Q1 Commercial integrated heat pump with thermal storage milestone report

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    The commercial integrated heat pump with thermal storage (AS-IHP) offers significant energy saving over a baseline heat pump with electric water heater. The saving potential is maximized when the AS-IHP serves coincident high water heating and high space cooling demands. A previous energy performance analysis showed that the AS-IHP provides the highest benefit in the hot-humid and hot-dry/mixed dry climate regions. Analysis of technical potential energy savings for these climate zones based on the BTO Market calculator indicated that the following commercial building market segments had the highest water heating loads relative to space cooling and heating loads education, food service, health care, lodging, and mercantile/service. In this study, we focused on these building types to conservatively estimate the market potential of the AS-IHP. Our analysis estimates maximum annual shipments of ~522,000 units assuming 100% of the total market is captured. An early replacement market based on replacement of systems in target buildings between 15 and 35 years old was estimated at ~136,000 units. Technical potential energy savings are estimated at ~0.27 quad based on the maximum market estimate, equivalent to ~13.9 MM Ton CO2 emissions reduction.

  2. Full Scale Investigation of the Dynamic Heat Storage of Concrete Decks with PCM and Enhanced Heat Transfer Surface Area

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    The paper presents the full-scale experimental investigation of the dynamic heat storage potential of the prefabricated hollow core deck elements with and without phase change material (PCM) and with and without increased bottom surface area of the decks. In the presented investigation five types...... of hollow core decks with different surfaces on the bottom are investigated: reference deck made of standard concrete and flat surface, deck with special mortar grooved tiles, deck with flat mortar tiles, deck with grooved mortar and phase change material tiles, deck with flat mortar and phase change...... material tiles. The experimental investigation presented in the paper is performed in the specially designed modified hot box apparatus that allows maintaining periodic steady-state tests with the full-scale concrete deck elements. The presented research investigates if the extended surface area and PCM...

  3. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  4. Energy storage using phase-change materials for active solar heating and cooling: An evaluation of future research and development direction

    Science.gov (United States)

    Borkowski, R. J.; Stovall, T. K.; Kedl, R. J.; Tomlinson, J. J.

    1982-04-01

    The current state of the art and commercial potential of active solar heating and cooling systems for buildings, and the use of thermal energy storage with these systems are assessed. The need for advanced latent heat storage subsystems in these applications and priorities for their development are determined. Latent storage subsystems are advantageous in applications where their compactness may be exploited. It is suggested that subsystems could facilitate storage in retrofit applications in which storage would be physically impossible otherwise.

  5. Experimental investigation on AC unit integrated with sensible heat storage (SHS)

    Science.gov (United States)

    Aziz, N. A.; Amin, N. A. M.; Majid, M. S. A.; Hussin, A.; Zhubir, S.

    2017-10-01

    The growth in population and economy has increases the energy demand and raises the concerns over the sustainable energy source. Towards the sustainable development, energy efficiency in buildings has become a prime objective. In this paper, the integration of thermal energy storage was studied. This paper presents an experimental investigation on the performance of an air conditioning unit integrated with sensible heat storage (SHS) system. The results were compared to the conventional AC systems in the terms of average electricity usage, indoor temperature and the relative humidity inside the experimented room (cabin container). Results show that the integration of water tank as an SHS reduces the electricity usage by 5%, while the integration of well-insulated water tank saves up to 8% of the electricity consumption.

  6. CFD Simulation of Heat and Fluid Flow for Spent Fuel in a Dry Storage

    International Nuclear Information System (INIS)

    In, Wangkee; Kwack, Youngkyun; Kook, Donghak; Koo, Yanghyun

    2014-01-01

    A dry storage system is used for the interim storage of spent fuel prior to permanent depository and/or recycling. The spent fuel is initially stored in a water pool for more than 5 years at least after dispatch from the reactor core and is transported to dry storage. The dry cask contains a multiple number of spent fuel assemblies, which are cooled down in the spent fuel pool. The dry cask is usually filled up with helium gas for increasing the heat transfer to the environment outside the cask. The dry storage system has been used for more than a decade in United States of America (USA) and the European Union (EU). Korea is also developing a dry storage system since its spent fuel pool is anticipated to be full within 10 years. The spent fuel will be stored in a dry cask for more than 40 years. The integrity and safety of spent fuel are important for long-term dry storage. The long-term storage will experience the degradation of spent fuel such as the embrittlement of fuel cladding, thermal creep and hydride reorientation. High burn-up fuel may expedite the material degradation. It is known that the cladding temperature has a strong influence on the material degradation. Hence, it is necessary to accurately predict the local distribution of the cladding temperature using the Computational Fluid Dynamics (CFD) approach. The objective of this study is to apply the CFD method for predicting the three-dimensional distribution of fuel temperature in a dry cask. This CFD study simulated the dry cask for containing the 21 fuel assemblies under development in Korea. This paper presents the fluid velocity and temperature distribution as well as the fuel temperature. A two-step CFD approach was applied to simulate the heat and fluid flow in a dry storage of 21 spent fuel assemblies. The first CFD analysis predicted the helium flow and temperature in a dry cask by a assuming porous body of the spent fuel. The second CFD analysis was to simulate a spent fuel assembly in the

  7. Application of a temperature selective heat storage tank to a solar system. Part 3. Solar heat collecting system; Ondo sentaku chikunetsuso no solar system eno tekiyo. 3. Shunetsu hoshiki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y [Kanto Gakuin University, Yokohama (Japan); Kanayama, K [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    The tank system and tank-less system when the temperature selective heat storage tank is applied to a solar system were considered. In the tank system, the simulation shows that the annual supplementary heat consumption is reduced as the tank capacity becomes lower. The most suitable operating time set for determining the reference time is about five hours in winter and about nine hours in summer. The annual operating time is about 6.5 hours. In the tank-less system, the most suitable minimum flow rate per solar collector area of a heating medium in Tokyo and its districts is 10 L/hm{sup 2} for both three-step flow control and constant flow control. The tank-less system is slightly lower in annual supplementary heat consumption than the tank system. For the three-step flow control, a change in the annual supplementary heat consumption is lower than that in the minimum flow rate. For the constant flow control, however, the annual supplementary heat consumption rapidly increases when the flow rate more decreases than the optimum value. The number of pump start/stop counts for the three-step flow control is less than two times as high as for the constant flow control. 4 refs., 6 figs., 1 tab.

  8. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  9. Thermal performance evaluation of a latent heat storage unit for late evening cooking in a solar cooker having three reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Buddhi, D.; Sharma, A. [Devi Ahilya University, Indore (India). School of Energy and Environmental Studies, Thermal Energy Storage Laboratory; Sharma, S.D. [Mie University, Tsu (Japan). Faculty of Engineering, Department of Architecture

    2003-04-01

    In this paper, a phase change material (PCM) storage unit for a solar cooker was designed and developed to store energy during sunshine hours. The stored energy was utilised to cook food in the late evening. Commercial grade acetanilide (melting point 118.9 {sup o}C, latent heat of fusion 222 kJ/kg) was used as a latent heat storage material. Evening cooking experiments were conducted with different loads and loading times during the winter season. The experimental results showed that late evening cooking is possible in a solar cooker having three reflectors to enhance the incident solar radiation with the PCM storage unit. (author)

  10. Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project

    Science.gov (United States)

    Karagiannakis, George; Pagkoura, Chrysoula; Konstandopoulos, Athanasios G.; Tescari, Stefania; Singh, Abhishek; Roeb, Martin; Lange, Matthias; Marcher, Johnny; Jové, Aleix; Prieto, Cristina; Rattenbury, Michael; Chasiotis, Andreas

    2017-06-01

    The present work provides an overview of activities performed in the framework of the EU-funded collaborative project RESTRUCTURE, the main goal of which was to develop and validate a compact structured reactor/heat exchanger for thermochemical storage driven by 2-step high temperature redox metal oxide cycles. The starting point of development path included redox materials qualification via both theoretical and lab-scale experimental studies. Most favorable compositions were cobalt oxide/alumina composites. Preparation of small-scale structured bodies included various approaches, ranging from perforated pellets to more sophisticated honeycomb geometries, fabricated by extrusion and coating. Proof-of-concept of the proposed novel reactor/heat exchanger was successfully validated in small-scale structures and the next step included scaling up of redox honeycombs production. Significant challenges were identified for the case of extruded full-size bodies and the final qualified approach related to preparation of cordierite substrates coated with cobalt oxide. The successful experimental evaluation of the pilot reactor/heat exchanger system constructed motivated the preliminary techno-economic evaluation of the proposed novel thermochemical energy storage concept. Taking into account experimental results, available technologies and standard design aspects a model for a 70.5 MWe CSP plant was defined. Estimated LCOE costs were calculated to be in the range of reference values for Combined Cycle Power Plants operated by natural gas. One of main cost contributors was the storage system itself, partially due to relatively high cost of cobalt oxide. This highlighted the need to identify less costly and equally efficient to cobalt oxide redox materials.

  11. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Science.gov (United States)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  12. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Directory of Open Access Journals (Sweden)

    Ternovykh Mikhail

    2017-01-01

    Full Text Available Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  13. Geochemical implications of production and storage control by coupling a direct-use geothermal system with heat networks

    NARCIS (Netherlands)

    Daniilidis, Alexandros; Scholten, Tjardo; Hooghiem, Joram; Persis, Claudio De; Herber, Rien

    2017-01-01

    This paper outlines a method in which the heat production of a geothermal system is controlled in relation to the demand from a district-heating network. A model predictive control strategy is designed, which uses volume measurements in the storage tank, and predictions of the demand, to regulate

  14. The heat storage material based on paraffin-modified multilayer carbon nanotubes with Nickel-zinc ferrite

    Science.gov (United States)

    Shchegolkov, A.; Shchegolkov, A.; Dyachkova, T.; Semenov, A.

    2018-02-01

    The paper presents an investigation of magnetically controlled heat-storage material based on paraffin, modified with multilayer carbon nanotubes with nickel-zinc ferrite. The technology of obtaining nanomodified material capable of interacting with magnetic field is presented. The study of the heat-exchange processes of charge/discharge with the help of magnetic field are carried out.

  15. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  16. Study of the thermal properties of selected PCMs for latent heat storage in buildings

    Science.gov (United States)

    Valentova, Katerina; Pechackova, Katerina; Prikryl, Radek; Ostry, Milan; Zmeskal, Oldrich

    2017-07-01

    The paper is focused on measurements of thermal properties of selected phase change materials (PCMs) which can be used for latent heat storage in building structures. The thermal properties were measured by the transient step-wise method and analyzed by the thermal spectroscopy. The results of three different materials (RT18HC, RT28HC, and RT35HC) and their thermal properties in solid, liquid, and phase change region were determined. They were correlated with the differential scanning calorimetry (DSC) measurement. The results will be used to determine the optimum ratio of components for the construction of drywall and plasters containing listed ingredients, respectively.

  17. Models comparative study for heat storage in fixed beds; Estudo comparativo de modelos para armazenamento de calor em leitos fixos

    Energy Technology Data Exchange (ETDEWEB)

    Stuginski, Junior, Rubens

    1991-07-01

    This work presents comparative results of a numerical investigation of four possible models for the prediction of thermal performance of fixed bed storage units and their thermal design. These models includes Schumann's model, the radial dispersion model, a model that include both axial heat conduction in the fluid phase and admits thermal gradient in the solids particles and finally a two dimensional single phase model. For each of these models a computer code was written and tested to evaluate the computing time of same data and analyze any other computational problems. The tests of thermal performance included particle size, porosity, particle material, flow rate, inlet temperature and heat losses form tank walls and extremities. Dynamics behaviour of the storage units due to transient variation in either flow rate or inlet temperature was also investigated. The results presented include temperature gradients, pressure drop and heat storage. The results obtained are very useful for analysis and design of fixed bed storage units. (author)

  18. Applications of thermal energy storage to waste heat recovery in the food processing industry

    Science.gov (United States)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  19. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling

    International Nuclear Information System (INIS)

    Efimova, Anastasia; Pinnau, Sebastian; Mischke, Matthias; Breitkopf, Cornelia; Ruck, Michael; Schmidt, Peer

    2014-01-01

    Graphical abstract: - Highlights: • Inorganic salt hydrates. • Latent heat thermal energy storage. • Thermal behavior of melting and crystallization. • Cycling stability. • Nucleation. - Abstract: Sustainable air conditioning systems require heat reservoirs that operate between 4 and 20 °C. A systematic search for binary and ternary eutectics of inorganic salts and salt hydrates with melting temperatures in this temperature regime and with high enthalpies of fusion has been performed by means of differential scanning calorimetry (DSC). Promising results were obtained for the pseudo-ternary system Zn(NO 3 ) 2 ·6H 2 O, Mn(NO 3 ) 2 ·4H 2 O, and KNO 3 with the melting temperature range 18–21 °C and the enthalpy of fusion of about 110 kJ kg −1 . Suitable nucleating and thickening agents have been found and tested to prevent the mixture from supercooling and phase separation

  20. Study of the thermal behavior of a latent heat cold storage unit operating under frosting conditions

    International Nuclear Information System (INIS)

    Simard, A.P.; Lacroix, M.

    2003-01-01

    A study is performed of the thermal behavior of a latent heat cold storage unit operating under frosting conditions. This unit is employed to maintain the temperature inside the refrigerated compartment of a truck below 265 K. The system consists of parallel plates filled with a phase change material (PCM) that absorbs heat from the flow of warm moist air. A mathematical model for the system is first presented and, next, validated with numerical and experimental data. It is then exploited to assess the effects of design parameters and operating conditions on the performance of the system. The recommended thickness and distance separating the PCM plates are found to be 50x10 -3 and 30x10 -3 m, respectively. The results indicate that the performance of the unit is enhanced by turbulent air flow in spite of the increased pressure loss and accentuated frost growth. The unit also performs well even when the surrounding relative humidity is 100%