WorldWideScience

Sample records for heat sources balance

  1. Ground source heat pump performance in case of high humidity soil and yearly balanced heat transfer

    International Nuclear Information System (INIS)

    Schibuola, Luigi; Tambani, Chiara; Zarrella, Angelo; Scarpa, Massimiliano

    2013-01-01

    Highlights: • GSHPs are simulated in case of humid soil and yearly balanced heat transfer. • Humid soil and yearly balanced heat transfer imply higher compactness of GSHPs. • Resulting GSHPs are compared with other traditional and innovative HVAC systems. • GSHPs score best, especially in case of inverter-driven compressors. - Abstract: Ground source heat pump (GSHP) systems are spreading also in Southern Europe, due to their high energy efficiency both in heating and in cooling mode. Moreover, they are particularly suitable in historical cities because of difficulties in the integration of heating/cooling systems into buildings subjected to historical preservation regulations. In these cases, GSHP systems, especially the ones provided with borehole heat exchangers, are a suitable solution instead of gas boilers, air-cooled chillers or cooling towers. In humid soils, GSHP systems are even more interesting because of their enhanced performance due to higher values of soil thermal conductivity and capacity. In this paper, GSHP systems operating under these boundary conditions are analyzed through a specific case study set in Venice and related to the restoration of an historical building. With this analysis the relevant influences of soil thermal conductivity and yearly balanced heat transfer in the design of the borehole field are shown. In particular, the paper shows the possibility to achieve higher compactness of the borehole field footprint area when yearly balanced heat transfer in the borehole field is expected. Then, the second set of results contained in the paper shows how GSHP systems designed for high humidity soils and yearly balanced heat loads at the ground side, even if characterized by a compact footprint area, may still ensure better performance than other available and more common technologies such as boilers, air-cooled chillers, chillers coupled with cooling towers and heat pumps and chillers coupled with lagoon water. As a consequence

  2. Analysis on the heat balance between CEFR and the primary loop system

    International Nuclear Information System (INIS)

    Liu Shangbo; Yang Hongyi; Li Jing; Wang Xiongying

    2013-01-01

    The heat balance ability of reactor is very important to design and operation. Special heat balance analysis and calculation software shall be available. This article analyzes and calculates in details the heat source and cooling power of the main cooling system of the primary loop in China Experimental Faster Reactor (CEFR), and develops a calculation code. By using the steady state heat balance data of 26.5% Pn and 40% Pn in CEFR during power start-up, the heat balance ability of the primary loop is verified. The results show that the calculation model is reliable, and can provide technical support to building heat balance in CEFR operation. (authors)

  3. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were ... mate source of energy for all physical and bio- logical processes ... May) account for major thunderstorm activity in the state and winter ...

  4. A novel design method for ground source heat pump

    Directory of Open Access Journals (Sweden)

    Dong Xing-Jie

    2014-01-01

    Full Text Available This paper proposes a novel design method for ground source heat pump. The ground source heat pump operation is controllable by using several parameters, such as the total meters of buried pipe, the space between wells, the thermal properties of soil, thermal resistance of the well, the initial temperature of soil, and annual dynamic load. By studying the effect of well number and well space, we conclude that with the increase of the well number, the inlet and outlet water temperatures decrease in summer and increase in winter, which enhance the efficiency of ground source heat pump. The well space slightly affects the water temperatures, but it affects the soil temperature to some extent. Also the ground source heat pump operations matching with cooling tower are investigated to achieve the thermal balance. This method greatly facilitates ground source heat pump design.

  5. BALANCE

    Science.gov (United States)

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  6. Hybrid ground-source heat pump system with active air source regeneration

    International Nuclear Information System (INIS)

    Allaerts, K.; Coomans, M.; Salenbien, R.

    2015-01-01

    Highlights: • A hybrid ground source heat pump system with two separate borefields is modelled. • The maximum underground storage temperature depends on the size of the drycooler. • Drycooler selection curves are given as function of underground storage temperature. • The size of the cold storage is reduced with 47% in the cost optimal configuration. • The cooling seasonal performance factor decreases with reduced storage capacity. - Abstract: Ground-source heat pump systems (GSHP) offer great advantages over traditional heating and cooling installations. However, their applications are limited due to the high initial costs of borehole drilling. One way to avoid these costs is by reducing the size of the borefield, e.g. by combining the system with other renewable energy sources or by using active regeneration to increase the system efficiency. In this paper a hybrid ground-source heat pump system (HGSHP) is analyzed. The borefield is split into a warm part and a cold part, which allows for seasonal thermal-energy storage. Additionally, supplementary drycoolers capture heat during summer and cold during winter. The relationship between the underground storage size and temperature and the drycooler capacity is described, using an office building in Flanders (Belgium) as reference case. Results show that with a HGSHP system a significant borefield size reduction can be achieved without compromising system performance; i.e. for the reference case a reduction of 47% was achieved in the cost-optimal configuration. It is also shown that the cooling seasonal performance factor decreases significantly with underground storage capacity. In addition, the HGSHP can be used to maintain or restore thermal balance in the geothermal source when heating and cooling loads do not match

  7. Spreadsheet eases heat balance, payback calculations

    International Nuclear Information System (INIS)

    Conner, K.P.

    1992-01-01

    This paper reports that a generalized Lotus type spreadsheet program has been developed to perform the heat balance and simple payback calculations for various turbine-generator (TG) inlet steam pressures. It can be used for potential plant expansions or new cogeneration installations. The program performs the basic heat balance calculations that are associated with turbine-generator, feedwater heating process steam requirements and desuperheating. The printout, shows the basic data and formulation used in the calculations. The turbine efficiency data used are applicable for automatic extraction turbine-generators in the 30-80 MW range. Simple payback calculations are for chemical recovery boilers and power boilers used in the pulp and paper industry. However, the program will also accommodate boilers common to other industries

  8. Design and application for a high-temperature nuclear heat source

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    Recent actions by OPEC have sharply increased interest in the United States in synfuels, with coal being the logical choice for the carbon source. Two coal liquefaction processes, direct and indirect, have been examined. Each can produce about 50% more output when coupled to an HTGR for process heat. The nuclear reactor designed for process heat has a power output of 842MW(t), a core outlet temperature of 950 0 C (1742 0 F), and an intermediate helium loop to separate the heat source from the process heat exchangers. Steam-methane reforming is the reference process. As part of the development of a nuclear process heat system, a computer code, Process Heat Reactor Evaluation and Design, is being developed. This code models both the reactor plant and a steam reforming plant. When complete, the program will have the capability to calculate an overall mass and heat balance, size the plant components, and estimate the plant cost for a wide variety of independent variables. (author)

  9. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system

    International Nuclear Information System (INIS)

    Li Shuhong; Yang Weihua; Zhang Xiaosong

    2009-01-01

    The imbalance of heat extracted from the earth by the underground heat exchangers in winter and ejected into it in summer is expected to affect the long term performance of conventional ground source heat pump (GSHP) in territories with a cold winter and a warm summer such as the middle and downstream areas of the Yangtze River in China. This paper presents a new multi-function ground source heat pump (MFGSHP) system which supplies hot water as well as space cooling/heating to mitigate the soil imbalance of the extracted and ejected heat by a ground source heat pump system. The heat transfer characteristic is studied and the soil temperature around the underground heat exchangers are simulated under a typical climatic condition of the Yangtze River. A three-dimensional model was constructed with the commercial computational fluid dynamics software FLUENT based on the inner heat source theory. Temperature distribution and variation trend of a tube cluster of the underground heat exchanger are simulated for the long term performance. The results show that the soil temperature around the underground tube keeps increasing due to the surplus heat ejected into the earth in summer, which deteriorates the system performance and may lead to the eventual system deterioration. The simulation shows that MFGSHP can effectively alleviate the temperature rise by balancing the heat ejected to/extracted from underground by the conventional ground source heat pump system. The new system also improves the energy efficiency.

  10. EFFECT OF THE TYPE OF HEAT SOURCES ON CARBON DIOXIDE EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sławomir Rabczak

    2016-11-01

    Full Text Available A lot of attention is nowadays devoted to the problem of generally defined ecology. It is absolutely essential in case of systems and sources generating heat due to their direct influence on the environment through emitting post-process products to the atmosphere which are, most frequently a result of combustion. Therefore, constant searchers are made to optimize the operation of heat sources and to acquire energy from sources for which the general balance of carbon dioxide emission is zero or close to zero. This work compares the emissions of equivalent CO2 from selected systems with the following heat sources: coal, gas furnace, heat pump, and refers results of the analysis to aspects connected with regulations concerning environmental protection. The systems generating thermal energy in the gas furnaces, coal, biomass, as well as the compression heat pumps with the lower heat source as ambient air or ground were taken under consideration, as well as centralized systems for the production of heat based on the combustion of coal, gas, oil, and biomass. the Emission of carbon dioxide for the installation of cogeneration and absorption heat pump were also calculated. Similarly obtained amount of extra emission necessary for the proper operation maintenance of heating devices via the supplied electricity from external source, the mostly fuel-fired power plants for fuels as previously mentioned. The results of the calculations were presented in tables and graphs.

  11. Application of heat-balance integral method to conjugate thermal explosion

    Directory of Open Access Journals (Sweden)

    Novozhilov Vasily

    2009-01-01

    Full Text Available Conjugate thermal explosion is an extension of the classical theory, proposed and studied recently by the author. The paper reports application of heat-balance integral method for developing phase portraits for systems undergoing conjugate thermal explosion. The heat-balance integral method is used as an averaging method reducing partical differential equation problem to the set of first-order ordinary differential equations. The latter reduced problem allows natural interpretation in appropriately chosen phase space. It is shown that, with the help of heat-balance integral technique, conjugate thermal explosion problem can be described with a good accuracy by the set of non-linear first-order differential equations involving complex error function. Phase trajectories are presented for typical regimes emerging in conjugate thermal explosion. Use of heat-balance integral as a spatial averaging method allows efficient description of system evolution to be developed.

  12. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  13. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  14. Response of Cryolite-Based Bath to a Shift in Heat Input/output Balance

    Science.gov (United States)

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2017-04-01

    A technology for low amperage potline operation is now recognized as a competitive advantage for the aluminum smelting industry in order to align smelter operations with the power and aluminum price markets. This study investigates the cryolite-based bath response to heat balance shifts when the heat extraction from the bath is adjusted to different levels in a laboratory analogue. In the analogue experiments, the heat balance shift is driven by a graphite `cold finger' heat exchanger, which can control the heat extraction from the analogue, and a corresponding change in heat input from the furnace which maintains the control temperature of the lab "cell." This paper reports the first experimental results from shifting the steady state of the lab cell heat balance, and investigates the effects on the frozen ledge and bath superheat. The lab cell energy balances are compared with energy balances in a published industrial cell model.

  15. Internal heat gain from different light sources in the building lighting systems

    Directory of Open Access Journals (Sweden)

    Suszanowicz Dariusz

    2017-01-01

    Full Text Available EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  16. Internal heat gain from different light sources in the building lighting systems

    Science.gov (United States)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  17. Thermal power calibrations of the IPR-R1 TRIGA reactor by the calorimetric and the heat balance methods

    International Nuclear Information System (INIS)

    Mesquita, Amir Zacarias; Rezende, Hugo Cesar; Souza, Rose Mary Gomes do Prado

    2009-01-01

    Since the first nuclear reactor was built, a number of methodological variations have been evolved for the calibration of the reactor thermal power. Power monitoring of reactors is done by means of neutronic instruments, but its calibration is always done by thermal procedures. The purpose of this paper is to present the results of the thermal power calibration carried out on March 5th, 2009 in the IPR-R1 TRIGA reactor. It was used two procedures: the calorimetric and heat balance methods. The calorimetric procedure was done with the reactor operating at a constant power, with primary cooling system switched off. The rate of temperature rise of the water was recorded. The reactor power is calculate as a function of the temperature-rise rate and the system heat capacity constant. The heat balance procedure consists in the steady-state energy balance of the primary cooling loop of the reactor. For this balance, the inlet and outlet temperatures and the water flow in the primary cooling loop were measured. The heat transferred through the primary loop was added to the heat leakage from the reactor pool. The calorimetric method calibration presented a large uncertainty. The main source of error was the determination of the heat content of the system, due to a large uncertainty in the volume of the water in the system and a lack of homogenization of the water temperature. The heat balance calibration in the primary loop is the standard procedure for calibrating the power of the IPR-R1 TRIGA nuclear reactor. (author))

  18. Heat-balance integral method for heat transfer in superfluid helium

    Directory of Open Access Journals (Sweden)

    Baudouy Bertrand

    2009-01-01

    Full Text Available The heat-balance integral method is used to solve the non-linear heat diffusion equation in static turbulent superfluid helium (He II. Although this is an approximate method, it has proven that it gives solutions with fairly good accuracy in non-linear fluid dynamics and heat transfer. Using this method, it has been possible to develop predictive solutions that reproduce analytical solution and experimental data. We present the solutions of the clamped heat flux case and the clamped temperature case in a semi-infinite using independent variable transformation to take account of temperature dependency of the thermophysical properties. Good accuracy is obtained using the Kirchhoff transform whereas the method fails with the Goodman transform for larger temperature range.

  19. Regenerative heat sources for heating networks

    International Nuclear Information System (INIS)

    Huenges, Ernst; Sperber, Evelyn; Eggers, Jan-Bleicke; Noll, Florian; Kallert, Anna Maria; Reuss, Manfred

    2015-01-01

    The ambitious goal, the German Federal Government has set itself, to reduce the emissions of greenhouse gases by 80% to 95% by the year 2050. As there are currently more than half of German energy consumption for the production of heat is required, big contributions to climate protection can be expected from this area if more renewable heat sources are used. Renewable heat sources such as bioenergy, solar thermal and geothermal energy in particular can be provided as compared to fossil fuels with significantly lower specific CO 2 emissions. Objectives in the heating market and scenarios for the transformation of the heat sector have been elaborated in the BMU Lead Study 2011. The main pillar of this scenario is the reduction of final energy consumption for heat by the energy-efficient renovation of existing buildings and further increasing demands on the energetic quality of new buildings. To cover the remaining energy demand, a focus is on the expansion of heating networks based on renewable energies. [de

  20. Member for conducting excess heat away from heat sources

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1975-01-01

    Should a radioisotope-powered engine (e.g., a Stirling cycle engine for generating electricity) stop working for any reason, the radioisotope heat source will continue to generate heat. This will result in a rise in temperature which may cause overheating of and possible damage to the engine as well as to the heat source itself. The invention provides a support/location member for conducting excess heat from the heat source and which, in normal operation of the engine, will impede the conduction of heat away from the heat source and so reduce thermal losses. The member is of elongated form and comprises a stack of heat-conductive slugs disposed in a tube and in interspaced relationship along the axis of the tube. The tube supports the slugs in axial alignment. Means are provided for attaching an end one of the slugs to the heat source and means operable on overheating of said end one of the slugs are also provided whereby the slugs are able to move into heat-conducting contact with each other so as to conduct the excess heat away from said heat source. The slugs may be brazed to the tube whereby progressive overheating of the slugs along the stack results in an overheated slug being freed from attachment to the tube so as to allow the overheated slug to move along the stack and engage the next slug in line in heat-conducting contact. (U.S.)

  1. Heat balance model for a human body in the form of wet bulb globe temperature indices.

    Science.gov (United States)

    Sakoi, Tomonori; Mochida, Tohru; Kurazumi, Yoshihito; Kuwabara, Kohei; Horiba, Yosuke; Sawada, Shin-Ichi

    2018-01-01

    The purpose of this study is to expand the empirically derived wet bulb globe temperature (WBGT) index to a rational thermal index based on the heat balance for a human body. We derive the heat balance model in the same form as the WBGT for a human engaged in moderate intensity work with a metabolic heat production of 174W/m 2 while wearing typical vapor-permeable clothing under shady and sunny conditions. Two important relationships are revealed based on this derivation: (1) the natural wet bulb and black globe temperature coefficients in the WBGT coincide with the heat balance equation for a human body with a fixed skin wettedness of approximately 0.45 at a fixed skin temperature; and (2) the WBGT can be interpreted as the environmental potential to increase skin temperature rather than the heat storage rate of a human body. We propose an adjustment factor calculation method that supports the application of WBGT for humans dressed in various clothing types and working under various air velocity conditions. Concurrently, we note difficulties in adjusting the WBGT by using a single factor for humans wearing vapor-impermeable protective clothing. The WBGT for shady conditions does not need adjustment depending on the positive radiant field (i.e., when a radiant heat source exists), whereas that for the sunny condition requires adjustments because it underestimates heat stress, which may result in insufficient human protection measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Water and heat balances in Doñana wetlands

    Directory of Open Access Journals (Sweden)

    A. Ramos-Fuertes

    2016-10-01

    Full Text Available This paper presents the main results of the study of water balance and surface heat balance in the Doñana marshlands. The study was based on a broad base of hydrometeorological data taken at 10 minute intervals from 2006 to 2011 by a network of six measuring stations located in areas of vegetation-free marsh. This information is used to characterize, at different time scales, the thermal behavior of the marsh by analyzing its hydrometeorology centering on the surface heat fluxes. Thus, we have modeled and analyzed the heat flux between the water and flooded soil and the processes of heat transfer between the water surface and the atmosphere. Special attention has been paid to evaporation, on which the marsh draining process depends.

  3. Radioisotopic heat source

    Science.gov (United States)

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  4. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  5. 31 CFR 203.19 - Sources of balances.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Sources of balances. 203.19 Section 203.19 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL... § 203.19 Sources of balances. A financial institution must be a collector depositary that accepts term...

  6. Responses of Lithium-Modified Bath to a Shift in Heat Input/Output Balance and Observation of Freeze-Lining Formation During the Heat Balance Shift

    Science.gov (United States)

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2018-02-01

    In the aluminum electrolysis process, new industrial aluminum/electricity power markets demand a new cell technology to extend the cell heat balance and amperage operating window of smelters by shifting the steady states. The current work investigates the responses of lithium-modified bath system when the input/output balance is shifted in a laboratory analogue to the industrial heat balance shift. Li2CO3 is added to the cryolite-AlF3-CaF2-Al2O3 system as a bath modifier. A freeze deposit is formed on a `cold finger' dipped into the bath and investigated by X-ray diffraction analysis and electron probe X-ray microanalysis. The macro- and micro-structure of the freeze lining varies with the bath superheat (bath temperature minus bath liquidus temperature) and an open crystalline layer with entrapped liquid dominates the freeze thickness. Compared with the cryolite-AlF3-CaF2-Al2O3 bath system, the lithium-modified bath freeze is more sensitive to the heat balance shift. This freeze investigation provides primary information to understand the variation of the side ledge in an industrial cell when the lithium-modified bath system is used.

  7. The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland

    International Nuclear Information System (INIS)

    Panos, Evangelos; Kannan, Ramachandran

    2016-01-01

    The Swiss Energy Strategy targets to reduce per capita energy consumption, to decrease the share of fossil energy and to replace nuclear electricity generation by gains in efficiency and renewable energy sources. In view of the above objectives, we evaluated the prospects of biomass in stationary applications and grid balancing from an energy system perspective. We quantify a number of “what-if” scenarios using a cost-optimisation bottom-up model, with detailed representation of biomass production and use pathways, electricity and heat sectors, and grid ancillary services markets. The scenario analysis shows that domestic biomass can contribute 5–7% in electricity and 14–21% in heat production by 2050, depending on natural gas prices and climate policy intensity. Pooling of biogenic driven cogeneration plants can provide about 22–44% of the total secondary control power in 2050. Generally, biogenic technologies complement other assets in heat, electricity and ancillary services markets such as heat pumps, new renewable sources and hydropower. - Highlights: • Development and application of the Swiss TIMES electricity and heat system model. • Bioenergy supplies 5–7% of electricity and 14–21% of heat by 2050. • Biogenic gas driven CHP can provide 22–44% of secondary control power in 2050.

  8. An experimental investigation on ground heat flow balance issue for a GCHP

    OpenAIRE

    Jiufa Chen; Hongqi Zheng; Qin Xue; Erming An; Weilai Qiao

    2010-01-01

    For a ground-coupled heat pump (GCHP), it is vital to keep the ground heat flow balanced in order to achieve sustainable energy-saving operation. However, the importance of this issue has not been well studied. Focused on the heat flow balance issue, this paper made an exclusive experimental study using a newly installed GCHP system with the designed cooling capacity 1960 kW and heating capacity 1590 kW. The GCHP system was equipped with a data acquisition system and had temperature sensors i...

  9. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2014-01-01

    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel...

  10. Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre

    Science.gov (United States)

    Yin, Baoquan; Wu, Xiaoting

    2018-02-01

    In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.

  11. Heat sources for heat pumps in the energetic and economic comparison

    International Nuclear Information System (INIS)

    Bockelmann, Franziska; Fisch, M. Norbert; Schlosser, Mathias; Peter, Markus

    2016-01-01

    Because of the growing application of heat pumps also the number of potentially usable low-temperature heat sources and corresponding heat exchangers for heat-pump systems present in the market increases. Thereby products like energy fences, high-power piles, ore ice reservoir come into applications without any knowledge ab out their power or the cost-profit ratio. The optimized lay-out of the coupling to the building are however essential conditions in order to reach an energy-efficient and durable operation of the facilities. The research project ''future heat pump'' sponsored by the BMWi is dedicated to the energetic and economic evaluation of heat sources for heat pumps. In this connection a pre-check-tool for the preliminary selection of low-temperature heat sources and connected, suitable heat-exchange systems is developed and their actual status of development presented. The holistic, comparing consideration of the different heat sources and heat-exchanger systems is related among others to the power numbers of the heat pumps, the entry and withdrawal services of the heat-exchangers, and the general performance of the systems. Additionally an estimation of economic and ecologic aspects (investment and operation costs, CO_2 emissions) is made. Aim is the determination of the plausibility of applications and essential boundary conditions of single source systems. For the qualitative comparison in a project-accompanying monitoring different facilities and source systems are measurement-technically comprehended.

  12. Solar energy and global heat balance of a city

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, Claude-Alain [Ecole Polytechnique Federale, Lab. d' Energie Solaire et de Physique du Batiment, Lausanne (Switzerland)

    2001-07-01

    The global energy balance of a city involves numerous energy flows and is rather complex. It includes, among others, the absorbed solar radiation and the energy fuels on one hand, and the heat loss to the environment --- by radiation, convection and evaporation --- on the other hand. This balance generally results in a temperature in the town that is slightly higher than in the surrounding country. Using solar energy saves imported fuels on one hand, but increases the absorption of solar radiation on the other hand. Simple, steady state models are used to assess the change of heat released to the environment when replacing the use of classical fuels by solar powered plants, on both the global and city scale. The conclusion is that, in most cases, this will reduce the heat released to the environment. The exception is cooling, for which a good solar alternative does not exist today. (Author)

  13. Radiogenic heat production and the earth's heat balance. A source of arguments in geoscience

    International Nuclear Information System (INIS)

    Kuczera, B.

    2008-01-01

    The terrestrial heat flow into interstellar space amounts to approx. 32 TW on the basis of an average heat flow density of 63 mW per sq.m. of earth surface. The loss flow derives part of the energy from the residual heat of the nascent phase of the earth (approx. 40%) and the other part from the natural disintegration of longlived radionuclides, i.e. radiogenic heat production (roughly 60%). This concept met with broad consensus in the geosciences until the 1980s. In 1993, Pollack et al. concluded from the evaluation of recent measured data that heat loss via the oceanic crust of the earth was clearly higher, which raises the loss flow to a total of 44 TW. This is contradicted by Hoffmeister and Criss, who conclude from a modified geochemical model that the total heat loss of 31 TW is fully compensated by radiogenic heat production. In 2001, C. Herndon introduced a new idea into the discussion. According to his thesis, planetary differentiation caused a nuclear georeactor to be created in the center of the earth, whose continuous thermal power of approx. 3 TW contributes to compensating heat losses. Physicists and geoscientists hope to be able to derive new findings on this thesis and on the distribution of radiogenic heat production in the interior of the earth from the planned geo-neutrino experiment in Homestake, USA. (orig.)

  14. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux; surface energy balance; Bowen's ratio; sensible and latent ... The energy storage term for the soil layer 0–0.05 m is calculated and the ground heat ... When a new method that accounts for both soil thermal conduction and soil ...

  15. The heat source of Ruapehu crater lake; deductions from the energy and mass balances

    Science.gov (United States)

    Hurst, A. W.; Bibby, H. M.; Scott, B. J.; McGuinness, M. J.

    1991-05-01

    Regular observations of temperature, outflow rates and water chemistry of Crater Lake, Mt. Ruapehu, New Zealand have been made for the last 25 years. These data have been used to derive a model of the dynamics of the lake, and determine the input of energy, mass, and chloride from the volcano to the Crater Lake. The recent, relatively quiescent state of the volcano, when virtually no heat has been input to the lake, has also enabled an assessment to be made of the surface heat loss characteristics, which play an important role in the model of the lake. The modelling suggests that since about 1982 the ratio of the volcanic heat to mass added to the base of the lake is about 6 MJ/kg, which is not compatible with heating of the lake by magmatic steam alone. Thus, only about 50% of the heating has been by magmatic steam. It is suggested that heat could be transferred from a magmatic source to the region below the lake by a heat-pipe mechanism, commonly associated with geothermal systems. The simultaneous upward movement of vapour phase, and downward movement of liquid phase from condensed vapour allows efficient heat transfer without overall mass transfer. The permeability necessary to supply the required heat is of the order of 10 darcy, and is consistent with a rubble filled vent. For at least the last five years, there has been a characteristic pattern in the Crater Lake temperature record, with alternate heating and cooling phases. The heating phase generally lasts for one or two months, while the cooling phase lasts for six months to a year. A possible explanation for this cyclic behaviour is the presence of a layer of liquid sulphur under Crater Lake, acting as a partial barrier between the heat-pipe and the lake. The unusual variations of the viscosity of liquid sulphur with temperature will mean that at temperatures greater than 160°C, the layer of sulphur becomes highly viscous and would block any upwards steam flow and hence stop the heat input to Crater

  16. MHTGR steam generator on-line heat balance, instrumentation and function

    International Nuclear Information System (INIS)

    Klapka, R.E.; Howard, W.W.; Etzel, K.T.; Basol, M.; Karim, N.U.

    1991-09-01

    Instrumentation is used to measure the Modular High Temperature Gas-Cooled Reactor (MHTGR) steam generator dissimilar metal weld temperature during start-up testing. Additional instrumentation is used to determine an on-line heat balance which is maintained during the 40 year module life. In the process of calibrating the on-line heat balance, the helium flow is adjusted to yield the optimum boiling level in the steam generator relative to the dissimilar metal weld. After calibration is complete the weld temperature measurement is non longer required. The reduced boiling level range results in less restrictive steam generator design constraints

  17. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  18. Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min Ye [Chonbuk National Univ., Chonju (Korea, Republic of)

    2016-02-15

    In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

  19. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  20. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  1. New nuclear heat sources for district heating

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The means by which urban oil heating may be taken over by new energy sources, especially nuclear, are discussed. Several possibilities exist: pressurized water reactors for high powers, and low-temperature swimming-pool-type process-heat reactors for lower powers. Both these cases are discussed [fr

  2. Heat balance studies on sea ice near Syowa Station, East Antarctica

    OpenAIRE

    Ishikawa,Nobuyoshi; Kobayashi,Shun'ichi; Ohta,Tetsuo; Kawaguchi,Sadao

    1982-01-01

    Heat balance studies were carried out on the Antarctic sea ice surface in the austral spring and summer of 1980. The surface albedo of sea ice covered by a thin snow-layer was kept nearly constant (around 0.8) in spring, but in summer it was reduced to the same value as that of bare ice owing to the change of the surface properties with a great increase in the amount of absorbed net radiation. Variations of heat balance components were presented for every 10 days and two seasons in this paper.

  3. Heat pump using dual heat sources of air and water. Performance with heat sources arranged in parallel; Mizu kuki ryonetsugen heat pump no kenkyu. Netsugen heiretsu unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N; Sato, S [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y; Hamada, K [Kubota Corp., Osaka (Japan)

    1996-10-27

    A heat pump system using water and air as heat sources was built and evaluated for its performance. In this system, evaporators may be operated singly or as connected in parallel or series, and, for each case, the quantity of heat acquired may be measured and system performance may be quantitatively evaluated. The findings follow. When the two heat sources are equal in temperature in the single-evaporator operation, the evaporation temperature is about 7{degree}C higher on the water side than on the air side, and the performance coefficient is about 0.7 higher. When the air heat source temperature is 25{degree}C in the parallel operation, like quantities of heat are obtained from both heat sources, and collection of heat from the water increases with a decrease in the air heat source temperature but, with an increase, collection from the air increases. When the air heat source temperature decreases, the evaporation temperature decreases in the single-evaporator working on the air and in the parallel operation but it levels off in the single-evaporator working on the water alone. When the water heat source temperature decreases, evaporation temperature drop is sharper in the single-evaporator working on the water than in the parallel operation, which suggests the transfer from the parallel operation to the single-evaporator working on the air. In the single-evaporator operation on the water heat source, the evaporation temperature linearly decreases with an increase in superheating. 1 ref., 10 figs.

  4. Calibration of the heat balance model for prediction of car climate

    OpenAIRE

    Jícha Miroslav; Fišer Jan; Pokorný Jan

    2012-01-01

    In the paper, the authors refer to development a heat balance model to predict car climate and power heat load. Model is developed in Modelica language using Dymola as interpreter. It is a dynamical system, which describes a heat exchange between car cabin and ambient. Inside a car cabin, there is considered heat exchange between air zone, interior and air-conditioning system. It is considered 1D heat transfer with a heat accumulation and a relative movement Sun respect to the car cabin, whil...

  5. Thermal heat-balance mode flow-to-frequency converter

    Science.gov (United States)

    Pawlowski, Eligiusz

    2016-11-01

    This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.

  6. Water-tunnel studies of heat balance in swimming mako sharks.

    Science.gov (United States)

    Bernal, D; Sepulveda, C; Graham, J B

    2001-12-01

    The mako shark (Isurus oxyrinchus) has specialized vascular networks (retia mirabilia) forming counter-current heat exchangers that allow metabolic heat retention in certain regions of the body, including the aerobic, locomotor red muscle and the viscera. Red muscle, white muscle and stomach temperatures were measured in juvenile (5-13.6 kg) makos swimming steadily in a water tunnel and exposed to stepwise square-wave changes in ambient temperature (T(a)) to estimate the rates of heat transfer and to determine their capacity for the activity-independent control of heat balance. The rates of heat gain of red muscle during warming were significantly higher than the rates of heat loss during cooling, and neither the magnitude of the change in T(a) nor the direction of change in T(a) had a significant effect on red muscle latency time. Our findings for mako red muscle are similar to those recorded for tunas and suggest modulation of retial heat-exchange efficiency as the underlying mechanism controlling heat balance. However, the red muscle temperatures measured in swimming makos (0.3-3 degrees C above T(a)) are cooler than those measured previously in larger decked makos. Also, the finding of non-stable stomach temperatures contrasts with the predicted independence from T(a) recorded in telemetry studies of mako and white sharks. Our studies on live makos provide new evidence that, in addition to the unique convergent morphological properties between makos and tunas, there is a strong functional similarity in the mechanisms used to regulate heat transfer.

  7. Heat balance structure of canopies at extreme precipitation in view of long-term records

    International Nuclear Information System (INIS)

    Bubnowska, J.; Gąsiorek, E.; Łabędzki, L.; Musiał, E.

    2005-01-01

    Increasing frequency of extreme weather conditions is attributed to the global variations in climate. Heat balance of substrate is one of the processes affecting the climate. Variations of heat balance in spring wheat during the growing seasons (April-August) and in potatoes during the growing seasons (May-September) with maximal and minimal precipitation are confronted here with long term changes of the balance. Two regions Wroclaw-Swojec (1964-2000) and Bydgoszcz (1945-2003) were involved in the study [pl

  8. Improvements in or relating to devices for conducting excess heat away from heat sources

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1976-01-01

    Reference is made to radioisotope powered heat engines. Should such an engine stop working for any reason the radioisotope heat source will continue to generate heat, and this may cause overheating and possible damage to the engine as well as the heat source. A device is described for conducting excess heat from the heat source to a heat sink but which in normal operation of the engine will impede heat conduction and so reduce thermal losses. The device may be used to support and/or locate the heat source. Constructional and operational details are given. (U.K.)

  9. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  10. Emissions balancing of renewable energy sources. Avoided emissions due to the use of renewable energies in 2007; Emissionsbilanz erneuerbarer Energietraeger. Durch Einsatz erneuerbarer Energien vermiedene Emissionen im Jahr 2007

    Energy Technology Data Exchange (ETDEWEB)

    Memmler, Michael; Mohrbach, Elke; Schneider, Sven; Dreher, Marion; Herbener, Reinhard

    2009-10-15

    The report on the emissions accounting with respect to renewable energy covers the following issues: 1. Introduction and purpose. 2. Methodology concerning the balancing for electricity, heat and traffic, uncertainties due to lack of data. 3. Energy supply from renewable energy sources in 2007. 4. Fossil energy substitution by renewable energy sources: electricity, heat and traffic. 5. Emissions from different energy supply lines: electricity, heat, traffic. 6. Results of the emissions accounting for renewable energy sources: electricity, heat, traffic and comprehensive review. 7. Retroacting accounting and forward projection.

  11. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  12. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  13. Radiation losses and global energy balance for Ohmically heated discharges in ASDEX

    International Nuclear Information System (INIS)

    Mueller, E.R.; Behringer, K.; Niedermeyer, H.

    1982-01-01

    Global energy balance, radiation profiles and dominant impurity radiation sources are compared for Ohmically heated limiter and divertor discharges in the ASDEX tokamak. In discharges with a poloidal stainless-steel limiter, total radiation from the plasma is the dominant energy loss channel. The axisymmetric divertor reduces this volume-integrated radiation to 30-35% of the heating power and additional Ti-gettering halves it again to 10-15%. Local radiation losses in the plasma centre, which are mainly due to the presence of iron impurity ions, are reduced by about one order of magnitude. In high-current (Isub(p) = 400 kA) and high-density (nsub(e)-bar = 6 x 10 13 cm -3 ) ungettered divertor discharges, up to 55% of the heating power is dumped into a cold-gas target inside the divertor chambers. The bolometrically detected volume power losses in the chambers can mainly be attributed to neutral hydrogen atoms with kinetic energies of a few eV. In this parameter range, the divertor plasma is dominated by inelastic molecular and atomic processes, the main process being Franck-Condon dissociation of H 2 molecules. (author)

  14. Energy balance in the TCA tokamak plasma with Alfven wave heating

    International Nuclear Information System (INIS)

    Ding Ning; Qu Wenxiao; Huang Li; Long Yongxing; Qiu Xiaoming

    1993-01-01

    The energy balance in TCA tokamak plasma with Alfven wave heating is studied, in which the equivalent electron thermal conductivity is determined by using the profile consistency principle. The results are in good agreement with experiments. It is shown that this method is applicable to various devices and other heating methods

  15. On the existence of another source of heat production for the earth and planets, and its connection with gravitomagnetism.

    Science.gov (United States)

    Elbeze, Alexandre Chaloum

    2013-01-01

    Recent revised estimates of the Earth's surface heat flux are in the order of 47 TW. Given that its internal radiogenic (mantle and crust) heat production is estimated to be around 20 TW, the Earth has a thermal deficit of around 27 TW. This article will try to show that the action of the gravitational field of the Sun on the rotating masses of the Earth is probably the source of another heat production in order of 54TW, which would satisfy the thermal balance of our celestial body and probably explain the reduced heat flow Qo. We reach this conclusion within the framework of gravitation implied by Einstein's special and general relativity theory (SR, GR). Our results show that it might possible, in principle, to calculate the heat generated by the action of the gravitational field of celestial bodies on the Earth and planets of the Solar System (a phenomenon that is different to that of the gravitational tidal effect from the Sun and the Moon). This result should help physicists to improve and develop new models of the Earth's heat balance, and suggests that contrary to cooling, the Earth is in a phase of thermal balance, or even reheating.

  16. Characterization and modeling of the heat source

    Energy Technology Data Exchange (ETDEWEB)

    Glickstein, S.S.; Friedman, E.

    1993-10-01

    A description of the input energy source is basic to any numerical modeling formulation designed to predict the outcome of the welding process. The source is fundamental and unique to each joining process. The resultant output of any numerical model will be affected by the initial description of both the magnitude and distribution of the input energy of the heat source. Thus, calculated weld shape, residual stresses, weld distortion, cooling rates, metallurgical structure, material changes due to excessive temperatures and potential weld defects are all influenced by the initial characterization of the heat source. Understandings of both the physics and the mathematical formulation of these sources are essential for describing the input energy distribution. This section provides a brief review of the physical phenomena that influence the input energy distributions and discusses several different models of heat sources that have been used in simulating arc welding, high energy density welding and resistance welding processes. Both simplified and detailed models of the heat source are discussed.

  17. Diagnosing Soil Moisture Anomalies and Neglected Soil Moisture Source/Sink Processes via a Thermal Infrared-based Two-Source Energy Balance Model

    Science.gov (United States)

    Hain, C.; Crow, W. T.; Anderson, M. C.; Yilmaz, M. T.

    2014-12-01

    Atmospheric processes, especially those that occur in the surface and boundary layer, are significantly impacted by soil moisture (SM). Due to the observational gaps in the ground-based monitoring of SM, methodologies have been developed to monitor SM from satellite platforms. While many have focused on microwave methods, observations of thermal infrared land surface temperature (LST) also provides a means of providing SM information. One particular TIR SM method exploits surface flux predictions retrieved from the Atmosphere Land Exchange Inverse (ALEXI) model. ALEXI uses a time-differential measurement of morning LST rise to diagnose the partitioning of net radiation into surface energy fluxes. Here an analysis will be presented to study relationships between three SM products during a multi-year period (2000-2013) from an active/passive microwave dataset (ECV), a TIR-based model (ALEXI), and a land surface model (Noah) over the CONUS. Additionally, all three will be compared against in-situ SM observations from the North American Soil Moisture Database. The second analysis will focus on the use of ALEXI towards diagnosing SM source/sink processes. Traditional soil water balance modeling is based on one-dimensional (vertical-only) water flow, free drainage at the bottom of the soil column, and neglecting ancillary inputs due to processes such as irrigation. However, recent work has highlighted the importance of secondary water source (e.g., irrigation, groundwater extraction, inland wetlands, lateral flows) and sink (e.g., tile drainage in agricultural areas) processes on the partitioning of evaporative and sensible heat fluxes. ALEXI offers a top-down approach for mapping areas where SM source/sink processes have a significant impact on the surface energy balance. Here we present an index, ASSET, that is based on comparisons between ALEXI latent heat flux (LE) estimates and LE predicted by a free-drainage prognostic LSM lacking irrigation, groundwater and tile

  18. Calibration of the heat balance model for prediction of car climate

    Science.gov (United States)

    Pokorný, Jan; Fišer, Jan; Jícha, Miroslav

    2012-04-01

    In the paper, the authors refer to development a heat balance model to predict car climate and power heat load. Model is developed in Modelica language using Dymola as interpreter. It is a dynamical system, which describes a heat exchange between car cabin and ambient. Inside a car cabin, there is considered heat exchange between air zone, interior and air-conditioning system. It is considered 1D heat transfer with a heat accumulation and a relative movement Sun respect to the car cabin, whilst car is moving. Measurements of the real operating conditions of gave us data for model calibration. The model was calibrated for Škoda Felicia parking-summer scenarios.

  19. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  20. Advanced radioisotope heat source for Stirling Engines

    International Nuclear Information System (INIS)

    Dobry, T.J.; Walberg, G.

    2001-01-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions

  1. Fuel fired heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Ortlinghaus, U

    1977-09-08

    Fuel fired heat sources with a valve-controlled ignition and main burner, whose flame is monitored and whose control valve is closed or opened by a controller according to the control deviation between actual and reference heat source temperature, previously suffered the disadvantage of high consumption of ignition gas. According to the invention this disadvantage is avoided by closing the ignition valve from the controller via a delay unit and having the delay time of the delay unit controlled either by the temperature measured by the sensor or increasing it with increasing deviation of the actual value of pre-temperature from the reference value of the pre-temperature.

  2. Diffusion of heat from a finite, rectangular, plane heat source

    International Nuclear Information System (INIS)

    Ferreri, J.C.; Caballero, C.H.

    1985-01-01

    Non-dimensional results for the temperature field originating in a rectangular, finite, plane heat source with infinitesimal thickness are introduced. The source decays in time, zero decay being a particular case. Results are useful for obtaining an aproximation of the maximum temperature of a system holding an internal heat source. The range selected for the parameters is specially useful in the case of a nuclear waste repository. The application to the case of mass diffussion arises from analogy. (Author) [es

  3. The calculation for energy balance of heating plasmas by Alfven waves

    International Nuclear Information System (INIS)

    Long Yongxing; Ding Ning; He Qibing; Qu Wenxiao; Huang Lin; Qiu Xiaoming

    1992-10-01

    A numerical method for computing the energy balance of heating tokamak plasmas by Alfven waves is introduced. The results are in agreement with experiments. This method is not only simpler and more distinct but also considerably saving time in computation. It also can be used in kinetic problems with other types of radio frequency (RF) heating

  4. The application of ground source heat pumps to a subdivision-wide district heating system

    International Nuclear Information System (INIS)

    Ciavaglia, L.

    2005-01-01

    Design guidelines for economic ground source heat pumps (GSHP) in district energy systems were presented. The broad economics of using central GSHP in a community district energy system were examined. Design parameters needed to utilize GSHP in district energy system were outlined. The sensitivity of energy prices and the costs of major capital were reviewed. District heating load duration curves were outlined. It was suggested that varying GSHP capacity from 0 to 100 per cent of load was advisable. In addition, capacity should be balanced with gas boiler technology. The amortizing of capital within energy costs was recommended. It was suggested that the best scenario was a minimum of 50 per cent ground energy. Details of pipings and heat exchanger costs were presented, along with costs for gas boilers and gas costs for the district energy system. Charts of current costing and reduction of piping capital were included. It was concluded that GSHP can be a viable component of a district energy system, as a GSHP based district energy system can provide more stable energy prices than conventional fossil fuel systems. It was suggested that sizing of GSHP at, or near, 40 per cent of peak demand provided optimal conditions with respect to energy cost and use of earth energy. tabs., figs

  5. Simulation and analysis on thermodynamic performance of surface water source heat pump system

    Institute of Scientific and Technical Information of China (English)

    Nan Lv; Qing Zhang; Zhenqian Chen; Dongsheng Wu

    2017-01-01

    This work established a thermodynamic performance model of a heat pump system containing a heat pump unit model, an air conditioning cooling and heating load calculation model, a heat exchanger model and a water pump performance model based on mass and energy balances. The thermodynamic performance of a surface water source heat pump air conditioning system was simulated and verified by comparing the simulation results to an actual engineering project. In addition, the effects of the surface water temperature, heat exchanger structure and surface water pipeline transportation system on the thermodynamic performance of the heat pump air conditioning system were analyzed. Under the simulated conditions in this paper with a cooling load of 3400 kW, the results showed that a 1 ℃ decrease in the surface water temperature leads to a 2.3 percent increase in the coefficient of performance; furthermore, an additional 100 m of length for the closed-loop surface water heat exchanger tube leads to a 0.08 percent increase in the coefficient of performance. To decrease the system energy consumption, the optimal working point should be specified according to the surface water transportation length.

  6. Calibration of the heat balance model for prediction of car climate

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available In the paper, the authors refer to development a heat balance model to predict car climate and power heat load. Model is developed in Modelica language using Dymola as interpreter. It is a dynamical system, which describes a heat exchange between car cabin and ambient. Inside a car cabin, there is considered heat exchange between air zone, interior and air-conditioning system. It is considered 1D heat transfer with a heat accumulation and a relative movement Sun respect to the car cabin, whilst car is moving. Measurements of the real operating conditions of gave us data for model calibration. The model was calibrated for Škoda Felicia parking-summer scenarios.

  7. The human heat balance in the city of Novi Sad (Serbia

    Directory of Open Access Journals (Sweden)

    Krajić Aleksandar

    2012-01-01

    Full Text Available This analysis is based on the human heat balance according to the bioclimatic man-environment heat exchange model created by Krzysztof Błażejczyk. The final result of the human heat balance model points to biothermal weather situations for the outdoor recreational needs. In this analysis, middles daily meteorological data (of climatological station of Novi Sad were used for two extreme months, January and July. In this work, it is analyzed two periods, the first is for 1992-2010. and the second is for year 2010. The aim is to show how weather can be evaluated for recreational needs which the health resource of Novi Sad and to point out the shortcomings when it comes to multi-year analysis. The objective of this article has been to present a bioclimatic analysis of city Novi Sad and how weather variables come together in order to give a climate meaning on human organism.

  8. General purpose heat source task group. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    The results of thermal analyses and impact tests on a modified design of a 238 Pu-fueled general purpose heat source (GPHS) for spacecraft power supplies are presented. This work was performed to establish the safety of a heat source with pyrolytic graphite insulator shells located either inside or outside the graphite impact shell. This safety is dependent on the degree of aerodynamic heating of the heat source during reentry and on the ability of the heat source capsule to withstand impact after reentry. Analysis of wind tunnel and impact test data result in a recommended GPHS design which should meet all temperature and safety requirements. Further wind tunnel tests, drop tests, and impact tests are recommended to verify the safety of this design

  9. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    International Nuclear Information System (INIS)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric; Li, Hongwei; Li, Xiaopeng; Svendsen, Svend

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the actual heat demand. This results in 15–30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance, and stabilize indoor temperatures. The feasibility and the energy consumption reduction of this approach were verified by means of simulation and a field test. By moving the system from centrally planned heat delivery to demand-driven heat delivery, excess heat loss can be significantly reduced. Results show that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO_2, 0.1 kg SO_2, and 0.03 kg NO_x per heating square meter for a typical case in Harbin. - Highlights: • Two real cases reflect the temperature and flow control situation of heating systems in China. • Pre-set radiator valves with automatic balancing valves create dynamic hydraulic balance. • IDA-ICE simulation shows 17% heat saving and 48% pump electricity saving. • This approach can improve the comfort level of multi-storey/high-rise residential buildings. • This approach can reduce excess heat supply and bring out positive environmental impacts.

  10. Monitoring the latent and sensible heat fluxes in vineyard by applying the energy balance model METRIC

    Directory of Open Access Journals (Sweden)

    J. González-Piqueras

    2015-06-01

    Full Text Available The monitoring of the energy fluxes over vineyard applying the one source energy balance model METRIC (Allen et al., 2007b are shown in this work. This model is considered operaive because it uses an internalized calibration method derived from the selection of two extreme pixels in the scene, from the minimum ET values such as the bare soil to a maximum that corresponds to full cover active vegetation. The model provides the maps of net radiation (Rn, soil heat flux (G, sensible heat (H, latent heat (LE, evapotranspiration (ET and crop coefficient (Kc. The flux values have been validated with a flux tower installed in the plot, providing a RMSE for instantaneous fluxes of 43 W m2, 33 W m2, 55 W m2 y 40 W m2 on Rn, G, H and LE. In relative terms are 8%, 29%, 21% and 20% respectively. The RMSE at daily scale for the ET is 0.58 mm day-1, with a value in the crop coefficient for the mid stage of 0.42±0.08. These results allow considering the model adequate for crop monitoring and irrigation purposes in vineyard. The values obtained have been compared to other studies over vineyard and with alternative energy balance models showing similar results.

  11. Balanced Sourcing As An Important Attribute Of Operations Strategy ...

    African Journals Online (AJOL)

    Balanced Sourcing As An Important Attribute Of Operations Strategy: Reality Or ... the questions “who should perform an activity or process in the value chain? ... Operations Strategy, Strategic Sourcing, Sustainable Competitive Advantage, ...

  12. Protected isotope heat source

    International Nuclear Information System (INIS)

    Burns, R.K.; Shure, L.I.; Katzen, E.D.

    1975-01-01

    A radioactive isotope capsule is disposed in a container (heat shield) which will have a single stable trim attitude when reentering the earth's atmosphere and while falling to earth. The center of gravity of the heat source is located forward of the midpoint between the front face and the rear face of the container. The capsule is insulated from the front face of the container but not from the rear surface of the container. (auth)

  13. Experimental study of adsorption chiller driven by variable heat source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Wu, J.Y. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-05-15

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed. (author)

  14. Experimental study of adsorption chiller driven by variable heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L.; Wu, J.Y.

    2008-01-01

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed

  15. Mapping of low temperature heat sources in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Holm, Fridolin Müller; Huang, Baijia

    2015-01-01

    heat. The total accessible waste heat potential is found to be approximately 266 PJ per year with 58 % of it below 100 °C. In the natural heat category, temperatures below 20 °C originate from ambient air, sea water and shallow geothermal energy, and temperatures up to 100 °C are found for solar...... and deep geothermal energy. The theoretical solar thermal potential alone would be above 500 PJ per year. For the development of advanced thermodynamic cycles for the integration of heat sources in the Danish energy system, several areas of interest are determined. In the maritime transport sector a high......Low temperature heat sources are available in many applications, ranging from waste heat from industrial processes and buildings to geothermal and solar heat sources. Technical advancements, such as heat pumps with novel cycle design and multi-component working fluids, make the utilisation of many...

  16. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source

    International Nuclear Information System (INIS)

    Zhao, M.; Gu, Z.L.; Kang, W.B.; Liu, X.; Zhang, L.Y.; Jin, L.W.; Zhang, Q.L.

    2017-01-01

    Graphical abstract: (a) Vertical temperature gradient in Case 3, (b) PMV and PPD of the test room in Case 3, (c) operating time of SPCTS and ASHP systems in Case 3 and (d) the proportion of SPCTS operating time. - Highlights: • A capillary heating system based on solar and air source heat pump was developed. • Influence of supply water temperature on solar energy saving rate was investigated. • Heating performance and thermal comfort of capillary heating system were analyzed. • Low temperature heating with capillary is suitable for solar heating system. - Abstract: Due to sustainable development, solar energy has drawn much attention and been widely applied in buildings. However, the application of solar energy is limited because of its instability, intermittency and low energy density in winter. In order to use low density and instable solar energy source for heating and improve the utilization efficiency of solar energy, a solar phase change thermal storage (SPCTS) heating system using a radiant-capillary-terminal (RCT) to effectively match the low temperature hot water, a phase change thermal storage (PCTS) to store and continuously utilize the solar energy, and an air source heat pump (ASHP) as an alternate energy, was proposed and set up in this research. Series of experiments were conducted to obtain the relation between the solar radiation utilization rate and the heating supply temperatures, and to evaluate the performance of the RCT module and the indoor thermal environment of the system for its practical application in a residential building in the north-western City of Xi’an, China. The results show that energy saving of the solar heating system can be significantly improved by reducing the supplied water temperature, and the supplied water temperature of the RCT would be no more than 35 °C. The capillary radiation heating can adopt a lower water temperature and create a good thermal comfort environment as well. These results may lead to the

  17. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  18. Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data

    Directory of Open Access Journals (Sweden)

    Chen-Yi Sun

    2008-09-01

    Full Text Available The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures.

  19. Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources

    Science.gov (United States)

    Zhang, Renping

    2017-12-01

    A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.

  20. Characteristic evaluations of BWR uprate method based on heat balance shift concept

    International Nuclear Information System (INIS)

    Kitou, Kazuaki; Aoyama, Motoo; Shiina, Kouji; Sasaki, Hiroshi; Yoshikawa, Kazuhiro

    2007-01-01

    Reactor power uprate of nuclear power plants is an efficient plant operating method. Most BWR plants need the exchange of high pressure turbines when plant thermal power increases over 5% because main steam flow rate exceeds the limitation of inlet steam flow rate of a high pressure turbine. Therefore, the new power uprate method named heat balance shift power uprate method has been developed. This method decreases feedwater temperature with increasing plant thermal power not to increase main steam flower rate. This study clarified that the heat balance shift method could increase plant electric power up to 2.8% compared with conventional power uprate method without the exchange of a high pressure turbine. (author)

  1. Thermodynamic performance analysis of sequential Carnot cycles using heat sources with finite heat capacity

    International Nuclear Information System (INIS)

    Park, Hansaem; Kim, Min Soo

    2014-01-01

    The maximum efficiency of a heat engine is able to be estimated by using a Carnot cycle. Even though, in terms of efficiency, the Carnot cycle performs the role of reference very well, its application is limited to the case of infinite heat reservoirs, which is not that realistic. Moreover, considering that one of the recent key issues is to produce maximum work from low temperature and finite heat sources, which are called renewable energy sources, more advanced theoretical cycles, which can present a new standard, and the research about them are necessary. Therefore, in this paper, a sequential Carnot cycle, where multiple Carnot cycles are connected in parallel, is studied. The cycle adopts a finite heat source, which has a certain initial temperature and heat capacity, and an infinite heat sink, which is assumed to be ambient air. Heat transfer processes in the cycle occur with the temperature difference between a heat reservoir and a cycle. In order to resolve the heat transfer rate in those processes, the product of an overall heat transfer coefficient and a heat transfer area is introduced. Using these conditions, the performance of a sequential Carnot cycle is analytically calculated. Furthermore, as the efforts for enhancing the work of the cycle, the optimization research is also conducted with numerical calculation. - Highlights: • Modified sequential Carnot cycles are proposed for evaluating low grade heat sources. • Performance of sequential Carnot cycles is calculated analytically. • Optimization study for the cycle is conducted with numerical solver. • Maximum work from a heat source under a certain condition is obtained by equations

  2. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  3. Heat-source specification 500 watt(e) RTG

    International Nuclear Information System (INIS)

    1983-02-01

    This specification establishes the requirements for a 90 SrF 2 heat source and its fuel capsule for application in a 500 W(e) thermoelectric generator. The specification covers: fuel composition and quantity; the Hastelloy S fuel capsule material and fabrication; and the quality assurance requirements for the assembled heat source

  4. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...

  5. Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2010-10-01

    Full Text Available Numerical analysis of thermal phenomena occurring during laser beam heating is presented in this paper. Numerical models of surface andvolumetric heat sources were presented and the influence of different laser beam heat source power distribution on temperature field wasanalyzed. Temperature field was obtained by a numerical solution the transient heat transfer equation with activity of inner heat sources using finite element method. Temperature distribution analysis in welded joint was performed in the ABAQUS/Standard solver. The DFLUXsubroutine was used for implementation of the movable welding heat source model. Temperature-depended thermophysical properties for steelwere assumed in computer simulations. Temperature distribution in laser beam surface heated and butt welded plates was numericallyestimated.

  6. Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Foltz, G.R.; Vialard, J.; PraveenKumar, B.; McPhaden, M.J.

    from a long-term moored buoy are used in conjunction with satellite, in situ, and atmospheric reanalysis datasets to analyze the seasonal mixed layer heat balance in the thermocline ridge region of the southwestern tropical Indian Ocean. This region...

  7. Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Gudmundsson, Oddgeir; Thorsen, Jan Eric

    2016-01-01

    A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance with the a......A common problem with Chinese district heating systems is that they supply more heat than the actual heat demand. The reason for this excess heat supply is the general failure to use control devices to adjust the indoor temperature and flow in the building heating systems in accordance...... with the actual heat demand. This results in 15-30% of the total supplied heat being lost. This paper proposes an integrated approach that aims to reduce the excess heat loss by introducing pre-set thermostatic radiator valves combined with automatic balancing valves. Those devices establish hydraulic balance...... that once the hydraulic balance is achieved and indoor temperatures are controlled with this integrated approach, 17% heat savings and 42.8% pump electricity savings can be achieved. The energy savings will also have a positive environmental effect with seasonal reductions of 11 kg CO2, 0.1 kg SO2, and 0...

  8. Soil Thermal Balance Analysis for a Ground Source Heat Pump System in a Hot-Summer and Cold-Winter Region

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available As a renewable and high energy efficiency technology providing air conditioning and domestic hot water, the ground source heat pump system (GSHPS has been extensively used worldwide in recent years. Compared with conventional systems, GSHPSs with heat recovery reject less heat into the soil and extract more heat from it, which can help reduce soil thermal imbalance in hot-summer and cold-winter regions. In this paper, conventional GSHPS, and GSHPS with different heat recovery ratios, in a typical city were compared based on thermal imbalance ratios, average soil temperatures and soil temperature increases. The transient system simulation software was used to simulate the operation performance of GSHPS. The thermal imbalance ratio and soil temperature decreased with increasing heat recovery ratio. After 20 years of operation, the soil thermal imbalance ratios of the GSHPS were 29.2%, 21.1%, 16%, and 5.2%, and the soil temperature rises were 8.78 °C, 5.25 °C, 3.44 °C, and 0.34 °C, while the heat recovery ratios were 0, 18%, 30% and 53%, respectively. Consequently, a GSHPS with heat recovery is a potentially efficient and economical approach for buildings in hot-summer and cold-winter regions.

  9. Method for customizing an organic Rankine cycle to a complex heat source for efficient energy conversion, demonstrated on a Fischer Tropsch plant

    International Nuclear Information System (INIS)

    DiGenova, Kevin J.; Botros, Barbara B.; Brisson, J.G.

    2013-01-01

    Highlights: ► Methods for customizing organic Rankine cycles are proposed. ► A set of cycle modifications help to target available heat sources. ► Heat sources with complex temperature–enthalpy profiles can be matched. ► Significant efficiency improvements can be achieved over basic ORC’s. -- Abstract: Organic Rankine cycles (ORCs) provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources into power, where conventional steam power cycles are known to be inefficient. A large processing plant often has multiple low temperature waste heat streams available for conversion to electricity by a low temperature cycle, resulting in a composite heat source with a complex temperature–enthalpy profile. This work presents a set of ORC design concepts: reheat stages, multiple pressure levels, and balanced recuperators; and demonstrates the use of these design concepts as building blocks to create a customized cycle that matches an available heat source. Organic fluids are modeled using a pure substance database. The pinch analysis technique of forming composite curves is applied to analyze the effect of each building block on the temperature–enthalpy profile of the ORC heat requirement. The customized cycle is demonstrated on a heat source derived from a Fischer Tropsch reactor and its associated processes. Analysis shows a steam Rankine cycle can achieve a 20.6% conversion efficiency for this heat source, whereas a simple organic Rankine cycle using hexane as the working fluid can achieve a 20.9% conversion efficiency. If the ORC building blocks are combined into a cycle targeted to match the temperature–enthalpy profile of the heat source, this customized ORC can achieve 28.5% conversion efficiency.

  10. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  11. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2011-01-01

    European governments see that heat pumps could reduce carbon emissions in space- and hot-water heating. EU's Renewable Energy Directive designates heat pumps as renewable - eligible for various subsidies - if their carbon footprints are below an implied, average threshold. This threshold omits carbon generated by manufacture and emission of a heat-pump's fluorocarbon refrigerant. It also omits the footprint of the heat pump's hardware. To see if these omissions are significant, this study calculated carbon footprints of representative, residential heat pumps in the UK. Three findings emerged. First, in relation to power generation, which accounts for most of a heat-pump's greenhouse-gas emissions, fluorocarbons add another 20% to the footprint. Second, at UK efficiencies a heat-pump footprint (in kg CO 2 e emitted per kWh delivered) is comparable or higher than footprints of gaseous fuels used in heating. It is lower than the footprint of heating oil and far lower than the footprints of solid fuels. Third, production and disposal of a heat pump's hardware is relatively insignificant, accounting for only 2-3% of the overall heat-pump footprint. Sensitivities to the results were assessed: key factors are footprint of electricity generation, F-gas composition and leak rates and type of wall construction. - Research highlights: → Refrigerant emissions add 20% to a UK air-source heat pump's carbon footprint. → This contribution is so far ignored by regulations. → UK heat pump footprints are comparable to those of gaseous fuels.

  12. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  13. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  14. Power generation from low-temperature heat source

    Energy Technology Data Exchange (ETDEWEB)

    Lakew, Amlaku Abie

    2012-07-01

    The potential of low-temperature heat sources for power production has been discussed for decades. The diversity and availability of low-temperature heat sources makes it interesting for power production. The thermodynamic power cycle is one of the promising technologies to produce electricity from low-temperature heat sources. There are different working fluids to be used in a thermodynamic power cycle. Working fluid selection is essential for the performance of the power cycle. Over the last years, different working fluid screening criteria have been used. In broad speaking the screening criteria can be grouped as thermodynamic performance, component size requirement, economic performance, safety and environmental impact. Screening of working fluids at different heat source temperatures (80-200 Celsius degrees) using thermodynamic performance (power output and exergy efficiency) and component size (heat exchanger and turbine) is investigated. It is found that the 'best' working fluid depends on the criteria used and heat source temperature level. Transcritical power cycles using carbon dioxide as a working fluid is studied to produce power at 100 Celsius degrees. Carbon dioxide is an environmentally friendly refrigerant. The global warming potential of carbon dioxide is 1. Furthermore, because of its low critical temperature (31 Celsius degrees), carbon dioxide can operate in a transcritical power cycle for lower heat source temperatures. A transcritical configuration avoids the problem of pinching which otherwise would happened in subcritical power cycle. In the process, better temperature matching is achieved and more heat is extracted. Thermodynamic analysis of transcritical cycle is performed; it is found that there is an optimal operating pressure for highest net power output. The pump work is a sizable fraction of the work produced by the turbine. The effect of efficiency deterioration of the pump and the turbine is compared. When the

  15. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.

    1993-01-01

    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  16. Calculating the water and heat balances of the Eastern Mediterranean Basin using ocean modelling and available meteorological, hydrological and ocean data

    Directory of Open Access Journals (Sweden)

    Anders Omstedt

    2012-04-01

    Full Text Available Eastern Mediterranean water and heat balances wereanalysed over 52 years. The modelling uses a process-orientedapproach resolving the one-dimensional equations of momentum,heat and salt conservation; turbulence is modelled using a two-equation model. The results indicate that calculated temperature and salinity follow the reanalysed data well. The water balance in the Eastern Mediterranean basin was controlled by the difference between inflows and outflows through the Sicily Channel and by net precipitation. The freshwater component displayed a negative trend over the study period, indicating increasing salinity in the basin.The heat balance was controlled by heat loss from the water surface, solar radiation into the sea and heat flow through the Sicily Channel. Both solar radiation and net heat loss displayed increasing trends, probably due to decreased total cloud cover. In addition, the heat balance indicated a net import of approximately 9 W m-2 of heat to the Eastern Mediterranean Basin from the Western Basin.

  17. Estimating Evapotranspiration from an Improved Two-Source Energy Balance Model Using ASTER Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Qifeng Zhuang

    2015-11-01

    Full Text Available Reliably estimating the turbulent fluxes of latent and sensible heat at the Earth’s surface by remote sensing is important for research on the terrestrial hydrological cycle. This paper presents a practical approach for mapping surface energy fluxes using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER images from an improved two-source energy balance (TSEB model. The original TSEB approach may overestimate latent heat flux under vegetative stress conditions, as has also been reported in recent research. We replaced the Priestley-Taylor equation used in the original TSEB model with one that uses plant moisture and temperature constraints based on the PT-JPL model to obtain a more accurate canopy latent heat flux for model solving. The collected ASTER data and field observations employed in this study are over corn fields in arid regions of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER area, China. The results were validated by measurements from eddy covariance (EC systems, and the surface energy flux estimates of the improved TSEB model are similar to the ground truth. A comparison of the results from the original and improved TSEB models indicates that the improved method more accurately estimates the sensible and latent heat fluxes, generating more precise daily evapotranspiration (ET estimate under vegetative stress conditions.

  18. THERMOREGULATION IN CHILDREN: EXERCISE, HEAT STRESS & FLUID BALANCE

    Directory of Open Access Journals (Sweden)

    Shawnda A. Morrison

    2014-12-01

    Full Text Available This review focuses on the specific physiological strategies of thermoregulation in children, a brief literary update relating exercise to heat stress in girls and boys as well as a discussion on fluid balance strategies for children who are performing exercise in the heat. Both sport performance and thermoregulation can be affected by the body’s water and electrolyte content. The recommendations for pre-pubertal fluid intake have been generalized from adult literature, including a limited concession for the physiological differences between adults and children. Considering these body fluid shifts, carbohydrate-electrolyte drinks are thought to be an essential tool in combating dehydration as a result of active hyperthermia (i.e. exercise, thus we examine current hydration practices in exercising children. Finally, this review summarizes research which examines the relationship between cognition and hypohydration on young athletes’ performance.

  19. Computerized heat balance models to predict performance of operating nuclear power plants

    International Nuclear Information System (INIS)

    Breeding, C.L.; Carter, J.C.; Schaefer, R.C.

    1983-01-01

    The use of computerized heat balance models has greatly enhanced the decision making ability of TVA's Division of Nuclear Power. These models are utilized to predict the effects of various operating modes and to analyze changes in plant performance resulting from turbine cycle equipment modifications with greater speed and accuracy than was possible before. Computer models have been successfully used to optimize plant output by predicting the effects of abnormal condenser circulating water conditions. They were utilized to predict the degradation in performance resulting from installation of a baffle plate assembly to replace damaged low-pressure blading, thereby providing timely information allowing an optimal economic judgement as to when to replace the blading. Future use will be for routine performance test analysis. This paper presents the benefits of utility use of computerized heat balance models

  20. Geothermal source heat pump performance for a greenhouse heating system: an experimental study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2016-09-01

    Full Text Available Greenhouses play a significant function in the modern agriculture economy even if require great amount of energy for heating systems. An interesting solution to alleviate the energy costs and environmental problems may be represented by the use of geothermal energy. The aim of this paper, based on measured experimental data, such as the inside greenhouse temperature and the heat pump performance (input and output temperatures of the working fluid, electric consumption, was the evaluation of the suitability of low enthalpy geothermal heat sources for agricultural needs such as greenhouses heating. The study was carried out at the experimental farm of the University of Bari, where a greenhouse was arranged with a heating system connected to a ground-source heat pump (GSHP, which had to cover the thermal energy request. The experimental results of this survey highlight the capability of the geothermal heat source to ensue thermal conditions suitable for cultivation in greenhouses even if the compressor inside the heat pump have operated continuously in a fluctuating state without ever reaching the steady condition. Probably, to increase the performance of the heat pump and then its coefficient of performance within GSHP systems for heating greenhouses, it is important to analyse and maximise the power conductivity of the greenhouse heating system, before to design an expensive borehole ground exchanger. Nevertheless, according to the experimental data obtained, the GSHP systems are effective, efficient and environmental friendly and may be useful to supply the heating energy demand of greenhouses.

  1. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  2. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Science.gov (United States)

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-06-18

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.

  3. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    Directory of Open Access Journals (Sweden)

    Alan Cross

    Full Text Available The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be

  4. Estimation of heat transfer and heat source in a molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.I.; Suh, K.Y.; Kang, C.S. [Seoul National Univ., Dept. of Nuclear Engineering (Korea, Republic of)

    2001-07-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine (29) elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry, 1.45 m in radius and 32,700 kg in mass. The change of pool geometry during the numerical calculation was neglected. The peak temperature sizably decreased by about 60 K as the fission products were released from the pool. (author)

  5. Estimation of heat transfer and heat source in a molten pool

    International Nuclear Information System (INIS)

    Yun, J.I.; Suh, K.Y.; Kang, C.S.

    2001-01-01

    Heat transfer and fluid flow in a molten pool are influenced by internal volumetric heat generated from the radioactive decay of fission product species retained in the pool. The pool superheat is determined based on the overall energy balance that equates the heat production rate to the heat loss rate. Decay heat of fission products in the pool was estimated by product of the mass concentration and energy conversion factor of each fission product. For the calculation of heat generation rate in the pool, twenty-nine (29) elements were chosen and classified by their chemical properties. The mass concentration of a fission product is obtained from released fraction and the tabular output of the ORIGEN 2 code. The initial core and pool inventories at each time can also be estimated using ORIGEN 2. The released fraction of each fission product is calculated based on the bubble dynamics and mass transport. Numerical analysis was performed for the TMI-2 accident. The pool is assumed to be a partially filled hemispherical geometry, 1.45 m in radius and 32,700 kg in mass. The change of pool geometry during the numerical calculation was neglected. The peak temperature sizably decreased by about 60 K as the fission products were released from the pool. (author)

  6. Simulation and experiment on the thermal performance of U-vertical ground coupled heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinguo; Chen, Zhihao; Zhao, Jun [Department of Thermal Engineering, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China)

    2006-10-15

    This paper presented both the numerical simulations and experiments on the thermal performance of U-vertical ground coupled heat exchanger (UGCHE). The variation of the ground temperature and heat balance of the system were analyzed and compared in different operation modes in the numerical simulation. Experiments on the operation performance of the ground-coupled heat pump (GCHP) with the UGCHE were carried out. It shows that the ground source can be used as the heat source/sink for GCHP systems to have higher efficiency in saving energy. To preserve the ground resource for the sustainable utilization as heat source/sink, the heat emitted to ground and heat extracted from ground should be balanced. (author)

  7. Sources for high frequency heating. Performance and limitations

    International Nuclear Information System (INIS)

    Le Gardeur, R.

    1976-01-01

    The various problems encountered in high frequency heating of plasmas can be decomposed into three spheres of action: theoretical development, antenna designing, and utilization of power sources. By classifying heating into three spectral domains, present and future needs are enumerated. Several specific antenna designs are treated. High frequency power sources are reviewed. The actual development of the gyratron is discussed in view of future needs in very high frequency heating of plasmas [fr

  8. Efficiency of the heat pump cooperating with various heat sources in monovalent and bivalent systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurpaska, S.; Latala, H. [Krakow Univ. of Agriculture, Krakow (Poland). Inst. of Agricultural Engineering and Computer Science

    2010-07-01

    This paper reported on a study that tested the efficiency of compressor heat pumps cooperating with various types of lower heat sources such as horizontal ground heat exchangers, vertical exchangers and sources operating in the bivalent system. The system for receiving energy consisted of a traditional heating system and liquid-air exchangers. The study identified a strong relationship between the heating efficiency of the analysed systems and temperature inside the structure. The study showed that the bivalent system was fully capable of meeting a heat requirement of about 1 MJ -2.

  9. Pulse*Star Inertial Confinement Fusion Reactor: heat transfer loop and balance of plant considerations

    International Nuclear Information System (INIS)

    McDowell, M.W.; Murray, K.A.

    1984-01-01

    A conceptual heat transfer loop and balance of plant design for the Pulse*Star Inertial Confinement Fusion Reactor has been investigated and results are presented. The Pulse*Star reaction vessel, a perforated steel bell jar approximately 11 m in diameter, is immersed in Li 17 Pb 83 coolant which flows through the perforations and forms a 1.5 m thick plenum of droplets around an 8 m diameter inner chamber. The reactor and associated pumps, piping, and steam generators are contained within a 17 m diameter pool of Li 17 Pb 83 coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops with flow rates of 5.5 m 3 /s each are necessary to transfer 3300 MWt of power. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. Power balance calculations based on an improved electrical conversion efficiency revealed a net electrical output of 1260 MWe to the bus bar and a resulting net efficiency of 39%. Suggested balance-of-plant layouts are also presented

  10. Heat pump using dual heat sources of air and water. Performance in cooling mode; Mizu kuki ryonetsugen heat pump no kenkyu. Reibo unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y [Kubota Corp., Osaka (Japan)

    1997-11-25

    When a heat pump is used for cooling purpose, it is possible to utilize different kinds of waste water as high-heat sources. However, these heat sources would have their temperatures vary with seasons and time in a day. Therefore, a discussion was given on performance of a heat pump when water and air heat sources are used for condensers during cooling operation independently, in series and in parallel, respectively. The air condenser shows an equivalent COP as compared with the water condenser when air temperature is lower by about 8 degC than water temperature. At the same heat source temperature, the COP for the water condenser indicated a value higher by about 0.6 than the case of the air condenser. A method to use condensers in parallel experiences little contribution from the air heat source, and performance of the heat pump decreases below the case of using the water heat source independently when the air heat source temperature becomes higher than that of the water heat source. In the case of series use in which a water condenser is installed in front and an air condenser in rear, its effect is exhibited when temperature in the air heat source is lower than that in the water heat source. Better performance was shown than in operating the water heat source independently. 2 refs., 9 figs.

  11. An analysis of solar assisted ground source heat pumps in cold climates

    International Nuclear Information System (INIS)

    Emmi, Giuseppe; Zarrella, Angelo; De Carli, Michele; Galgaro, Antonio

    2015-01-01

    Highlights: • The work focuses on solar assisted ground source heat pump in cold climates. • Multi-year simulations of SAGSHP, are carried out in six cold locations. • GSHP and SAGSHP are compared. • The effect of total borehole length on the heat pump energy efficiency is studied. • A dedicated control strategy is used to manage both solar and ground loops. - Abstract: Exploiting renewable energy sources for air-conditioning has been extensively investigated over recent years, and many countries have been working to promote the use of renewable energy to decrease energy consumption and CO_2 emissions. Electrical heat pumps currently represent the most promising technology to reduce fossil fuel usage. While ground source heat pumps, which use free heat sources, have been taking significant steps forward and despite the fact that their energy performance is better than that of air source heat pumps, their development has been limited by their high initial investment cost. An alternative solution is one that uses solar thermal collectors coupled with a ground source heat pump in a so-called solar assisted ground source heat pump. A ground source heat pump system, used to heat environments located in a cold climate, was investigated in this study. The solar assisted ground source heat pump extracted heat from the ground by means of borehole heat exchangers and it injected excess solar thermal energy into the ground. Building load profiles are usually heating dominated in cold climates, but when common ground source heat pump systems are used only for heating, their performance decreases due to an unbalanced ground load. Solar thermal collectors can help to ensure that systems installed in cold zones perform more efficiently. Computer simulations using a Transient System Simulation (TRNSYS) tool were carried out in six cold locations in order to investigate solar assisted ground source heat pumps. The effect of the borehole length on the energy efficiency of

  12. Hot Hydrogen Heat Source Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a  hot hydrogen heat source that would produce  a high temperature hydrogen flow which would be comparable to that produced...

  13. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  14. Setup of Design Concept for the Secondary System of the Sodium Cooled Fast Reactor and Development of Computational Code for the heat balance setup

    International Nuclear Information System (INIS)

    Kim, E. K.; Seong, S. H.; Kim, S. O.; Eoh, J. H.; Han, J. W.; Cha, J. E.

    2010-12-01

    KAERI developed KALIMER-600 on it own way and now is designing the 600MWe actual sized plant for SFR. Nowadays, it is emphasizing the necessity of the evaluation for NSSS design as a part of the verification for SFR design validity. In other words, it means that should be precede the setup of the heat balance and preliminary design for SFR BOP. Turbine composition was configurated to refer SAMCHEON-PO fossil plant which have similar steam condition. The heat balance of SFR BOP was deduced to based on the NSSS boundary condition of the 600MWe actual sized plant. The algorithm of the heat balance calculation program was developed to refer preliminary heat balance data. and then, the setup of the heat balance for SFR BOP was evaluated. In the performance analysis for the preliminary heat balance of the SFR BOP, it was demonstrated that turbine characteristics are similar to reference plant, such as the SAMCHEON-PO fossil plant and the PFBR of the India

  15. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  16. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    Science.gov (United States)

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  17. Development of the Sixty Watt Heat-Source hardware components

    International Nuclear Information System (INIS)

    McNeil, D.C.; Wyder, W.C.

    1995-01-01

    The Sixty Watt Heat Source is a nonvented heat source designed to provide 60 thermal watts of power. The unit incorporates a plutonium-238 fuel pellet encapsulated in a hot isostatically pressed General Purpose Heat Source (GPHS) iridium clad vent set. A molybdenum liner sleeve and support components isolate the fueled iridium clad from the T-111 strength member. This strength member serves as the pressure vessel and fulfills the impact and hydrostatic strength requirements. The shell is manufactured from Hastelloy S which prevents the internal components from being oxidized. Conventional drawing operations were used to simplify processing and utilize existing equipment. The deep drawing reqirements for the molybdenum, T-111, and Hastelloy S were developed from past heat source hardware fabrication experiences. This resulted in multiple step drawing processes with intermediate heat treatments between forming steps. The molybdenum processing included warm forming operations. This paper describes the fabrication of these components and the multiple draw tooling developed to produce hardware to the desired specifications. copyright 1995 American Institute of Physics

  18. Heat storage in forest biomass improves energy balance closure

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2010-01-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation very well. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy covariance

  19. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  20. Power balance in an Ohmically heated fusion reactor

    International Nuclear Information System (INIS)

    Christiansen, J.P.; Roberts, K.V.

    1982-01-01

    A simplified power-balance equation (zero-dimensional model) is used to study the performance of an Ohmically heated fusion reactor with emphasis on a pulsed reversed-field pinch concept (RFP). The energy confinement time tausub(E) is treated as an adjustable function, and empirical tokamak scaling laws are employed in the numerical estimates, which are supplemented by 1-D ATHENE code calculations. The known heating rates and energy losses are represented by the net energy replacement time tausub(W), which is exhibited as a surface in density (n) and temperature (T) space with a saddle point (nsub(*), Tsub(*)), the optimum ignition point. It is concluded that i) ignition by Ohmic heating is more practicable for the RFP reactor than for a tokamak reactor with the same tausub(E), (ii) if at fixed current the minor radius can be reduced or at fixed minor radius the current can be increased, then it is found that Ohmic ignition becomes more likely when present tokamak scaling laws are used. More definitive estimates require, however, a knowledge of tausub(E), which can only be obtained by establishing a reliable set of experimental RFP scaling laws and, in particular, by extending RFP experiments closer to the reactor regime. (author)

  1. Field test and sensitivity analysis of a sensible heat balance method to determine ice contents

    Science.gov (United States)

    Soil ice content impacts winter vadose zone hydrology. It may be possible to estimate changes in soil ice content with a sensible heat balance (SHB) method, using measurements from heat pulse (HP) sensors. Feasibility of the SHB method is unknown because of difficulties in measuring soil thermal pro...

  2. A feasible system integrating combined heating and power system with ground-source heat pump

    International Nuclear Information System (INIS)

    Li, HongQiang; Kang, ShuShuo; Yu, Zhun; Cai, Bo; Zhang, GuoQiang

    2014-01-01

    A system integrating CHP (combined heating and power) subsystem based on natural gas and GSHP (ground-source heat pump subsystem) in series is proposed. By help of simulation software-Aspen Plus, the energy performance of a typical CHP and GSHP-S (S refers to ‘in series’) system was analyzed. The results show that the system can make a better use of waste heat in flue gas from CHP (combined heating and power subsystem). The total system energy efficiency is 123% and the COP (coefficient of performance) of GSHP (ground-source heat pump) subsystem is 5.3. A referenced CHP and GSHP-P (P refers to ‘in parallel’) system is used for comparison; its total system energy efficiency and COP of GSHP subsystem are 118.6% and 3.5 respectively. Compared with CHP and GSHP-P system with different operating parameters, the CHP and GSHP-S system can increase total system energy efficiency by 0.8–34.7%, with related output ratio of heat to power (R) from 1.9 to 18.3. Furthermore, the COP of GSHP subsystem can be increased between the range 3.6 and 6, which is much higher than that in conventional CHP and GSHP-P system. This study will be helpful for other efficient GSHP systems integrating if there is waste heat or other heat resources with low temperature. - Highlights: • CHP system based on natural gas and ground source heat pump. • The new system can make a better utilization of waste heat in flue gas by a special way. • The proposed system can realize energy saving potential from 0.8 to 34.7%. • The coefficient of performance of ground source heat pump subsystem is significantly improved from 3.5 to 3.6–6. • Warm water temperature and percentage of flue gas used to reheat are key parameters

  3. Heat transfer within a concrete slab with a finite microwave heating source

    International Nuclear Information System (INIS)

    Lagos, L.E.; Li, W.; Ebadian, M.A.; Grubb, R.G.

    1995-01-01

    In the present paper, the concrete decontamination and decommissioning process with a finite microwave heating source is investigated theoretically. For the microwave induced heating pattern, a multilayer concrete slab, which includes steel reinforcement mesh, is assumed to be exposed to a finite plane microwave source at normal incidence. Two-dimensional heat transport within the concrete is also considered to evaluate the variations of temperature with heating time at different frequencies with and without the presence of the reinforcement bars. Four commonly used industrial microwave frequencies of 0.896, 2.45, 10.6 and 18.0 GHz have been selected. The results revealed that as the microwave frequency increases to, or higher than 10.6 GHz, the maximum temperature shifts toward the front surface of the concrete. It was found that the presence of a steel reinforcement mesh causes part of the microwave energy to be blocked and reflected. Furthermore, it was observed that the temperature distribution is nearly uniform within the dimensions of the microwave applicator for a high microwave power intensity and a short heating time. (author)

  4. Design of serially connected ammonia-water hybrid absorption-compression heat pumps for district heating with the utilisation of a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2016-01-01

    District heating (DH) can reduce the primary energy consumption in urban areas with significant heat demands. The design of a serially connected ammonia-water hybrid absorption-compression heat pump system was investigated for operation in the Greater Copenhagen DH network in Denmark, in order...... to supply 7.2 MW heat at 85 °C utilizing a geothermal heat source at 73 °C. Both the heat source and heat sink experience a large temperature change over the heat transfer process, of which a significant part may be achieved by direct heat exchange. First a generic study with a simple representation...

  5. Exergoeconomic analysis of a solar assisted ground-source heat pump greenhouse heating system

    International Nuclear Information System (INIS)

    Ozgener, Onder; Hepbasli, Arif

    2005-01-01

    EXCEM analysis may prove useful to investigators in engineering and other disciplines due to the methodology are being based on the quantities exergy, cost, energy and mass. The main objective of the present study is to investigate between capital costs and thermodynamic losses for devices in solar assisted ground-source heat pump greenhouse heating system (SAGSHPGHS) with a 50 m vertical 32 mm nominal diameter U-bend ground heat exchanger. This system was designed and installed at the Solar Energy Institute, Ege University, Izmir, Turkey. Thermodynamic loss rate-to-capital cost ratios are used to show that, for components and the overall system, a systematic correlation appears to exist between capital cost and exergy loss (total or internal), but not between capital cost and energy loss or external exergy loss. This correlation may imply that devices in successful air conditioning are configured so as to achieve an overall optimal design, by appropriately balancing the thermodynamic (exergy-based) and economic characteristics of the overall system and its devices. The results may, (i) provide useful insights into the relations between thermodynamics and economics, both in general and for SAGSHPGHS (ii) help demonstrate the merits of second-law analysis. It is observed from the results that the maximum exergy destructions in the system particularly occur due to the electrical, mechanical and isentropic efficiencies and emphasize the need for paying close attention to the selection of this type of equipment, since components of inferior performance can considerably reduce the overall performance of the system. In conjunction with this, the total exergy losses values are obtained to be from 0.010 kW to 0.480 kW for the system. As expected, the largest energy and exergy losses occur in the greenhouse and compressor. The ratio of thermodynamic loss rate to capital cost values are obtained for a range from 0.035 to 1.125

  6. Heat transfer from the moving heat source of arbitrary shape

    International Nuclear Information System (INIS)

    Fomin, Sergei A.

    2000-01-01

    The present research is related to contact melting by a moving heat source of arbitrary shape. Heat conduction in the melting material is governed by 3D differential equation, where the thermal conductivity of the surrounding material is assumed to be strongly temperature dependent. By using the Green's formula, the boundary-value problem is converted to the boundary integral equation. This non-linear equation is solved numerically by interactions utilizing the boundary element method. Different shapes of heat sources are investigated. Since the obtained integral equation is the Fredholm type equation of the first kind and belongs to the family of so-called ill-posed problems, therefore, supplementary computations, that verify the stability of numerical algorithm, are provided. For the special cases associated with thermodrilling technology, some analytical estimations and solutions are obtained. Particularly, if the melting velocity is high (Pe>10), asymptotic solutions are found. In this case the integral equation is significantly reduced, that simplifies the computations. Numerical results are in good agreement with the closed-form solutions available for the elliptical shape of a solid-liquid interface. (author)

  7. Heat Pumps in Private Residences used for Grid Balancing by Demand Response Methods

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Pedersen, Tom S.; Andersen, Palle

    2012-01-01

    Increased production of renewable energy as wind energy will give a fluctuating production which requires flexible energy storages. Heat capacity in single-family houses with electrical heating using heat pumps represents a storage which can be used to balance the electricity supply. It is assumed....... The minimization results in a power consumption schedule and a temperature schedule for each house. A number of control structures are described aiming to obtain this optimum by communicating references to either house temperature or heat pump power or by offering the consumer an hour by hour price. By simulation...... the schemes are compared by there ability to time shift consumption and to avoid consumer discomfort. Additionally the necessary information exchange for the schemes is discussed. Comparisons indicate that it is possible to use heat pump heated private houses to move power consumption within a time interval...

  8. Experimental study on local heat transfer characteristics of porous media with internal heat source

    International Nuclear Information System (INIS)

    Zan Yuanfeng; Wang Taotao; Xiao Zejun; Wang Fei; Huang Yanping

    2008-01-01

    Model of porous media with internal heat source is established. The model uses water as flowing media, and the stainless steel test section is packed with steel spheres in manner of regular triangle, respectively. The armoured resistance wire is inserted inside the steel sphere. On the basis of the experimental model, many parameters of the local heat transfer characteristics including current velocity and wall temperature of steel sphere are measured. The experimental results show that the coefficient of heat transfer scarcely changes with pressure. The coefficient of heat transfer increases with the surface heat flux of steel sphere. When raising the inlet temperature of the cooling water, the coefficient of heat transfer presents the descending trend. In addition, the influence of entrance effect on heat transfer is discovered in the experiment, which is much less than the liquid flow in the light tube. After experiment data are analyzed and processed, the relation model of heat transfer on local heat transfer characteristic of porous media with internal heat source was described with a power-law-equation. The deviations between calculation and experimental values are within ±10%. (authors)

  9. A well-balanced scheme for Ten-Moment Gaussian closure equations with source term

    Science.gov (United States)

    Meena, Asha Kumari; Kumar, Harish

    2018-02-01

    In this article, we consider the Ten-Moment equations with source term, which occurs in many applications related to plasma flows. We present a well-balanced second-order finite volume scheme. The scheme is well-balanced for general equation of state, provided we can write the hydrostatic solution as a function of the space variables. This is achieved by combining hydrostatic reconstruction with contact preserving, consistent numerical flux, and appropriate source discretization. Several numerical experiments are presented to demonstrate the well-balanced property and resulting accuracy of the proposed scheme.

  10. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    Science.gov (United States)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  11. A Study on Conjugate Heat Transfer Analysis of Reactor Vessel including Irradiated Structural Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Cho, Hyuksu; Im, Inyoung; Kim, Eunkee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    Though Material reliability programs (MRPs) have a purpose to provide the evaluation or management methodologies for the operating RVI, the similar evaluation methodologies can be applied to the APR1400 fleet in the design stage for the evaluation of neutron irradiation effects. The purposes of this study are: to predict the thermal behavior whether or not irradiated structure heat source; to evaluate effective thermal conductivity (ETC) in relation to isotropic and anisotropic conductivity of porous media for APR1400 Reactor Vessel. The CFD simulations are performed so as to evaluate thermal behavior whether or not irradiated structure heat source and effective thermal conductivity for APR1400 Reactor Vessel. In respective of using irradiated structure heat source, the maximum temperature of fluid and core shroud for isotropic ETC are 325.8 .deg. C, 341.5 .deg. C. The total amount of irradiated structure heat source is about 5.41 MWth and not effect to fluid temperature.

  12. Paralysis and heart failure precede ion balance disruption in heat-stressed European green crabs.

    Science.gov (United States)

    Jørgensen, Lisa B; Overgaard, Johannes; MacMillan, Heath A

    2017-08-01

    Acute exposure of ectotherms to critically high temperatures causes injury and death, and this mortality has been associated with a number of physiological perturbations including impaired oxygen transport, loss of ion and water homeostasis, and neuronal failure. It is difficult to discern which of these factors, if any, is the proximate cause of heat injury because, for example, loss of ion homeostasis can impair neuromuscular function (including cardiac function), and conversely impaired oxygen transport reduces ATP supply and can thus reduce ion transport capacity. In this study we investigated if heat stress causes a loss of ion homeostasis in marine crabs and examined if such loss is related to heart failure. We held crabs (Carcinus maenas) at temperatures just below their critical thermal maximum and measured extracellular (hemolymph) and intracellular (muscle) ion concentrations over time. Analysis of Arrhenius plots for heart rates during heating ramps revealed a breakpoint temperature below which heart rate increased with temperature, and above which heart rate declined until complete cardiac failure. As hypothesised, heat stress reduced the Nernst equilibrium potentials of both K + and Na + , likely causing a depolarization of the membrane potential. To examine whether this loss of ion balance was likely to cause disruption of neuromuscular function, we exposed crabs to the same temperatures, but this time measured ion concentrations at the individual-specific times of complete paralysis (from which the crabs never recovered), and at the time of cardiac failure. Loss of ion balance was observed only after both paralysis and complete heart failure had occurred; indicating that the loss of neuromuscular function is not caused by a loss of ion homeostasis. Instead we suggest that the observed loss of ion balance may be linked to tissue damage related to heat death. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Optimum load distribution between heat sources based on the Cournot model

    Science.gov (United States)

    Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.

    2015-08-01

    One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.

  14. Heat sources for heat pumps in the energetic and economic comparison; Waermequellen fuer Waermepumpen im energetischen und wirtschaftlichen Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, Franziska; Fisch, M. Norbert; Schlosser, Mathias; Peter, Markus [Technische Univ. Braunschweig (Germany). Inst. fuer Gebaeude- und Solartechnik

    2016-07-01

    Because of the growing application of heat pumps also the number of potentially usable low-temperature heat sources and corresponding heat exchangers for heat-pump systems present in the market increases. Thereby products like energy fences, high-power piles, ore ice reservoir come into applications without any knowledge ab out their power or the cost-profit ratio. The optimized lay-out of the coupling to the building are however essential conditions in order to reach an energy-efficient and durable operation of the facilities. The research project ''future heat pump'' sponsored by the BMWi is dedicated to the energetic and economic evaluation of heat sources for heat pumps. In this connection a pre-check-tool for the preliminary selection of low-temperature heat sources and connected, suitable heat-exchange systems is developed and their actual status of development presented. The holistic, comparing consideration of the different heat sources and heat-exchanger systems is related among others to the power numbers of the heat pumps, the entry and withdrawal services of the heat-exchangers, and the general performance of the systems. Additionally an estimation of economic and ecologic aspects (investment and operation costs, CO{sub 2} emissions) is made. Aim is the determination of the plausibility of applications and essential boundary conditions of single source systems. For the qualitative comparison in a project-accompanying monitoring different facilities and source systems are measurement-technically comprehended.

  15. Biological effects of intracorporeal radioisotope heat sources

    International Nuclear Information System (INIS)

    Gillis, M.F.; Decker, J.R.; Karagianes, M.T.

    1976-01-01

    A surface heat flux of 0.04 watts/cm 2 from a retroperitoneal implant with healthy surface ingrowth of tissue prior to generation of heat is intolerable, producing gross tissue necrosis. Percutaneous cooling of hot implants during the post-operative healing period is a feasible technique, but our current plutonium heat source implant design has been proven of inadequate size and a new design is described. Rough calculations based on tissue conductivity and conductance values suggest that even with this larger device, added heat to proximate tissues may produce long-term changes even though the heat burden may be tolerable over relatively short periods

  16. General Purpose Heat Source Simulator

    Science.gov (United States)

    Emrich, Bill

    2008-01-01

    The General Purpose Heat Source (GPHS) simulator project is designed to replicate through the use of electrical heaters, the form, fit, and function of actual GPHS modules which generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of spacecraft subsystems and systems without sacrificing the quantity and quality of the test data gathered. Previous GPHS activities are centered around developing robust heater designs with sizes and weights that closely matched those of actual Pu238 fueled GPHS blocks. These efforts were successful, although their maximum temperature capabilities were limited to around 850 C. New designs are being pursued which also replicate the sizes and weights of actual Pu238 fueled GPHS blocks but will allow operation up to 1100 C.

  17. Self-Heating Effects In Polysilicon Source Gated Transistors

    Science.gov (United States)

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  18. Hybrid district heating system with heat supply from nuclear source

    International Nuclear Information System (INIS)

    Havelka, Z.; Petrovsky, I.

    1987-01-01

    Several designs are described of heat supply from large remote power sources (e.g., WWER-1000 nuclear power plants with a 1000 MW turbine) to localities where mainly steam distribution networks have been built but only some or none networks for hot water distribution. The benefits of the designs stem from the fact that they do not require the conversion of the local steam distribution system to a hot water system. They are based on heat supply from the nuclear power plant to the consumer area in hot water of a temperature of 150 degC to 200 degC. Part of the hot water heat will be used for the production of low-pressure steam which will be compressed using heat pumps (steam compressors) to achieve the desired steam distribution network specifications. Water of lower temperature can be used in the hot water network. The hot water feeder forms an automatic pressure safety barrier in heat supply of heating or technological steam from a nuclear installation. (Z.M.). 5 figs., 9 refs

  19. PAHs molecules and heating of the interstellar gas

    Science.gov (United States)

    Verstraete, Laurent; Leger, Alain; Dhendecourt, Louis B.; Dutuit, O.; Defourneau, D.

    1989-01-01

    Until now it has remained difficult to account for the rather high temperatures seen in many diffuse interstellar clouds. Various heating mechanisms have been considered: photoionization of minor species, ionization of H by cosmic rays, and photoelectric effect on small grains. Yet all these processes are either too weak or efficient under too restricting conditions to balance the observed cooling rates. A major heat source is thus still missing in the thermal balance of the diffuse gas. Using photoionization cross sections measured in the lab, it was shown that in order to balance the observed cooling rates in cold diffuse clouds (T approx. 80 K) the PAHs would have to contain 15 percent of the cosmic abundance of carbon. This value does not contradict the former estimation of 6 percent deduced from the IR emission bands since this latter is to be taken as a lower limit. Further, it was estimated that the contribution to the heating rate due to PAH's in a warm HI cloud, assuming the same PAH abundance as for a cold HI cloud, would represent a significant fraction of the value required to keep the medium in thermal balance. Thus, photoionization of PAHs might well be a major heat source for the cold and warm HI media.

  20. Seaglider surveys at Ocean Station Papa: Diagnosis of upper-ocean heat and salt balances using least squares with inequality constraints

    Science.gov (United States)

    Pelland, Noel A.; Eriksen, Charles C.; Cronin, Meghan F.

    2017-06-01

    Heat and salt balances in the upper 200 m are examined using data from Seaglider spatial surveys June 2008 to January 2010 surrounding a NOAA surface mooring at Ocean Station Papa (OSP; 50°N, 145°W). A least-squares approach is applied to repeat Seaglider survey and moored measurements to solve for unknown or uncertain monthly three-dimensional circulation and vertical diffusivity. Within the surface boundary layer, the estimated heat and salt balances are dominated throughout the surveys by turbulent flux, vertical advection, and for heat, radiative absorption. When vertically integrated balances are considered, an estimated upwelling of cool water balances the net surface input of heat, while the corresponding large import of salt across the halocline due to upwelling and diffusion is balanced by surface moisture input and horizontal import of fresh water. Measurement of horizontal gradients allows the estimation of unresolved vertical terms over more than one annual cycle; diffusivity in the upper-ocean transition layer decreases rapidly to the depth of the maximum near-surface stratification in all months, with weak seasonal modulation in the rate of decrease and profile amplitude. Vertical velocity is estimated to be on average upward but with important monthly variations. Results support and expand existing evidence concerning the importance of horizontal advection in the balances of heat and salt in the Gulf of Alaska, highlight time and depth variability in difficult-to-measure vertical transports in the upper ocean, and suggest avenues of further study in future observational work at OSP.

  1. A thermoacoustic engine capable of utilizing multi-temperature heat sources

    International Nuclear Information System (INIS)

    Qiu Limin; Wang Bo; Sun Daming; Liu Yu; Steiner, Ted

    2009-01-01

    Low-grade energy is widespread. However, it cannot be utilized with high thermal efficiency directly. Following the principle of thermal energy cascade utilization, a thermoacoustic engine (TE) with a new regenerator that can be driven by multiple heat sources at different temperature levels is proposed. Taking a regenerator that utilizes heat sources at two temperatures as an example, theoretical research has been conducted on a traveling-wave TE with the new regenerator to predict its performance. Experimental verification is also done to demonstrate the benefits of the new regenerator. Results indicate that a TE with the new regenerator utilizing additional heat at a lower temperature experiences an increase in pressure ratio, acoustic power, efficiency, and exergy efficiency with proper heat input at an appropriate temperature at the mid-heater. A regenerator that uses multi-temperature heat sources can provide a means of recovering lower grade heat.

  2. Economic COP Optimization of a Heat Pump with Hierarchical Model Predictive Control

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2012-01-01

    A low-temperature heating system is studied in this paper. It consists of hydronic under-floor heating pipes and an air/ground source heat pump. The heat pump in such a setup is conventionally controlled only by feed-forwarding the ambient temperature. Having shown >10% cut-down on electricity bi....... The proposed control strategy is a leap forward towards balanced load control in Smart Grids where individual heat pumps in detached houses contribute to preserve load balance through intelligent electricity pricing policies....

  3. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  4. Pre evaluation for heat balance of prototype sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Han, Ji Woong; Kim, De Hee; Yoon, Jung; Kim, Eui Kwang; Lee, Tae Ho

    2012-01-01

    Under the long term advanced SFR R and D plan, the design of prototype reactor has been carried out toward the construction of the prototype SFR plant by 2028. The R and D efforts in fluid system design will be focused on developing a prototype design of primary heat transport system(PHTS), intermediate heat transport system (IHTS), decay heat removal system(DHRS), steam generation system(SGS), and related auxiliary system design for a prototype reactor as shown in Fig. 1. In order to make progress system design, top tier requirements for prototype reactor related to design parameters of NSSS and BOP should be decided at first. The top tier requirement includes general design basis, capacity and characteristics of reactor, various requirements related to safety, performance, securities, economics, site, and etc.. Extensive discussion has been done within Korea Atomic Energy Research Institute(KAERI) for the decision of top tier requirements of the prototype reactor. The core outlet temperature, which should be described as top tier requirements, is one of the critical parameter for system design. The higher core exit temperature could contribute to increase the plant efficiency. However, it could also contribute to decrease the design margin for structure and safety. Therefore various operating strategies based on different core outlet temperatures should be examined and evaluated. For the prototype reactor two core outlet temperatures are taken into accounted. The lower temperature is for the operation condition and the higher temperature is for the system design and licensing process of the prototype reactor. In order to evaluate the operability of prototype reactor designed based on higher temperature, the heat balance calculations have been performed at different core outlet temperature conditions. The electrical power of prototype reactor was assumed to be 100MWe and reference operating conditions were decided based on existing available data. The

  5. Hoosac tunnel geothermal heat source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-10

    The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

  6. Conjugated heat transfer of natural convection in pool with internal heat sources and convection in the tube

    International Nuclear Information System (INIS)

    Li Longjian; Liu Hongtao; Cui Wenzhi

    2007-01-01

    The conjugated heat transfer of natural convection in pool with internal heat source and the forced convection in the tube was analyzed, and the corresponding three-dimensional physical and mathematical model was proposed. A control volume based finite element method was employed to solve numerically the problem. The computations were performed for different internal heat source intensity of the pool and the different flow velocity in the tube. The computed heat transfer coefficients on the inner and outer wall showed well consistency of those calculated with the empirical correlations. Compared with the measured total heat transfer coefficients between the fluids in and out of the tube, the computed ones showed also the well consistency, which implied that the numerical model proposed in this paper was reliable. The research results revealed that the total heat transfer coefficients between the fluids were strongly affected by the internal heat source intensity of the pool liquid and the flow velocity in the tube. (authors)

  7. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  8. Solar-Radiation Heating as a Possible Heat Source for Dehydration of Hydrous Carbonaceous Chondrites

    Science.gov (United States)

    Nakamura, T.; Golabek, G.; Ohtsuka, K.; Matsuoka, M.

    2017-07-01

    We have calculated time-dependent temperature profiles of near surface layers of primitive Near Sun Asteroid (3200) Phaethon and found that solar radiation heating is a possible heat source for dehydration of carbonaceous chondrites.

  9. Thermal Analysis of a Cracked Half-plane under Moving Point Heat Source

    Directory of Open Access Journals (Sweden)

    He Kuanfang

    2017-09-01

    Full Text Available The heat conduction in half-plane with an insulated crack subjected to moving point heat source is investigated. The analytical solution and the numerical means are combined to analyze the transient temperature distribution of a cracked half-plane under moving point heat source. The transient temperature distribution of the half plane structure under moving point heat source is obtained by the moving coordinate method firstly, then the heat conduction equation with thermal boundary of an insulated crack face is changed to singular integral equation by applying Fourier transforms and solved by the numerical method. The numerical examples of the temperature distribution on the cracked half-plane structure under moving point heat source are presented and discussed in detail.

  10. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece

    Science.gov (United States)

    Samara, Constantini

    Total suspended particle mass concentrations (TSP) were determined in the Kozani-Ptolemais-Florina basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a 1-year period (November 2000-November 2001) at 10 receptor sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Particulate emissions were also collected from a variety of sources including fly ash, lignite dust, automobile traffic, domestic heating, and open-air burning of agricultural biomass and refuse, and analyzed for the same chemical components. Ambient and source chemical profiles were used for source identification and apportionment of TSP by employing a chemical mass balance (CMB) receptor model. Diesel burning in vehicular traffic and in the power plants for generator start up was found to be the major contributor to ambient TSP levels at all 10 sites. Other sources with significant contributions were domestic coal burning, vegetative burning (wood combustion and agricultural burns) and refuse open-air burning. Fly ash escaping the electrostatic precipitators of the power plants was a minor contributor to ambient TSP.

  11. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  12. Assessment of dynamic energy conversion systems for radioisotope heat sources

    International Nuclear Information System (INIS)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745 0 C, and case III with a BOL source temperature of 945 0 C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of 238 Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass

  13. Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model

    Science.gov (United States)

    Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.

    1975-01-01

    Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.

  14. Infant otitis media and the use of secondary heating sources.

    Science.gov (United States)

    Pettigrew, Melinda M; Gent, Janneane F; Triche, Elizabeth W; Belanger, Kathleen D; Bracken, Michael B; Leaderer, Brian P

    2004-01-01

    This prospective study investigated the association of exposure to indoor secondary heating sources with otitis media and recurrent otitis media risk in infants. We enrolled mothers living in nonsmoking households and delivering babies between 1993 and 1996 in 12 Connecticut and Virginia hospitals. Biweekly telephone interviews during the first year of life assessed diagnoses from doctors' office visits and use of secondary home heating sources, air conditioner use, and day care. Otitis media episodes separated by more than 21 days were considered to be unique episodes. Recurrent otitis media was defined as 4 or more episodes of otitis media. Repeated-measures logistic regression modeling evaluated the association of kerosene heater, fireplace, or wood stove use with otitis media episodes while controlling for potential confounders. Logistic regression evaluated the relation of these secondary heating sources with recurrent otitis media. None of the secondary heating sources were associated with otitis media or with recurrent otitis media. Otitis media was associated with day care, the winter heating season, birth in the fall, white race, additional children in the home, and a maternal history of allergies in multivariate models. Recurrent otitis media was associated with day care, birth in the fall, white race, and a maternal history of allergies or asthma. We found no evidence that the intermittent use of secondary home heating sources increases the risk of otitis media or recurrent otitis media. This study confirms earlier findings regarding the importance of day care with respect to otitis media risk.

  15. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  16. A parametric study of a humidification dehumidification (HDH) desalination system using low grade heat sources

    International Nuclear Information System (INIS)

    He, W.F.; Han, D.; Yue, C.; Pu, W.H.

    2015-01-01

    Highlights: • The HDH desalination system coupling with the waste heat plate LGHC is proposed. • Performance of the desalination system and the plate LGHC is presented. • Influence from the operation pressure on the system performance is investigated. • Gained investment ratio is proposed to characterize the desalination system consumption. - Abstract: Humidification dehumidification (HDH) desalination system is applicable to recover the low grade heat source to heat the seawater before the humidifier. In the paper, plate heat exchangers are integrated to recover the waste heat from the exhaust in the water heated closed air open water (CAOW) HDH desalination system. The performance of the HDH desalination system as well as the plate type of low grade heat collector (LGHC) is investigated at different operation pressures. Gain investment ratio (GIR) is proposed and defined to depict the overall consumption of the whole system. The simulation results show that the modified heat capacity ratio of the dehumidifier (HCRd) is vital for the performance of the HDH desalination system as well as the plate LGHC with a top value of gain output ratio (GOR) at the balance point, HCRd = 1, and the maximum GOR, GOR = 2.44, results from the raised pressure of p = 0.15 MPa. Furthermore, taking the cost for the heat transfer surface area of the LGHC and the air and seawater pipes into consideration, it is revealed that the conditions, HCRd > 1, are more economical due to the increase of GIR, which indicates the profit of unit consumption is more significant.

  17. Research status and evaluation system of heat source evaluation method for central heating

    Science.gov (United States)

    Sun, Yutong; Qi, Junfeng; Cao, Yi

    2018-02-01

    The central heating boiler room is a regional heat source heating center. It is also a kind of the urban environment pollution, it is an important section of building energy efficiency. This article through to the evaluation method of central heating boiler room and overviews of the researches during domestic and overseas, summarized the main influence factors affecting energy consumption of industrial boiler under the condition of stable operation. According to the principle of establishing evaluation index system. We can find that is great significance in energy saving and environmental protection for the content of the evaluation index system of the centralized heating system.

  18. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  19. IPN and AFI collaboration balance. The SIS source (Crysis)

    International Nuclear Information System (INIS)

    Goldstein, C.

    1985-01-01

    The fabrication and development of a source with confined electron beam (EBIS) is the result of a collaboration between IPN (Institut de Physique Nucleaire) and AFI (Forskningstitutet for Atom-fysik) First tests have confirmed the good operation of the whole elements. A critical balance is made, and conclusions are drawn [fr

  20. Theoretical investigation of heat balance in direct injection (DI) diesel engines for neat diesel fuel and gasoline fumigation

    International Nuclear Information System (INIS)

    Durgun, O.; Sahin, Z.

    2009-01-01

    The main purpose of the presented study is to evaluate energy balance theoretically in direct injection (DI) diesel engines at different conditions. To analyze energy balance, a zero-dimensional multi-zone thermodynamic model has been developed and used. In this thermodynamic model, zero-dimensional intake and exhaust approximations given by Durgun, zero-dimensional compression and expansion model given by Heywood and quasi-dimensional phenomenological combustion model developed by Shahed and then improved Ottikkutti have been used and developed with new approximations and assumptions. By using the developed model, complete diesel engine cycle, engine performance parameters and exhaust emissions can be determined easily. Also, by using this model energy balance can be analyzed for neat diesel fuel and for light fuel fumigation easily. In the presented study, heat balance has been investigated theoretically for three different engines and various numerical applications have been conducted. In the numerical applications two different turbocharged DI diesel engines and a naturally aspirated DI diesel engine have been used. From these numerical applications, it is determined that, what portion of available fuel energy is converted to useful work, what amount of fuel energy is lost by exhaust gases or lost by heat transfer. In addition, heat balance has been analyzed for gasoline fumigation and some numerical results have been given. Brake effective power and brake specific fuel consumption increase and brake effective efficiency decreases for gasoline fumigation for turbocharged diesel engines used in numerical applications. Combustion duration increases with increasing fumigation ratio and thus heat transfer to the walls increases. Because exhaust temperature increases, exhaust losses also increases for fumigation case

  1. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    Science.gov (United States)

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower

  2. Analysis of carbon monoxide production in multihundred-watt heat sources

    International Nuclear Information System (INIS)

    Peterson, D.E.; Mulford, R.N.R.

    1976-05-01

    The production of carbon monoxide observed within Multihundred Watt heat sources placed under storage conditions was analyzed. Results of compositional and isotopic analyses of gas taps performed on eight heat sources are summarized and interpreted. Several proposed CO generation mechanisms are examined theoretically and assessed by applying thermodynamic principles. Outgassing of the heat source graphite followed by oxygen isotopic exchange through the vent assemblies appears to explain the CO production at storage temperatures. Reduction of the plutonia fuel sphere by the CO is examined as a function of temperature and stoichiometry. Experiments that could be performed to investigate possible CO generation mechanisms are discussed

  3. Heat Source Models in Simulation of Heat Flow in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in Friction Stir Welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms....... The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in literature allow the heat to flow through the probe volume, and the majority of them neglect the influence of the contact condition as the sliding condition is assumed. In the present work......, a number of cases are established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models the heat flow is forced around the probe volume by prescribing a velocity field in shear...

  4. Heat source models in simulation of heat flow in friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in friction stir welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms....... The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in the literature allow the heat to flow through the probe volume, and the majority neglects the influence of the contact condition as the sliding condition is assumed. In this work, a number...... of cases is established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models, the heat flow is forced around the probe volume by prescribing a velocity field in shear layers...

  5. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  6. Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter

    Science.gov (United States)

    Delpueyo, D.; Balandraud, X.; Grédiac, M.

    2013-09-01

    The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.

  7. A three-region conduction-controlled rewetting analysis by the Heat Balance Integral Method

    International Nuclear Information System (INIS)

    Sahu, S.K.; Das, P.K.; Bhattacharyya, S.

    2009-01-01

    Conduction-controlled rewetting of two-dimensional objects is analyzed by the Heat Balance Integral Method (HBIM) considering three distinct regions: a dry region ahead of wet front, the sputtering region immediately behind the wet front and a continuous film region further upstream. The HBIM yields solutions for wet front velocity, sputtering length and temperature field with respect to wet front. Employing this method, it is seen that heat transfer mechanism is dependent upon two temperature parameters. One of them characterizes the initial wall temperature while the other specifies the range of temperature for sputtering region. Additionally, the mechanism of heat transfer is found to be dependent on two Biot numbers comprising a convective heat transfer in the wet region and a boiling heat transfer in the sputtering region. The present solution exactly matches with the one-dimensional analysis of K.H. Sun, G.E. Dix, C.L. Tien [Cooling of a very hot vertical surface by falling liquid film, ASME J. Heat Transf. 96 (1974) 126-131] for low Biot numbers. Good agreement with experimental results is also observed. (authors)

  8. The effect of location of a convective heat source on displacement ventilation: CFD study

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.J.; Holland, D. [Dunham Associates, Inc., Minneapolis, MN (United States). Advanced Technologies Group

    2001-08-01

    Two-dimensional computational simulations are performed to examine the effect of vertical location of a convective heat source on thermal displacement ventilation systems. In this study, a heat source is modeled with seven different heights from the floor (0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0 m) in a displacement ventilation environment. The flow and temperature fields in thermal displacement ventilation systems vary depending on the location of the heat source. As the heat source rises, the convective heat gain from the heat source to an occupied zone becomes less significant. This effect changes the temperature field and results in the reduction of the cooling load in the occupied zone. The stratification level is also affected by the heat source location at a given flow rate. (author)

  9. Problems of heat sources modeling on stage of isolated power systems expansion planning

    International Nuclear Information System (INIS)

    Malenkov, A.V.; Reshetnikova, L.N.; Sergeev, Yu.A.

    1998-01-01

    It is necessary to use computer codes for evaluation of possible applications and role of nuclear district heating plants in the local self-balancing power and heating systems, which are to be located in the remote isolated and hardly accessible regions in the Far North of Russia. Key factors in determining system configurations and its performances are: (1) interdependency of electricity, heat and fuel supply; (2) long distance between energy consumer centres (from several tens up to some hundred kilometers); and (3) difficulty in export and import of the electricity, especially the fuel in and from neighbouring and remote regions. The problem to challenge is to work out an optimum expansion plan of the local electricity and heat supply system. The ENPEP (ENergy and Power Evaluation Program) software package, which was developed by IAEA together with the USA Argonne National Laboratory, was chosen for this purpose. The Chaun-Bilibino power system (CBPS), an isolated power system in far North-East region of Russia, was selected as the first case of the ENPEP study. ENPEP allows a complex approach in the system expansion optimization planning in the time frame of planning period of up to 30 years. The key ENPEP module, ELECTRIC, considers electricity as the only product. The cogeneration part (heat production) must be considered outside the ELECTRIC model and then the results to be transfer ed to ELECTRIC. The ENPEP study on the Chaun-Bilibino isolated power system has shown that the modelling of the heat supply sources in ENPEP is not a trivial problem. It is very important and difficult to correctly represent specific features of cogeneration process at the same time. (author)

  10. Design and qualification testing of a strontium-90 fluoride heat source

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-12-01

    The Strontium Heat Source Development Program began at the Pacific Northwest Laboratory (PNL) in 1972 and is scheduled to be completed by the end of FY-1981. The program is currently funded by the US Department of Energy (DOE) By-Product Utilization Program. The primary objective of the program has been to develop the data and technology required to permit the licensing of power systems for terrestrial applications that utilize 90 SrF 2 -fueled radioisotope heat sources. A secondary objective of the program has been to design and qualification-test a general purpose 90 SrF 2 -fueled heat source. The effort expended in the design and testing of the heat source is described. Detailed information is included on: heat source design, licensing requirements, and qualification test requirements; the qualification test procedures; and the fabrication and testing of capsules of various materials. The results obtained in the qualification tests show that the outer capsule design proposed for the 90 SrF 2 heat source is capable of meeting current licensing requirements when Hastelloy S is used as the outer capsule material. The data also indicate that an outer capsule of Hastelloy C-4 would probably also meet licensing requirements, although Hastelloy S is the preferred material. Therefore, based on the results of this study, the general purpose 90 SrF 2 heat source will consist of a standard WESF Hastelloy C-276 inner capsule filled with 90 SrF 2 and a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for this study, the general purpose 90 SrF 2 heat a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for the outer capsule will utilize an interlocking joint design requiring a 0.1-in. penetration closure weld

  11. Air source integrated heat pump simulation model for EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; New, Joshua; Baxter, Van

    2017-12-01

    An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy saving potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.

  12. Transition to chaos in a square enclosure containing internal heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Baytas, A.C. [Institute For Nuclear Energy, Istanbul (Turkey)

    1995-09-01

    A numerical investigation is performed to study the transition from steady to chaotic flow of a fluid confined in a two-dimensional square cavity. The cavity has rigid walls of constant temperature containing uniformly distributed internal heat source. Effects of the Rayleigh number of flow and heat transfer rates are studied. In addition to, same problem is solved for sinusoidally changing internal heat source to show its effect on the flow model and heat transfer of the enclosures. Details of oscillatory solutions and flow bifurcations are presented.

  13. Heat buffers improve capacity and exploitation degree of geothermal energy sources

    NARCIS (Netherlands)

    Ooster, A.van t; Wit, J. de; Janssen, E.G.O.N.; Ruigrok, J.

    2008-01-01

    This research focuses on the role of heat buffers to support optimal use of combinations of traditional and renewable heat sources like geothermal heat for greenhouse heating. The objective was to determine the contribution of heat buffers to effective new combinations of resources that satisfy

  14. SELECTION OF HEAT SUPPLY SOURCE FOR MOBILE BUILDING STRUCTURE

    OpenAIRE

    T. I. Dolgikh; S. V. Morozov; Yu. P. Orlov; A. B. Reis; A. Yu Yakovlev

    2014-01-01

    The paper proposes a vortex heat generator with energy transformation of the highest  state  of matter motion  into  the  lowest  one  as  a  heat  supply  source  for a mobile object. Energy transformation coefficient indices close or equal to 1 have been obtained as a result of experiments on efficiency of the vortex heat generator. Such results can be explained with the help of the 2nd Bohr quantum postulate. Standard series of certified VTG heat generators has been proposed for heat suppl...

  15. Human genome and open source: balancing ethics and business.

    Science.gov (United States)

    Marturano, Antonio

    2011-01-01

    The Human Genome Project has been completed thanks to a massive use of computer techniques, as well as the adoption of the open-source business and research model by the scientists involved. This model won over the proprietary model and allowed a quick propagation and feedback of research results among peers. In this paper, the author will analyse some ethical and legal issues emerging by the use of such computer model in the Human Genome property rights. The author will argue that the Open Source is the best business model, as it is able to balance business and human rights perspectives.

  16. Heat balance in main lakes of central Italy; Bilancio termico dei principali laghi dell`Italia Centrale

    Energy Technology Data Exchange (ETDEWEB)

    Monte, L.; Baldini, E.; Battella, C.; Fratarcangeli, S.; Pompei, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1996-07-01

    A thermodynamic model for predicting the thermal stratification of water of deep lakes and the components of the heat balance of lacustrine systems was developed in the frame of the researches on predictive limnology. The model has been applied to Bracciano, Bolsena and Trasimeno lakes. The validation of the temperature results demonstrated the reliability of the model and, as consequence, of the thermal balances of the lakes. The calculated yearly evaporation is about 800 mm.

  17. SASSYS-1 balance-of-plant component models for an integrated plant response

    International Nuclear Information System (INIS)

    Ku, J.-Y.

    1989-01-01

    Models of power plant heat transfer components and rotating machinery have been added to the balance-of-plant model in the SASSYS-1 liquid metal reactor systems analysis code. This work is part of a continuing effort in plant network simulation based on the general mathematical models developed. The models described in this paper extend the scope of the balance-of-plant model to handle non-adiabatic conditions along flow paths. While the mass and momentum equations remain the same, the energy equation now contains a heat source term due to energy transfer across the flow boundary or to work done through a shaft. The heat source term is treated fully explicitly. In addition, the equation of state is rewritten in terms of the quality and separate parameters for each phase. The models are simple enough to run quickly, yet include sufficient detail of dominant plant component characteristics to provide accurate results. 5 refs., 16 figs., 2 tabs

  18. Wind Turbines and Heat Pumps. Balancing wind power fluctuations using flexible demand

    International Nuclear Information System (INIS)

    Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Derszi, Z.; Kok, J.K.

    2007-01-01

    In order to overcome portfolio imbalance for traders of variable power from wind we have built an 'Imbalance Reduction System' (IRS) and performed a real-world field test with it, in which imbalance is minimized within a real-time electricity market portfolio, consisting of wind power and industrial and residential consumers and producers (Combined Heat and Power for district heating; residential heat pumps; industrial cold store; emergency generators). IRS uses the PowerMatcher concept, a coordination system for supply and demand of electricity in a which multi-agent system is combined with microeconomic principles. IRS appears to offer opportunities for embedding less predictable generators such as wind power more smoothly in the portfolio. We describe the context and operation of the Imbalance Reduction System and discuss a number of results from the performed field test. Also we introduce a business model for the balance responsible party, based on the e3-value method

  19. Performance analysis and experimental study of heat-source tower solution regeneration

    International Nuclear Information System (INIS)

    Liang, Caihua; Wen, Xiantai; Liu, Chengxing; Zhang, Xiaosong

    2014-01-01

    Highlights: • Theoretical analysis is performed on the characteristics of heat-source tower. • Experimental study is performed on various rules of the solution regeneration rate. • The characteristics of solution regeneration vary widely with different demands. • Results are useful for optimizing the process of solution regeneration. - Abstract: By analyzing similarities and difference between the solution regeneration of a heat-source tower and desiccant solution regeneration, this paper points out that solution regeneration of a heat-source tower has the characteristics of small demands and that a regeneration rate is susceptible to outdoor ambient environments. A theoretical analysis is performed on the characteristics of a heat-source tower solution in different outdoor environments and different regeneration modes, and an experimental study is performed on variation rules of the solution regeneration rate of a cross-flow heat-source tower under different inlet parameters and operating parameters. The experimental results show that: in the operating regeneration mode, as the air volume was increased from 123 m 3 h −1 to 550 m 3 h −1 , the system heat transfer amount increased from 0.42 kW to 0.78 kW, and the regeneration rate increased from 0.03 g s −1 to 0.19 g s −1 . Increasing the solution flow may increase the system heat transfer amount; however, the regeneration rate decreased to a certain extent. In the regeneration mode when the system is idle, as the air volume was increased from 136 m 3 h −1 to 541 m 3 h −1 , the regeneration rate increased from 0.03 g s −1 to 0.1 g s −1 . The regeneration rate almost remained unchanged around 0.07 g s −1 as the solution flow is increased. In the regeneration mode with auxiliary heat when the system is idle, increasing the air volume and increasing the solution flow required more auxiliary heat, thereby improving the solution regeneration rate. As the auxiliary heat was increased from 0.33 k

  20. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A new energy analysis tool for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Michopoulos, A.; Kyriakis, N. [Process Equipment Design Laboratory, Mechanical Engineering Department, Aristotle University of Thessaloniki, POB 487, 541 24 Thessaloniki (Greece)

    2009-09-15

    A new tool, suitable for energy analysis of vertical ground source heat pump systems, is presented. The tool is based on analytical equations describing the heat exchanged with the ground, developed in Matlab {sup registered} environment. The time step of the simulation can be freely chosen by the user (e.g. 1, 2 h etc.) and the calculation time required is very short. The heating and cooling loads of the building, at the afore mentioned time step, are needed as input, along with the thermophysical properties of the soil and of the ground heat exchanger, the operation characteristic curves of the system's heat pumps and the basic ground source heat exchanger dimensions. The results include the electricity consumption of the system and the heat absorbed from or rejected to the ground. The efficiency of the tool is verified through comparison with actual electricity consumption data collected from an existing large scale ground coupled heat pump installation over a three-year period. (author)

  2. Air source absorption heat pump in district heating: Applicability analysis and improvement options

    International Nuclear Information System (INIS)

    Wu, Wei; Shi, Wenxing; Li, Xianting; Wang, Baolong

    2015-01-01

    Highlights: • Applicability of air source absorption heat pump (ASAHP) district heating is studied. • Return temperature and energy saving rate (ESR) in various conditions are optimized. • ASAHP is more suitable for shorter distance or lower temperature district heating. • Two options can reduce the primary return temperature and improve the applicability. • The maximum ESR is improved from 13.6% to 20.4–25.6% by compression-assisted ASAHP. - Abstract: The low-temperature district heating system based on the air source absorption heat pump (ASAHP) was assessed to have great energy saving potential. However, this system may require smaller temperature drop leading to higher pump consumption for long-distance distribution. Therefore, the applicability of ASAHP-based district heating system is analyzed for different primary return temperatures, pipeline distances, pipeline resistances, supplied water temperatures, application regions, and working fluids. The energy saving rate (ESR) under different conditions are calculated, considering both the ASAHP efficiency and the distribution consumption. Results show that ASAHP system is more suitable for short-distance district heating, while for longer-distance heating, lower supplied hot water temperature is preferred. In addition, the advantages of NH 3 /H 2 O are inferior to those of NH 3 /LiNO 3 , and the advantages for warmer regions and lower pipeline resistance are more obvious. The primary return temperatures are optimized to obtain maximum ESRs, after which the suitable distances under different acceptable ESRs are summarized. To improve the applicability of ASAHP, the integration of cascaded heat exchanger (CHX) and compression-assisted ASAHP (CASAHP) are proposed, which can reduce the primary return temperature. The integration of CHX can effectively improve the applicability of ASAHP under higher supplied water temperatures. As for the utilization of CASAHP, higher compression ratio (CR) is better in

  3. Energy and exergy analysis of a double effect absorption refrigeration system based on different heat sources

    International Nuclear Information System (INIS)

    Kaynakli, Omer; Saka, Kenan; Kaynakli, Faruk

    2015-01-01

    Highlights: • Energy and exergy analysis was performed on double effect series flow absorption refrigeration system. • The refrigeration system runs on various heat sources such as hot water, hot air and steam. • A comparative analysis was carried out on these heat sources in terms of exergy destruction and mass flow rate of heat source. • The effect of heat sources on the exergy destruction of high pressure generator was investigated. - Abstract: Absorption refrigeration systems are environmental friendly since they can utilize industrial waste heat and/or solar energy. In terms of heat source of the systems, researchers prefer one type heat source usually such as hot water or steam. Some studies can be free from environment. In this study, energy and exergy analysis is performed on a double effect series flow absorption refrigeration system with water/lithium bromide as working fluid pair. The refrigeration system runs on various heat sources such as hot water, hot air and steam via High Pressure Generator (HPG) because of hot water/steam and hot air are the most common available heat source for absorption applications but the first law of thermodynamics may not be sufficient analyze the absorption refrigeration system and to show the difference of utilize for different type heat source. On the other hand operation temperatures of the overall system and its components have a major effect on their performance and functionality. In this regard, a parametric study conducted here to investigate this effect on heat capacity and exergy destruction of the HPG, coefficient of performance (COP) of the system, and mass flow rate of heat sources. Also, a comparative analysis is carried out on several heat sources (e.g. hot water, hot air and steam) in terms of exergy destruction and mass flow rate of heat source. From the analyses it is observed that exergy destruction of the HPG increases at higher temperature of the heat sources, condenser and absorber, and lower

  4. Ground-source heat pump systems in Norway

    International Nuclear Information System (INIS)

    Stene, Joern

    2007-01-01

    The Norwegian ground source heat pump (GSHP) market is reviewed. Boreholes in bedrock are of growing interest for residential systems and of growing interest for larger systems with thermal recharging or thermal energy storage. Ground water is limited to areas where the water has acceptable purity. Challenges and important boundary conditions include 1) high quality GSHP system requires engineering expertise, 2) new building codes and EU directive 'energy performance of buildings.'(2006), and 3) hydronic floor heating systems in 50 percent of new residences (author) (ml)

  5. Cold source economic study

    International Nuclear Information System (INIS)

    Fuster, Serge.

    1975-01-01

    This computer code is intended for the statement of the general economic balance resulting from using a given cold source. The balance includes the investments needed for constructing the various materials, and also production balances resulting from their utilization. The case of either using an open circuit condenser on sea or river, or using air cooling systems with closed circuits or as auxiliaries can be dealt with. The program can be used to optimize the characteristics of the various parts of the cold source. The performance of the various materials can be evaluated for a given situation from using very full, precise economic balances, these materials can also be classified according to their possible uses, the outer constraints being taken into account (limits for heat disposal into rivers or seas, water temperature, air temperature). Technical choices whose economic consequences are important have been such clarified [fr

  6. Application of sorption heat pumps for increasing of new power sources efficiency

    Science.gov (United States)

    Vasiliev, L.; Filatova, O.; Tsitovich, A.

    2010-07-01

    In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

  7. SELECTION OF HEAT SUPPLY SOURCE FOR MOBILE BUILDING STRUCTURE

    Directory of Open Access Journals (Sweden)

    T. I. Dolgikh

    2014-01-01

    Full Text Available The paper proposes a vortex heat generator with energy transformation of the highest  state  of matter motion  into  the  lowest  one  as  a  heat  supply  source  for a mobile object. Energy transformation coefficient indices close or equal to 1 have been obtained as a result of experiments on efficiency of the vortex heat generator. Such results can be explained with the help of the 2nd Bohr quantum postulate. Standard series of certified VTG heat generators has been proposed for heat supply of the mobile object (field hospital.

  8. A study of Ground Source Heat Pump based on a heat infiltrates coupling model established with FEFLOW

    Science.gov (United States)

    Chen, H.; Hu, C.; Chen, G.; Zhang, Q.

    2017-12-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.

  9. Heat balance characteristics and water use efficiency of soybean community

    International Nuclear Information System (INIS)

    Lee, Y.S.; Im, J.N.

    1990-01-01

    A field experiment was conducted to study seasonal evapotranspiration above soybean canopy and its relationship with dry matter production by the Bowen ratio-energy balance method. The soybean ''Paldalkong'' was sown with the space of 40 * 10 cm at Suwon on May 27, 1988. The daily net radiation ranged from 59 to 76 percents of the total shortwave radiation under cloudless conditions, which was lower than cloud overcast condition with record 63 to 83 percents. The latent heat flux under overcast condition was sometimes larger than the sum of net radiation, implying transportation of energy by advection of ambient air

  10. Power performance of the general-purpose heat source radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Rock, B.J.

    1986-01-01

    The General-Purpose Heat Source Radioisotope Thermoelectric Generator (GRHS-RTG) has been developed under the sponsorship of the Department of Energy (DOE) to provide electrical power for the National Aeronautics and Space Administration (NASA) Galileo mission to Jupiter and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun. A total of five nuclear-heated generators and one electrically heated generator have been built and tested, proving out the design concept and meeting the specification requirements. The GPHS-RTG design is built upon the successful-technology used in the RTGs flown on the two NASA Voyager spacecraft and two US Air Force communications satellites. THe GPHS-RTG converts about 4400 W(t) from the nuclear heat source into at least 285 W(e) at beginning of mission (BOM). The GPHS-RTG consists of two major components: the General-Purpose Heat Source (GPHS) and the Converter. A conceptual drawing of the GPHs-RTG is presented and its design and performance are described

  11. Applications of New Chemical Heat Sources Phase 1

    National Research Council Canada - National Science Library

    Bell, William

    2001-01-01

    Report developed under Small Business Innovative Research (SBIR) contract. This project has examined the application of new chemical heat sources, with emphasis on portable heaters for military field rations...

  12. Thermal modeling of multi-shape heating sources on n-layer electronic board

    Directory of Open Access Journals (Sweden)

    Monier-Vinard Eric

    2017-01-01

    Full Text Available The present work completes the toolbox of analytical solutions that deal with resolving steady-state temperatures of a multi-layered structure heated by one or many heat sources. The problematic of heating sources having non-rectangular shapes is addressed to enlarge the capability of analytical approaches. Moreover, various heating sources could be located on the external surfaces of the sandwiched layers as well as embedded at interface of its constitutive layers. To demonstrate its relevance, the updated analytical solution has been compared with numerical simulations on the case of a multi-layered electronic board submitted to a set of heating source configurations. The comparison shows a high agreement between analytical and numerical calculations to predict the centroid and average temperatures. The promoted analytical approach establishes a kit of practical expressions, easy to implement, which would be cumulated, using superposition principle, to help electronic designers to early detect component or board temperatures beyond manufacturer limit. The ability to eliminate bad concept candidates with a minimum of set-up, relevant assumptions and low computation time can be easily achieved.

  13. Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions.

  14. Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-06-01

    As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions

  15. Thermal electron heating rate: a derivation

    International Nuclear Information System (INIS)

    Hoegy, W.R.

    1983-11-01

    The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons, (2) a heating term evaluated on the energy surface m(e)/2 E(T) at the transition between Maxwellian and tail electrons at E(T), and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two

  16. Two years of recorded data for a multisource heat pump system: A performance analysis

    International Nuclear Information System (INIS)

    Busato, F.; Lazzarin, R.M.; Noro, M.

    2013-01-01

    The concept of a low energy building in a temperate climate (according to the Koppen climate classification) is based upon the following principles: reduction of heat losses through enhanced insulation; the inclusion of heat recovery on mechanical ventilation; and the use of high efficiency heating/cooling systems integrated with renewable technologies. It is almost impossible to achieve optimum results in terms of global energy efficiency if one of these elements is omitted from the design. In 2009, a new school building, integrating these three key elements, was opened in Agordo town, located in northern Italy. The main design features of the building incorporate a well insulated envelope and a space heating and ventilation system driven by an innovative multisource heat pump system. Outdoor air is a common heat source, although it does have widely documented limitations. Heat pump systems can utilise more efficient sources than air, including those of ground heat, solar heat, and heat recovery. The installed system within the school building incorporates these three sources. A multisource system aims to enhance the performance of the heat pump, both in terms of heating capacity and overall efficiency. The present work includes evaluation and analysis of data obtained through real time monitoring of the working system in operation, for a period of approximately two heating seasons. During this time, the behaviour of the system was assessed and the incorrect settings of the plant were identified and subsequently adjusted as required. The energy balance indicates that the integration of different sources not only increases the thermal performance of the system as a whole, but also optimizes the use of each source. Further savings can be obtained through correct adjustment of the set point of the indoor temperature. During the final stage of the study, the total energy consumption of the new building is calculated and compared to that of the former building that

  17. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  18. Modelling the water and heat balances of the Mediterranean Sea using a two-basin model and available meteorological, hydrological, and ocean data

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2015-04-01

    Full Text Available This paper presents a two-basin model of the water and heat balances of the Western and Eastern Mediterranean sub-basins (WMB and EMB, respectively over the 1958–2010 period using available meteorological and hydrological data. The results indicate that the simulated temperature and salinity in both studied Mediterranean sub-basins closely follow the reanalysed data. In addition, simulated surface water in the EMB had a higher mean temperature (by approximately 1.6°C and was more saline (by approximately 0.87 g kg−1 than in the WMB over the studied period. The net evaporation over the EMB (1.52 mm day−1 was approximately 1.7 times greater than over the WMB (0.88 mm day−1. The water balance of the Mediterranean Sea was controlled by net inflow through the Gibraltar Strait and Sicily Channel, the net evaporation rate and freshwater input. The heat balance simulations indicated that the heat loss from the water body was nearly balanced by the solar radiation to the water body, resulting in a net export (import of approximately 13 (11 W m−2 of heat from the WMB (to the EMB.

  19. Analysis of the Potential of Low-Temperature Heat Pump Energy Sources

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2017-11-01

    Full Text Available The paper deals with an analysis of temperatures of ground masses in the proximities of linear and slinky-type HGHE (horizontal ground heat exchanger. It evaluates and compares the potentials of HGHEs and ambient air. The reason and aim of the verification was to gain knowledge of the temperature course of the monitored low-temperature heat pump energy sources during heating periods and periods of stagnation and to analyse the knowledge in terms of the potential to use those sources for heat pumps. The study was conducted in the years 2012–2015 during three heating periods and three periods of HGHEs stagnation. The results revealed that linear HGHE had the highest temperature potential of the observed low-temperature heat pump energy sources. The average daily temperatures of the ground mass surrounding the linear HGHE were the highest ranging from 7.08 °C to 9.20 °C during the heating periods, and having the lowest temperature variation range of 12.62–15.14 K, the relative frequency of the average daily temperatures of the ground mass being the highest at 22.64% in the temperature range containing the mode of all monitored temperatures in a recorded interval of [4.10, 6.00] °C. Ambient air had lower temperature potential than the monitored HGHEs.

  20. Desalination using low grade heat sources

    Science.gov (United States)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of

  1. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  2. Heat input properties of hollow cathode arc as a welding heat source

    International Nuclear Information System (INIS)

    Nishikawa, Hiroshi; Shobako, Shinichiro; Ohta, Masashi; Ohji, Takayoshi

    2005-01-01

    In order to clarify whether a hollow cathode arc (HCA) can be used as a welding heat source in space, investigations into the fundamental characteristics of HCA were experimentally performed under low pressure conditions. The HCA method enables an arc discharge to ignite and maintain under low pressure conditions; in contrast, low pressure conditions make it extremely difficult for the conventional gas tungsten arc method to form an arc discharge. In an earlier paper, it was shown that the melting process by HCA is very sensitive to process parameters such as the gas flow rate and arc length, and a deep penetration forms when the arc length is long and the gas flow rate is low. In this paper, the distribution of the arc current on the anode surface and the plasma properties of the HCA under low pressure conditions have been made clear and the total heat energy to the anode has been discussed in order to understand the heat input properties of the HCA. The result shows that the HCA in the case of a low gas flow rate is a high and concentrated energy source, and the high energy input to the anode contributes to the deep penetration

  3. Numerical analysis of the heat source characteristics of a two-electrode TIG arc

    International Nuclear Information System (INIS)

    Ogino, Y; Hirata, Y; Nomura, K

    2011-01-01

    Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.

  4. Particle and heat balance analysis in scrape-off and divertor regions of the JFT-2M tokamak

    International Nuclear Information System (INIS)

    Nagashima, K.; Shoji, T.; Tamai, H.; Miura, Y.; Takenaga, H.; Maeda, H.

    1995-01-01

    Particle and heat balance in the scrape-off layer and the divertor region were studied in the JFT-2M tokamak. Using particle and energy conservation laws, particle and heat diffusivities perpendicular to the flux surface were evaluated just outside the magnetic separatrix. It was found that the particle diffusivity decreases with increasing electron density in the scrape-off layer and decreases by a factor of 2-3 in the H-mode phase as compared with that in L-mode. The heat diffusivity has almost the same dependence on the electron density. The ratio of the heat diffusivity to the particle diffusivity is about 2. ((orig.))

  5. Ground source geothermal heat. Ground source heat pumps and underground thermal energy storage systems. Proceedings; Oberflaechennahe Geothermie. Erdgekoppelte Waermepumpen und unterirdische thermische Energiespeicher. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    At the ninth international user forum on shallow geothermal heat on 28th and 29th April, 2009, at BadStaffelstein (Federal Republic of Germany), the following lectures were held: (1) Information system on shallow geothermal heat for Bavaria (Marcellus Schulze); (2) Calculation of the spreading of temperature anomalies in groundwater as an instrument of planning of heat pump systems (Wolfgang Rauch); (3) Comparison of models for simulation of deep geothermal probes (Markus Proell); (4) Impact of the geometry of boreholes and probes on heat transport (Manfred Reuss); (5) Thermal respond tests and temperature depth profiles - Experience from research and practice (Markus Kuebert); (6) A model of simulation for the investigation of the impact of different heat transfer fluids on the efficiency of ground source heat pump devices (Roland Koenigsdorff); (7) The research project EWSplus - Investigations for quality assurance of geothermal probes (Mathieu Riegger); (8) Quality management of plants for the utilization of shallow geothermal heat with geothermal probes - the example of Baden-Wuerttemberg (Bruno Lorinser, Ingrid Stober); (9) Not every heat pump contributes to climate protection (Falk Auer); (10) Field measurements of heat pumps in residential buildings with modern standard and in older buildings (Marek Miara); (11) System technology for a great annual performance factor (Werner Schenk); (12) Modification of older geothermal heat probe devices for use with modern heat pumps (Klaus Friedrich Staerk); (13) Energy-efficient modernisation of a pensioners' condominium from the 1970s with solar-geothermal-air (Michael Guigas); (14) Evaluation and optimization of operation of seasonal storage systems in the foundations of office buildings (Herdis Kipry); (15) Evaluation of an innovative heating and cooling concept with rain water vessels, thermo-active building components and phase change materials in a residential building (Doreen Kalz); (16) Contracts for ground

  6. Heating effects in a liquid metal ion source

    International Nuclear Information System (INIS)

    Mair, G.L.R.; Aitken, K.L.

    1984-01-01

    A reassessment is made of the heating occurring at the anode of a liquid metal ion source, in the light of new microscopic observations. The apex region of the cones is in the form of a cusp, or jet, even at very low currents. The calculation for ohmic heating is conclusive for low currents; no heating occurs at the anode; for high currents (approx. 50-100 μA), substantial heating is conceivable, if a long, very thin, cylindrical jet exists at the apex of the anode. The answer to the problem of external heating, in the form of electrons bombarding the anode, is not quite conclusive; this is because of the impossibility of correctly assessing the electron flux entering the anode. However, it would appear to be a definite conclusion that for reasons of self-consistency field-ionisation of thermally released atoms cannot be a significant ion emission mechanism. (author)

  7. Balancing the supply mix to meet tomorrow's energy needs

    International Nuclear Information System (INIS)

    Wiggin, M.

    2004-01-01

    This presentation emphasized the need to balance the power supply mix to ensure future energy needs. A balanced supply includes generation supply options that include renewable energy sources, natural gas, oil or coal. The role of combined heat and power (CHP) and district energy in this supply mix is considered to be a potential generation solution. The challenge facing Ontario's Independent Electricity Market Operator (IMO) is to balance supply and demand, phase out coal, promote renewables, diminish demand and determine the new role for natural gas. A graph by the National Energy Board depicting Canada's energy future and scenarios for supply and demand to 2025 indicates that gas yields from the Western Canada Sedimentary Basin are declining. It is expected that with growing demands for natural gas, prices will remain high and there will be a need for new generation capacity. The viable options for energy supply include a re-examination of the district energy advantage through industrial waste heat, biomass and other renewables, and the integration of industrial and community energy systems. Other options include the continued recognition of distributed generation in the form of combined heat and power. 4 figs

  8. Effect of the Presence of Semi-circular Cylinders on Heat Transfer From Heat Sources Placed in Two Dimensional Channel

    Directory of Open Access Journals (Sweden)

    Ahmed W. Mustava

    2013-04-01

    Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations.  The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass.  The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the

  9. Influences of deforestation on radiation and heat balances in tropical peat swamp forest in Thailand

    International Nuclear Information System (INIS)

    Suzuki, S.; Ishida, T.; Nagano, T.; Matsukawa, S.

    1997-01-01

    The difference of radiation and heat balances between a natural peat swamp forest and a deforested secondary forest has been investigated in Narathiwat Province, Thailand. Micrometeorological measurements were conducted continuously on observation towers 38 m and 4 m in heights in the primary forest and the secondary forest respectively. Results show that the deforestation of peat swamp forest leads to an increase in the sensible heat flux in the secondary forest. The yearly average ratio of the sensible heat flux to the net radiation was 20.9% in the peat swamp forest, and 33.2% in the secondary forest from Aug. 1995 to Jul. 1996. A ratio more than 40% was observed only in the dry season in the secondary forest. The change in sensible heat flux seemed to be influenced by the change in ground water levels. (author)

  10. Application of the two-source energy balance model to partition evapotranspiration in an arid wine vineyard

    Science.gov (United States)

    Kool, Dilia; Kustas, William P.; Agam, Nurit

    2016-04-01

    The partitioning of evapotranspiration (ET) into transpiration (T), a productive water use, and soil water evaporation (E), which is generally considered a water loss, is highly relevant to agriculture in the light of increasing desertification and water scarcity. This task is challenged by the complexity of soil and plant interactions, coupled with changes in atmospheric and soil water content conditions. Many of the processes controlling water/energy exchange are not adequately modeled. The two-source energy balance model (TSEB) was evaluated and adapted for independent E and T estimations in an isolated drip-irrigated wine vineyard in the arid Negev desert. The TSEB model estimates ET by computing vegetation and soil energy fluxes using remotely sensed composite surface temperature, local weather data (solar radiation, air temperature and humidity, and wind speed), and vegetation metrics (row spacing, canopy height and width, and leaf area). The soil and vegetation energy fluxes are computed numerically using a system of temperature gradient and resistance equations; where soil and canopy temperatures are derived from the composite surface temperature. For estimation of ET, the TSEB model has been shown to perform well for various agricultural crops under a wide range of environmental conditions, but validation of T and E fluxes is limited to one study in a well-watered cotton crop. Extending the TSEB approach to water-limited vineyards demands careful consideration regarding how the complex canopy structure of vineyards will influence the accuracy of the partitioning between E and T. Data for evaluation of the TSEB model were collected over a season (bud break till harvest). Composite, canopy, and soil surface temperatures were measured using infrared thermometers. The composite vegetation and soil surface energy fluxes were assessed using independent measurements of net radiation, and soil, sensible and latent heat flux. The below canopy energy balance was

  11. Heat source component development program. Report for July--December 1978

    International Nuclear Information System (INIS)

    Foster, E.L. Jr.

    1979-01-01

    This is the seventh of a series of reports describing the results of several analytical and experimental programs being conducted at Battelle-Columbus Laboratories to develop components for advanced radioisotope heat source applications. The heat sources will for the most part be used in advanced static and dynamic power conversion systems. Battelle's support of LASL during the current reporting period has been to determine the operational and reentry response of selected heat source trial designs, and their thermal response to a space shuttle solid propellant fire environment. Thermal, ablation, and thermal stress analyses were conducted using two-dimensional modeling techniques previously employed for the analysis of the earlier trial design versions, and modified in part to improve the modeling accuracy. Further modifications were made to improve the modeling accuracy as described herein. Thermal, ablation, and thermal stress analyses were then conducted for the trial design selected by LASL/DOE for more detailed studies using three-dimensional modeling techniques

  12. Experimental research on novel adsorption chiller driven by low grade heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Shi, Z.X.; Yang, Q.R.; Tian, X.L.; Zhang, J.C.; Wu, J.Y.

    2007-01-01

    A novel silica gel-water adsorption chiller is developed. This chiller consists of three vacuum chambers: two adsorption/desorption (or evaporation/condensation) vacuum chambers and one heat pipe working vacuum chamber. In this chiller, only one vacuum valve is installed between the two adsorption/desorption vacuum chambers to improve its performance when it is driven by a low temperature heat source. The operational reliability of the chiller is highly improved because of fewer moving parts. In this work, the performance of the chiller is experimentally tested under a low grade heat source, such as 55-67 o C. The test results show that the performance of this chiller is satisfying when it is driven by a low grade heat source, such as 65 o C, and the cooling capacity (or refrigeration capacity) will reach about 5 kW when the hot water temperature is 65 o C, the cooling water temperature is 30.5 o C and the chilled water inlet temperature is 15.1 o C. The test results confirm that this kind of adsorption chiller can be effectively driven by a low grade heat source

  13. Heat source component development program, October 1977--February 1978

    International Nuclear Information System (INIS)

    1978-03-01

    The General Purpose Heat Source (GPHS) is being developed by Los Alamos Scientific Laboratory (LASL) for the Department of Energy (DOE) Division of Nuclear Research and Application (DNRA). The first mission scheduled for the GPHS is the NASA Out-of-Ecliptic Flight in January, 1983. During the current reporting period (October--December, 1977, January--February, 1978), activities in this task were conducted as follows: (1) documentation of results of the reentry thermal, ablation, and thermal stress analyses of the conceptual designs; (2) identification and completion of modifications to the thermal and ablation models used to determine the performance response of the heat source modules during reentry; (3) initiation of modifications to the thermal stress model used to determine the performance response of heat source modules during reentry; (4) completion and documentation of the surface chemistry experiments; (5) initiation and completion of activities in support of LASL to define test plans for the trial design phase of the GPHS development program; (6) participation in the GPHS design review meeting held at DOE/Germantown, Maryland, December 19--20, 1977; and (7) initiation of the thermal analysis of Trial Design 1.1

  14. Thermal non-equilibrium heat transfer in a porous cavity in the presence of bio-chemical heat source

    Directory of Open Access Journals (Sweden)

    Nazari Mohsen

    2015-01-01

    Full Text Available This paper is concerned with thermal non-equilibrium natural convection in a square cavity filled with a porous medium in the presence of a biomass which is transported in the cavity. The biomass can consume a secondary moving substrate. The physics of the presented problem is related to the analysis of heat and mass transfer in a composting process that controlled by internal heat generation. The intensity of the bio-heat source generated in the cavity is equal to the rate of consumption of the substrate by the biomass. It is assumed that the porous medium is homogeneous and isotropic. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy equation. A simplified Monod model is introduced along with the governing equations to describe the consumption of the substrate by the biomass. In other word, the transient biochemical heat source which is dependent on a solute concentration is considered in the energy equations. Investigation of the biomass activity and bio-chemical heat generation in the case of thermal non-equilibrium assumption has not been considered in the literature and they are open research topics. The effects of thermal non-equilibrium model on heat transfer, flow pattern and biomass transfer are investigated. The effective parameters which have a direct impact on the generated bio-chemical heat source are also presented. The influences of the non-dimensional parameters such as fluid-to-solid conductivity ratio on the temperature distribution are presented.

  15. Comprehensive thermodynamic analysis of a renewable energy sourced hybrid heating system combined with latent heat storage

    International Nuclear Information System (INIS)

    Utlu, Zafer; Aydın, Devrim; Kıncay, Olcay

    2014-01-01

    Highlights: • An experimental thermal investigation of hybrid renewable heating system is presented. • Analyses were done by using real data obtained from a prototype structure. • Exergy efficiency of system components investigated during discharging period are close to each other as 32%. • The average input energy and exergy rates to the LHS were 0.770 and 0.027 kW. • Overall total energy and exergy efficiencies of LHS calculated as 72% and 28.4%. - Abstract: In this study an experimental thermal investigation of hybrid renewable heating system is presented. Latent heat storage stores energy, gained by solar collectors and supplies medium temperature heat to heat pump both day time also night time while solar energy is unavailable. In addition to this an accumulation tank exists in the system as sensible heat storage. It provides supply–demand balance with storing excess high temperature heat. Analyses were done according to thermodynamic’s first and second laws by using real data obtained from a prototype structure, built as part of a project. Results show that high percent of heat loses took place in heat pump with 1.83 kW where accumulator-wall heating cycle followed it with 0.42 kW. Contrarily highest break-down of exergy loses occur accumulator-wall heating cycle with 0.28 kW. Averagely 2.42 kW exergy destruction took place in whole system during the experiment. Solar collectors and heat pump are the promising components in terms of exergy destruction with 1.15 kW and 1.09 kW respectively. Exergy efficiency of system components, investigated during discharging period are in a close approximately of 32%. However, efficiency of solar collectors and charging of latent heat storage are 2.3% and 7% which are relatively low. Average overall total energy and exergy efficiencies of latent heat storage calculated as 72% and 28.4% respectively. Discharging energy efficiency of latent heat storage is the highest through all system components. Also heat

  16. Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Terry [Townsend Engineering, Inc., Davenport, IA (United States); Slusher, Scott [Townsend Engineering, Inc., Davenport, IA (United States)

    2017-04-24

    The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.

  17. Evaluating infant core temperature response in a hot car using a heat balance model.

    Science.gov (United States)

    Grundstein, Andrew J; Duzinski, Sarah V; Dolinak, David; Null, Jan; Iyer, Sujit S

    2015-03-01

    Using a 1-year old male infant as the model subject, the objectives of this study were to measure increased body temperature of an infant inside an enclosed vehicle during the work day (8:00 am-4:00 pm) during four seasons and model the time to un-compensable heating, heat stroke [>40 °C (>104 °F)], and critical thermal maximum [>42 °C (>107.6 °F)]. A human heat balance model was used to simulate a child's physiological response to extreme heat exposure within an enclosed vehicle. Environmental variables were obtained from the nearest National Weather Service automated surface observing weather station and from an observational vehicular temperature study conducted in Austin, Texas in 2012. In all four seasons, despite differences in starting temperature and solar radiation, the model infant reached heat stroke and demise before 2:00 pm. Time to heat stroke and demise occurred most rapidly in summer, at intermediate durations in fall and spring, and most slowly in the winter. In August, the model infant reached un-compensable heat within 20 min, heat stroke within 105 min, and demise within 125 min. The average rate of heating from un-compensable heat to heat stroke was 1.7 °C/h (3.0 °F/h) and from heat stroke to demise was 4.8 °C/h (8.5 °F/h). Infants left in vehicles during the workday can reach hazardous thermal thresholds quickly even with mild environmental temperatures. These results provide a seasonal analogue of infant heat stroke time course. Further effort is required to create a universally available forensic tool to predict vehicular hyperthermia time course to demise.

  18. Heating with ice. Efficient heating source for heat pumps. Primary source storage. Alternative to soil sensors and soil collectors; Heizen mit Eis. Effiziente Waermequelle fuer Waermepumpen. Primaerquellenspeicher, Alternative zu Erdsonden und Erdkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Tippelt, Egbert [Viessmann, Allendorf (Germany)

    2011-12-15

    For several years heat pumps have taken up a fixed place in the mix of annually installed thermal generators. Thus, in the year 2010 every tenth newly installed heater was a heat pump. A new concept for the development and utilization of natural heat now makes this technology even more attractive. From this perspective, the author of the contribution under consideration reports on a SolarEis storage. This SolarEis storage consists of a cylindrical concrete tank with two heat exchangers consiting of plastic pipes. The SolarEis storage uses outdoor air, solar radiation and soil as heat sources for brine / water heat pumps simultaneously.

  19. Performance analysis of air source heat pump system for office building

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Won; KIm, Yong Chan [Korea University, Seoul (Korea, Republic of); Chang, Young Soo [School of Mechanical System Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-11-15

    In this study, the performance of an air source heat pump system installed in a commercial building is analyzed using the developed heat pump performance model and building load simulation data of several regions in Korea. The performance test of an air source heat pump system with a variable speed compressor is tested to develop model that considers changes in the performance characteristics of the heat pump system under various operating conditions. The heat pump system is installed in an environmental chamber, and the experimental equipment is set up according to the manufacturer' specifications as well as the AHRI 1230 test specifications. The performance test conditions of the heat pump system are selected using a central composite design method, in which 29 points for each cooling and heating mode are selected. The developed performance model based on experimental data predicts experimental values with an error of ±5 %. Building cooling and heating loads in three regions in Korea are analyzed using TRNSYS software, which includes standard building and weather data from Seoul, Daejeon and Busan in Korea. The effects of outdoor air temperature and part load ratio on the performance and regional monthly average power consumption of the heat pump system are analyzed.

  20. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Bourke, Grant; Bansal, Pradeep

    2010-01-01

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  1. The ion source development for neutral injection heating at JAERI

    International Nuclear Information System (INIS)

    Shirakata, H.; Itoh, T.; Kondoh, U.; Matsuda, S.; Ohara, Y.; Ohga, T.; Shibata, T.; Sugawara, T.; Tanaka, S.

    1976-01-01

    The neutral beam research and development effort at JAERI has been mainly concentrated on design, construction and testing of ion sources needed for present and planned heating experiments. Fundamental characteristics of the ion sources developed are described

  2. Energy well. Ground-source heat in one-family houses; Energiakaivo. Maalaemmoen hyoedyntaeminen pientaloissa

    Energy Technology Data Exchange (ETDEWEB)

    Juvonen, J.; Lapinlampi, T.

    2013-08-15

    This guide deals with the legislation, planning, building, usage and maintenance of ground-source heat systems. The guide gives recommendations and instructions on national level on the permit practices and how to carry out the whole ground-source heat system project. The main focus of the guide is on energy wells for one-family houses. The principle is that an action permit is needed to build a ground-source heat system. On ground water areas a permit according to the water act may also be required. To avoid any problems, the placement of the system needs to be planned precisely. This guide gives a comprehension to the orderer on the issues that need to be considered before ordering, during construction, when the system is running and when giving up the use of the ground-source heat system. (orig.)

  3. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    Science.gov (United States)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  4. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  5. Effects of the generator and evaporator temperature differences on a double absorption heat transformer—Different control strategies on utilizing heat sources

    International Nuclear Information System (INIS)

    Wang, Hanzhi; Li, Huashan; Bu, Xianbiao; Wang, Lingbao

    2017-01-01

    Highlights: • Effects of the GETD on the DAHT system performance are analyzed. • Three different configurations are compared in detail. • Suggestions on the heat source control strategies are given. - Abstract: The combination of the absorption heat transformer with renewable energy systems, like solar thermal systems, is raising more and more concern. In those combined systems the strategies on utilizing heat sources can affect system thermodynamic performance significantly. Therefore, this study presents a detailed analysis on the effect of the heat source temperature and different heat source flow patterns on the performance of a double absorption heat transformer (DAHT). A detailed comparative study is carried out to clarify the impact of the generator and evaporator temperature differences (GETD) on the coefficient of performance (COP), exergy efficient (ECOP), exergy destruction rates in the individual components and heat transfer areas needed for each component. The results show that the generator, condenser and absorber-evaporator are responsible for most of the exergy destruction rate in the DAHT system; the parallel-flow configuration (the generator temperature is equal to the evaporator temperature) performs better under the high gross temperature lift conditions; in the case of the counter-flow configuration (the generator temperature is relatively higher), better performance can be obtained in both the COP and ECOP under the proper heat source temperature (85 and 95 °C); the fair-flow configuration (higher temperature in the evaporator) is not recommended in this paper due to no advantages found in either thermodynamic performance or system size.

  6. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  7. Natural convection heat transfer in a rectangular pool with volumetric heat sources

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.

    2003-01-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)

  8. Moving heat source in a confined channel: Heat transfer and boiling in endovenous laser ablation of varicose veins

    NARCIS (Netherlands)

    de Boer, Amit; Oliveira, Jorge L. G.; van der Geld, Cees W. M.; Malskat, Wendy S. J.; van den Bos, Renate; Nijsten, Tamar; van Gemert, Martin J. C.

    2017-01-01

    Motion of a moving laser light heat source in a confined volume has important applications such as in endovenous laser ablation (EVLA) of varicose veins. This light heats up the fluid and the wall volume by absorption and heat conduction. The present study compares the flow and temperature fields in

  9. Ground-source heat pump case studies and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  10. Current status of ground-source heat pumps in China

    International Nuclear Information System (INIS)

    Yang Wei; Zhou Jin; Xu Wei; Zhang Guoqiang

    2010-01-01

    As a renewable energy technology, the ground-source heat pump (GSHP) technologies have increasingly attracted world-wide attention due to their advantages of energy efficiency and environmental friendliness. This paper presents Chinese research and application on GSHP followed by descriptions of patents. The policies related to GSHP are also introduced and analyzed. With the support of Chinese government, several new heat transfer models and two new GSHP systems (named pumping and recharging well (PRW) and integrated soil cold storage and ground-source heat pump (ISCS and GSHP) system) have been developed by Chinese researchers. The applications of GSHP systems have been growing rapidly since the beginning of the 21st century with financial incentives and supportive government policies. However, there are still several challenges for the application of GSHP systems in large scale. This paper raises relevant suggestions for overcoming the existing and potential obstacles. In addition, the developing and applying prospects of GSHP systems in China are also discussed.

  11. Quantifying the source-sink balance and carbohydrate content in three tomato cultivars

    Directory of Open Access Journals (Sweden)

    Tao eLi

    2015-06-01

    Full Text Available The effect of supplementary lighting on plant growth depends on the balance between assimilate production in source leaves and the overall capacity of the plants to use assimilates. This study aims at quantifying the source-sink balance and carbohydrate content of three tomato cultivars differing in fruit size, and to investigate to what extent the source/sink ratio correlates with the potential fruit size. Cultivars Komeett (large size, Capricia (medium size and Sunstream (small size, cherry tomato were grown at similar crop management as in commercial practice. Supplementary lighting was applied. Source strength was estimated from total plant growth rate using periodic destructive plant harvests in combination with the crop growth model TOMSIM. Sink strength was estimated from potential fruit growth rate which was determined from non-destructively measuring the fruit growth rate at non-limiting assimilate supply, growing only one fruit on each truss. Carbohydrate content in leaves and stems were periodically determined. During the early growth stage, ‘Komeett’ and ‘Capricia’ showed sink limitation and ‘Sunstream’ was close to sink limitation. Subsequently, during the fully fruiting stage all three cultivars were strongly source-limited as indicated by the low source/sink ratio (average source/sink ratio from 50 days after planting onwards was 0.17, 0.22 and 0.33 for ‘Komeett’, ‘Capricia’ and ‘Sunstream’, respectively. Carbohydrate content in leaves and stems increased linearly with the source/sink ratio. We conclude that under high irradiance tomato plants are sink-limited during their early growth stage, the level of sink limitation differs between cultivars but is not correlated with their potential fruit size. During the fully fruiting stage tomato plants are source-limited and the extent of source limitation of a cultivar is positively correlated with its potential fruit size.

  12. Analysis of heat balance on innovative-simplified nuclear power plant using multi-stage steam injectors

    International Nuclear Information System (INIS)

    Goto, Shoji; Ohmori, Shuichi; Mori, Michitsugu

    2006-01-01

    The total space and weight of the feedwater heaters in a nuclear power plant (NPP) can be reduced by replacing low-pressure feedwater heaters with high-efficiency steam injectors (SIs). The SI works as a direct heat exchanger between feedwater from condensers and steam extracted from turbines. It can attain pressures higher than the supplied steam pressure. The maintenance cost is lower than that of the current feedwater heater because of its simplified system without movable parts. In this paper, we explain the observed mechanisms of the SI experimentally and the analysis of the computational fluid dynamics (CFD). We then describe mainly the analysis of the heat balance and plant efficiency of the innovative-simplified NPP, which adapted to the boiling water reactor (BWR) with the high-efficiency SI. The plant efficiencies of this innovative-simplified BWR with SI are compared with those of a 1 100 MWe-class BWR. The SI model is adopted in the heat balance simulator as a simplified model. The results show that the plant efficiencies of the innovate-simplified BWR with SI are almost equal to those of the original BWR. They show that the plant efficiency would be slightly higher if the low-pressure steam, which is extracted from the low-pressure turbine, is used because the first-stage of the SI uses very low pressure. (author)

  13. An assessment of dynamic energy conversion systems for terrestrial radioisotope heat sources

    International Nuclear Information System (INIS)

    Thayer, G.R.

    1985-01-01

    The use of dynamic conversion systems to convert to electricity the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source is examined. Brayton Cycle, three Organic Rankine systems (Barber-Nichols/ORMAT, Sundstrand, and TRW concepts), Organic Rankine plus thermoelectrics, and Stirling Engine systems were studied. The systems were ranked for a North Warning System mission using a Los Alamos Multi-Attribute Decision Theory code. Three different heat source designs were used: Case I with a beginning of life (BOL) source temperature of 640 0 C, Case II with a BOL source temperature of 745 0 C, and Case III with a BOL source temperature of 945 0 C. The Stirling Engine system was the top-ranked system for Cases I and II, closely followed by the ORC systems in Case I and ORC and thermoelectrics in Case II. The Brayton-Cycle system was top-ranked for Case III, with the Stirling Engine system a close second

  14. Determining water use of sorghum from two-source energy balance and radiometric temperatures

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez

    2011-10-01

    Full Text Available Estimates of surface actual evapotranspiration (ET can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB model was evaluated by comparison of estimated ET with values measured on a weighing lysimeter. Errors of ±0.14 mm h−1 and ±1.0 mm d−1 were obtained at hourly and daily scales, respectively. Total accumulated crop water use during the campaign was underestimated by 5%. It is then shown that thermal radiometry can provide precise crop water necessities and is a promising tool for irrigation management.

  15. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  16. Thermal hydraulic analysis of the encapsulated nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J.J.; Wade, D.C. [Argonne National Lab., IL (United States)

    2001-07-01

    An analysis has been carried out of the steady state thermal hydraulic performance of the Encapsulated Nuclear Heat Source (ENHS) 125 MWt, heavy liquid metal coolant (HLMC) reactor concept at nominal operating power and shutdown decay heat levels. The analysis includes the development and application of correlation-type analytical solutions based upon first principles modeling of the ENHS concept that encompass both pure as well as gas injection augmented natural circulation conditions, and primary-to-intermediate coolant heat transfer. The results indicate that natural circulation of the primary coolant is effective in removing heat from the core and transferring it to the intermediate coolant without the attainment of excessive coolant temperatures. (authors)

  17. IRAS observations of dust heating and energy balance in the Rho Ophiuchi dark cloud

    Science.gov (United States)

    Greene, Thomas P.; Young, Erick T.

    1989-01-01

    The equilibrium process dust emission in the Rho Ophiuchi dark cloud is studied. The luminosity of the cloud is found to closely match the luminosity of the clouds's known embedded and external radiation sources. There is no evidence for a large population of undetected low-luminosity sources within the cloud and unknown external heating is also only a minor source of energy. Most of the cloud's luminosity is emitted in the mid-to-far-IR. Dust temperature maps indicate that the dust is not hot enough to heat the gas to observed temperatures. A simple cloud model with a radiation field composed of flux HD 147889, S1, and Sco OB2 associations predicts the observed IRAS 60 to 100 micron in-band flux ratios for a mean cloud density n(H2) = 1400. Flattened 12 and 25 micron observations show much extended emission in these bands, suggesting stochastic heating of very small grains or large molecules.

  18. Nuclear source of district heating in the north-east region of Russia

    International Nuclear Information System (INIS)

    Dolgov, V.V.

    1998-01-01

    The operation of the Bilibin Nuclear Co-generation Plant (BNCP) as a local district heating source is reviewed in this paper. Specific features of the BNCP power unit are given with special emphases on the components of the technological scheme, which are involved in the heat production and supply to the consumers. The scheme of steam extraction from the turbine, the flow diagram of steam in the turbine, as well as the three circuit heat removal system are described. The numerical characteristics of the nuclear heat supply system in various operating modes are presented. The real information characterizing current radiological conditions in the vicinity of the heat generation and distribution equipment is also presented in the paper. The BNCP technical and economical characteristics are compared with those of conventional energy sources. Both advantages and some problems revealed during the twenty-year experience of the BNCP nuclear heat utilization are generally assessed. Safety and reliability characteristics of the reactor and the heat supply system are also described. (author)

  19. Natural convection in wavy enclosures with volumetric heat sources

    International Nuclear Information System (INIS)

    Oztop, H.F.; Varol, Y.; Abu-Nada, E.; Chamkha, A.

    2011-01-01

    In this paper, the effects of volumetric heat sources on natural convection heat transfer and flow structures in a wavy-walled enclosure are studied numerically. The governing differential equations are solved by an accurate finite-volume method. The vertical walls of enclosure are assumed to be heated differentially whereas the two wavy walls (top and bottom) are kept adiabatic. The effective governing parameters for this problem are the internal and external Rayleigh numbers and the amplitude of wavy walls. It is found that both the function of wavy wall and the ratio of internal Rayleigh number (Ra I ) to external Rayleigh number (Ra E ) affect the heat transfer and fluid flow significantly. The heat transfer is predicted to be a decreasing function of waviness of the top and bottom walls in case of (IRa/ERa)>1 and (IRa/ERa)<1. (authors)

  20. New calculation method to solve moisture balance in the room with regenerator heat recovery and infiltration

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Drivsholm, Christian

    2017-01-01

    This paper investigates moisture related performance of a regenerator heat exchanger located in a decentralized ventilation unit for residential building application. The decentralized ventilation solutions have recently become a more and more popular alternative to centralized ventilation systems...... in air handling units (AHUs). In the case of regenerator heat exchanger, the higher the heat recovery efficiency obtained the higher risk that condensation might occur. This condensation might form small droplets on the surface of the regenerator that might not be possible to drain in the short switching...... time of the regenerator and consequently might be evaporated in the next cycle back to the building and cause elevated humidity conditions in the indoor spaces. Due to the fact that the traditionally used dilution equation must not be used to solve moisture balance in the room with regenerator heat...

  1. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump

    Directory of Open Access Journals (Sweden)

    Yuguo Wu

    2018-09-01

    Full Text Available Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.

  2. Quantifying the source-sink balance and carbohydrate content in three tomato cultivars

    NARCIS (Netherlands)

    Li, T.; Heuvelink, E.; Marcelis, L.F.M.

    2015-01-01

    Supplementary lighting is frequently applied in the winter season for crop production in greenhouses. The effect of supplementary lighting on plant growth depends on the balance between assimilate production in source leaves and the overall capacity of the plants to use assimilates. This study aims

  3. Radioisotopes for heat-source applications

    International Nuclear Information System (INIS)

    Hoisington, J.E.

    1982-01-01

    Potential DOD requirements for noninterruptable power sources could total 1 MW thermal by FY 1990. Of the three isotopes considered, ( 90 Sr, 147 Pm, 238 Pu) 90 Sr is the only one available in sufficient amounts to meet this requirement. To meet the DOD FY 1990 requirements, it would be necessary to undertake 90 Sr recovery operations from spent fuel reprocessing at SRP, Hanford, and the Barnwell Nuclear Fuels Plant (BNFP). 90 Sr recovery from the existing alkaline high level waste (HLW) at Hanford and SRP is not attractive because the isotopic purity of the 90 Sr is below that required for DOD applications. Without reprocessing LWR spent fuel, SRP and Hanford could not supply the demand of 1 MW thermal until FY 1996. Between FY 1983 and FY 1996, SRP and Hanford could supply approximately 0.70 MW of 90 Sr and 0.15 MW of 147 Pm. SRP could supply an additional 0.15 MW from the production and recovery of 238 Pu. Strontium-90 is the most economical of the three heat source radionuclides considered. The 90 Sr unit recovery cost from SRP fresh acid waste would be $180/watt. The BNFP 90 Sr recovery cost would be $130/watt to $235/watt depending on the age and burnup of the LWR spent fuel. Hanford 90 Sr recovery costs form Purex fresh acid waste are unavailable, but they are expected to be comparable to the SRP costs. 147 Pm and 238 Pu are considerably more expensive heat source materials. 147 Pm recovery costs at SRP are estimated to be $450/watt. As with 90 Sr, the Hanford 147 Pm recovery costs are expected to be comparabl to the SRP costs. Production of high assay (93.5%) 238 Pu at SRP from excess 231 Np would cost about $1160/watt, while recovery of low assay (27%) 238 Pu from the waste stream is estimated at $1850/watt

  4. Household electricity and gas consumption for heating homes

    International Nuclear Information System (INIS)

    Jeong, Jaehoon; Seob Kim, Chang; Lee, Jongsu

    2011-01-01

    Energy consumption has been drastically changed because of energy source depletion, price fluctuations, development and penetration of alternative energy sources, and government policies. Household energy sources are interrelated, and energy price and household characteristics, such as income level and dwelling size, affect the usage. To supply energy consistently and achieve a balance between production and consumption, stakeholders must understand consumer energy-consumption behavior. Therefore, this study identifies household heating energy usage patterns and the substitutive and/or complementary relationships between electricity and gas. Based on a multiple discrete-continuous extreme value model, household utility structure is identified from data on gas-heating usage. Results show greater utility and the smallest satiation values for gas boilers than for electric heaters and electric heating beds. The effects of consumer socioeconomic and environmental characteristics on the choice of heating energy sources were analyzed. Also, for further comparison, the respondents were split into high and low categories for income, heating degree days, dwelling size, and gas usage. Gas was found to be the most economical heating choice for households. - Research highlights: → This study investigates household electricity and gas consumption behavior for heating. → It also studied the relationship between two energy sources. → A research framework is suggested by combining the CDA and the MDCEV models. → It provides quantitative data that might be used for designing efficient energy policies.

  5. A new method to estimate heat source parameters in gas metal arc welding simulation process

    International Nuclear Information System (INIS)

    Jia, Xiaolei; Xu, Jie; Liu, Zhaoheng; Huang, Shaojie; Fan, Yu; Sun, Zhi

    2014-01-01

    Highlights: •A new method for accurate simulation of heat source parameters was presented. •The partial least-squares regression analysis was recommended in the method. •The welding experiment results verified accuracy of the proposed method. -- Abstract: Heat source parameters were usually recommended by experience in welding simulation process, which induced error in simulation results (e.g. temperature distribution and residual stress). In this paper, a new method was developed to accurately estimate heat source parameters in welding simulation. In order to reduce the simulation complexity, a sensitivity analysis of heat source parameters was carried out. The relationships between heat source parameters and welding pool characteristics (fusion width (W), penetration depth (D) and peak temperature (T p )) were obtained with both the multiple regression analysis (MRA) and the partial least-squares regression analysis (PLSRA). Different regression models were employed in each regression method. Comparisons of both methods were performed. A welding experiment was carried out to verify the method. The results showed that both the MRA and the PLSRA were feasible and accurate for prediction of heat source parameters in welding simulation. However, the PLSRA was recommended for its advantages of requiring less simulation data

  6. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  7. Large-eddy simulation of convective boundary layer generated by highly heated source with open source code, OpenFOAM

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Eguchi, Yuzuru; Sano, Tadashi; Shirai, Koji; Ishihara, Shuji

    2011-01-01

    Spatial- and temporal-characteristics of turbulence structures in the close vicinity of a heat source, which is a horizontal upward-facing round plate heated at high temperature, are examined by using well resolved large-eddy simulations. The verification is carried out through the comparison with experiments: the predicted statistics, including the PDF distribution of temperature fluctuations, agree well with measurements, indicating that the present simulations have a capability to appropriately reproduce turbulence structures near the heat source. The reproduced three-dimensional thermal- and fluid-fields in the close vicinity of the heat source reveals developing processes of coherence structures along the surface: the stationary- and streaky-flow patterns appear near the edge, and such patterns randomly shift to cell-like patterns with incursion into the center region, resulting in thermal-plume meandering. Both the patterns have very thin structures, but the depth of streaky structure is considerably small compared with that of cell-like patterns; this discrepancy causes the layered structures. The structure is the source of peculiar turbulence characteristics, the prediction of which is quite difficult with RANS-type turbulence models. The understanding such structures obtained in present study must be helpful to improve the turbulence model used in nuclear engineering. (author)

  8. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  9. Experimental performance analysis of a direct-expansion ground source heat pump in Xiangtan, China

    International Nuclear Information System (INIS)

    Yang, Wei

    2013-01-01

    The DX GSHP (direct-expansion ground source heat pump), which uses a buried copper piping network through which refrigerant is circulated, is one type of GSHP (ground source heat pump). This study investigates the performance characteristics of a vertical U-bend direct-expansion ground source (geothermal) heat pump system (DX GSHPS) for both heating and cooling. Compared with the conventional GCHP (ground coupled heat pump) system, the DX GSHP system is more efficient, with lower thermal resistance in the GHE (ground heat exchanger) and a lower (higher) condensing (evaporating) temperature in the cooling (heating) mode. In addition, the system performance of the whole DX GSHP system is also higher than that of the conventional GCHP system. A DX GSHP system in Xiangtan, China with a U-bend ground heat exchanger 42 m deep with a nominal outside diameter of 12.7 mm buried in a water well was tested and analysed. The results showed that the performance of this system is very high. The maximum (average) COPs of the system were found to be 6.08 (4.73) and 6.32 (5.03) in the heating and cooling modes, respectively. - Highlights: • The reasons for the higher performance of the DX GSHP (direct-expansion ground source heat pump) are analysed theoretically compared with the conventional GCHP (ground coupled heat pump). • The experimental performance of a DX GSHP system is investigated, which makes a valuable contribution to the literature. • The study is helpful in demonstrating the energy efficiency of the DX GSHP system

  10. Melting of a phase change material in a horizontal annulus with discrete heat sources

    Directory of Open Access Journals (Sweden)

    Mirzaei Hooshyar

    2015-01-01

    Full Text Available Phase change materials have found many industrial applications such as cooling of electronic devices and thermal energy storage. This paper investigates numerically the melting process of a phase change material in a two-dimensional horizontal annulus with different arrangements of two discrete heat sources. The sources are positioned on the inner cylinder of the annulus and assumed as constant-temperature boundary conditions. The remaining portion of the inner cylinder wall as well as the outer cylinder wall is considered to be insulated. The emphasis is mainly on the effects of the arrangement of the heat source pair on the fluid flow and heat transfer features. The governing equations are solved on a non-uniform O type mesh using a pressure-based finite volume method with an enthalpy porosity technique to trace the solid and liquid interface. The results are obtained at Ra=104 and presented in terms of streamlines, isotherms, melting phase front, liquid fraction and dimensionless heat flux. It is observed that, depending on the arrangement of heat sources, the liquid fraction increases both linearly and non-linearly with time but will slow down at the end of the melting process. It can also be concluded that proper arrangement of discrete heat sources has the great potential in improving the energy storage system. For instance, the arrangement C3 where the heat sources are located on the bottom part of the inner cylinder wall can expedite the melting process as compared to the other arrangements.

  11. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    Science.gov (United States)

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (T c ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (P a ) of 2.57 kPa followed by incremental steps in P a of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (P crit ) at which an upward inflection in T c occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The T c , mean skin temperature (T sk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDF mean ), mean local sweat rate (forearm and thigh; LSR mean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDF mean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL

  12. Heat pumps using vertical boreholls as heat source; Varmepumper med lodrette boringer som varmeoptager

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Svend V. [Teknologisk Institut, Aarhus (Denmark); Thoegersen, L.; Soerensen, Inga [VIA University College, Risskov (Denmark)] [and others

    2013-01-15

    This report presents instructions on what to consider when you have to establish vertical wells as energy sources for ground source heating systems. The report provides an introduction into what to be aware of when it comes to sizing vertical ground hoses as heat absorbers for heat pumps. The initial geological assessments, you have to make are described and there are references to the available tools and websites that exist today. A calculation model is developed for the design of vertical ground hoses. This calculation model is intended as a tool for installers and consultants as well as well drillers. The calculation model contains two computational models, one can be used for initial calculations and dimensioning of vertical ground hoses, and the detailed model can be used for costing by well driller. The simple calculation is based on proven design approach from the German standard VDI 4640, and the detailed calculation is based on a known empirical calculation, which assumes that you know the geology in more detail. In the project measurements were carried out on four installations, and the calculations show that there is good agreement between the measurements and the calculation model. (LN)

  13. Turbulent circulation above the surface heat source in a stably stratified environment

    Science.gov (United States)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-09-01

    The results of the numerical modeling of turbulent structure of the penetrating convection above the urban heat island with a small aspect ratio in a stably stratified medium at rest are presented. The gradient diffusion representations for turbulent momentum and heat fluxes are used, which depend on three parameters — the turbulence kinetic energy, the velocity of its spectral expenditure, and the dispersion of temperature fluctuations. These parameters are found from the closed differential equations of balance in the RANS approach of turbulence description. The distributions of averaged velocity and temperature fields as well as turbulent characteristics agree well with measurement data.

  14. Flow Conditions in a Mechanically Ventilated Room with a Convective Heat Source

    DEFF Research Database (Denmark)

    Heiselberg, Per; Nielsen, Peter V.

    The ventilation of a test room (LxWxH = 5.4x3.6x2.4 m) with a wall mounted heat source is investigated for two different air terminal devices.......The ventilation of a test room (LxWxH = 5.4x3.6x2.4 m) with a wall mounted heat source is investigated for two different air terminal devices....

  15. About the possible options for models of convective heat transfer in closed volumes with local heating source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2015-01-01

    Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.

  16. Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Stacy, E.; Burgan, C.E.

    In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone

  17. IMPACT OF GEOTHERMAL GRADIENT ON GROUND SOURCE HEAT PUMP SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2014-07-01

    Full Text Available ndisturbed ground temperature is one of the most crucial thermogeological parameters needed for shallow geothermal resources assessment. Energy considered to be geothermal is energy stored in the ground at depths where solar radiation has no effect. At depth where undisturbed ground temperature occurs there is no influence of seasonal variations in air temperature from surface. Exact temperature value, and depth where it occurs, is functionally dependent on surface climate parameters and thermogeologic properties of ground. After abovementioned depth, increase of ground temperature is solely dependent on geothermal gradient. Accurately determined value of undisturbed ground temperature is beneficial for proper sizing of borehole heat exchangers. On practical example of building which is being heated and cooled with shallow geothermal resource, influences of undisturbed ground temperature and geothermal gradient, on size of borehole heat exchanger are going to be presented. Sizing of borehole heat exchanger was calculated with commercial software Ground Loop Designer (GLD, which uses modified line source and cylinder source solutions of heat conduction in solids.

  18. Advanced control for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Ground source heat pumps (GSHP), also known as geothermal heat pumps (GHP), are proven advanced HVAC systems that utilize clean and renewable geothermal energy, as well as the massive thermal storage capacity of the ground, to provide space conditioning and water heating for both residential and commercial buildings. GSHPs have higher energy efficiencies than conventional HVAC systems. It is estimated, if GSHPs achieve a 10% market share in the US, in each year, 0.6 Quad Btu primary energy consumption can be saved and 36 million tons carbon emissions can be avoided (Liu et al. 2017). However, the current market share of GSHPs is less than 1%. The foremost barrier preventing wider adoption of GSHPs is their high installation costs. To enable wider adoption of GSHPs, the costeffectiveness of GSHP applications must be improved.

  19. Quasiballistic heat removal from small sources studied from first principles

    Science.gov (United States)

    Vermeersch, Bjorn; Mingo, Natalio

    2018-01-01

    Heat sources whose characteristic dimension R is comparable to phonon mean free paths display thermal resistances that exceed conventional diffusive predictions. This has direct implications to (opto)electronics thermal management and phonon spectroscopy. Theoretical analyses have so far limited themselves to particular experimental configurations. Here, we build upon the multidimensional Boltzmann transport equation (BTE) to derive universal expressions for the apparent conductivity suppression S (R ) =κeff(R ) /κbulk experienced by radially symmetric 2D and 3D sources. In striking analogy to cross-plane heat conduction in thin films, a distinct quasiballistic regime emerges between ballistic (κeff˜R ) and diffusive (κeff≃κbulk ) asymptotes that displays a logarithmic dependence κeff˜ln(R ) in single crystals and fractional power dependence κeff˜R2 -α in alloys (with α the Lévy superdiffusion exponent). Analytical solutions and Monte Carlo simulations for spherical and circular heat sources in Si, GaAs, Si0.99Ge0.01 , and Si0.82Ge0.18 , all carried out from first principles, confirm the predicted generic tendencies. Contrary to the thin film case, common approximations like kinetic theory estimates κeff≃∑Sωgreyκω and modified Fourier temperature curves perform relatively poorly. Up to threefold deviations from the BTE solutions for sub-100 nm sources underline the need for rigorous treatment of multidimensional nondiffusive transport.

  20. Balance-of-plant options for the Heat-Pipe Power System

    International Nuclear Information System (INIS)

    Berte, M.; Capell, B.

    1997-09-01

    The Heat-Pipe Power System (HPS) is a near-term, low-cost space fission power system with the potential for utilizing various option for balance-of-plant options. The following options have been studied: a low-power thermoelectric design (14-kWe output), a small Brayton cycle system (60--75 kWe), and a large Brayton cycle system (250 kWe). These systems were analyzed on a preliminary basis, including mass, volume, and structure calculations. These analyses have shown that the HPS system can provide power outputs from 10--250 kWe with specific powers of ∼ 14 W/kg for a 14-kWe model to ∼ 100 W/kg for a 250-kWe model. The system designs considered in this study utilize a common component base to permit easy expansion and development

  1. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  2. Stem heat balance method to estimate transpiration of young orange and mango plants

    OpenAIRE

    Vellame,Lucas M.; Coelho Filho,Maurício A.; Paz,Vital P. S.; Coelho,Eugênio F.

    2010-01-01

    The present study had as its main objective the evaluation of the heat balance method in young orange and mango plants under protected environment. The work was carried out at Embrapa Cassava and Tropical Fruits, Cruz das Almas, BA. Later on, estimates of sap flow were conducted for two mango plants cultivated in pots of 15 and 50 L installed on weighting platforms of 45 and 140 kg; sap flow was determined in three orange plants, two of which were also installed on weighing platforms. The val...

  3. Method for achieving hydraulic balance in typical Chinese building heating systems by managing differential pressure and flow

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric

    2017-01-01

    to a lack of pressure and flow control. This study investigated using pre-set radiator valves combined with differential pressure (DP) controllers to achieve hydraulic balance in building distribution systems, and consequently save energy and reduce the emissions. We considered a multi-storey building......Hydraulic unbalance is a common problem in Chinese district heating (DH) systems. Hydraulic unbalance has resulted in poor flow distribution among heating branches and overheating of apartments. Studies show that nearly 30% of the total heat supply is being wasted in Chinese DH systems due...... modelled in the IDA-ICE software, along with a self-developed mathematical hydraulic model to simulate its heat performance and hydraulic performance with various control scenarios. In contrast to the situation with no pressure or flow control, this solution achieves the required flow distribution...

  4. Alternative energy balances for Bulgaria to mitigate climate change

    Science.gov (United States)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  5. Radioactive heat source and method of making same

    International Nuclear Information System (INIS)

    Elsner, N.B.

    1977-01-01

    A radioactive source of heat which is resistant to cremation conditions is made by encapsulating a radioisotope within a containment vessel and forming a refractory metal silicide diffusion coating exterior thereof. A secondary molybdenum vessel may be provided with a molybdenum silicide coating and then heated in air to oxidize its outer layer. A layer is applied exterior of the diffusion-coating which provides a continuous ceramic oxide layer upon subjection to cremation. This outer layer may be discrete silica carried in a hardenable binder of an organic polymer, and a minor amount of antimony is preferably also included

  6. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    Science.gov (United States)

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Thermal performance and pressure drop of spiral-tube ground heat exchangers for ground-source heat pump

    International Nuclear Information System (INIS)

    Jalaluddin; Miyara, Akio

    2015-01-01

    Thermal performance and pressure drop of the spiral-tube GHE were evaluated in this present work. A numerical simulation tool was used to carry out this research. The heat exchange rates per meter borehole depth of the spiral-tube GHE with various pitches and their pressure drops were compared with that of the U-tube GHE. Furthermore, a comparative analysis between a spiral pipe and straight pipe was performed. In comparison with the straight pipe, using the spiral pipe in the borehole increased the heat exchange rate to the ground per meter borehole depth. However, the pressure drop of water flow also increased due to increasing the length of pipe per meter borehole depth and its spiral geometry. The accuracy of the numerical model was verified for its pressure drop with some pressure drop correlations. The heat exchange rate and pressure drop of the GHEs are presented. As an example, the heat exchange rate per meter borehole depth of spiral pipe with 0.05 m pitch in the turbulent flow increased of 1.5 times. Its pressure drop also increased of 6 times. However, from the view point of energy efficiency, using the spiral pipe in the ground-source heat pump system gives a better performance than using the straight pipe. The heat exchange rate and pressure drop are important parameter in design of the ground-source heat pump (GSHP) system. - Highlights: • Thermal performance and pressure drop of spiral-tube GHE are presented. • Effects of spiral pitch on thermal performance and pressure drop are analyzed. • Using a spiral pipe increases heat exchange rate per meter borehole depth of GHE. • Pressure drop per meter borehole depth also increases in the spiral pipe.

  8. Milliwatt-generator heat source. Progress report, January-June 1983

    International Nuclear Information System (INIS)

    Mershad, E.A.

    1983-01-01

    Progress is reported in the following: heat source shipments, reimbursable orders, hardware shipments, raw material qualification/procurement, DOE audit and milliwatt generator process review, surveillance capsule evaluations, pressure burst testing, and hardware fabrication and quality

  9. Heat sources for bright-rimmed molecular clouds: CO observations of NGC 7822

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Dickinson, D.F.; Lada, C.J.

    1978-01-01

    Observations of the 2.6 mm carbon monoxide line in the bright rim NGC 7822 reveal that the peak excitation and column density of the molecule lie in a ridge ahead of the ionization front. Several possibilities for the excitation of this ridge are discussed. Cosmic rays are shown to provide an excellent heat source for Bok globules, but they can account for only approx.20% of the required heating in NGC 7822. Direct shock or compressional heating of the gas could be adequate only if the pressure inside the cloud is much larger than the thermal pressure. If, in fact, this internal pressure is determined by the source of line broadening (e.g., magnetic fields or turbulence), then shock or compressional heating could be important, and pressure equilibrium may exist between the neutral cloud and the bright rim. Heating by warm grains or by the photoelectric effect is also considered, but such mechanisms are probably not important if the only source of radiation is external to the cloud. This is primarily a result of the low cloud density (approx.10 3 cm -3 ) inferred from our observations. The extent to which unknown embedded stars may provide the required gaseous heating cannot be estimated from our observations of NGC 7822.An interesting and new heat source is suggested which may have important applications to bright-rimmed clouds or to any other predominantly neutral clouds that may have undergone some recent compression. We suggest that the heat input to neutral gas due to the relaxation of internal magnetic fields will be greatly enhanced during cloud compression (with or without a shock). We show that the power input to the gas will increase more with increasing density than will the cooling rate. As a result, cloud compression can lead to an increase in the gas temperature for a period lasting several million years, which is the decay time of the compressed field. The observed ridge in NGC 7822 may be due to stimulated release of internal magnetic energy

  10. North Village Ground Source Heat Pump Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Redderson, Jeff

    2015-08-03

    This project demonstrated the feasibility of converting from a traditional direct exchange system to a ground source heat pump system on a large scale, multiple building apartment complex on a university campus. A total of ten apartment buildings were converted using vertical well fields and a ground source loop that connected the 24 apartments in each building into a common system. The system has yielded significant operational savings in both energy and maintenance and transformed the living environments of these residential buildings for our students.

  11. Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source

    Science.gov (United States)

    Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin

    2017-08-01

    Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.

  12. Elastic unloading of a disk after plastic deformation by a circular heat source

    International Nuclear Information System (INIS)

    Gamer, U.; Mack, W.

    1987-01-01

    Subject of the investigation is the transient stress distribution in an elastic-plastic disk acted upon by a circular heat source. The disk serves as a mechanical model of the rotating anode of an X-ray-tube. The calculation is based on Tresca's yield criterion and the flow rule associatd to it. During heating, a plastic region spreads around the source, which is absorbed by an unloaded zone after the removal of the source. (orig.) [de

  13. Design and modelling of a novel compact power cycle for low temperature heat sources

    DEFF Research Database (Denmark)

    Wronski, Jorrit; Skovrup, Morten Juel; Elmegaard, Brian

    2012-01-01

    Power cycles for the efficient use of low temperature heat sources experience increasing attention. This paper describes an alternative cycle design that offers potential advantages in terms of heat source exploitation. A concept for a reciprocating expander is presented that performs both, work ...

  14. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities-Second Edition; FINAL

    International Nuclear Information System (INIS)

    Hadley, Donald L

    2001-01-01

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided

  15. Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump

    International Nuclear Information System (INIS)

    Wu, Wei; You, Tian; Wang, Baolong; Shi, Wenxing; Li, Xianting

    2014-01-01

    Highlights: • A combined heating/cooling/DHW system based on GSAHP is proposed in cold regions. • The soil imbalance is effectively reduced and soil temperature can be kept stable. • 20% and 15% of condensation/absorption heat is recovered by GSAHP to produce DHW. • The combined system can improve the primary energy efficiency by 23.6% and 44.4%. - Abstract: The amount of energy used for heating and domestic hot water (DHW) is very high and will keep increasing. The conventional ground source electrical heat pump used in heating-dominated buildings has the problems of thermal imbalance, decrease of soil temperature, and deterioration of heating performance. Ground source absorption heat pump (GSAHP) is advantageous in both imbalance reduction and primary energy efficiency (PEE) improvement; however, the imbalance is still unacceptable in the warmer parts of cold regions. A combined heating/cooling/DHW (HCD) system based on GSAHP is proposed to overcome this problem. The GSAHPs using generator absorber heat exchange (GAX) and single-effect (SE) cycles are simulated to obtain the performance under various working conditions. Different HCD systems in Beijing and Shenyang are simulated comparatively in TRNSYS, based on which the thermal imbalance, soil temperature, heat recovery, and energy efficiency are analyzed. Results show that GSAHP–GAX–HCD is suitable for Beijing and GSAHP–SE–HCD is suitable for Shenyang. The imbalance ratio can be reduced to −14.8% in Beijing and to 6.0% in Shenyang with an annual soil temperature variation of only 0.5 °C and 0.1 °C. Furthermore, about 20% and 15% of the total condensation/absorption heat is recovered to produce DHW, and the PEE can reach 1.516 in Beijing and 1.163 in Shenyang. The combined HCD systems can achieve a PEE improvement of 23.6% and 44.4% compared with the normal heating/cooling systems

  16. Comparing electricity, heat and biogas storages’ impacts on renewable energy integration

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2012-01-01

    -inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The article investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity......Increasing penetration of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilising storage...... options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This article takes its point of departure in an all...

  17. Heat source component development program. Quarterly report for April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Foster, E.L. Jr. (comp.)

    1977-07-01

    This is the third in a series of quarterly reports describing the results of several experimental programs being conducted at Battelle-Columbus to develop components for advanced radioisotope heat source applications. The heat sources will for the most part be used in advanced static and dynamic power conversion systems. The specific component development efforts which are described include: improved selective and nonselective vents for helium release from the fuel containment; an improved reentry member and an improved impact member, singly and combined. The unitized reentry-impact member (RIM) is under development to be used as a bifunctional ablator. The development of a unitized reentry-impact member (RIM) has been stopped and the efforts are being redirected to the evaluation of materials that could be used in the near term for the module housing of the General Purpose Heat Source (GPHS). This redirection will be particularly felt in the selection of (improved) materials for reentry analysis and in the experimental evaluation of materials in impact tests. Finally thermochemical supporting studies are reported.

  18. On the addition of heat to solar pond from external sources

    NARCIS (Netherlands)

    Ganguly, S.; Jain, Ravi; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    This brief note addresses the method of adding heat to a solar pond from an external source which is used to enhance the performance of a solar pond. Heat energy collected by Evacuated Tube Solar Collectors (ETSC) is transferred by circulating fluid from the Lower Convective Zone (LCZ) of a solar

  19. Associations between heat exposure, vigilance, and balance performance in summer tree fruit harvesters.

    Science.gov (United States)

    Spector, June T; Krenz, Jennifer; Calkins, Miriam; Ryan, Dawn; Carmona, Jose; Pan, Mengjie; Zemke, Anna; Sampson, Paul D

    2018-02-01

    We sought to evaluate potential mediators of the relationship between heat exposure and traumatic injuries in outdoor agricultural workers. Linear mixed models were used to estimate associations between maximum work-shift Wet Bulb Globe Temperature (WBGT max ) and post-shift vigilance (reaction time) and postural sway (total path length) in a cross-sectional sample of 46 Washington State tree fruit harvesters in August-September 2015. The mean (SD) WBGT max was 27.4 (3.2)°C in August and 21.2 (2.0)°C in September. The mean pre-work-shift participant urine specific gravity indicated minimal dehydration. Twenty-four percent of participants exhibited possible excessive sleepiness. There was no association between WBGT max and post-shift reaction time or total path length. Heat exposure was not associated with impaired vigilance or balance in this study, in which the overall mean (SD) WBGT max was 25.9 (4.2)°C. However, the study identified opportunities to ensure adequate pre-work-shift hydration and to optimize sleep and work-shift timing in order to reduce occupational injury and heat-related illness risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Technical specifications for the provision of heat and steam sources for INPP and Visaginas. Final report

    International Nuclear Information System (INIS)

    2003-01-01

    In October 1999, the National Energy Strategy was approved by the Lithuanian Parliament. The National Energy Strategy included the decision to close Unit-1 of INPP before 2005. Later is has been decided to close Unit 2 before the end of 2009 as well. The closure and decommissioning will have heavy impact on the heat supply for the city of Visaginas. Unit 1 and Unit 2 of INPP supplies hot water and steam to INPP for process purposes and for space heating of residential and commercial buildings. When Unit 1 is permanently shut down, reliable heat and steam sources independent of the power plants own heat and steam generation facilities are required for safety reasons in the event of shutdown of the remaining unit for maintenance or in an emergency. These steam and heat sources must be operational before single unit operation is envisaged. Provision of a reliable independent heat and steam source is therefore urgent. After both reactors are shut down permanently, a steam source will be needed at the plant for radioactive waste storage and disposal. INPP and DEA has performed a feasibility study for the provision of a reliable heat source for Ignalina Nuclear Power Plant and Visaginas, and the modernisation of Visaginas district heating system. The objective of this project is to prepare technical specifications for the provision of new heat and steam sources for INPP and Visaginas, and for rehabilitation of the heat transmission pipeline between INPP, the back-up boiler station and Visaginas City. The results of the study are presented in detail in the reports and technical specifications: 1. Transient analysis for Visaginas DH system, 2. Non-destructive testing of boiler stations, pump stations and transmission lines, 3. Conceptual design, 4. Technical specifications, Package 1 to 6. The study has suggested: 1. Construction of new steam boiler station, 2. Construction of new heat only boiler station, 3. Renovation of existing back-up heat only boiler station, 4

  1. HEAT-INDUCED CHANGES IN ALDOSTERONE LEVEL AND MINERAL BALANCE IN EGYPTIAN BUFFALO CALVES

    International Nuclear Information System (INIS)

    NESSIM, M.Z.; KAMAL, T.H.

    2010-01-01

    Eight male buffalo calves (13 months old) were used in the present study. The animals were maintained in metabolic cages inside a climatic chamber for 2 weeks under mild climate at 21 0 C and 73% RH for 6 hours daily as an adjustment period followed by 7 days at the same climatic conditions as a control period then followed by a heat exposure period for 7 days at 35-42 0 C and 40-50 % RH for 6 hours daily. The animals were fed individually on concentrates and wheat straw. Plasma aldosterone was estimated on the first day after 6 hours of each mild and hot exposure periods. Sodium, potassium, calcium, phosphorus and magnesium balances were estimated on the last three days of control and heat exposure periods. Rectal temperature and respiration rate were recorded daily during both periods. The rectal temperature was raised (P 0 C by the end of 6 hours heat exposure period. The respiration rate was increased (P<0.01) at the end of 6 hours of heat exposure from 25 to 110.81 breaths/minute. Aldosterone was increased (P<0.05) from 5.79 to 37.11 pg/ml whereas sodium, potassium, calcium, phosphorus and magnesium were decreased (P<0.01) by 19.16 %, 40.70%, 46.05 %, 35.69 % and 48.99%, respectively.

  2. Design evolution and verification of the general-purpose heat source

    International Nuclear Information System (INIS)

    Schock, A.

    The General-Purpose Heat Source (GPHS) is a radioisotope heat source for use in space power systems. It employs a modular design, to make it adaptable to a wide range of energy conversion systems and power levels. Each 250 W module is completely autonomous, with its own passive safety provisions to prevent fuel release under all abort modes, including atmospheric reentry and earth impact. Prior development tests had demonstrated good impact survival as long as the iridium fuel capsules retained their ductility. This requires high impact temperatures, typically above 900 0 C and reasonably fine grain size, which in turn requires avoidance of excessive operating temperatures and reentry temperatures. These three requirements - on operating, reentry, and impact temperatures - are in mutual conflict, since thermal design changes to improve any one of these temperatures tend to worsen one or both of the others. This conflict creates a difficult design problem, which for a time threatened the success of the program. The present paper describes how this problem was overcome by successive design revisions, supplemented by thermal analyses and confirmatory vibration and impact tests; and how this may be achieved while raising the specific power of the GPHS to 83 W/lb, a 50% improvement over previously flown radioisotope heat sources

  3. Performance evaluation of a permanent ring magnet based helicon plasma source for negative ion source research

    Science.gov (United States)

    Pandey, Arun; Bandyopadhyay, M.; Sudhir, Dass; Chakraborty, A.

    2017-10-01

    Helicon wave heated plasmas are much more efficient in terms of ionization per unit power consumed. A permanent magnet based compact helicon wave heated plasma source is developed in the Institute for Plasma Research, after carefully optimizing the geometry, the frequency of the RF power, and the magnetic field conditions. The HELicon Experiment for Negative ion-I source is the single driver helicon plasma source that is being studied for the development of a large sized, multi-driver negative hydrogen ion source. In this paper, the details about the single driver machine and the results from the characterization of the device are presented. A parametric study at different pressures and magnetic field values using a 13.56 MHz RF source has been carried out in argon plasma, as an initial step towards source characterization. A theoretical model is also presented for the particle and power balance in the plasma. The ambipolar diffusion process taking place in a magnetized helicon plasma is also discussed.

  4. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    Science.gov (United States)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  5. Vertical Distribution of Radiation and Energy Balance Partitioning Within and Above a Lodgepole Pine Stand Recovering from a Recent Insect Attack

    Science.gov (United States)

    Emmel, Carmen; Paul-Limoges, Eugenie; Black, Thomas Andrew; Christen, Andreas

    2013-11-01

    The current outbreak of mountain pine beetle (MPB) that started in the late 1990s in British Columbia, Canada, is the largest ever recorded in the north American native habitat of the beetle. The killing of trees is expected to change the vertical distribution of net radiation () and the partitioning of latent () and sensible () heat fluxes in the different layers of an attacked forest canopy. During an intensive observation period in the summer of 2010, eddy-covariance flux and radiation measurements were made at seven heights from ground level up to 1.34 times the canopy height in an MPB-attacked open-canopy forest stand in the interior of British Columbia, Canada. The lodgepole pine dominated stand with a rich secondary structure (trees and understorey not killed by the beetle) was first attacked by the MPB in 2003 and received no management. In this study, the vertical distribution of the energy balance components and their sources and sinks were analyzed and energy balance closure (EBC) was determined for various levels within the canopy. The low stand density resulted in approximately 60 % of the shortwave irradiance and 50 % of the daily total reaching the ground. Flux divergence calculations indicated relatively strong sources of latent heat at the ground and where the secondary structure was located. Only very weak sources of latent heat were found in the upper part of the canopy, which was mainly occupied by dead lodgepole pine trees. was the dominant term throughout the canopy, and the Bowen ratio () increased with height in the canopy. Soil heat flux () accounted for approximately 4 % of . Sensible heat storage in the air () was the largest of the energy balance storage components in the upper canopy during daytime, while in the lower canopy sensible heat storage in the boles () and biochemical energy storage () were the largest terms. was almost constant from the bottom to above the canopy. , and latent heat storage in the air () varied more than

  6. Ground Source Heat Supply in Moscow Oblast: Temperature Potential and Sustainable Depth of Heat Wells

    Science.gov (United States)

    Vasil'ev, G. P.; Gornov, V. F.; Dmitriev, A. N.; Kolesova, M. V.; Yurchenko, V. A.

    2018-01-01

    The paper is devoted to a problem of increasing the efficiency of low-potential geothermal heat in heat pump systems of residential buildings the Moscow oblast of Russia, including Moscow. Estimates of a natural geothermal potential in the Moscow oblast (based on climatological data for the period from 1982 to 2011) are presented and a "Typical climatic year of natural soil temperature variations for the geoclimatic conditions of the Moscow oblast, including the city of Moscow" is proposed. Numerical simulation of the influence of geothermal energy potential and the depth of heat wells on the efficiency of ground source heat pump systems for the heat supply of residential buildings is carried out. Analysis of the numerical simulation showed that the operation of a heat pump system in a house heating mode under the geoclimatic conditions of the Moscow oblast leads to a temperature drop of the heat-exchange medium circulating through heat wells to 5-6°C by the end of the first 10 years of operation, and the process stabilizes by the 15th year of operation, and further changes in the heat-exchange medium temperature do not any longer significantly affect the temperature of the heat-exchange medium in the heat well. In this case, the exact dependence of the heat-exchange medium temperature drop on the depth is not revealed. Data on the economically expedient heat well depth for the conditions of the Moscow oblast ensuring a net present value for the whole residential building life cycle are presented. It is found that the heat well depth of 60 m can be considered as an endpoint for the Moscow oblast, and a further heat well deepening is economically impractical.

  7. Thermal energy storage system using phase change materials: Constant heat source

    Directory of Open Access Journals (Sweden)

    Reddy Meenakshi R.

    2012-01-01

    Full Text Available The usage of phase change materials (PCM to store the heat in the form of latent heat is increased, because large quantity of thermal energy is stored in smaller volumes. In the present experimental investigation paraffin and stearic acid are employed as PCMs in thermal energy storage (TES system to store the heat as sensible and latent heat also. A constant heat source is used to supply heat transfer fluid (HTF at constant temperature to the TES system. In the TES system PCMs are stored in the form of spherical capsules of 38 mm diameter made of high density poly ethylene (HDPE. The results of the investigation are related to the charging time and recovery of stored energy from the TES system.

  8. Control of food-borne molds by combination of heat and radiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Bongirwar, D.R.

    1979-01-01

    After enumerating the fungi responsible for food spoilage, work done on the factors influencing growth of fungi in stored foods is reviewed and the methods using heat, radiation or chemicals for control of food-borne molds are briefly surveyed. Work on combination process employing heat treatment and radiation treatment is reviewed in detail. The review covers the following aspects: (1) theory and engineering aspects of combination process of heat and radiation including modes of heat transfer, radiation physics, radiation sources, heat radiation effect and calculation of energy balance of the process, (2) biological effects of heat, radiation and heat-radiation combination treatments on mold growth with special reference to DNA and (3) application of the process for mold control in cereal products, nuts and raisins and fruits. Heat treatment and radiation treatment have been found to complement each other and when given in proper sequence show synergism. Design requirements of radiation sources and heat transfer equipment are also surveyed. (M.G.B.)

  9. Nuclear-heat deposition for a fusion-like neutron environment

    International Nuclear Information System (INIS)

    Carter, L.L.; Hegberg, D.E.; Wilcox, A.D.

    1981-10-01

    Calculated nuclear heat deposition profiles within the thermal shield of the FMIT facility are sensitive to the cross-section data base - particularly an energy balance consistency between gamma production cross-sections and neutron KERMA factors. Infinite medium calculations were made with the Monte Carlo code to provide integral validations of energy balances relevant to this aspect of the data base. Inconsistencies were found and corrected. There was also concern about the adequacy of the high energy cross sections (10 MeV < E < 30 MeV) for the moderation and transport of the (d,Li) source neutrons. A preliminary analysis of a measurement with a (d,Li) source in the center of an iron block has improved our confidence in the high energy cross section - data base for this application. Monte Carlo calculations have been utilized to calculate three-dimensional profiles of nuclear heat deposition. Representative profiles were displayed for two walls of the FMIT test cell

  10. Heat source component development program. Report for period March 1978--June 1978

    International Nuclear Information System (INIS)

    1978-07-01

    The General Purpose Heat Source (GPHS) is a radioisotope heat source being developed by LASL. The first intended application for the GPHS is the Solar Polar mission scheduled for 1983. Battelle's support of LASL during the current reporting period is reported. The specific efforts include: (1) analysis of trial designs with emphasis on comparison of performances of trial designs 1 and 2 and their modifications; and (2) helium vent development with emphasis on fabrication and qualification testing of platinum and iridium nonselective vents

  11. Heat storage in forest biomass significantly improves energy balance closure particularly during stable conditions

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.

    2009-08-01

    Temperature measurements in trunks and branches in a mature ca. 100 years-old mixed pine and spruce forest in central Sweden were used to estimate the heat storage in the tree biomass. The estimated heat flux in the sample trees and data on biomass distributions were used to scale up to stand level biomass heat fluxes. The rate of change of sensible and latent heat storage in the air layer below the level of the flux measurements was estimated from air temperature and humidity profile measurements and soil heat flux was estimated from heat flux plates and soil temperature measurements. The fluxes of sensible and latent heat from the forest were measured with an eddy covariance system in a tower. The analysis was made for a two-month period in summer of 1995. The tree biomass heat flux was the largest of the estimated storage components and varied between 40 and -35 W m-2 on summer days with nice weather. Averaged over two months the diurnal maximum of total heat storage was 45 W m-2 and the minimum was -35 W m-2. The soil heat flux and the sensible heat storage in air were out of phase with the biomass flux and they reached maximum values that were about 75% of the maximum of the tree biomass heat storage. The energy balance closure improved significantly when the total heat storage was added to the turbulent fluxes. The slope of a regression line with sum of fluxes and storage as independent and net radiation as dependent variable, increased from 0.86 to 0.95 for half-hourly data and the scatter was also reduced. The most significant finding was, however, that during nights with strongly stable conditions when the sensible heat flux dropped to nearly zero, the total storage matched the net radiation nearly perfectly. Another interesting result was that the mean energy imbalance started to increase when the Richardson number became more negative than ca. -0.1. In fact, the largest energy deficit occurred at maximum instability. Our conclusion is that eddy

  12. Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept

    International Nuclear Information System (INIS)

    Sivasakthivel, T.; Murugesan, K.; Thomas, H.R.

    2014-01-01

    Highlights: • Ground Source Heat Pump (GSHP) technology is suitable for both heating and cooling. • Important parameters that affect the GSHP performance has been listed. • Parameters of GSHP system has been optimized for heating and cooling mode. • Taguchi technique and utility concept are developed for GSHP optimization. - Abstract: Use of ground source energy for space heating applications through Ground Source Heat pump (GSHP) has been established as an efficient thermodynamic process. The electricity input to the GSHP can be reduced by increasing the COP of the system. However, the COP of a GSHP system will be different for heating and cooling mode operations. Hence in order to reduce the electricity input to the GSHP, an optimum value of COP has to be determined when GSHP is operated in both heating and cooling modes. In the present research, a methodology is proposed to optimize the operating parameters of a GSHP system which will operate on both heating and cooling modes. Condenser inlet temperature, condenser outlet temperature, dryness fraction at evaporator inlet and evaporator outlet temperature are considered as the influencing parameters of the heat pump. Optimization of these parameters for only heating or only cooling mode operation is achieved by employing Taguchi method for three level variations of the above parameters using an L 9 (3 4 ) orthogonal array. Higher the better concept has been used to get a higher COP. A computer program in FORTAN has been developed to carry out the computations and the results have been analyzed for the optimum conditions using Signal-to-Noise (SN) ratio and Analysis Of Variance (ANOVA) method. Based on this analysis, the maximum COP for only heating and only cooling operation are obtained as 4.25 and 3.32 respectively. By making use of the utility concept both the higher values of COP obtained for heating and cooling modes are optimized to get a single optimum COP for heating and cooling modes. A single

  13. Simulation of heat storages and associated heat budgets in the Pacific Ocean: 2. Interdecadal timescale

    Science.gov (United States)

    Auad, Guillermo; Miller, Arthur J.; White, Warren B.

    1998-11-01

    We use a primitive equation isopycnal model of the Pacific Ocean to simulate and diagnose the anomalous heat balance on interdecadal timescales associated with heat storage changes observed from 1970-1988 in the expendable bathythermograph (XBT) data set. Given the smallness of the interdecadal signals compared to the El Niño-Southern Oscillation (ENSO) signal, the agreement between model and observations is remarkably good. The total anomalous heat balance is made up of two parts, the diabatic part (from the model temperature equation) and the adiabatic part (from the model mass conservation equation) due to thermocline heave. We therefore describe our analysis of both the total and diabatic anomalous heat balances in four areas of the tropical and subtropical North Pacific Ocean in the upper 400 m. The interdecadal total (diabatic plus adiabatic) heat balance in the North Pacific Ocean is characterized by a complicated interplay of different physical processes, especially revealed in basin-scale averages of the heat budget components that have comparable amounts of variance. In smaller subregions, simpler balances hold. For example, in the western equatorial Pacific (area 1) the total heat content tendency term is nearly zero, so that a simple balance exists between surface heat flux, vertical heat transport, and horizontal mixing. In the western subtropical Pacific the total heat content tendency balances the three-dimensional divergence of the heat flux. We speculate that this complexity is indicative of multiple physical mechanisms involved in the generation of North Pacific interdecadal variability. The diabatic heat balance north of 24°N, a region of special interest to The World Ocean Circulation Experiment (WOCE), can be simplified to a balance between the tendency term, surface heat flux, and meridional advection, the last term dominated by anomalous advection of mean temperature gradients. For the western equatorial region the diabatic heat content

  14. Heat Roadmap Europe: Identifying strategic heat synergy regions

    International Nuclear Information System (INIS)

    Persson, U.; Möller, B.; Werner, S.

    2014-01-01

    This study presents a methodology to assess annual excess heat volumes from fuel combustion activities in energy and industry sector facilities based on carbon dioxide emission data. The aim is to determine regional balances of excess heat relative heat demands for all third level administrative regions in the European Union (EU) and to identify strategic regions suitable for large-scale implementation of district heating. The approach is motivated since the efficiency of current supply structures to meet building heat demands, mainly characterised by direct use of primary energy sources, is low and improvable. District heating is conceived as an urban supply side energy efficiency measure employable to enhance energy system efficiency by increased excess heat recoveries; hereby reducing primary energy demands by fuel substitution. However, the importance of heat has long been underestimated in EU decarbonisation strategies and local heat synergies have often been overlooked in energy models used for such scenarios. Study results indicate that 46% of all excess heat in EU27, corresponding to 31% of total building heat demands, is located within identified strategic regions. Still, a realisation of these rich opportunities will require higher recognition of the heat sector in future EU energy policy. - Highlights: • EU27 energy and industry sector heat recycling resources are mapped and quantified. • Target regions for large-scale implementation of district heating are identified. • 46% of total EU27 excess heat volume is seized in 63 strategic heat synergy regions. • Large urban zones have lead roles to play in transition to sustainability in Europe. • Higher recognition of heat sector is needed in future EU energy policy for realisation

  15. A METHOD OF DETERMINING THE ABILITY OF THE ARRESTER TO ABSORB ENERGY WITHOUT BREAKING THE HEAT BALANCE

    Directory of Open Access Journals (Sweden)

    S.Yu. Shevchenko

    2015-08-01

    Full Text Available Purpose.The aim of this study is to obtain a method for determining the capacity surge arrester nonlinear absorb energy without breaking the heat balance in modes of long-term application of operating voltage, which allows for analysis of their work in terms of violations as electricity. Methodology. For values of the energy passing through the arrester must be able to determine the current value for the voltage value in the area of leakage current-voltage characteristics. We have carried out calculations of the energy passing everywhere arrester for certain periods of time based on the current-voltage characteristics obtained experimentally. Analysis of the experimental current-voltage characteristics of resistors and literature led to the important conclusion that the dielectric properties of the ceramic varistor affect the value of active power losses in the arrester only when the active component of the leakage current is very small. This is confirmed by the characteristics of different classes of varistor voltage. This property of varistors and surge arresters shows the need to consider how the dielectric and conductive properties of the varistor ceramics in the analysis of work in the area of the arrester leakage current-voltage characteristic. These results demonstrate the need to clarify the mathematical model and the method for determining the energy dissipates in the area of the arrester leakage current CVC with their account. Results. The study, an improved mathematical model for calculating energy affects surge arrester during its working life. The study obtained the method, of evaluation capacity surge arrester, maintains heat balance throughout working life. Based on experimentally obtained current-voltage characteristic of the varistors is defined voltage at which surge arrester starts conducting active current. This allowed to receive specified mathematical model for calculating energy affects surge arrester and develop a method

  16. Heat balance in agricultural biogas installations and the factors to be taken into account

    Energy Technology Data Exchange (ETDEWEB)

    Poch, M

    1955-09-01

    The installations described are those which agricultural wastes, e.g. stable manure, are digested by fermentation to yield combustible gas (e.g., 58% CH/sub 4/) and humus. Two kinds of fermentation are discussed, mesophil (M) with a working temp. of 30/sup 0/ and thermophil (T) with a working temp. of 50/sup 0/. Construction of the containers based on the desired output is discussed and the method of calculation of the thickness of insulating material is illustrated. Parameters for the calculations of heat balance are drawn from published data on actual installations, largely municipal disposal plants, some in the U.S. Of several possible methods, it is preferred to heat the fermenters by injecting low-pressure steam obtained by burning some of the gas. The efficiency of such a heating device is expected to be 80%. Heat losses included bringing new charges of stable manure or other wastes up to operating temp., make-up for radiation losses, and power requirements for chopping, pumping, and the like. These are calculated to use roughly /sup 1///sub 3/ of the CH/sub 4/ produced. The sample computation gave 66.85% theoretical recovery of the thermal energy of the CH/sub 4/ produced in the M process and 68.67% in the T.

  17. Assessing harmonic current source modelling and power definitions in balanced and unbalanced networks

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson-Hope, Gary; Stemmet, W.C. [Cape Peninsula University of Technology, Cape Town Campus, Cape Town (South Africa)

    2006-07-01

    The purpose of this paper is to assess the DlgSILENT PowerFactory software power definitions (indices) in terms of phase and sequence components for balanced and unbalanced networks when harmonic distortion is present and to compare its results to hand calculations done, following recommendation made by the IEEE Working Group on this topic. This paper also includes the development of a flowchart for calculating power indices in balanced and unbalanced three-phase networks when non-sinusoidal voltages and currents are present. A further purpose is to determine how two industrial grade harmonic analysis software packages (DlgSILENT and ERACS) model three-phase harmonic sources used for current penetration studies and to compare their results when applied to a network. From the investigations, another objective was to develop a methodology for modelling harmonic current sources based on a spectrum obtained from measurements. Three case studies were conducted and the assessment and developed methodologies were shown to be effective. (Author)

  18. Balance equations for a relativistic plasma. Pt. 1

    International Nuclear Information System (INIS)

    Hebenstreit, H.

    1983-01-01

    Relativistic power moments of the four-momentum are decomposed according to a macroscopic four-velocity. The thus obtained quantities are identified as relativistic generalization of the nonrelativistic orthogonal moments, e.g. diffusion flow, heat flow, pressure, etc. From the relativistic Boltzmann equation we then derive balance equations for these quantities. Explicit expressions for the relativistic mass conservation, energy balance, pressure balance, heat flow balance are presented. The weak relativistic limit is discussed. The derivation of higher order balance equations is sketched. (orig.)

  19. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources

    International Nuclear Information System (INIS)

    Vivian, Jacopo; Manente, Giovanni; Lazzaretto, Andrea

    2015-01-01

    Highlights: • General guidelines are proposed to select ORC working fluid and cycle layout. • Distance between critical and heat source temperature for optimal fluid selection. • Separate contributions of cycle efficiency and heat recovery factor. - Abstract: The selection of the most suitable working fluid and cycle configuration for a given heat source is a fundamental step in the search for the optimum design of Organic Rankine Cycles. In this phase cycle efficiency and heat source recovery factor lead to opposite design choices in the achievement of maximum system efficiency and, in turn, maximum power output. In this work, both separate and combined effects of these two performance factors are considered to supply a thorough understanding of the compromise resulting in maximum performance. This goal is pursued by carrying out design optimizations of four different ORC configurations operating with twenty-seven working fluids and recovering heat from sensible heat sources in the temperature range 120–180 °C. Optimum working fluids and thermodynamic parameters are those which simultaneously allow high cycle efficiency and high heat recovery from the heat source to be obtained. General guidelines are suggested to reach this target for any system configuration. The distance between fluid critical temperature and inlet temperature of the heat source is found to play a key role in predicting the optimum performance of all system configurations regardless of the inlet temperature of the heat source

  20. Weldability of general purpose heat source new-process iridium

    International Nuclear Information System (INIS)

    Kanne, W.R.

    1987-01-01

    Weldability tests on General Purpose Heat Source (GPHS) iridium capsules showed that a new iridium fabrication process reduced susceptibility to underbead cracking. Seventeen capsules were welded (a total of 255 welds) in four categories and the number of cracks in each weld was measured

  1. Electron beam welding of iridium heat source capsules

    International Nuclear Information System (INIS)

    Mustaleski, T.M.; Yearwood, J.C.; Burgan, C.E.; Green, L.A.

    1991-01-01

    The development of the welding procedures for the production of DOP-26 iridium alloy cups for heat source encapsulation is described. All the final assembly welds were made using the electron beam welding process. The welding of the 0.13-mm weld shield required the use of computer controlled X-Y table and a run-off tab. Welding of the frit vent to the cup required that a laser weld be made to hold the frit assembly edges together for the final electron beam weld. Great care is required in tooling design and beam placement to achieve acceptable results. Unsuccessful attempts to use laser beam welding for heat shield butt weld are discussed

  2. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  3. Study on a groundwater source heat pump cooling system in solar greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Lilong; Ma, Chengwei [China Agricultural Univ., Beijing (China). Coll. of Water Conservancy and Civil Engineering. Dept. of Agricultural Structure and Bio-environmental Engineering], E-mail: macwbs@cau.edu.cn

    2008-07-01

    This study aims at exploiting the potential of ground source heat pump (GSHP) technology in cooling agricultural greenhouse, and advocating the use of renewable and clean energy in agriculture. GSHP has the multi-function of heating, cooling and dehumidifying, which is one of the fastest growing technologies of renewable energy air conditioning in recent years. The authors carried out experiment on the ground source heat pump system in cooling greenhouse in Beijing region during the summertime of 2007, and conducted analysis on the energy efficiency of the system by using coefficient of performance (COP). According to the data collected during Aug.13-18th, 2007, the coefficient of performance of GSHP system (COP{sub sys}) has reached 3.15 on average during the test. (author)

  4. Evaluation and characterization of General Purpose Heat Source girth welds for the Cassini mission

    International Nuclear Information System (INIS)

    Lynch, C.M.; Moniz, P.F.; Reimus, M.A.H.

    1998-01-01

    General Purpose Heat Sources (GPHSs) are components of Radioisotopic thermoelectric Generators (RTGs) which provide electric power for deep space missions. Each GPHS consists of a 238 Pu oxide ceramic pellet encapsulated in a welded iridium alloy shell which forms a protective barrier against the release of plutonia in the unlikely event of a launch-pad failure or reentry incident. GPHS fueled clad girth weld flaw detection was paramount to ensuring this safety function, and was accomplished using both destructive and non-destructive evaluation techniques. The first girth weld produced from each welding campaign was metallographically examined for flaws such as incomplete weld penetration, cracks, or porosity which would render a GPHS unacceptable for flight applications. After an acceptable example weld was produced, the subsequently welded heat sources were evaluated non-destructively for flaws using ultrasonic immersion testing. Selected heat sources which failed ultrasonic testing would be radiographed, and/or, destructively evaluated to further characterize and document anomalous indications. Metallography was also performed on impacted heat sources to determine the condition of the welds

  5. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  6. Estimation of annual heat flux balance at the sea surface from sst (NOAA-satellite and ships drift data off southeast Brazil

    Directory of Open Access Journals (Sweden)

    Yoshimine Ikeda

    1985-01-01

    Full Text Available The objective of this work is to study the possibility of estimating the heat flux balance at the sea surface from GOSSTCOMP (Global Ocean Sea Surface Temperature Computation developed by NOAA/NESS, USA, and sea surface current data based from ships drift information obtained from Pilot Charts, published by the Diretoria de Hidrografia e Navegação (DHN, Brazilian Navy. The annual mean value of the heat flux balance at the sea surface off southeast Brazil for 1977, is estimated from data on the balance between the heat transported by the currents and that transported by eddy diffusion for each volume defined as 2º x 2º (Lat. x Long. square with a constant depth equivalent to an oceanic mixed layer, 100 m thick. Results show several oceanic areas where there are net flows of heat from atmosphere towards the sea surface. In front of Rio de Janeiro the heat flow was downward and up to 70 ly day-1 and is probably related to the upwellirug phenomenon normally occurring in that area. Another coastal area between Lat. 25ºS to 28ºS indicated an downward flow up to 50 ly day-1; and for an area south of Lat. 27ºS, Long. 040ºW - 048ºW an downward flow up to 200 ly day-1, where the transfer was probably due to the cold water of a nortward flux from the Falkland (Malvinas Current. Results also show several oceanic areas where net flows of heat (of about -100 ly day-1 were toward the atmosphere. In the oceanic areas Lat. 19ºS - 23ºS and Lat. 24ºS - 30ºS, the flows were probably due to the warm water of a southward flux of the Brazil Current. The resulting fluxes from the warm waters of the Brazil Current when compared with those from warm waters of the Gulf Stream and Kuroshio, indicate that the Gulf Stream carries about 3.3 times and the Kuroshio 1.7 times more heat than the Brazil Current. These values agree with those of data available on the heat fluxes of the above mentioned Currents calculated by different methods (Budyko, 1974.

  7. Ground-source heat pump barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In Europe the ground-source heat pump market contracted for the second year running by 2.9% between 2009 and 2010. Around 103.000 units were sold in 2010, taking the number of installed units over one million. The 3 European countries with the most sales are Sweden (31953 units, +16%), Germany (25516 units, -13%) and France (12250 units, -21%). The drop in sales is generally due to market contraction on the current recession but some specificities exist: for instance the insufficient training of the installers has led to under-performance and to a bad image of this energy in France. The Swedish and German manufacturers are in a very strong position and are increasing their market share in the main European markets. (A.C.)

  8. Air-Source Integrated Heat Pump System Development – Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ally, Moonis R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uselton, R. B. [Lennox Industries, Inc., Knoxville, TN (United States)

    2017-07-01

    Between October 2007 and September 2017, Oak Ridge National Laboratory (ORNL) and Lennox Industries, Inc. (Lennox) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. The Lennox AS-IHP concept consisted of a high-efficiency air-source heat pump (ASHP) for space heating and cooling services and a separate heat pump water heater/dehumidifier (WH/DH) module for domestic water heating and dehumidification (DH) services. A key feature of this system approach with the separate WH/DH is capability to pretreat (i.e., dehumidify) ventilation air and dedicated whole-house DH independent of the ASHP. Two generations of laboratory prototype WH/DH units were designed, fabricated, and lab tested. Performance maps for the system were developed using the latest research version of the US Department of Energy/ORNL heat pump design model (Rice 1992; Rice and Jackson 2005; Shen et al. 2012) as calibrated against the lab test data. These maps served as the input to TRNSYS (Solar Energy Laboratory et al. 2010) to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (i.e., a combination of an ASHP with a seasonal energy efficiency ratio (SEER) of 13 and resistance water heater with an energy factor (EF) of 0.9). Predicted total annual energy savings (based on use of a two-speed ASHP and the second-generation WH/DH prototype for the AS-IHP), while providing space conditioning, water heating, and dehumidification for a tight, well-insulated 2600 ft2 (242 m2) house at three US locations, ranged from 33 to 36%, averaging 35%, relative to the baseline system. The lowest savings were seen at the cold-climate Chicago location. Predicted energy use for water heating was reduced by about 50 to 60% relative to a resistance WH.

  9. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    Science.gov (United States)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  10. Buoyancy induced convective flow in porous media with heat source

    International Nuclear Information System (INIS)

    Hwang, I.T.

    1978-01-01

    An unbounded fluid layer in a porous medium with an internal heat source and uniformly heated from below is studied. The layer is in the gravitational field. Linear theory predicts that the disturbances of infinitesimal amplitude will start to grow when the Rayleigh number exceeds its critical value. These disturbances do not grow without limit; but by advecting heat and momentum, the disturbances alter their forms to achieve a finite amplitude. Just like infinitesimal amplitude disturbances the degeneracies of possible solutions persist for finite amplitude solutions. This study evaluates these various forms of solutions. The small parameter method of Poincare is used to treat the problem in successive order

  11. Study of regeneration system of 300 MW power unit based on nondeaerating heat balance diagram at reduced load

    Science.gov (United States)

    Esin, S. B.; Trifonov, N. N.; Sukhorukov, Yu. G.; Yurchenko, A. Yu.; Grigor'eva, E. B.; Snegin, I. P.; Zhivykh, D. A.; Medvedkin, A. V.; Ryabich, V. A.

    2015-09-01

    More than 30 power units of thermal power stations, based on the nondeaerating heat balance diagram, successfully operate in the former Soviet Union. Most of them are power units with a power of 300 MW, equipped with HTGZ and LMZ turbines. They operate according to a variable electric load curve characterized by deep reductions when undergoing night minimums. Additional extension of the range of power unit adjustment makes it possible to maintain the dispatch load curve and obtain profit for the electric power plant. The objective of this research is to carry out estimated and experimental processing of the operating regimes of the regeneration system of steam-turbine plants within the extended adjustment range and under the conditions when the constraints on the regeneration system and its equipment are removed. Constraints concerning the heat balance diagram that reduce the power unit efficiency when extending the adjustment range have been considered. Test results are presented for the nondeaerating heat balance diagram with the HTGZ turbine. Turbine pump and feed electric pump operation was studied at a power unit load of 120-300 MW. The reliability of feed pump operation is confirmed by a stable vibratory condition and the absence of cavitation noise and vibration at a frequency that characterizes the cavitation condition, as well as by oil temperature maintenance after bearings within normal limits. Cavitation performance of pumps in the studied range of their operation has been determined. Technical solutions are proposed on providing a profitable and stable operation of regeneration systems when extending the range of adjustment of power unit load. A nondeaerating diagram of high-pressure preheater (HPP) condensate discharge to the mixer. A regeneration system has been developed and studied on the operating power unit fitted with a deaeratorless thermal circuit of the system for removing the high-pressure preheater heating steam condensate to the mixer

  12. Isothermal sinusoidal analysis of balanced compound Vuilleumier heat pumps

    International Nuclear Information System (INIS)

    Finkelstein, T.

    1992-01-01

    This paper reports on Vuilleumier heat pumps with balanced compounding which have been under investigation for about fifteen years but have not yet reached the stage of commercial utilization. Previously published analytical treatment based upon isothermal treatment of the variable-volume spaces resulted in closed form solution of considerable complexity of the coupled differential equations but applied only to free piston machines. In contrast, the procedure presented here is based on previously demonstrated sinusoidal excursions of the reciprocators. It is of the same order of accuracy, but much more simple and usable. It was found that there is only negligible difference between the results of the present and the previous approach. Additionally, the treatment presented here is applicable to kinematic machines, as well as to free piston machines. For the latter design, an equation for the natural frequency is also derived. Ideal proportions and practical expressions for the energy streams are derived. Gas forces are plotted versus displacement and it is shown that they are equivalent to a linear spring, which is of importance for the concept of a free-piston design

  13. Modeling and analysis of a transcritical rankine power cycle with a low grade heat source

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian

    efficiency, exergetic efficiency and specific net power output. A generic cycle configuration has been used for analysis of a geothermal energy heat source. This model has been validated against similar calculations using industrial waste heat as the energy source. Calculations are done with fixed...

  14. Comparing costs of power and heat production by prospective and present sources

    International Nuclear Information System (INIS)

    Novak, S.

    1979-01-01

    Capital and running costs are compared of power and heat production from different sources. The lowest capital costs were found for coal-fired power plants followed by light water reactor power plants. The capital costs of other types of power plants, such as wind, geothermal, solar, thermonuclear power plants are significantly higher. The estimated specific cost for electric power production in 1985 for a nuclear power plant is lower than for a fossil-fuel power plant. It is estimated that in 1985 coal will be the cheapest heat source. (Ha)

  15. Development of a Pattern Recognition Methodology for Determining Operationally Optimal Heat Balance Instrumentation Calibration Schedules

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Beran; John Christenson; Dragos Nica; Kenny Gross

    2002-12-15

    The goal of the project is to enable plant operators to detect with high sensitivity and reliability the onset of decalibration drifts in all of the instrumentation used as input to the reactor heat balance calculations. To achieve this objective, the collaborators developed and implemented at DBNPS an extension of the Multivariate State Estimation Technique (MSET) pattern recognition methodology pioneered by ANAL. The extension was implemented during the second phase of the project and fully achieved the project goal.

  16. Energy from Waste: Reuse of Compost Heat as a Source of Renewable Energy

    Directory of Open Access Journals (Sweden)

    G. Irvine

    2010-01-01

    Full Text Available An in-vessel tunnel composting facility in Scotland was used to investigate the potential for collection and reuse of compost heat as a source of renewable energy. The amount of energy offered by the compost was calculated and seasonal variations analysed. A heat exchanger was designed in order to collect and transfer the heat. This allowed heated water of 47.3oC to be obtained. The temperature could be further increased to above 60oC by passing it through multiple tunnels in series. Estimated costs for installing and running the system were calculated. In order to analyse these costs alternative solar thermal and ground source heat pump systems were also designed. The levels of supply and economic performance were then compared. A capital cost of £11,662 and operating cost of £1,039 per year were estimated, resulting in a cost of £0.50 per kWh for domestic water and £0.10 per kWh for spatial heat. Using the heat of the compost was found to provide the most reliable level of supply at a similar price to its rivals.

  17. Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs

    Science.gov (United States)

    2009-03-26

    of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this

  18. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    Science.gov (United States)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  19. Forecast of power generation and heat production from renewable energy sources

    Directory of Open Access Journals (Sweden)

    Pydych Tadeusz

    2017-01-01

    Full Text Available The share of renewable energy sources (RES in the end use of energy in the UE will increase from the present level of about 25% to 50 % in 2030 according to the assumptions of the European Commission. In Poland the RES Act was passed in 2015. The act defines mechanisms and instruments for supporting the production of electricity and heat from renewable energy sources. Statistics (2003–2014 of electricity generation and heat production from RES in Poland were used in the research. Because of amendments to regulations connected with promoting RES and the emissions trading system (ETS as well as the uncertainty associated with further directions of the energy and environmental policy, generation of electricity and heat based on the use of RES must be modelled while taking risk into account. A number of dynamic processes incorporating random events may be modelled by stochastic equations using Ito calculus. By applying Euler’s method to solve stochastic differential equations (SDE, it is possible to simulate the development of the use of renewable energy carriers in electricity generation and heat production in the future.

  20. General-purpose heat source development. Phase I: design requirements

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.

    1978-09-01

    Studies have been performed to determine the necessary design requirements for a 238 PuO 2 General-Purpose Heat Source (GPHS). Systems and missions applications, as well as accident conditions, were considered. The results of these studies, along with the recommended GPHS design requirements, are given in this report

  1. X-Ray Source Heights in a Solar Flare: Thick-Target Versus Thermal Conduction Front Heating

    Science.gov (United States)

    Reep, J. W.; Bradshaw, S. J.; Holman, G. D.

    2016-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O'Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  2. Heat source model for welding process

    International Nuclear Information System (INIS)

    Doan, D.D.

    2006-10-01

    One of the major industrial stakes of the welding simulation relates to the control of mechanical effects of the process (residual stress, distortions, fatigue strength... ). These effects are directly dependent on the temperature evolutions imposed during the welding process. To model this thermal loading, an original method is proposed instead of the usual methods like equivalent heat source approach or multi-physical approach. This method is based on the estimation of the weld pool shape together with the heat flux crossing the liquid/solid interface, from experimental data measured in the solid part. Its originality consists in solving an inverse Stefan problem specific to the welding process, and it is shown how to estimate the parameters of the weld pool shape. To solve the heat transfer problem, the interface liquid/solid is modeled by a Bezier curve ( 2-D) or a Bezier surface (3-D). This approach is well adapted to a wide diversity of weld pool shapes met for the majority of the current welding processes (TIG, MlG-MAG, Laser, FE, Hybrid). The number of parameters to be estimated is weak enough, according to the cases considered from 2 to 5 in 20 and 7 to 16 in 3D. A sensitivity study leads to specify the location of the sensors, their number and the set of measurements required to a good estimate. The application of the method on test results of welding TIG on thin stainless steel sheets in emerging and not emerging configurations, shows that only one measurement point is enough to estimate the various weld pool shapes in 20, and two points in 3D, whatever the penetration is full or not. In the last part of the work, a methodology is developed for the transient analysis. It is based on the Duvaut's transformation which overpasses the discontinuity of the liquid metal interface and therefore gives a continuous variable for the all spatial domain. Moreover, it allows to work on a fixed mesh grid and the new inverse problem is equivalent to identify a source

  3. Simulation and optimisation of a ground source heat pump with different ground heat exchanger configurations for a single-family residential house

    DEFF Research Database (Denmark)

    Pavlov, Georgi Krasimiroy; Olesen, Bjarne W.

    2012-01-01

    In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low-temperature h....... For the studied geographical location, passive cooling by bypassing the heat pump and using only the ground heat exchanger can provide acceptable room temperatures.......In the future there will be an increased demand for energy efficient cooling of residential buildings. Therefore it is essential to develop cooling concepts that are passive and/or using very little primary energy. A possible solution is a ground source heat pump combined with a low......-temperature heating and high-temperature cooling system. The present work evaluates the performance in relation to thermal comfort and energy consumption of a GSHP with different GHE concepts. The different configurations are analyzed being part of the energy supply system of a low-energy residential house...

  4. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model

    NARCIS (Netherlands)

    Duan, Z.; Bastiaanssen, W.G.M.

    2017-01-01

    The heat storage changes (Qt) can be a significant component of the energy balance in lakes, and it is important to account for Qt for reasonable estimation of evaporation at monthly and finer timescales if the energy balance-based evaporation models are used. However, Qt has been often neglected in

  5. The electrohydraulic balance of the solar heat storage with autonomous power supply

    Directory of Open Access Journals (Sweden)

    M. K. Marahtanov

    2014-01-01

    Full Text Available The introduction of the paper emphasizes an increasingly important role of alternative power sources nowadays. At the same time, a solar collector (suntrap is one of the most frequent techniques to use the solar energy. It is an absorber that picks up solar radiation and heats a heat carrier circulating in the close loop. Then the heat is transferred to the heat accumulator that is integrated in the hot-tap water system (HWS.The paper presents a prospective circuit of the solar collector. It differs from the traditional one because, in addition to absorbing panel, it uses photoconverters to generate electric power for the circulating pump. The advantage of this system is that for operation such a solar energy converter has no need in external power sources, i.e. it is autonomous. The need to calculate the essential thermo-physical parameters that ensure no-break system operation was stated as a main objective of the work.The suggested circuit has a photocell panel to convert solar radiation into dc voltage of 12 V. In case of a lack of the solar energy an accumulator battery can be used for feeding. To ensure the no-break supply of power an adaptor is offered.To calculate a density distribution of solar radiation a sine law is offered depending on the time of day and geographical locality. This dependence was used to obtain the expressions for calculating the water temperature in boiler over daytime.Further, the calculations have been done for the operating conditions under which an efficient heat exchange will be provided with the minimum consumption of electric power for the heat carrier circulation in the first loop. For this purpose, a pump power was calculated depending on consumption and hydraulic losses of head in the pipeline. As a minimum required consumption the value has been chosen at which a laminar flow regime changes to the turbulent one because of the most efficient heat exchange being both in collector and in heat accumulator

  6. Dynamics of charged bulk viscous collapsing cylindrical source with heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.M.; Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-04-15

    In this paper, we have explored the effects of dissipation on the dynamics of charged bulk viscous collapsing cylindrical source which allows the out-flow of heat flux in the form of radiations. The Misner-Sharp formalism has been implemented to drive the dynamical equation in terms of proper time and radial derivatives. We have investigated the effects of charge and bulk viscosity on the dynamics of collapsing cylinder. To determine the effects of radial heat flux, we have formulated the heat transport equations in the context of Mueller-Israel-Stewart theory by assuming that thermodynamics viscous/heat coupling coefficients can be neglected within some approximations. In our discussion, we have introduced the viscosity by the standard (non-causal) thermodynamics approach. The dynamical equations have been coupled with the heat transport equation; the consequences of the resulting coupled heat equation have been analyzed in detail. (orig.)

  7. Sustainable renewable energy seawater desalination using combined-cycle solar and geothermal heat sources

    KAUST Repository

    Missimer, Thomas M.

    2013-01-01

    Key goals in the improvement of desalination technology are to reduce overall energy consumption, make the process "greener," and reduce the cost of the delivered water. Adsorption desalination (AD) is a promising new technology that has great potential to reduce the need for conventional power, to use solely renewable energy sources, and to reduce the overall cost of water treatment. This technology can desalt seawater or water of even higher salinity using waste heat, solar heat, or geothermal heat. An AD system can operate effectively at temperatures ranging from 55 to 80 °C with perhaps an optimal temperature of 80 °C. The generally low temperature requirement for the feedwater allows the system to operate quite efficiently using an alternative energy source, such as solar power. Solar power, particularly in warm dry regions, can generate a consistent water temperature of about 90 °C. Although this temperature is more than adequate to run the system, solar energy collection only can occur during daylight hours, thereby necessitating the use of heat storage during nighttime or very cloudy days. With increasing capacity, the need for extensive thermal storage may be problematic and could add substantial cost to the development of an AD system. However, in many parts of the world, there are subsurface geothermal energy sources that have not been extensively used. Combining a low to moderate geothermal energy recovery system to an AD system would provide a solution to the thermal storage issue. However, geothermal energy development from particularly Hot Dry Rock is limited by the magnitude of the heat flow required for the process and the thermal conductivity of the rock material forming the heat reservoir. Combining solar and geothermal energy using an alternating 12-h cycle would reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of renewable energy. © 2013 Desalination Publications.

  8. Increase of COP for heat transformer in water purification systems. Part I - Increasing heat source temperature

    International Nuclear Information System (INIS)

    Siqueiros, J.; Romero, R.J.

    2007-01-01

    The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher value of COP is obtained when only the evaporator and generator temperatures are increased. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as the working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and the increase in the coefficient of performance (COP) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that proposed (AHTWP) system is capable of increasing the original value of COP ET more than 120%, by recycling part of the energy from a water purification system. The proposed system allows to increase COP values from any experimental data for water purification or any other distillation system integrated to a heat transformer, regardless of the actual COP value and any working fluid-absorbent pair

  9. Barriers for district heating as a source of flexibility for the electricity system

    DEFF Research Database (Denmark)

    Skytte, Klaus; Olsen, Ole Jess; Soysal, Emilie Rosenlund

    2017-01-01

    of wind power. Power-to-heat technologies, electric boilers and heat pumps are blocked by high tariffs and taxes. A calculation of the heat costs of different DH technologies demonstrates that, under the present price and tax conditions in Denmark and Sweden, CHP and power-to-heat are unable to compete......The Scandinavian countries Denmark, Norway and Sweden currently deploy large amounts of variable renewable energy (VRE) sources, especially wind power. This calls for additional flexibility in the power market. The right coupling to the underlying national and local district heating (DH) markets...

  10. Annual investigation of vertical type ground source heat pump system performance on a wall heating and cooling system in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, U.; Yoru, Y.; Kincay, O. [Department of Mechanical Engineering, Yildiz Technical University (Turkey)], email: akbulutugur@yahoo.com, email: yilmazyoru@gmail.com, email: okincay@yildiz.edu.tr

    2011-07-01

    Wall heating and cooling systems (WHCS) are equipped with heating serpentines or panels for water circulation. These systems operate in a low temperature range so they are preferable to other, conventional systems. Furthermore, when these systems are connected to a ground source heat pump (GSHP) system, energy performance and thermal comfort are further enhanced. The purpose of this paper is to report the results of an annual inspection done on a vertical type ground-coupled heat pump systems (V-GSHP) WHCS in Istanbul and present the results. The performance data from the Yildiz Renewable Energy House at Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey, during the year 2010 were collected and analyzed. The conclusions drawn from the inspection and analysis were listed in this paper. Using renewable energy sources effectively will bring both economic and environmental benefits and it is hoped that the use of these energy efficient WHCS systems will become widespread.

  11. Energy balance in the ohmically heated FT

    International Nuclear Information System (INIS)

    Bartiromo, R.; Brusati, M.; Cilloco, F.

    1981-01-01

    A typical discharge in the FT Tokamak at 60 kG has been studied in detail in order to derive the power balance between the ohmic input and the plasma losses. Impurity and radiation losses together with ion and electron energy balance are discussed. A power transport term for electrons is derived which is ascribed to anomalous thermal conduction. This resulting thermal transport is compared with those derived from different proposed scalings

  12. Thulium heat source for high-endurance and high-energy density power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW th coupled with a power conversion efficiency of ∼30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs

  13. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  14. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    Science.gov (United States)

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Ultrasonic inspection of the strength member weld of transit and pioneer heat sources

    International Nuclear Information System (INIS)

    Dudley, W.A.

    1975-01-01

    A nondestructive technique was developed which allows ultrasonic inspection of the closure weld for the strength member component in plutonium-238 radioisotopic heat sources. The advantage of the ultrasonic approach, over that of the more commonly used radiographic one, is the recognized superiority of ultrasonic testing for identifying lack-of-weld penetration (LOP) when accompanied by incomplete diffusion bonding. The ultrasonic technique, a transverse mode scan of the weld for detection of LOP, is primarily accomplished by use of a holding fixture which permits the vented heat source to be immersed into an inspection tank. The mechanical portion of the scanning system is a lathe modified with an inspection tank and a manipulator. This scanning system has been used in the past to inspect SNAP-27 heat sources. The analyzer-transducer combination used in the inspection is capable of detecting a channel type flaw with a side wall depth of 0.076 mm (0.003 in.) in a weld standard. (U.S.)

  16. Optimal Design of ORC Systems with a Low-Temperature Heat Source

    Directory of Open Access Journals (Sweden)

    Nicolas Galanis

    2012-02-01

    Full Text Available A numerical model of subcritical and trans-critical power cycles using a fixed-flowrate low-temperature heat source has been validated and used to calculate the combinations of the maximum cycle pressure (Pev and the difference between the source temperature and the maximum working fluid temperature (DT which maximize the thermal efficiency (ηth or minimize the non-dimensional exergy losses (β, the total thermal conductance of the heat exchangers (UAt and the turbine size (SP. Optimum combinations of Pev and DT were calculated for each one of these four objective functions for two working fluids (R134a, R141b, three source temperatures and three values of the non-dimensional power output. The ratio of UAt over the net power output (which is a first approximation of the initial cost per kW shows that R141b is the better working fluid for the conditions under study.

  17. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

    Science.gov (United States)

    Gebhart, T. E.; Martinez-Rodriguez, R. A.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2017-08-01

    To produce a realistic tokamak-like plasma environment in linear plasma device, a transient source is needed to deliver heat and particle fluxes similar to those seen in an edge localized mode (ELM). ELMs in future large tokamaks will deliver heat fluxes of ˜1 GW/m2 to the divertor plasma facing components at a few Hz. An electrothermal plasma source can deliver heat fluxes of this magnitude. These sources operate in an ablative arc regime which is driven by a DC capacitive discharge. An electrothermal source was configured with two pulse lengths and tested under a solenoidal magnetic field to determine the resulting impact on liner ablation, plasma parameters, and delivered heat flux. The arc travels through and ablates a boron nitride liner and strikes a tungsten plate. The tungsten target plate is analyzed for surface damage using a scanning electron microscope.

  18. Accounting of the Power Balance for Neutral-beam heated H-Mode Plasmas in NSTX

    International Nuclear Information System (INIS)

    Paul, S.F.; Maingi, R.; Soukhanovskii, V.; Kaye, S.M.; Kugel, H.

    2004-01-01

    A survey of the dependence of power balance on input power, shape, and plasma current was conducted for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Measurements of heat to the divertor strike plates and divertor and core radiation were taken over a wide range of plasma conditions. The different conditions were obtained by inducing a L-mode to H-mode transition, changing the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a NBI power scan in H-mode. 60-70% of the net input power is accounted for in the LSN discharges with 20% of power lost as fast ions, 30-45% incident on the divertor plates, up to 10% radiated in the core, and about 12% radiated in the divertor. In contrast, the power accountability in DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the LSN is likely to be directed to the upper divertor

  19. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  20. 太阳能辅助地源热泵供暖实验研究%Experimental study of a solar assisted ground source heat pump for heating

    Institute of Scientific and Technical Information of China (English)

    赵忠超; 丰威仙; 巩学梅; 米浩君; 成华; 云龙

    2014-01-01

    An experimental study is performed to determine the performance of the solar assisted ground source heat pump(SAGSHP)by using a solar-ground source heat pump hybrid system in the city of Ningbo. The result shows that comparing with the ground source heat pump(GSHP),when the ratio of solar energy to the whole en-ergy is 41. 9% ,the coefficient of performance( COP)of the heat pump and system can improve 15. 1% and 7. 7% respectively. Therefore,the solar assisted ground source heat pump has a significant performance advan-tage according to the experimental result.%选取宁波某公用建筑的太阳能-地源热泵复合系统为实验系统,对太阳能辅助地源热泵( solar assisted ground source heat pump,SAGSHP)供暖进行了实验研究.研究结果表明:与单一的地源热泵(ground source heat pump,GSHP)相比,当太阳能承担41.9%负荷时,热泵机组和整个系统的能效比(coefficient of performance,COP)分别提高了15.1%和7.7%, SAGSHP 供暖运行模式具有明显的性能优势.

  1. Reduced risk HTGR concept for industrial heat application

    International Nuclear Information System (INIS)

    Boardman, C.E.; Lipps, A.J.

    1982-01-01

    The industrial process heat market has been identified as major market for the High Temperature Gas-Cooled Reactor (HTGR), however, this market introduces stringent availability requirements on the reactor system relative to electric plants which feed a large existing grid. The characteristics and requirements of the industrial heat markets are summarized; the risks associated with serving this market with a single large HTGR will be discussed; and the modular concept, which has the potential to reduce both safety and investment risks, will be described. The reference modular concept described consists of several small, relatively benign nuclear heat sources linked together to supply heat energy to a balance-of-plant incorporating a process gas train/thermochemical pipe line system and a normal steam-electric plant

  2. Moving heat source in a confined channel: Heat transfer and boiling in endovenous laser ablation of varicose veins : Heat transfer and boiling in endovenous laser ablation of varicose veins

    NARCIS (Netherlands)

    de Boer, A.; Oliveira, J.L.G.; van der Geld, C.W.M.; Malskat, Wendy S.J.; van den Bos, Renate; Nijsten, Tamar; van Gemert, M.J.C.

    2017-01-01

    Motion of a moving laser light heat source in a confined volume has important applications such as in endovenous laser ablation (EVLA) of varicose veins. This light heats up the fluid and the wall volume by absorption and heat conduction. The present study compares the flow and temperature fields in

  3. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  4. Effect of heat radiation in a Walter’s liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation

    Directory of Open Access Journals (Sweden)

    A.K. Abdul Hakeem

    2014-07-01

    Full Text Available In this present article heat transfer in a Walter’s liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink, elastic deformation and radiation are reported. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The dimensionless governing equations for this investigation are solved analytically using hyper geometric functions. The results are carried out for prescribed surface temperature (PST and prescribed power law surface heat flux (PHF. The effects of viscous dissipation, Prandtl number, Eckert number, heat source/sink parameter with elastic deformation and radiation are shown in the several plots and addressed.

  5. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    DEFF Research Database (Denmark)

    Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector

    2013-01-01

    A two-source model (TSM) for surface energy balance, considering explicitly soil and vegetation components, was tested under water stress conditions. The TSM evaluated estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent heat flux (LE) as a residual from the ...

  6. Induction heating of a spherical aluminum moderator vessel for the Advanced Neutron Source (ANS)

    International Nuclear Information System (INIS)

    Yousuf, A.

    1994-01-01

    This task was to identify and design a heating system to apply 15 kW of heat to a cold source vessel to simulate the Advanced Neutron Source reactor. This research project aims at the analysis of the induction heating of a spherical aluminum moderator vessel. Computer modeling is presented for the design and analysis of the induction heating system. The objective is to apply 15 kW of heat as uniformly as possible to the outer wall of a 410 mm diameter sphere of thickness 1.5 mm. The report also aims at the analysis of a system model which is simulated using the Eddycuff electromagnetic software. The computer model is built with the finite element analysis software Patran. The induction heating system analysis shows that the predicted performance is in close agreement with the computer simulated data. Hardware constraints such as power supplies and matching load are also analyzed in terms of performance and cost. Physical modeling is also suggested, in which the coil and the workpiece are scaled down

  7. A small-plane heat source method for measuring the thermal conductivities of anisotropic materials

    Science.gov (United States)

    Cheng, Liang; Yue, Kai; Wang, Jun; Zhang, Xinxin

    2017-07-01

    A new small-plane heat source method was proposed in this study to simultaneously measure the in-plane and cross-plane thermal conductivities of anisotropic insulating materials. In this method the size of the heat source element is smaller than the sample size and the boundary condition is thermal insulation due to no heat flux at the edge of the sample during the experiment. A three-dimensional model in a rectangular coordinate system was established to exactly describe the heat transfer process of the measurement system. Using the Laplace transform, variable separation, and Laplace inverse transform methods, the analytical solution of the temperature rise of the sample was derived. The temperature rises calculated by the analytical solution agree well with the results of numerical calculation. The result of the sensitivity analysis shows that the sensitivity coefficients of the estimated thermal conductivities are high and uncorrelated to each other. At room temperature and in a high-temperature environment, experimental measurements of anisotropic silica aerogel were carried out using the traditional one-dimensional plane heat source method and the proposed method, respectively. The results demonstrate that the measurement method developed in this study is effective and feasible for simultaneously obtaining the in-plane and cross-plane thermal conductivities of the anisotropic materials.

  8. An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources

    Science.gov (United States)

    Chen, Ming-Ming; Faghri, Amir

    1990-01-01

    A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.

  9. Experimental Optimization of Passive Cooling of a Heat Source Array Flush-Mounted on a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Antoine Baudoin

    2016-11-01

    Full Text Available Heat sources, such as power electronics for offshore power, could be cooled passively—mainly by conduction and natural convection. The obvious advantage of this strategy is its high reliability. However, it must be implemented in an efficient manner (i.e., the area needs to be kept low to limit the construction costs. In this study, the placement of multiple heat sources mounted on a vertical plate was studied experimentally for optimization purposes. We chose a regular distribution, as this is likely to be the preferred choice in the construction process. We found that optimal spacing can be determined for a targeted source density by tuning the vertical and horizontal spacing between the heat sources. The optimal aspect ratio was estimated to be around two.

  10. Experimental Study and Modeling of Ground-Source Heat Pumps with Combi-Storage in Buildings

    Directory of Open Access Journals (Sweden)

    Wessam El-Baz

    2018-05-01

    Full Text Available There is a continuous growth of heat pump installations in residential buildings in Germany. The heat pumps are not only used for space heating and domestic hot water consumption but also to offer flexibility to the grid. The high coefficient of performance and the low cost of heat storages made the heat pumps one of the optimal candidates for the power to heat applications. Thus, several questions are raised about the optimal integration and control of heat pump system with buffer storages to maximize its operation efficiency and minimize the operation costs. In this paper, an experimental investigation is performed to study the performance of a ground source heat pump (GSHP with a combi-storage under several configurations and control factors. The experiments were performed on an innovative modular testbed that is capable of emulating a ground source to provide the heat pump with different temperature levels at different times of the day. Moreover, it can emulate the different building loads such as the space heating load and the domestic hot water consumption in real-time. The data gathered from the testbed and different experimental studies were used to develop a simulation model based on Modelica that can accurately simulate the dynamics of a GSHP in a building. The model was validated based on different metrics. Energetically, the difference between the developed model and the measured values was only 3% and 4% for the heat generation and electricity consumption, respectively.

  11. A key review of wastewater source heat pump (WWSHP) systems

    International Nuclear Information System (INIS)

    Hepbasli, Arif; Biyik, Emrah; Ekren, Orhan; Gunerhan, Huseyin; Araz, Mustafa

    2014-01-01

    Highlights: • Comprehensively reviewing WWSHP systems for the first time. • Varying the COP values for heating of the reviewed systems between 1.77 and 10.63. • Ranging the COP values for cooling of the reviewed systems from 2.23 to 5.35. • Being the majority of the performance assessments on the energetic basis. - Abstract: Heat pumps (HPs) are part of the environmentally friendly technologies using renewable energy and have been utilized in the developed countries for years. Wastewater is seen as a renewable heat source for HPs. At the beginning of the 1980s, waste (sewage) water source heat pumps (WWSHPs) were widely applied in North European countries like Sweden and Norway and partially applied in China. In the past two decades, the WWSHP has become increasingly popular due to its advantages of relatively higher energy utilization efficiency and environmental protection. The present study comprehensively reviews WWSHP systems in terms of applications and performance assessments including energetic, exergetic, environmental and economic aspects for the first time to the best of the authors’ knowledge. In this context, a historical development of WWSHPs was briefly given first. Next, wastewater potential and its characteristics were presented while a WWSHP system was introduced. The previously conducted studies on WWSHPs were then reviewed and classified in a tabulated form. Finally, some concluding remarks were listed. The COP values of the reviewed studies ranged from 1.77 to 10.63 for heating and 2.23 to 5.35 for cooling based on the experimental and simulated values. The performance assessments are mostly made using energy analysis methods while the number of exergetic evaluations is very low and has not been comprehensively performed. It is expected that the comprehensive review here will be very beneficial to those dealing with the design, analysis, simulation and performance assessment of WWSHP systems

  12. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Directory of Open Access Journals (Sweden)

    Xin Wen Zhang

    2015-07-01

    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  13. Self-optimizing control of air-source heat pump with multivariable extremum seeking

    International Nuclear Information System (INIS)

    Dong, Liujia; Li, Yaoyu; Mu, Baojie; Xiao, Yan

    2015-01-01

    The air-source heat pump (ASHP) is widely adopted for cooling and heating of residential and commercial buildings. The performance of ASHP can be controlled by several operating variables, such as compressor capacity, condenser fan speed, evaporator fan speed and suction superheat. In practice, the system characteristics can be varied significantly by the variations in ambient condition, operation setpoint, internal thermal load and equipment degradation, which makes it difficult to obtain accurate plant models. As consequence, the model based control strategies for ASHP could limit the achievable energy efficiency. Model-free self-optimizing control strategies are thus more preferable. In this study, a multi-input extremum seeking control (ESC) scheme is proposed for both heating and cooling operation of ASHP. The zone temperature is assumed to be regulated by the compressor capacity, while the expansion valve opening is used to regulate the suction superheat at the given setpoint. The total power consumption of the compressor, the condenser fan and the evaporator fan is measured as input to the ESC, while the ESC controls the evaporator fan speed, the condenser fan speed and the suction superheat setpoint. The proposed scheme is evaluated with a Modelica based dynamic simulation model of ASHP under both cooling and heating modes of operation. Simulation results show the effectiveness of the proposed scheme to achieve the maximum achievable efficiency in a nearly model-free manner. - Highlights: • Multi-input ESC. • Air-source heat pump. • Cooling and heating. • Modelica based model

  14. Pulse Star Inertial Confinement Fusion Reactor: Heat transfer loop and balance-of-plant considerations

    International Nuclear Information System (INIS)

    McDowell, M.W.; Blink, J.A.; Curlander, K.A.

    1983-01-01

    A conceptual heat transfer loop and balance-of-plant design for the Pulse Star Inertial Confinement Fusion Reactor has been investigated and the results are presented. The Pulse Star reaction vessel, a perforated steel bell jar about11 m in diameter, is immersed in Li 17 Pb 83 coolant, which flows through the perforations and forms a 1.5-m-thick plenum of droplets around a 8-m-diameter inner chamber. The bell jar and associated pumps, piping, and steam generators are contained within a 17-m-diameter pool of Li 17 Pb 83 coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops, each with a flow rate of 5.5 m 3 /s, are necessary to transfer 3300 MWt of power. Liquid metal is pumped to the top of the pool, where it flows downward through eight vertical steam generators. Double-walled tubes are used in the steam generators to assure tritium containment without intermediate heat transfer loops. Each pump is a mixed flow type and has a required NPSH of 3.4 m, a speed of 278 rpm, and an impeller diameter of 1.2 m. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. The design minimizes the total cost (heat exchanger area plus pumping) for the plant lifetime. The power required for the pumps is 36 MWe. Each resulting steam generator is 12 m high and 1.6 m in diameter, with 2360 tubes. The steam generators and pumps fit easily in the pool between the reactor chamber and the pool wall

  15. Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings

    DEFF Research Database (Denmark)

    Kjellsson, Elisabeth; Hellström, Göran; Perers, Bengt

    2010-01-01

    The use of ground-source heat pumps for heating and domestic hot water in dwellings is common in Sweden. The combination with solar collectors has been introduced to reduce the electricity demand in the system. In order to analyze different systems with combinations of solar collectors and ground......-source heat pumps, computer simulations have been carried out with the simulation program TRNSYS. Large differences were found between the system alternatives. The optimal design is when solar heat produces domestic hot water during summertime and recharges the borehole during wintertime. The advantage...... is related to the rate of heat extraction from the borehole as well as the overall design of the system. The demand of electricity may increase with solar recharging, because of the increased operating time of the circulation pumps. Another advantage with solar heat in combination with heat pumps is when...

  16. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  17. MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink

    Directory of Open Access Journals (Sweden)

    Hunegnaw Dessie

    2014-09-01

    Full Text Available In this analysis, MHD boundary layer flow and heat transfer of a fluid with variable viscosity through a porous medium towards a stretching sheet by taking in to the effects of viscous dissipation in presence of heat source/sink is considered. The symmetry groups admitted by the corresponding boundary value problem are obtained by using Lie’s scaling group of transformations. These transformations are used to convert the partial differential equations of the governing equations into self-similar non-linear ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method. Numerical results obtained for different parameters such as viscosity variation parameter A, permeability parameter k1, heat source/sink parameter λ, magnetic field parameter M, Prandtl number Pr, and Eckert number Ec are drawn graphically and effects of different flow parameters on velocity and temperature profiles are discussed. The skin-friction coefficient -f″(0 and heat transfer coefficient −θ′(0 are presented in tables.

  18. Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump

    Science.gov (United States)

    Song, Yulong; Ye, Zuliang; Cao, Feng

    2017-08-01

    In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.

  19. A novel absorption refrigeration cycle for heat sources with large temperature change

    International Nuclear Information System (INIS)

    Yan, Xiaona; Chen, Guangming; Hong, Daliang; Lin, Shunrong; Tang, Liming

    2013-01-01

    To increase the use efficiency of available thermal energy in the waste gas/water, a novel high-efficient absorption refrigeration cycle regarded as an improved single-effect/double-lift configuration is proposed. The improved cycle using an evaporator/absorber (E/A) promotes the coefficient of performance and reduces the irreversible loss. Water–lithium bromide is used as the working pair and a simulation study under the steady working conditions is conducted. The results show that the temperature of waste gas discharged is about 20 °C lower than that of the conventional single-effect cycle and the novel cycle we proposed can achieve more cooling capacity per unit mass of waste gas/water at the simulated working conditions. -- Graphical abstract: Pressure – temperature diagram for water – lithium bromide. Highlights: ► A novel waste heat-driven absorption refrigeration cycle is presented. ► The novel cycle can reject heat at much lower temperature. ► The available temperature range of heat source of the proposed cycle is wider. ► Multiple heat sources with different temperatures can be used in the novel cycle

  20. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  1. Fabrication of three 2500-watt (thermal) strontium-90 heat sources

    International Nuclear Information System (INIS)

    DeVore, J.R.; Haff, K.W.; Tompkins, J.A.

    1986-08-01

    Three 2500-watt (thermal) heat sources were fabricated by the Oak Ridge National Laboratory (ORNL) for the purpose of fueling a 500-watt (electric) thermoelectric generator as part of the US Department of Energy's Byproducts Utilization Program (BUP). Each of the sources, which are the largest ever assembled, consist of hot-pressed pellets of 90 Sr fluoride, doubly encapsulated in three Haynes-25 inner capsules and in a Hastelloy-S outer capsule. The total 90 Sr inventory of all three sources is 1.12 million curies. The sources were fabricated at the ORNL Fission Product Development Laboratory (FPDL), which is a facility that is capable of processing multi-megacurie quantities of radioactive materials, chiefly 137 Cs and 90 Sr. The source was tested to determine compliance with all of the IAEA Safety Series No. 33 requirements. The source fabrication, assembly, and testing are described in the presentation

  2. A flexible and low cost experimental stand for air source heat pump for Smart Buildings

    DEFF Research Database (Denmark)

    Crăciun, Vasile S.; Bojesen, Carsten; Blarke, Morten

    2012-01-01

    Energy systems are faced with the challenges of reducing dependency on fossil fuels, while handling increasing penetration levels of intermittent renewables such as wind and solar power. At the same time, the efficient consumption of energy is vital for avoiding the impacts from increasing fuel...... prices. A significant part of this challenge may be dealt with in the way space heating, space cooling, and domestic hot water production which is provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies for providing building thermal energy...... services; cooling, heating, and water heating. ASHP does not have a constant temperature for the primary source like: soil, ground water, or surface water heat pumps. In result, laboratory experiments and tests are faced by the problem of having to handle a wide range of conditions under which...

  3. Annual performance investigation and economic analysis of heating systems with a compression-assisted air source absorption heat pump

    International Nuclear Information System (INIS)

    Wu, Wei; Shi, Wenxing; Wang, Baolong; Li, Xianting

    2015-01-01

    Highlights: • Optimal compression ratio of CASAHP is obtained for the maximum energy saving rate. • Annual performance is improved by 10–20% compared to ASAHP without compression. • Energy saving rate is 17.7–29.2% and investment is reduced to 30–60% for CASAHP. • Both compression and partial-design enhance the economy with given energy saving. • Payback time is reduced from 12–32 to 3–6 years by compression and partial-design. - Abstract: The compression-assisted air source absorption heat pump (CASAHP) is a promising alternative heating system in severe operating conditions. In this research, parameter studies on the annual performance under various compression ratios (CRs) and source temperatures are performed to achieve the maximum energy saving rates (ESRs). Economic analyses of the CASAHP under different CRs and partial-design ratios are conducted to obtain an optimal design that considers both energy savings and economy improvements. The results show that the optimal CR becomes higher in colder regions and with lower heat source temperatures. For a source temperature of 130 °C, the optimal CR values in all of the cities are within 2.0. For source temperatures from 100 to 130 °C, the maximum ESR is in the range of 17.7–29.2% in the studied cities. The efficiency improvement rate (EIR) caused by compression in a severe source condition can reach 10.0–20.0%. From the viewpoint of economy, the relative investment of CASAHP is reduced to 30–60% with a CR of 2.0–3.0. With a 2–6% sacrifice in ESR, the payback period can be reduced from 12–32 to 5–9 years using compression. Partial-design of the CASAHP can further reduce the payback period to 3–6 years with a partial-design ratio of 50% and a CR of 2.8. Additionally, CRs and partial-design ratios are designed comprehensively by seeking the maximum ESR for a given acceptable payback period

  4. Power Optimization of Organic Rankine-cycle System with Low-Temperature Heat Source Using HFC-134a

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Young Jin; Kim, Min Sung; Chang, Ki Chang; Lee, Young Soo; Ra, Ho Sang [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2011-01-15

    In this study, an organic Rankine-cycle system using HFC-134a, which is a power cycle corresponding to a low temperature heat source, such as that for geothermal power generation, was investigated from the view point of power optimization. In contrast to conventional approaches, the heat transfer and pressure drop characteristics of the working fluid within the heat exchangers were taken into account by using a discretized heat exchanger model. The inlet flow rates and temperatures of both the heat source and the heat sink were fixed. The total heat transfer area was fixed, whereas the heat-exchanger areas of the evaporator and the condenser were allocated to maximize the power output. The power was optimized on the basis of three design parameters. The optimal combination of parameters that can maximize power output was determined on the basis of the results of the study. The results also indicate that the evaporation process has to be optimized to increase the power output.

  5. A model predictive framework of Ground Source Heat Pump coupled with Aquifer Thermal Energy Storage System in heating and cooling equipment of a building

    NARCIS (Netherlands)

    Rostampour Samarin, V.; Bloemendal, J.M.; Keviczky, T.

    2017-01-01

    This paper presents a complete model of a building heating and cooling equipment and a ground source heat pump (GSHP) coupled with an aquifer thermal energy storage (ATES) system. This model contains detailed
    mathematical representations of building thermal dynamics, ATES system dynamics, heat

  6. Performance analysis of low temperature heat source of organic Rankine cycle for geothermal application

    Science.gov (United States)

    Pintoro, A.; Ambarita, H.; Nur, T. B.; Napitupulu, F. H.

    2018-02-01

    Indonesia has a high potential energy resources from geothermal activities. Base on the report of Asian Development Bank and World Bank, the estimated of Indonesian hydrothermal geothermal resource considered to be the largest among the world. If it’s can be utilized to produce the electric power, it’s can contribute to increasing the electrification rates in Indonesia. In this study, an experimental studied of electric power generation, utilizing the Organic Rankine Cycle (ORC) system to convert the low level heat of hydrothermal as an energy source. The temperature of hydrothermal was modelled as hot water from water boiler which has a temperature range from 60 °C - 100 °C to heat up the organic working fluid of ORC system. The system can generated 1,337.7 watts of electricity when operated using R134A with hot water inlet temperature of 100 °C. Changing system working fluid to R245fa, the net power obtained increase to 1,908.9 watts with the same heat source condition. This study showed that the ORC system can be implemented to utilize low temperature heat source of hydrothermal in Indonesia.

  7. Existing climate data sources and Their Use in Heat IslandResearch

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Pon, Brian; Smith, Craig Kenton; Stamper-Kurn, Dan Moses

    1998-10-01

    Existing climate data sources can be used in two general types of analysis for the detection of urban heat islands. Historical analyses use long-term data records-preferentially from several locations in and around an urban area-to trace the gradual influence of urban development on its climate. Primary sources of such data include the cooperative network, first-order National Weather Service stations, and military weather stations. Analyses of short-term data use information from a dense urban weather station network to discern the location, extent, and magnitude of urban heat islands. Such analyses may use the aforementioned national networks or regional networks such as agricultural, air quality monitoring, or utility networks. We demonstrate the use of existing data sources with a historical analysis of temperature trends in Los Angeles, California, and an analysis of short-term data of the urban temperature profile for Phoenix, Arizona. The Los Angeles climate was examined with eleven long-term data records from the cooperative network. Statistically significant trends of rising temperature were detected at Los Angeles Civic Center and other stations over some parts of the year, although timing of the increase varied from station to station. Observed increases in temperatures maybe due to long-term climate changes, microclimate influences, or local-scale heat islands. The analysis of short-term data was made for Phoenix using the PRISMS station network. Mean diurnal temperature profiles for a month were examined and compared with those for adjacent rural areas. Data fi-om stations in the center of Phoenix showed clear and significant nighttime and daytime temperature differences of 1- 2K (3 - 4"F). These temperature increases maybe attributable to a local-scale heat island.

  8. Ultraviolet light and heat source selection in captive spiny-tailed iguanas (Oplurus cuvieri)

    International Nuclear Information System (INIS)

    Dickinson, H.C.; Fa, J.E.

    1997-01-01

    Three experimental manipulations were conducted to assess the influence of heat source selection and active thermoregulation on ultraviolet (UV) light exposure in captive spiny-tailed iguanas (Oplurus cuvieri) at the Jersey Wildlife Preservation Trust. Four replicates per manipulation were conducted on six individual lizards. All animals were tested in a separate enclosure to which they were acclimated before observations. Data on choice of thermal sources were collected during the first 2 hr of light, when lizards were actively thermoregulating. Animals were allowed to choose between incandescent light, UV light and a non-light heat source (thermotube) in different combinations. Recorded temperatures close to the incandescent light (37°C) were always significantly higher than at the thermotube (33°C) and at the UV light (29°C). Manipulation 1 offered the animals a choice of an UV light and an incandescent light as thermal sources. Manipulation 2 presented animals with the thermal choices in Manipulation 1, but substrates under each source in Manipulation 1 were switched. In Manipulation 3, animals could choose between an incandescent light and the thermotube. All studied lizards were significantly more attracted to the incandescent light than to the UV light or thermotube. Incandescent light elicited a significantly higher proportion of basking behaviors in all individuals than the other sources. A high proportion of time basking was also spent in front of the thermotube but fewer individuals and less time were spent basking under the UV light. Heat source selection was generally found to be independent of substrate. Management applications of this preference are suggested for juvenile diurnal heliothermic iguanids. (author)

  9. Optimal operating conditions of a transcritical endoreversible cycle using a low enthalpy heat source

    International Nuclear Information System (INIS)

    Rachedi, Malika; Feidt, Michel; Amirat, Madjid; Merzouk, Mustapha

    2016-01-01

    Highlights: • Thermodynamics analysis of a finite size heat engine driven by a finite heat source. • Mathematical modelling of a transcritical endoreversible organic Rankine cycle. • Parametric study of the optimum operating conditions of transcritical cycle. • Choice of appropriate parameters could lead to very promising efficiencies. - Abstract: In the context of thermodynamic analysis of finite dimensions systems, we studied the optimum operating conditions of an endoreversible thermal machine. In this study, we considered a transcritical cycle, considering external irreversibilities. The hot reservoir is a low enthalpy geothermal heat source; therefore, it is assumed to be finite, whereas the cold reservoir is assumed to be infinite. The power optimisation is investigated by searching the optimum effectiveness of the heat-exchanger at the hot side of the engine. The sum of the total effectiveness and the second law of thermodynamics are used as constraints for optimisation. The optimal temperatures of the working fluid and optimum performances are evaluated based on the most significant parameters of the system: (1) the ratio of heat capacity rate of the working fluid to the heat capacity rate of the coolant and (2) the ratio of the sink temperature to the temperature of the hot source. The parametric study of the cycle and its approximation by a trilateral cycle enabled us to determine the optimum value of the effectiveness of the heat exchangers and the optimal operating temperatures of the cycle considered. The efficiencies obtained are in the range of 15–25% and was found to exceed the efficiency expected by the Curzon and Ahlborn prevision; meanwhile, the Carnot efficiency remains at a high limit.

  10. On material and energy sources of formation of fuel-containing materials during Chernobyl NPP UNIT 4 accident

    Directory of Open Access Journals (Sweden)

    O. V. Mikhailov

    2016-12-01

    Full Text Available Results of detailed analysis of material substance of lava-like fuel-containing materials sources (FCM and clusters with high uranium concentration were presented. Material and energy balance are aggregated in a process model for optimal composition of sacrificial materials and FCM. Quantitative estimate is given for spent nuclear fuel’ afterheat in a number of other heat energy sources in reactor vault. Conclusion was made that upon condition of 50 % heat loss, remained amount of “useful” heat would be sufficient for proceeding of blast furnace version of fuel-containing materials.

  11. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump

    International Nuclear Information System (INIS)

    Dong Jiankai; Deng Shiming; Jiang Yiqiang; Xia Liang; Yao Yang

    2012-01-01

    For a space heating air source heat pump (ASHP) unit, when its outdoor coil surface temperature is below both the air dew point temperature and the freezing point of water, frost will form on its outdoor coil surface. Frosting affects its operational performance and energy efficiency. Therefore, periodic defrosting is necessary. Currently, the most widely used standard defrosting method for ASHP units is reverse cycle defrost. The energy that should have been used for space heating is used to melt frost, vaporize the melted frost off outdoor coil surface and heat ambient air during defrosting. It is therefore necessary to study the sources of heat supplies and the end-uses of the heat supplied during a reverse cycle defrost operation. In this paper, firstly, an experimental setup is described and experimental procedures are detailed. This is followed by reporting the experimental results and the evaluation of defrosting efficiency for the experimental ASHP unit. Finally, an evaluation of defrosting heat supplies and energy consumptions during a revere cycle defrost operation for the experimental ASHP unit is presented. The experimental and evaluation results indicated that the heat supply from indoor air contributed to 71.8% of the total heat supplied for defrosting and 59.4% of the supplied energy was used for melting frost. The maximum defrosting efficiency could be up to 60.1%. - Highlights: ► Heat supply and consumption during reverse cycle defrost was experimentally studied. ► Indoor air contributed to >70% of total heat supply when indoor fan was turned on. ► ∼60% of the supplied energy was used for melting frost. ► Alternate heat supply other than indoor air should be explored.

  12. Meeting Czechoslovak demands for heat in long-term prospective, especially with regard to nuclear sources

    International Nuclear Information System (INIS)

    Klail, M.

    1988-01-01

    The development was studied of heat demand in the CSSR till the year 2030. The ratio of centralized and decentralized heat supply is currently 60 to 40; in the future a slight increase is expected in the decentralized type of heat supply, mainly as a result of more intensive use of natural gas. In 2030, 710 PU of centralized heat should be produced. A decisive element in meeting the demand will be a growing proportion of combined production of electric power and heat by nuclear power plants. The installed capacity of the nuclear power plants in 2030 should range between 23 and 41 thousand MW, the production of electric power in these plants should be 193 to 238 TWh/y. 109 territorial areas potentially suitable for use of heat from nuclear sources were selected. They were included in 19 regions of which 9 should in the year 2010 be linked to heat supply from nuclear power plants that will be in operation. It is expected that in the year 2030, nuclear sources will supply 250 PU of centralized heat. (Z.M.). 2 tabs., 14 refs

  13. IEA HPP Annex 29 - ground-source heat pumps overcoming technical and market barriers. Status report Norway

    International Nuclear Information System (INIS)

    Stene, Joern

    2004-12-01

    Norway is a member of Annex 29, 'Ground-Source Heat Pump Systems Overcoming Technical and Market Barriers' (2004-2006), organized under the umbrella of the International Energy Agency (IEA) and the IEA Heat Pump Programme (HPP). The 7 participating countries are Austria (Operating Agent), Canada, Japan, Norway, Spain, Sweden and the USA. The Norwegian participation is financed by ENOVA SF, and SINTEF Energy Research is responsible for planning and carrying out the Norwegian activities. This report provides a status for ground-source heat pump (GSHP) systems in Norway with regard to state-of-the-art technology, installation examples, geological data, costs and market opportunities. A Norwegian Internet home page for ground-source heat pump systems (www.energy.sintef.no/prosjekt/Annex29) is also presented. GSHP systems in Norway are classified as direct systems (groundwater and soil/ground) and indirect closed-loop systems (vertical-rock and horizontal-soil/ground). The vast majority of the installations are indirect closed-loop systems utilizing vertical boreholes in rock as a heat source, heat sink and thermal energy storage. GSHP systems are relatively capital intensive installations, but they achieve high energy efficiency due to the relatively high and stable heat source temperature and the fact that a considerable share of the cooling demand in non-residential buildings can be covered by means of free cooling. In order to obtain energy efficient and reliable GSHP installations, it is important to implement a total quality concept where focus is on quality and system integration during all stages of the project. A life cycle analysis (LCA) will be an important tool in such a concept, since both the investment costs as well as the lifetime operational and maintenance costs are included (author) (ml) Litt usikker pae tag 620- ikke en vanlig sintef rapportkode

  14. The epoch of cosmic heating by early sources of X-rays

    Science.gov (United States)

    Eide, Marius B.; Graziani, Luca; Ciardi, Benedetta; Feng, Yu; Kakiichi, Koki; Di Matteo, Tiziana

    2018-05-01

    Observations of the 21 cm line from neutral hydrogen indicate that an epoch of heating (EoH) might have preceded the later epoch of reionization. Here we study the effects on the ionization state and the thermal history of the intergalactic medium (IGM) during the EoH induced by different assumptions on ionizing sources in the high-redshift Universe: (i) stars; (ii) X-ray binaries (XRBs); (iii) thermal bremsstrahlung of the hot interstellar medium (ISM); and (iv) accreting nuclear black holes (BHs). To this aim, we post-process outputs from the (100 h-1 comoving Mpc)3 hydrodynamical simulation MassiveBlack-II with the cosmological 3D radiative transfer code CRASH, which follows the propagation of ultraviolet and X-ray photons, computing the thermal and ionization state of hydrogen and helium through the EoH. We find that stars determine the fully ionized morphology of the IGM, while the spectrally hard XRBs pave way for efficient subsequent heating and ionization by the spectrally softer ISM. With the seeding prescription in MassiveBlack-II, BHs do not contribute significantly to either ionization or heating. With only stars, most of the IGM remains in a cold state (with a median T = 11 K at z = 10), however, the presence of more energetic sources raises the temperature of regions around the brightest and more clustered sources above that of the cosmic microwave background, opening the possibility to observing the 21 cm signal in emission.

  15. Seasonal contrast in the surface energy balance of the Sahel

    Science.gov (United States)

    Miller, R. L.; Slingo, A.; Barnard, J. C.; Kassianov, E.

    2009-07-01

    Over much of the world, heating of the surface by sunlight is balanced predominately by evaporative cooling. However, at the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) in Niamey, Niger, evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the reservoir of soil moisture. The AMF was placed at Niamey from late 2005 to early 2007 to provide measurements of surface fluxes in coordination with geostationary satellite retrievals of radiative fluxes at the top of the atmosphere, as part of the RADAGAST experiment to calculate atmospheric radiative divergence. We use observations at the mobile facility to investigate how the surface adjusts to radiative forcing throughout the year. The surface response to solar heating varies with changes in atmospheric water vapor associated with the seasonal reversal of the West African monsoon, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of southwesterly surface winds at Niamey, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity. Following the onset of southwesterly flow, evaporation remains limited by the supply of moisture from precipitation. By the height of the rainy season, however, sufficient precipitation has accumulated that evaporation is controlled by incident sunlight, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Evaporation increases with the leaf area index, suggesting that plants are a significant source of atmospheric moisture and may tap moisture stored beneath the surface that accumulated during a previous rainy season. Surface radiative forcing

  16. General-purpose heat source safety verification test series: SVT-11 through SVT-13

    International Nuclear Information System (INIS)

    George, T.G.; Pavone, D.

    1986-05-01

    The General-Purpose Heat Source (GPHS) is a modular component of the radioisotope thermoelectric generator that will provide power for the Galileo and Ulysses (formerly ISPM) space missions. The GPHS provides power by transmitting the heat of 238 Pu α-decay to an array of thermoelectric elements. Because the possibility of an orbital abort always exists, the heat source was designed and constructed to minimize plutonia release in any accident environment. The Safety Verification Test (SVT) series was formulated to evaluate the effectiveness of GPHS plutonia containment after atmospheric reentry and Earth impact. The first two reports (covering SVT-1 through SVT-10) described the results of flat, side-on, and angular module impacts against steel targets at 54 m/s. This report describes flat-on module impacts against concrete and granite targets, at velocities equivalent to or higher than previous SVTs

  17. Off-design performance analysis of organic Rankine cycle using real operation data from a heat source plant

    International Nuclear Information System (INIS)

    Kim, In Seop; Kim, Tong Seop; Lee, Jong Jun

    2017-01-01

    Highlights: • ORC systems driven by waste or residual heat from a combined cycle cogeneration plant were analyzed. • An off-design analysis model was developed and validated with commercial ORC data. • A procedure to predict the actual variation of ORC performance using the off-design model was set up. • The importance of using long-term operation data of the heat source plant was demonstrated. - Abstract: There has been increasing demand for cogeneration power plants, which provides high energy utilization. Research on upgrading power plant performance is also being actively pursued. The organic Rankine cycle (ORC) can operate with mid- and low-temperature heat sources and is suitable for enhancing performance of existing power plants. In this study, an off-design analysis model for the ORC was developed, which is driven by waste heat or residual heat from a combined cycle cogeneration plant. The applied heat sources are the exhaust gas from the heat recovery steam generator (Case 1) and waste heat from a heat storage unit (Case 2). Optimal design points of the ORC were selected based on the design heat source condition of each case. Then, the available ORC power output for each case was predicted using actual long-term plant operation data and a validated off-design analysis model. The ORC capacity of Case 2 was almost two times larger than that of Case 1. The predicted average electricity generation of both cases was less than the design output. The results of this paper reveal the importance of both the prediction of electricity generation using actual plant operation data and the need for optimal ORC system sizing.

  18. The impact of municipal waste combustion in small heat sources

    Science.gov (United States)

    Vantúch, Martin; Kaduchová, Katarína; Lenhard, Richard

    2016-06-01

    At present there is a tendency to make greater use for heating houses for burning solid fuel, such as pieces of wood, coal, coke, local sources of heat to burn natural gas. This tendency is given both the high price of natural gas as well as the availability of cheaper solid fuel. In many cases, in the context saving heating costs, respectively in the context of the disposal of waste is co-incinerated with municipal solid fuels and wastes of different composition. This co entails increased production emissions such as CO (carbon monoxide), NOx (nitrogen oxides), particulate matter (particulate matter), PM10, HCl (hydrogen chloride), PCDD/F (polychlorinated dibenzodioxins and dibenzofurans), PCBs (polychlorinated biphenyls) and others. The experiment was focused on the emission factors from the combustion of fossil fuels in combination with municipal waste in conventional boilers designed to burn solid fuel.

  19. Milk of the cow as a source [for heat pumps]; Koe als bronsysteem

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, B.

    2012-09-15

    A livestock farm in Joure, the Netherlands, has designed a heat pump system that uses milk as a source. Up to now, three livestock farms in the Netherlands have been equipped with the so-called ECO2000 system that extracts heat from milk, using a heat pump to use this heat elsewhere in the business [Dutch] Een veeteeltbedrijf in Joure, Nederland, heeft een warmtepompsysteem ontworpen dat melk gebruikt als bron. Inmiddels zijn drie melkveehouderijen in Nederland voorzien van het zogenaamde ECO2000 systeem waarbij warmte wordt onttrokken uit melk om via een warmtepomp elders in het bedrijf te worden hergebruikt.

  20. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance

    International Nuclear Information System (INIS)

    Yang Hong; Xing Yangping; Xie Ping; Ni Leyi; Rong Kewen

    2008-01-01

    Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO 2 and CH 4 causing a net release of CO 2 and CH 4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO 2 and CH 4 ) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. - Due to high primary production, substantive allochthonous carbon inputs and intensive anthropogenic acitivity, subtropical, eutrophic Lake Donghu is a great carbon sink

  1. Viscoelastic Fluid over a Stretching Sheet with Electromagnetic Effects and Nonuniform Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2010-01-01

    Full Text Available A magnetic hydrodynamic (MHD of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric number E1 couple with magnetic parameter M to represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values of f''(0 and θ'(0 have been carried out. The parameter Pr, E1, or Ec can increase the heat transfer effects, but the parameter M or A* may decrease the heat transfer effects.

  2. Analysis of Fuel Cell Driven Ground Source Heat Pump Systems in Community Buildings

    Directory of Open Access Journals (Sweden)

    Jong-Keun Shin

    2013-05-01

    Full Text Available In the present study, a fuel cell driven ground source heat pump (GSHP system is applied in a community building and heat pump system performance is analyzed by computational methods. Conduction heat transfer between the brine pipe and ground is analyzed by TEACH code in order to predict the performance of the heat pump system. The predicted coefficient of performance (COP of the heat pump system and the energy cost were compared with the variation of the location of the objective building, the water saturation rate of the soil, and the driven powers of the heat pump system. Compared to the late-night electricity driven system, a significant reduction of energy cost can be accomplished by employing the fuel cell driven heat pump system. This is due to the low cost of electricity production of the fuel cell system and to the application of the recovered waste heat generated during the electricity production process to the heating of the community building.

  3. Ground source heat pumps (GSHP) for heating and cooling in Greece

    Science.gov (United States)

    Dimera, Nikoletta

    This report presents the results of a theoretical study about the feasibility of closed loop Ground Source Heat Pumps (GSHP) for heating and cooling in Greece in terms of their impact on the capital and running costs of the building services systems of the buildings. The main aim of carrying out this study was to investigate if the heating and cooling potential of the ground could be utilized cost efficiently to serve the buildings energy demand in the Greek region. At first, an existing implementation of a closed loop GSHP system in Greece is presented and its efficiency is discussed. The aim of doing so was to understand the way of sizing such systems and the efficiency of this technology in Greek climatic and ground conditions. In a separate part of this report, the impact of different user behaviour and of various ways of sizing a GSHP system is investigated in terms of the cost impact of the examined different options as well as of their effect on the internal health and comfort conditions. After the building simulation under different scenarios, it was concluded that the user behavior - the operation of windows mostly - can result in great savings on the annual energy bills. The conclusions of this first part of the report about the user behaviour and the way of sizing GSHP systems were utilized in the next part of it, where a GSHP system is proposed for a building currently under construction in central Greece. A simple 30-year cost analysis was used in order to estimate the performance of the proposed GSHP system in economic terms and to compare it with the conventional HVAC system commonly used in Greece. According to the results of the analysis, the capital cost of installing a GSHP system for heating and cooling in buildings in Greece appears higher than the cost of conventional HVAC systems. More specifically, the capital cost of an installation for heating including gas boilers and a cooling system based on air conditioning split units is about the

  4. First in situ operation performance test of ground source heat pump in Tunisia

    International Nuclear Information System (INIS)

    Naili, Nabiha; Attar, Issam; Hazami, Majdi; Farhat, Abdelhamid

    2013-01-01

    Highlights: • Evaluate the geothermal energy in Tunisia. • Study of the performance of GSHP system for cooling space. • GSHP is a promising alternative for building cooling in Tunisia. - Abstract: The main purpose of this paper is to study the energetic potential of the deployment in Tunisia of the Ground Source Heat Pump (GSHP) system for cooling mode application. Therefore, a pilot GSHP system using horizontal Ground Heat Exchanger (GHE) was installed and experimented in the Research and Technology Center of Energy (CRTEn), Borj Cédria. The experiment is conducted in a test room with a floor area of about 12 m 2 . In the floor of the tested room is integrated a polyethylene exchanger (PEX) used as a radiant floor cooling (RFC) system. The experimental setup mainly includes the ground temperature, the temperature and flow rate of water circulating in the heat pump and the GHE, as well as the power consumption of the heat pump and circulating pumps. These experimental data are essentially used to evaluate the coefficient of performance of the heat pump (COP hp ) and the overall system (COP sys ) for continuous operation mode. The COP hp and the COP sys were found to be 4.25 and 2.88, respectively. These results reveal that the use of the ground source heat pump is very appropriate for Tunisian building cooling

  5. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaojie [ClimateMaster, Inc., Oklahoma City, OK (United States); Ellis, Dan [ClimateMaster, Inc., Oklahoma City, OK (United States)

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  6. Combination of air-source heat pumps with liquid desiccant dehumidification of air

    International Nuclear Information System (INIS)

    Zhang Li; Hihara, Eiji; Saikawa, Michiyuki

    2012-01-01

    Highlights: ► We propose a frost-free air-source heat pump system with integrated desiccant. ► The system can provide heating load continuously and humidify room. ► The coefficient of performance of the system is 2.6 at T a = −7 °C and RH = 80%. ► The heating load of solution is 3–4 times larger than cooling load of solution. - Abstract: This paper proposes a frost-free air source heat pump system with integrated liquid desiccant dehumidification, in which frosting can be retarded by dehumidifying air before entering an outdoor heat exchanger. And the water removed from the air is used to humidify a room. Simulation is carried out at a dry-bulb temperature of −7 to 5.5 °C and a relative humidity of 80% depending on the frosting conditions. The results show that the coefficient of performance (COP) is in the range of 2.6–2.9, which is 30–40% higher than that of heat pump heating integrated with an electric heater humidifying system. And it is found that the optimum value of the concentration of lithium chloride aqueous solution is 37% for the frost-free operation mode. Experiments are conducted for liquid desiccant system under low air temperature and high relative humidity conditions. Experimental results show that the dew point of the dehumidified air is decreased by 8 °C and the humidity ratio of the humidified air is kept at 8.1 g kg −1 , which ensures the frost-free operation of the heat pump evaporator and the comfortable level of room humidity simultaneously. The heating load of solution is 3–4.5 times larger than cooling load of solution, which agrees with the assumption given at the part of the simulation. Furthermore, the deviations between the calculated COP LHRU and the experimental results are within 33%.

  7. Simultaneous estimation of strength and position of a heat source in a participating medium using DE algorithm

    International Nuclear Information System (INIS)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P.M.V.

    2013-01-01

    An inverse heat transfer problem is discussed to estimate simultaneously the unknown position and timewise varying strength of a heat source by utilizing differential evolution approach. A two dimensional enclosure with isothermal and black boundaries containing non-scattering, absorbing and emitting gray medium is considered. Both radiation and conduction heat transfer are included. No prior information is used for the functional form of timewise varying strength of heat source. The finite volume method is used to solve the radiative transfer equation and the energy equation. In this work, instead of measured data, some temperature data required in the solution of the inverse problem are taken from the solution of the direct problem. The effect of measurement errors on the accuracy of estimation is examined by introducing errors in the temperature data of the direct problem. The prediction of source strength and its position by the differential evolution (DE) algorithm is found to be quite reasonable. -- Highlights: •Simultaneous estimation of strength and position of a heat source. •A conducting and radiatively participating medium is considered. •Implementation of differential evolution algorithm for such kind of problems. •Profiles with discontinuities can be estimated accurately. •No limitation in the determination of source strength at the final time

  8. CONCEPT OF THE MINIMUM ENERGY PASSENGER CAR WITH USE OF UNCONVENTIONAL ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    V. A. Gabrinets

    2014-06-01

    Full Text Available Purpose. The paper is aimed to consider the concept of creation of the minimum energy passenger car with use of nonconventional energy sources and the walls that have enhanced thermal insulation properties. Мethodology. The types of heat losses, as well as their value were analyzed. The alternative sources of energy are considered for heating. Their potential contribution to the overall energy balance of the passenger car is analyzed. Impact on the car design of the enhanced wall thermal insulation, solar energy inflow through the transparent windows and energy release of passengers are quantitatively evaluated. Findings. With the maximum possible use of all unconventional energy sources and the rational scheme solutions of conditioning and heating systems energy the costs for these needs for a passenger car can be reduced by 40-50%. Originality. New types of energy to maintain the heat balance of the car in the winter period is proposed to use firstly. New schematics solutions for environmental control system of the car both in winter and in summer periods were offered. Practical value. Introduction of the proposed scheme solutions and approaches to ensure the comfortable conditions for passengers may be implemented on an existing park of passenger cars and do not require a major re-equipment of systems that have already been installed.

  9. Optimal design of district heating and cooling pipe network of seawater-source heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang-li; Duanmu, Lin; Shu, Hai-wen [School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024 (China)

    2010-01-15

    The district heating and cooling (DHC) system of a seawater-source heat pump is large system engineering. The investments and the operational cost of DHC pipe network are higher than a tradition system. Traditional design methods only satisfy the needs of the technology but dissatisfy the needs of the economy, which not only waste a mass of money but also bring problems to the operation, the maintenance and the management. So we build a least-annualized-cost global optimal mathematic model that comprises all constrict conditions. Furthermore, this model considers the variety of heating load and cooling load, the operational adjustment in different periods of the year. Genetic algorithm (GA) is used to obtain the optimal combinations of discrete diameters. Some operators of GA are selected to reduce the calculation time and obtain good calculation accuracy. This optimal method is used to the design of the DHC network of Xinghai Bay commercial district which is a real engineering. The design optimization can avoid the matter of the hydraulic unbalance of the system, enhance the running efficiency and greatly reduce the annualized-cost comparing with the traditional design method. (author)

  10. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Directory of Open Access Journals (Sweden)

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  11. Promising design options for the encapsulated nuclear heat source reactor

    International Nuclear Information System (INIS)

    Conway, L.; Carelli, M.D.; Dzodzo, M.; Hossain, Q.; Brown, N.W.; Wade, D.C.; Sienick, J.J.; Greenspan, E.; Kastenberg, W.E.; Saphier, D.

    2001-01-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  12. Promising design options for the encapsulated nuclear heat source reactor

    Energy Technology Data Exchange (ETDEWEB)

    Conway, L.; Carelli, M.D.; Dzodzo, M. [Westinghouse Science and Technology, Pittsburgh, PA (United States); Hossain, Q.; Brown, N.W. [Lawrence Livermore National Lab., CA (United States); Wade, D.C.; Sienick, J.J. [Argonne National Lab., IL (United States); Greenspan, E.; Kastenberg, W.E.; Saphier, D. [University of California Dept of Nuclear Engineering, Berkeley, CA (United States)

    2001-07-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  13. Ground Source Integrated Heat Pump (GS-IHP) Development

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

    2013-05-24

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test

  14. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    Science.gov (United States)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This

  15. Class of analytic solutions for the thermally balanced magnetostatic prominence sheet

    International Nuclear Information System (INIS)

    Low, B.C.; Wu, S.T.

    1981-01-01

    This is a theoretical study of the nonlinear interplay between magnetostatic equilibrium and energy balance in a Kippenhahn-Schlueter type prominence sheet. The basic effects are illustrated explicitly with an analytic model in which a radiative loss proportional to rho 2 T balances against wave heating proportional to rho, with thermal conduction confined along magnetic field lines, where rho and T denote the plasma density and temperature, respectively. The particular choices of heat sink and source enable us to integrate the governing equations exactly while they are of the basic mathematical forms to simulate radiative loss in an optically thin plasma which is heated by wave dissipation. The steady solutions exhibit three different basic behaviors, characterized by the total wave heating in the prominence sheet being more than, equal to, or less than the total radiative loss. It is the compaction of the plasma along the field lines under its own weight combined with the effects of energy transport that determines which of the three basic behaviors obtains in a particular situation. The implications of the steady solutions for the formation of prominences are discussed. The exact solutions presented do not support the conclusion of Milne, Priest, and Roberts that there is an upper bound on the plasma beta for an equilibrium of the Kippenhahn-Schlueter prominence

  16. Alternative energy sources for the heating and cooling of a building

    CSIR Research Space (South Africa)

    Strydom, JFS

    1979-11-27

    Full Text Available The objective of two of the studies was to choose the most economical source of heating energy, taking cognizance of the building owner’s particular circumstances; in both cases a suitable alternative to light petroleum oil, which had been used...

  17. On oscillatory magnetoconvection in a nanofluid layer in the presence of internal heat source and Soret effect

    Science.gov (United States)

    Khalid, Izzati Khalidah; Mokhtar, Nor Fadzillah Mohd; Bakri, Nur Amirah; Siri, Zailan; Ibrahim, Zarina Bibi; Gani, Siti Salwa Abd

    2017-11-01

    The onset of oscillatory magnetoconvection for an infinite horizontal nanofluid layer subjected to Soret effect and internal heat source heated from below is examined theoretically with the implementation of linear stability theory. Two important properties that are thermophoresis and Brownian motion are included in the model and three types of lower-upper bounding systems of the model: rigid-rigid, rigid-free as well as free-free boundaries are examined. Eigenvalue equations are gained from a normal mode analysis and executed using Galerkin technique. Magnetic field effect, internal heat source effect, Soret effect and other nanofluid parameters on the oscillatory convection are presented graphically. For oscillatory mode, it is found that the effect of internal heat source is quite significant for small values of the non-dimensional parameter and elevating the internal heat source speed up the onset of convection. Meanwhile, the increasing of the strength of magnetic field in a nanofluid layer reduced the rate of thermal instability and sustain the stabilization of the system. For the Soret effect, the onset of convection in the system is accelerated when the values of the Soret effect is increased.

  18. Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source

    Directory of Open Access Journals (Sweden)

    A. Sinha

    2016-09-01

    Full Text Available This paper presents a theoretical analysis of blood flow and heat transfer in a permeable vessel in the presence of an external magnetic field. The unsteadiness in the coupled flow and temperature fields is considered to be caused due to the time-dependent stretching velocity and the surface temperature of the vessel. The non-uniform heat source/sink effect on blood flow and heat transfer is taken into account. This study is of potential value in the clinical treatment of cardiovascular disorders accompanied by accelerated circulation. The problem is treated mathematically by reducing it to a system of coupled nonlinear differential equations, which have been solved by using similarity transformation and boundary layer approximation. The resulting nonlinear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. Computational results are obtained for the velocity, temperature, the skin-friction coefficient and the rate of heat transfer in the vessel. The estimated results are compared with another analytical study reported earlier in scientific literatures. The present study reveals that the heat transfer rate is enhanced as the value of the unsteadiness parameter increases, but it reduces as the space-dependence parameter for heat source/sink increases.

  19. HTGR process heat program design and analysis. Final report, FY-79

    International Nuclear Information System (INIS)

    1979-12-01

    This report summarizes the results of concept design studies at General Atomic Company during FY-79 for an 842-MW(t) Very High Temperature Reactor (VHTR) utilizing an intermediate helium heat transfer loop to provide thermal energy for the production of hydrogen or reducing gas (H 2 + CO) by steam-reforming of a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. The report summarizes conceptual design tasks conducted on the prestressed concrete reactor vessel, thermal barrier, intermediate heat exchanger, reformer, and steam generator. The substantial completion of first generation programming for a performance/optimization code and the preparation of a topical safety report and other safety evaluation studies are reported. The completion of balance of plant criteria specifications and a balance of plant cost estimate is also reported

  20. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    Science.gov (United States)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  1. Cost of heat from a seasonal source

    Science.gov (United States)

    Reilly, R. W.; Brown, D. R.; Huber, H. D.

    Results are reported of an investigation to estimate the cost of aquifer thermal energy storage (ATES) from a seasonal heat source. The cost of supplying energy (hot water) from an ATES system is estimated. Three types of loads are investigated: point demands, residential developments, and a multidistrict city. Several technical and economic factors are found to control the economic performance of an ATES system. Costs are found to be prohibitive for systems of small size, long transmission distances, and employing expensive purchased thermal energy. ATES is found to be cost-competitive with oil-fired and electric hot water delivery systems under a broad range of potential situations.

  2. A review of the cylindrical heat source method for the design and analysis of vertical ground-coupled heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique

    2000-12-01

    The successful design and analysis of ground-coupled heat pump (GCHP) systems depends in large part on the adequate prediction of ground water heat transfer. The author presented a detailed review of the cylindrical heat source method utilized for the prediction of transient heat transfer in vertical U-tube ground heat exchangers. The physics that underlies the theory applicable to this technology is explained in a step-by-step manner. Explanations are also provided for the equations that govern the determination of design lengths for the cylindrical heat method, as presented in the ASHRAE handbook. Some improvements were recommended by the author, such as the calculation of the effective thermal resistances using the borehole diameter instead of the equivalent U-tube diameter now in use. Annual hour-by-hour building load calculations should be used to calculate ground loads. 8 refs., 2 tabs., 5 figs., 3 appendices.

  3. Engineering for high heat loads on ALS [Advanced Light Source] beamlines

    International Nuclear Information System (INIS)

    DiGennaro, R.; Swain, T.

    1989-08-01

    This paper discussed general thermal engineering problems and specific categories of thermal design issues for high photon flux beam lines at the LBL Advanced Light Source: thermal distortion of optical surfaces and elevated temperatures of thermal absorbers receiving synchrotron radiation. A generic design for water-cooled heat absorbers is described for use with ALS photon shutters, beam defining apertures, and heat absorbing masks. Also, results of in- situ measurements of thermal distortion of a water-cooled mirror in a synchrotron radiation beam line are compared with calculated performance estimates. 17 refs., 2 figs

  4. Balancing of solar heating options

    NARCIS (Netherlands)

    Veltkamp, W.B.; van Koppen, C.W.J.; Ouden, den C.

    1984-01-01

    In the field of energy conservation many options are presently competing. This study aims at providing more rational criteria for selection between these options.The options considered are; insulation of the walls, regeneration of the heat in the waste air, double glazing, attached sunspace at the

  5. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  6. Technology line and case analysis of heat metering and energy efficiency retrofit of existing residential buildings in Northern heating areas of China

    International Nuclear Information System (INIS)

    Zhao Jing; Zhu Neng; Wu Yong

    2009-01-01

    The building area in northern heating areas accounting for 70% of the total land area in China is 6,500,000,000 m 2 . The average heating energy consumption in northern China is 100-200% times more than developed countries in the same latitude. This paper introduced firstly the heat metering and energy efficiency retrofit background of existing residential buildings in northern heating areas of China organized by mohurd and MOF, and then put forward the total principle and contents of retrofit. Through analyzing some retrofit cases in Germany, Poland and China, some technological experiences were summarized and finally a technology line suitable for heat metering and energy efficiency retrofit of existing residential buildings in northern heating areas of China which involved retrofit for heat metering and temperature regulation of heating systems, heat balance of heat source and network, and building envelope was described to provide a systematic, scientific, technological guide for the retrofit projects of 0.15 billion m 2 in 'the Eleventh Five-Year Plan' period.

  7. Thermometry, calorimetry, and mean body temperature during heat stress.

    Science.gov (United States)

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  8. FRG sealed isotopic heat sources project (C-229) project management plan

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1997-01-01

    This Project Management Plan defines the cost, scope, schedule, organizational responsibilities, and work breakdown structure for the removal of the Federal Republic of Germany (FRG) Sealed Isotopic Heat Sources from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  9. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  10. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    Science.gov (United States)

    Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  11. A quasi-transient model of a transcritical carbon dioxide direct-expansion ground source heat pump for space and water heating

    International Nuclear Information System (INIS)

    Eslami-Nejad, Parham; Ouzzane, Mohamed; Aidoun, Zine

    2015-01-01

    In this study, a theoretical quasi-transient model is developed for detailed simulations of a carbon dioxide (CO_2) direct-expansion ground source heat pump (DX-GSHP). This model combines a transient analytical model for the ground, steady-state numerical models for the borehole and the gas cooler, as well as several thermodynamic models for the remaining components of a conventional heat pump, organized in interacting subroutines to form a powerful simulation tool. Extensive validation combining experimental data and CFD-generated results was performed for the borehole before the tool was used to simulate a practical application case. Performance is investigated for a system satisfying both space heating and domestic hot water requirements of a typical single family detached home in a cold climate region. The variation of different system parameters is also evaluated in this study. It is shown that CO_2 DX-GSHPs can offer relatively efficient and stable performance for integrated water and space heating applications. Furthermore, the importance of an accurate geothermal borehole sizing is highlighted for the DX-CO_2 heat pump systems. It is shown that, due to changes in the system working conditions, the total borehole length is not linearly correlated with the heat pump energy consumption and other parameters such as heat pump coefficient of performance and pressure drop in ground heat exchangers. Results showed that increasing the total borehole length of an optimum design (reference case study) by 25% decreases the total annual energy consumption by only 6%. However, reducing total borehole length of the reference case by 25% increases the total annual energy consumption by 10%. - Highlights: • A quasi-transient model for CO_2 direct-exchange ground-source heat pump is developed. • Validation combining experimental data and CFD-generated results was performed. • The effect of the borehole size on the design parameters is evaluated. • Results show that

  12. D'' Layer Activation via Tidal Dissipation: A Link Between Non-Hydrostatic Ellipticity, Non-Chondritic Heat Flux, and Non-Plume Head Generation of Flood Basalts

    Science.gov (United States)

    Hager, B. H.; Mazarico, E.; Touma, J.; Wisdom, J.

    2003-12-01

    Quantitative understanding of Earth's heat budget has eluded a list of distinguished physicists and geochemists ranging from Lord Kelvin to Don L Anderson. The global heat flux is substantially greater than that generated by the estimated inventory of radioactive heat sources, so simple energy balance considerations demand an additional heat source. Secular cooling is commonly invoked to balance Earth's energy budget, but the required cooling rates are difficult to reconcile with both traditional convection calculations and petrologic estimates of ancient upper mantle temperatures. A non-geochemical heat source seems plausible. Indeed, Tuoma and Wisdom (Astron. J., 122, 2001) showed that tidal dissipation of rotational energy associated with resonant coupling could provide a substantial heat pulse to the CMB. D'' Layer Activation (DLA) by dumping of rotational energy could have important geodynamical consequences that we explore here. DLA could lead to a sudden (but modest) increase in the temperature of preexisting plumes, leading to a sudden increase in melt volume without the need for a troublesome plume head. The dissipation depends on non-hydrostatic CMB ellipticity, which itself is a result of mantle convection, leading to the possibility of an important feedback mechanism - DLA would lead to an increase in CMB ellipticity, further increasing the geodynamic importance of DLA.

  13. Energy balance of lactating primiparous sows as affected by feeding level and dietary energy source

    NARCIS (Netherlands)

    Brand, van den H.; Heetkamp, M.J.W.; Soede, N.M.; Schrama, J.W.; Kemp, B.

    2000-01-01

    The effects of feeding level and major dietary energy source used during lactation on sow milk composition, piglet body composition, and energy balance of sows were determined. During a 21-d lactation, 48 primiparous sows were fed either a Fat-rich (134.9 g/kg fat; 196.8 g/kg carbohydrate) or a

  14. Variable Temperature Equipment for a Commercial Magnetic Susceptibility Balance

    Science.gov (United States)

    Lotz, Albert

    2008-01-01

    Variable temperature equipment for the magnetic susceptibility balance MSB-MK1 of Sherwood Scientific, Ltd., is described. The sample temperature is controlled with streaming air heated by water in a heat exchanger. Whereas the balance as sold commercially can be used only for room temperature measurements, the setup we designed extends the…

  15. Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

    Directory of Open Access Journals (Sweden)

    Basavarajappa Mahanthesh

    2017-12-01

    Full Text Available The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

  16. Heat and mass release for some transient fuel source fires: A test report

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1986-10-01

    Nine fire tests using five different trash fuel source packages were conducted by Sandia National Laboratories. This report presents the findings of these tests. Data reported includes heat and mass release rates, total heat and mass release, plume temperatures, and average fuel heat of combustion. These tests were conducted as a part of the US Nuclear Regulatory Commission sponsored fire safety research program. Data from these tests were intended for use in nuclear power plant probabilistic risk assessment fire analyses. The results were also used as input to a fire test program at Sandia investigating the vulnerability of electrical control cabinets to fire. The fuel packages tested were chosen to be representative of small to moderately sized transient trash fuel sources of the type that would be found in a nuclear power plant. The highest fire intensity encountered during these tests was 145 kW. Plume temperatures did not exceed 820 0 C

  17. An amplitude and phase control system for the TFTR rf heating sources

    International Nuclear Information System (INIS)

    Cutsogeorge, G.

    1989-04-01

    Feedback loops that control the amplitude and phase of the rf heating sources on TFTR are described. The method for providing arc protection is also discussed. Block diagrams and Bode plots are included. 6 figs

  18. Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels

    International Nuclear Information System (INIS)

    Kelly, J. Andrew; Fu, Miao; Clinch, J. Peter

    2016-01-01

    International commitments on greenhouse gases, renewables and air quality warrant consideration of alternative residential heating technologies. The residential sector in Ireland accounts for approximately 25% of primary energy demand with roughly half of primary home heating fuelled by oil and 11% by solid fuels. Displacing oil and solid fuel usage with air source heat pump (ASHP) technology could offer household cost savings, reductions in emissions, and reduced health impacts. An economic analysis estimates that 60% of homes using oil, have the potential to deliver savings in the region of €600 per annum when considering both running and annualised capital costs. Scenario analysis estimates that a grant of €2400 could increase the potential market uptake of oil users by up to 17% points, whilst a higher oil price, similar to 2013, could further increase uptake from heating oil users by 24% points. Under a combined oil-price and grant scenario, CO_2 emissions reduce by over 4 million tonnes per annum and residential PM_2_._5 and NO_X emissions from oil and peat reduce close to zero. Corresponding health and environmental benefits are estimated in the region of €100m per annum. Sensitivity analyses are presented assessing the impact of alternate discount rates and technology performance. This research confirms the potential for ASHP technology and identifies and informs policy design considerations with regard to oil price trends, access to capital, targeting of grants, and addressing transactions costs. - Highlights: • Air Source Heat Pumps can offer substantial savings over oil fired central heating. • Significant residential air and climate emission reductions are possible. • Associated health and environmental benefits are estimated up to €100m per annum. • Results can inform policy interventions in the residential market to support change.

  19. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  20. Environmental considerations for geothermal energy as a source for district heating

    International Nuclear Information System (INIS)

    Rafferty, K.D.

    1996-01-01

    Geothermal energy currently provides a stable and environmentally attractive heat source for approximately 20 district heating (DH) systems in the US. The use of this resource eliminates nearly 100% of the conventional fuel consumption (and, hence, the emissions) of the loads served by these systems. As a result, geothermal DH systems can rightfully claim the title of the most fuel-efficient DH systems in operation today. The cost of producing heat from a geothermal resource (including capitalization of the production facility and cost for pumping) amounts to an average of $1.00 per million Btu (0.0034 $/kWh). The major environmental challenge for geothermal systems is proper management of the producing aquifer. Many systems are moving toward injection of the geothermal fluids to ensure long-term production

  1. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  2. Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater

    International Nuclear Information System (INIS)

    Deng, Weishi; Yu, Jianlin

    2016-01-01

    Highlights: • A modified direct expansion solar-assisted heat pump water heater is investigated. • An additional air source evaporator is used in parallel way in the M-DX-SHPWH system. • The M-DX-SHPWH system displays a higher performance at the low solar radiation. • Effects of solar radiation and air temperature on the performance are discussed. - Abstract: This paper investigated a combined solar/air dual source heat pump water heater system for domestic water heating application. In the dual source system, an additional air source evaporator is introduced in parallel way based on a conventional direct expansion solar-assisted heat pump water heaters (DX-SHPWH) system, which can improve the performance of the DX-SHPWH system at a low solar radiation. In the present study, a dynamic mathematical model based on zoned lump parameter approach is developed to simulate the performance of the system (i.e. a modified DX-SHPWH (M-DX-SHPWH) system). Using the model, the performance of M-DX-SHPWH system is evaluated and then compared with that of the conventional DX-SHPWH system. The simulation results show the M-DX-SHPWH system has a better performance than that of the conventional DX-SHPWH system. At a low solar radiation of 100 W/m"2, the heating time of the M-DX-SHPWH decreases by 19.8% compared to the DX-SHPWH when water temperature reaches 55 °C. Meanwhile, the COP on average increases by 14.1%. In addition, the refrigerant mass flow rate distribution in the air source evaporator and the solar collector of the system, the allocation between the air source evaporator and the solar collector areas and effects of solar radiation and ambient air temperature on the system performance are discussed.

  3. Sensitivity analysis on the performances of a closed-loop Ground Source Heat Pump

    Science.gov (United States)

    Casasso, Alessandro; Sethi, Rajandrea

    2014-05-01

    Ground Source Heat Pumps (GSHP) permit to achieve a significant reduction of greenhouse gas emissions, and the margins for economic saving of this technology are strongly correlated to the long-term sustainability of the exploitation of the heat stored in the soil. The operation of a GSHP over its lifetime should be therefore modelled considering realistic conditions, and a thorough characterization of the physical properties of the soil is essential to avoid large errors of prediction. In this work, a BHE modelling procedure with the finite-element code FEFLOW is presented. Starting from the governing equations of the heat transport in the soil around a GSHP and inside the BHE, the most important parameters are individuated and the adopted program settings are explained. A sensitivity analysis is then carried on both the design parameters of the heat exchanger, in order to understand the margins of improvement of a careful design and installation, and the physical properties of the soil, with the aim of quantifying the uncertainty induced by their variability. The relative importance of each parameter is therefore assessed by comparing the statistical distributions of the fluid temperatures and estimating the energy consumption of the heat pump, and practical conclusions are from these results about the site characterization, the design and the installation of a BHE. References Casasso A., Sethi R., 2014 Efficiency of closed loop geothermal heat pumps: A sensitivity analysis, Renewable Energy 62 (2014), pp. 737-746 Chiasson A.C., Rees S.J., Spitler J.D., 2000, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (2000), pp. 380-393 Delaleux F., Py X., Olives R., Dominguez A., 2012, Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity, Applied Thermal Engineering 33-34, pp. 92-99 Diao N., Li Q., Fang Z., 2004, Heat transfer in

  4. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R. N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  5. Solar heating as a major source of energy for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R.N.

    1977-07-01

    Solar energy can make its most effective contribution to Australian primary energy in the form of heat for industrial applications. About 50% of all end use energy is required as heat and it is estimated that 40% of this amounting to 1 EJ/a by 2000 could be supplied by solar heat generating systems. This would be 12% of estimated primary energy requirements by that time, and could help reduce the country's increasing dependence on imported oil. Energy self-sufficiency for Australia is possible, based on coal, solar energy and natural gas as primary energy sources. The reason for the present orientation towards residential solar water heaters is that there are many places where electric power for water heating costs between 2 and 4 cents per kWh which makes a solar water heater an attractive proposition. There is also a growing interest in the solar heating of swimming pools, mostly for private homes but also in larger installations for public and institutional pools. Industrial applications, on the other hand, are inhibited by the current low energy prices in Australia, which in some cases are around 0.13 cents/MJ (.47 cents/kWh). Industry, however, uses 40% of Australian primary energy, and represents by far the greatest potential for solar heat generating systems. Demonstration plants are being planned to obtain data on capital and running costs, and at the same time build up professional design and constructional skills in this area. The first demonstration solar industrial process heating system was commissioned in December 1976 and supplies portion of the heat requirements of a soft drink plant in conjunction with the existing oil fired boiler. Integrated solar/oil fired systems of this sort ensure continuous operation of the plant and over a year can result in significant oil savings.

  6. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    International Nuclear Information System (INIS)

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-01-01

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities

  7. Thermal-hydraulic process for cooling, heating and power production with low-grade heat sources in residential sector

    International Nuclear Information System (INIS)

    Borgogno, R.; Mauran, S.; Stitou, D.; Marck, G.

    2017-01-01

    Highlights: • Assessment of solar thermal-hydraulic process for tri-generation application. • Choice of the most suitable working fluid pair (R1234yf/R1233zd). • Evaluation of the global annual performance in Mediterranean climate. • Global annual COP and heat amplification achieving 0.24 and 1.2 respectively. • Global annual performance achieving an electric efficiency of 3.7%. - Abstract: A new process based on thermal-hydraulic conversion actuated by low-grade thermal energy is investigated. Input thermal energy can be provided by the means of solar collectors, as well as other low temperature energy sources. In the following article, “thermo-hydraulic” term refers to a process involving an incompressible fluid used as an intermediate medium to transfer work hydraulically between different thermal operated components or sub-systems. The system aims at providing trigeneration energy features for the residential sector, that is providing heating, cooling and electrical power for meeting the energy needs of domestic houses. This innovative system is made of two dithermal processes (working at two different levels of temperatures) and featuring two different working fluids. The first process is able to directly supply either electrical energy generated by an hydraulic turbine or drives the second process thanks to the incompressible fluid, which is similar to a heat pump effect for heating or cooling purposes. The innovative aspect of this process relies on the use of an hydraulic transfer fluid to transfer the work between each sub-system and therefore simplifying the conversion chain. A model, assuming steady-state operation, is developed to assess the energy performances of different variants of this thermo-hydraulic process with various heat source temperatures (80–110 °C) or heat sinks (0–30 °C), as well as various pairs of working fluids. For instance, in the frame of a single-family home, located in the Mediterranean region, the working

  8. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  9. Application of the heat-balance and refined integral methods to the Korteweg-de Vries equation

    Directory of Open Access Journals (Sweden)

    Myers Timothy G.

    2009-01-01

    Full Text Available In this paper we consider approximate travelling wave solutions to the Korteweg-de Vries equation. The heat-balance integral method is first applied to the problem, using two different quartic approximating functions, and then the refined integral method is investigated. We examine two types of solution, chosen by matching the wave speed to that of the exact solution and by imposing the same area. The first set of solutions is generally better with an error that is fixed in time. The second set of solutions has an error that grows with time. This is shown to be due to slight discrepancies in the wave speed.

  10. Supply of Prague with heat from a nuclear heat source

    International Nuclear Information System (INIS)

    Poul, F.

    1976-01-01

    The proposals are discussed of supplying Prague, the Czechoslovak Capital, with nuclear reactor-generated heat energy. The proposals meet the requirements of the general urban plan of development. The first nuclear heating plant is to be sited in the Kojetice locality, in the northern Prague suburb. It will be commissioned by 1984 and 1985. It is estimated that the maximum heat output in form of hot water will be 821 MW. By 1995 the construction of the second nuclear heating plant should be started southeast or east of Prague. The connection of these two nuclear plants to the hot water mains together with other conventional heating plants will secure the heat supply for Prague and its new housing estates and industrial works. (Oy)

  11. Novel edible oil sources: Microwave heating and chemical properties.

    Science.gov (United States)

    Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Koubaa, Mohamed; Lopez-Cervantes, Jaime; Yousefabad, Seyed Hossein Asadi; Hosseini, Seyedeh Fatemeh; Karimi, Masoumeh; Motazedian, Azam; Asadifard, Samira

    2017-02-01

    The aim of this work was to investigate the effect of various microwave heating times (1, 3, 5, 10, and 15min) on the chemical properties of novel edible oil sources, including Mashhadi melon (Cucumis melo var. Iranians cv. Mashhadi), Iranian watermelon (Citrullus lanatus cv. Fire Fon), pumpkin (Cucurbita pepo subsp. pepo var. Styriaca), and yellow apple (Malus domestica cv. Golden Delicious) seed oils. The evaluated parameters were peroxide value (PV), conjugated diene (CD) and triene (CT) values, carbonyl value (CV), p-anisidine value (AnV), oil stability index (OSI), radical scavenging activity (RSA), total tocopherols, total phenolics, as well as chlorophyll and carotenoid contents. Results showed that extended microwave heating involves decreased quality of the seed oils, mainly due to the formation of primary and secondary oxidation products. Microwave heating time also affects the total contents of chlorophylls, carotenoids, phenolics and tocopherols, which clearly decrease by increasing the exposure time. The order of oxidative stability of the analyzed edible oils was pumpkin>Mashhadi melon>Iranian watermelon>yellow apple. The obtained results demonstrated the promising potential of these novel edible oils for different food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Exposure calculations for the FRG isotopic heat source project environmental assessment

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1997-01-01

    The report documents the maximum exposure for transfer of the Federal Republic of Germany (FRG) Isotopic Heat Sources from the 324 Building and placed in interim storage at the Central Waste Complex (CWC). These results are to be reported in the Environmental Assessment DOE-EA- 1 21 1

  13. A heat source probe for measuring thermal conductivity in waste rock dumps

    International Nuclear Information System (INIS)

    Blackford, M.G.; Harries, J.R.

    1985-10-01

    The development and use of a heat source probe to measure the thermal conductivity of the material in a waste rock dump is described. The probe releases heat at a constant rate into the surrounding material and the resulting temperature rise is inversely related to the thermal conductivity. The probe was designed for use in holes in the dump which are lined with 50 mm i.d. polyethylene liners. The poor thermal contact between the probe and the liner and the unknown conductivity of the backfill material around the liner necessitated long heating and cooling times (>10 hours) to ensure that the thermal conductivity of the dump material was being measured. Temperature data acquired in the field were analysed by comparing them with temperatures calculated using a two-dimensional cylindrical model of the probe and surrounding material, and the heat transfer code HEATRAN

  14. Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source

    OpenAIRE

    A. Sinha; J.C. Misra; G.C. Shit

    2016-01-01

    This paper presents a theoretical analysis of blood flow and heat transfer in a permeable vessel in the presence of an external magnetic field. The unsteadiness in the coupled flow and temperature fields is considered to be caused due to the time-dependent stretching velocity and the surface temperature of the vessel. The non-uniform heat source/sink effect on blood flow and heat transfer is taken into account. This study is of potential value in the clinical treatment of cardiovascular disor...

  15. System simulation for an untreated sewage source heat pump (USSHP) in winter

    Science.gov (United States)

    Qin, Na; Hao, Peng Z.

    2017-01-01

    The paper discusses the system characteristics of an untreated sewage source heat pump in winter. In this system, the sewage enters into the evaporator directly. The variable parameters to control the system contain the sewage temperature at evaporator inlet and the water temperature at condenser inlet. It is found that most parameters, except the condensation heat transfer coefficient, change in the form of sine wave the same as the sewage temperature at inlet. The heating load and consumed power are 12.9kW and 3.45kW when the sewage temperature at inlet is 13°C. COP is about 3.75 in the range of the sewage temperature at inlet of 12-13°C.

  16. Industrial excess heat for district heating in Denmark

    International Nuclear Information System (INIS)

    Bühler, Fabian; Petrović, Stefan; Karlsson, Kenneth; Elmegaard, Brian

    2017-01-01

    Highlights: •Method for utilisation potential of industrial excess heat for district heating. •Industrial excess heat from thermal processes is quantified at single production units. •Linking of industrial excess heat sources and district heating demands done in GIS. •Excess heat recovery using direct heat transfer and heat pumps. •5.1% of the Danish district heating demand could be supplied by industrial excess heat. -- Abstract: Excess heat is available from various sources and its utilisation could reduce the primary energy use. The accessibility of this heat is however dependent amongst others on the source and sink temperature, amount and potential users in its vicinity. In this work a new method is developed which analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal processes which equals 5.1% of the current demand. More than half of this heat was found to be usable directly, without the need for a heat pump.

  17. Heat extraction from HTGR reactor

    International Nuclear Information System (INIS)

    Balajka, J.; Princova, H.

    1986-01-01

    The analysis of an HTGR reactor energy balance showed that steam reforming of natural gas or methane is the most suitable process of utilizing the high-temperature heat. Basic mathematical relations are derived allowing to perform a general energy balance of the link between steam reforming and reactor heat output. The results of the calculation show that the efficiency of the entire reactor system increases with increasing proportion of heat output for steam reforming as against heat output for the steam generator. This proportion, however, is limited with the output helium temperature from steam reforming. It is thus always necessary to use part of the reactor heat output for the steam cycle involving electric power generation or low-potential heat generation. (Z.M.)

  18. Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms

    Science.gov (United States)

    Navas-Montilla, A.; Murillo, J.

    2016-07-01

    In this work, an arbitrary order HLL-type numerical scheme is constructed using the flux-ADER methodology. The proposed scheme is based on an augmented Derivative Riemann solver that was used for the first time in Navas-Montilla and Murillo (2015) [1]. Such solver, hereafter referred to as Flux-Source (FS) solver, was conceived as a high order extension of the augmented Roe solver and led to the generation of a novel numerical scheme called AR-ADER scheme. Here, we provide a general definition of the FS solver independently of the Riemann solver used in it. Moreover, a simplified version of the solver, referred to as Linearized-Flux-Source (LFS) solver, is presented. This novel version of the FS solver allows to compute the solution without requiring reconstruction of derivatives of the fluxes, nevertheless some drawbacks are evidenced. In contrast to other previously defined Derivative Riemann solvers, the proposed FS and LFS solvers take into account the presence of the source term in the resolution of the Derivative Riemann Problem (DRP), which is of particular interest when dealing with geometric source terms. When applied to the shallow water equations, the proposed HLLS-ADER and AR-ADER schemes can be constructed to fulfill the exactly well-balanced property, showing that an arbitrary quadrature of the integral of the source inside the cell does not ensure energy balanced solutions. As a result of this work, energy balanced flux-ADER schemes that provide the exact solution for steady cases and that converge to the exact solution with arbitrary order for transient cases are constructed.

  19. Design and instrumentation of an automotive heat pump system using ambient air, engine coolant and exhaust gas as a heat source

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.; Yigit, K.S.; Canakci, M.; Alptekin, E.; Turkcan, A.

    2009-01-01

    Because the amount of waste heat used for comfort heating of the passenger compartment in motor vehicles decreases continuously as a result of the increasing engine efficiencies originating from recent developments in internal combustion engine technology, it is estimated that heat requirement of the passenger compartment in vehicles using future generation diesel engines will not be met by the waste heat taken from the engine coolant. The automotive heat pump (AHP) system can heat the passenger compartment individually, or it can support the present heating system of the vehicle. The AHP system can also be employed in electric vehicles, which do not have waste heat, as well as vehicles driven by a fuel cell. The authors of this paper observed that such an AHP system using ambient air as a heat source could not meet the heat requirement of the compartment when ambient temperature was extremely low. The reason is the decrease in the amount of heat taken from the ambient air as a result of low evaporating temperatures. Furthermore, the moisture condensed from air freezed on the evaporator surface, thus blocking the air flow through it. This problem can be solved by using the heat of engine coolant or exhaust gases. In this case, the AHP system can have a higher heating capacity and reuse waste heat. (author)

  20. Disruption simulation experiment using high-frequency rastering electron beam as the heat source

    International Nuclear Information System (INIS)

    Yamazaki, S.; Seki, M.

    1987-01-01

    The disruption is a serious event which possibly reduces the lifetime of plasm interactive components, so the effects of the resulting high heat flux on the wall materials must be clearly identified. The authors performed disruption simulation experiments to investigate melting, evaporation, and crack initiation behaviors using an electron beam facility as the heat source. The facility was improved with a high-frequency beam rastering system which provided spatially and temporally uniform heat flux on wider test surfaces. Along with the experiments, thermal and mechanical analyses were also performed. A two-dimensional disruption thermal analysis code (DREAM) was developed for the analyses

  1. Environmental assessment of general-purpose heat source safety verification testing

    International Nuclear Information System (INIS)

    1995-02-01

    This Environmental Assessment (EA) was prepared to identify and evaluate potential environmental, safety, and health impacts associated with the Proposed Action to test General-Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) assemblies at the Sandia National Laboratories (SNL) 10,000-Foot Sled Track Facility, Albuquerque, New Mexico. RTGs are used to provide a reliable source of electrical power on board some spacecraft when solar power is inadequate during long duration space missions. These units are designed to convert heat from the natural decay of radioisotope fuel into electrical power. Impact test data are required to support DOE's mission to provide radioisotope power systems to NASA and other user agencies. The proposed tests will expand the available safety database regarding RTG performance under postulated accident conditions. Direct observations and measurements of GPHS/RTG performance upon impact with hard, unyielding surfaces are required to verify model predictions and to ensure the continual evolution of the RTG designs that perform safely under varied accident environments. The Proposed Action is to conduct impact testing of RTG sections containing GPHS modules with simulated fuel. End-On and Side-On impact test series are planned

  2. Boundary Layer Fluid Flow in a Channel with Heat Source, Soret ...

    African Journals Online (AJOL)

    The boundary layer fluid flow in a channel with heat source, soret effects and slip condition was studied. The governing equations were solved using perturbation technique. The effects of different parameters such Prandtl number Pr , Hartmann number M, Schmidt number Sc, suction parameter ƒÜ , soret number Sr and the ...

  3. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    Directory of Open Access Journals (Sweden)

    Piljae Im

    2018-01-01

    Full Text Available The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m2 new addition. This recycled water heat pump (RWHP system uses seven 105 kW (cooling capacity modular water-to-water heat pumps (WWHPs. Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW or 7 °C chilled water (CHW to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly, reduced CO2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.

  4. Laser heated solenoid as a neutron source facility

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Rose, P.H.

    1975-01-01

    Conceptual designs are presented for a radiation test facility based on a laser heated plasma confined in a straight solenoid. The thin plasma column, a few meters in length and less than a centimeter in diameter, serves as a line source of neutrons. Test samples are located within or just behind the plasma tube, at a radius of 1-2 cm from the axis. The plasma is heated by an axially-directed powerful long-wavelength laser beam. The plasma is confined radially in the intense magnetic field supplied by a pulsed solenoid surrounding the plasma tube. The facility is pulsed many times a second to achieve a high time-averaged neutron flux on the test samples. Based on component performance achievable in the near term (e.g., magnetic field, laser pulse energy) and assuming classical physical processes, it appears that average fluxes of 10 13 to 10 14 neutrons/cm 2 -sec can be achieved in such a device. The most severe technical problems in such a facility appear to be rapid pulsing design and lifetime of some electrical and laser components

  5. Process heat applications of HTR-PM600 in Chinese petrochemical industry: Preliminary study of adaptability and economy

    International Nuclear Information System (INIS)

    Fang, Chao; Min, Qi; Yang, Yanran; Sun, Yuliang

    2017-01-01

    Highlights: •High Temperature Gas Cooled Reactor (HTGR) could work as heat source for petrochemical industry. •The joint of a 600 MW modular HTGR (HTR-PM600) and petrochemical industry is achievable. •The mature technology of turbine in thermal power station could be readily adopted. •The economy of this scheme is also acceptable. -- Abstract: High Temperature Gas Cooled Reactor (HTGR) could work as heat source for petrochemical industry. In this article, the preliminary feasibility of a 600 MW modular HTGR (HTR-PM600) working as heat source for a typical hypothetical Chinese petrochemical factory is discussed and it is found that the joint of HTR-PM600 and petrochemical industry is achievable. In detail, the heat and water balance analysis of the petrochemical factory is given. Furthermore, the direct cost of heat supplied by HTR-PM600 is calculated and corresponding economy is estimated. The results show that though there are several challenges, the application of process heat of HTGR to petrochemical industry is practical in sense of both technology and economy.

  6. STYLE, Steam Cycle Heat Balance for Turbine Blade Design in Marine Operation

    International Nuclear Information System (INIS)

    Love, J.B.; Dines, W.R.

    1970-01-01

    1 - Nature of physical problem solved: The programme carries out iterative steam cycle heat balance calculations for a wide variety of steam cycles including single reheat, live steam reheat and multistage moisture separation. Facilities are also available for including the steam-consuming auxiliaries associated with a marine installation. Though no attempt is made to carry out a detailed turbine blading design the programme is capable of automatically varying the blading efficiency from stage to stage according to local steam volume flow rate, dryness fraction and shaft speed. 2 - Method of solution: 3 - Restrictions on the complexity of the problem: Steam pressures to lie within range 0.2 to 5,000 lb/square inch abs steam temperatures to lie within range 50 to 1600 degrees F. Not more than 40 points per turbine expansion line; Not more than 10 expansion lines; Not more than 15 feed heaters. UNIVAC 1108 version received from FIAT Energia Nucleare, Torino, Italy

  7. Theory of energy level and its application in water-loop heat pump system

    International Nuclear Information System (INIS)

    Yu, Qi Dong

    2017-01-01

    Highlights: • Novel theory of saving energy and its application in water loop heat pump. • Reverse energy caused by units to water loop and its solution. • New method for determining the energy-saving range of water loop heat pump. • Capacity model of auxiliary heat source and its size for all building types. • Advice for reducing total energy consumption of water loop heat pump. - Abstract: It is a difficult problem to how to determine the reverse energy caused by units to water loop when a water-loop heat pump (WLHP) is in cooling and heating simultaneous mode, which not only has a great impact on energy-saving rate but also decides the use of auxiliary heat source in winter. This paper presents a theory of energy level to improve the research on WLHP system by using the relationship among building, circulating water and units. In this theory, the circulating water replaces building load as a new method to convert the reverse energy into energy change of circulating water and the equation of energy level also is built to determine the energy-saving range of WLHP system and report the capacity model of auxiliary heat source for all building types. An office building with different auxiliary powers is tested to analyze system operation characteristic and the effect of auxiliary heat source on unit and system and the results validate previous conclusions and suggest that an energy balance should be considered between units and auxiliary power to improve overall operation.

  8. Savannah River Laboratory isotopic power and heat sources. Monthly report, June 1966

    International Nuclear Information System (INIS)

    1966-06-01

    Progress in research and development is described for the following: preparation of Tm 2 O 3 ; properties of thulium-171; reduction of Pu-236 in Pu-238; 238 Pu oxide with low neutron emission; and encapsulation of cobalt-60 heat sources

  9. Performance comparison of air-source heat pump water heater with different expansion devices

    International Nuclear Information System (INIS)

    Peng, Jing-Wei; Li, Hui; Zhang, Chun-Lu

    2016-01-01

    Highlights: • An air-source heat pump water heater model was developed and validated. • System performance with EEV, capillary tube or short tube orifice were compared. • Short tube orifice is more suitable for heat pump water heater than capillary tube. - Abstract: Air source heat pump water heater (ASHPWH) is designed to work under wide operating conditions. Therefore, both the system and components require higher reliability and stability than ordinary heat pump air-conditioning systems. In this paper, a quasi-steady-state system model of ASHPWH using electronic expansion valve (EEV), capillary tube or short tube orifice as expansion device is developed and validated by a prototype using R134a and scroll compressor, by which the system performance is evaluated and compared at varying water temperature and different ambient temperature. Flow characteristics of those three expansion devices in ASHPWH are comparatively analyzed. Results show that the EEV throttling system performs best. Compared with capillary tube, flow characteristics of short tube orifice are closer to that of EEV and therefore more suitable for ASHPWH. Reliability concern of liquid carryover to the compressor in the system using short tube orifice is investigated as well. Higher superheat or less system refrigerant charge could help mitigate the risk.

  10. Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources

    Directory of Open Access Journals (Sweden)

    Wajs Jan

    2015-12-01

    Full Text Available A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.

  11. Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources

    Science.gov (United States)

    Wajs, Jan; Mikielewicz, Dariusz; Fornalik-Wajs, Elżbieta; Bajor, Michał

    2015-12-01

    A tendency to increase the importance of so-called dispersed generation, based on the local energy sources and the working systems utilizing both the fossil fuels and the renewable energy resources is observed nowadays. Generation of electricity on industrial or domestic scale together with production of heat can be obtained for example through employment of the ORC systems. It is mentioned in the EU directive 2012/27/EU for cogenerative production of heat and electricity. For such systems the crucial points are connected with the heat exchangers, which should be small in size but be able to transfer high heat fluxes. In presented paper the prototype microjet heat exchanger dedicated for heat recovery systems is introduced. Its novel construction is described together with the systematical experimental analysis of heat transfer and flow characteristics. Reported results showed high values of the overall heat transfer coefficient and slight increase in the pressure drop. The results of microjet heat exchanger were compared with the results of commercially available compact plate heat exchanger.

  12. Optimization and Thermoeconomics Research of a Large Reclaimed Water Source Heat Pump System

    Directory of Open Access Journals (Sweden)

    Zi-ping Zhang

    2013-01-01

    Full Text Available This work describes a large reclaimed water source heat pump system (RWSHPS and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.

  13. Beam heat load investigations with a cold vacuum chamber for diagnostics in a synchrotron light source

    Energy Technology Data Exchange (ETDEWEB)

    Voutta, Robert

    2016-04-22

    The beam heat load is a crucial input parameter for the cryogenic design of superconducting insertion devices. To understand the discrepancies between the predicted heat load of an electron beam to a cold bore and the heat load observed in superconducting devices, a cold vacuum chamber for diagnostics has been built. Extensive beam heat load measurements were performed at the Diamond light source. They are analysed systematically and combined with complementary impedance bench measurements.

  14. Wastewater as a Heat Source for Individual Residence Heating: A Techno-economic Feasibility Study in the Brussels Capital Region

    Directory of Open Access Journals (Sweden)

    Jan Spriet

    2017-09-01

    Full Text Available A large part of the thermal energy in buildings is lost through the drain and ends up as warm wastewater in the sewer system. The installation of heat exchangers in the sewer system enables a rise of the source temperature of heat pumps, increasing their coefficient of performance. To investigate the potential of such a technique in the Brussels Capital Region, a test facility named MYRTES has been installed in the sewer network, the starting point of this facility being to have one heat recovery system per residence. To estimate the heat recovery rate, potentially available in the Brussels Capital Region, the data from this test facility have been used as inputs and validation for a predictive model, considering both the heat recovery and its financial and environmental implications. Simulations show a minimum heating power of the heat pump of 6.3 kW, at a hot water temperature of 45 °C. A maximum of 35% of the buildings in the Brussels Capital Region are eligible for the use of such a system. At current tariffs, the levelized cost of energy for these systems, is lower than for traditional air heat pumps, but is higher than for gas boiler systems. The total equivalent warming impact, however, is estimated to be around 49% lower than for gas boiler systems and around 13% lower than for air heat pumps. In conclusion, heating through these types of systems is more expensive than gas boiler systems, but with increased consumption the competitiveness of these systems improves.

  15. The Influence of the Heat Source Temperature on the Multivane Expander Output Power in an Organic Rankine Cycle (ORC System

    Directory of Open Access Journals (Sweden)

    Piotr Kolasiński

    2015-04-01

    Full Text Available Organic Rankine Cycle (ORC power systems are nowadays an option for local and domestic cogeneration of heat and electric power. Very interesting are micropower systems for heat recovery from low potential (40–90 °C waste and renewable heat sources. Designing an ORC system dedicated to heat recovery from such a source is very difficult. Most important problems are connected with the selection of a suitable expander. Volumetric machines, such as scroll and screw expanders, are adopted as turbine alternative in small-power ORC systems. However, these machines are complicated and expensive. Vane expanders on the other hand are simple and cheap. This paper presents a theoretical and experimental analysis of the operation of a micro-ORC rotary vane expander under variable heat source temperature conditions. The main objective of this research was therefore a comprehensive analysis of relation between the vane expander output power and the heat source temperature. A series of experiments was performed using the micropower ORC test-stand. Results of these experiments are presented here, together with a mathematical description of multivane expanders. The analysis presented in this paper indicates that the output power of multivane expanders depend on the heat source temperature, and that multivane expanders are cheap alternatives to other expanders proposed for micropower ORC systems.

  16. Air Source Heat Pump a Key Role in the Development of Smart Buildings in Future Energy Systems

    DEFF Research Database (Denmark)

    Craciun, Vasile S.; Trifa, Viorel; Bojesen, Carsten

    2012-01-01

    An important challenge for energy systems today is reducing dependency on fossil fuels, while handling increasing penetration levels of intermittent renewables such as wind and solar power. The efficient consumption of energy is a vital mater for a sustainable energy system. A significant part...... of energy is used for space heating, space cooling, and domestic hot water production which are provided to residential and commercial buildings. Air source heat pumps (ASHP) are widely used conversion technologies all over the world for providing building thermal energy services as: cooling, heating......, and water heating. ASHP does not have a constant temperature for the primary source like: soil, ground water, or surface water heat pumps but still have a majority in usage. As result, laboratory experiments and tests are faced by the problem of having to handle a wide range of conditions under which...

  17. High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms

    International Nuclear Information System (INIS)

    Xing Yulong; Shu Chiwang

    2006-01-01

    Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source term. In our earlier work [J. Comput. Phys. 208 (2005) 206-227; J. Sci. Comput., accepted], we designed a well-balanced finite difference weighted essentially non-oscillatory (WENO) scheme, which at the same time maintains genuine high order accuracy for general solutions, to a class of hyperbolic systems with separable source terms including the shallow water equations, the elastic wave equation, the hyperbolic model for a chemosensitive movement, the nozzle flow and a two phase flow model. In this paper, we generalize high order finite volume WENO schemes and Runge-Kutta discontinuous Galerkin (RKDG) finite element methods to the same class of hyperbolic systems to maintain a well-balanced property. Finite volume and discontinuous Galerkin finite element schemes are more flexible than finite difference schemes to treat complicated geometry and adaptivity. However, because of a different computational framework, the maintenance of the well-balanced property requires different technical approaches. After the description of our well-balanced high order finite volume WENO and RKDG schemes, we perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the non-oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions

  18. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  19. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01

    The general-purpose heat source provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel

  20. Temperature field due to time-dependent heat sources in a large rectangular grid. Application for the KBS-3 repository

    International Nuclear Information System (INIS)

    Probert, T.; Claesson, Johan

    1997-04-01

    In the KBS-3 concept canisters containing nuclear waste are deposited along parallel tunnels over a large rectangular area deep below the ground surface. The temperature field in rock due to such a rectangular grid of heat-releasing canisters is studied. An analytical solution for this problem for any heat source has been presented in a preceding paper. The complete solution is summarized in this paper. The solution is by superposition divided into two main parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. In this sequel to the first report, the local solution is discussed in detail. The local solution consists of three parts corresponding to line heat sources along tunnels, point heat sources along a tunnel and a line heat source along a canister. Each part depends on two special variables only. These parts are illustrated in dimensionless form. Inside the repository the local temperature field is periodic in the horizontal directions and has a short extent in the vertical direction. This allows us to look at the solution in a parallelepiped around a canister. The solution in the parallelepiped is valid for all canisters that are not too close to the repository edges. The total temperature field is calculated for the KBS-3 case. The temperature field is calculated using a heat release that is valid for the first 10 000 years after deposition. The temperature field is shown in 23 figures in order to illustrate different aspects of the complex thermal process

  1. Five-Level Current-Source Inverters With Buck–Boost and Inductive-Current Balancing Capabilities

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Blaabjerg, Frede

    2010-01-01

    This paper presents new five-level current-source inverters (CSIs) with voltage/current buck–boost capability, unlike existing five-level CSIs where only voltage–boost operation is supported. The proposed inverters attain self-inductive-currentbalancing per switching cycle at their dc front ends...... without having to include additional balancing hardware or complex control manipulation. The inverters can conveniently be controlled by using the well-established phase-shifted carrier modulation scheme with only two additional linear references and a mapping logic table needed. Existing modulators can...

  2. Energy balance and stability

    International Nuclear Information System (INIS)

    Hammer, R.

    1982-01-01

    The energy balance of the outer atmospheres of solarlike stars is discussed. The energy balance of open coronal regions is considered, discussing the construction and characteristics of models of such regions in some detail. In particular, the temperature as a function of height is considered, as are the damping length dependence of the global energy balance in the region between the base of the transition region and the critical point, and the effects of changing the amount of coronal heating, the stellar mass, and the stellar radius. Models of coronal loops are more briefly discussed. The chromosphere is then included in the discussion of the energy balance, and the connection between global energy balance and global thermal stability is addressed. The observed positive correlations between the chromospheric and coronal energy losses and the pressure of the transition region is qualitatively explained

  3. Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry

    International Nuclear Information System (INIS)

    Song, Jian; Li, Yan; Gu, Chun-wei; Zhang, Li

    2014-01-01

    Low-grade waste heat source accounts for a large part of the total industrial waste heat, which cannot be efficiently recovered. The ORC (Organic Rankine Cycle) system has been proved to be a promising solution for the utilization of low-grade heat sources. It is evident that there might be several waste heat sources distributing in different temperature levels in one industry unit, and the entire recovery system will be extremely large and complex if the different heat sources are utilized one by one through several independent ORC subsystems. This paper aims to design and optimize a comprehensive ORC system to recover multi-strand waste heat sources in Shijiazhuang Refining and Chemical Company in China, involving defining suitable working fluids and operating parameters. Thermal performance is a first priority criterion for the system, and system simplicity, technological feasibility and economic factors are considered during optimization. Four schemes of the recovery system are presented in continuous optimization progress. By comparison, the scheme of dual integrated subsystems with R141B as a working fluid is optimal. Further analysis is implemented from the view of economic factors and off-design conditions. The analytical method and optimization progress presented can be widely applied in similar multi-strand waste heat sources recovery. - Highlights: • This paper focuses on the recovery of multi-strand waste heat sources. • ORC technology is used as a promising solution for the recovery. • Thermal performance, system simplicity and economic factors are considered

  4. A simulation-based analysis of variable flow pumping in ground source heat pump systems with different types of borehole heat exchangers: A case study

    International Nuclear Information System (INIS)

    Zarrella, Angelo; Emmi, Giuseppe; De Carli, Michele

    2017-01-01

    Highlights: • The work focuses on the variable flow in ground source heat pump systems. • The constant and variable speed circulation pumps in the ground loop are compared. • The constant temperature difference control across the heat pump is studied. • The variable flow affects the energy performance of the heat pump. • The constant temperature difference control offers an attractive energy saving. - Abstract: A simulation model of ground source heat pump systems has been used to investigate to what extent a variable flow of the heat-carrier fluid of the ground loop affects the energy efficiency of the entire system. The model contemporaneously considers the borehole heat exchangers, the heat pump, the building load, and the control strategies for the circulation pumps of the ground loop. A constant speed of the circulation pumps of the ground loop was compared with a variable flow controlled by means of a constant temperature difference across the heat pump on the ground side considering the load profile of an office building located in North Italy. The analysis was carried out for a single U-tube, double U-tube and coaxial pipe heat exchangers. The control strategies adopted to manage the flow rate of the heat-carrier fluid of the ground loop affect both the heat exchange rate of the borehole field and the heat pump’s long-term energy efficiency. The simulations show considerable differences in the system’s seasonal energy efficiency. The constant speed of the circulation pumps leads to the best results as far as the heat pump’s energy performance was concerned, but this advantage was lost because of the greater amount of electrical energy used by the circulation pumps; this, of course, affects the energy efficiency of the entire system. The optimal solution appears then to be a constant temperature difference in the heat-carrier fluid across the heat pump.

  5. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Jacopo Biasetti

    2017-10-01

    Full Text Available Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid–solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  6. Intracorporeal Heat Distribution from Fully Implantable Energy Sources for Mechanical Circulatory Support: A Computational Proof-of-Concept Study.

    Science.gov (United States)

    Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio

    2017-01-01

    Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid-solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.

  7. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model.

    Science.gov (United States)

    Andreu, Ana; Kustas, William. P.; Anderson, Martha C.; Carrara, Arnaud; Patrocinio Gonzalez-Dugo, Maria

    2013-04-01

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is recognized as an example of sustainable land use and for his importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). The ecosystem is influenced by a Mediterranean climate, with recurrent and severe droughts. Over the last decades the Dehesa has faced multiple environmental threats, derived from intensive agricultural use and socio-economic changes, which have caused environmental degradation of the area, namely reduction in tree density and stocking rates, changes in soil properties and hydrological processes and an increase of soil erosion (Coelho et al. 2004; Schnabel and Ferreira, 2004; Montoya 1998; Pulido and Díaz, 2005). Understanding the hydrological, atmospheric and physiological processes that affect the functioning of the ecosystem will improve the management and conservation of the Dehesa. One of the key metrics in assessing ecosystem health, particularly in this water-limited environment, is the capability of monitoring evaporation (ET). To make large area assessments requires the use of remote sensing. Thermal-based energy balance techniques that distinguish soil/substrate and vegetation contributions to the radiative temperature and radiation/turbulent fluxes have proven to be reliable in such semi-arid sparse canopy-cover landscapes. In particular, the two-source energy balance (TSEB) model of Norman et al. (1995) and Kustas and Norman (1999) has shown to be robust for a wide range of partially-vegetated landscapes. The TSEB formulation is evaluated at a flux tower site located in center Spain (Majadas del Tietar, Caceres). Its application in this environment is

  8. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  9. General-purpose heat source development. Phase II: conceptual designs

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.; Grinberg, I.M.; Hulbert, L.E.

    1978-11-01

    Basic geometric module shapes and fuel arrays were studied to determine how well they could be expected to meet the General Purpose Heat Source (GPHS) design requirements. Seven conceptual designs were selected, detailed drawings produced, and these seven concepts analyzed. Three of these design concepts were selected as GPHS Trial Designs to be reanalyzed in more detail and tested. The geometric studies leading to the selection of the seven conceptual designs, the analyses of these designs, and the selection of the three trial designs are discussed

  10. Evaluating the use of renewable fuel sources to heat flue-cured tobacco barns

    OpenAIRE

    Brown, Robert T

    2018-01-01

    Evaluating the use of renewable fuel sources to heat flue-cured tobacco barns Robert Taylor Brown ABSTRACT The curing of flue-cured tobacco (Nicotiana tabacum L.) is an energy intensive process and represents a significant portion of the overall cost of production. Given the goal of the industry to reduce the environmental footprint of tobacco production and the energy demand of curing, attention has been directed to explore options for the use of renewable fuels for heating to...

  11. Entropy Generation Analysis of Natural Convection in Square Enclosures with Two Isoflux Heat Sources

    Directory of Open Access Journals (Sweden)

    S. Z. Nejad

    2017-04-01

    Full Text Available This study investigates entropy generation resulting from natural convective heat transfer in square enclosures with local heating of the bottom and symmetrical cooling of the sidewalls. This analysis tends to optimize heat transfer of two pieces of semiconductor in a square electronic package. In this simulation, heaters are modeled as isoflux heat sources and sidewalls of the enclosure are isothermal heat sinks. The top wall and the non-heated portions of the bottom wall are adiabatic. Flow and temperature fields are obtained by numerical simulation of conservation equations of mass, momentum and energy in laminar, steady and two dimensional flows. With constant heat energy into the cavity, effect of Rayleigh number, heater length, heater strength ratios and heater position is evaluated on flow and temperature fields and local entropy generation. The results show that a minimum entropy generation rate is obtained under the same condition in which a minimum peak heater temperature is obtained.

  12. Low order modelling and closed-loop thermal control of a ventilated plate subject to a heat source disturbance

    International Nuclear Information System (INIS)

    Videcoq, E; Girault, M; Petit, D

    2012-01-01

    A multi-input multi-output (MIMO) thermal control problem in real-time is investigated. An aluminum slab is heated on one side by a radiative heat source and cooled on the other side by a fan panel. Starting from a nominal steady state configuration of heat source power and ventilation level, the objective is to control temperature at 4 chosen locations on the rear side when the thermal system is subject to a perturbation: the heat source power. The 4 actuators are the ventilation levels of 4 fans. The hypothesis of small inputs and temperature responses deviations is made, resulting in the assumption of a linear control problem. The originality of this work is twofold: (i) instead of a (large-sized) classical heat transfer model built from spatial discretization of local partial differential equations governing physics over the system domain, a low order model is identified from experimental data using the Modal Identification Method, (ii) this low order model is used to perform state feedback control in real time through a Linear Quadratic Gaussian (LQG) compensator.

  13. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

  14. 'Kazichzne-Ravno pole' hydro thermal spring - a source and accumulator of heat energy

    International Nuclear Information System (INIS)

    Gasharov, S.

    2001-01-01

    There are more than 1000 thermal sources found on the territory of Bulgaria, but only about 250 are utilized. The paper presents different schemes for the use of thermal energy. The characteristics of the thermal spring 'Kazichene-Ravno pole' are given and the energy balance is made. Directions for the further development of the thermal energy production are outlined

  15. Experimental study of self-balanced startup characteristics of density lock

    International Nuclear Information System (INIS)

    Gu Haifeng; Yan Changqi; Chen Wei

    2013-01-01

    With passive residual heat removal system which applies the density lock as background, combining the experimental study and theoretical analysis, researches on the operating characteristics and feasibility of self-balanced startup of density lock were made in this system. The results show that self-balanced startup can be divided into two stages: Warming up stage in which the valve is closed; self-balanced stage in which the valve is open. The two requisite conditions ensuring the closure of density lock can be realized respectively in these two stages, which ensure the separation of the passive residual heat removal system from the primary circuit system by the density lock. During the stage of warming up, with the help of special structure of the density lock, the position of the transition points of the heat transfer modes is controlled effectively, and the formation of interface between the cold and hot fluids is promoted. During the self-balanced stage, with the help of the characteristics of self-stability of the hydraulic balance, the motion of interface is controlled effectively, and the hydraulic balance is established automatically in the density lock. All of the results fully prove the feasibility of self-balanced startup. (authors)

  16. A strongly heated neutron star in the transient z source MAXI J0556-332

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Jeroen; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue 37-582D, Cambridge, MA 02139 (United States); Fridriksson, Joel K.; Wijnands, Rudy [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Cackett, Edward M. [Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St., Detroit, MI 48201 (United States); Degenaar, Nathalie [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Linares, Manuel [Instituto de Astrofísica de Canarias, c/ Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Lin, Dacheng, E-mail: jeroen@space.mit.edu [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-11-10

    We present Chandra, XMM-Newton, and Swift observations of the quiescent neutron star in the transient low-mass X-ray binary MAXI J0556-332. Observations of the source made during outburst (with the Rossi X-ray Timing Explorer) reveal tracks in its X-ray color-color and hardness-intensity diagrams that closely resemble those of the neutron-star Z sources, suggesting that MAXI J0556-332 had near- or super-Eddington luminosities for a large part of its ∼16 month outburst. A comparison of these diagrams with those of other Z sources suggests a source distance of 46 ± 15 kpc. Fits to the quiescent spectra of MAXI J0556-332 with a neutron-star atmosphere model (with or without a power-law component) result in distance estimates of 45 ± 3 kpc, for a neutron-star radius of 10 km and a mass of 1.4 M {sub ☉}. The spectra show the effective surface temperature of the neutron star decreasing monotonically over the first ∼500 days of quiescence, except for two observations that were likely affected by enhanced low-level accretion. The temperatures we obtain for the fits that include a power law (kT{sub eff}{sup ∞} = 184-308 eV) are much higher than those seen for any other neutron star heated by accretion, while the inferred cooling (e-folding) timescale (∼200 days) is similar to other sources. Fits without a power law yield higher temperatures (kT{sub eff}{sup ∞} = 190-336 eV) and a shorter e-folding time (∼160 days). Our results suggest that the heating of the neutron-star crust in MAXI J0556-332 was considerably more efficient than for other systems, possibly indicating additional or more efficient shallow heat sources in its crust.

  17. Performance of ammonia–water based cycles for power generation from low enthalpy heat sources

    International Nuclear Information System (INIS)

    Mergner, Hanna; Weimer, Thomas

    2015-01-01

    Cost efficient power generation from low temperature heat sources requires an optimal usage of the available heat. In addition to the ORC (Organic Rankine Cycles), cycles with ammonia and water as working fluid show promising results regarding efficiency. Due to their non-isothermal phase change, mixtures can adapt well to a liquid heat source temperature profile and reduce the exergetic losses. In this analysis thermodynamic calculations on the layouts of two existing ammonia–water cycles are compared: a geothermal power plant based on a Siemens’ patent and a modified lab plant based on a patent invented by Kalina (KCS-34). The difference between the two cycles is the position of the internal heat recovery. Cycle simulations were carried out at defined boundary conditions in order to identify optimal operation parameters. For the selected heat source of 393.15 K (hot water) the ammonia mass fraction between 80% and 90% results in the best performance in both configurations. In general, the layout of Siemens achieves a slightly better efficiency compared to the KCS-34. Compared to an ORC using R245fa as working fluid, the exergetic efficiency can be increased by the ammonia/water based cycles by approximately 25%. - Highlights: • Two NH 3 /H 2 O based cycles based on existing plants are analyzed and compared. • A simple KCS-34 focuses on a high enthalpy difference at the turbine. • The Kalina cycle of a Siemens patent KC SG1 runs on a high vapor mass flow. • The layout of the KC SG1 shows slightly better results compared to the KCS-34. • NH 3 /H 2 O cycles show an efficiency increase compared to a regular ORC with R245fa

  18. Numerical simulation of heat and mass transport during hydration of Portland cement mortar in semi-adiabatic and steam curing conditions

    OpenAIRE

    Hernandez-Bautista, E.; Bentz, D. P.; Sandoval-Torres, S.; de Cano-Barrita, P. F. J.

    2016-01-01

    A model that describes hydration and heat-mass transport in Portland cement mortar during steam curing was developed. The hydration reactions are described by a maturity function that uses the equivalent age concept, coupled to a heat and mass balance. The thermal conductivity and specific heat of mortar with water-to-cement mass ratio of 0.30 was measured during hydration, using the Transient Plane Source method. The parameters for the maturity equation and the activation energy were obtaine...

  19. A novel PV/T-air dual source heat pump water heater system: Dynamic simulation and performance characterization

    International Nuclear Information System (INIS)

    Cai, Jingyong; Ji, Jie; Wang, Yunyun; Zhou, Fan; Yu, Bendong

    2017-01-01

    Highlights: • The PV/T evaporator and air source evaporator connect in parallel and operate simultaneously. • A dynamic model is developed to simulate the behavior of the system. • The thermal and electrical characteristics of the PV/T evaporator are evaluated. • The contribution of the air source evaporator and PV/T evaporator has been discussed. - Abstract: To enable the heat pump water heater maintain efficient operation under diverse circumstances, a novel PV/T-air dual source heat pump water heater (PV/T-AHPWH) has been proposed in this study. In the PV/T-AHPWH system, a PV/T evaporator and an air source evaporator connect in parallel and operate simultaneously to recover energy from both solar energy and environment. A dynamic model is presented to simulate the behavior of the PV/T-AHPWH system. On this basis, the influences of solar irradiation, ambient temperature and packing factor have been discussed, and the contributions of air source evaporator and PV/T evaporator are evaluated. The results reveal that the system can obtain efficient operation with the average COP above 2.0 under the ambient temperature of 10 °C and solar irradiation of 100 W/m 2 . The PV/T evaporator can compensate for the performance degradation of the air source evaporator caused by the increasing condensing temperature. As the evaporating capacity in PV/T evaporator remains at relatively low level under low irradiation, the air source evaporator can play the main role of recovering heat. Comparing the performance of dual source heat pump system employing PV/T collector with that utilizing normal solar thermal collector, the system utilizing PV/T evaporator is more efficient in energy saving and performance improvement.

  20. Energy balance in the transformation centers

    International Nuclear Information System (INIS)

    Alvim, Carlos Feu; Ferreira, Omar Campos; Eidelman, Frida.

    2005-01-01

    Carbon balance is an important instrument to identify the emission sources of greenhouse effect gases. Since energy use and transformation are fundamental for increasing these gases in the atmosphere, the carbon balance survey can be used to identify sectors and fuels to which priority should be given regarding emissions mitigation. In the case of transformation centers (installations where primary or secondary sources are converted into sub-products or other energy form) the balance indicated some problems regarding the Brazilian inventory calculation. Problems concerning the National Energy Balance data used here were also identified. (author)

  1. Characterization of Site for Installing Open Loop Ground Source Heat Pump System

    Science.gov (United States)

    Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.

    2014-12-01

    This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  2. Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell

    International Nuclear Information System (INIS)

    Huang, Bi; Jian, Qifei; Luo, Lizhong; Zhao, Jing

    2017-01-01

    Highlights: • A novel heat recovery device was designed and tested. • Aiming at avoiding liquid slugging in cold areas. • Recovery of the waste energy of compressor housing. • Refrigerant is heated with the energy recovered before it is sucked into the compressor. • Requires no extra power while the recovery system is operating. - Abstract: A novel heat recovery device designed to recover the heat that is released from the outer surface of heat pump compressors, and to enhance the performance of heat pumps in cold areas was made and tested in this study. The novel heat recovery device consists of three fundamental units: a heat absorption unit, a heat emission unit and heat pipes. An amount of work focused on recovering the heat of compressors through oil system, but few studies concentrated on the housing. The main advantage of the heat recovery device is no need for extra energy consumption for its only driving force is the temperature difference between the compressor shell and the working fluid inside the suction line. The experimental results were obtained from a series of tests with a R410A air-source heat pump. Effects of the device are analyzed with respect of the suction temperature, temperature distribution among the housing, input power and exergy destruction. Moreover, the impact on the heating capacity is also discussed. Further, direction for improvement is also given based on the analysis.

  3. On buoyancy-driven natural ventilation of a room with a heated floor

    Science.gov (United States)

    Gladstone, Charlotte; Woods, Andrew W.

    2001-08-01

    The natural ventilation of a room, both with a heated floor and connected to a cold exterior through two openings, is investigated by combining quantitative models with analogue laboratory experiments. The heated floor generates an areal source of buoyancy while the openings allow displacement ventilation to operate. When combined, these produce a steady state in which the air in the room is well-mixed, and the heat provided by the floor equals the heat lost by displacement. We develop a quantitative model describing this process, in which the advective heat transfer through the openings is balanced with the heat flux supplied at the floor. This model is successfully tested with observations from small-scale analogue laboratory experiments. We compare our results with the steady-state flow associated with a point source of buoyancy: for a given applied heat flux, an areal source produces heated air of lower temperature but a greater volume flux of air circulates through the room. We generalize the model to account for the effects of (i) a cooled roof as well as a heated floor, and (ii) an external wind or temperature gradient. In the former case, the direction of the flow through the openings depends on the temperature of the exterior air relative to an averaged roof and floor temperature. In the latter case, the flow is either buoyancy dominated or wind dominated depending on the strength of the pressure associated with the wind. Furthermore, there is an intermediate multiple-solution regime in which either flow regime may develop.

  4. Ground source heat pump retrofit at North Bonneville, WA City Hall

    Energy Technology Data Exchange (ETDEWEB)

    Hughey, M. [Skamania Co. PUD No. 1, Carson, WA (United States)

    1997-12-31

    In 1995, the City of North Bonneville, WA installed a 10-ton Ground Source Heat Pump (GSHP) to replace the electric resistance furnace in its 4,000 square, foot City Hall. North Bonneville is 30 miles east of Portland, Oregon, at river level in the Columbia River Gorge. Funded jointly by the Bonneville Power Administration, the State of Washington and the City, this project has successfully reduced the heating cost of City Hall by nearly one-half while dramatically increasing comfort. It has become a commercial model in the Pacific Northwest for assessing values of commercial GSHP retrofits. This interim report compares estimated savings with actual experience for the first operating year. Projected savings were $1,500; actual savings were $1,390 prior to adjustment for extreme weather. Adjusted savings for Heating Year 1996 were $1,490, a 47 percent decrease. Maintenance savings (not itemized) were in addition to this amount. Monitoring continues in 1997.

  5. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR - Part 2 -

    International Nuclear Information System (INIS)

    Lee, Sang Il; Yoo, Yeon Jae; Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan

    2015-01-01

    In the paper, reverse engineering was performed on SCMHR proposed by NGNP to reconstruct it into PEPSE. This model was used to analyze sensitivity of key variables. The paper also presented a concept design of thermal cycle, where heat of nuclear reactor is partially used for hydrogen production and remaining heat is used to generate power through IHX. This study introduces the results of concept designs on thermal cycle constructed using methods that are somewhat different from the previous results. As for the first method, efficiency under main steam condition proposed by NGNP was analyzed using ultra supercritical steam cycle, which exhibits highest efficiency among commercial technologies available. Another method was to prepare heat balance using supercritical CO 2 cycle, which has recently been commercialized in small scale and is undergoing R and D efforts for scale-up. As a part of concept design for high temperature gas reactor, this paper attempts different types of electricity generation cycle design and compares their advantages and disadvantages. A reference model was developed to change original design of NGNP. Sensitivity analysis can be performed according to changing performance of facility and external conditions. A Rankine cycle model operated under SC or USC condition was created by adding to a previous study to carry out key sensitivity analysis. Data for future design will be prepared through supplementary study, and the ultimate objective is to make contribution to optimal design of high temperature gas reactor

  6. Heat Balance Study on Integrated Cycles for Hydrogen and Electricity Generation in VHTR - Part 2 -

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Il; Yoo, Yeon Jae [Hyundai Engineering Company Ltd., Seouul (Korea, Republic of); Heo, Gyunyoung; Park, Soyoung; Kang, Yeon Kwan [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    In the paper, reverse engineering was performed on SCMHR proposed by NGNP to reconstruct it into PEPSE. This model was used to analyze sensitivity of key variables. The paper also presented a concept design of thermal cycle, where heat of nuclear reactor is partially used for hydrogen production and remaining heat is used to generate power through IHX. This study introduces the results of concept designs on thermal cycle constructed using methods that are somewhat different from the previous results. As for the first method, efficiency under main steam condition proposed by NGNP was analyzed using ultra supercritical steam cycle, which exhibits highest efficiency among commercial technologies available. Another method was to prepare heat balance using supercritical CO{sub 2} cycle, which has recently been commercialized in small scale and is undergoing R and D efforts for scale-up. As a part of concept design for high temperature gas reactor, this paper attempts different types of electricity generation cycle design and compares their advantages and disadvantages. A reference model was developed to change original design of NGNP. Sensitivity analysis can be performed according to changing performance of facility and external conditions. A Rankine cycle model operated under SC or USC condition was created by adding to a previous study to carry out key sensitivity analysis. Data for future design will be prepared through supplementary study, and the ultimate objective is to make contribution to optimal design of high temperature gas reactor.

  7. Balancing Hydronic Systems in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, R.; Ludwig, P.; Maurer, T.

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution and controls. The effects of imbalance include tenant discomfort, higher energy use intensity and inefficient building operation. This paper explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The research was conducted by The Partnership for Advanced Residential Retrofit (PARR) in conjunction with Elevate Energy. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61 degrees F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1 degrees F to 15.5 degrees F.

  8. Balancing Hydronic Systems in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Ruch, Russell [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit, Chicago, IL (United States); Maurer, Tessa [Partnership for Advanced Residential Retrofit, Chicago, IL (United States)

    2014-07-01

    In multifamily hydronic systems, temperature imbalance may be caused by undersized piping, improperly adjusted balancing valves, inefficient water temperature and flow levels, and owner/occupant interaction with the boilers, distribution, and controls. The imbalance leads to tenant discomfort, higher energy use intensity, and inefficient building operation. This research, conducted by Building America team Partnership for Advanced Residential Retrofit, explores cost-effective distribution upgrades and balancing measures in multifamily hydronic systems, providing a resource to contractors, auditors, and building owners on best practices to improve tenant comfort and lower operating costs. The team surveyed existing knowledge on cost-effective retrofits for optimizing distribution in typical multifamily hydronic systems, with the aim of identifying common situations and solutions, and then conducted case studies on two Chicago area buildings with known balancing issues in order to quantify the extent of temperature imbalance. At one of these buildings a booster pump was installed on a loop to an underheated wing of the building. This study found that unit temperature in a multifamily hydronic building can vary as much as 61°F, particularly if windows are opened or tenants use intermittent supplemental heating sources like oven ranges. Average temperature spread at the building as a result of this retrofit decreased from 22.1°F to 15.5°F.

  9. Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate

    Science.gov (United States)

    Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.

    2018-06-01

    Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.

  10. Processing summary report: Fabrication of cesium and strontium heat and radiation sources

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.; Surma, J.E.; Allen, R.P.

    1989-02-01

    The Pacific Northwest Laboratory (PNL), has produced 30 isotopic heat sources (canisters) for the Federal Republic of Germany (FRG) to be used as part of a repository testing program in the Asse Salt Mine. PNL program work involved the filling, closure, and decontamination of the 30 canisters. The canisters were fabricated (filled) in three separate processing campaigns using the radioactive liquid-fed ceramic melter to produce a borosilicate glass. Within the borosilicate glass matrix radiochemical constituents ( 137 Cs and 90 Sr) were immobilized to yield a product with a predetermined decay heat and surface radiation exposure rate

  11. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    Science.gov (United States)

    Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  12. Optimization of ground source heat pumps systems through the implementation of hybrid systems; Optimizacion de las instalaciones de bomba de calor geotermica mediante la implementacion de sistemas hibridos

    Energy Technology Data Exchange (ETDEWEB)

    Magraner, T.; Quilis, M. S.; Martinez, S.

    2009-07-01

    One of the fundamental aspects to consider in the design of a ground heat pump system is the heat balance in the ground since thermal saturation of the ground produces a decreasing of the performance of the system throughout its useful life. The hybrid geothermal system which combined geothermal heat pump system with other systems for generation or dissipation energy are very suitable for balancing the heat exchanger meters needed for the proper functioning of the system, important aspect to reduce costs and achieve attractive return periods of the initial investment. Energesis Ingenieria has developed and implemented in two office buildings, a design of hybrid systems based on the combination of a geothermal heat pump and air-condensed units (dry coolers) that can ensure energy efficiencies comparable to geothermal pure systems, reducing substantially the investment cost. (Author) 5 refs.

  13. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  14. Regulatory Barriers for Flexible Coupling of the Nordic Power and District Heating Markets

    DEFF Research Database (Denmark)

    Skytte, Klaus; Olsen, Ole Jess

    2016-01-01

    that the choice of technologies for heat generation is mainly driven by outdated policies and tax conditions that create barriers for additional flexibility in the overall energy system. However, the balancing markets may be a main driver for introducing more electric boilers into DH and thereby increase its......Large share of variable renewable energy sources (VRE) is being deployed in the Nordic countries, especially wind power. This calls for additional flexibility of the power market. With the right coupling to the underlying national and local district heating (DH) markets, large shares of flexibility...

  15. Thermoregulation of water foraging honeybees--balancing of endothermic activity with radiative heat gain and functional requirements.

    Science.gov (United States)

    Kovac, Helmut; Stabentheiner, Anton; Schmaranzer, Sigurd

    2010-12-01

    Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (T(a)) and solar radiation they are likely to be exposed in their natural environment in Middle Europe. The mean thorax temperature (T(th)) during foraging stays was regulated at a constantly high level (37.0-38.5 °C) in a broad range of T(a) (3-30 °C). At warmer conditions (T(a)=30-39 °C) T(th) increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of T(body)-T(a) of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a T(a) of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase T(th) by about 1-3 °C to improve force production of flight muscles. At higher T(a) they exhibited cooling efforts to get rid of excess heat. A high T(th) also allowed regulation of the head temperature high enough to guarantee proper function of the bees' suction pump even at low T(a). This shortened the foraging stays and this way reduced energetic costs. With decreasing T(a) bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table

    International Nuclear Information System (INIS)

    Shimazaki, Yoichi

    2003-01-01

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both heat cascading systems and thermal recycling systems in industries located around urban areas. It is necessary to introduce heat cascading systems in the industrial sector in Japan to reduce carbon dioxide emissions. The concept of heat cascading is the multi-stage use of thermal energy by temperature level. This paper introduces three energy policies for introducing the heat cascading systems. The author develops an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Carbon dioxide emission constraints result in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature heat is shifted to refrigeration. It was found that increasing the amount of garbage combustion waste heat could reduce electric power for the turbo compression refrigerator by promoting waste heat driven ammonia absorption refrigerator. In addition, this study proposes an energy cascade balance table with respect to the temperature level

  17. On the mineralization model of 'three sources--heat, water and uranium'

    International Nuclear Information System (INIS)

    Li Xueli

    1992-01-01

    In response to the relations between geological and geothermal settings, geothermal water and uranium mineralizations in the Southeastern China, the model of uranium mineralization in discharge area (depressurization area) of fossil geothermal systems in Mesozoic-Cenozoic Volcanic-magmatic active areas has been put forward and expounded in the view of mineral-formation by the 'three sources'-heat, water and uranium

  18. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  19. BRIGITTE, Dose Rate and Heat Source and Energy Flux for Self-Absorbing Rods

    International Nuclear Information System (INIS)

    Jegu, M.; Clement, M.

    1978-01-01

    1 - Nature of physical problem solved: Calculation of dose rate, heat sources or energy flux. The sources are self-absorbing radioactive rods. The shielding consists of blocks of which the cross section can be defined. 2 - Method of solution: Exponential attenuation and build-up factor between source points and detector points. Source integration with error estimate. Automatic or controlled build-up with monitor print-out. 3 - Restrictions on the complexity of the problem: Number of energy points, regions, detector points, abscissa points of the rod, vertical position of the rod, are all limited to ten. The maximum total number of vertical steps is 124

  20. Dynamic power balance analysis in JET

    International Nuclear Information System (INIS)

    Matthews, G F; Silburn, S A; Challis, C D; Iglesias, D; King, D; Eich, T; Sieglin, B; Contributors, JET

    2017-01-01

    The full scale realisation of nuclear fusion as an energy source requires a detailed understanding of power and energy balance in current experimental devices. In this we explore whether a global power balance model in which some of the calibration factors applied to the source or sink terms are fitted to the data can provide insight into possible causes of any discrepancies in power and energy balance seen in the JET tokamak. We show that the dynamics in the power balance can only be properly reproduced by including the changes in the thermal stored energy which therefore provides an additional opportunity to cross calibrate other terms in the power balance equation. Although the results are inconclusive with respect to the original goal of identifying the source of the discrepancies in the energy balance, we do find that with optimised parameters an extremely good prediction of the total power measured at the outer divertor target can be obtained over a wide range of pulses with time resolution up to ∼25 ms. (paper)