WorldWideScience

Sample records for heat source radioisotope

  1. Radioisotopic heat source

    Science.gov (United States)

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  2. Environmental assessment for radioisotope heat source fuel processing and fabrication

    International Nuclear Information System (INIS)

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs

  3. Assessment of dynamic energy conversion systems for radioisotope heat sources

    International Nuclear Information System (INIS)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745 0 C, and case III with a BOL source temperature of 945 0 C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of 238 Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass

  4. Power performance of the general-purpose heat source radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Rock, B.J.

    1986-01-01

    The General-Purpose Heat Source Radioisotope Thermoelectric Generator (GRHS-RTG) has been developed under the sponsorship of the Department of Energy (DOE) to provide electrical power for the National Aeronautics and Space Administration (NASA) Galileo mission to Jupiter and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun. A total of five nuclear-heated generators and one electrically heated generator have been built and tested, proving out the design concept and meeting the specification requirements. The GPHS-RTG design is built upon the successful-technology used in the RTGs flown on the two NASA Voyager spacecraft and two US Air Force communications satellites. THe GPHS-RTG converts about 4400 W(t) from the nuclear heat source into at least 285 W(e) at beginning of mission (BOM). The GPHS-RTG consists of two major components: the General-Purpose Heat Source (GPHS) and the Converter. A conceptual drawing of the GPHs-RTG is presented and its design and performance are described

  5. Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Stacy, E.; Burgan, C.E.

    In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone

  6. An assessment of dynamic energy conversion systems for terrestrial radioisotope heat sources

    International Nuclear Information System (INIS)

    Thayer, G.R.

    1985-01-01

    The use of dynamic conversion systems to convert to electricity the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source is examined. Brayton Cycle, three Organic Rankine systems (Barber-Nichols/ORMAT, Sundstrand, and TRW concepts), Organic Rankine plus thermoelectrics, and Stirling Engine systems were studied. The systems were ranked for a North Warning System mission using a Los Alamos Multi-Attribute Decision Theory code. Three different heat source designs were used: Case I with a beginning of life (BOL) source temperature of 640 0 C, Case II with a BOL source temperature of 745 0 C, and Case III with a BOL source temperature of 945 0 C. The Stirling Engine system was the top-ranked system for Cases I and II, closely followed by the ORC systems in Case I and ORC and thermoelectrics in Case II. The Brayton-Cycle system was top-ranked for Case III, with the Stirling Engine system a close second

  7. Efficient thermo-mechanical generation of electricity from the heat of radioisotopes

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.; Yeats, F.W.

    1975-01-01

    The thermomechanical generator uses a thermomechanical oscillator to convert heat efficiently into a mechanical oscillation which in turn excites a suitable transducer to generate alternating electricity. The thermomechanical oscillator used is based on the Stirling cycle, but avoids the need for rotary motion and for sliding pistons by having a mechanically-resonant, spring-suspended displacer, and by using an oscillating metal diaphragm to provide the mechanical output. The diaphragm drives an alternator consisting of a spring-suspended permanent magnet oscillating between fixed pole pieces which carry the electrical power output windings. Because a thermomechanical generator is much more efficient than a thermo-electric generator at comparable temperatures, it is particularly suitable for use with a radioisotope heat source. The amounts of radioisotope and of shielding required are both greatly reduced. A machine heated by radioisotopes and delivering 10.7W ac at 80Hz began operating in October, 1974. Operating experience with this machine is reported, and these results, together with those obtained with higher-powered machines heated by other means, are used to calculate characteristics and performance of thermo-mechanical radioisotope generators capable of using heat sources such as the waste-management 90 Sr radioisotope sources becoming available from the US nuclear waste management programme. A design to use one of these heat sources in a 52-W underwater generator is described

  8. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  9. Radio-isotope powered light source

    International Nuclear Information System (INIS)

    Spottiswoode, N.L.; Ryden, D.J.

    1979-01-01

    The light source described comprises a radioisotope fuel source, thermal insulation against heat loss, a biological shield against the escape of ionizing radiation and a material having a surface which attains incandescence when subject to isotope decay heat. There is then a means for transferring this heat to produce incandescence of the surface and thus emit light. A filter associated with the surface permits a relatively high transmission of visible radiation but has a relatively high reflectance in the infra red spectrum. Such light sources require the minimum of attention and servicing and are therefore suitable for use in navigational aids such as lighthouses and lighted buoys. The isotope fuel sources and thus the insulation and shielding and the incandescent material can be chosen for the use required and several sources, materials, means of housing etc. are detailed. Operation and efficiency are discussed. (U.K.)

  10. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  11. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01

    The general-purpose heat source provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel

  12. The General-Purpose Heat Source Radioisotope Thermoelectric Generator: Power for the Galileo and Ulysses missions

    International Nuclear Information System (INIS)

    Bennett, G.L.; Lombardo, J.J.; Hemler, R.J.; Peterson, J.R.

    1986-01-01

    Electrical power for NASA's Galileo mission to Jupiter and ESA's Ulysses mission to explore the polar regions of the Sun will be provided by General-Purpose Heat Source Radioisotope Thermo-electric Generators (GPHS-RTGs). Building upon the successful RTG technology used in the Voyager program, each GPHS-RTG will provide at least 285 W(e) at beginning-of-mission. The design concept has been proven through extensive tests of an electrically heated Engineering Unit and a nuclear-heated Qualification Unit. Four flight generators have been successfully assembled and tested for use on the Galileo and Ulysses spacecraft. All indications are that the GPHS-RTGs will meet or exceed the power requirement of the missions

  13. Radioisotope Power Sources

    International Nuclear Information System (INIS)

    Culwell, J. P.

    1963-01-01

    The radioisotope power programme of the US Atomic Energy Commission has brought forth a whole new technology of the use of radioisotopes as energy sources in electric power generators. Radioisotope power systems are particularly suited for remote applications where long-lived, compact, reliable power is needed. Able to perform satisfactorily under extreme environmental conditions of temperature, sunlight and electromagnetic radiations, these ''atomic batteries'' are attractive power sources for remote data collecting devices, monitoring systems, satellites and other space missions. Radioisotopes used as fuels generally are either alpha or beta emitters. Alpha emitters are the preferable fuels but are more expensive and less available than beta fuels and are generally reserved for space applications. Beta fuels separated from reactor fission wastes are being used exclusively in land and sea applications at the present. It can be expected, however, that beta emitters such as stiontium-90 eventually will be used in space. Development work is being carried out on generators which will use mixed fission products as fuel. This fuel will be less expensive than the pure radioisotopes since the costs of isotope separation and purification are eliminated. Prototype thermoelectric generators, fuelled with strontium-90 and caesium-137, are now in operation or being developed for use in weather stations, marine navigation aids and deep sea monitoring devices. A plutonium-238 thermoelectric generator is in orbit operating as electric power source in a US Navy TRANSIT satellite. Generators are under development for use on US National Aeronautics and Space Administration missions. The large quantities of radioactivity involved in radioisotope power sources require that special attention be given to safety aspects of the units. Rigid safety requirements have been established and extensive tests have been conducted to insure that these systems can be employed without creating undue

  14. Improvements in or relating to devices for conducting excess heat away from heat sources

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1976-01-01

    Reference is made to radioisotope powered heat engines. Should such an engine stop working for any reason the radioisotope heat source will continue to generate heat, and this may cause overheating and possible damage to the engine as well as the heat source. A device is described for conducting excess heat from the heat source to a heat sink but which in normal operation of the engine will impede heat conduction and so reduce thermal losses. The device may be used to support and/or locate the heat source. Constructional and operational details are given. (U.K.)

  15. Advanced radioisotope heat source for Stirling Engines

    International Nuclear Information System (INIS)

    Dobry, T.J.; Walberg, G.

    2001-01-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions

  16. Member for conducting excess heat away from heat sources

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1975-01-01

    Should a radioisotope-powered engine (e.g., a Stirling cycle engine for generating electricity) stop working for any reason, the radioisotope heat source will continue to generate heat. This will result in a rise in temperature which may cause overheating of and possible damage to the engine as well as to the heat source itself. The invention provides a support/location member for conducting excess heat from the heat source and which, in normal operation of the engine, will impede the conduction of heat away from the heat source and so reduce thermal losses. The member is of elongated form and comprises a stack of heat-conductive slugs disposed in a tube and in interspaced relationship along the axis of the tube. The tube supports the slugs in axial alignment. Means are provided for attaching an end one of the slugs to the heat source and means operable on overheating of said end one of the slugs are also provided whereby the slugs are able to move into heat-conducting contact with each other so as to conduct the excess heat away from said heat source. The slugs may be brazed to the tube whereby progressive overheating of the slugs along the stack results in an overheated slug being freed from attachment to the tube so as to allow the overheated slug to move along the stack and engage the next slug in line in heat-conducting contact. (U.S.)

  17. Advanced radioisotope power source options for Pluto Express

    International Nuclear Information System (INIS)

    Underwood, M.L.

    1995-01-01

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors

  18. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  19. Biological effects of intracorporeal radioisotope heat sources

    International Nuclear Information System (INIS)

    Gillis, M.F.; Decker, J.R.; Karagianes, M.T.

    1976-01-01

    A surface heat flux of 0.04 watts/cm 2 from a retroperitoneal implant with healthy surface ingrowth of tissue prior to generation of heat is intolerable, producing gross tissue necrosis. Percutaneous cooling of hot implants during the post-operative healing period is a feasible technique, but our current plutonium heat source implant design has been proven of inadequate size and a new design is described. Rough calculations based on tissue conductivity and conductance values suggest that even with this larger device, added heat to proximate tissues may produce long-term changes even though the heat burden may be tolerable over relatively short periods

  20. Titanium tritide radioisotope heat source development: palladium-coated titanium hydriding kinetics and tritium loading tests

    International Nuclear Information System (INIS)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  1. Radioisotopes for heat-source applications

    International Nuclear Information System (INIS)

    Hoisington, J.E.

    1982-01-01

    Potential DOD requirements for noninterruptable power sources could total 1 MW thermal by FY 1990. Of the three isotopes considered, ( 90 Sr, 147 Pm, 238 Pu) 90 Sr is the only one available in sufficient amounts to meet this requirement. To meet the DOD FY 1990 requirements, it would be necessary to undertake 90 Sr recovery operations from spent fuel reprocessing at SRP, Hanford, and the Barnwell Nuclear Fuels Plant (BNFP). 90 Sr recovery from the existing alkaline high level waste (HLW) at Hanford and SRP is not attractive because the isotopic purity of the 90 Sr is below that required for DOD applications. Without reprocessing LWR spent fuel, SRP and Hanford could not supply the demand of 1 MW thermal until FY 1996. Between FY 1983 and FY 1996, SRP and Hanford could supply approximately 0.70 MW of 90 Sr and 0.15 MW of 147 Pm. SRP could supply an additional 0.15 MW from the production and recovery of 238 Pu. Strontium-90 is the most economical of the three heat source radionuclides considered. The 90 Sr unit recovery cost from SRP fresh acid waste would be $180/watt. The BNFP 90 Sr recovery cost would be $130/watt to $235/watt depending on the age and burnup of the LWR spent fuel. Hanford 90 Sr recovery costs form Purex fresh acid waste are unavailable, but they are expected to be comparable to the SRP costs. 147 Pm and 238 Pu are considerably more expensive heat source materials. 147 Pm recovery costs at SRP are estimated to be $450/watt. As with 90 Sr, the Hanford 147 Pm recovery costs are expected to be comparabl to the SRP costs. Production of high assay (93.5%) 238 Pu at SRP from excess 231 Np would cost about $1160/watt, while recovery of low assay (27%) 238 Pu from the waste stream is estimated at $1850/watt

  2. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    Science.gov (United States)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  3. Control of radioisotopes and radiation sources in Indonesia

    International Nuclear Information System (INIS)

    Ridwan, M.

    2001-01-01

    Radioisotopes and radiation sources are extensively used in Indonesia in medicine, industry, mining, agriculture and research. These materials are controlled by the regulatory authority, according to established legal procedures. The Nuclear Energy Control Board of Indonesia (BAPETEN), which was established in 1998 through the Nuclear Energy Act No. 10/1997, is entrusted with the control of any application of nuclear energy, including the application of radioisotopes and radiation sources, through regulation, licensing and inspection. The control is aimed to assure welfare, security and peace, the safety and health of workers and the public, and environmental protection. The number of licences issued to date is around 2400, consisting of 1600 licences for radioisotopes and radiation sources used in hospitals, 347 in radiography, 256 in industry, 53 in mining, and the rest in many other areas such as research and agriculture. A licence can cover one or more radioisotopes or radiation sources, depending on the location of the user institution. These radioisotopes and radiation sources are Co-60, Cs-137, Ir-192, Ra-226, Am-241, Sr-90, Kr-85, Pm-147, linear accelerator and X-ray, and short half-life radioisotopes such as I-125, I-131 and Tc-99m. There are 10 LINACs, 27 X-ray medicines, 61 radioisotope devices for Co-60 and Cs-137, and 10 mHDR Ir-192 for therapeutic purposes currently used in Indonesia and some Ra-226 in storage. Any activity related to the application of nuclear energy is required to be conducted in a manner which observes safety and security. According to the legal requirements, each user has to employ at least one radiation safety officer. To improve the control of the application of radiation sources and radioactive material in the country, BAPETEN introduced some new approaches to the users, including regular dialogues with radiation safety officers and the management of the users, requalification for radiation protection officers twice in five

  4. Radioisotope thermionic converters for space applications

    International Nuclear Information System (INIS)

    Miskolczy, G.; Lieb, D.P.

    1990-01-01

    The recent history of radioisotope thermionics is reviewed, with emphasis on the U.S. programs, and the prospects for the future are assessed. In radioisotope thermionic converters the emitter heat is generated by the decay of a radioactive isotope. The thermionic converter emitter is mounted directly on a capsule containing the isotope. The rest of the capsule is generally insulated to reduce thermal loss. The development of isotope-fueled thermionic power systems for space application has been pursued since the late 1950's. The U.S. effort was concentrated on modular systems with alpha emitters as the isotope heat source. In the SNAP-13 program, the heat sources were Cerium isotopes and each module produced about 100 watts. The converters were planar diodes and the capsule was insulated with multi-foil insulation

  5. Future radioisotope power needs for missions to the solar system

    International Nuclear Information System (INIS)

    Mondt, J.F.; Underwood, M.L.; Nesmith, B.J.

    1997-01-01

    NASA and DOE plan a cooperative team effort with industry, government laboratories and universities to develop a near term, low cost, low power (100 watt electric class), low mass (<10 kg), advanced radioisotope space power source (ARPS) and in the process reduce the plutonium-related costs as well. The near term is focused on developing an advanced energy converter to use with the General Purpose Heat Source (GPHS). The GPHS was developed and used for the current radioisotope thermoelectric generators (RTGs). Advanced energy converter technologies are needed as a more efficient replacement for the existing thermoelectric converters so that the space radioisotope power source mass and cost can be reduced. a more advanced technology space radioisotope power system program is also planned that addresses a longer-term need. Twenty first century robotic scientific information missions to the outer planets and beyond are planned to be accomplished with microspacecraft which may demand safe, even more compact, lower-power, lower-mass radioisotope power sources than those which can be achieved as a result of the near term efforts. The longer-term program focuses not only on converter technology but also on lower power, more compact radioisotope heat source technology and smaller, lower mass radioisotope heater units for second generation microspacecraft. This more ambitious, longer time-horizon focus necessarily occurs at this time on the technology R and D level rather than at the system technology level

  6. U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future

    Science.gov (United States)

    Cataldo, Robert L.; Bennett, Gary L.

    2011-01-01

    Radioisotope power systems (RPS) have been essential to the U.S. exploration of outer space. RPS have two primary uses: electrical power and thermal power. To provide electrical power, the RPS uses the heat produced by the natural decay of a radioisotope (e.g., plutonium-238 in U.S. RPS) to drive a converter (e.g., thermoelectric elements or Stirling linear alternator). As a thermal power source the heat is conducted to whatever component on the spacecraft needs to be kept warm; this heat can be produced by a radioisotope heater unit (RHU) or by using the excess heat of a radioisotope thermoelectric generator (RTG). As of 2010, the U.S. has launched 41 RTGs on 26 space systems. These space systems have ranged from navigational satellites to challenging outer planet missions such as Pioneer 10/11, Voyager 1/2, Galileo, Ulysses, Cassini and the New Horizons mission to Pluto. In the fall of 2011, NASA plans to launch the Mars Science Laboratory (MSL) that will employ the new Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) as the principal power source. Hundreds of radioisotope heater units (RHUs) have been launched to provide warmth to Apollo 11, used to provide heating of critical components in a seismic experiment package, Pioneer 10/11, Voyager 1/2, Galileo, Cassini, Mars Pathfinder, MER rovers, etc. to provide temperature control to critical spacecraft electronics and other mechanical devices such as propulsion system propellant valves. A radioisotope (electrical) power source or system (RPS) consists of three basic elements: (1) the radioisotope heat source that provides the thermal power, (2) the converter that transforms the thermal power into electrical power and (3) the heat rejection radiator. Figure 1 illustrates the basic features of an RPS. The idea of a radioisotope power source follows closely after the early investigations of radioactivity by researchers such as Henri Becquerel (1852-1908), Marie Curie (1867-1935), Pierre Curie (1859

  7. Radioisotope thermoelectric generators for implanted pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Pustovalov, A.A.; Bovin, A.V.; Fedorets, V.I.; Shapovalov, V.P.

    1986-08-01

    This paper discusses the development and application of long-life lithium batteries and the problems associated with miniature radioisotope thermoelectric generators (RITEG) with service lives of 10 years or longer. On eof the main problems encountered when devising a radioisotope heat source (RHS) for an RITEG is to obtain biomedical /sup 238/PuO/sub 2/ with a specific neutron yield of 3.10/sup 3/-4.10/sup 3/ (g /SUP ./ sec)/sup -1/, equivalent to metallic Pu 238, and with a content of gamma impurities sufficient to ensure a permissible exposure a permissible exposure does rate (EDR) of a mixture of neutron and gamma radiation. After carrying out the isotope exchange and purifying the initial sample of its gamma impurity elements, the authors obtain biomedical Pu 238 satisfying the indicated requirements king suitable for use in the power packs of medical devices. Taking the indicated specifications into account, the Ritm-1o and gamma radioisotope heat sources were designed, built, tested in models and under natural conditions, and then into production as radioisotope thermoelectric generators designed to power the electronic circuits of implanted pacemakers. The Ritm-MT and Gemma radioisotope thermoelectric generators described are basic units, which can be used as self-contained power supplies for electronic equipment with power requirements in the micromilliwatt range.

  8. Environmental assessment of general-purpose heat source safety verification testing

    International Nuclear Information System (INIS)

    1995-02-01

    This Environmental Assessment (EA) was prepared to identify and evaluate potential environmental, safety, and health impacts associated with the Proposed Action to test General-Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) assemblies at the Sandia National Laboratories (SNL) 10,000-Foot Sled Track Facility, Albuquerque, New Mexico. RTGs are used to provide a reliable source of electrical power on board some spacecraft when solar power is inadequate during long duration space missions. These units are designed to convert heat from the natural decay of radioisotope fuel into electrical power. Impact test data are required to support DOE's mission to provide radioisotope power systems to NASA and other user agencies. The proposed tests will expand the available safety database regarding RTG performance under postulated accident conditions. Direct observations and measurements of GPHS/RTG performance upon impact with hard, unyielding surfaces are required to verify model predictions and to ensure the continual evolution of the RTG designs that perform safely under varied accident environments. The Proposed Action is to conduct impact testing of RTG sections containing GPHS modules with simulated fuel. End-On and Side-On impact test series are planned

  9. Prospects for using implanted systems of assisted circulation and artificial heart with a radioisotope power source (biomedical, thermal, and radiation aspects)

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, I M; Dubrovskii, G P; Mosidze, T G; Bazhanov, A I.U.

    1983-02-01

    The capacity of dogs to diffuse heat (up to 50 W) from an artificial heart and to tolerate prolonged intracorporeal ionizing radiation from a radioisotope power source (/sup 238/Pu) was investigated, using electrical models of vascular blood heat exchangers that permit reproduction of elimination and heat transmission in autonomous systems. It was shown that up to 50 W can be discharged at temperatures of the wall-blood interface that do not exceed 43 degrees C. Clotting indexes, concentration of total protein, hemolysis, and serum enzyme activity during 1-1.5 months of heating remained within physiologically normal limits. A specific power load of up to 1.5 W/kg at ambient temperatures of 18-20 degrees C revealed no evidence of changes in heat production. By measuring the distribution of power of the dose absorbed around a 45-W plutonium source it was possible to estimate dose loads on critical organs and to assess overall risk of death from malignant tumors induced by radiation over a 10-year period: 6-12% for males and 8-14% for females. It is not very probable that use of the artificial heart with a radioisotope power source will be limited by thermal and radiational effects.

  10. A facility to remotely assemble radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools

  11. Radioisotope Sources of Electric Power

    Science.gov (United States)

    1973-09-20

    u) watt/cm-3 O) specific activity f) curia/watt (curie/a) a) half-life c) specific power output h) years (capacity) 1) days d) watt/p Polonium - 210 ...AD/A-001 210 RADIOISOTOPE SOURCES OF ELECTRIC POWER G. M. Fradkin, et al Army Foreign Science and Technology Center Charlottesville, Virginia 20...narticularlv for nurninn and irocess~ino of wastg.Sheatinc food , conversion of liruld oxtoner to des, and also for removal of imnurities and reula:tion

  12. Radioisotope sources for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Leonowich, J.; Pandian, S.; Preiss, I.L.

    1977-01-01

    Problems involved in developing radioisotope sources and the characteristics of potentially useful radioisotopes for X-ray fluorescence analysis are presented. These include the following. The isotope must be evaluated for the physical and chemical forms available, purity, half-life, specific activity, toxicity, and cost. The radiation hazards of the source must be considered. The type and amount of radiation output of the source must be evaluated. The source construction must be planned. The source should also present an advance over those currently available in order to justify its development. Some of the isotopes, which are not in use but look very promising, are indicated, and their data are tabulated. A more or less ''perfect'' source within a given range of interest would exhibit the following characteristics. (1) Decay by an isometric transition with little or no internal conversion, (2) Have an intense gamma transition near the absorption edge of the element(s) of interest with no high energy gammas, (3) Have a sufficiently long half-life (in the order of years) for both economic and calibration reasons, (4) Have a sufficiently large cross-section for production in a reasonable amount of time. If there are competing reactions the interfering isotopes should be reasonably short-lived, or if not, be apt to be separated from the isotope chemically with a minimum of difficulty. (T.G.)

  13. Design evolution and verification of the general-purpose heat source

    International Nuclear Information System (INIS)

    Schock, A.

    The General-Purpose Heat Source (GPHS) is a radioisotope heat source for use in space power systems. It employs a modular design, to make it adaptable to a wide range of energy conversion systems and power levels. Each 250 W module is completely autonomous, with its own passive safety provisions to prevent fuel release under all abort modes, including atmospheric reentry and earth impact. Prior development tests had demonstrated good impact survival as long as the iridium fuel capsules retained their ductility. This requires high impact temperatures, typically above 900 0 C and reasonably fine grain size, which in turn requires avoidance of excessive operating temperatures and reentry temperatures. These three requirements - on operating, reentry, and impact temperatures - are in mutual conflict, since thermal design changes to improve any one of these temperatures tend to worsen one or both of the others. This conflict creates a difficult design problem, which for a time threatened the success of the program. The present paper describes how this problem was overcome by successive design revisions, supplemented by thermal analyses and confirmatory vibration and impact tests; and how this may be achieved while raising the specific power of the GPHS to 83 W/lb, a 50% improvement over previously flown radioisotope heat sources

  14. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  15. Heat source component development program. Report for period March 1978--June 1978

    International Nuclear Information System (INIS)

    1978-07-01

    The General Purpose Heat Source (GPHS) is a radioisotope heat source being developed by LASL. The first intended application for the GPHS is the Solar Polar mission scheduled for 1983. Battelle's support of LASL during the current reporting period is reported. The specific efforts include: (1) analysis of trial designs with emphasis on comparison of performances of trial designs 1 and 2 and their modifications; and (2) helium vent development with emphasis on fabrication and qualification testing of platinum and iridium nonselective vents

  16. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    Science.gov (United States)

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC article comprising the radioisotope immobilized therein.

  17. Radioactive heat source and method of making same

    International Nuclear Information System (INIS)

    Elsner, N.B.

    1977-01-01

    A radioactive source of heat which is resistant to cremation conditions is made by encapsulating a radioisotope within a containment vessel and forming a refractory metal silicide diffusion coating exterior thereof. A secondary molybdenum vessel may be provided with a molybdenum silicide coating and then heated in air to oxidize its outer layer. A layer is applied exterior of the diffusion-coating which provides a continuous ceramic oxide layer upon subjection to cremation. This outer layer may be discrete silica carried in a hardenable binder of an organic polymer, and a minor amount of antimony is preferably also included

  18. Radioisotope Power Sources for MEMS Devices,

    International Nuclear Information System (INIS)

    Blanchard, J.P.

    2001-01-01

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a 63 Ni liquid source. A source volume containing 64 microCi provided a power of ∼0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications

  19. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  20. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  1. Light weight radioisotope heater unit (LWRHU) production for the Cassini mission

    International Nuclear Information System (INIS)

    Rinehart, G.H.

    1997-01-01

    The Light-Weight Radioisotope Heater Unit (LWRHU) is a [sup 238]PuO[sub 2] fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. The heat sources are required to maintain the temperature of specific components within normal operating ranges. The heat source consists of a hot- pressed [sup 238]PuO[sub 2] fuel pellet, a Pt-3ORh vented capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos National Laboratory has fabricated 180 heat sources, 157 of which will be used on the Cassini mission

  2. Heat source component development program. Report for July--December 1978

    International Nuclear Information System (INIS)

    Foster, E.L. Jr.

    1979-01-01

    This is the seventh of a series of reports describing the results of several analytical and experimental programs being conducted at Battelle-Columbus Laboratories to develop components for advanced radioisotope heat source applications. The heat sources will for the most part be used in advanced static and dynamic power conversion systems. Battelle's support of LASL during the current reporting period has been to determine the operational and reentry response of selected heat source trial designs, and their thermal response to a space shuttle solid propellant fire environment. Thermal, ablation, and thermal stress analyses were conducted using two-dimensional modeling techniques previously employed for the analysis of the earlier trial design versions, and modified in part to improve the modeling accuracy. Further modifications were made to improve the modeling accuracy as described herein. Thermal, ablation, and thermal stress analyses were then conducted for the trial design selected by LASL/DOE for more detailed studies using three-dimensional modeling techniques

  3. Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  4. Implanted artificial heart with radioisotope power source

    Energy Technology Data Exchange (ETDEWEB)

    Shumakov, V I; Griaznov, G M; Zhemchuzhnikov, G N; Kiselev, I M; Osipov, A P

    1983-02-01

    An atomic artificial heart for orthotopic implantation was developed with the following characteristics: volume, 1.2 L; weight, 1.5 kg; radioisotope power, 45 W; operating life, up to 5 years; hemodynamics, similar to natural hemodynamics. The artificial heart includes a thermal drive with systems for regulating power, feeding steam into the cylinders, return of the condensate to the steam generator, and delivery of power to the ventricles and heat container. The artificial heart is placed in an artificial pericardium partially filled with physiologic solution. It uses a steam engine with two operating cylinders that separately drive the left and right ventricles. There is no electronic control system in the proposed design. The operation of the heat engine is controlled, with preservation of autoregulation by the vascular system of the body. The separate drives for the ventricles is of primary importance as it provides for operation of the artificial heart through control of cardiac activity by venous return. Experimental testing on a hydromechanical bench demonstrated effective autoregulation.

  5. Explosion overpressure test series: General-Purpose Heat Source development: Safety Verification Test program

    International Nuclear Information System (INIS)

    Cull, T.A.; George, T.G.; Pavone, D.

    1986-09-01

    The General-Purpose Heat Source (GPHS) is a modular, radioisotope heat source that will be used in radioisotope thermoelectric generators (RTGs) to supply electric power for space missions. The first two uses will be the NASA Galileo and the ESA Ulysses missions. The RTG for these missions will contain 18 GPHS modules, each of which contains four 238 PuO 2 -fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) was conducted to assess the ability of the GPHS modules to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System vehicle (space shuttle) is a conceivable accident, the SVT plan included a series of tests that simulated the overpressure exposure the RTG and GPHS modules could experience in such an event. Results of these tests, in which we used depleted UO 2 as a fuel simulant, suggest that exposure to overpressures as high as 15.2 MPa (2200 psi), without subsequent impact, does not result in a release of fuel

  6. Applications of radioisotopes in medicine

    International Nuclear Information System (INIS)

    Sivaprasad, N.

    2012-01-01

    The application of radioisotopes in medicine is many folds. They can be classified into two main groups. (a) The radioisotope tagged labeled compounds suitable for safe administration in the body for diagnosis of various diseases of vital organs such as brain, kidney, thyroid etc and for treatment known as radiotherapy (b) The sealed source of radioisotopes for utilizing the radiation emitted from the radioisotope for treatment, particularly for radiation therapy of cancer. The former application of radioisotope in the field of medicine has led to the formation of special branch of medicine termed Nuclear Medicine - the branch of medicine deals with the use of radioisotope in the from of radiopharmaceuticals for investigation, diagnosis and treatment of diseases. Radioisotopes in the form of radiolabelled compound and bio-chemicals that are pharmaceutically and radiologically safe for administration in the body for diagnosis and treatment are called radiopharmaceuticals. The radiopharmaceuticals are the results of world-wide effort to bring nuclear energy in a tangible form for diagnosis and treatment. Radioisotopes as radiopharmaceuticals thus constitute one of the key requirements for nuclear medicine investigation and radiotherapy. In the case of sealed radioisotope source the radiation emitted by the radioactive source is utilized for the treatment and this mode of treatment is called radiation therapy where no radioactive substance is administrated into the body. This does not form the part of nuclear medicine

  7. Reactor-produced therapeutic radioisotopes

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    2002-01-01

    The significant worldwide increase in therapeutic radioisotope applications in nuclear medicine, oncology and interventional cardiology requires the dependable production of sufficient levels of radioisotopes for these applications (Reba, 2000; J. Nucl. Med., 1998; Nuclear News, 1999; Adelstein and Manning, 1994). The issues associated with both accelerator- and reactor-production of therapeutic radioisotopes is important. Clinical applications of therapeutic radioisotopes include the use of both sealed sources and unsealed radiopharmaceutical sources. Targeted radiopharmaceutical agents include those for cancer therapy and palliation of bone pain from metastatic disease, ablation of bone marrow prior to stem cell transplantation, treatment modalities for mono and oligo- and polyarthritis, for cancer therapy (including brachytherapy) and for the inhibition of the hyperplastic response following coronary angioplasty and other interventional procedures (For example, see Volkert and Hoffman, 1999). Sealed sources involve the use of radiolabeled devices for cancer therapy (brachytherapy) and also for the inhibition of the hyperplasia which is often encountered after angioplasty, especially with the exponential increase in the use of coronary stents and stents for the peripheral vasculature and other anatomical applications. Since neutron-rich radioisotopes often decay by beta decay or decay to beta-emitting daughter radioisotopes which serve as the basis for radionuclide generator systems, reactors are expected to play an increasingly important role for the production of a large variety of therapeutic radioisotopes required for these and other developing therapeutic applications. Because of the importance of the availability of reactor-produced radioisotopes for these applications, an understanding of the contribution of neutron spectra for radioisotope production and determination of those cross sections which have not yet been established is important. This

  8. Americium-241 radioisotope thermoelectric generator development for space applications

    International Nuclear Information System (INIS)

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal

    2013-01-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  9. Americium-241 radioisotope thermoelectric generator development for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal, E-mail: rma8@le.ac.uk [University of Leicester, (United Kingdom); and others

    2013-07-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  10. Heat source component development program. Quarterly report for April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Foster, E.L. Jr. (comp.)

    1977-07-01

    This is the third in a series of quarterly reports describing the results of several experimental programs being conducted at Battelle-Columbus to develop components for advanced radioisotope heat source applications. The heat sources will for the most part be used in advanced static and dynamic power conversion systems. The specific component development efforts which are described include: improved selective and nonselective vents for helium release from the fuel containment; an improved reentry member and an improved impact member, singly and combined. The unitized reentry-impact member (RIM) is under development to be used as a bifunctional ablator. The development of a unitized reentry-impact member (RIM) has been stopped and the efforts are being redirected to the evaluation of materials that could be used in the near term for the module housing of the General Purpose Heat Source (GPHS). This redirection will be particularly felt in the selection of (improved) materials for reentry analysis and in the experimental evaluation of materials in impact tests. Finally thermochemical supporting studies are reported.

  11. Radioisotope thermoelectric generator/thin fragment impact test

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hinckley, J.E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel

  12. Ultrasonic inspection of the strength member weld of transit and pioneer heat sources

    International Nuclear Information System (INIS)

    Dudley, W.A.

    1975-01-01

    A nondestructive technique was developed which allows ultrasonic inspection of the closure weld for the strength member component in plutonium-238 radioisotopic heat sources. The advantage of the ultrasonic approach, over that of the more commonly used radiographic one, is the recognized superiority of ultrasonic testing for identifying lack-of-weld penetration (LOP) when accompanied by incomplete diffusion bonding. The ultrasonic technique, a transverse mode scan of the weld for detection of LOP, is primarily accomplished by use of a holding fixture which permits the vented heat source to be immersed into an inspection tank. The mechanical portion of the scanning system is a lathe modified with an inspection tank and a manipulator. This scanning system has been used in the past to inspect SNAP-27 heat sources. The analyzer-transducer combination used in the inspection is capable of detecting a channel type flaw with a side wall depth of 0.076 mm (0.003 in.) in a weld standard. (U.S.)

  13. Transport of radioisotopes

    International Nuclear Information System (INIS)

    Aoki, Shigefumi

    1978-01-01

    Presently the amount of radioisotopes increased very much and the application spread to wide fields in Japan. Since facilities using radioisotopes are distributed to every place in the country, every transport means such as airplanes, automobiles, railways, ships and mail are employed. The problems in the transport of radioisotopes include too much difference in the recognition of criticality among the persons concerning the transportation and treatment, knowledges of shielding and energy difference in the types of radiation and handling of sealed and unsealed sources and the casks for transport. IAEA established the latest regulation on the package of radioisotopes in 1973, and in Japan, the related regulations will be revised according to the IAEA's regulation in near future. The present status in the inspection at the time of shipment, supervision, and the measures to the accidents are described for the transport means of airplanes, ships and automobiles. Finally, concerning the insurance for cargo, the objects of the insurance for radioisotopes include either the radioisotopes contained in casks for transportation or radioisotopes only. Generally, radioisotopes are accepted in all-risk condition including casks and limited to the useful radioisotopes for peaceful use. (Wakatsuki, Y

  14. General-purpose heat source safety verification test series: SVT-11 through SVT-13

    International Nuclear Information System (INIS)

    George, T.G.; Pavone, D.

    1986-05-01

    The General-Purpose Heat Source (GPHS) is a modular component of the radioisotope thermoelectric generator that will provide power for the Galileo and Ulysses (formerly ISPM) space missions. The GPHS provides power by transmitting the heat of 238 Pu α-decay to an array of thermoelectric elements. Because the possibility of an orbital abort always exists, the heat source was designed and constructed to minimize plutonia release in any accident environment. The Safety Verification Test (SVT) series was formulated to evaluate the effectiveness of GPHS plutonia containment after atmospheric reentry and Earth impact. The first two reports (covering SVT-1 through SVT-10) described the results of flat, side-on, and angular module impacts against steel targets at 54 m/s. This report describes flat-on module impacts against concrete and granite targets, at velocities equivalent to or higher than previous SVTs

  15. Evaluation and characterization of General Purpose Heat Source girth welds for the Cassini mission

    International Nuclear Information System (INIS)

    Lynch, C.M.; Moniz, P.F.; Reimus, M.A.H.

    1998-01-01

    General Purpose Heat Sources (GPHSs) are components of Radioisotopic thermoelectric Generators (RTGs) which provide electric power for deep space missions. Each GPHS consists of a 238 Pu oxide ceramic pellet encapsulated in a welded iridium alloy shell which forms a protective barrier against the release of plutonia in the unlikely event of a launch-pad failure or reentry incident. GPHS fueled clad girth weld flaw detection was paramount to ensuring this safety function, and was accomplished using both destructive and non-destructive evaluation techniques. The first girth weld produced from each welding campaign was metallographically examined for flaws such as incomplete weld penetration, cracks, or porosity which would render a GPHS unacceptable for flight applications. After an acceptable example weld was produced, the subsequently welded heat sources were evaluated non-destructively for flaws using ultrasonic immersion testing. Selected heat sources which failed ultrasonic testing would be radiographed, and/or, destructively evaluated to further characterize and document anomalous indications. Metallography was also performed on impacted heat sources to determine the condition of the welds

  16. Radioisotope power sources in the terrestrial and marine environment

    International Nuclear Information System (INIS)

    Holleman, T.J.; Wahlquist, E.J.

    1976-01-01

    In response to user agency needs, the Energy Research and Development Administration (ERDA), Division of Nuclear Research and Applications (NRA), has undertaken a variety of research and development efforts to insure the availability of highly reliable, long-lived nuclear power sources for special purpose terrestrial missions planned for the late 1970's and early 1980's. One such effort currently being pursued is the development of a 1kW(e) Stirling Radioisotope Power System for integration into an Unmanned Free Swimming Submersible (UFSS) demonstration vehicle now under development by the Naval Research Laboratory. Another important effort which NRA has undertaken is a study to evaluate both isotope fueled and non-isotope fueled unattended power systems in the 2kW(e) range for application in cold regions. In the lower power ranges of Radioisotope Thermoelectric Generators, NRA continues to support new development efforts and new application areas. The Division is providing assistance to the Navy on a 1 / 2 W(e) RTG for use in various underwater applications. The various efforts are briefly discussed

  17. Helium release from radioisotope heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

  18. Helium release from radioisotope heat sources

    International Nuclear Information System (INIS)

    Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

    1984-05-01

    Diffusion of helium in 238 PuO 2 fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel

  19. Stirling Radioisotope Power System as an Alternative for NASAs Deep Space Missions

    Science.gov (United States)

    Shaltens, R. K.; Mason, L. S.; Schreiber, J. G.

    2001-01-01

    The NASA Glenn Research Center (GRC) and the Department of Energy (DOE) are developing a free-piston Stirling convertor for a Stirling Radioisotope Power System (SRPS) to provide on-board electric power for future NASA deep space missions. The SRPS currently being developed provides about 100 watts and reduces the amount of radioisotope fuel by a factor of four over conventional Radioisotope Thermoelectric Generators (RTG). The present SRPS design has a specific power of approximately 4 W/kg which is comparable to an RTG. GRC estimates for advanced versions of the SRPS with improved heat source integration, lightweight Stirling convertors, composite radiators, and chip-packaged controllers improves the specific mass to about 8 W/kg. Additional information is contained in the original extended abstract.

  20. Parametric System Model for a Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  1. Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source

    Science.gov (United States)

    Tarau, Calin; Schwendeman, Carl; Anderson, William G.; Cornell, Peggy A.; Schifer, Nicholas A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  2. Design and qualification testing of a strontium-90 fluoride heat source

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-12-01

    The Strontium Heat Source Development Program began at the Pacific Northwest Laboratory (PNL) in 1972 and is scheduled to be completed by the end of FY-1981. The program is currently funded by the US Department of Energy (DOE) By-Product Utilization Program. The primary objective of the program has been to develop the data and technology required to permit the licensing of power systems for terrestrial applications that utilize 90 SrF 2 -fueled radioisotope heat sources. A secondary objective of the program has been to design and qualification-test a general purpose 90 SrF 2 -fueled heat source. The effort expended in the design and testing of the heat source is described. Detailed information is included on: heat source design, licensing requirements, and qualification test requirements; the qualification test procedures; and the fabrication and testing of capsules of various materials. The results obtained in the qualification tests show that the outer capsule design proposed for the 90 SrF 2 heat source is capable of meeting current licensing requirements when Hastelloy S is used as the outer capsule material. The data also indicate that an outer capsule of Hastelloy C-4 would probably also meet licensing requirements, although Hastelloy S is the preferred material. Therefore, based on the results of this study, the general purpose 90 SrF 2 heat source will consist of a standard WESF Hastelloy C-276 inner capsule filled with 90 SrF 2 and a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for this study, the general purpose 90 SrF 2 heat a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for the outer capsule will utilize an interlocking joint design requiring a 0.1-in. penetration closure weld

  3. Preliminary studies of Brazilian wood using different radioisotopic sources

    International Nuclear Information System (INIS)

    Carvalho, Gilberto; Silva, Leonardo Gondim de Andrade e

    2013-01-01

    Due to availability and particular features, wood was one of the first materials used by mankind with a wide variety of applications. It can be used as raw material for paper and cellulose manufacturing; in industries such as chemical, naval, furniture, sports goods, toys, and musical instrument; in building construction and in the distribution of electric energy. Wood has been widely researched; therefore, wood researchers know that several aspects such as temperature, latitude, longitude, altitude, sunlight, soil, and rainfall index interfere with the growth of trees. This behavior explains why average physical-chemical properties are important when wood is studied. The majority of researchers consider density to be the most important wood property because of its straight relationship with the physical and mechanical properties of wood. There are three types of wood density: basic, apparent and green. The apparent density was used here at 12% of moisture content. In this study, four different types of wood were used: 'freijo', 'jequetiba', 'muiracatiara' and 'ipe'. For wood density determination by non-conventional method, Am-241, Ba-133 and Cs-137 radioisotopic sources; a NaI scintillation detector and a counter were used. The results demonstrated this technique to be quick and accurate. By considering the nuclear parameters obtained as half value layers and linear absorption coefficients, Cs-137 radioisotopic source demonstrated to be the best option to be used for inspection of the physical integrity of electric wooden poles and live trees for future works. (author)

  4. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  5. Radioisotope thermal photovoltaic application of the GaSb solar cell

    Science.gov (United States)

    Morgan, M. D.; Horne, W. E.; Day, A. C.

    1991-01-01

    An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach.

  6. Radioisotope Power Sources; Sources d'energie utilisant les radiobotopes; Radioizotopnye istochniki ehnergii; Fuentes radio isotopicas de energia

    Energy Technology Data Exchange (ETDEWEB)

    Culwell, J. P. [USAEC, Washington, D.C (United States)

    1963-11-15

    The radioisotope power programme of the US Atomic Energy Commission has brought forth a whole new technology of the use of radioisotopes as energy sources in electric power generators. Radioisotope power systems are particularly suited for remote applications where long-lived, compact, reliable power is needed. Able to perform satisfactorily under extreme environmental conditions of temperature, sunlight and electromagnetic radiations, these ''atomic batteries'' are attractive power sources for remote data collecting devices, monitoring systems, satellites and other space missions. Radioisotopes used as fuels generally are either alpha or beta emitters. Alpha emitters are the preferable fuels but are more expensive and less available than beta fuels and are generally reserved for space applications. Beta fuels separated from reactor fission wastes are being used exclusively in land and sea applications at the present. It can be expected, however, that beta emitters such as stiontium-90 eventually will be used in space. Development work is being carried out on generators which will use mixed fission products as fuel. This fuel will be less expensive than the pure radioisotopes since the costs of isotope separation and purification are eliminated. Prototype thermoelectric generators, fuelled with strontium-90 and caesium-137, are now in operation or being developed for use in weather stations, marine navigation aids and deep sea monitoring devices. A plutonium-238 thermoelectric generator is in orbit operating as electric power source in a US Navy TRANSIT satellite. Generators are under development for use on US National Aeronautics and Space Administration missions. The large quantities of radioactivity involved in radioisotope power sources require that special attention be given to safety aspects of the units. Rigid safety requirements have been established and extensive tests have been conducted to insure that these systems can be employed without creating undue

  7. Radioisotope battery for particular application

    International Nuclear Information System (INIS)

    Shen Tianjian; Liang Daihua; Cai Jianhua; Dai Zhimin; Xia Huihao; Wang Jianhua; Sun Sen; Yu Guojun; Wang Xiao; Wang Dongxing; Liu Xin

    2010-01-01

    Radioisotope battery, as a new type of power source, was developed in 1960s. It is advantageous in terms of long working life, high reliability, flexibility to rugged environment, maintenance free, and high capacity rate, hence its unique applications in space, isolated terrestrial or ocean spots, deep waters, and medicine. In this paper, we analysz the primary performances and classification of radioisotope thermoelectric generator, as well as characteristic, basic principle,and structure of radioisotope thermoelectric generator (RTG), which is the most popular in application of radioisotope battery in space, undersea, terrestrial and medicine. A prospect for development and application of radioisotope battery in the 21 st century is given, too. (authors)

  8. Preliminary studies of Brazilian wood using different radioisotopic sources

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Gilberto; Silva, Leonardo Gondim de Andrade e, E-mail: gcarval@ipen.br, E-mail: ftgasilva@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Due to availability and particular features, wood was one of the first materials used by mankind with a wide variety of applications. It can be used as raw material for paper and cellulose manufacturing; in industries such as chemical, naval, furniture, sports goods, toys, and musical instrument; in building construction and in the distribution of electric energy. Wood has been widely researched; therefore, wood researchers know that several aspects such as temperature, latitude, longitude, altitude, sunlight, soil, and rainfall index interfere with the growth of trees. This behavior explains why average physical-chemical properties are important when wood is studied. The majority of researchers consider density to be the most important wood property because of its straight relationship with the physical and mechanical properties of wood. There are three types of wood density: basic, apparent and green. The apparent density was used here at 12% of moisture content. In this study, four different types of wood were used: 'freijo', 'jequetiba', 'muiracatiara' and 'ipe'. For wood density determination by non-conventional method, Am-241, Ba-133 and Cs-137 radioisotopic sources; a NaI scintillation detector and a counter were used. The results demonstrated this technique to be quick and accurate. By considering the nuclear parameters obtained as half value layers and linear absorption coefficients, Cs-137 radioisotopic source demonstrated to be the best option to be used for inspection of the physical integrity of electric wooden poles and live trees for future works. (author)

  9. Creep properties of forged 2219 T6 aluminum alloy shell of general-purpose heat source-radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Hammond, J.P.

    1981-12-01

    The shell (2219 T6 aluminum forging) of the General Purpose Heat Source-Radioisotope Thermoelectric Generator was designed to retain the generator under sufficient elastic stress to secure it during space flight. A major concern was the extent to which the elastic stress would relax by creep. To determine acceptability of the shell construction material, the following proof tests simulating service were performed: 600 h of testing at 270 0 C under 24.1 MPa stress followed by 10,000 h of storage at 177 0 C under 55.1 MPa, both on the ground; and 10,000 h of flight in space at 270 0 C under 34.4 MPa stress. Additionally, systematic creep testing was performed at 177 and 260 0 C to establish creep design curves. The creep tests performed at 177 0 C revealed comparatively large amounts of primary creep followed by small amounts of secondary creep. The early creep is believed to be abetted by unstable substructures that are annealed out during testing at this temperature. The creep tests performed at 270 0 C showed normal primary creep followed by large amounts of secondary creep. Duplicate proof tests simulating the ground exposure conditions gave results that were in good agreement. The proof test simulating space flight at 270 0 C gave 0.11% primary creep followed by 0.59% secondary creep. About 10% of the second-stage creep was caused by four or five instantaneous strains, which began at the 4500-h mark. One or two of these strain bursts, occurred in each of several other tests at 177 and 260 0 C but were assessed as very moderate in magnitude. The effect is attributable to a slightly microsegregated condition remaining from the original cast structure

  10. Thulium heat source for high-endurance and high-energy density power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW th coupled with a power conversion efficiency of ∼30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs

  11. Radioisotopes in industry

    International Nuclear Information System (INIS)

    Popple, B.N.

    1977-01-01

    The author explains clearly what is radiography, enumerates four major factors in considering a practical source to use namely half-life, penetrating power, half value layer and specific activity and also the advantages and disadvantages in using isotopes. Common radioisotopes used in industrial radiography are iridium, cesium, cobalt and thulium. Main uses of the radioisotopes are for radiographic testing like welding castings, forgoings etc.; thickness, level or density measurement and tracing. (RTD)

  12. Radioisotope Production for Medical and Physics Applications

    Science.gov (United States)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  13. End-on radioisotope thermoelectric generator impact tests

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure

  14. Biological effects of implanted nuclear energy sources for artificial heart devices. Progress report, September 1, 1975--August 31, 1976. [Heat dissipation from /sup 238/Pu power sources implanted in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Kallfelz, F.A.; Wentworth, R.A.; Cady, K.B.

    1976-01-01

    A total of sixty dogs were implanted with radioisotope-powered artificial heart systems producing radiation fluxes similar to that of plutonium-238, but having no associated heat, at levels of from one to seventy times the radiation flux expected from a 30-watt plutonium-238 source. Results from studies lasting up to 6 years after implantation indicate that these animals, and by inference human beings, may be able to tolerate the radiation flux from 30-watt /sup 238/Pu power sources. Results of heat dissipation studies in calves indicate that it may be possible to induce a vascularized connective tissue capsule sufficient to dissipate 30 watts of additional heat from a surface area of approximately 500 cm sq., allowing a heat flux of 0.06 watts per cm sq.

  15. Design of shipping packages to transport varying radioisotopic source materials for future space and terrestrial missions

    International Nuclear Information System (INIS)

    Barklay, C.D.

    1995-01-01

    The exploration of space will begin with manned missions to the moon and to Mars, first for scientific discoveries, then for mining and manufacturing. Because of the great financial costs of this type of exploration, it can only be accomplished through an international team effort. This unified effort must include the design, planning and, execution phases of future space missions, extending down to such activities as isotope processing, and shipping package design, fabrication, and certification. All aspects of this effort potentially involve the use of radioisotopes in some capacity, and the transportation of these radioisotopes will be impossible without a shipping package that is certified by the Nuclear Regulatory Commission or the U.S. Department of Energy for domestic shipments, and the U.S. Department of Transportation or the International Atomic Energy Agency for international shipments. To remain without the international regulatory constraints, and still support the needs of new and challenging space missions conducted within ever-shrinking budgets, shipping package concepts must be innovative. A shipping package must also be versatile enough to be reconfigured to transport the varying radioisotopic source materials that may be required to support future space and terrestrial missions. One such package is the Mound USA/9516/B(U)F. Taking into consideration the potential need to transport specific types of radioisotopes, approximations of dose rates at specific distances were determined taking into account the attenuation of dose rate with distance for varying radioisotopic source materials. As a result, it has been determined that the shipping package requirements that will be demanded by future space (and terrestrial) missions can be met by making minor modifications to the USA/9516/B(U)F. copyright 1995 American Institute of Physics

  16. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  17. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-02-01

    Studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two 238 PuO 2 pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported

  18. The determination of neutron energy spectra of radioisotope sources

    International Nuclear Information System (INIS)

    Lutkin, J.E.

    1975-08-01

    The neutron energy spectrum of a 241 Am-Be radioisotope neutron source has been determined by use of a time of flight neutron spectrometer; this spectrometer not being subject to the same uncertainties as a scintillation spectrometer. Neutron spectra have been determined using a scintillation spectrometer with which the effects of instrumental uncertainties, particularly the pulse shape discrimination have been assessed. In the course of the development of the time flight spectrometer a zero crossover pulse shape discrimination system was developed in order to reduce the unwanted background. Using this system a quantitative survey of pulse shape discrimination with experimental and commercial liquid and plastic organic scintillators were carried out. In addition the pulse shape discrimination properties of inorganic scintillators were also examined. (author)

  19. Manual for reactor produced radioisotopes

    International Nuclear Information System (INIS)

    2003-01-01

    Radioisotopes find extensive applications in several fields including medicine, industry, agriculture and research. Radioisotope production to service different sectors of economic significance constitutes an important ongoing activity of many national nuclear programmes. Radioisotopes, formed by nuclear reactions on targets in a reactor or cyclotron, require further processing in almost all cases to obtain them in a form suitable for use. Specifications for final products and testing procedures for ensuring quality are also an essential part of a radioisotope production programme. The International Atomic Energy Agency (IAEA) has compiled and published such information before for the benefit of laboratories of Member States. The first compilation, entitled Manual of Radioisotope Production, was published in 1966 (Technical Reports Series No. 63). A more elaborate and comprehensive compilation, entitled Radioisotope Production and Quality Control, was published in 1971 (Technical Reports Series No. 128). Both served as useful reference sources for scientists working in radioisotope production worldwide. The 1971 publication has been out of print for quite some time. The IAEA convened a consultants meeting to consider the need for compiling an updated manual. The consultants recommended the publication of an updated manual taking the following into consideration: significant changes have taken place since 1971 in many aspects of radioisotope production; many radioisotopes have been newly introduced while many others have become gradually obsolete; considerable experience and knowledge have been gained in production of important radioisotopes over the years, which can be preserved through compilation of the manual; there is still a need for a comprehensive manual on radioisotope production methods for new entrants to the field, and as a reference. It was also felt that updating all the subjects covered in the 1971 manual at a time may not be practical considering the

  20. Investigation of the present management status of calibration source based on the law concerning prevention of radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Igarashi, Hiroshi; Hirano, Kunihiro; Kawaharada, Yasuhiro; Igarashi, Hitoshi; Murase, Ken-ya; Mochizuki, Teruhito

    2007-01-01

    An amendment concerning the enforcement of the law on the prevention of radiation hazards due to radioisotopes, etc., and the medical service law enforcement regulations were promulgated on June 1, 2005. This amendment concerned international basic safety standards and the sealing of radiation sources. Sealed radiation sources ≤3.7 MBq, which had been excluded from regulation, were newly included as an object of regulation. Investigation of the single photon emission computed tomography (SPECT) system instituted in hospitals indicated that almost all institutions adhere to the new amendment, and the calibration source, the checking source, etc., corresponding to this amendment were maintained appropriately. Any institutions planning to return sealed radioisotopes should refer to this report. (author)

  1. Research and development for the application of radioisotope technology in SINR

    International Nuclear Information System (INIS)

    Zhang Jiahua

    1987-01-01

    A brief systematic account on the research and development for the application of radioisotope technology in Shanghai Institute of Nuclear Research (SINR) is presented. It comprehensively covers the following categories: 1. Radioisotopes produced by cyclotron; 2. Radioisotope-labelled compounds; 3. Radioisotope as source of energy converter; 4. Induced-radioisotope generation as a means for elemental analysis--the activation analysis; 5. Radioisotope equipped with electronic instrument for various application; and 6. Special usage of some radioisotopes

  2. Assessment of radioisotope heaters for remote terrestrial applications

    International Nuclear Information System (INIS)

    Uherka, K.L.

    1987-05-01

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaska installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radioisotopic heaters for water storage tank freeze-up protection and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications

  3. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  4. Personal reflections on the highlights and changes in radiation and radioisotope measurement applications

    International Nuclear Information System (INIS)

    Gardner, Robin P.; Lee, Kyoung O.

    2015-01-01

    This paper describes the recent changes that the authors have perceived in the use of radiation and radioisotope measurement applications. The first change is that due to the increased use of Monte Carlo simulation which has occurred from a normal evolutionary process. This is due in large part to the increased accuracy that is being obtained by the use of detector response functions (DRFs) and the simultaneous increased computational efficiency that has become available with these DRFs, the availability of a greatly improved weight windows variance reduction method, and the availability of inexpensive computer clusters. This first change is a happy one. The other change that is occurring is in response to recent terrorist activities. That change is the replacement or major change in the use of long-lived radioisotopes in radioisotope measurement and other radioisotope source applications. In general this can be done by improving the security of these radioisotope sources or by replacing them altogether by using machine sources of radiation. In either case one would like to preclude altogether or at least minimize the possibility of terrorists being able to obtain radioisotopes and use them for clandestine purposes. - Highlights: • Recent changes in radioisotope measurement applications. • Improvements in Monte Carlo simulation for treating radioisotope measurement applications. • Replacement of radioisotope sources with machine sources of radiation.

  5. Radioisotope production in fusion reactors

    International Nuclear Information System (INIS)

    Engholm, B.A.; Cheng, E.T.; Schultz, K.R.

    1986-01-01

    Radioisotope production in fusion reactors is being investigated as part of the Fusion Applications and Market Evaluation (FAME) study. /sup 60/Co is the most promising such product identified to date, since the /sup 60/Co demand for medical and food sterilization is strong and the potential output from a fusion reactor is high. Some of the other radioisotopes considered are /sup 99/Tc, /sup 131/l, several Eu isotopes, and /sup 210/Po. Among the stable isotopes of interest are /sup 197/Au, /sup 103/Rh and Os. In all cases, heat or electricity can be co-produced from the fusion reactor, with overall attractive economics

  6. Experimental screening of carbon-base materials for impact members in isotopic heat sources

    International Nuclear Information System (INIS)

    Bansal, G.K.; Duckworth, W.H.

    1976-11-01

    Fourteen C/C composites and three reentry-grade bulk graphites were evaluated experimentally to determine their applicability for impact member use in radioisotope heat sources. The composites included the following generic types: (1) 2-D cloth lay-ups; (2) 2-D and 3-D felts; (3) 3-D weaves; (4) 3-D pierced fabrics; (5) 7-D weave; and (6) coarse polar weave. Also included was the 2-D randomly wound, resin-impregnated C/C material presently used as the impact member in the MHW RTG and commonly designated ''GIS'' (an acronym for graphite impact shell). The various materials were evaluated as energy absorbing materials. None of the materials in these tests performed appreciably better than the GIS impact member material now used in the MHW heat source, HITCO Pyro Carb 814. Two cloth lay-up composites, HITCO's Pyro Carb 903 and Carborundum's Carbitex 700, were somewhat superior in performance, while the bulk graphites and felt-base composites ranked least effective as energy absorbers. All experimental data and other factors considered to date suggest that Pyro Carb 903 is the best prospect for a bifunctional heat shield and impact member. Its high density (1.80 g/cm 3 ) indicates potentially good ablation resistance to accompany its indicated good performance as an energy absorber

  7. Radioisotope AMTEC power system designs for spacecraft applications

    International Nuclear Information System (INIS)

    Ivanenok, J.F. III; Sievers, R.K.; Hunt, T.K.; Johnson, G.A.

    1993-01-01

    The Alkali Metal Thermal to Electric Converter (AMTEC) system is an exceptional candidate for high performance spacecraft power systems including small systems powered by General Purpose Heat Sources (GPHS). The AMTEC converter is best described as a thermally regenerative electrochemical concentration cell. AMTEC is a static energy conversion device and can operate at efficiencies between 15% and 30%. The single tube, remote condensed, wick return minicell design has been incorporated into a radioisotope powered system model. Reported cell efficiencies used for these system design studies ranged from 15% to 25%. This efficiency is significantly higher than other static conversion systems operating at the same temperatures. Savings in mass and cost, relative to other more conventional static conversion systems, have also been shown. The minicell used for this system study has many advanced features not combined in previous designs, including wick return, remote condensing, and hot zone feedthroughs. All of these features significantly enhance the performance of the AMTEC cell. Additionally, the cell end provides enough area for adequate heat transfer from the GPHS module, eliminating the need for a ''hot shoe'', and reducing the complexity and weight of the system. This paper describes and compares small (two module) and larger (16 module) AMTEC radioisotope powered systems and describes the computer model developed to predict their performance

  8. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  9. General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-05-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  10. Development of design of a radioisotope switchable neutron source and new portable detector of smuggling

    International Nuclear Information System (INIS)

    Meskhi, L.; Kurdadze, L.

    2010-01-01

    Development of simple and cheap radioisotope switchable neutron source for application in the portable device of detecting of smuggling is presented. Detailed calculations (Monte-Carlo modeling) for the purpose of optimization of a design of the source and the detector module are carried out. The sufficient an yield of neutrons, about 2 o 105 n/s provides the source with the sizes of approx 25 x 25 x 60 mm 3. Results of simulation of scanning smuggling areas (polyethylene 10 x 10 x 5 cm 3) behind the thick steel wall (1.2 cm) gave the relation of signal/ background 7-8

  11. Too Much of a Good Thing ? Radioisotope Power Conversion Technology and `Waste' Heat in the Titan Environment

    Science.gov (United States)

    Lorenz, Ralph

    Unlike most solar system surface environments, Titan has an atmosphere that is both cold and dense. This means heat transfer to and from a vehicle is determined by convection, rather than by radiation which dominates on Earth and Mars. With surface temperatures near 94K, batteries and systems require heating to operate. Solar power is impractical, so a spacecraft intended to operate for longer than a few hours on Titan must have a radioisotope power source (RPS). Such sources convert heat from Plutonium decay into electricity, with an efficiency that varies from about 5% for thermoelectric systems to 20% for engine cycles such as Stirling. For vehicles with 100-200W electrical power, the 500-4000 W ‘waste’ heat in the Titan environment can be valuable in that it can be exploited to maintain thermal conditions inside the vehicle. The generally benign Titan environment, and the outstanding scientific and popular interest in its exploration, has attracted a number of mission concepts including a lander for Titan’s equatorial dunefields, light gas and hot air (‘Montgolfière’) balloons, airplanes, and capsules that float on its polar seas (e.g. the proposed Titan Mare Explorer.) However, the choice of conversion technology is key to the success of these different platforms. Waste heat can perturb meteorological measurements in several ways. First by creating a warm air plume (an effect observed on Viking and Curiosity.) Second, rain or seaspray falling onto hot radiator surfaces can evaporate causing a local enhancement of methane humidity. Third, sufficiently strong heating could perturb local winds. Similar effects, and the potential generation of effervescence or even fog, may result for capsules floating in liquid hydrocarbons. For landers and drifting buoys, these perturbations may significantly degrade environmental measurements, or at least demand tall meteorology masts, for the higher waste heat output of thermoelectric systems, and a Stirling system

  12. Use of radioisotopes in Japan

    International Nuclear Information System (INIS)

    Foeldiak, G.

    1974-01-01

    A survey of the following general data on the use of radioisotopes in Japan is given (from the material of the 11th Japan Conference on Radioisotopes): 1. number of the organizations using radioactive isotopes, grouped according to special working fields and instruments; 2. amount of the unsealed sources (Ci) used in the different special working fields in 1971, 4. amount of the sealed sources (Ci) used between 1966 and 1971. 5. number of the institutions using sealed sources, grouped according to special working fields (March, 1972), 6. number of the accelerators applied, grouped according to special working fields (March, 1972), 7. number of the nuclear instruments in the education and research institutes (March, 1972), 8. amount of the collected radioactive waste material between 1960 and 1971 (number of containers). (K.A.)

  13. Reliability Issues in Stirling Radioisotope Power Systems

    Science.gov (United States)

    Schreiber, Jeffrey; Shah, Ashwin

    2005-01-01

    Stirling power conversion is a potential candidate for use in a Radioisotope Power System (RPS) for space science missions because it offers a multifold increase in the conversion efficiency of heat to electric power and reduced requirement of radioactive material. Reliability of an RPS that utilizes Stirling power conversion technology is important in order to ascertain long term successful performance. Owing to long life time requirement (14 years), it is difficult to perform long-term tests that encompass all the uncertainties involved in the design variables of components and subsystems comprising the RPS. The requirement for uninterrupted performance reliability and related issues are discussed, and some of the critical areas of concern are identified. An overview of the current on-going efforts to understand component life, design variables at the component and system levels, and related sources and nature of uncertainties are also discussed. Current status of the 110 watt Stirling Radioisotope Generator (SRG110) reliability efforts is described. Additionally, an approach showing the use of past experience on other successfully used power systems to develop a reliability plan for the SRG110 design is outlined.

  14. Insurance of Radioisotopes and Ionizing Radiation Sources in France

    International Nuclear Information System (INIS)

    Stanislas, A.

    2008-01-01

    Since the early sixties, Assuratome has amassed quite a long experience in the insurance of radioisotopes and more generally of ionising radiation sources when they are used transported or stored outside a nuclear installation. Aware of the specific dangers of such devices, and having no experience in this domain French insurers were looking for a pragmatic solution which would permit to continue to provide cover for users or fabricants of small radioactive sources and in the meantime to keep a rigorous control on the claims and on the loss ratio which would be achieved over the years. Hence the decision was taken by the French Insurance market to entrust the French Nuclear Insurance Pool, Assuratome, as the recommended body for delivering specific 'nuclear policies' as an expert for this category of business. The next step was to make sure that the 'conventional policies' would not provide the same cover. Therefore, an appropriate exclusion clause was introduced in all the general conditions of the TPL Policies of the conventional market and consequently in the majority, if not all, the reinsurance treaties. Besides the obvious advantage resulting in the management of this category of business in a centralised body, a major benefit of this situation is based on the strict control by the insurer of the compulsory authorisation delivered by the authorities to the owner of the radioactive source. Unofficial sources having in principal no insurance possibilities in France their use would be virtually impossible.(author)

  15. Radioisotope handling facilities and automation of radioisotope production

    International Nuclear Information System (INIS)

    2004-12-01

    If a survey is made of the advances in radioisotope handling facilities, as well as the technical conditions and equipment used for radioisotope production, it can be observed that no fundamental changes in the design principles and technical conditions of conventional manufacture have happened over the last several years. Recent developments are mainly based on previous experience aimed at providing safer and more reliable operations, more sophisticated maintenance technology and radioactive waste disposal. In addition to the above observation, significant improvements have been made in the production conditions of radioisotopes intended for medical use, by establishing aseptic conditions with clean areas and isolators, as well as by introducing quality assurance as governing principle in the production of pharmaceutical grade radioactive products. Requirements of the good manufacturing practice (GMP) are increasingly complied with by improving the technical and organizational conditions, as well as data registration and documentation. Technical conditions required for the aseptic production of pharmaceuticals and those required for radioactive materials conflicting in some aspects are because of the contrasting contamination mechanisms and due consideration of the radiation safety. These can be resolved by combining protection methods developed for pharmaceuticals and radioactive materials, with the necessary compromise in some cases. Automation serves to decrease the radiation dose to the operator and environment as well as to ensure more reliable and precise radiochemical processing. Automation has mainly been introduced in the production of sealed sources and PET radiopharmaceuticals. PC controlled technologies ensure high reliability for the production and product quality, whilst providing automatic data acquisition and registration required by quality assurance. PC control is also useful in the operation of measuring instruments and in devices used for

  16. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  17. Regenerative heat sources for heating networks

    International Nuclear Information System (INIS)

    Huenges, Ernst; Sperber, Evelyn; Eggers, Jan-Bleicke; Noll, Florian; Kallert, Anna Maria; Reuss, Manfred

    2015-01-01

    The ambitious goal, the German Federal Government has set itself, to reduce the emissions of greenhouse gases by 80% to 95% by the year 2050. As there are currently more than half of German energy consumption for the production of heat is required, big contributions to climate protection can be expected from this area if more renewable heat sources are used. Renewable heat sources such as bioenergy, solar thermal and geothermal energy in particular can be provided as compared to fossil fuels with significantly lower specific CO 2 emissions. Objectives in the heating market and scenarios for the transformation of the heat sector have been elaborated in the BMU Lead Study 2011. The main pillar of this scenario is the reduction of final energy consumption for heat by the energy-efficient renovation of existing buildings and further increasing demands on the energetic quality of new buildings. To cover the remaining energy demand, a focus is on the expansion of heating networks based on renewable energies. [de

  18. The radioisotopes and radiations program

    International Nuclear Information System (INIS)

    1982-01-01

    This program of the National Atomic Energy Commission of Argentina refers to the application and production of radionuclides, their compounds and sealed sources. The applications are carried out in the medical, agricultural, cattle raising and industrial areas and in other engineering branches. The sub-program corresponding to the production of radioactive materials includes the production of radioisotopes and of sealed sources, and an engineering service for radioactive materials production and handling facilities. The sub-program of applications is performed through several groups or laboratories in charge of the biological and technological applications, intensive radiation sources, radiation dosimetry and training of personnel or of potential users of radioactive material. Furthermore, several aspects about technology transfer, technical assistance, manpower training courses and scholarships are analyzed. Finally, some legal aspects about the use of radioisotopes and radiations in Argentina are pointed out. (M.E.L.) [es

  19. General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-04-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work

  20. Radioisotopes in non-destructive testing

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1976-12-01

    After defining nondestructive testing (NDT) and comparing this concept with destructive testing, a short description is given of NDT methods other than radiologic. The basic concepts of radiologic methods are discussed and the principles of radiography are explained. Radiation sources and gamma radiography machines are next reviewed and radiographic inspection of weldings and castings is described. A brief description is given of the radiographic darkroom and accessories. Other radioisotope methods, such as neutron radiography, are shortly reviewed. Cost estimations for radioisotopic equipment conclude the report. (author)

  1. Structural and Shielding Safety of a Transport Package for Radioisotope Sealed Source Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kiseog; Cho, Ilje; Kim, Donghak [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As some kinds of radioisotope (RI) sealed source are produced by HANARO research reactor, a demand of RI transport package is increasing gradually. Foreign countries, which produce the various RIs, have the intrinsic model of the RI transport package. It is necessary to develop a RI and its transport package simultaneously. It is difficult to design a shielding part for this transport package because the passage for this source assembly should be provided from the center of shielding part to the outside of the package. In order to endure the accident conditions such as a 9 m drop and puncture, this transport package consists of the guide tubes, a gamma shield and a shock absorber. This paper describe that a shielding and structural safety of RI sealed source transport package are evaluated under the accident conditions.

  2. Structural and Shielding Safety of a Transport Package for Radioisotope Sealed Source Assembly

    International Nuclear Information System (INIS)

    Seo, Kiseog; Cho, Ilje; Kim, Donghak

    2006-01-01

    As some kinds of radioisotope (RI) sealed source are produced by HANARO research reactor, a demand of RI transport package is increasing gradually. Foreign countries, which produce the various RIs, have the intrinsic model of the RI transport package. It is necessary to develop a RI and its transport package simultaneously. It is difficult to design a shielding part for this transport package because the passage for this source assembly should be provided from the center of shielding part to the outside of the package. In order to endure the accident conditions such as a 9 m drop and puncture, this transport package consists of the guide tubes, a gamma shield and a shock absorber. This paper describe that a shielding and structural safety of RI sealed source transport package are evaluated under the accident conditions

  3. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  4. Trends in the development of radioisotope batteries

    International Nuclear Information System (INIS)

    Goeldner, R.; Leonhardt, J.W.; Radmaneche, R.; Schlegel, H.

    1978-01-01

    Improved methods for producing radioisotopes by nuclear fuel reprocessing and the rapid development of microelectronics offer new possibilities for utilizing radioisotope batteries. A review is given of the main principles of conversion of decay energy into electric power. The current state of such energy sources is evaluated. Finally, new fields of application and further trends in the development are indicated. (author)

  5. Radiation field calculation in the vicinity of Russian radioisotope generator sources

    Energy Technology Data Exchange (ETDEWEB)

    Pretzsch, Gunter; Hummelsheim, Klemens; Bogorinski, Peter [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Kurfuerstendamm 200, 10719 Berlin (Germany)

    2005-07-01

    Germany supports the Russian Federation in the framework of the G8 Global Partnership programme to secure nuclear and radioactive materials against misuse and proliferation. In this context, GRS, on behalf of the German Foreign Office, is coordinating activities to remove disused radioisotope thermoelectric generators (RITEG) from the Baltic Sea which serve as power supply for marine lighthouses and their replacement by alternative energy sources. Further the planned project includes transportation to an interim storage, the storage equipped with radiation monitoring and physical protection measures, later transportation for reprocessing to the Mayak Production Association, where the RITEG will be dismantled in a hot cell and encapsulated radioactive source will be vitrified and stored as radioactive waste. For the whole project safety analyses are to be performed e.g. to meet radiation protection requirements. In the present paper modelling and calculation of radiation fields in the vicinity of RITEG as a basis for safety analyses is reported. (authors)

  6. Current utilization of research reactor on radioisotopes production in China

    International Nuclear Information System (INIS)

    Liu Yishu

    2000-01-01

    The main technical parameters of the four research reactors and their current utilization status in radioisotope manufacture and labeling compounds preparation are described. The radioisotopes, such as Co-60 sealed source, Ir-192 sealed source, γ-knife source, I-131, I-125, Sm-153, P-32 series products, In-113m generator, Tc-99m gel generator, Re-188 gel generator, C-14, Ba-131, Sr-89, 90 Y, etc., and their labeling compounds prepared from the reactor produced radionuclides, such as I-131-MIBG, I-131-Hippure, I-131-capsul, Sm-153-EDTMP, Re-186-HEDP, Re-186-HA, C-14-urea, and radioimmunoassay kits etc. are presented as well. Future development plan of radioisotopes and labeling compounds in China is also given. Simultaneously, the possibility and methods of bilateral or multilateral co-operation in utilization of research reactor, personnel and technology exchange of radioisotope production and labeling compounds is also discussed. (author)

  7. Current utilization of research reactor on radioisotopes production in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yishu [Nuclear Power Institute of China, Chengdu (China)

    2000-10-01

    The main technical parameters of the four research reactors and their current utilization status in radioisotope manufacture and labeling compounds preparation are described. The radioisotopes, such as Co-60 sealed source, Ir-192 sealed source, {gamma}-knife source, I-131, I-125, Sm-153, P-32 series products, In-113m generator, Tc-99m gel generator, Re-188 gel generator, C-14, Ba-131, Sr-89, {sup 90}Y, etc., and their labeling compounds prepared from the reactor produced radionuclides, such as I-131-MIBG, I-131-Hippure, I-131-capsul, Sm-153-EDTMP, Re-186-HEDP, Re-186-HA, C-14-urea, and radioimmunoassay kits etc. are presented as well. Future development plan of radioisotopes and labeling compounds in China is also given. Simultaneously, the possibility and methods of bilateral or multilateral co-operation in utilization of research reactor, personnel and technology exchange of radioisotope production and labeling compounds is also discussed. (author)

  8. Work Began on Contracts for Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2005-01-01

    NASA has had a history of successful space flight missions that depended on radioisotope-fueled power systems. These Radioisotope Power Systems (RPSs) converted the heat generated from the decay of radioisotope material into useful electrical power. An RPS is most attractive in applications where photovoltaics are not optimal, such as deep-space applications where the solar flux is too low or extended applications on planets such as Mars where the day/night cycle, settling of dust, and life requirements limit the usefulness of photovoltaics. NASA s Radioisotope Power Conversion Technology (RPCT) Program is developing next-generation power-conversion technologies that will enable future missions that have requirements that cannot be met by the two RPS flight systems currently being developed by the Department of Energy for NASA: the Multi-Mission Radioisotope Thermoelectric Generator and the Stirling Radioisotope Generator (SRG).

  9. Radioisotopes - their applications in industrial radiography

    International Nuclear Information System (INIS)

    Rao, H.R.S.

    1977-01-01

    The nature of radioisotopes and their industrial applications with special reference to industrial radiography are outlined. The various aspects of industrial radiography such as source size, source containers, films, density of radiography, radiographic quality and applications are discussed in brief. (M.G.B.)

  10. Present status of radioisotope production in JAERI

    International Nuclear Information System (INIS)

    Yamabayashi, Hisamichi

    1994-01-01

    Since 1962, the technology for producing a wide variety of processed radioisotopes and sealed radiation sources has been developed by using the reactors, JRR-1, JRR-2, JRR-3, JRR-4 and JMTR, and the products have been offered to domestic users. At present, 31 products of 29 nuclides are on the list of processed radioisotopes. Some of those isotopes such as P-32, S-35, Cr-51 and short lived nuclides are produced for regular distribution, but the rest are produced upon request. The radiation sources of Co-60 needles for industrial use, Ir-192 pellets for the nondestructive inspection of pipelines, Gd-153 pellets for the diagnosis of born mineral and seven kinds of brachy therapy Ir-192 and Au-198 grains are produced and distributed regularly. The organic compounds labeled with H-3 and C-14 are widely used. In fiscal year 1992, 34 batches and total amount 12 TBq of processed radioisotopes and 100 batches, 1.2 PBq of radiation sources were produced as scheduled. The development of the techniques for producing the sources emitting high energy β ray used for the diagnosis and treatment of cancer is in progress. The method of producing new isotopes is developed. (K.I.)

  11. Light-weight radioisotope heater impact tests

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Rinehart, G.H.; Herrera, A.

    1998-01-01

    The light-weight radioisotope heater unit (LWRHU) is a 238 PuO 2 -fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed 238 PuO 2 fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s

  12. Utilization of low-temperature heat sources for heat and power production

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Elmegaard, Brian

    2014-01-01

    Low-temperature heat sources are available in many applications, ranging from waste heat from marine diesel engines, industries and refrigeration plants to biomass, geothermal and solar heat sources. There is a great potential for enhancing the utilization of these heat sources by novel...

  13. Development of radioisotope production in JAERI

    International Nuclear Information System (INIS)

    Yamabayashi, H.; Kato, H.; Umezawa, H.

    1992-01-01

    Since 1962, we have been developing methods and technology for producing a wide variety of processed radioisotopes and sealed radiation sources by using the JAERI's reactors, JRR-2, JRR-3, JRR-4 and JMTR, and providing the products to domestic users. At present, 29 nuclides and 31 products are on our list of processed radioisotopes. Some of those isotopes such as P-32, S-35, Cr-51 and short-lived nuclides are being produced regularly for distribution, but most of the rest are produced upon request. The radiation sources of Co-60 needles and Ir-192 pellets for industrial use and Gd-153 pellet, 7 kinds of Ir-192 and Au-198 grain for medical applications are produced and distributed routinely. (author)

  14. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    Science.gov (United States)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  15. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Lin, E.I.

    1997-01-01

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before

  16. A proton-driven, intense, subcritical, fission neutron source for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y. [Chemin du Cyclotron, Louvain-la-Neuve (Belgium)

    1995-10-01

    {sup 99m}Tc, the most frequently used radioisotope in nuclear medicine, is distributed as {sup 99}Mo=>{sup 99m}Tc generators. {sup 99}Mo is a fission product of {sup 235}U. To replace the aging nuclear reactors used today for this production, the author proposes to use a spallation neutron source, with neutron multiplication by fission. A 150 MeV, H{sup {minus}} cyclotron can produce a 225 kW proton beam with 50% total system energy efficiency. The proton beam would hit a molten lead target, surrounded by a water moderator and a graphite reflector, producing around 0.96 primary neutron per proton. The primary spallation neutrons, moderated, would strike secondary targets containing a subcritical amount of {sup 235}U. The assembly would show a k{sub eff} of 0.8, yielding a fivefold neutron multiplication. The thermal neutron flux at the targets location would be 2 {times} 10{sup 14} n/cm{sup 2}.s, resulting in a fission power of 500 to 750 kW. One such system could supply the world demand in {sup 99}Mo, as well as other radioisotopes. Preliminary indications show that the cost would be lower than the cost of a commercial 10 MW isotope production reactor. The cost of operation, of disposal of radiowaste and of decommissioning should be significantly lower as well. Finally, the non-critical nature of the system would make it more acceptable for the public than a nuclear reactor and should simplify the licensing process.

  17. RADIOISOTOPE INVENTORY FOR TSPA-SR

    International Nuclear Information System (INIS)

    Leigh, C.; Rechard, R.

    2001-01-01

    The total system performance assessment for site recommendation (TSPA-SR), on Yucca Mountain, as a site (if suitable) for disposal of radioactive waste, consists of several models. The Waste Form Degradation Model (i.e, source term) of the TSPA-SR, in turn, consists of several components. The Inventory Component, discussed here, defines the inventory of 26 radioisotopes for three representative waste categories: (1) commercial spent nuclear fuel (CSNF), (2) US Department of Energy (DOE) spent nuclear fuel (DSNF), and (3) high-level waste (HLW). These three categories are contained and disposed of in two types of waste packages (WPs)--CSNF WPs and co-disposal WPs, with the latter containing both DSNF and HLW. Three topics are summarized in this paper: first, the transport of radioisotopes evaluated in the past; second, the development of the inventory for the two WP types; and third, the selection of the most important radioisotopes to track in TSPA-SR

  18. Choice of excitation source for determination of rare earth elements with radioisotope excited X ray fluorescence

    International Nuclear Information System (INIS)

    Zhang Quanshi; Chang Yongfu

    2000-01-01

    The comparisons of two radioisotope source ( 241 Am and 238 Pu) which are the most available in the radioisotope excited X Ray Fluorescence (XRF) analysis technique and two characteristic X ray series (KX and LX) analyzed for the determination of the rare-earth (RE) elements were investigated in detail. According to the principle of emission and detection of X ray , the relative excitation efficiencies were calculated by the some fundamental physical parameters including the photoelectric mass attenuation coefficient, the fluorescent yield, the absorption jump factor, the emission probability of the detected fluorescent line with reference to other liens of the same series etc., The advantages and disadvantages of the two conditions are discussed. These results may determine the optimal excitation and detection conditions for different rare-earth elements. The experimental results with nine rare-earth elements (Ce, Nd, Sm, Tb, Tm, Ho, Er, Yb and Lu) are in agreement with the results of theoretical calculations

  19. Heat sources for heat pumps in the energetic and economic comparison

    International Nuclear Information System (INIS)

    Bockelmann, Franziska; Fisch, M. Norbert; Schlosser, Mathias; Peter, Markus

    2016-01-01

    Because of the growing application of heat pumps also the number of potentially usable low-temperature heat sources and corresponding heat exchangers for heat-pump systems present in the market increases. Thereby products like energy fences, high-power piles, ore ice reservoir come into applications without any knowledge ab out their power or the cost-profit ratio. The optimized lay-out of the coupling to the building are however essential conditions in order to reach an energy-efficient and durable operation of the facilities. The research project ''future heat pump'' sponsored by the BMWi is dedicated to the energetic and economic evaluation of heat sources for heat pumps. In this connection a pre-check-tool for the preliminary selection of low-temperature heat sources and connected, suitable heat-exchange systems is developed and their actual status of development presented. The holistic, comparing consideration of the different heat sources and heat-exchanger systems is related among others to the power numbers of the heat pumps, the entry and withdrawal services of the heat-exchangers, and the general performance of the systems. Additionally an estimation of economic and ecologic aspects (investment and operation costs, CO_2 emissions) is made. Aim is the determination of the plausibility of applications and essential boundary conditions of single source systems. For the qualitative comparison in a project-accompanying monitoring different facilities and source systems are measurement-technically comprehended.

  20. Standardization and improvement of safety for radioisotope equipped instruments

    International Nuclear Information System (INIS)

    Sumi, Tetsuo

    1980-01-01

    The safety for radioisotope-equipped instruments is considered. The one is the safety for the source assembly. The radioisotopes employed for radioisotope-equipped instruments are sealed sources which are used in the state of being contained in the enclosures. Many of the enclosures are provided with shutter mechanism for the purpose of emitting radiation only during the period required. If the possible troubles that might lead to the accidents are sampled out of the results of field operation of radiation instruments, and the safety measures for source enclosures are considered in connection with these troubles, it is no exaggeration to say that the safety for source enclosures has been maintained by preventing the critical accidents by the management of users and the cooperation of manufactures though there were the chance for investigating the safety in the common field and the establishment of JIS Z 4614 standard. Another consideration is concerned with the measures to improve the safety. No accident in the past never guarantees no accident in the future. Accumulation of experience is most effective for those measures, and the more experiences the better. It may be most effective that the manufacturers disclose their experiences each other from the wide outlook overcoming the barrier of trade secret. Fortunately, such consciousness has risen since a few years ago, and the investigation group is doing the works in the Japan Radioisotope Association. On the other hand, the reasonable revision of the radiation injury prevention law is desired. (Wakatsuki, Y.)

  1. US Department of Energy radioisotope customers with summary of radioisotope shipments, FY 1988

    International Nuclear Information System (INIS)

    Van Houten, N.C.

    1989-06-01

    Pacific Northwest Laboratory (PNL) prepared this edition of the radioisotope customer list at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This is the 25th report in a series dating from 1964. This report covers DOE radioisotope sales and distribution activities by its facilities to domestic, foreign and other DOE facilities for FY 1988. The report is divided into five sections: radioisotope suppliers, facility contacts, and radioisotopes or services supplied; a list of customers, suppliers, and radioisotopes purchased; a list of radioisotopes purchased cross-referenced to customer numbers; geographic locations of radioisotope customers; and radioisotope sales and transfers -- FY 1988. Radioisotopes not previously reported in this series of reports were argon-37, arsenic-72, arsenic-73, bismuth-207, gadolinium-151, rhenium-188, rhodium-101, selenium-72, xenon-123 and zirconium-88. The total value of DOE radioisotope sales for FY 1988 was $11.1 million, an increase of 3% from FY 1987

  2. US Department of Energy radioisotope customers with summary of radioisotope shipments, FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Van Houten, N.C.

    1989-06-01

    Pacific Northwest Laboratory (PNL) prepared this edition of the radioisotope customer list at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This is the 25th report in a series dating from 1964. This report covers DOE radioisotope sales and distribution activities by its facilities to domestic, foreign and other DOE facilities for FY 1988. The report is divided into five sections: radioisotope suppliers, facility contacts, and radioisotopes or services supplied; a list of customers, suppliers, and radioisotopes purchased; a list of radioisotopes purchased cross-referenced to customer numbers; geographic locations of radioisotope customers; and radioisotope sales and transfers -- FY 1988. Radioisotopes not previously reported in this series of reports were argon-37, arsenic-72, arsenic-73, bismuth-207, gadolinium-151, rhenium-188, rhodium-101, selenium-72, xenon-123 and zirconium-88. The total value of DOE radioisotope sales for FY 1988 was $11.1 million, an increase of 3% from FY 1987.

  3. Hygienic efficiency of radioisotope instruments application in motor-car industry

    International Nuclear Information System (INIS)

    Tolokonnikov, M.I.; Lev, M.Ya.; Liberman, A.N.; Chictov, E.D.

    1978-01-01

    At the Moscow Automobile Works named after I.A. Likhachev, an analysis was made of the hygienic and technologic-economic benefits from use of radioisotope instruments. Radioisotopic sources of radiation are used for research and measuring purposes in various automatic control and monitoring systems, and in evaluating the effectiveness of cleaning facilities. The application of radioisotopic instruments contributes to achieving the maximum possible efficiency of the equipment, to the improvement of working conditions, and to the prevention of environmental pollution

  4. High heat flux cooling for accelerator targets

    International Nuclear Information System (INIS)

    Silverman, I.; Nagler, A.

    2002-01-01

    Accelerator targets, both for radioisotope production and for high neutron flux sources generate very high thermal power in the target material which absorbs the particles beam. Generally, the geometric size of the targets is very small and the power density is high. The design of these targets requires dealing with very high heat fluxes and very efficient heat removal techniques in order to preserve the integrity of the target. Normal heat fluxes from these targets are in the order of 1 kw/cm 2 and may reach levels of an order of magnitude higher

  5. Radioisotope research and development at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Peterson, E.J.

    1993-01-01

    Throughout its fifty year history, Los Alamos National Laboratory has conducted research and development in the production, isolation, purification, and application of radioactive isotopes. Initially this work supported the weapons development mission of the Laboratory. Over the years the work has evolved to support basic and applied research in many diverse fields, including nuclear medicine, biomedical studies, materials science, environmental research and the physical sciences. In the early 1970s people in the Medical Radioisotope Research Program began irradiating targets at the Los Alamos Meson Physics Facility (LAMPF) to investigate the production and recovery of medically important radioisotopes. Since then spallation production using the high intensity beam at LAMPF has become a significant source of many important radioisotopes. Los Alamos posesses other facilities with isotope production capabilities. Examples are the Omega West Reactor (OWR) and the Van de Graaf Ion Beam Facility (IBF). Historically these facilities have had limited availability for radioisotope production, but recent developments portend a significant radioisotope production mission in the future

  6. Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min Ye [Chonbuk National Univ., Chonju (Korea, Republic of)

    2016-02-15

    In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

  7. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  8. Radioisotopes production and applications

    International Nuclear Information System (INIS)

    Dash, Ashutosh

    2015-01-01

    Application of radioisotopes for both medical and industrial applications constitutes one of the most important peaceful uses of atomic energy. The striking diffusion and the exciting perspective of radioisotope for a plethora of medical and industrial applications are mainly attributable to the penetrating and ionization properties of radiation emanating from radioisotopes. The revolutionary medical applications of radioisotopes for the diagnosis and treatment of a multitude of diseases are causing a rapid expansion of the nuclear medicine field. While the industrial uses of radioisotopes are not expanding as quickly, also require large amounts of radioisotopes. Production of radioisotopes is not only the first step, but also the most crucial for the success as well as sustainable growth of radioisotope applications. With the rapid growth and expanding areas of applications, the demands for isotopes have increased several folds. A number of radioisotopes of different physical half-life, energy of the particle or gamma emission, specific activity and chemistry are now regularly produced both at commercial centers as well as at selected nuclear science research institutes utilizing reactors and cyclotrons to meet the ever growing need

  9. Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources

    Energy Technology Data Exchange (ETDEWEB)

    2008-06-01

    This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

  10. Radioisotope tracer study in an aniline production reactor

    International Nuclear Information System (INIS)

    Pant, H.J.; Yelgoankar, V.N.; Mendhekar, G.N.

    1995-01-01

    A radioisotope tracer study was carried out in an aniline production reactor to investigate the cause of poor heat transfer from tube side to shell side in an aniline production (ANPO) reactor. The results of the study indicated that more than 50% of the shell volume was reduced due to deposition of the process material (i.e. fouling) on the shell walls and may be the cause of poor heat transfer in the reactor. (author). 2 refs., 2 figs

  11. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  12. Environmental and radiological safety studies. Interaction of 238PuO2 heat sources with terrestrial and aquatic environments. Progress report, July 1-September 30, 1980

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1981-01-01

    The containers for 238 PuO 2 heat sources in radioisotope thermoelectric generators are designed with large safety factors to ensure that they will withstand reentry from orbit and impact with the earth and safely contain the nuclear fuel until it is recovered. Existing designs have proved more than adequately safe, but the Space and Terrestrial Division of the Department of Energy Office of Advanced Nuclear Systems and Projects continually seeks more information about the heat sources to improve their safety. The work discussed here includes studies of the effects on the heat source of terrestrial and aquatic environments to obtain data for design of even safer systems. The data obtained in several ongoing experiments are presented; these data tables will be updated quarterly. Discussions of experimental details are minimized and largely repetitive in succeeding reports. Compilations of usable data generated in each experiment are emphasized. These compilations include data from environmental chamber experiments that simulate terrestrial conditions, experiments to measure PuO 2 dissolution rates, soil column experiments to measure sorption of plutonium by soils, and several aquatic experiments

  13. New nuclear heat sources for district heating

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The means by which urban oil heating may be taken over by new energy sources, especially nuclear, are discussed. Several possibilities exist: pressurized water reactors for high powers, and low-temperature swimming-pool-type process-heat reactors for lower powers. Both these cases are discussed [fr

  14. Measurement of relative intensities of L-shell X-rays of some heavy elements using Cd-109 radioisotope source

    International Nuclear Information System (INIS)

    Darko, J.B.; Tetteh, G.K.

    1992-01-01

    The relative L-shell x-ray intensities of Sm, W, Ir, Au, Hg, Pb and U were measured using a Cd-109 radioisotope source and a Si(Li) detector. The measured relative intensities were compared with the theoretically calculated values due to Scofield, computed for the present excitation energy of 22.6 keV. The experimental results were found to agree with theory in most cases. (author)

  15. Measurement of relative intensities of L-shell X-rays of some heavy elements using Cd-109 radioisotope source

    Energy Technology Data Exchange (ETDEWEB)

    Darko, J.B.; Tetteh, G.K. (Ghana Univ., Legon (Ghana). Dept. of Physics)

    The relative L-shell x-ray intensities of Sm, W, Ir, Au, Hg, Pb and U were measured using a Cd-109 radioisotope source and a Si(Li) detector. The measured relative intensities were compared with the theoretically calculated values due to Scofield, computed for the present excitation energy of 22.6 keV. The experimental results were found to agree with theory in most cases. (author).

  16. General-Purpose Heat Source Safety Verification Test program: Edge-on flyer plate tests

    International Nuclear Information System (INIS)

    George, T.G.

    1987-03-01

    The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of 238 Pu α-decay to an array of thermoelectric elements. Each module contains four 238 PuO 2 -fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-T0) plate is approximately 140 m/s

  17. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1986

    International Nuclear Information System (INIS)

    Lamar, D.A.

    1988-01-01

    Data were collected and compiled on radioisotopes produced and sold by Department of Energy (DOE) facilities, and on services rendered by DOE facilities. Compiled data were published and distributed in the document list of DOE Radioisotope Customers with Summary of Radioisotope Shipments, FY 1986, PNL-6361, October 1987. The DOE facilities that supplied information for the compilation were Argonne National Laboratory, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho National Engineering Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratory, Savannah River Plant, and UNC Nuclear Industries, Inc. (Hanford). The data provided were reported in several different ways: (1) a list of radioisotopes and services provided by each facility; (2) a list of radioisotope customers, the supplying DOE facility, and the radioisotope or service provided to each customer; and (3) a list of the quantity and value of each radioisotope or service sold by each DOE facility. The sales information covered foreign customers, domestic private customers, and domestic DOE customers

  18. Utilization of radioisotopes and irradiation in crop protection research

    International Nuclear Information System (INIS)

    Ong, S.H.

    1981-01-01

    There is a growing realization of the benefits which may be derived from the application of radioisotopes and radiation sources in the different disciplines of crop protection research. Many investigations which might only be carried out with extreme difficulty or not all by conventional methods, could be pursued with relative ease. Radioisotopes and irradiation have been utilized in understanding the physiology and behaviour of pests and their biochemical processes and in consequence, have contributed beneficially to the development of better control techniques and more effective pesticides. On the environmental aspects, radioisotopic techniques have provided a useful tool in understanding the behaviour, metabolism and residues of pesticides in the environment. (author)

  19. Radioisotope production in the I. Ph. P. E. cyclotron for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, N.N.; Dmitriyev, P.P.; Konjakhin, N.A.; Ognev, A.A. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Obninsk. Fiziko-Ehnergeticheskij Inst.)

    1982-01-01

    The production methods for seven radioisotopes, Ga-67, Sr-85, Pd-103, In-111, Tm-167, Hg-197 and Pb-203, by using a classical 1.5m cyclotron in the Institute of Physics and Power Engineering, Obninsk, USSR, are described. At present, more than 50 cyclotrons in different countries are used for the production of radioisotopes applied to medicine. Radioisotopes are produced with the cyclotron in the I.Ph.P.E. in the form of irradiated targets, which are delivered to Moscow radiopharmaceutical factory, where radiopharmaceuticals are produced on the base of these targets. The cyclotron is operated in two regimes providing the acceleration of protons, deuterons and alpha -particles. Two types of target assemblies are used for irradiation, the one is intended for the internal beam, and the other is for the external beam. The reactions used for the production of seven radioisotopes described above, the types of targets, particle energy, respective irradiated materials, beam current, thick target yield and the amount of respective radioisotopes produced per year are reported. Metals have large heat conductivity, therefore the use of metal targets increases beam current, and increases the production rate of radioisotopes.

  20. Heat pump using dual heat sources of air and water. Performance with heat sources arranged in parallel; Mizu kuki ryonetsugen heat pump no kenkyu. Netsugen heiretsu unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N; Sato, S [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y; Hamada, K [Kubota Corp., Osaka (Japan)

    1996-10-27

    A heat pump system using water and air as heat sources was built and evaluated for its performance. In this system, evaporators may be operated singly or as connected in parallel or series, and, for each case, the quantity of heat acquired may be measured and system performance may be quantitatively evaluated. The findings follow. When the two heat sources are equal in temperature in the single-evaporator operation, the evaporation temperature is about 7{degree}C higher on the water side than on the air side, and the performance coefficient is about 0.7 higher. When the air heat source temperature is 25{degree}C in the parallel operation, like quantities of heat are obtained from both heat sources, and collection of heat from the water increases with a decrease in the air heat source temperature but, with an increase, collection from the air increases. When the air heat source temperature decreases, the evaporation temperature decreases in the single-evaporator working on the air and in the parallel operation but it levels off in the single-evaporator working on the water alone. When the water heat source temperature decreases, evaporation temperature drop is sharper in the single-evaporator working on the water than in the parallel operation, which suggests the transfer from the parallel operation to the single-evaporator working on the air. In the single-evaporator operation on the water heat source, the evaporation temperature linearly decreases with an increase in superheating. 1 ref., 10 figs.

  1. Efficient, Long-Lived Radioisotope Power Generator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation Monitoring Devices, Inc., (RMD) proposes to develop an alternative very long term, radioisotope power source with thermoelectric power conversion with...

  2. Radioisotopes Thermal Generators and its applications; Generadores térmicos de radioisótopos y sus aplicaciones

    Energy Technology Data Exchange (ETDEWEB)

    Ahnert, C.

    2016-07-01

    An historical review of the technologies for electricity generation using the decay heat of the radioisotopes is done. The technologies to convert the heat into electricity in the RTG (Radioisotopes Thermal Generators) Systems are described. The past, todays and future applications of RTG are described, to provide electricity to equipment in spatial satellites and spacecraft, lighthouse tower and sea bouys, submarine rovers, etc. At the end the safety characteristics and international regulations for RTG are mentioned.

  3. Safety regulations for radioisotopes, etc. (interim report)

    International Nuclear Information System (INIS)

    1980-01-01

    An (interim) report by an ad hoc expert committee to the Nuclear Safety Commission, on the safety regulations for radioisotopes, etc., was presented. For the utilization of radioisotopes, etc., there is the Law Concerning Prevention of Radiation Injury Due to Radioisotopes, etc. with the advances in this field and the improvement in international standards, the regulations by the law have been examined. After explaining the basic ideas of the regulations, the problems and countermeasures in the current regulations are described: legal system, rationalization in permission procedures and others, inspection on RI management, the system of the persons in charge of radiation handling, RI transport, low-level radioactive wastes, consumer goods, definitions of RIs, radiation and sealed sources, regulations by group partitioning, RI facilities, system of personnel exposure registration, entrusting of inspection, etc. to private firms, and reduction in the works for permission among governmental offices. (author)

  4. Theoretical analysis of heat transfer in, and electrical performance of, a milliwatt radioisotopic powered thermoelectric generator

    International Nuclear Information System (INIS)

    Biver, C.J.

    1975-01-01

    A simplified, theoretical model has been made for a radioisotope-powered milliwatt thermoelectric generator (RTG). Calculations of unit heat transfer and electrical performance characteristics are made in two ways: (a) using discrete values of input physical parameters for an individual unit; and (b) using a statistical simulation (Monte Carlo) approach for estimating the variation in performance in a group of N-units. The statistical simulation approach is useful in: (a) estimating the allowable range of input parameters conducive to the production design meeting specifications in a group of N-units; and (b) determining particular parameters that must be significantly restricted in variation to achieve desired performance. The available experimental data, as compared with the discrete value calculations, are in quite good agreement (within 5 percent generally). (U.S.)

  5. Freeze drying method for preparing radiation source material

    International Nuclear Information System (INIS)

    Mosley, W.C. Jr.; Smith, P.K.

    1975-01-01

    A solution containing radioisotope and palladium values is atomized into an air flow entering a cryogenically cooled chamber where the solution is deposited on the chamber walls as a thin layer of frozen material. The solvent portion of the frozen material is sublimated into a cold trap by elevating the temperature within the chamber while withdrawing solvent vapors. The residual crystals are heated to provide a uniformly mixed powder of palladium metal and a refractory radioisotope compound. The powder is thereafter consolidated into a pellet and further shaped into rod, wire or sheet form for easy apportionment into individual radiation sources. (U.S.)

  6. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  7. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  8. Nuclear data for the production of radioisotopes in fusion materials irradiation facility

    International Nuclear Information System (INIS)

    Cheng, E.T.; Schenter, R.E.; Mann, F.M.; Ikeda, Y.

    1991-01-01

    The fusion materials irradiation facility (FMIF) is a neutron source generator that will produce a high-intensity 14-MeV neutron field for testing candidate fusion materials under reactor irradiation conditions. The construction of such a facility is one of the very important development stages toward realization of fusion energy as a practical energy source for electricity production. As a result of the high-intensity neutron field, 10 MW/m 2 or more equivalent neutron wall loading, and the relatively high-energy (10- to 20-MeV) neutrons, the FMIF, as future fusion reactors, also bears the potential capability of producing a significant quantity of radioisotopes. A study is being conducted to identify the potential capability of the FMIF to produce radioisotopes for medical and industrial applications. Two types of radioisotopes are involved: one is already available; the second might not be readily available using conventional production methods. For those radioisotopes that are not readily available, the FMIF could develop significant benefits for future generations as a result of the availability of such radioisotopes for medical or industrial applications. The current production of radioisotopes could help finance the operation of the FMIF for irradiating the candidate fusion materials; thus this concept is attractive. In any case, nuclear data are needed for calculating the neutron flux and spectrum in the FMIF and the potential production rates of these isotopes. In this paper, the authors report the result of a preliminary investigation on the production of 99 Mo, the parent radioisotope for 99m Tc

  9. Development of radioisotope preparation and application technology

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. [and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of {omega}-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes.

  10. Development of radioisotope preparation and application technology

    International Nuclear Information System (INIS)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of ω-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes

  11. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1984

    International Nuclear Information System (INIS)

    Baker, D.A.

    1985-08-01

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers - FY 1984

  12. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1984

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.

    1985-08-01

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers - FY 1984.

  13. Radioisotope detection with accelerators

    International Nuclear Information System (INIS)

    Mast, T.S.; Muller, R.A.; Tans, P.P.

    1979-12-01

    High energy mass spectrometry is a new and very sensitive technique of measuring rare radioisotopes. This paper describes the techniques used to select and identify the individual radioisotope atoms in a sample and the status of the radioisotope measurements and their applications

  14. Characterization and modeling of the heat source

    Energy Technology Data Exchange (ETDEWEB)

    Glickstein, S.S.; Friedman, E.

    1993-10-01

    A description of the input energy source is basic to any numerical modeling formulation designed to predict the outcome of the welding process. The source is fundamental and unique to each joining process. The resultant output of any numerical model will be affected by the initial description of both the magnitude and distribution of the input energy of the heat source. Thus, calculated weld shape, residual stresses, weld distortion, cooling rates, metallurgical structure, material changes due to excessive temperatures and potential weld defects are all influenced by the initial characterization of the heat source. Understandings of both the physics and the mathematical formulation of these sources are essential for describing the input energy distribution. This section provides a brief review of the physical phenomena that influence the input energy distributions and discusses several different models of heat sources that have been used in simulating arc welding, high energy density welding and resistance welding processes. Both simplified and detailed models of the heat source are discussed.

  15. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christopher; Portnoff, Samuel [Widetronix Corp., Ithaca, New York 14850 (United States); Spencer, M. G. [Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2016-01-04

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P{sup +}N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH{sup 3}{sub x}) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm{sup 2}. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm{sup 2}, fill factor of 0.86, and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 10{sup 5}–10{sup 6 }cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P{sup +}N junction structure can mitigate some of the negative effects.

  16. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    International Nuclear Information System (INIS)

    Razak, Abdu

    1986-01-01

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  17. Solution of operational problems utilization of an EX-IRT-2000 heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Razak, Abdu [Research Centre for Nuclear Techniques, National Atomic Energy Agency (Indonesia)

    1986-07-01

    The Bandung TRIGA Mark II Reactor has been successfully operated for 21 years, especially in low power operation or as neutron sources for various experiments. Most of the operating time, approximately 80% of routine operation, was dedicated for radio-isotope production. During routine operation for radio-isotope production, the reactor could not be operated at full power. The reactor was operated at 60% of the maximum power (1 MWth) due to the inability of the original heat exchanger to operate properly. The reason is that slack deposition was built-up on the secondary side of the heat exchanger. Therefore, it reduced the coefficient of heat transfer considerably. To solve the problems, a set of heat exchanger including the pump was installed In parallel with the original unit. The heat exchanger was an IRT-2000 Reactor Heat exchanger which was collected from the abandoned IRT-2000 Project. The heat exchanger has capacity of 1.25 MW. The new heat exchanger could reduced the outlet temperature of the primary coolant Into 42 deg. C. While the original-heat exchanger at the worst condition and at 600 kW of power reach outlet temperature 49 deg. C. The IRT Heat Exchanger is a counter flow heat exchanger. (author)

  18. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  19. Special Application Thermoelectric Micro Isotope Power Sources

    International Nuclear Information System (INIS)

    Heshmatpour, Ben; Lieberman, Al; Khayat, Mo; Leanna, Andrew; Dobry, Ted

    2008-01-01

    Promising design concepts for milliwatt (mW) size micro isotope power sources (MIPS) are being sought for use in various space and terrestrial applications, including a multitude of future NASA scientific missions and a range of military applications. To date, the radioisotope power sources (RPS) used on various space and terrestrial programs have provided power levels ranging from one-half to several hundred watts. In recent years, the increased use of smaller spacecraft and planned new scientific space missions by NASA, special terrestrial and military applications suggest the need for lower power, including mW level, radioisotope power sources. These power sources have the potential to enable such applications as long-lived meteorological or seismological stations distributed across planetary surfaces, surface probes, deep space micro-spacecraft and sub-satellites, terrestrial sensors, transmitters, and micro-electromechanical systems. The power requirements are in the range of 1 mW to several hundred mW. The primary technical requirements for space applications are long life, high reliability, high specific power, and high power density, and those for some special military uses are very high power density, specific power, reliability, low radiological induced degradation, and very low radiation leakage. Thermoelectric conversion is of particular interest because of its technological maturity and proven reliability. This paper summarizes the thermoelectric, thermal, and radioisotope heat source designs and presents the corresponding performance for a number of mW size thermoelectric micro isotope power sources

  20. Fuel fired heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Ortlinghaus, U

    1977-09-08

    Fuel fired heat sources with a valve-controlled ignition and main burner, whose flame is monitored and whose control valve is closed or opened by a controller according to the control deviation between actual and reference heat source temperature, previously suffered the disadvantage of high consumption of ignition gas. According to the invention this disadvantage is avoided by closing the ignition valve from the controller via a delay unit and having the delay time of the delay unit controlled either by the temperature measured by the sensor or increasing it with increasing deviation of the actual value of pre-temperature from the reference value of the pre-temperature.

  1. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.

    1986-08-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfer - FY 1985.

  2. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1985

    International Nuclear Information System (INIS)

    Baker, D.A.

    1986-08-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1) isotope suppliers, facility contacts, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfer - FY 1985

  3. Diffusion of heat from a finite, rectangular, plane heat source

    International Nuclear Information System (INIS)

    Ferreri, J.C.; Caballero, C.H.

    1985-01-01

    Non-dimensional results for the temperature field originating in a rectangular, finite, plane heat source with infinitesimal thickness are introduced. The source decays in time, zero decay being a particular case. Results are useful for obtaining an aproximation of the maximum temperature of a system holding an internal heat source. The range selected for the parameters is specially useful in the case of a nuclear waste repository. The application to the case of mass diffussion arises from analogy. (Author) [es

  4. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    Science.gov (United States)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  5. Production and utilization of radioisotopes

    International Nuclear Information System (INIS)

    Sekine, Toshiaki; Matsuoka, Hiromitsu

    1999-01-01

    A plan of developing radioisotopes with a high power proton accelerator of the Neutron Science Project is presented. The status of production and utilization of radioisotopes in Japan is briefly discussed. The radioisotopes to be produced for biomedical use are discussed together with the facility for production of those radioisotopes and for research with the products. (author)

  6. Application of radioisotopes in entomology

    International Nuclear Information System (INIS)

    Saour, G.

    1995-01-01

    Radioisotope techniques are effective in entomology and studies on insects physiology. The study presents the use of radioisotopes in pest control programs: Methods of insects irradiation and the concept of biological half-life of the radioisotopes in comparison with physical half-life are explained. Main radioisotopes used in entomology are: 3 H, 14 Ca, 32 P, 35 S, 38 Cl. Other radioisotopes contributing to studies on insects are: 198 Au, 134 Cs, 131 I, 86 Rb, 65 Zn, 59 Fe, 45 Ca, 24 Na, 22 Na. Radiation doses specific to each radioisotopes are given in tables. As an example of the application of radioisotopes in pest control: the determination of insects population density by means of releasing irradiated male insects than chasing them; studying of reproduction activity of Agrotis ipsilon; studying of egg laying of Heliocoverpa armigera moth. 15 refs. 2 figs. 2 tabs

  7. The application of radioisotopes in the Argentine technology

    International Nuclear Information System (INIS)

    Baro, G.B.; Lazor, C.J.

    1976-10-01

    The different applications of radioisotopes: as sealed sources or tracers, as well as activation analysis have cast a new light on Argentine engineering and industry. The Argentine Atomic Energy Commission is carrying out an active plan for the developement and promotion of these techniques since the 60's. This report describes and analyzes the most outstanding applications, and brings up to date other previous papers on the same subject. It suggests some ideas for achieving a complete penetration of radioisotope techniques into Argentine technology. It also outlines some future perspectives, based on present statistical data. (author) [es

  8. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1986

    International Nuclear Information System (INIS)

    Lamar, D.A.

    1987-10-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1)isotope suppliers, facility contact, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers for fiscal year 1986

  9. Application of radioisotopes in entomology

    Energy Technology Data Exchange (ETDEWEB)

    Saour, G [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Radiation Agriculture

    1995-10-01

    Radioisotope techniques are effective in entomology and studies on insects physiology. The study presents the use of radioisotopes in pest control programs: Methods of insects irradiation and the concept of biological half-life of the radioisotopes in comparison with physical half-life are explained. Main radioisotopes used in entomology are:{sup 3}H, {sup 14}Ca, {sup 32}P, {sup 35}S, {sup 38}Cl. Other radioisotopes contributing to studies on insects are: {sup 198}Au, {sup 134}Cs, {sup 131}I, {sup 86}Rb, {sup 65}Zn, {sup 59}Fe, {sup 45}Ca, {sup 24}Na, {sup 22}Na. Radiation doses specific to each radioisotopes are given in tables. As an example of the application of radioisotopes in pest control: the determination of insects population density by means of releasing irradiated male insects than chasing them; studying of reproduction activity of Agrotis ipsilon; studying of egg laying of Heliocoverpa armigera moth. 15 refs. 2 figs. 2 tabs.

  10. Micro-battery Development using beta radioisotope

    International Nuclear Information System (INIS)

    Jung, H. K.; Cheong, Y. M.; Lee, N. H.; Choi, Y. S.; Joo, Y. S.; Lee, J. S.; Jeon, B. H.

    2007-06-01

    Nuclear battery which use the beta radiation sources emitting the low penetration radiation energy from radioisotope can be applied as the long term (more than 10 years) micro power source in MEMS and nano components. This report describes the basic concept and principles of nuclear micro-battery and its fabrication in space and military field. In particular direct conversion method is described by investigating the electron-hole generation and recombination in p-n junction of silicon betavoltaics with beta radiation

  11. Applications of radioisotopes in industry and healthcare in Vietnam

    International Nuclear Information System (INIS)

    Dien, N.N.; Quang, N.H.

    1997-01-01

    Nowadays, in Vietnam radioisotopes have been used very widely in various socio-economic branches, especially in industry and healthcare. Applications of radioisotopes have significant meaning in economic development, people health protection, as well as in scientific research. In this paper, the present status and main applications of radiation and radioactive isotopes in industry and healthcare in Vietnam are reported. In order to control and monitor industrial processes, nucleonic control systems and radioactive tracer techniques have been utilized. Actually, sealed source applications are popular in Vietnam industry. A number of nuclear control devices and gauges have been used in the various industrial factories, such as liquid level gauges in steel industry, cement and beverage factories; density and moisture gauges in paper industry, etc. Tracer technique and sealed source applications have also been utilized in industrial production plants and in trouble-shooting in the petroleum industry. For medicine purposes, two departments of nuclear medicine were primarily established at the beginning of the 1970s. At the present time, a number of nuclear medicine departments have been set up and they have been equipped with advanced equipment. Main activities are focused on thyroid function studies, nuclear cardiology, brain scans, gastrointestinal studies, bone scans, etc. Since march 1984 Dalat nuclear research reactor of nominal power of 500 kW has been reconstructed and put into operation. This reactor is unique in Vietnam and has become an important scientific tool for development of nuclear techniques and radioisotope applications for socio-economic progress. Thanks to this important scientific tool, a variety of radioisotopes for medicine and industry applications as well as for scientific research has been produced. Utilization of the Dalat research reactor for radioisotope production is also summarized in this paper

  12. Applications of radioisotopes in industry and healthcare in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Dien, N.N.; Quang, N.H. [Nucealr Research Institute, Dalat, (Viet Nam)

    1997-10-01

    Nowadays, in Vietnam radioisotopes have been used very widely in various socio-economic branches, especially in industry and healthcare. Applications of radioisotopes have significant meaning in economic development, people health protection, as well as in scientific research. In this paper, the present status and main applications of radiation and radioactive isotopes in industry and healthcare in Vietnam are reported. In order to control and monitor industrial processes, nucleonic control systems and radioactive tracer techniques have been utilized. Actually, sealed source applications are popular in Vietnam industry. A number of nuclear control devices and gauges have been used in the various industrial factories, such as liquid level gauges in steel industry, cement and beverage factories; density and moisture gauges in paper industry, etc. Tracer technique and sealed source applications have also been utilized in industrial production plants and in trouble-shooting in the petroleum industry. For medicine purposes, two departments of nuclear medicine were primarily established at the beginning of the 1970s. At the present time, a number of nuclear medicine departments have been set up and they have been equipped with advanced equipment. Main activities are focused on thyroid function studies, nuclear cardiology, brain scans, gastrointestinal studies, bone scans, etc. Since march 1984 Dalat nuclear research reactor of nominal power of 500 kW has been reconstructed and put into operation. This reactor is unique in Vietnam and has become an important scientific tool for development of nuclear techniques and radioisotope applications for socio-economic progress. Thanks to this important scientific tool, a variety of radioisotopes for medicine and industry applications as well as for scientific research has been produced. Utilization of the Dalat research reactor for radioisotope production is also summarized in this paper

  13. Results with radioisotope techniques in veterinary science in Hungary

    International Nuclear Information System (INIS)

    Pethes, Gyoergy

    1983-01-01

    Radioisotopes have been applied to veterinary science in Hungary since the fifties. A short chronologic review on the development of isotope technology is given emphasizing the possibilities offered by the application of closed and open radiation sources, of instrumental neutron activation analysis and atomic absorption spectroscopy, and in vitro nuclear procedures which include competitive protein-binding analysis and radioimmunoassay. The progesterone test, applicable to diagnose the pregnancy of cattles, is carried out generally by RIA. Radioisotopic methods are applied also to determine the thyroid function of cattles, swines and domestic fowls. (V.N.)

  14. General purpose heat source task group. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    The results of thermal analyses and impact tests on a modified design of a 238 Pu-fueled general purpose heat source (GPHS) for spacecraft power supplies are presented. This work was performed to establish the safety of a heat source with pyrolytic graphite insulator shells located either inside or outside the graphite impact shell. This safety is dependent on the degree of aerodynamic heating of the heat source during reentry and on the ability of the heat source capsule to withstand impact after reentry. Analysis of wind tunnel and impact test data result in a recommended GPHS design which should meet all temperature and safety requirements. Further wind tunnel tests, drop tests, and impact tests are recommended to verify the safety of this design

  15. Background current of radioisotope manometer

    International Nuclear Information System (INIS)

    Vydrik, A.A.

    1987-01-01

    The technique for calculating the main component of the background current of radioisotopic monometers, current from direct collision of ionizing particles and a collector, is described. The reasons for appearance of background photoelectron current are clarified. The most effective way of eliminating background current components is collector protection from the source by a screen made of material with a high gamma-quanta absorption coefficient, such as lead, for example

  16. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1979

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1980-06-01

    The fifteenth edition of the radioisotope customer list was prepared at the request of the Division of Financial Services, Office of the Assistant Secretary for Environment, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Rocky Flats Area Office; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: Isotope suppliers, facility, contracts and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customer numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1979

  17. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1981

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1982-09-01

    The seventeenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of Energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory: Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980

  18. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980

    International Nuclear Information System (INIS)

    Burlison, J.S.

    1981-08-01

    The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopes purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980

  19. Radioisotope relay instrument

    International Nuclear Information System (INIS)

    Pozdnyakov, V.N.; Sazonov, O.L.; Taksar, I.M.; Tesnavs, Eh.R.; Yanushkovskij, V.A.

    1974-01-01

    The paper describes a radioisotope relay device containing a radiation source, a detector, an electronic relay block with a comparative threshold mechanism. The device differs from previously known ones in that, for the purpose of increasing stability and speed of action, the electronic relay block is a separate unit and contains two threshold pulse generators which are joined up, across series-connected ''and'' and ''or'' elements, with one of the inputs of the comparative threshold mechanism, whose second input is connected with a detector and whose outputs are connected with a relay element connected by feedback with the above-mentioned ''and'' elements. (author)

  20. Radioisotope measurement system

    International Nuclear Information System (INIS)

    Villanueva Ruibal, Jose

    2007-01-01

    A radioisotope measurement system installed at L.M.R. (Ezeiza Atomic Center of CNEA) allows the measurement of nuclear activity from a wide range of radioisotopes. It permits to characterize a broad range of radioisotopes at several activity levels. The measurement hardware as well as the driving software have been developed and constructed at the Dept. of Instrumentation and Control. The work outlines the system's conformation and its operating concept, describes design characteristics, construction and the error treatment, comments assay results and supplies use advices. Measuring tests carried out employing different radionuclides confirmed the system performing satisfactorily and with friendly operation. (author) [es

  1. Radioisotope power system based on derivative of existing Stirling engine

    International Nuclear Information System (INIS)

    Schock, A.; Or, C.T.; Kumar, V.

    1995-01-01

    In a recent paper, the authors presented the results of a system design study of a 75-watt(c) RSG (Radioisotope Stirling Generator) for possible application to the Pluto Fast Flyby mission. That study was based on a Stirling engine design generated by MTI (Mechanical Technology, Inc.). The MTI design was a derivative of a much larger (13 kwe) engine that they had developed and tested for NASA's LERC. Clearly, such a derivative would be a major extrapolation (downsizing) from what has actually been built and tested. To avoid that, the present paper describes a design for a 75-watt RSG system based on derivatives of a small (11-watt) engine and linear alternator system that has been under development by STC (Stirling Technology Company) for over three years and that has operated successfully for over 15,000 hours as of March 1995. Thus, the STC engines would require much less extrapolation from proven designs. The design employs a heat source consisting of two standard General Purpose Heat Source (GPHS) modules, coupled to four Stirling engines with linear alternators, any three of which could deliver the desired 75-watt(e) output if the fourth should fail. The four engines are coupled to four common radiators with redundant heatpipes for rejecting the engines' waste heat to space. The above engine and radiator redundancies promote system reliability. The paper describes detailed analyses to determine the effect of radiator geometry on system mass and performance, before and after an engine or heatpipe failure

  2. Protected isotope heat source

    International Nuclear Information System (INIS)

    Burns, R.K.; Shure, L.I.; Katzen, E.D.

    1975-01-01

    A radioactive isotope capsule is disposed in a container (heat shield) which will have a single stable trim attitude when reentering the earth's atmosphere and while falling to earth. The center of gravity of the heat source is located forward of the midpoint between the front face and the rear face of the container. The capsule is insulated from the front face of the container but not from the rear surface of the container. (auth)

  3. Radioisotope applications for troubleshooting and optimizing industrial processes

    International Nuclear Information System (INIS)

    2002-03-01

    This brochure is intended to present the state-of -the-art in techniques for gamma scanning and neutron backscattering for troubleshooting inspection of columns, vessels, pipes, and tanks in many industrial processing sectors. It aims to provide not only an extensive description of what can be achieved by the application of radioisotope sealed sources but also sound experience-based guidance on all aspects of designing, carrying out and interpreting the results of industrial applications. Though it is written primarily for radioisotope practitioners, the brochure is also intended to function as an ambassador for the technology by promoting its benefits to governments, to the general public and to industrial end-users

  4. Radiation surveillance procedure during veterinary application of radioisotope

    International Nuclear Information System (INIS)

    Kamaldeep; Bhaktivinayagam, A.; Singh, Sanjay Kumar

    2012-01-01

    Radioisotopes have found wide applications in the field of biomedical veterinary nuclear medicine and research. Radiation safety issues during internal administration of radioisotopes to laboratory animals, unlike human use, are far more challenging and requires stringent, well planned and an organized system of radiation protection in the animal house facility. In this paper, we discuss our experience during veterinary research experiments involving use, handling and administration of liquid sources of 131 I. With extensive radiation protection surveillance and application of practical and essential radiation safety and hygiene practices, the radiation exposure and contamination levels during the veterinary application of isotopes can be kept ALARA

  5. Experimental study of adsorption chiller driven by variable heat source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Wu, J.Y. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-05-15

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed. (author)

  6. Experimental study of adsorption chiller driven by variable heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L.; Wu, J.Y.

    2008-01-01

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed

  7. Mapping of low temperature heat sources in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Holm, Fridolin Müller; Huang, Baijia

    2015-01-01

    heat. The total accessible waste heat potential is found to be approximately 266 PJ per year with 58 % of it below 100 °C. In the natural heat category, temperatures below 20 °C originate from ambient air, sea water and shallow geothermal energy, and temperatures up to 100 °C are found for solar...... and deep geothermal energy. The theoretical solar thermal potential alone would be above 500 PJ per year. For the development of advanced thermodynamic cycles for the integration of heat sources in the Danish energy system, several areas of interest are determined. In the maritime transport sector a high......Low temperature heat sources are available in many applications, ranging from waste heat from industrial processes and buildings to geothermal and solar heat sources. Technical advancements, such as heat pumps with novel cycle design and multi-component working fluids, make the utilisation of many...

  8. KAERI's challenge to steady production of radioisotopes and radiopharmaceuticals

    International Nuclear Information System (INIS)

    Park, J.H.; Han, H.S.; Park, K.B.

    2000-01-01

    The Korea Atomic Energy Research Institute (KAERI) is a national organization in Korea, and has been doing many research and development works in radioisotope production and applications for more than 30 years. Now KAERI regularly produces radioisotopes (I-131, Tc-99m, Ho-166) for medical use and Ir-192 for industrial use. Various I-131 labeled compounds and more than 10 kinds of Tc-99m cold kits are also produced. Our multi-purpose reactor, named HANARO, has been operative since April of 1995. HANAKO is an open tank type reactor with 30 MW thermal capacity. This reactor was designed not only for research on neutron utilization but for production of radioisotopes. KAERI intended to maximize the radioisotope production capability. For this purpose, radioisotope production facilities (RIPF) have been constructed adjacent to the HANARO reactor building. There are four banks of hot cells equipped with manipulators and some of the hot cells were installed according to the KGMP standards and with clean rooms. In reviewing our RI production plan intensively, emphasis was placed on the development of new radiopharmaceuticals, development of new radiation sources for industrial and therapeutic use, and steady production of selected radioisotopes and radiopharmaceuticals. The selected items are Ho-166 based pharmaceuticals, fission Mo-99/Tc-99m generators. solution and capsules of I-131, and Ir-192 and Co-60 for industrial use. The status and future plan of KAERI's research and development program will be introduced, and will highlight programs for steady production. (author)

  9. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1983

    International Nuclear Information System (INIS)

    Baker, D.A.

    1984-08-01

    This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Idaho Operations Office; Los Alamos National Laboratory; Oak Ridge National Laboratory; Savannah River Plant; and UNC Nuclear Industries, Inc. The information is divided into five sections: isotope suppliers, facility contacts, and isotopes or services supplied; lists of customers, suppliers and isotopes purchased; list of isotopes purchased cross-referenced to customer codes; geographic locations of radioisotope customers; and radioisotope sales and transfers - FY 1983

  10. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source

    International Nuclear Information System (INIS)

    Zhao, M.; Gu, Z.L.; Kang, W.B.; Liu, X.; Zhang, L.Y.; Jin, L.W.; Zhang, Q.L.

    2017-01-01

    Graphical abstract: (a) Vertical temperature gradient in Case 3, (b) PMV and PPD of the test room in Case 3, (c) operating time of SPCTS and ASHP systems in Case 3 and (d) the proportion of SPCTS operating time. - Highlights: • A capillary heating system based on solar and air source heat pump was developed. • Influence of supply water temperature on solar energy saving rate was investigated. • Heating performance and thermal comfort of capillary heating system were analyzed. • Low temperature heating with capillary is suitable for solar heating system. - Abstract: Due to sustainable development, solar energy has drawn much attention and been widely applied in buildings. However, the application of solar energy is limited because of its instability, intermittency and low energy density in winter. In order to use low density and instable solar energy source for heating and improve the utilization efficiency of solar energy, a solar phase change thermal storage (SPCTS) heating system using a radiant-capillary-terminal (RCT) to effectively match the low temperature hot water, a phase change thermal storage (PCTS) to store and continuously utilize the solar energy, and an air source heat pump (ASHP) as an alternate energy, was proposed and set up in this research. Series of experiments were conducted to obtain the relation between the solar radiation utilization rate and the heating supply temperatures, and to evaluate the performance of the RCT module and the indoor thermal environment of the system for its practical application in a residential building in the north-western City of Xi’an, China. The results show that energy saving of the solar heating system can be significantly improved by reducing the supplied water temperature, and the supplied water temperature of the RCT would be no more than 35 °C. The capillary radiation heating can adopt a lower water temperature and create a good thermal comfort environment as well. These results may lead to the

  11. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  12. Start-up Characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources

    Science.gov (United States)

    Zhang, Renping

    2017-12-01

    A mathematical model was developed for predicting start-up characteristics of Swallow-tailed Axial-grooved Heat Pipe under the conditions of Multiple Heat Sources. The effects of heat capacitance of heat source, liquid-vapour interfacial evaporation-condensation heat transfer, shear stress at the interface was considered in current model. The interfacial evaporating mass flow rate is based on the kinetic analysis. Time variations of evaporating mass rate, wall temperature and liquid velocity are studied from the start-up to steady state. The calculated results show that wall temperature demonstrates step transition at the junction between the heat source and non-existent heat source on the evaporator. The liquid velocity changes drastically at the evaporator section, however, it has slight variation at the evaporator section without heat source. When the effect of heat source is ignored, the numerical temperature demonstrates a quicker response. With the consideration of capacitance of the heat source, the data obtained from the proposed model agree well with the experimental results.

  13. Risk of internal contamination of workers employed in radioisotope laboratories in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Adamiak-Ziemba, J.; Domanski, T.; Doniec, J.

    1981-01-01

    It was established that in Poland 247 radioisotope laboratories use open radiation sources. These laboratories have not yet been covered by the internal system of control of inner contamination. The number of workers having contact with radioisotopes amounts to 1987. Frequently this is work in contact with several radioisotopes (from 1 to 17). Most workers are exposed to tritium (over 500 workers), /sup 14/C (over 500), /sup 125/I and /sup 131/I, /sup 32/P, /sup 51/Cr, 99mTc (over 100), isotopes belonging to radiotoxicity groups 2, 3 and 4. In the radiotoxicity group 1 the most workers were exposed to /sup 226/Ra (52).

  14. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1982

    International Nuclear Information System (INIS)

    Richards, M.P.

    1983-08-01

    The radioisotope production and distribution activities by facilities at Argonne National Laboratory, Pacific Northwest Laboratory, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho Operations Office, Los Alamos Scientific Laboratory, Oak Ridge National Laboratory, Savannah River Laboratory, and UNC Nuclear Industries, Inc. are listed. The information is divided into five sections: isotope suppliers, facility, contacts, and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customs numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1982

  15. Interaction of 238PuO2 heat sources with terrestrial and aquatic environments

    International Nuclear Information System (INIS)

    Patterson, J.H.; Nelson, G.B.; Matlack, G.M.; Waterbury, G.R.

    1975-01-01

    Radioisotope thermoelectric generators used in space missions are designed with a great factor of safety to ensure that they will withstand reentry from orbit and impact with the earth, and safely contain the nuclear fuel until it is recovered. Existing designs, utilizing 238 PuO 2 fuel, have proved more than adequately safe. More data about the interaction of this material with terrestrial and aquatic environments is continually being sought to predict the behavior of these heat sources in the extremely unlikely contact of these materials with the land or ocean. Terrestrial environments are simulated with large environmental chambers that permit control of temperature, humidity, and rainfall using different kinds of soils. Rain falling on thermally hot chunks of 238 PuO 2 causes the spallation of the surface of the fuel into extremely fine particles, as small as 50 nm, that are later transported downward through the soil. Some of the plutonia particles become agglomerated with soil particles. Plutonium transport is more significant during winter than during summer because evaporation losses from the soil are less in winter. Aquatic environments are simulated with large aquaria that provide temperature and aeration control. Earlier fuel designs that employed a plutonia-molybdenum cermet showed plutonium release rates of about 10 μCi/m 2 - s, referred to the total surface area of the cermet. Present advanced fuels, employing pure plutonium oxide, show release rates of about 20 nCi/m 2 - s in seawater and about 150 nCi/m 2 - s in freshwater. The temperature of these more advanced heat sources does not seem to affect the release rate in seawater. (auth)

  16. Production of radioisotopes by 1.5 m cyclotron and their utilization

    International Nuclear Information System (INIS)

    Niu Fang

    1987-01-01

    Radioisotopes characterized by nuclear property and uses can be produced on the accelerator, especially those playing an important role in scientific researches and biomedical uses. The status of Radioisotopes produced by 1.5 m cyclotron and their applications in our institute are summarized in this paper. The details of preparation and the results of use for radioactive sources, radiochemicals, radiopharmaceuticals of 57 Co, 109 Cd, 68 Ge- 68 Ga, and 167 Tm are given respectively. (author)

  17. Thermodynamic performance analysis of sequential Carnot cycles using heat sources with finite heat capacity

    International Nuclear Information System (INIS)

    Park, Hansaem; Kim, Min Soo

    2014-01-01

    The maximum efficiency of a heat engine is able to be estimated by using a Carnot cycle. Even though, in terms of efficiency, the Carnot cycle performs the role of reference very well, its application is limited to the case of infinite heat reservoirs, which is not that realistic. Moreover, considering that one of the recent key issues is to produce maximum work from low temperature and finite heat sources, which are called renewable energy sources, more advanced theoretical cycles, which can present a new standard, and the research about them are necessary. Therefore, in this paper, a sequential Carnot cycle, where multiple Carnot cycles are connected in parallel, is studied. The cycle adopts a finite heat source, which has a certain initial temperature and heat capacity, and an infinite heat sink, which is assumed to be ambient air. Heat transfer processes in the cycle occur with the temperature difference between a heat reservoir and a cycle. In order to resolve the heat transfer rate in those processes, the product of an overall heat transfer coefficient and a heat transfer area is introduced. Using these conditions, the performance of a sequential Carnot cycle is analytically calculated. Furthermore, as the efforts for enhancing the work of the cycle, the optimization research is also conducted with numerical calculation. - Highlights: • Modified sequential Carnot cycles are proposed for evaluating low grade heat sources. • Performance of sequential Carnot cycles is calculated analytically. • Optimization study for the cycle is conducted with numerical solver. • Maximum work from a heat source under a certain condition is obtained by equations

  18. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  19. Hybrid ground-source heat pump system with active air source regeneration

    International Nuclear Information System (INIS)

    Allaerts, K.; Coomans, M.; Salenbien, R.

    2015-01-01

    Highlights: • A hybrid ground source heat pump system with two separate borefields is modelled. • The maximum underground storage temperature depends on the size of the drycooler. • Drycooler selection curves are given as function of underground storage temperature. • The size of the cold storage is reduced with 47% in the cost optimal configuration. • The cooling seasonal performance factor decreases with reduced storage capacity. - Abstract: Ground-source heat pump systems (GSHP) offer great advantages over traditional heating and cooling installations. However, their applications are limited due to the high initial costs of borehole drilling. One way to avoid these costs is by reducing the size of the borefield, e.g. by combining the system with other renewable energy sources or by using active regeneration to increase the system efficiency. In this paper a hybrid ground-source heat pump system (HGSHP) is analyzed. The borefield is split into a warm part and a cold part, which allows for seasonal thermal-energy storage. Additionally, supplementary drycoolers capture heat during summer and cold during winter. The relationship between the underground storage size and temperature and the drycooler capacity is described, using an office building in Flanders (Belgium) as reference case. Results show that with a HGSHP system a significant borefield size reduction can be achieved without compromising system performance; i.e. for the reference case a reduction of 47% was achieved in the cost-optimal configuration. It is also shown that the cooling seasonal performance factor decreases significantly with underground storage capacity. In addition, the HGSHP can be used to maintain or restore thermal balance in the geothermal source when heating and cooling loads do not match

  20. Studies on the production and application of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyon Soo; Park, K. B.; Kim, J. R.; Yoon, B. M.; Bang, H. S.; Shin, B. C.; Cho, W. K.; Park, U. J.; Park, C. D.; Lee, Y. G.; Suh, C. H.; Shin, H. Y.; Kim, D. S.; Hong, S. B.; Jun, S. S.; Min, E. S.; Jang, K. D.; Kim, J. K.; Kim, S. J.; Yang, S. Y.; Yang, S. H.; Chun, K. J.; Kang, H. Y.; Suh, K. S.; Goo, J. H.; Chung, S. H.; Lee, J. C.; Choi, J. L.; Lee, H. Y.; Bang, K. S.

    1997-09-01

    To produce radioisotopes utilizing the research reactor `HANARO`, development of RI production process, target fabrication, preparation of devices and tools for RI process, preparation of production facility for radiopharmaceuticals, test production for the established process, etc. have been carried out, respectively. Production processes for various kinds of radionuclides were developed and the settled methods were applied to test production using `HANARO`. The results of developed process are as follows: (1) I-131 dry distillation method. (2) Large scale production of Ir-192 sources (3) P-32 production process by distillation under reduced pressure (4) Cr-51 production process using enriched target. To irradiate the target for RI production in `HANARO`, target for neutron irradiation, loading/unloading devices, working table in service pool, remote handling tools, shield cask for irradiated target transfer, etc. were designed and fabricated. The function test of prepared targets and the safety analysis of shielding casks were carried out. License for practical use of the prepared casks were obtained from Ministry of Science and Technology. For production of medical radioisotopes, their production facilities were designed in detail and were installed in RIPF (Radioisotope Production Facility), with full reflection of the basic concept of the good manufacturing practice for radiopharmaceuticals. The constructed GMP facilities have started to be operated after authorization since Jun., 1997. Results of this study will be applied to mass production of radioisotopes in `HANARO` and are to contribute the advance of domestic medicine and industry related to radioisotopes. (author). 7 refs., 7 tabs., 4 figs.

  1. Studies on the production and application of radioisotopes

    International Nuclear Information System (INIS)

    Han, Hyon Soo; Park, K. B.; Kim, J. R.; Yoon, B. M.; Bang, H. S.; Shin, B. C.; Cho, W. K.; Park, U. J.; Park, C. D.; Lee, Y. G.; Suh, C. H.; Shin, H. Y.; Kim, D. S.; Hong, S. B.; Jun, S. S.; Min, E. S.; Jang, K. D.; Kim, J. K.; Kim, S. J.; Yang, S. Y.; Yang, S. H.; Chun, K. J.; Kang, H. Y.; Suh, K. S.; Goo, J. H.; Chung, S. H.; Lee, J. C.; Choi, J. L.; Lee, H. Y.; Bang, K. S.

    1997-09-01

    To produce radioisotopes utilizing the research reactor 'HANARO', development of RI production process, target fabrication, preparation of devices and tools for RI process, preparation of production facility for radiopharmaceuticals, test production for the established process, etc. have been carried out, respectively. Production processes for various kinds of radionuclides were developed and the settled methods were applied to test production using 'HANARO'. The results of developed process are as follows: 1) I-131 dry distillation method. 2) Large scale production of Ir-192 sources 3) P-32 production process by distillation under reduced pressure 4) Cr-51 production process using enriched target. To irradiate the target for RI production in 'HANARO', target for neutron irradiation, loading/unloading devices, working table in service pool, remote handling tools, shield cask for irradiated target transfer, etc. were designed and fabricated. The function test of prepared targets and the safety analysis of shielding casks were carried out. License for practical use of the prepared casks were obtained from Ministry of Science and Technology. For production of medical radioisotopes, their production facilities were designed in detail and were installed in RIPF (Radioisotope Production Facility), with full reflection of the basic concept of the good manufacturing practice for radiopharmaceuticals. The constructed GMP facilities have started to be operated after authorization since Jun., 1997. Results of this study will be applied to mass production of radioisotopes in 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes. (author). 7 refs., 7 tabs., 4 figs

  2. Heat-source specification 500 watt(e) RTG

    International Nuclear Information System (INIS)

    1983-02-01

    This specification establishes the requirements for a 90 SrF 2 heat source and its fuel capsule for application in a 500 W(e) thermoelectric generator. The specification covers: fuel composition and quantity; the Hastelloy S fuel capsule material and fabrication; and the quality assurance requirements for the assembled heat source

  3. 21 CFR 872.6475 - Heat source for bleaching teeth.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Heat source for bleaching teeth. 872.6475 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6475 Heat source for bleaching teeth. (a) Identification. A heat source for bleaching teeth is an AC-powered device that consists of a...

  4. Productivity of a nuclear chemical reactor with gamma radioisotopic sources

    International Nuclear Information System (INIS)

    Anguis T, C.

    1975-01-01

    According to an established mathematical model of successive Compton interaction processes the made calculations for major distances are extended checking the acceptability of the spheric geometry model for the experimental data for radioisotopic sources of Co-60 and Cs-137. Parameters such as the increasing factor and the absorbed dose served as comparative base. calculations for the case of a punctual source succession inside a determined volume cylinder are made to obtain the total dose, the deposited energy by each photons energetic group and the total absorbed energy inside the reactor. Varying adequately the height/radius relation for different cylinders, the distinct energy depositions are compared in each one of them once a time standardized toward a standard value of energy emitted by the reactor volume. A relation between the quantity of deposited energy in each point of the reactor and the conversion values of chemical species is established. They are induced by electromagnetic radiation and that are reported as ''G'' in the scientific literature (number of molecules formed or disappeared by each 100 e.v. of energy). Once obtained the molecular performance inside the reactor for each type of geometry, it is optimized the height/radius relation according to the maximum production of molecules by unity of time. It is completed a bibliographical review of ''G'' values reported by different types of aqueous solutions with the purpose to determine the maximum performance of molecular hydrogen as a function of pH of the solution and of the used type of solute among other factors. Calculations for the ethyl bromide production as an example of one of the industrial processes which actually work using the gamma radiation as reactions inductor are realized. (Author)

  5. Radioisotope applications on fluidized catalytic cracking units

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1997-01-01

    Radioisotopes are used to trace the flow of all the phases of Fluidized Catalytic Cracking process in oil refineries. The gaseous phases, steam, hydrocarbon vapour and air, are generally traced using a noble-gas isotope, 41 Ar, 79 Kr or 85 Kr. An appropriate tracer for the catalyst is produced by irradiating a catalyst sample in a nuclear reactor. The activation products, 140 La and 24 Na provide appropriate radioactive 'labels' for the catalyst, which is reinjected into the FCC. An advantage of this approach is that it facilitates the study of the behaviour of different particle size fractions. Radioisotopes as sealed sources of gamma radiation are used to measure catalyst density variations and density distributions in critical parts of the unit. An important trend in radioisotope applications is the increasing use of the information they produce as inputs to or as validation of, mathematical process models. In line with the increasing sophistication of the models, the technology is undergoing continuous refinement. Developments include the investigation of more efficient, more convenient tracers, the introduction of systems to facilitate more rapid and comprehensive data acquisition and software refinements for enhanced data analysis

  6. Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources

    Directory of Open Access Journals (Sweden)

    W. Piekarska

    2010-10-01

    Full Text Available Numerical analysis of thermal phenomena occurring during laser beam heating is presented in this paper. Numerical models of surface andvolumetric heat sources were presented and the influence of different laser beam heat source power distribution on temperature field wasanalyzed. Temperature field was obtained by a numerical solution the transient heat transfer equation with activity of inner heat sources using finite element method. Temperature distribution analysis in welded joint was performed in the ABAQUS/Standard solver. The DFLUXsubroutine was used for implementation of the movable welding heat source model. Temperature-depended thermophysical properties for steelwere assumed in computer simulations. Temperature distribution in laser beam surface heated and butt welded plates was numericallyestimated.

  7. Present status of OAP radioisotope production

    International Nuclear Information System (INIS)

    Charoen, Sakda

    2006-01-01

    Radioisotope Production Program (RP), Office of Atoms for Peace (OAP) is a non-profit government organization which responsible for research development and service of radioisotopes. Several research works on radioisotope production have been carried on at OAP. The radioisotope products of successful R and D have been routinely produced to supply for medical, agriculture and research application. The main products are 131 I (solution and capsule), 131 I-MIBG, 131 I-Hippuran, 153 Sm-EDTMP, 153 Sm-HA, and 99m Tc-radiopharmaceutical kits to serve local users. Radioisotopes are very beneficial for science and human welfare so as almost of our products and services are mainly utilized for medical purpose for both diagnosis and therapy. OAP has a policy to serve and response to that community by providing radioisotopes and services with high quality but reasonable price. This policy will give the opportunity to the community to utilize these radioisotopes for their healthcare. (author)

  8. Radio-isotopic tracers

    International Nuclear Information System (INIS)

    Wolfangel, R.G.

    1976-01-01

    The invention concerns the dispersions that may be used for preparing radio-isotopic tracers, technetium labelled dispersions, processes for preparing these dispersions and their use as tracers. Technetium 99m sulphur colloids are utilized as scintillation tracers to give a picture of the reticulo-endothelial system, particularly the liver and spleen. A dispersion is provided which only requires the addition of a radioactive nuclide to form a radioactively labelled dispersion that can be injected as a tracer. It is formed of a colloid of tin sulphur dispersed in an aqueous buffer solution. Such a reagent has the advantage of being safe and reliable and is easier to use. The colloid can be prepared more quickly since additions of several different reagents are avoided. There is no need to heat up and no sulphuretted hydrogen, which is a toxic gas, is used [fr

  9. A radioisotope-powered surface acoustic wave transponder

    International Nuclear Information System (INIS)

    Tin, S; Lal, A

    2009-01-01

    We demonstrate a 63 Ni radioisotope-powered pulse transponder that has a SAW (surface acoustic wave) device as the frequency transmission frequency selector. Because the frequency is determined by a SAW device, narrowband detection with an identical SAW device enables the possibility for a long-distance RF-link. The SAW transponders can be buried deep into structural constructs such as steel and concrete, where changing batteries or harvesting vibration or EM energy is not a reliable option. RF-released power to radioisotope- released power amplification is 10 8 , even when regulatory safe amounts of 63 Ni are used. Here we have achieved an 800 µW pulse (315 MHz, 10 µs pause) across a 50 Ω load every 3 min, using a 1.5 milli-Ci 63 Ni source

  10. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  11. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2011-01-01

    European governments see that heat pumps could reduce carbon emissions in space- and hot-water heating. EU's Renewable Energy Directive designates heat pumps as renewable - eligible for various subsidies - if their carbon footprints are below an implied, average threshold. This threshold omits carbon generated by manufacture and emission of a heat-pump's fluorocarbon refrigerant. It also omits the footprint of the heat pump's hardware. To see if these omissions are significant, this study calculated carbon footprints of representative, residential heat pumps in the UK. Three findings emerged. First, in relation to power generation, which accounts for most of a heat-pump's greenhouse-gas emissions, fluorocarbons add another 20% to the footprint. Second, at UK efficiencies a heat-pump footprint (in kg CO 2 e emitted per kWh delivered) is comparable or higher than footprints of gaseous fuels used in heating. It is lower than the footprint of heating oil and far lower than the footprints of solid fuels. Third, production and disposal of a heat pump's hardware is relatively insignificant, accounting for only 2-3% of the overall heat-pump footprint. Sensitivities to the results were assessed: key factors are footprint of electricity generation, F-gas composition and leak rates and type of wall construction. - Research highlights: → Refrigerant emissions add 20% to a UK air-source heat pump's carbon footprint. → This contribution is so far ignored by regulations. → UK heat pump footprints are comparable to those of gaseous fuels.

  12. Ground Source Geothermal District Heating and Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, James William [Ball State Univ., Muncie, IN (United States)

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  13. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  14. Power generation from low-temperature heat source

    Energy Technology Data Exchange (ETDEWEB)

    Lakew, Amlaku Abie

    2012-07-01

    The potential of low-temperature heat sources for power production has been discussed for decades. The diversity and availability of low-temperature heat sources makes it interesting for power production. The thermodynamic power cycle is one of the promising technologies to produce electricity from low-temperature heat sources. There are different working fluids to be used in a thermodynamic power cycle. Working fluid selection is essential for the performance of the power cycle. Over the last years, different working fluid screening criteria have been used. In broad speaking the screening criteria can be grouped as thermodynamic performance, component size requirement, economic performance, safety and environmental impact. Screening of working fluids at different heat source temperatures (80-200 Celsius degrees) using thermodynamic performance (power output and exergy efficiency) and component size (heat exchanger and turbine) is investigated. It is found that the 'best' working fluid depends on the criteria used and heat source temperature level. Transcritical power cycles using carbon dioxide as a working fluid is studied to produce power at 100 Celsius degrees. Carbon dioxide is an environmentally friendly refrigerant. The global warming potential of carbon dioxide is 1. Furthermore, because of its low critical temperature (31 Celsius degrees), carbon dioxide can operate in a transcritical power cycle for lower heat source temperatures. A transcritical configuration avoids the problem of pinching which otherwise would happened in subcritical power cycle. In the process, better temperature matching is achieved and more heat is extracted. Thermodynamic analysis of transcritical cycle is performed; it is found that there is an optimal operating pressure for highest net power output. The pump work is a sizable fraction of the work produced by the turbine. The effect of efficiency deterioration of the pump and the turbine is compared. When the

  15. Radioisotope electric propulsion of sciencecraft to the outer Solar System and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1999-01-01

    Radioisotopes have been used successfully for more than 25 years to supply the heat for thermoelectric generators on various deep-space probes. Radioisotope electric propulsion (REP) systems have been proposed as low-thrust ion propulsion units based on radioisotope electric generators and ion thrusters. The perceived liability of radioisotope electric generators for ion propulsion is their high mass. Conventional radioisotope thermoelectric generators have a specific mass of about 200 kg/kW of electric power. Many development efforts have been undertaken with the aim of reducing the specific mass of radioisotope electric systems. Recent performance estimates suggest that specific masses of 50 kg/kW may be achievable with thermophotovoltaic and alkali metal thermal-to-electric conversion generators. Powerplants constructed from these near-term radioisotope electric generators and long-life ion thrusters will likely have specific masses in the range of 100 to 200 kg/kW of thrust power if development continues over the next decade. In earlier studies, it was concluded that flight times within the Solar System are indeed insensitive to reductions in the powerplant specific mass, and that a timely scientific program of robotic planetary rendezvous and near-interstellar space missions is enabled by primary electric propulsion once the powerplant specific mass is in the range of 100 to 200 kg/kW. Flight times can be substantially reduced by using hybrid propulsion schemes that combine chemical propulsion, gravity assist, and electric propulsion. Hybrid schemes are further explored in this article to illustrate how the performance of REP is enhanced for Pluto rendezvous, heliopause orbiter, and gravitational lens missions

  16. A novel design method for ground source heat pump

    Directory of Open Access Journals (Sweden)

    Dong Xing-Jie

    2014-01-01

    Full Text Available This paper proposes a novel design method for ground source heat pump. The ground source heat pump operation is controllable by using several parameters, such as the total meters of buried pipe, the space between wells, the thermal properties of soil, thermal resistance of the well, the initial temperature of soil, and annual dynamic load. By studying the effect of well number and well space, we conclude that with the increase of the well number, the inlet and outlet water temperatures decrease in summer and increase in winter, which enhance the efficiency of ground source heat pump. The well space slightly affects the water temperatures, but it affects the soil temperature to some extent. Also the ground source heat pump operations matching with cooling tower are investigated to achieve the thermal balance. This method greatly facilitates ground source heat pump design.

  17. The economics of supplying the supplementary heat in a closed loop water source heat pump system

    International Nuclear Information System (INIS)

    Johnson, R.P.; Bartkus, V.E.; Singh, J.B.

    1993-01-01

    The paper describes the details of a research and demonstration project that will be completed in August 1992 at a healthcare facility in northeastern Pennsylvania. The purpose of the project is to compare the economics of several methods of supplying the supplementary heating in a facility served by a closed loop water source heat pump system. The systems being tested include a storage hot water tank with electric resistance heaters and three air source heat pumps that have the ability to supply the same heat during on-peak hours as well as off-peak hours. The paper compares the projected operating costs of the following: (1) Gas boiler supplying the supplementary heat. (2) Stored hot water supplying the supplementary heat which is generated and stored during off-peak hours using resistance heat on PP ampersand L's offpeak rate. (3) Stored hot water supplying the supplementary heat generated during off-peak hours using the air source heat pumps on PP ampersand L's off-peak rate. (4) Hot water generated by the air source heat pumps supplying the supplementary loop heating on PP ampersand L's general service and time-of-day electric rates. It is generally known in the HVAC industry that a closed loop water source heat pump system can provide one of the most efficient means of space conditioning to a building with high internal gains by transferring the excess heat available in one part of the building to another part of the building where it may be needed for heating. The following flow diagram depicts the relationship of the air source heat pumps with the storage tanks and the building closed water loop

  18. The risk of internal contamination of workers employed in radioisotope laboratories in Poland

    International Nuclear Information System (INIS)

    Adamiak-Ziemba, J.; Domanski, T.; Doniec, J.

    1981-01-01

    It was established that in Poland 247 radioisotope laboratories use open radiation sources. These laboratories have not yet been covered by the internal system of control of inner contamination. The number of workers having contact with radioisotopes amounts to 1987. Frequently this is work in contact with several radioisotopes (from 1 to 17). Most workers are exposed to tritium (over 500 workers), 14 C (over 500), 125 I and 131 I, 32 P, 51 Cr, 99mTc (over 100), isotopes belonging to radiotoxicity groups 2, 3 and 4. In the radiotoxicity group 1 the most workers were exposed to 226 Ra (52). (author)

  19. Physical aspects of radioisotope brachytherapy

    International Nuclear Information System (INIS)

    1967-01-01

    The present report represents an attempt to provide, within a necessarily limited compass, an authoritative guide to all important physical aspects of the use of sealed gamma sources in radiotherapy. Within the report, reference is made wherever necessary to the more extensive but scattered literature on this subject. While this report attempts to cover all the physical aspects of radioisotope 'brachytherapy' it does not, of course, deal exhaustively with any one part of the subject. 384 refs, 3 figs, 6 tabs

  20. Application of radioisotopes in pharmaceutical research

    International Nuclear Information System (INIS)

    Khujaev, S.

    2004-01-01

    Full text: To use of radioisotopes in the processes of receiving radiopharmaceutical diagnostic means it is widely know [1]. Radioactivity labeled chemical compounds, pharmacological kinetics of which allows one solving a concrete diagnostic problem in an organism are used in radio pharmaceutics. In spite of this choice of the radioisotope, possessing the most favorable nuclei-physical characteristics for it to be detected and minimization of beam loadings, be of great importance. Development of a method of introduction of a radioisotope also has important value, as it is included into chemical structure of a radiopharmaceutical preparation. One more way of use of radioisotopes in pharmaceutics is their use as a radioactive mark at a stage of creation of a new medical product. And in this case, all those moments, which are listed above, take place. Preparations labeling by radioisotopes are used basically for their studying pharmacological kinetics. In Institute of nuclear physics AS RU, in recent years, works are done on studying pharmacological kinetics of some new medical products, which have been synthesized in the Tashkent pharmaceutical institute. These preparations are on the basis of microelements with a complex set of properties possessing expressed biological activity and have great value in pharmaceutical science of Republic of Uzbekistan. Reception of labeled compounds of all preparations was carried out by a method of introduction of a radioisotope at a stage of their synthesis. The work presents the results of researches on synthesis and study of pharmacological kinetics of radioactively labeled preparations - PIRACIN, labeled by radioisotope 69m Zn; FERAMED, labeled by radioisotope 59 Fe; COBAVIT, labeled by radioisotope 57 Co; VUC, labeled by radioisotope 57 Co

  1. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    Science.gov (United States)

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  2. Nanocluster metal films as thermoelectric material for radioisotope mini battery unit

    International Nuclear Information System (INIS)

    Borisyuk, P.V.; Krasavin, A.V.; Tkalya, E.V.; Lebedinskii, Yu.Yu.; Vasiliev, O.S.; Yakovlev, V.P.; Kozlova, T.I.; Fetisov, V.V.

    2016-01-01

    The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters’ tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.

  3. Application and benefits to industry of radioisotope tracer techniques - an overview

    International Nuclear Information System (INIS)

    Hills, A.E.

    2002-01-01

    Radioisotopes continue to play an important role in better management of natural resources and industrial processes. The success of radioisotope applications is primarily to the ability, conferred by the unique properties of radioactive materials, to collect data, which cannot be obtained by other investigative techniques. Radioisotope-based industrial tracer techniques that have stood the test in their own right are described briefly and certain of the economic and process efficiency impacts are highlighted. The financial and other benefits of this technology, especially in Petrochemical sector have been amply demonstrated and accepted. Typical techniques employed are: Gamma ray scanning of distillation columns, leak testing of heat exchangers, deposit and blockage detection in pipe lines, homogeneous mixing, flow rate measurements and liquid interface measurements. The financial benefits by these techniques are widely accepted to exceed the cost of equipment and studies by several folds. Based on retrospective analysis of the data, it is found that an average cost-benefit ratio of 1:20 in many applications is reasonably representative. (Author)

  4. Production of radioisotopes using accelerators

    International Nuclear Information System (INIS)

    Qaim, S.M.

    1990-01-01

    Accelerator produced radioisotopes find applications in many fields. Most of them are ideally suited for in-vivo studies of physiological functions. A brief review of various types of accelerators used for radioisotope production is given. The 'state of art' technology relevant to the production of radioisotopes is briefly discussed. Some of the recent advances in nuclear data measurements, target development, chemical processing and quality control are described. There appears to be a definite shift from multipurpose accelerators to dedicated machines, and greater emphasis is placed now on the production of radioisotopes with high radionuclidic purity by choosing a suitable nuclear reaction in a proper energy range. (author)

  5. Radioisotopes in Hydrology. Proceedings of a Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-15

    The increasing emphasis on the development of water resources poses problems which are of interest to all countries, both developing and advanced, where the demand for water is continuously rising. There is no doubt that greater efforts must be made to evaluate, control and develop water resources using all scientific means available and during recent years increasing attention has been directed to the supplementation of hydrological methods with radioisotope techniques. These techniques have already been applied to a number of problems and their potential usefulness demonstrated. Radioisotopes can be used for stream discharge measurements with an accuracy as good as that obtainable with conventional methods. They are also finding increasing application in the measurement of groundwater direction and velocity, the study of suspected interconnections between different sources of water, and the investigation of mixing processes in rivers and lakes. Radioisotope techniques have been used in different parts of the world for studying the transport of silt in rivers and harbours. Present research is directed towards making these investigations on a quantitative basis which, if successful, would be of great importance in the design of hydraulic structures. The method of finding out the age of groundwater by measuring its natural tritium content can be applied to the determination of the recharge rate of groundwater bodies, so enabling a more rational use of the groundwater reserves without fear of overexploitation. Current research is aimed at using carbon-14 for groundwater-dating to extend the age measurable by tritium. A Symposium on the use of radioisotopes in hydrology was organized by the Agency and held in March 1963 in Tokyo in co-operation with the Japanese Government, for whose material and other assistance and generous hospitality the Agency wishes to record its grateful appreciation. The Symposium was attended by about 100 participants from 14 countries and 5

  6. Twenty years of radioisotope production from Institute of Atomic Energy reactors

    International Nuclear Information System (INIS)

    Lun, Xiao

    1980-01-01

    The heavy water reactor in People's Republic of China went critical in November, 1958, and the radioisotope development work began since then. The thermal power of the reactor was 7 MW, and the maximum thermal neutron flux was 1.2 x 10 14 n/cm 2 /sec. Since 1967, it was operated at 10 MW. The first radioisotope product was 24 Na, using Na 2 CO 3 as a target, while the first chemically processed product was an electroplated reference source of 60 Co. The first processed radiochemical was the carrier-free H 2 SO 4 of 35 S. Since then, 131 I and 32 P for medical uses, colloidal 198 Au, colloidal Cr 32 PO 4 , chemicals containing 203 Hg, organic compounds labelled with 125 I, 131 I, 3 H and 14 C and smoke detectors have been produced to date. In addition, 22 Na, 54 Mn, 57 Co, 88 Y, 109 Cd have been prepared from a cyclotron. Now about 140 kinds of products can be supplied, and 60% of the users are the hospitals with nuclear medicine department. The present status of the kinds and production figures of nuclear medicines, radiopharmaceuticals, labelled compounds, radiation sources, and some works in progress are reported. General aspects of the application of radioisotopes in China are also described. Radioisotopes have been applied to agriculture, industry, medicine, and sciences such as physics, chemistry, biology and geography. (Wakatsuki, Y.)

  7. Geothermal source heat pump performance for a greenhouse heating system: an experimental study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2016-09-01

    Full Text Available Greenhouses play a significant function in the modern agriculture economy even if require great amount of energy for heating systems. An interesting solution to alleviate the energy costs and environmental problems may be represented by the use of geothermal energy. The aim of this paper, based on measured experimental data, such as the inside greenhouse temperature and the heat pump performance (input and output temperatures of the working fluid, electric consumption, was the evaluation of the suitability of low enthalpy geothermal heat sources for agricultural needs such as greenhouses heating. The study was carried out at the experimental farm of the University of Bari, where a greenhouse was arranged with a heating system connected to a ground-source heat pump (GSHP, which had to cover the thermal energy request. The experimental results of this survey highlight the capability of the geothermal heat source to ensue thermal conditions suitable for cultivation in greenhouses even if the compressor inside the heat pump have operated continuously in a fluctuating state without ever reaching the steady condition. Probably, to increase the performance of the heat pump and then its coefficient of performance within GSHP systems for heating greenhouses, it is important to analyse and maximise the power conductivity of the greenhouse heating system, before to design an expensive borehole ground exchanger. Nevertheless, according to the experimental data obtained, the GSHP systems are effective, efficient and environmental friendly and may be useful to supply the heating energy demand of greenhouses.

  8. Performance of an Advanced Stirling Convertor Based on Heat Flux Sensor Measurements

    Science.gov (United States)

    Wilson, Dcott D.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower, Inc., and NASA Glenn Research Center. The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot-end and cold-end temperatures, and specified electrical power output for a given heat input. It is difficult to measure heat input to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat input to an ASC. The effort succeeded in designing and fabricating unique sensors, which were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700 C in air for 10,000 hr. Sensor measurements were used to calculate thermal efficiency for ASC-E (Engineering Unit) #1 and #4. The post-disassembly condition of the sensors is also discussed.

  9. Survey of industrial radioisotope savings

    International Nuclear Information System (INIS)

    1965-01-01

    Only three decades after the discovery of artificial radioactivity and two after radioisotopes became available in quantity, methods employing these as sources or tracers have found widespread use, not only in scientific research, but also in industrial process and product control. The sums spent by industry on these new techniques amount to millions of dollars a year. Realizing the overall attitude of industry to scientific progress - to accept only methods that pay relatively quickly - one can assume that the economic benefits must be of a still larger order of magnitude. In order to determine the extent to which radioisotopes are in daily use and to evaluate the economic benefits derived from such use, IAEA decided to make an 'International Survey on the Use of Radioisotopes in Industry'. In 1962, the Agency invited a number of its highly industrialized Member States to participate in this Survey. Similar surveys had been performed in various countries in the 1950's. However, the approaches and also the definition of the economic benefits differed greatly from one survey to another. Hence, the Agency's approach was to try to persuade all countries to conduct surveys at the same time, concerning the same categories of industries and using the same terms of costs, savings, etc. In total, 24 Member States of the Agency agreed to participate in the survey and in due course they submitted contributions. The national reports were discussed at a 'Study Group Meeting on Radioisotope Economics', convened in Vienna in March 1964. Based upon these discussions, the national reports have been edited and summarized. A publication showing the administration of the Survey and providing all details is now published by the Agency. From the publication it is evident that in general the return of technical information was quite high, of the order of 90%, but, unfortunately the economic response was much lower. However, most of the reports had some bearing on the economic aspects

  10. Radiation protection at radioisotope processing facilities

    International Nuclear Information System (INIS)

    Hillier, L.R.; Decaire, R.

    2002-01-01

    MDS Inc. is Canada's largest diversified health and life sciences company and provides health care services and products to prevent, diagnose and treat disease. MDS Nordion Inc. is a subsidiary of MDS Inc. and is located in Ottawa, Ontario. It provides much of the world's supply of radioisotopes used in nuclear medicine primarily to diagnose, but also to treat disease. MDS Nordion is composed of three major production divisions at its Ottawa location and serves customers in three major markets. These are primarily: radioisotopes used in nuclear medicine (Nuclear Medicine Division), radiation processing for sterilization of medical equipment and supplies, and food (Ion Technologies Division), and teletherapy equipment used in cancer treatment (Therapy Systems Division). MDS Nordion supplies customers in over 100 countries, exporting more than 95 percent of its product processed in Canada. Every year, 15 to 20 million diagnostic imaging tests are carried out in hospitals around the world, using radioisotopes supplied by MDS Nordion. In addition, 150 to 200 million cubic feet (that's enough to cover an entire CFL field - including the end zones - stacked over half a kilometer high) of single use medical products are sterilized using MDS Nordion supplied equipment. MDS Nordion receives medical isotopes from AECL, Chalk River Laboratories and processes the material to purify and quantify the radioisotope product. Sealed sources, comprised of cobalt 60, are supplied from CANDU reactors. Production processes include ventilated shielded cells with remote manipulators, gloveboxes and fumehoods, to effectively control the safety of the workplace and the environment, and to prevent contamination of the products. The facilities are highly regulated by the Canadian Nuclear Safety Commission (CNSC) for safety and environmental protection. Products are also regulated by Health Canada and the US-Food and Drug Administration (FDA). (author)

  11. Administration of radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-01-15

    Current developments in atomic energy, and the administrative problems to which they give rise, were surveyed in a seminar on 'Atomic Energy for Atomic Energy Administrators' held at IAEA headquarters from 30 September to 4 October 1963. The ground covered included protection against radiation, isotopes and radiation sources, research reactors, nuclear power, legal matters, technical and scientific administration, the role of the universities, and the Agency's part in assistance to developing countries. The possibilities and limitations of radioisotope production from research reactors were discussed by Dr. G. B. Cook, of the Division of Research and Laboratories, IAEA in this paper.

  12. Administration of radioisotope production

    International Nuclear Information System (INIS)

    1964-01-01

    Current developments in atomic energy, and the administrative problems to which they give rise, were surveyed in a seminar on 'Atomic Energy for Atomic Energy Administrators' held at IAEA headquarters from 30 September to 4 October 1963. The ground covered included protection against radiation, isotopes and radiation sources, research reactors, nuclear power, legal matters, technical and scientific administration, the role of the universities, and the Agency's part in assistance to developing countries. The possibilities and limitations of radioisotope production from research reactors were discussed by Dr. G. B. Cook, of the Division of Research and Laboratories, IAEA in this paper.

  13. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  14. Activity calculation of radioisotopes in HFETR

    International Nuclear Information System (INIS)

    Liu Shuiqing

    1996-12-01

    The activity calculating method and formulas of seven kinds of radioisotopes for High Flux Engineering Test REactor (HFETR) are given. The perturbation of targets to neutron fluence rate is considered while targets are put into the neutron fluence rate field of reactor core. All perturbing factors of seven kinds of radioisotopes being used in HFETR are presented. After considering the perturbation, the calculating accuracy of radioisotope activity has been raised 10%. The given method and formulas have ended the history of all activities estimated by experiences, except for that of 60 Co, in the radioisotope production of HFETR. The conclusions are also useful and instructive for the production of radioisotopes in HFETR. (8 tabs.)

  15. High efficiency β radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics

    Science.gov (United States)

    Duggirala, Rajesh; Li, Hui; Lal, Amit

    2008-04-01

    We demonstrate a 5.1% energy conversion efficiency Ni63 radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94μW β radiation from a 9mCi Ni63 thin film source to generate maximum (1) continuous betavoltaic electrical power output of 22nW and (2) pulsed piezoelectric electrical power output of 750μW at 0.07% duty cycle. The electromechanical converters can be potentially used to realize 100year lifetime power sources for powering periodic sampling remote wireless sensor microsystems.

  16. Sources for high frequency heating. Performance and limitations

    International Nuclear Information System (INIS)

    Le Gardeur, R.

    1976-01-01

    The various problems encountered in high frequency heating of plasmas can be decomposed into three spheres of action: theoretical development, antenna designing, and utilization of power sources. By classifying heating into three spectral domains, present and future needs are enumerated. Several specific antenna designs are treated. High frequency power sources are reviewed. The actual development of the gyratron is discussed in view of future needs in very high frequency heating of plasmas [fr

  17. General-Purpose Heat Source development: Safety Verification Test Program. Bullet/fragment test series

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G.; Tate, R.E.; Axler, K.M.

    1985-05-01

    The radioisotope thermoelectric generator (RTG) that will provide power for space missions contains 18 General-Purpose Heat Source (GPHS) modules. Each module contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. Because a launch-pad or post-launch explosion is always possible, we need to determine the ability of GPHS fueled clads within a module to survive fragment impact. The bullet/fragment test series, part of the Safety Verification Test Plan, was designed to provide information on clad response to impact by a compact, high-energy, aluminum-alloy fragment and to establish a threshold value of fragment energy required to breach the iridium cladding. Test results show that a velocity of 555 m/s (1820 ft/s) with an 18-g bullet is at or near the threshold value of fragment velocity that will cause a clad breach. Results also show that an exothermic Ir/Al reaction occurs if aluminum and hot iridium are in contact, a contact that is possible and most damaging to the clad within a narrow velocity range. The observed reactions between the iridium and the aluminum were studied in the laboratory and are reported in the Appendix.

  18. Efficiency of the heat pump cooperating with various heat sources in monovalent and bivalent systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurpaska, S.; Latala, H. [Krakow Univ. of Agriculture, Krakow (Poland). Inst. of Agricultural Engineering and Computer Science

    2010-07-01

    This paper reported on a study that tested the efficiency of compressor heat pumps cooperating with various types of lower heat sources such as horizontal ground heat exchangers, vertical exchangers and sources operating in the bivalent system. The system for receiving energy consisted of a traditional heating system and liquid-air exchangers. The study identified a strong relationship between the heating efficiency of the analysed systems and temperature inside the structure. The study showed that the bivalent system was fully capable of meeting a heat requirement of about 1 MJ -2.

  19. Cryogenic explosion environment modeling and testing of space shuttle and light-weight radioisotope heater unit interactions

    International Nuclear Information System (INIS)

    Johnson, E.W.

    1985-10-01

    In order to assess the risk to the world's populace in the event of a Space Shuttle accident when radioisotope-containing heat sources are on board, testing of that system must be performed to determine release point, environments required, and the size distribution of the released fuel. To evaluate the performance of the Light-Weight Radioisotope Heater Unit (LWRHU) (101 of these 1-W items are placed on the Galileo spacecraft which will be launched from the Space Shuttle), some high-velocity impact and flyer plate testing was carried out. The results showed that a bare urania-fueled LWRHU clad (approximately 1-mm thick platinum-30 wt % rhodium alloy) will withstand 1100 m/s flyer plate (3.5-mm thick aluminum) impacts and 330 m/s impacts upon the Space Shuttle floor (approximately 12-mm thick aluminum) without rupture or fuel release. Velocities in the order of 600 m/s on a steel surface will cause clad failure with fuel release. The fuel breakup patterns were characterized as to quantity in a specific size range. These data were employed in the formal Safety Analysis Report for the LWRHU to support the planned 1986 Galileo launch. 19 figs

  20. Medical radioisotopes for the next century

    International Nuclear Information System (INIS)

    Carr, S.W.

    1999-01-01

    Radioisotopes are widely used in medicine (Nuclear Medicine) for diagnosis, palliation and therapy of heart disease, cancer, muscoskeletal and neurological conditions. The radioisotopes used are both reactor and cyclotron produced. The utilisation is currently growing and is expected to continue to grow over the next 10-20 years. The combination of radioisotope and delivery vehicle can be designed to meet the intended end use. This paper will deal with the main approaches to the use of radioisotopes for Nuclear medicine ad future prospects for the area

  1. Radioisotope programme in India: past, present and future

    International Nuclear Information System (INIS)

    Kohli, A.K.

    2012-01-01

    One of the major discoveries of the 20th century is the discovery of artificial radioactivity. This distinctive discovery in human history transformed atoms of one element to another. Until then, chemical reactions used to be concerned only with changes occurring outside the nucleus. The field of nuclear science came into existence with discovery of X-rays by Wilhelm Roentgen in 1895, radioactivity emitted by Uranium salt by Henri Becquerel in 1896 and pioneering work carried out by Madame Curie and Pierre Curie. India's atomic energy programme was envisaged, founded and developed by the great visionary Dr. Homi Jehangir Bhabha. Since then Department of Atomic Energy (DAE) of Government of India has been engaged in developing technologies for use of radiation in all possible fields for the benefit of society. The most common sources of radiation are radioisotopes. Radioisotopes are produced by nuclear reactors either by utilizing available excess neutrons for activation of stable elements or by separating useful fission products from the spent fuel. In India, the production of radioisotopes started with the commissioning of APSARA reactor in 1956. Initially, APSARA was operated at low power, and radioisotopes could be produced only on a small scale. All these operations had to be called out with remote handling or in the safe glove boxes keeping in view the radiation levels associated with the samples. In due course, the reactor reached full power and remotely operated processing equipment required for handling the radioisotopes were set up. Isotopes such as Iodine-131, Phosphorous-32, Gold-198 and Sodium-24 were produced and extracted in purified form in small quantities. These were given to KEM Hospital and Bombay Hospital at Mumbai, Vallabhbhai Patel Chest Institute and Safdarjung Hospital in Delhi, mainly for exploratory experiments

  2. Management of radioactive wastes arising from the use of Australian radioisotopes

    International Nuclear Information System (INIS)

    Costello, J.M.

    1986-01-01

    The medical, industrial and research use of radioisotopes in Australia has given rise to approximately 30 m 3 of solid radioactive waste containing about 5 TBq of radioactivity. This waste is stored at State hospitals, universities and research centres. A further 10 m 3 of waste containing 300 GBq of radioactivity is stored by the Commonwealth at the St Mary's Munitions Filling factory. About 700 m 3 of waste containing 1.5 PBq of radioactivity resulting from operation of the HIFAR nuclear reactor and the production of radioisotopes is in storage at the Lucas Heights Research Establishment. The source, nature and rate of arising of these wastes is reviewed, together with national developments in waste classification, storage procedures and eventual disposal. Some research at Lucas Heights on the conditioning of radioisotope waste to facilitate disposal is briefly noted

  3. Investigation of process equipment in petrochemical industry using radioisotope technology

    International Nuclear Information System (INIS)

    Mohammed, M. S.

    2007-04-01

    Applications of radioisotope technology have proved it self to be an effective techniques for troubleshooting and optimizing industrial process in petrochemical industry. In this study, Khartoum refinery was investigated by gamma scanning technique for better understanding of malfunctions, the scanning were carried out using 60 C gamma radiation source with activity of 50 mCi on fractionator and stripper columns, obtained results showed that all trays of the fractionator column were in place but weeping was evident due to fouling or partial tray damage. For the stripper column, results obtained showed that all trays were on their positions and no process anomalies taking place. Heat exchanger was also examined using radiotracer technique with respect to leak detection and residence time distribution. The investigations were carried out using 82 Br in the form of di-bromo-para-bensene (C 6 H 4 Br 2 ) as a radiotracer. No leak was recorded and the residence time distribution results showed that the process functions were quite normal. Leak was examined using 99m Tc as a radiotracer detection to demonstrate the potentials of the technique. The testing was conducted using reflux condenser. Obtained results proved that the technique is sensitive, reliable and can be adopted to investigate heat exchangers in industrial systems.(Author)

  4. Heat pump using dual heat sources of air and water. Performance in cooling mode; Mizu kuki ryonetsugen heat pump no kenkyu. Reibo unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y [Kubota Corp., Osaka (Japan)

    1997-11-25

    When a heat pump is used for cooling purpose, it is possible to utilize different kinds of waste water as high-heat sources. However, these heat sources would have their temperatures vary with seasons and time in a day. Therefore, a discussion was given on performance of a heat pump when water and air heat sources are used for condensers during cooling operation independently, in series and in parallel, respectively. The air condenser shows an equivalent COP as compared with the water condenser when air temperature is lower by about 8 degC than water temperature. At the same heat source temperature, the COP for the water condenser indicated a value higher by about 0.6 than the case of the air condenser. A method to use condensers in parallel experiences little contribution from the air heat source, and performance of the heat pump decreases below the case of using the water heat source independently when the air heat source temperature becomes higher than that of the water heat source. In the case of series use in which a water condenser is installed in front and an air condenser in rear, its effect is exhibited when temperature in the air heat source is lower than that in the water heat source. Better performance was shown than in operating the water heat source independently. 2 refs., 9 figs.

  5. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The United States Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 from RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Be-10, Al-26, Mg-28, Si-32, El-44, Fe-52, Gd-248, and Hg-194. We will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes from Los Alamos and Brookhaven will be described. Chemical separation techniques have been developed to recover the radioisotopes of interest in both high radiochemical purity and yield and at the same time trying to reduce or eliminate the generation of mixed waste. nearly 75 neutron deficient radioisotopes produced in spallation targets have been produced and distributed to researchers around the world since the inception of the program in 1974

  6. INR TRIGA Research Reactors: A Neutron Source for Radioisotopes and Materials Investigation

    International Nuclear Information System (INIS)

    Barbos, D.; Ciocanescu, M.; Paunoiu, C.; Bucsa, A.F.

    2013-01-01

    At the INR there are 2 high intensity neutron sources. These sources are in fact the two nuclear TRIGA reactors: TRIGA SSR 14 MW and TRIGA ACPR. TRIGA stationary reactor is provided with several in-core irradiation channels. Other several out-of-core irradiation channels are located in the vertical channels in the beryllium reflector blocks. The maximum value of the thermal neutron flux (E 14 cm -2 s -1 and of fast neutron flux (E>1 MeV) is 6.89×10 13 cm -2 s -1 . For neutron activation analysis both reactors are used and k0-NAA method has been implemented. At INR Pitesti a prompt gamma ray neutron activation analysis devices has been designed, manufactured ant put into operation. For nuclear materials properties investigation neutron radiography methods was developed in INR. For these purposes two neutron radiography devices were manufacture, one of them underwater and other one dry. The neutron beams are used for investigation of materials properties and components produced or under development for applications in the energy sector (fission and fusion). At TRIGA 14 MW reactor a neutron difractormeter and a SANS devices are available for material residual stress and texture measurements. TRIGA 14 MW reactor is used for medical and industrial radioisotopes production ( 131 I, 125 I, 192 Ir, etc) and a method for 99 Mo- 99 Tc production from fission is under developing. At INR Pitesti several special programmes for new types of nuclear fuel behavior characterization are under development. (author)

  7. An analysis of solar assisted ground source heat pumps in cold climates

    International Nuclear Information System (INIS)

    Emmi, Giuseppe; Zarrella, Angelo; De Carli, Michele; Galgaro, Antonio

    2015-01-01

    Highlights: • The work focuses on solar assisted ground source heat pump in cold climates. • Multi-year simulations of SAGSHP, are carried out in six cold locations. • GSHP and SAGSHP are compared. • The effect of total borehole length on the heat pump energy efficiency is studied. • A dedicated control strategy is used to manage both solar and ground loops. - Abstract: Exploiting renewable energy sources for air-conditioning has been extensively investigated over recent years, and many countries have been working to promote the use of renewable energy to decrease energy consumption and CO_2 emissions. Electrical heat pumps currently represent the most promising technology to reduce fossil fuel usage. While ground source heat pumps, which use free heat sources, have been taking significant steps forward and despite the fact that their energy performance is better than that of air source heat pumps, their development has been limited by their high initial investment cost. An alternative solution is one that uses solar thermal collectors coupled with a ground source heat pump in a so-called solar assisted ground source heat pump. A ground source heat pump system, used to heat environments located in a cold climate, was investigated in this study. The solar assisted ground source heat pump extracted heat from the ground by means of borehole heat exchangers and it injected excess solar thermal energy into the ground. Building load profiles are usually heating dominated in cold climates, but when common ground source heat pump systems are used only for heating, their performance decreases due to an unbalanced ground load. Solar thermal collectors can help to ensure that systems installed in cold zones perform more efficiently. Computer simulations using a Transient System Simulation (TRNSYS) tool were carried out in six cold locations in order to investigate solar assisted ground source heat pumps. The effect of the borehole length on the energy efficiency of

  8. Artificial radioisotopes in hydrological investigation

    International Nuclear Information System (INIS)

    Plata-Bedmar, A.

    1988-01-01

    Radioisotope techniques have an important part in hydrological investigations. Sealed radiation sources have been used for measurements of sediments transported by river water, of thickness and density of sediment layers. X-ray fluorescence analysis and well-logging are widely applied in hydrological research. Tracer techniques have been useful in flow rate and river dynamics research, sediments tracing, irrigation and ground water problems, infiltration rate evaluation etc. The IAEA is supporting several projects involving the use of radioactive tracers in hydrological investigations p.e. in Guatemala, Romania, South East Asia, Brazil, Chile and Nicaragua

  9. Radioisotope thermoelectric generator licensed hardware package and certification tests

    International Nuclear Information System (INIS)

    Goldmann, L.H.; Averette, H.S.

    1994-01-01

    This paper presents the Licensed Hardware package and the Certification Test portions of the Radioisotope Thermoelectric Generator Transportation System. This package has been designed to meet those portions of the Code of Federal Regulations (10 CFR 71) relating to ''Type B'' shipments of radioactive materials. The detailed information for the anticipated license is presented in the safety analysis report for packaging, which is now in process and undergoing necessary reviews. As part of the licensing process, a full-size Certification Test Article unit, which has modifications slightly different than the Licensed Hardware or production shipping units, is used for testing. Dimensional checks of the Certification Test Article were made at the manufacturing facility. Leak testing and drop testing were done at the 300 Area of the US Department of Energy's Hanford Site near Richland, Washington. The hardware includes independent double containments to prevent the environmental spread of 238 Pu, impact limiting devices to protect portions of the package from impacts, and thermal insulation to protect the seal areas from excess heat during accident conditions. The package also features electronic feed-throughs to monitor the Radioisotope Thermoelectric Generator's temperature inside the containment during the shipment cycle. This package is designed to safely dissipate the typical 4500 thermal watts produced in the largest Radioisotope Thermoelectric Generators. The package also contains provisions to ensure leak tightness when radioactive materials, such as a Radioisotope Thermoelectric Generator for the Cassini Mission, planned for 1997 by the National Aeronautics and Space Administration, are being prepared for shipment. These provisions include test ports used in conjunction with helium mass spectrometers to determine seal leakage rates of each containment during the assembly process

  10. Hot Hydrogen Heat Source Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a  hot hydrogen heat source that would produce  a high temperature hydrogen flow which would be comparable to that produced...

  11. Drying equipment for radioisotope-treated animals

    International Nuclear Information System (INIS)

    Fujikake, Toshio; Ohmori, Akira; Takada, Yukio; Nakano, Shozoh; Tamai, Shinsuke.

    1978-01-01

    The animal experiments using radioisotopes have been carried out over wide fields, accordingly, the number of radioisotope-contaminated animal cadavers has been increasing rapidly. It was decided that each establishment employing radioiosotopes dries those cadavers to such state as to be able to burn up with the device in Japan Atomic Energy Research Institute. The animal waste-drying device meeting the above mentioned purpose was developed by the joint work of Fuji Electric General Devices Co. and Fuji Electric Co. It is known as the micro-wave drying device for animals (its nickname is Microdry). This device dehydrates at high speed by micro-wave drying method. By using along with a moisture detector, it gives the drying state as requested regardless of the water content of each animal. The animal wastes after perfect dehydration are reduced to the weight of about one-third, and the dried animal cadavers can be preserved for a long time at room temperature because of the sterilizing effect of the micro-wave heating. This device is noted for its excellent safeness, simple operation, and low treatment cost. It is anticipated that it can be further applied to other fields such as excreta, breeding materials, etc. (Kobatake, H.)

  12. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  13. Role of radioisotopes in the study of insect pests

    International Nuclear Information System (INIS)

    Mansour, M.

    2013-01-01

    Although the use of nuclear techniques, particularly radioisotopes, in entomological research is less than a century old, the contribution of radioisotopes to the science of studying insects (Entomology) is indispensable. In fact, radioisotopes provided a very important and sometimes a unique tool for solving many research problems in entomology. This article discusses the most important and widely used applications of radioisotopes in studying insect pests. In particular, it concentrates on the subject of radioisotopes used in entomological research, methods of labeling insect with radioisotopes, half life of radioisotopes, and the role of radioisotopes in physiological, ecological, biological and behavioral studies of insects. (author)

  14. Toward high performance radioisotope thermophotovoltaic systems using spectral control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiawa, E-mail: xiawaw@mit.edu [Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Chan, Walker [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Stelmakh, Veronika [Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Fisher, Peter [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139 (United States); Physics Department, Massachusetts Institute of Technology, Cambridge, MA02139 (United States)

    2016-12-01

    This work describes RTPV-PhC-1, an initial prototype for a radioisotope thermophotovoltaic (RTPV) system using a two-dimensional photonic crystal emitter and low bandgap thermophotovoltaic (TPV) cell to realize spectral control. We validated a system simulation using the measurements of RTPV-PhC-1 and its comparison setup RTPV-FlatTa-1 with the same configuration except a polished tantalum emitter. The emitter of RTPV-PhC-1 powered by an electric heater providing energy equivalent to one plutonia fuel pellet reached 950 °C with 52 W of thermal input power and produced 208 mW output power from 1 cm{sup 2} TPV cell. We compared the system performance using a photonic crystal emitter to a polished flat tantalum emitter and found that spectral control with the photonic crystal was four times more efficient. Based on the simulation, with more cell areas, better TPV cells, and improved insulation design, the system powered by a fuel pellet equivalent heat source is expected to reach an efficiency of 7.8%.

  15. Design of radioisotope power systems facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.C.; Wiemers, M.J.

    1991-01-01

    Radioisotope power systems currently produced for the U.S. Department of Energy Office of Special Applications by the Mound Laboratory at Miamisburg, Ohio, have been used in a variety of configurations by the Department of Defense and the National Aeronautics and Space Administration. A forecast of fugure radioisotope power systems requirements showed a need for an increased production rate beyond the capability of the existing Mound Laboratory. Westinghouse Hanford Company is modifying the Fuels and Materials Examination Facility on the Hanford Site near Richland, Washington, to install the new Radioisotope Power Systems Facility for assembling future radioisotope power systems. The facility is currently being prepared to assemble the radioisotope thermoelectric generators required by the National Aeronautics and Space Administration missions for Comet Rendezvous Asteroid Flyby in 1995 and Cassini, an investigation of Saturn and its moons, in 1996

  16. Radioisotope identification method for poorly resolved gamma-ray spectrum of nuclear security concern

    Energy Technology Data Exchange (ETDEWEB)

    Ninh, Giang Nguyen; Phongphaeth, Pengvanich, E-mail: phongphaeth.p@chula.ac.th; Nares, Chankow [Nuclear Engineering Department, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Hao, Quang Nguyen [Vietnam Atomic Energy Institute, Ministry of Science and Technology, Hanoi (Viet Nam)

    2016-01-22

    Gamma-ray signal can be used as a fingerprint for radioisotope identification. In the context of radioactive and nuclear materials security at the border control point, the detection task can present a significant challenge due to various constraints such as the limited measurement time, the shielding conditions, and the noise interference. This study proposes a novel method to identify the signal of one or several radioisotopes from a poorly resolved gamma-ray spectrum. In this method, the noise component in the raw spectrum is reduced by the wavelet decomposition approach, and the removal of the continuum background is performed using the baseline determination algorithm. Finally, the identification of radioisotope is completed using the matrix linear regression method. The proposed method has been verified by experiments using the poorly resolved gamma-ray signals from various scenarios including single source, mixing of natural uranium with five of the most common industrial radioactive sources (57Co, 60Co, 133Ba, 137Cs, and 241Am). The preliminary results show that the proposed algorithm is comparable with the commercial method.

  17. Radioisotope identification method for poorly resolved gamma-ray spectrum of nuclear security concern

    International Nuclear Information System (INIS)

    Ninh, Giang Nguyen; Phongphaeth, Pengvanich; Nares, Chankow; Hao, Quang Nguyen

    2016-01-01

    Gamma-ray signal can be used as a fingerprint for radioisotope identification. In the context of radioactive and nuclear materials security at the border control point, the detection task can present a significant challenge due to various constraints such as the limited measurement time, the shielding conditions, and the noise interference. This study proposes a novel method to identify the signal of one or several radioisotopes from a poorly resolved gamma-ray spectrum. In this method, the noise component in the raw spectrum is reduced by the wavelet decomposition approach, and the removal of the continuum background is performed using the baseline determination algorithm. Finally, the identification of radioisotope is completed using the matrix linear regression method. The proposed method has been verified by experiments using the poorly resolved gamma-ray signals from various scenarios including single source, mixing of natural uranium with five of the most common industrial radioactive sources (57Co, 60Co, 133Ba, 137Cs, and 241Am). The preliminary results show that the proposed algorithm is comparable with the commercial method

  18. Radioisotope Power Supply, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Between 1998 and 2003, Hi-Z Technology developed and built a 40 mW radioisotope power supply (RPS) that used a 1 watt radioisotope heater unit (RHU) as the energy...

  19. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.; Becker, D.L.

    1996-01-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration close-quote s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. copyright 1996 American Institute of Physics

  20. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    International Nuclear Information System (INIS)

    McCoy, J.C.

    1995-10-01

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined

  1. Applications of radioisotopes for studying refractory wear-out in Bhilai Steel Plant

    International Nuclear Information System (INIS)

    Dubey, R.S.; Bose, U.P.; Shipstone, A.J.

    1979-01-01

    In Bhilai Steel Plant, investigations were carried out to study the refractory wear-out of (i) hearth bottom of blast furnaces, (ii) roof of open hearth furnaces, and (iii) hot metal mixer lining, by using radioisotope tracer techniques with a view to evaluate the life of the refractory lining at various locations and to help in planning its timely hot and cold repairs. The life of the refractory lining has the effective bearing on the overall production and hence on the economy of the plant. The two radiometric methods employed for studying the erosion of the refractory lining, by using isotope inserted bricks at various positions without damaging the lining are (i) based on recording the penetration of gamma rays emitting from the radioactive isotopes inserted at definite points of the brick lining and, (ii) by detecting the radioactivity of the pig iron or steel arising due to washing away of the respective radioactive isotopes previously inserted in the lining. In hot mixers also radioisotope sources were placed in the critical location of refractory lining and the washing out of radioisotope due to refractory brick wear out was detected by radiogauging at site. It has been found that radiotracer technique with periodic radiogauging is very useful method for tracing the radioisotope source if more than one refractory brick with isotope is placed, as in the case of open hearth furnaces. The results of radioanalysis revealed that radioactivity coming alongwith hot metal steel has been far below the permissible limit of concentration i.e. 20 micro-curie per ton of metal. Further, during dismantling of the residual refractory lining of open hearth furnaces or hot metal mixers, bricks containing radioisotopes have been successfully retrieved for safe disposal. (auth.)

  2. Radioisotope detection and dating with accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T S; Muller, R A [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1980-07-01

    The status of the new technique of high energy mass spectrometry is reviewed. This sensitive method of measuring isotope concentrations has been applied to the detection of rare radioisotopes used for age estimation. The techniques used to select and identify the individual radioisotope atoms in a sample are described and then the status of the radioisotope measurements and their applications is reviewed.

  3. Selection of emitter material for application on a radioisotope thermophotovoltaic (RTPV) power system

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.P.; Frohlich, N.D.; Koehler, F.A.; Ruhkamp, J.D.; Miller, R.G.; McDougal, J.R.; Pugh, B.K.; Barklay, C.D.; Howell, E.I. [EGG Mound Applied Technologies Building 88, P.O. Box 3000 Miamisburg, Ohio45343 (United States)

    1997-01-01

    Radioisotope Thermophotovoltaic (RTPV) power systems are being considered for long duration space missions due to their predicted high thermal to electrical conversion efficiencies. One critical aspect of these power systems is the selection of an appropriate emitter material which will efficiently radiate the thermal energy generated by the heat source to the photovoltaics. The photovoltaics are {open_quotes}tuned{close_quotes} to convert the infrared wavelengths radiated by the emitter into electrical energy. The emphasis of this paper is on the selection and optimization of an appropriate emitter material which would meet all of the mission requirements. A Kepner Tregoe analysis was performed in order to rank the various candidate refractory materials in relationship to their physical and chemical properties. The results of the analysis and material recommendations are discussed. {copyright} {ital 1997 American Institute of Physics.}

  4. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  5. Development of the Sixty Watt Heat-Source hardware components

    International Nuclear Information System (INIS)

    McNeil, D.C.; Wyder, W.C.

    1995-01-01

    The Sixty Watt Heat Source is a nonvented heat source designed to provide 60 thermal watts of power. The unit incorporates a plutonium-238 fuel pellet encapsulated in a hot isostatically pressed General Purpose Heat Source (GPHS) iridium clad vent set. A molybdenum liner sleeve and support components isolate the fueled iridium clad from the T-111 strength member. This strength member serves as the pressure vessel and fulfills the impact and hydrostatic strength requirements. The shell is manufactured from Hastelloy S which prevents the internal components from being oxidized. Conventional drawing operations were used to simplify processing and utilize existing equipment. The deep drawing reqirements for the molybdenum, T-111, and Hastelloy S were developed from past heat source hardware fabrication experiences. This resulted in multiple step drawing processes with intermediate heat treatments between forming steps. The molybdenum processing included warm forming operations. This paper describes the fabrication of these components and the multiple draw tooling developed to produce hardware to the desired specifications. copyright 1995 American Institute of Physics

  6. An approach to design a 90Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL, and MCNP.

    Science.gov (United States)

    Khajepour, Abolhasan; Rahmani, Faezeh

    2017-01-01

    In this study, a 90 Sr radioisotope thermoelectric generator (RTG) with power of milliWatt was designed to operate in the determined temperature (300-312K). For this purpose, the combination of analytical and Monte Carlo methods with ANSYS and COMSOL software as well as the MCNP code was used. This designed RTG contains 90 Sr as a radioisotope heat source (RHS) and 127 coupled thermoelectric modules (TEMs) based on bismuth telluride. Kapton (2.45mm in thickness) and Cryotherm sheets (0.78mm in thickness) were selected as the thermal insulators of the RHS, as well as a stainless steel container was used as a generator chamber. The initial design of the RHS geometry was performed according to the amount of radioactive material (strontium titanate) as well as the heat transfer calculations and mechanical strength considerations. According to the Monte Carlo simulation performed by the MCNP code, approximately 0.35 kCi of 90 Sr is sufficient to generate heat power in the RHS. To determine the optimal design of the RTG, the distribution of temperature as well as the dissipated heat and input power to the module were calculated in different parts of the generator using the ANSYS software. Output voltage according to temperature distribution on TEM was calculated using COMSOL. Optimization of the dimension of the RHS and heat insulator was performed to adapt the average temperature of the hot plate of TEM to the determined hot temperature value. This designed RTG generates 8mW in power with an efficiency of 1%. This proposed approach of combination method can be used for the precise design of various types of RTGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Safe Handling of Radioisotopes. Medical Addendum

    International Nuclear Information System (INIS)

    Hercik, F.; Jammet, H.

    1960-01-01

    The International Atomic Energy Agency published in 1958 a Manual entitled ''Safe Handling of Radioisotopes'' (Safety Series No. 1 - STI/PUB/1), based on the work of an international panel convened by the Agency. As recommended by that panel and approved by the Agency's Board of Governors, this Addendum has now been prepared, primarily as a supplement to the Manual. It contains information necessary to medical officers concerned with the implementation of the controls given in the Manual. In addition, it is intended to serve as a brief introduction to the medical problems encountered in radiological protection work and to the methods of resolving them. As in the case of the Manual itself, the information given in this Addendum is particularly relevant to the problems encountered by the small user of radioisotopes. Although the basic principles set forth in it apply to all work with radiation sources, the Addendum is not intended to serve as a radiological protection manual for use in reactor installations or large-scale nuclear industry, where more specialized techniques and information are required.

  8. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  9. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds

  10. A feasible system integrating combined heating and power system with ground-source heat pump

    International Nuclear Information System (INIS)

    Li, HongQiang; Kang, ShuShuo; Yu, Zhun; Cai, Bo; Zhang, GuoQiang

    2014-01-01

    A system integrating CHP (combined heating and power) subsystem based on natural gas and GSHP (ground-source heat pump subsystem) in series is proposed. By help of simulation software-Aspen Plus, the energy performance of a typical CHP and GSHP-S (S refers to ‘in series’) system was analyzed. The results show that the system can make a better use of waste heat in flue gas from CHP (combined heating and power subsystem). The total system energy efficiency is 123% and the COP (coefficient of performance) of GSHP (ground-source heat pump) subsystem is 5.3. A referenced CHP and GSHP-P (P refers to ‘in parallel’) system is used for comparison; its total system energy efficiency and COP of GSHP subsystem are 118.6% and 3.5 respectively. Compared with CHP and GSHP-P system with different operating parameters, the CHP and GSHP-S system can increase total system energy efficiency by 0.8–34.7%, with related output ratio of heat to power (R) from 1.9 to 18.3. Furthermore, the COP of GSHP subsystem can be increased between the range 3.6 and 6, which is much higher than that in conventional CHP and GSHP-P system. This study will be helpful for other efficient GSHP systems integrating if there is waste heat or other heat resources with low temperature. - Highlights: • CHP system based on natural gas and ground source heat pump. • The new system can make a better utilization of waste heat in flue gas by a special way. • The proposed system can realize energy saving potential from 0.8 to 34.7%. • The coefficient of performance of ground source heat pump subsystem is significantly improved from 3.5 to 3.6–6. • Warm water temperature and percentage of flue gas used to reheat are key parameters

  11. Design study and heat transfer analysis of a neutron converter target for medical radioisotope production

    International Nuclear Information System (INIS)

    Masoud Behzad; Sang-In Bak; Seung-Woo Hong; Jong-Seo Chai; Yacine Kadi; Claudio Tenreiro; University of Talca, Talca

    2014-01-01

    A worldwide challenge in the near future will be to find a way of producing radioisotopes in sufficient quantity without relying on research reactors. The motivation for this innovative work on targets lies in the accelerator-based production of radioisotopes using a neutron converter target as in the transmutation by adiabatic resonance crossing concept. Thermal analysis of a multi-channel helium cooled device is performed with the computational fluid dynamics code CFX. Different boundary conditions are taken into account in the simulation process and many important parameters such as maximum allowable solid target temperature as well as uniform inlet velocity and outlet pressure changes in the channels are investigated. The results confirm that the cooling configuration works well; hence such a solid target could be operated safely and may be considered for a prototype target. (author)

  12. Heat transfer within a concrete slab with a finite microwave heating source

    International Nuclear Information System (INIS)

    Lagos, L.E.; Li, W.; Ebadian, M.A.; Grubb, R.G.

    1995-01-01

    In the present paper, the concrete decontamination and decommissioning process with a finite microwave heating source is investigated theoretically. For the microwave induced heating pattern, a multilayer concrete slab, which includes steel reinforcement mesh, is assumed to be exposed to a finite plane microwave source at normal incidence. Two-dimensional heat transport within the concrete is also considered to evaluate the variations of temperature with heating time at different frequencies with and without the presence of the reinforcement bars. Four commonly used industrial microwave frequencies of 0.896, 2.45, 10.6 and 18.0 GHz have been selected. The results revealed that as the microwave frequency increases to, or higher than 10.6 GHz, the maximum temperature shifts toward the front surface of the concrete. It was found that the presence of a steel reinforcement mesh causes part of the microwave energy to be blocked and reflected. Furthermore, it was observed that the temperature distribution is nearly uniform within the dimensions of the microwave applicator for a high microwave power intensity and a short heating time. (author)

  13. Present status of application of radiation and radioisotopes in Bangladesh

    International Nuclear Information System (INIS)

    Hossain, Anwar

    1984-01-01

    Bangladesh has proceeded with the atomic energy programme in three phases: (1) research and development using radiation and radioisotopes and application of the results, (2) building the infrastructure in nuclear technology and (3) production of electricity from nuclear sources and development of associated facilities. It has entered the second phase of the programme. The following main areas of research and application were referred to: agriculture, food preservation, medical sterilization and radiation biology, medicine, non-destructive testing, isotope hydrology, elemental analysis, particle-induced x-ray emission (PIXE) methods, radioisotope-induced x-ray fluorescence (RIXFA) methods, flame atomic absorption spectrophotometric (AAS) methods, molecular absorption and fluorescence spectroscopy, health physics, and future programme with research reactor. (Namekawa, K.)

  14. Design of serially connected ammonia-water hybrid absorption-compression heat pumps for district heating with the utilisation of a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2016-01-01

    District heating (DH) can reduce the primary energy consumption in urban areas with significant heat demands. The design of a serially connected ammonia-water hybrid absorption-compression heat pump system was investigated for operation in the Greater Copenhagen DH network in Denmark, in order...... to supply 7.2 MW heat at 85 °C utilizing a geothermal heat source at 73 °C. Both the heat source and heat sink experience a large temperature change over the heat transfer process, of which a significant part may be achieved by direct heat exchange. First a generic study with a simple representation...

  15. Planning For Multiple NASA Missions With Use Of Enabling Radioisotope Power

    Energy Technology Data Exchange (ETDEWEB)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2013-02-01

    Since the early 1960’s the Department of Energy (DOE) and its predecessor agencies have provided radioisotope power systems (RPS) to NASA as an enabling technology for deep space and various planetary missions. They provide reliable power in situations where solar and/or battery power sources are either untenable or would place an undue mass burden on the mission. In the modern era of the past twenty years there has been no time that multiple missions have been considered for launching from Kennedy Space Center (KSC) during the same year. The closest proximity of missions that involved radioisotope power systems would be that of Galileo (October 1989) and Ulysses (October 1990). The closest that involved radioisotope heater units would be the small rovers Spirit and Opportunity (May and July 2003) used in the Mars Exploration Rovers (MER) mission. It can be argued that the rovers sent to Mars in 2003 were essentially a special case since they staged in the same facility and used a pair of small launch vehicles (Delta II). This paper examines constraints on the frequency of use of radioisotope power systems with regard to launching them from Kennedy Space Center using currently available launch vehicles. This knowledge may be useful as NASA plans for its future deep space or planetary missions where radioisotope power systems are used as an enabling technology. Previous descriptions have focused on single mission chronologies and not analyzed the timelines with an emphasis on multiple missions.

  16. Support housing for radioisotope generation

    International Nuclear Information System (INIS)

    Fries, B.A.

    1976-01-01

    A support housing for on-site radioisotope generation is disclosed in which the formation of a short-lived daughter radioisotope from its longer-lived parent features countercurrent batch flow of the eluting reagent interior of the housing. 6 claims, 4 drawing figures

  17. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system

    International Nuclear Information System (INIS)

    Li Shuhong; Yang Weihua; Zhang Xiaosong

    2009-01-01

    The imbalance of heat extracted from the earth by the underground heat exchangers in winter and ejected into it in summer is expected to affect the long term performance of conventional ground source heat pump (GSHP) in territories with a cold winter and a warm summer such as the middle and downstream areas of the Yangtze River in China. This paper presents a new multi-function ground source heat pump (MFGSHP) system which supplies hot water as well as space cooling/heating to mitigate the soil imbalance of the extracted and ejected heat by a ground source heat pump system. The heat transfer characteristic is studied and the soil temperature around the underground heat exchangers are simulated under a typical climatic condition of the Yangtze River. A three-dimensional model was constructed with the commercial computational fluid dynamics software FLUENT based on the inner heat source theory. Temperature distribution and variation trend of a tube cluster of the underground heat exchanger are simulated for the long term performance. The results show that the soil temperature around the underground tube keeps increasing due to the surplus heat ejected into the earth in summer, which deteriorates the system performance and may lead to the eventual system deterioration. The simulation shows that MFGSHP can effectively alleviate the temperature rise by balancing the heat ejected to/extracted from underground by the conventional ground source heat pump system. The new system also improves the energy efficiency.

  18. Present situation of the production and use of radioisotopes in France

    International Nuclear Information System (INIS)

    Fisher, Charlie

    1974-01-01

    As the sole large scale producer of radioisotopes in France, the Commissariat a l'Energie Atomique is keeping up pace with all developments in medical, biological and industrial areas. This production will reach the turnover close to 40 million F in 1973. About 65% of the products will go to medical market, 10% to biology and the remaining 25% to industry. As medical products, many radioisotopes are used for in-vivo diagnosis, while radioimmunology techniques are well known in in-vitro diagnosis. There has been very few noticeable development in therapeutics. Also there is steadily increasing demand for 14 C, 3 H and 13 C-labelled materials which are used to study metabolism of natural substances and drugs. The industrial utilization of radioisotopes in France is developed by CEA as well as several industrial companies. Trend must be analyzed for the different segments of the market which includes tracer utilization, instrumentation, large source technology such as sterilization of medical supplies, activation analysis and isotopic generators. (Wakatsuki, Y.)

  19. List of ERDA radioisotope (customers with summary of radioisotope shipments FY 1975

    International Nuclear Information System (INIS)

    Simmons, J.L.; Gano, S.R.

    1976-01-01

    The twelfth edition of the ERDA radioisotope customer list has been prepared at the request of the Division of Biomedical and Environmental Research. The purpose of this document is to list the FY 1975 commercial radioisotope production and distribution activities of USERDA facilities at Argonne National Laboratory, Battelle, Pacific Northwest Laboratories, Brookhaven National Laboratory, United Nuclear Inc., Idaho Operations Office, Hanford Engineering Development Laboratory, Mound Laboratory, Oak Ridge National Laboratory, and Savannah River Plant

  20. Heat transfer from the moving heat source of arbitrary shape

    International Nuclear Information System (INIS)

    Fomin, Sergei A.

    2000-01-01

    The present research is related to contact melting by a moving heat source of arbitrary shape. Heat conduction in the melting material is governed by 3D differential equation, where the thermal conductivity of the surrounding material is assumed to be strongly temperature dependent. By using the Green's formula, the boundary-value problem is converted to the boundary integral equation. This non-linear equation is solved numerically by interactions utilizing the boundary element method. Different shapes of heat sources are investigated. Since the obtained integral equation is the Fredholm type equation of the first kind and belongs to the family of so-called ill-posed problems, therefore, supplementary computations, that verify the stability of numerical algorithm, are provided. For the special cases associated with thermodrilling technology, some analytical estimations and solutions are obtained. Particularly, if the melting velocity is high (Pe>10), asymptotic solutions are found. In this case the integral equation is significantly reduced, that simplifies the computations. Numerical results are in good agreement with the closed-form solutions available for the elliptical shape of a solid-liquid interface. (author)

  1. Radioisotope techniques in water resources research and management with special reference to India

    International Nuclear Information System (INIS)

    Banerji, S.

    1977-01-01

    Nuclear techniques using radioisotopes finding applications in research and management of water resources are described briefly with special reference to and representative illustrations of their applications in hydrologic studies in India. As environmental isotopes including the man-made ones i.e. those released in nuclear explosions are intimately tied with the moisture and water in circulation pattern in nature, measurement of their variation provides diagnostic information about the hydrologic parameters of three phases, namely, atmospheric, surface and subsurface, of the hydrologic cycle. Artificial radioisotopes are used for measurement of water flow, sediment transport and seepage. Sealed radioisotope sources are employed in snow gauging, suspended sediment gauging and hydrologic logging. Areas for further research are suggested and need for emphasis on their use in India is indicated. (M.G.B.)

  2. Experimental study on local heat transfer characteristics of porous media with internal heat source

    International Nuclear Information System (INIS)

    Zan Yuanfeng; Wang Taotao; Xiao Zejun; Wang Fei; Huang Yanping

    2008-01-01

    Model of porous media with internal heat source is established. The model uses water as flowing media, and the stainless steel test section is packed with steel spheres in manner of regular triangle, respectively. The armoured resistance wire is inserted inside the steel sphere. On the basis of the experimental model, many parameters of the local heat transfer characteristics including current velocity and wall temperature of steel sphere are measured. The experimental results show that the coefficient of heat transfer scarcely changes with pressure. The coefficient of heat transfer increases with the surface heat flux of steel sphere. When raising the inlet temperature of the cooling water, the coefficient of heat transfer presents the descending trend. In addition, the influence of entrance effect on heat transfer is discovered in the experiment, which is much less than the liquid flow in the light tube. After experiment data are analyzed and processed, the relation model of heat transfer on local heat transfer characteristic of porous media with internal heat source was described with a power-law-equation. The deviations between calculation and experimental values are within ±10%. (authors)

  3. Status and prospects on radioisotope production in Korea

    International Nuclear Information System (INIS)

    Han, H. S.; Cho, W. K.; Park, U. J.; Hong, Y. D.; Park, K. B.

    2002-01-01

    In Korea, radioisotopes has been produced using small-sized research reactors (TRIGA Mark II, III) from 1961 to 1995. The Korea Atomic Energy Research Institute (KAERI) completed the High-flux Advanced Neutron Application Reactor (HANARO) in 1995 and a radioisotope production facilities (RIPF) in 1997. Medical and industrial radionuclides such as 131 I, 99m Tc, 166 Ho, 192 Ir and 60 Co, are routinely produced utilizing HANARO. Several hundreds kilo curies of these nuclides were supplied to domestic users in 2001. The Korea Cancer Center Hospital (KCCH) first installed a cyclotron (MC-50) for neutron therapy and RI production in 1984. At present, the cyclotron routinely produced radionuclides such as 201 TI, 67 Ga, 123 I and 18 F. Also, it is capable of producing several radionuclides, including 111 In, 51 Cr, 124 I, 54 Mn, 22 Na, etc. Baby cyclotrons were installed in Seoul National University Hospital, Sam sung Medical Center and Asan Medical Center. The main purpose of the introduction of baby cyclotrons was to produce short-lived positron emitters such as 18 F, 15 O and 11 C for PET. Radioisotope production facilities were imported and installed as subsidiaries of cyclotron. In Korea, more than 60 kinds of radioisotopes are currently used in the field of their applications and most of them are imported form foreign vendors. For the quality assurance of final products such as radiopharmaceuticals and industrial sources, facilities for production should be installed and maintained in accordance with regulation rules and also the production system should be operated under quality management system. Since 1992 the Korean government has been encouraging Mid and Long Term Nuclear R and D Programs to enhance capability in nuclear technology development. In order to actively promote the utilization, research and development of technology applying radiation and RI, the Korean government established 'a comprehensive promotion plan for utilization, research and development

  4. Titan Exploration Using a Radioisotopically-Heated Montgolfiere Balloon

    Science.gov (United States)

    Elliott, John O.; Reh, Kim; Spilker, Tom

    2007-01-01

    This paper describes results of a recent Titan exploration mission study; one which includes an aerial vehicle in the form of a hot air balloon, or montgolfiere. Unlike terrestrial montgolfieres which require burning fuel, the dual use of MMRTGs to provide a continuous source of heat as well as electrical power would give the balloon an inherent ability to float for a very long time in the atmosphere of Titan. It would ride with the easterly winds at a cruising altitude of about 10,000 km, occasionally changing altitude to take advantage of possible reverse wind directions and even descending to the surface to physically sample sites of interest. Seasonal and tidal north-south winds would allow the mission to explore different latitudes, which Cassini data have shown to be amazingly diverse in geologic nature. Communication from the aerial vehicle would be relayed through an accompanying orbiter spacecraft, as well as transmitted directly to Earth, providing the potential for data return from Titan's surface equivalent to that provided by many comparable orbiter missions at much closer destinations.

  5. Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China

    Science.gov (United States)

    Lei, Y.; Tan, H. W.; Wang, L. Z.

    2017-11-01

    Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.

  6. A Study on Conjugate Heat Transfer Analysis of Reactor Vessel including Irradiated Structural Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Cho, Hyuksu; Im, Inyoung; Kim, Eunkee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    Though Material reliability programs (MRPs) have a purpose to provide the evaluation or management methodologies for the operating RVI, the similar evaluation methodologies can be applied to the APR1400 fleet in the design stage for the evaluation of neutron irradiation effects. The purposes of this study are: to predict the thermal behavior whether or not irradiated structure heat source; to evaluate effective thermal conductivity (ETC) in relation to isotropic and anisotropic conductivity of porous media for APR1400 Reactor Vessel. The CFD simulations are performed so as to evaluate thermal behavior whether or not irradiated structure heat source and effective thermal conductivity for APR1400 Reactor Vessel. In respective of using irradiated structure heat source, the maximum temperature of fluid and core shroud for isotropic ETC are 325.8 .deg. C, 341.5 .deg. C. The total amount of irradiated structure heat source is about 5.41 MWth and not effect to fluid temperature.

  7. Sourceless formation evaluation. An LWD solution providing density and neutron measurements without the use of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, R.; Reichel, N. [Schlumberger, Sungai Buloh (Malaysia)

    2013-08-01

    For many years the industry has been searching for a way to eliminate the logistical difficulties and risk associated with deployment of radioisotopes for formation evaluation. The traditional gamma-gamma density (GGD) measurement uses the scattering of 662-keV gamma rays from a 137Cs radioisotopic source, with a 30.17-year half-life, to determine formation density. The traditional neutron measurement uses an Am-Be source emitting neutrons with an energy around 4 MeV, with a half-life of 432 years. Both these radioisotopic sources pose health, security, and environmental risks. Pulsed-neutron generators have been used in the industry for several decades in wireline tools and more recently in logging-while-drilling tools. These generators produce 14-MeV neutrons, many of which interact with the nuclei in the formation. Elastic collisions allow a neutron porosity measurement to be derived, which has been available to the industry since 2005. Inelastic interactions are typically followed by the emission of a variety of high-energy gamma rays. Similar to the case of the GGD measurement, the transport and attenuation of these gamma rays is a strong function of the formation density. However, the gamma-ray source is now distributed over a volume within the formation, where gamma rays have been induced by neutron interactions and the source can no longer be considered to be a point as in the case of a radioisotopic source. In addition, the extent of the induced source region depends on the transport of the fast neutrons from the source to the point of gamma-ray production. Even though the physics is more complex, it is possible to measure the formation density if the fast neutron transport is taken into account when deriving the density answer. This paper briefly reviews the physics underlying the sourceless neutron porosity and recently introduced neutron-gamma density (SNGD) measurement, demonstrates how they can be used in traditional workflows and illustrates their

  8. The efficient importation and distribution of radioisotopes. Suggestions for the most economic importation of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-01

    In the course of their work in many Member States, IAEA technical assistance experts have sometimes encountered difficulties in connection with the importation of radioactive isotopes. In some countries they have been consulted as to the possible improvement of import procedures. The purpose of this publication is to summarize the experience that has been gained in the hope that it may be useful both to scientists who wish to import radioisotopes for their work and to public officials who are concerned with the administrative and financial aspects of the problem. This question is of considerable importance because many countries have only limited resources of scientific man-power and foreign exchange and hence it is essential, if these resources are to be utilized fully, that efficient importing procedures be established. Furthermore, the success or failure of technical assistance activities may depend on whether radioisotopes needed for the project can be efficiently imported. Although the data summarized in this publication are based mainly on the experience of medical users of radioisotopes, they are equally applicable to their uses in other fields such as agriculture and hydrology. This publication covers the subject of importation and distribution of radioisotopes, and concludes with a brief section on the domestic production of short-lived radioisotopes in research reactors.

  9. The efficient importation and distribution of radioisotopes. Suggestions for the most economic importation of radioisotopes

    International Nuclear Information System (INIS)

    1963-01-01

    In the course of their work in many Member States, IAEA technical assistance experts have sometimes encountered difficulties in connection with the importation of radioactive isotopes. In some countries they have been consulted as to the possible improvement of import procedures. The purpose of this publication is to summarize the experience that has been gained in the hope that it may be useful both to scientists who wish to import radioisotopes for their work and to public officials who are concerned with the administrative and financial aspects of the problem. This question is of considerable importance because many countries have only limited resources of scientific man-power and foreign exchange and hence it is essential, if these resources are to be utilized fully, that efficient importing procedures be established. Furthermore, the success or failure of technical assistance activities may depend on whether radioisotopes needed for the project can be efficiently imported. Although the data summarized in this publication are based mainly on the experience of medical users of radioisotopes, they are equally applicable to their uses in other fields such as agriculture and hydrology. This publication covers the subject of importation and distribution of radioisotopes, and concludes with a brief section on the domestic production of short-lived radioisotopes in research reactors

  10. Optimum load distribution between heat sources based on the Cournot model

    Science.gov (United States)

    Penkovskii, A. V.; Stennikov, V. A.; Khamisov, O. V.

    2015-08-01

    One of the widespread models of the heat supply of consumers, which is represented in the "Single buyer" format, is considered. The methodological base proposed for its description and investigation presents the use of principles of the theory of games, basic propositions of microeconomics, and models and methods of the theory of hydraulic circuits. The original mathematical model of the heat supply system operating under conditions of the "Single buyer" organizational structure provides the derivation of a solution satisfying the market Nash equilibrium. The distinctive feature of the developed mathematical model is that, along with problems solved traditionally within the bounds of bilateral relations of heat energy sources-heat consumer, it considers a network component with its inherent physicotechnical properties of the heat network and business factors connected with costs of the production and transportation of heat energy. This approach gives the possibility to determine optimum levels of load of heat energy sources. These levels provide the given heat energy demand of consumers subject to the maximum profit earning of heat energy sources and the fulfillment of conditions for formation of minimum heat network costs for a specified time. The practical realization of the search of market equilibrium is considered by the example of a heat supply system with two heat energy sources operating on integrated heat networks. The mathematical approach to the solution search is represented in the graphical form and illustrates computations based on the stepwise iteration procedure for optimization of levels of loading of heat energy sources (groping procedure by Cournot) with the corresponding computation of the heat energy price for consumers.

  11. Heat sources for heat pumps in the energetic and economic comparison; Waermequellen fuer Waermepumpen im energetischen und wirtschaftlichen Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, Franziska; Fisch, M. Norbert; Schlosser, Mathias; Peter, Markus [Technische Univ. Braunschweig (Germany). Inst. fuer Gebaeude- und Solartechnik

    2016-07-01

    Because of the growing application of heat pumps also the number of potentially usable low-temperature heat sources and corresponding heat exchangers for heat-pump systems present in the market increases. Thereby products like energy fences, high-power piles, ore ice reservoir come into applications without any knowledge ab out their power or the cost-profit ratio. The optimized lay-out of the coupling to the building are however essential conditions in order to reach an energy-efficient and durable operation of the facilities. The research project ''future heat pump'' sponsored by the BMWi is dedicated to the energetic and economic evaluation of heat sources for heat pumps. In this connection a pre-check-tool for the preliminary selection of low-temperature heat sources and connected, suitable heat-exchange systems is developed and their actual status of development presented. The holistic, comparing consideration of the different heat sources and heat-exchanger systems is related among others to the power numbers of the heat pumps, the entry and withdrawal services of the heat-exchangers, and the general performance of the systems. Additionally an estimation of economic and ecologic aspects (investment and operation costs, CO{sub 2} emissions) is made. Aim is the determination of the plausibility of applications and essential boundary conditions of single source systems. For the qualitative comparison in a project-accompanying monitoring different facilities and source systems are measurement-technically comprehended.

  12. General Purpose Heat Source Simulator

    Science.gov (United States)

    Emrich, Bill

    2008-01-01

    The General Purpose Heat Source (GPHS) simulator project is designed to replicate through the use of electrical heaters, the form, fit, and function of actual GPHS modules which generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of spacecraft subsystems and systems without sacrificing the quantity and quality of the test data gathered. Previous GPHS activities are centered around developing robust heater designs with sizes and weights that closely matched those of actual Pu238 fueled GPHS blocks. These efforts were successful, although their maximum temperature capabilities were limited to around 850 C. New designs are being pursued which also replicate the sizes and weights of actual Pu238 fueled GPHS blocks but will allow operation up to 1100 C.

  13. Status of an advanced radioisotope space power system using free-piston Stirling technology

    International Nuclear Information System (INIS)

    White, M.A.; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-01-01

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel

  14. Self-Heating Effects In Polysilicon Source Gated Transistors

    Science.gov (United States)

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  15. Notification determining details of technical standards concerning transport of radioisotopes or goods contaminated by radioisotopes outside works or enterprises

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the regulation for the execution of the law on the prevention of radiation injuries by radioisotopes. Terms are used in this rule for the same meanings as in the regulation. The concentration of radioisotopes to which the technical standards for transport outside enterprises are not applied is 0.002 micro-curie per gram. The radioisotopes which can be transported as L type transported goods are defined in detail, excluding explosive or spontaneously igniting radioisotopes. The quantity limit of radioisotopes which can be transported as A type transported goods is the values A 1 and A 2 defined in this rule. The permissible surface density defined by the Director General of the Science and Technology Agency are 1/100,000 micro-curie per cm 2 for the radioisotopes emitting alpha-ray, and 1/10,000 micro-curie per cm 2 for the radioisotopes which do not emit alpha-ray. The leak quantity of radioisotopes specified by the Director General is 1/1,000,000 of A 2 value for BM type transported goods and 1/1,000 of A 2 value for BU type goods. The test conditions for each type of transported goods, dangerous goods, the limit of the number of transported goods and signs are stipulated, respectively. Permissible exposure dose is 1.5 rem a year for persons other than radiation workers. (Okada, K.)

  16. EFFECT OF THE TYPE OF HEAT SOURCES ON CARBON DIOXIDE EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sławomir Rabczak

    2016-11-01

    Full Text Available A lot of attention is nowadays devoted to the problem of generally defined ecology. It is absolutely essential in case of systems and sources generating heat due to their direct influence on the environment through emitting post-process products to the atmosphere which are, most frequently a result of combustion. Therefore, constant searchers are made to optimize the operation of heat sources and to acquire energy from sources for which the general balance of carbon dioxide emission is zero or close to zero. This work compares the emissions of equivalent CO2 from selected systems with the following heat sources: coal, gas furnace, heat pump, and refers results of the analysis to aspects connected with regulations concerning environmental protection. The systems generating thermal energy in the gas furnaces, coal, biomass, as well as the compression heat pumps with the lower heat source as ambient air or ground were taken under consideration, as well as centralized systems for the production of heat based on the combustion of coal, gas, oil, and biomass. the Emission of carbon dioxide for the installation of cogeneration and absorption heat pump were also calculated. Similarly obtained amount of extra emission necessary for the proper operation maintenance of heating devices via the supplied electricity from external source, the mostly fuel-fired power plants for fuels as previously mentioned. The results of the calculations were presented in tables and graphs.

  17. Hybrid district heating system with heat supply from nuclear source

    International Nuclear Information System (INIS)

    Havelka, Z.; Petrovsky, I.

    1987-01-01

    Several designs are described of heat supply from large remote power sources (e.g., WWER-1000 nuclear power plants with a 1000 MW turbine) to localities where mainly steam distribution networks have been built but only some or none networks for hot water distribution. The benefits of the designs stem from the fact that they do not require the conversion of the local steam distribution system to a hot water system. They are based on heat supply from the nuclear power plant to the consumer area in hot water of a temperature of 150 degC to 200 degC. Part of the hot water heat will be used for the production of low-pressure steam which will be compressed using heat pumps (steam compressors) to achieve the desired steam distribution network specifications. Water of lower temperature can be used in the hot water network. The hot water feeder forms an automatic pressure safety barrier in heat supply of heating or technological steam from a nuclear installation. (Z.M.). 5 figs., 9 refs

  18. Medical Radioisotopes Production Without A Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Keur, H.

    2010-05-15

    This report is answering the key question: Is it possible to ban the use of research reactors for the production of medical radioisotopes? Chapter 2 offers a summarized overview on the history of nuclear medicine. Chapter 3 gives an overview of the basic principles and understandings of nuclear medicine. The production of radioisotopes and its use in radiopharmaceuticals as a tracer for imaging particular parts of the inside of the human body (diagnosis) or as an agent in radiotherapy. Chapter 4 lists the use of popular medical radioisotopes used in nuclear imaging techniques and radiotherapy. Chapter 5 analyses reactor-based radioisotopes that can be produced by particle accelerators on commercial scale, other alternatives and the advantages of the cyclotron. Chapter 6 gives an overview of recent developments and prospects in worldwide radioisotopes production. Chapter 7 presents discussion, conclusions and recommendations, and is answering the abovementioned key question of this report: Is it possible to ban the use of a nuclear reactor for the production of radiopharmaceuticals? Is a safe and secure production of radioisotopes possible?.

  19. A thermoacoustic engine capable of utilizing multi-temperature heat sources

    International Nuclear Information System (INIS)

    Qiu Limin; Wang Bo; Sun Daming; Liu Yu; Steiner, Ted

    2009-01-01

    Low-grade energy is widespread. However, it cannot be utilized with high thermal efficiency directly. Following the principle of thermal energy cascade utilization, a thermoacoustic engine (TE) with a new regenerator that can be driven by multiple heat sources at different temperature levels is proposed. Taking a regenerator that utilizes heat sources at two temperatures as an example, theoretical research has been conducted on a traveling-wave TE with the new regenerator to predict its performance. Experimental verification is also done to demonstrate the benefits of the new regenerator. Results indicate that a TE with the new regenerator utilizing additional heat at a lower temperature experiences an increase in pressure ratio, acoustic power, efficiency, and exergy efficiency with proper heat input at an appropriate temperature at the mid-heater. A regenerator that uses multi-temperature heat sources can provide a means of recovering lower grade heat.

  20. List of ERDA radioisotope customers with summary of radioisotope shipments, FY 1976

    International Nuclear Information System (INIS)

    Simmons, J.L.

    1977-03-01

    The thirteenth edition of the ERDA radioisotope customer list has been prepared at the request of the Office of Program Coordination, Office of the Assistant Administrator. The purpose of the document is to list the FY 1976 commercial radioisotope production and distribution activities of ERDA facilities at Argonne National Laboratory, Battelle, Pacific Northwest Laboratories, Brookhaven National Laboratory, Hanford Engineering Development Laboratory, Idaho Operations Office, Los Alamos Scientific Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Savannah River Laboratory, and United Nuclear Industries, Inc

  1. Development of low grade waste heat thermoelectric power generator

    Directory of Open Access Journals (Sweden)

    Suvit Punnachaiya

    2010-07-01

    Full Text Available This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator consisted of 4 modules, each generating 15 watts. Two cascade modules were connected in parallel. Each modulecomprised of 96 TEC devices, which were connected in series. The hot side of each module was mounted on an aluminumheat transfer pipe with dimensions 12.212.250 cm. Heat sinks were installed on the cold side with cooling fans to provideforced air cooling.To test electricity generation in the experiment, water steam was used as a heat source instead of low grade waste heat.The open-circuit direct current (DC of 250 V and the short-circuit current of 1.2 A was achieved with the following operatingconditions: a hot side temperature of 96°C and a temperature difference between the hot and cold sides of 25°C. The DC poweroutput was inverted to an AC power source of 220 V with 50 Hz frequency, which can continuously supply more than 50 wattsof power to a resistive load as long as the heat source was applied to the system. The system achieved an electrical conversionefficiency of about 0.47 percent with the capital cost of 70 US$/W.

  2. Pacemakers lower sources

    International Nuclear Information System (INIS)

    Greatbatch, W.

    1984-01-01

    Energy sources for cardiac facing are considered including radioisotope sources, in a broad conceptual and historical framework.The main guidelines for future development of energy sources are assessed

  3. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  4. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    International Nuclear Information System (INIS)

    O'Brien, Robert C.; Klein, Andrew C.; Taitano, William T.; Gibson, Justice; Myers, Brian; Howe, Steven D.

    2011-01-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  5. The safe handling of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-12-31

    A narrative account of a minor contamination accident in a laboratory is used to demonstrate the important role of radiation protection measures in radioisotope work and the necessity of giving proper regard to such measures. It is primarily directed towards the research scientists and medical workers using radioisotopes on a relatively small scale

  6. Tracer experiment by using radioisotope in surface water environment

    International Nuclear Information System (INIS)

    Suh, K.S.; Kim, K.C.; Chun, I.Y.; Jung, S.H.; Lee, C.W.

    2007-01-01

    Complete text of publication follows. 1. Objective An expansion of industrial activities and urbanization result in still increasing amount of pollutants discharged into surface water. Discharged pollutants in surface water have harmful effects on the ecology of a river system and human beings. Pollutants discharged into surface water is transported and dispersed under conditions characteristic to particular natural water receiver. Radiotracer method is a useful tool for monitoring the pollutant dispersion and description of mixing process taking place in natural streams. A tracer experiment using radioisotope was carried out to investigate the characteristics of a pollutant transport and a determination of the diffusion coefficients in a river system. 2. Methods The upper area of the Keum river was selected for the tracer experiment, which is located in a mid west of Korea. The measurements of the velocity and bathymetry before a tracer experiment were performed to select the sampling lines for a detection of the radioisotope. The radioisotope was instantaneously injected into a flow as a point source by an underwater glass-vial crusher. The detection was made with 60 2inch NaI(Tl) scintillation detectors at 3 transverse lines at a downstream position. The multi-channel data acquisition systems were used to collect and process the signals transmitted from the detectors. Two-dimensional numerical models were used to simulate the hydraulic parameters and the concentration distributions of the radioisotope injected into the river. 3. Results and Conclusion The calculated results such as velocity and concentrations were compared with the measured ones. The dispersion characteristics of the radioisotope were analyzed according to a variation of the flow rate, water level and diffusion coefficients. Also, the diffusion coefficients were calculated by using the measured concentrations and the coefficients obtained from the field experiment were compared with the ones

  7. Hoosac tunnel geothermal heat source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-10

    The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

  8. Process for radioisotope recovery and system for implementing same

    Science.gov (United States)

    Meikrantz, David H [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Tranter, Troy J [Idaho Falls, ID; Horwitz, E Philip [Naperville, IL

    2009-10-06

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  9. A comparative study on determination of composition of uranium thorium mixed oxides by tube and radioisotope excited EDXRF

    International Nuclear Information System (INIS)

    Dhara, Sangita; Sanjay Kumar, S.; Misra, N.L.; Aggarwal, S.K.; Singh, Ajit Kumar; Lodha, G.S.

    2009-01-01

    Energy Dispersive X-ray Fluorescence (EDXRF) methods for determination of uranium and thorium in their mixed oxide matrices using tube and radioisotope excitation sources have been developed. The methodology involves preparation of mixed oxide calibration/sample mixtures of uranium and thorium oxides, mixing of fixed amount of internal standard Yttrium in form of Yttrium oxide, pelletizing these mixtures after thorough mixing and recording their EDXRF spectra using Rh target as well as 109 Cd radioisotope source. The samples were analysed for uranium and thorium on the basis of calibration plots

  10. Conjugated heat transfer of natural convection in pool with internal heat sources and convection in the tube

    International Nuclear Information System (INIS)

    Li Longjian; Liu Hongtao; Cui Wenzhi

    2007-01-01

    The conjugated heat transfer of natural convection in pool with internal heat source and the forced convection in the tube was analyzed, and the corresponding three-dimensional physical and mathematical model was proposed. A control volume based finite element method was employed to solve numerically the problem. The computations were performed for different internal heat source intensity of the pool and the different flow velocity in the tube. The computed heat transfer coefficients on the inner and outer wall showed well consistency of those calculated with the empirical correlations. Compared with the measured total heat transfer coefficients between the fluids in and out of the tube, the computed ones showed also the well consistency, which implied that the numerical model proposed in this paper was reliable. The research results revealed that the total heat transfer coefficients between the fluids were strongly affected by the internal heat source intensity of the pool liquid and the flow velocity in the tube. (authors)

  11. Manual of radioisotope production

    International Nuclear Information System (INIS)

    1966-01-01

    The Manual of Radioisotope Production has been compiled primarily to help small reactor establishments which need a modest programme of radioisotope production for local requirements. It is not comprehensive, but gives guidance on essential preliminary considerations and problems that may be met in the early stages of production. References are included as an aid to the reader who wishes to seek further in the extensive literature on the subject. In preparing the Manual, which is in two parts, the Agency consulted several Member States which already have long experience in radioisotope production. An attempt has been made to condense this experience, firstly, by setting out the technical and economic considerations which govern the planning and execution of an isotope programme and, secondly, by providing experimental details of isotope production processes. Part I covers topics common to all radioisotope processing, namely, laboratory design, handling and dispensing of radioactive solutions, quality control, measurement and radiological safety. Part II contains information on the fifteen radioisotopes in most common use. These are bromine-82, cobalt-58, chromium-51, copper-64, fluorine-18, gold-198, iodine-131, iron-59, magnesium-28, potassium-42, sodium-24, phosphorus-32, sulphur-35, yttrium-90 and zinc-65. Their nuclear properties are described, references to typical applications are given and published methods of production are reviewed; also included are descriptions in detail of the production processes used at several national atomic energy organizations. No attempt has been made to distinguish the best values for nuclear data or to comment on the relative merits of production processes. Each process is presented essentially as it was described by the contributor on the understanding that critical comparisons are not necessary for processes which have been well tried in practical production for many years. The information is presented as a guide to enable

  12. Radioisotope implantation with a new facility at the Australian Defence Force Academy

    International Nuclear Information System (INIS)

    Shrestha, S.K.; Chaplin, D.H.; Edge, A.V.J.; Hutchison, W.D.; Timmers, H.; Byrne, A.P.

    2003-01-01

    A 50 - 155 keV ion implanter is being developed on the campus of the University of New South Wales at the Australian Defence Force Academy for the implantation of radioisotopes as part of a UNSW/ANU collaboration. The facility employs a versatile SNICS II negative ion source. Commissioning tests have shown the facility to efficiently produce, mass-select, and transport negative ion beams of various stable isotopes. The mass resolution has been demonstrated to be better than 1 amu and the implantation of stable isotopes was verified with Elastic Recoil Detection (ERD) analysis. Recently, the first implantation of radioactive 111 In has been performed successfully. The routine implantation of this and other radioisotopes is envisaged to support analytical techniques in the material sciences, such as Perturbed Angular Correlation (PAC) spectroscopy and Nuclear Magnetic Resonance of Oriented Nuclei (NMRON), and to possibly study the controlled activation of medical implants and the diffusion of radioisotopes in materials

  13. Industrial radioisotope economics. Findings of the study group

    International Nuclear Information System (INIS)

    1965-01-01

    Within twenty years of the availability of radioisotopes in quantity the use of these as tracers has been widely applied in scientific research and in industrial process and product control. Industry spends millions of dollars on these new techniques. Since the overall attitude of industry is to favour methods that involve rapid financial returns the economic benefits must be considerable. In promoting the peaceful uses of atomic energy, the IAEA is actively interested in the international exchange of experience in all applications of radioisotopes. This has been demonstrated by a number of scientific conferences where new results of direct importance to the industrial use of radioisotopes have been presented. In 1963 the IAEA also published literature survey on radioisotope applications described in the scientific literature up to 1960, classified according to industry. However, the available scientific literature was found insufficient to determine the extent of the use of radioisotopes and the economic benefits derived from it. Therefore, further fact-finding efforts were necessary. The IAEA thus decided to carry out an International Survey on the Use of Radioisotopes in Industry. In 1962 the IAEA's highly industrialized Member States Were invited to participate in the Survey; 25 declared their willingness to do so and in due course submitted their national reports. These included information on how radioisotopes were used by industry in each country and indicated the size and form of the economic advantages, primarily in terms of savings made by industry. The findings from the Survey were discussed at a Study Group Meeting on Radioisotope Economics, held in Vienna in March 1964. Forty participants from 22 countries were nominated for this Study Group. The program of the meeting was divided in three parts: (1) experience of the International Survey on the use of radioisotopes in industry; (2) present use of radioisotopes, technical and economic aspects; (3

  14. Radioisotope techniques for process optimisation and control in the offshore oil and gas industries

    International Nuclear Information System (INIS)

    Charlton, J.S.

    2002-01-01

    For over fifty years, radioisotope technology has been used by the oil industry to solve problems and to help optimise process operations. The widespread development of offshore oil and gas fields has brought, and continues to bring, new challenges and, in response, new or modified applications of radioisotope technology have been introduced. This paper presents case studies, which illustrate the use of radioisotopes, both in the sub-sea environment and on the offshore production platforms. On the platform, radioisotope techniques applied singly or in combination, have been applied to the performance assessment of oil/gas separation and gas dehydration units. Novel nucleonic instrumentation has been developed for the control of three-phase separators. Sub-sea, radioactive tracers and/or sealed sources have been used to investigate the integrity of submerged structures and to troubleshoot pipeline problems. The continuing expansion in the use of this technology stems from industry increasing awareness of its versatility and from the fact that the benefits it confers can be obtained at a relatively modest cost. Examples of economic benefit described in the paper are associated with production enhancements derived from the ability of radioisotope technology to measure performance and diagnose problems on line, without disrupting process operations in any way. (Author)

  15. Provenance studies of archaeological ceramics from Mar-Takla (Ain-Minin, Syria) using radioisotope x-ray fluorescence method

    International Nuclear Information System (INIS)

    Bakraji, E. H.; Karajou, J.; Othman, I.

    2002-01-01

    The radioisotope x-ray fluorescence method was applied to provenance studies of ceramics fragments originated from the Mar-Takla site in Syria. 35 samples were analyzed, where each sample was irradiated 1000 s by sup 1 sup 0 sup 9 Cd radioisotope source and the elements (As, Ca, fe, Ga, Nb, Mn, Pb, Rb, Sr, Ti, Y, Zn, and Zr) were determined. The data were subjected to two multivariate statistical methods, cluster and principal component analysis (PCA). The study show that 94% of the samples can be considered to be manufactured using two sources of raw materials. (Authors)

  16. Markets for reactor-produced non-fission radioisotopes

    International Nuclear Information System (INIS)

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included

  17. Research trends in radioisotopes: a scientometric analysis

    International Nuclear Information System (INIS)

    Sagar, Anil; Kademani, B.S.; Bhanumurthy, K.; Ramamoorthy, N.

    2014-01-01

    Radioisotopes or radionuclides are radioactive forms of elements and are usually produced in research reactors and accelerators. They have wide ranging applications in healthcare, industry, food and agriculture, and environmental monitoring. Following over five decades of vast experience accumulated, radioisotope technology has developed to a high degree of sophistication and it is estimated that about 200 radioisotopes are in regular use. This paper attempts to highlight the publication status and growth of radioisotope research across the world and make quantitative and qualitative assessment by way of analyzing the following features of research output based on Web of Science database during the period 1993-2012. (author)

  18. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  19. Solar-Radiation Heating as a Possible Heat Source for Dehydration of Hydrous Carbonaceous Chondrites

    Science.gov (United States)

    Nakamura, T.; Golabek, G.; Ohtsuka, K.; Matsuoka, M.

    2017-07-01

    We have calculated time-dependent temperature profiles of near surface layers of primitive Near Sun Asteroid (3200) Phaethon and found that solar radiation heating is a possible heat source for dehydration of carbonaceous chondrites.

  20. Safe Handling of Radioisotopes. Health Physics Addendum

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, G J; Krishnamoorthy, P N

    1960-07-15

    The International Atomic Energy Agency published in 1958 a Manual entitled ''Safe Handling of Radioisotopes'' (Safety Series No. 1 - STI/PUB/1), based on the work of an international panel convened by the Agency. As recommended by that panel and approved by the Agency's Board of Governors, this Addendum has now been prepared, primarily as a supplement to the Manual. It contains technical information necessary for the implementation of the controls given in the Manual. In addition, it is intended to serve as a brief introduction to the technical problems encountered in radiological protection work and to the methods of resolving them. As in the case of the Manual itself, the information given in this Addendum is particularly relevant to the problems encountered by the small user of radioisotopes. Although the basic principles set forth in it apply to all work with radiation sources, the Addendum is not intended to serve as a radiological protection manual for use in reactor installations or large-scale nuclear industry, where more specialized techniques and information are required.

  1. Safe Handling of Radioisotopes. Health Physics Addendum

    International Nuclear Information System (INIS)

    Appleton, G.J.; Krishnamoorthy, P.N.

    1960-01-01

    The International Atomic Energy Agency published in 1958 a Manual entitled ''Safe Handling of Radioisotopes'' (Safety Series No. 1 - STI/PUB/1), based on the work of an international panel convened by the Agency. As recommended by that panel and approved by the Agency's Board of Governors, this Addendum has now been prepared, primarily as a supplement to the Manual. It contains technical information necessary for the implementation of the controls given in the Manual. In addition, it is intended to serve as a brief introduction to the technical problems encountered in radiological protection work and to the methods of resolving them. As in the case of the Manual itself, the information given in this Addendum is particularly relevant to the problems encountered by the small user of radioisotopes. Although the basic principles set forth in it apply to all work with radiation sources, the Addendum is not intended to serve as a radiological protection manual for use in reactor installations or large-scale nuclear industry, where more specialized techniques and information are required.

  2. Thermal Analysis of a Cracked Half-plane under Moving Point Heat Source

    Directory of Open Access Journals (Sweden)

    He Kuanfang

    2017-09-01

    Full Text Available The heat conduction in half-plane with an insulated crack subjected to moving point heat source is investigated. The analytical solution and the numerical means are combined to analyze the transient temperature distribution of a cracked half-plane under moving point heat source. The transient temperature distribution of the half plane structure under moving point heat source is obtained by the moving coordinate method firstly, then the heat conduction equation with thermal boundary of an insulated crack face is changed to singular integral equation by applying Fourier transforms and solved by the numerical method. The numerical examples of the temperature distribution on the cracked half-plane structure under moving point heat source are presented and discussed in detail.

  3. Radioisotope techniques for problem-solving on refineries

    International Nuclear Information System (INIS)

    Charlton, J.S.; Webb, M.

    1994-01-01

    Increasingly, refineries worldwide are recognizing the value of radioisotope technology in studying the operation of on-line plant. Using case studies, this paper illustrates the versatility of radioisotope techniques in a wide range of investigations: the density-profiling of distillation columns; the investigation of leaks on feed/effluent exchangers; on-line flowrate measurement; underground leakage detection. The economic benefits deriving from radioisotope applications are indicated

  4. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  5. Production of sealed sources

    International Nuclear Information System (INIS)

    Bandi, L.N.

    2016-01-01

    Radioisotope production has been an ongoing activity in India since the sixties. Radioisotopes find wide-ranging applications in various fields, including industry, research, agriculture and medicine. Board of Radiation and Isotope Technology, an industrial unit of Department of Atomic Energy is involved in fabrication and supply of wide variety of sealed sources. The main radioisotopes fabricated and supplied by BRIT are Cobalt-60, Iridium-192. These isotopes are employed in industrial and laboratory irradiators, teletherapy machines, radiography exposure devices, nucleonic gauges. The source fabrication facilities of BRIT are located at Rajasthan Atomic Power Project Cobalt-60 Facility (RAPPCOF), Kota, Radiological Laboratories Group (RLG) and High Intensity Radiation Utilization Project (HIRUP) at Trombay

  6. Radioisotope applications in industry and environment: Indian scenario

    International Nuclear Information System (INIS)

    Pant, H.J.

    2016-01-01

    Applications of radioisotopes and radiation technology in industry, medicine and agriculture form an important part of India's programme of using nuclear technology for societal benefits. Radioisotope production in India started on a modest scale soon after 1 MW APSARA reactor at Trombay, Mumbai became critical in 1956. The scope of activities expanded thereafter. With the commissioning of 40 MW CIRUS reactor in 1960, the setting up of modern radioisotope processing laboratories in late sixties and the production of cobalt-60 in power reactors in megacurie quantities in late seventies made India self-sufficient in radioisotope production. The radioisotope production received a major boost in 1985 with the commissioning of high flux 100 MW DHRUVA reactor, which provided opportunity to extend the range of radioisotopes available in the country both in quantity as well in specific activity. The CIRUS reactor has been shutdown in year 2010 and 1 MW APSARA reactor is presently being upgraded to 5 MW. Today, The DHRUVA reactor operating at its full capacity is being used for production of 100 different radioisotopes those are used in industry, agriculture and medicine. (author)

  7. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  8. Design and construction of an explosive detection system by Tna methods, using 252Cf radioisotope source

    International Nuclear Information System (INIS)

    Tavakkoli Farsouli, A.

    1999-01-01

    Bombs concealed in luggage have threatened human life and property throughout the world's traffic. The plastic explosives could not checked by the X-ray detecting device. Thermal Neutron Activation method has been tested in the present work for non-destructive detection of explosives. A radioisotope neutron source 252 Cf and two gamma spectroscopy systems have been used as a tool to find explosives, regardless of the bomb's shape and the packing materials. The MCNP code has been used to design the neutronic section of the system. The measured thermal neutron fluxes by the gold foils in some location of the system were in good agreement with those data obtained by the MCNP code. Also, detection limits for nitrogen in various counting times were measured. The measurements show that the system is capable to detect 417 gr of HMX explosive material (158 gr nitrogen) by 10 minutes of counting time. To modify the system and to decrease the detection limits some opinions are given

  9. Infant otitis media and the use of secondary heating sources.

    Science.gov (United States)

    Pettigrew, Melinda M; Gent, Janneane F; Triche, Elizabeth W; Belanger, Kathleen D; Bracken, Michael B; Leaderer, Brian P

    2004-01-01

    This prospective study investigated the association of exposure to indoor secondary heating sources with otitis media and recurrent otitis media risk in infants. We enrolled mothers living in nonsmoking households and delivering babies between 1993 and 1996 in 12 Connecticut and Virginia hospitals. Biweekly telephone interviews during the first year of life assessed diagnoses from doctors' office visits and use of secondary home heating sources, air conditioner use, and day care. Otitis media episodes separated by more than 21 days were considered to be unique episodes. Recurrent otitis media was defined as 4 or more episodes of otitis media. Repeated-measures logistic regression modeling evaluated the association of kerosene heater, fireplace, or wood stove use with otitis media episodes while controlling for potential confounders. Logistic regression evaluated the relation of these secondary heating sources with recurrent otitis media. None of the secondary heating sources were associated with otitis media or with recurrent otitis media. Otitis media was associated with day care, the winter heating season, birth in the fall, white race, additional children in the home, and a maternal history of allergies in multivariate models. Recurrent otitis media was associated with day care, birth in the fall, white race, and a maternal history of allergies or asthma. We found no evidence that the intermittent use of secondary home heating sources increases the risk of otitis media or recurrent otitis media. This study confirms earlier findings regarding the importance of day care with respect to otitis media risk.

  10. Towards a Future of District Heating Systems with Low-Temperature Operation together with Non-Fossil Fuel Heat Sources

    DEFF Research Database (Denmark)

    Tol, Hakan; Dinçer, Ibrahim; Svendsen, Svend

    2012-01-01

    This study focused on investigation of non-fossil fuel heat sources to be supplied to low-energy district heating systems operating in low temperature such as 55 C and 25 C in terms of, respectively, supply and return. Vast variety of heat sources classed in categories such as fossil fuel...

  11. Characterization of phosphates and phosphogypsum by x-ray fluorescence with radioisotopic excitation sources of 55 Fe, 238 Pu and 109 Cd

    International Nuclear Information System (INIS)

    Parreira, Paulo S.; Nascimento Filho, Virgilio F.

    1999-01-01

    Using the energy dispersive X-ray fluorescence technique (ED-XRF), with radioisotopic sources of 55 Fe, 238 Pu e 109 Cd samples excitation, a qualitative study was carried out in a phosphogypsum and phosphate samples from different origin. The objective was to verify the excitation responses from different sources and to establish the analytical conditions of the technique for these kind of matrices. Besides the P and Ca, characteristic macro elements of this of matrix, it was also observed the elements Si, S, K, matrix, it was also observed the elements Si, S, K, Ti, Cr, Mn, Cu, Zn, Pb, Sr, Y, Zr and Nb. With different sources could be observed different groups of elements, since the emission response of the characteristic X-rays are associated to the excitation energy, in other words to the radioactive source. From the nutrients of major interest in this kind of matrix (P, S and Ca), the P and S elements showed small analytical sensibilities to the 109 Cd source. Greater intensities of characteristics X-ray emissions for the mainly elements of interest, was observed with the 55 Fe source and with the 238 Pu and 109 Cd sources analysis could be done showing trace elements which are present in those sort of samples. (author)

  12. Radioisotope clocks in archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, R E.M. [Oxford Univ. (UK). Research Lab. for Archaeology

    1979-09-06

    Methods of absolute dating which use the rate of disintegration of a radioactive nucleus as the clock, are reviewed. The use of the abundant radioisotopes (/sup 40/K, Th and U) and of the rare radioisotopes (/sup 14/C, /sup 10/Be, /sup 26/Al, /sup 32/Si, /sup 36/Cl, /sup 41/Ca, /sup 53/Mn) is discussed and radiation integration techniques (fission track dating, thermoluminescence and related techniques) are considered. Specific fields of use of the various methods and their accuracy are examined.

  13. Research status and evaluation system of heat source evaluation method for central heating

    Science.gov (United States)

    Sun, Yutong; Qi, Junfeng; Cao, Yi

    2018-02-01

    The central heating boiler room is a regional heat source heating center. It is also a kind of the urban environment pollution, it is an important section of building energy efficiency. This article through to the evaluation method of central heating boiler room and overviews of the researches during domestic and overseas, summarized the main influence factors affecting energy consumption of industrial boiler under the condition of stable operation. According to the principle of establishing evaluation index system. We can find that is great significance in energy saving and environmental protection for the content of the evaluation index system of the centralized heating system.

  14. Packaging and transport of radioisotopes

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1976-01-01

    The importance of radioisotope traffic is emphasized. More than a million packages are being transported each year, mostly for medical uses. The involvement of public transport services and the incidental dose to the public (which is very small) are appreciably greater than for movements connected with the nuclear fuel cycle. Modern isotope packages are described, and an outline given of the problems of a large radioisotope manufacturer who has to package many different types of product. Difficulties caused by recent uncoordinated restrictions on the use of passenger aircraft are mentioned. Some specific problems relating to radioisotope packaging are discussed. These include the crush resistance of Type A packages, the closure of steel drums, the design of secure closures for large containers, the Type A packaging of liquids, leak tightness criteria of Type B packages, and the use of 'unit load' overpacks to consign a group of individually approved packages together as a single shipment. Reference is made to recent studies of the impact of radioisotope shipments on the environment. Cost/benefit analysis is important in this field - an important public debate is only just beginning. (author)

  15. Uses of radioisotopes in Sudan

    International Nuclear Information System (INIS)

    Elradi, E. A. M.

    2013-07-01

    In this research project, an inventory for the different radioisotopes that were imported by public and private sectors of Sudan in the period between ( 2007-2011) has been set up. These organizations import the appropriates for different but in general we classify them into these applications: Medical, Industrial, Agricultural and Research. However, each broad discipline is subdivided into subgroups. This inventory will help those who are willing to establish research reactors in Sudan on the type and power of the reactors to be purchases according to the actual needs of Sudan with forecasting of the near and for future needs. Also the expenditure that has been spent by these organizations have been estimated for most of the radioisotopes. It was observed that almost 50% of the expenditure went for the fright charges as these radioisotopes need special handling and care by installing a research reactor in Sudan, the cost of purchasing will be cut down several folds. Also it will help in availability of the radioisotopes with very short half lives (hours to days). This will be reflected in the cut down the cost of tests and provision of new tests.(Author)

  16. Analysis of carbon monoxide production in multihundred-watt heat sources

    International Nuclear Information System (INIS)

    Peterson, D.E.; Mulford, R.N.R.

    1976-05-01

    The production of carbon monoxide observed within Multihundred Watt heat sources placed under storage conditions was analyzed. Results of compositional and isotopic analyses of gas taps performed on eight heat sources are summarized and interpreted. Several proposed CO generation mechanisms are examined theoretically and assessed by applying thermodynamic principles. Outgassing of the heat source graphite followed by oxygen isotopic exchange through the vent assemblies appears to explain the CO production at storage temperatures. Reduction of the plutonia fuel sphere by the CO is examined as a function of temperature and stoichiometry. Experiments that could be performed to investigate possible CO generation mechanisms are discussed

  17. Novel Radioisotope Applications in Industry Promoted by the IAEA

    International Nuclear Information System (INIS)

    Thereska, J.

    2001-01-01

    Presently, there is a lively activity in further development and use of radioisotope technology. Novel radioisotope applications in industry are promoted by the IAEA. Radioisotope technology is contributing significantly to improving and optimising process performance bringing an annual economic benefit to world-wide industry of several billion US$. Probably, an average benefit to cost ratio of 40:1 is reasonably representative of radioisotope applications in industry. There are few short-term investments, which will give a return of this magnitude. The cost effectiveness of radioisotope applications should be widely promulgated to encourage industrialists to take full advantage of the technology. (author)

  18. Biological effects of implanted nuclear energy sources for artificial heart devices. Progress report, September 1, 1975--August 31, 1976

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Wentworth, R.A.; Cady, K.B.

    1976-01-01

    A total of sixty dogs were implanted with radioisotope-powered artificial heart systems producing radiation fluxes similar to that of plutonium-238, but having no associated heat, at levels of from one to seventy times the radiation flux expected from a 30-watt plutonium-238 source. Results from studies lasting up to 6 years after implantation indicate that these animals, and by inference human beings, may be able to tolerate the radiation flux from 30-watt 238 Pu power sources. Results of heat dissipation studies in calves indicate that it may be possible to induce a vascularized connective tissue capsule sufficient to dissipate 30 watts of additional heat from a surface area of approximately 500 cm sq., allowing a heat flux of 0.06 watts per cm sq

  19. Developments in radioisotope production and labelling of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1998-01-01

    Recent developments in both reactor and accelerator production of radioisotopes finding applications in nuclear medicine and in biomedical research are summarised. The priorities for the production of 48 different cyclotron radioisotopes; and for 42 reactor produced radioisotopes finding biomedical applications are identified. Each includes 5 generator systems. The rapid expansion of cyclotron based radioisotope production and automated synthesis of short-lived radiopharmaceuticals with the position-emitting radionuclides continues to gain momentum. Recent feasibility studies of the cyclotron production of 186 Re, 99m Tc and of 99 Mo are cited as examples of motivation to develop accelerator alternatives to use of nuclear reactors for medical radioisotope production. Examples of SPET and PET radiopharmaceuticals labelled with 131 I, 123 I, 124 I, 18 F, and with therapeutic radionuclides are highlighted. (author)

  20. A new radioisotope facility for Thailand

    International Nuclear Information System (INIS)

    Horlock, K.

    1997-01-01

    The Thai Office of Atomic Energy for Peace (OAEP) is planning a new Nuclear Research Centre which will be located at Ongkharak, a greenfield site some 100 km North of Bangkok. General Atomics (GA) has submitted a bid for a turnkey contract for the core facilities comprising a Reactor to be supplied by GA, an Isotope Production Facility supplied by ANSTO and a Waste Processing and Storage Facility to be supplied by Hitachi through Marubeni. The buildings for these facilities will be provided by Raytheon, the largest constructor of nuclear facilities in the USA. The proposed Isotope Facility will consist of a 3000 m 2 building adjacent to the reactor with a pneumatic radioisotope transfer system. Hot cells, process equipment and clean rooms will be provided, as well as the usual maintenance and support services required for processing radiopharmaceutical and industrial products. To ensure the highest standards of product purity the processing areas will be supplied with clean air and operated at slightly positive pressure. The radioisotopes to be manufactured include Phosphorus 32 (S-32 [n,p]P-32), I-131(Te-130 [n,g]Te-131[p]I-131) for bulk, diagnostic capsules and therapeutic capsules, Iridium 192 (Ir-191[n,g]Ir-192) wire for radiotherapy and discs for industrial radiography sources and bulk Iodine 125 (Xe-124[n,g]Xe-125[β]I-125 for radioimmunoassay. The bid includes proposals for training OAEP staff during design and development at ANSTO's radioisotope facilities, and during construction and commissioning in Thailand. The entire project is planned to take four years with commencement anticipated in early 1997. The paper will describe the development of the design of the hot-cells, process equipment, building layout and ventilation and other services

  1. Heat Source Models in Simulation of Heat Flow in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in Friction Stir Welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms....... The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in literature allow the heat to flow through the probe volume, and the majority of them neglect the influence of the contact condition as the sliding condition is assumed. In the present work......, a number of cases are established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models the heat flow is forced around the probe volume by prescribing a velocity field in shear...

  2. Heat source models in simulation of heat flow in friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in friction stir welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms....... The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in the literature allow the heat to flow through the probe volume, and the majority neglects the influence of the contact condition as the sliding condition is assumed. In this work, a number...... of cases is established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models, the heat flow is forced around the probe volume by prescribing a velocity field in shear layers...

  3. Provenance studies of archaeological ceramics from Mar-Takla (Ain-Minin, Syria) using radioisotope X-ray fluorescence method

    International Nuclear Information System (INIS)

    Bakraji, E.H.; Othman, I.; Karajou, J.

    2001-01-01

    The radioisotope X-ray fluorescence method was applied to studies of the provenance of the ceramics fragments originated from the Mar-Takla site in Syria. The samples were irradiated 1000s by a 109 Cd radioisotope source and 13 elements (Ca, Ti, Mn, Fe, Zn, Ga, As, Rb, Sr, Y, Zr and Pb) were determined in 35 samples. The data were subjected to two multivariate statistical methods, cluster and principal components analysis (PCA). It was shown from the combination of the statistical techniques and the determination of elemental composition of the samples that 94% of the ceramic samples analyzed can be considered to be manufactured using two sources of raw materials

  4. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Energy Technology Data Exchange (ETDEWEB)

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  5. Radioisotopes in soil science

    International Nuclear Information System (INIS)

    Kotur, S.C.

    2004-01-01

    Soils form a thin veneer of the Earth that sustain the entire flora and fauna of the terra firma. To that extent the soil as a natural resource is very precious and needs to be managed in a sustainable manner. The fate of degradation of pesticides in soil and build-up of heavy metals in the overall biosafety scenario is also studied gainfully using radioisotopes. Radioisotopes are a very potent tool in the hands of the Soil Scientists, perhaps, the most important among the peaceful applications in service of the mankind

  6. Radioisotopes and their applications in highway testings

    International Nuclear Information System (INIS)

    Saxena, S.C.

    1974-01-01

    Applications of radioisotopes in highway testing are described. Radioisotopic methods have been used to determine : (1) moisture and density of soil and base materials for compaction control, (2) magnesium oxide content of cement, (3) permeability of bituminous coverings and (4) field density of freshly laid hot bituminous concrete surface. Possible uses of nuclear explosives for production of aggregates and of radioisotopes for determination of deflection in the design of flexible pavements are indicated. (M.G.B.)

  7. Heat source reconstruction from noisy temperature fields using an optimised derivative Gaussian filter

    Science.gov (United States)

    Delpueyo, D.; Balandraud, X.; Grédiac, M.

    2013-09-01

    The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differentiating are key-issues which are closely related here because the temperature fields which are processed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian for isotropic materials). This quantity can be reasonably estimated using a convolution of the temperature variation fields with second derivatives of a Gaussian function. The study is first based on synthetic temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at best the heat source fields. The influence of both the dimension and the level of a localised heat source is discussed. Obtained results are also compared with another type of processing based on an averaging filter. The second part of this study presents an application to experimental temperature fields measured with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric heating patch glued on the specimen surface. Heat source fields reconstructed from measured temperature fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experimental thermomechanics of materials.

  8. Power characteristics of a Stirling radioisotope power system over the life of the mission

    International Nuclear Information System (INIS)

    Schreiber, Jeffrey G.

    2001-01-01

    Stirling radioisotope power systems are presently being considered for use on long life deep space missions. Some applications that Stirling technology has been developed for in the past could control the heat input to the engine, as was the case in the Automotive Stirling Engine (ASE) program. The combustion system could change the rate at which fuel was burned in response to the Stirling heater head temperature and the desired set point. In other cases, heat input was not controlled. An example is the solar terrestrial Advanced Stirling Conversion System (ASCS), where the heat input was a function of solar intensity and the performance of the solar concentrator and receiver. The control system for this application would measure the Stirling heater head temperature and throttle the Stirling convertor to once again, maintain the Stirling heater head temperature at the desired set point. In both of these examples, the design was driven to be cost effective. In the Stirling radioisotope power system, the heat generated by the decay in plutonium is reduced with the half-life of the isotope, and the control system must be as simple as possible and still meet the mission requirements. The most simple control system would be one that allows the Stirling power convertor to autonomously change its operating conditions in direct response to the reduced heat input, with no intervention from the control system, merely seeking a new equilibrium point as the isotope decays. This paper presents an analysis of power system performance with this simple control system, which has no feedback and does not actively alter the operating point as the isotope decays

  9. Medical Radioisotope Scanning, Vol. II. Proceedings of the Symposium on Medical Radioisotope Scanning

    International Nuclear Information System (INIS)

    1964-01-01

    Medical applications of radioisotopes continue to grow in number and importance and medical centres in almost all countries of the world are now using radioactive materials both in the diagnosis and treatment of disease. An increasing proportion of these applications involves studies of the spatial distribution of radioactive material within the human body, for which purpose highly specialized scanning methods have been elaborated. By these methods it is possible to study the position, size and functional state of different organs, to detect tumours, cysts and other abnormalities and to obtain much useful information about regions of the body that are otherwise inaccessible, except by surgery. Progress in scanning methods in recent years has been very rapid and there have been many important advances in instrumentation and technique. The development of new forms of the gamma camera and of colour-scanning techniques are but two examples of recent improvements. The production of new radioisotopes and new labelled compounds has further extended the scope of these methods. To survey these new advances the International Atomic Energy Agency held a Symposium on Medical Radioisotope Scanning in Athens from 20-24 April 1964. The scientific programme of the meeting covered all aspects of scanning methods including theoretical principles, instrumentation, techniques and clinical applications. The World Health Organization assisted in the selection of papers by providing a consultant to the selection committee. The meeting followed the earlier IAEA/WHO Seminar on Medical Radioisotope Scanning in Vienna in 1959, which was attended by 36 participants and at which 14 papers were presented. Some idea of the growth of interest in the subject may be gained from the fact that the Symposium was attended by 160 participants from 26 countries and 4 international organizations, and that 58 papers were presented. The published proceedings, comprising two volumes, contain all the

  10. The effect of location of a convective heat source on displacement ventilation: CFD study

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.J.; Holland, D. [Dunham Associates, Inc., Minneapolis, MN (United States). Advanced Technologies Group

    2001-08-01

    Two-dimensional computational simulations are performed to examine the effect of vertical location of a convective heat source on thermal displacement ventilation systems. In this study, a heat source is modeled with seven different heights from the floor (0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0 m) in a displacement ventilation environment. The flow and temperature fields in thermal displacement ventilation systems vary depending on the location of the heat source. As the heat source rises, the convective heat gain from the heat source to an occupied zone becomes less significant. This effect changes the temperature field and results in the reduction of the cooling load in the occupied zone. The stratification level is also affected by the heat source location at a given flow rate. (author)

  11. Medical Radioisotope Data Survey: 2002 Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, Edward R.

    2004-06-23

    A limited, but accurate amount of detailed information about the radioactive isotopes used in the U.S. for medical procedures was collected from a local hospital and from a recent report on the U.S. Radiopharmaceutical Markets. These data included the total number of procedures, the specific types of procedures, the specific radioisotopes used in these procedures, and the dosage administered per procedure. The information from these sources was compiled, assessed, pruned, and then merged into a single, comprehensive and consistent set of results presented in this report. (PIET-43471-TM-197)

  12. Economical Radioisotope Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Almost all robotic space exploration missions and all Apollo missions to the moon used Radioisotopic Thermoelectric Generators (RTGs) to provide electrical power to...

  13. Radioisotope production linac

    International Nuclear Information System (INIS)

    Stovall, J.E.; Hansborough, L.D.; O'Brien, H.A.

    1981-01-01

    A 70-MeV proton beam would open a new family of medical radioisotopes (including the important 123 I) to wide application. A 70-MeV, 500-μA linac is described, based on recent innovations in accelerator technology. It would be 27.3 m long, cost approx. $6 million, and the cost of power deposited in the radioisotope-production target is comparable to existing cyclotrons. By operating the rf-power system to its full capability, the same accelerator is capable of producing a 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons. The technology to build such a linac is in a mature stage of developmnt, ready for use by industry

  14. Radioisotope heaters for spacecraft life support systems

    International Nuclear Information System (INIS)

    Shivers, R.W.; Murray, R.W.

    1974-01-01

    Future manned space flight requires the sanitary collection and disposal of biological wastes to minimize microbial contamination hazard. The recovery and reuse of water from such wastes are also necessary to reduce the weight of vehicles at launching and resupply logistics. The development and test of an engineering model, i.e. the completely integrated waste management-water system using radioisotopes for thermal energy, are described. This is capable of collecting and processing the wastes from four men during 180-day simulated space mission. The sub-systems include collection of feces, trash and urine, water reclamation, the storage, heating and dispensing of the water, and the disposal of feces, urine residue and other non-metallic waste material by incineration. (Mori, K.)

  15. Air source integrated heat pump simulation model for EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo; New, Joshua; Baxter, Van

    2017-12-01

    An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy saving potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.

  16. Design and application for a high-temperature nuclear heat source

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    Recent actions by OPEC have sharply increased interest in the United States in synfuels, with coal being the logical choice for the carbon source. Two coal liquefaction processes, direct and indirect, have been examined. Each can produce about 50% more output when coupled to an HTGR for process heat. The nuclear reactor designed for process heat has a power output of 842MW(t), a core outlet temperature of 950 0 C (1742 0 F), and an intermediate helium loop to separate the heat source from the process heat exchangers. Steam-methane reforming is the reference process. As part of the development of a nuclear process heat system, a computer code, Process Heat Reactor Evaluation and Design, is being developed. This code models both the reactor plant and a steam reforming plant. When complete, the program will have the capability to calculate an overall mass and heat balance, size the plant components, and estimate the plant cost for a wide variety of independent variables. (author)

  17. Industrial applications of radioisotope tracers

    International Nuclear Information System (INIS)

    Easey, J.F.

    1985-01-01

    Radioisotope tracing techniques are powerful tools for analysing the behaviour of large systems and investigating industrially or economically important processes. The results of radioisotope experiments can yield important information, for example, on parameters such as flow rates, mixing phenomena, flow abnormalities and leaks. Some examples of current AAEC research are described, covering studies on hearth drainage in blast furnaces, flow behaviour in waste-water treatment ponds, and sediment transport in marine environments

  18. Transition to chaos in a square enclosure containing internal heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Baytas, A.C. [Institute For Nuclear Energy, Istanbul (Turkey)

    1995-09-01

    A numerical investigation is performed to study the transition from steady to chaotic flow of a fluid confined in a two-dimensional square cavity. The cavity has rigid walls of constant temperature containing uniformly distributed internal heat source. Effects of the Rayleigh number of flow and heat transfer rates are studied. In addition to, same problem is solved for sinusoidally changing internal heat source to show its effect on the flow model and heat transfer of the enclosures. Details of oscillatory solutions and flow bifurcations are presented.

  19. Particle-beam accelerators for radiotherapy and radioisotopes

    International Nuclear Information System (INIS)

    Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

    1981-01-01

    The philosophy used in developing the new PIGMI technology was that the parameters chosen for physics research machines are not necessarily the right ones for a dedicated therapy or radioisotope machine. In particular, the beam current and energy can be optimized, and the design should emphasize minimum size, simplicity and reliability of operation, and economy in capital and operating costs. A major part of achieving these goals lay in raising the operating frequency and voltage gradient of the accelerator, which shrinks the diameter and length of the components. Several other technical innovations resulted in major system improvements. One of these is a radically new type of accelerator structure named the radio-frequency quadrupole (RFQ) accelerator. This allowed us to eliminate the large, complicated ion source used in previous ion accelerators, and to achieve a very high quality accelerated beam. Also, by using advanced permanent magnet materials to make the focusing elements, the system becomes much simpler. Other improvements have been made in all of the accelerator components and in the methods for operating them. These will be described, and design and costing information examples given for several possible therapy and radioisotope production machines

  20. Heat buffers improve capacity and exploitation degree of geothermal energy sources

    NARCIS (Netherlands)

    Ooster, A.van t; Wit, J. de; Janssen, E.G.O.N.; Ruigrok, J.

    2008-01-01

    This research focuses on the role of heat buffers to support optimal use of combinations of traditional and renewable heat sources like geothermal heat for greenhouse heating. The objective was to determine the contribution of heat buffers to effective new combinations of resources that satisfy

  1. Spallation production of neutron deficient radioisotopes in North America

    International Nuclear Information System (INIS)

    Jamriska, D.J.; Peterson, E.J.; Carty, J.

    1997-01-01

    The US Department of Energy produces a number of neutron deficient radioisotopes by high energy proton induced spallation reactions in accelerators at Los Alamos National Laboratory in New Mexico and Brookhaven National Laboratory in New York. Research isotopes are also recovered from targets irradiated at TRIUMF in British Columbia, Canada. The radioisotopes recovered are distributed for use in nuclear medicine, environmental research, physics research, and industry worldwide. In addition to the main product line of Sr-82 from either Mo or Rb targets, Cu-67 from ZnO targets, and Ge-68 and RbBr targets, these irradiation facilities also produce some unique isotopes in quantities not available from any other source such as Al-26, Mg-28, Si-32, Ti-44, Fe-52, Gd-148, and Hg-194. The authors will describe the accelerator irradiation facilities at the Los Alamos and Brookhaven National Laboratories. The high level radiochemical processing facilities at Los Alamos and brief chemical processes will be described

  2. A set of portable radioisotopic control and measuring instruments

    International Nuclear Information System (INIS)

    Pospeev, V.V.; Sidorov, V.N.; Tesnavs, Eh.R.; Uleksin, V.I.

    1979-01-01

    The problems and perspectives are examined of the portable radioisotope instruments application in agriculture, building industry, engeeniring and geological survay and in melioration. Principles are given of creation a series of radioisotopic instruments based on the principle of ganging. The series described consists of radioisotopic densimeters and moisture gages of the portable type, based on the ganging principle. The instruments differ in the measuring converters and have unified information processing and power supply devices. Criteria are stated for the ganging principle estimation, in particular, estimation of the technical means' compatibility. Four different types of compatibility are distinguished: an information compatibility; a metrological compatibility; structural and operational compatibility. Description is given of the unified information processing device - the unified pulse counter of the SIP-1M type and description of a row of radioisotopic measuring converters, which provides a possibility for completing the portable radioisotope densimeter of the RPP-2 type, intended for measuring densities of concrets and soils in the surface layer up to 30 cm and the density range from 1000 to 2500 kg/m 3 ; portable radioisotope densimeter of the RPP-1 type having measuring range from 600 to 1500 kg/m 3 ; surface-depth radioisotopic densimeter of the PPGR-1 type and surface-depth radioisotopic moisture gage of the VPGR-1 type [ru

  3. Radioisotopic indicators in microbiology

    International Nuclear Information System (INIS)

    Isamov, N.N.

    1976-01-01

    The book comprises data obtained by the laboratory of radiobiology (Uzbek Research Veterinary Institute) for 15 years and sums up data of domestic and foreign scientists; it discusses problems of the utilization of radioactive isotopes of sulphur, cadmium, phosphorus and other chemical elements by microorganisms; indicates the specificity of the utilization of radioisotopes in microbiology. The influence is considered of external factors on the inclusion of radioisotopes into microorganisms, methods are discussed of obtaining labelled microorganisms and their antigens, radioactivity of bacteria is considered as affected by the consistency and composition of the nutritive medium and other problems

  4. Abstracts of the third conference on radioisotopes and their applications

    International Nuclear Information System (INIS)

    2002-10-01

    The Third Uzbekistan Conference on radioisotopes and their applications was held on 8-10 October, 2002 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of radiochemistry, radioisotope production, technology of radioisotopes and compounds, activations analysis applications, radionuclides, radioimmunoassays, application of radioisotopes in industry, medicine, biology and agriculture. More than 80 talks were presented in the meeting

  5. Computerized control system for administration of the radioisotope use

    International Nuclear Information System (INIS)

    Sago, Tsutomu; Ito, Shin; Isozumi, Yasuhito; Kurihara, Norio

    1986-01-01

    An on-line computer system for administration of the radioisotope use has been developed. This system consists of a multi-job type host computer and two sets of personal computers with identification card-readers. The personal computers are employed as terminal devices for radioisotope users. By the use of an identification card, entrance and leaving times are recorded automatically. Furthermore, an easy operation of the personal computer permits users to access to the information of their resistered radioisotopes, such as nuclides, chemical forms, updated activities, storage locations, and history of usage. A recording sheet on which those data are printed is provided from the personal computer. After the use of radioisotopes, users can record their data on the recording sheets. These records are used as the input data to this system to update the data of the used radioisotopes. Owing to the concise format of the recording sheet and various sorting programs developed in present work, this system enables us to grasp the exact flow of the radioisotopes from purchase to disposal. Out-put data from high-speed kanji printer can provide many important books which are legally requested to be kept for administration of the radioisotope use. (author)

  6. The production and application of radioisotopes

    International Nuclear Information System (INIS)

    O'Neill, W.P.; Evans, D.J.R.

    1987-01-01

    This paper outlines the historical evolution of radioisotopes from first concepts and discoveries to significant milestones in their production and the development of applications throughout the world. Regarding production, it addresses the methods that have been used at various stages during this evolution outlining the important findings that have led to further developments. With respect to radioisotope applications, the paper addresses the development of markets in industry, medicine, and agriculture and comments on the size of these markets and their rate of growth. Throughout, the paper highlights the Canadian experience and it also presents a Canadian view of emerging prospects and a forecast of how the future for radioisotopes might develop. (author)

  7. Radioisotopic neutron transmission spectrometry: Quantitative analysis by using partial least-squares method

    International Nuclear Information System (INIS)

    Kim, Jong-Yun; Choi, Yong Suk; Park, Yong Joon; Jung, Sung-Hee

    2009-01-01

    Neutron spectrometry, based on the scattering of high energy fast neutrons from a radioisotope and slowing-down by the light hydrogen atoms, is a useful technique for non-destructive, quantitative measurement of hydrogen content because it has a large measuring volume, and is not affected by temperature, pressure, pH value and color. The most common choice for radioisotope neutron source is 252 Cf or 241 Am-Be. In this study, 252 Cf with a neutron flux of 6.3x10 6 n/s has been used as an attractive neutron source because of its high flux neutron and weak radioactivity. Pulse-height neutron spectra have been obtained by using in-house built radioisotopic neutron spectrometric system equipped with 3 He detector and multi-channel analyzer, including a neutron shield. As a preliminary study, polyethylene block (density of ∼0.947 g/cc and area of 40 cmx25 cm) was used for the determination of hydrogen content by using multivariate calibration models, depending on the thickness of the block. Compared with the results obtained from a simple linear calibration model, partial least-squares regression (PLSR) method offered a better performance in a quantitative data analysis. It also revealed that the PLSR method in a neutron spectrometric system can be promising in the real-time, online monitoring of the powder process to determine the content of any type of molecules containing hydrogen nuclei.

  8. SELECTION OF HEAT SUPPLY SOURCE FOR MOBILE BUILDING STRUCTURE

    OpenAIRE

    T. I. Dolgikh; S. V. Morozov; Yu. P. Orlov; A. B. Reis; A. Yu Yakovlev

    2014-01-01

    The paper proposes a vortex heat generator with energy transformation of the highest  state  of matter motion  into  the  lowest  one  as  a  heat  supply  source  for a mobile object. Energy transformation coefficient indices close or equal to 1 have been obtained as a result of experiments on efficiency of the vortex heat generator. Such results can be explained with the help of the 2nd Bohr quantum postulate. Standard series of certified VTG heat generators has been proposed for heat suppl...

  9. Twenty years of Korea radioisotope association history

    International Nuclear Information System (INIS)

    2005-09-01

    This contents has two parts. The first part describes the present and post of Korea radioisotope association which are about the foundation of the association, organization, main projects and vision of the association. The second part is about the use and the prospect of radiation and radioisotope in Korea, which shows the plan of expansion of use of radiation and radioisotope, the prospect and present condition in fields such as medical, industry and farming, product and distribution, research and development of human resources, system and management of safety of radiation.

  10. Integro-differential equation analysis and radioisotope imaging systems. Research proposal. [Testing of radioisotope imaging system in phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Hart, H.

    1976-03-09

    Design modifications of a five-probe focusing collimator coincidence radioisotope scanning system are described. Clinical applications of the system were tested in phantoms using radioisotopes with short biological half-lives, including /sup 75/Se, /sup 192/Ir, /sup 43/K, /sup 130/I, and /sup 82/Br. Data processing methods are also described. (CH)

  11. Abstracts of the second conference on radioisotopes and their applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    The Second Uzbekistan Conference on radioisotopes and their applications was held on 3-5 October, 2000 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of radiochemistry, radioisotope production, technology of radioisotopes and compounds, activations analysis applications, radionuclides, radioimmunoassays, application of radioisotopes in industry, medicine, biology and agriculture. More than 80 talks were presented in the meeting. (A.A.D.)

  12. Development of a method for multielemental determination in water by EDXRF with radioisotopic source of 238Pu

    International Nuclear Information System (INIS)

    Serrano, C.; Estévez, J.; Montero, A.; Pupo, I.; Herrero, Z.; Leyva, D.; Arteche, J.; Varcárcel, L.; Van Espen, P.; Santos Júnior, J. A. dos

    2017-01-01

    A method for determination of Cr, Fe, Co, Ni, Cu, Zn, Hg and Pb in waters by Energy Dispersive X Ray Fluorescence (EDXRF) was implemented, using a radioisotopic source of 238 Pu. For previous concentration was employed a procedure including a coprecipitation step with ammonium pyrrolidine dithiocarbamate (APDC) as quelant agent, the separation of the phases by filtration, the measurement of filter by EDXRF and quantification by a thin layer absolute method. Sensitivity curves for K and L lines were obtained respectively. The sensitivity for most elements was greater by an order of magnitude in the case of measurement with a source of 238 Pu instead of 109 Cd, which means a considerable decrease in measurement times. The influence of the concentration in the precipitation efficiency was evaluated for each element. In all cases the recoveries are close to 100%, for this reason it can be affirmed that the method of determination of the studied elements is quantitative. Metrological parameters of the method such as trueness, precision, detection limit and uncertainty were calculated. A procedure to calculate the uncertainty of the method was elaborated; the most significant source of uncertainty for the thin layer EDXRF method is associated with the determination of instrumental sensitivities. The error associated with the determination, expressed as expanded uncertainty (in %), varied from 15.4% for low element concentrations (2.5-5 μg/L) to 5.4% for the higher concentration range (20-25 μg/L). (author)

  13. Radioisotope methodology course radioprotection aspects

    International Nuclear Information System (INIS)

    Bergoc, R.M.; Caro, R.A.; Menossi, C.A.

    1996-01-01

    The advancement knowledge in molecular and cell biology, biochemistry, medicine and pharmacology, which has taken place during the last 50 years, after World War II finalization, is really outstanding. It can be safely said that this fact is principally due to the application of radioisotope techniques. The research on metabolisms, biodistribution of pharmaceuticals, pharmacodynamics, etc., is mostly carried out by means of techniques employing radioactive materials. Radioisotopes and radiation are frequently used in medicine both as diagnostic and therapeutic tools. The radioimmunoanalysis is today a routine method in endocrinology and in general clinical medicine. The receptor determination and characterization is a steadily growing methodology used in clinical biochemistry, pharmacology and medicine. The use of radiopharmaceuticals and radiation of different origins, for therapeutic purposes, should not be overlooked. For these reasons, the importance to teach radioisotope methodology is steadily growing. This is principally the case for specialization at the post-graduate level but at the pre graduate curriculum it is worthwhile to give some elementary theoretical and practical notions on this subject. These observations are justified by a more than 30 years teaching experience at both levels at the School of Pharmacy and Biochemistry of the University of Buenos Aires, Argentina. In 1960 we began to teach Physics III, an obligatory pregraduate course for biochemistry students, in which some elementary notions of radioactivity and measurement techniques were given. Successive modifications of the biochemistry pregraduate curriculum incorporated radiochemistry as an elective subject and since 1978, radioisotope methodology, as obligatory subject for biochemistry students. This subject is given at the radioisotope laboratory during the first semester of each year and its objective is to provide theoretical and practical knowledge to the biochemistry students, even

  14. Radioisotope production by reactors and cyclotrons in Japan

    International Nuclear Information System (INIS)

    Murakami, Yukio

    1978-01-01

    Present status of radioisotope production in Japan and the increasing demand from various fields are generally reviewed. Future problems associated with the shortage of economical supply are also discussed. The first half of this report is devoted to general review of the increasing demand for various radioisotopes from increasing number of users. The present status and future trends of the distribution of users of specific radioisotopes and their demands are shown. The remaining half of this report reviews the production with reactors and cyclotrons. The Japanese reactors producing radioisotopes are limited to low flux (10 13 ) research reactors at JAERI. Some problems associated with the improvement of availability and with the organizational structure are discussed. As for the production with cyclotrons, available facilities and the method of production are explained in detail. For clinical use, especially for the production of short lived radioisotopes, the advantage of a small special purpose cyclotron at each medical organization is emphasized. (Aoki, K.)

  15. Categorisation of Practices and Sources- A Key Issue in Licensing Process

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.; Vokal, B.; Petrovic, Z.

    2004-01-01

    The analysis of a radioactive sources inventory in countries with a nuclear programme usually comprises nearly all possible man-made sources available today, from sources related to nuclear power plants to calibration sources used for educational purposes. The risk based licensing process of radiation sources and exposures is a demanding task which could be internationally harmonised by introducing sources and practice related categorisation. The detailed categorisation of radioisotopes, replacing [1], was recently published [2]. The activity ratio (A/D ratio) is used as a basic parameter which is proportional to a risk involved in a use of a radioisotope. Radioisotopes as well as related practices are categorised. No categorisation of ionising sources related to electrical apparatus producing ionising radiation without radioisotopes has been given in literature. In addition, licensees usually perform many different activities with a specific source, so the categorisation of practice should be done, based on a risk involved with a specific practice. The risk is related to the probability of a specific event as well as to the consequences of that event. It is strongly related to the categorisation of source. The main issues related to a licensing process of sources and practices are presented. The review of possible categorisation of radioisotopes and related practices is given and a proposal of a combined harmonised approach of categorisation of sources and practices, based on risk, is given. (Author) 19 refs

  16. Radioisotope requirements and usage in the radiopharmaceutical industry

    International Nuclear Information System (INIS)

    Langton, M.A.

    1995-01-01

    Radioisotopes are used extensively in many different productive and beneficial human endeavors. Amersham International, a U.K.-based company originating in the British Scientific Civil Service during World War II, has been actively involved in many of these activities for more than 50 yr. Today they are one of the world's largest suppliers of radioactive compounds and scaled radiation sources for use in industrial quality and safety assurance, life science research, and medicine. This paper outlines one of these applications: the use of radioisotopes as radiopharmaceuticals. Radiopharmaceuticals are radioactive nuclides and labeled compounds that have been developed for the diagnosis and treatment of (human) disease. They are manufactured via highly controlled processes and have gone through regulatory scrutiny and approval far in excess of other radioisotopes used in other applications. Radiopharmaceuticals can be conveniently split into two categories. One type is simply an active analog that mimics the physiological behavior of its inactive counterpart in the body. The other involves an actual pharmacological compound that exhibits the desired physiological behavior, which is then labeled with a radionuclide suitable for either imaging or the delivery of a therapeutic radiation dose as appropriate but which plays no part in the mechanism of action of the drug. The latter type, which is the more common of the two, can be supplied either as an active compounded product or as a open-quotes cold kit,close quotes which is then labeled with the appropriate radiopharmaceutical-grade radionuclide to yield the final product

  17. Determination of incident angle in radioisotope-excited EDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, A.; Pazsit, A. (Lajos Kossuth Univ., Debrecen (Hungary). Isotope Lab.)

    Three different methods were used for the determination of the effective incident angle related to EDXRF when radioisotope annular sources are involved: weighted averaging, Compton peak method and minimization of the difference between the certificated and measured concentrations of six international standard samples. By measuring the Compton peak energies of various analytical reagent grade elements and compounds, it was found that the incoherent peak energy depends on the mean atomic number of the matrix, so the effective incident angle is also matrix dependent. (Author).

  18. Determination of incident angle in radioisotope-excited EDXRF

    International Nuclear Information System (INIS)

    Somogyi, A.; Pazsit, A.

    1993-01-01

    Three different methods were used for the determination of the effective incident angle related to EDXRF when radioisotope annular sources are involved: weighted averaging, Compton peak method and minimization of the difference between the certificated and measured concentrations of six international standard samples. By measuring the Compton peak energies of various analytical reagent grade elements and compounds, it was found that the incoherent peak energy depends on the mean atomic number of the matrix, so the effective incident angle is also matrix dependent. (Author)

  19. Technical and economical availability of radioisotopes production in Brazil

    International Nuclear Information System (INIS)

    Lima, J.O.V.

    1981-10-01

    The technical and economical availability of radioisotopes production in Brazil by a low power research reactor, are done. The importance of radioisotope utilization and controled radiations, in areas such as medicine, industry and cost evaluation for the production in nuclear reactors. In the cost evaluation of a radioisotope production reactor, the studies developed by the Department of Nuclear Engineering of Universidade Federal de Minas Gerais - DEN/UFMG were used. The information analysis justify the technical and economical availability and the necessity of the radioisotopes production in Brazil. (E.G.) [pt

  20. Elementary concepts of the radioisotopes uses

    International Nuclear Information System (INIS)

    Pisarev, Mario A.

    2004-01-01

    Endocrinology has been one of the specialties earlier benefited for the radioisotopes uses in the diagnosis and treatment of different affections. These applications are based on the radioisotopes property of biochemical behaving as non- radioactive molecules, and at the same time, radiations emitting that can be detected by suitable means (diagnostic utility) or that have effects on biological systems (therapeutic action). (author) [es

  1. Development and application of industrial radioisotope instruments in China

    International Nuclear Information System (INIS)

    Lu Yanxiao

    1994-09-01

    Industrial radioisotope instruments are emerging as advanced monitoring, controlling and automation tools for industries in China. Especially the on-line analysis systems based on radioisotope instruments, referred to as nucleonic control systems (NCS), have more and more important role in the modernization and optimization of industrial processes. Over nearly four decades significant progress has been made in the development and application of radioisotope instruments in China. After a brief review of the history of radioisotope instruments, the state of the art of this kind of instruments and recent examples of their applications are given. Technical and economic benefits have resulted from the industrial applications of radioisotope instruments and the sales of products of their own in marketing. It is expected that along with the high speed growth of national economy, there will be greater demand for radioisotope instruments and nucleonic control systems in Chinese industry to promote the technological transformation and progress of traditional industries and to establish high-tech industries with technology-intensive products. Sustained efforts for the research and development of radioisotope instrument should be made to up-grade domestic instruments and to satisfy the needs of the smaller scale industries more common in China for low cost systems. (1 fig., 2 tabs.)

  2. Performance analysis and experimental study of heat-source tower solution regeneration

    International Nuclear Information System (INIS)

    Liang, Caihua; Wen, Xiantai; Liu, Chengxing; Zhang, Xiaosong

    2014-01-01

    Highlights: • Theoretical analysis is performed on the characteristics of heat-source tower. • Experimental study is performed on various rules of the solution regeneration rate. • The characteristics of solution regeneration vary widely with different demands. • Results are useful for optimizing the process of solution regeneration. - Abstract: By analyzing similarities and difference between the solution regeneration of a heat-source tower and desiccant solution regeneration, this paper points out that solution regeneration of a heat-source tower has the characteristics of small demands and that a regeneration rate is susceptible to outdoor ambient environments. A theoretical analysis is performed on the characteristics of a heat-source tower solution in different outdoor environments and different regeneration modes, and an experimental study is performed on variation rules of the solution regeneration rate of a cross-flow heat-source tower under different inlet parameters and operating parameters. The experimental results show that: in the operating regeneration mode, as the air volume was increased from 123 m 3 h −1 to 550 m 3 h −1 , the system heat transfer amount increased from 0.42 kW to 0.78 kW, and the regeneration rate increased from 0.03 g s −1 to 0.19 g s −1 . Increasing the solution flow may increase the system heat transfer amount; however, the regeneration rate decreased to a certain extent. In the regeneration mode when the system is idle, as the air volume was increased from 136 m 3 h −1 to 541 m 3 h −1 , the regeneration rate increased from 0.03 g s −1 to 0.1 g s −1 . The regeneration rate almost remained unchanged around 0.07 g s −1 as the solution flow is increased. In the regeneration mode with auxiliary heat when the system is idle, increasing the air volume and increasing the solution flow required more auxiliary heat, thereby improving the solution regeneration rate. As the auxiliary heat was increased from 0.33 k

  3. Characterization of radioactive orphan sources by gamma spectrometry

    International Nuclear Information System (INIS)

    Cruz W, H.

    2013-01-01

    The sealed radioactive sources are widely applicable in industry. They must have a permanent control and must be registered with the Technical Office of the National Authority (OTAN). However, at times it has identified the presence of abandoned sealed sources unknown to the owner. These sources are called 'orphan sources'. Of course these sources represent a high potential risk because accidents can trigger dire consequences depending on your activity and chemical form in which it presents the radioisotope. This paper describes the process and the actions taken to characterize two orphan radioactive sources from the smelter a Aceros Arequipa. For characterization we used a gamma spectrometry system using a detector NaI(Tl) 3″ x 3″ with a multichannel analyzer Nucleus PCA-II. The radioisotope identified was cesium - 137 ( 137 Cs) in both cases. Fortunately, the sources maintained their integrity would otherwise have generated significant pollution considering the chemical form of the radioisotope and easy dispersion. (author)

  4. Radioisotope-powered photovoltaic generator

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Uselman, J.

    1979-01-01

    Disposing of radioactive wastes from nuclear power plants has become one of the most important issues facing the nuclear industry. In a new concept, called a radioisotope photovoltaic generator, a portion of this waste would be used in conjunction with a scintillation material to produce light, with subsequent conversion into electricity via photovoltaic cells. Three types of scintillators and two types of silicon cells were tested in six combinations using 32 P as the radioisotope. The highest system efficiency, determined to be 0.5% when the light intensity was normalized to 100 mW/cm 2 , was obtained using a CsI crystal scintillator and a Helios photovoltaic cell

  5. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    International Nuclear Information System (INIS)

    Mukhopadhyay, S.

    2003-01-01

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources

  6. Sources of Radioactive Isotopes for Dirty Bombs

    Science.gov (United States)

    Lubenau, Joel

    2004-05-01

    From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.

  7. Application of radioisotope tracing technique in the agricultural machinery research

    International Nuclear Information System (INIS)

    Wang Shuyu; Wang Chengzhi; Hao Xinliang; An Yilu; Li Jinghui; Cui Zaijiu; Liu Dashen; Zhang Peng

    1988-10-01

    The radioisotope tracing technique with 60 Co and 3 H radionuclides was used in the process of shelling, clearing and drying when agricultural machines were utilized. The velocity distribution and travelling time of cereal from inlet to the outlet in the axial-flow threshing cylinder were measured. The dropping and moving velocity on the reciprocating sieve were determined. The effect of heating-drying on the wet cereal which were mixed with dry cereal was studied. The experimental data obtained is useful for improving the functions of shelling, clearing and drying machines as well as the reduction of energy consumption

  8. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Johnson; K. L. Lively

    2010-05-01

    This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type ‘B’ shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

  10. A new energy analysis tool for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Michopoulos, A.; Kyriakis, N. [Process Equipment Design Laboratory, Mechanical Engineering Department, Aristotle University of Thessaloniki, POB 487, 541 24 Thessaloniki (Greece)

    2009-09-15

    A new tool, suitable for energy analysis of vertical ground source heat pump systems, is presented. The tool is based on analytical equations describing the heat exchanged with the ground, developed in Matlab {sup registered} environment. The time step of the simulation can be freely chosen by the user (e.g. 1, 2 h etc.) and the calculation time required is very short. The heating and cooling loads of the building, at the afore mentioned time step, are needed as input, along with the thermophysical properties of the soil and of the ground heat exchanger, the operation characteristic curves of the system's heat pumps and the basic ground source heat exchanger dimensions. The results include the electricity consumption of the system and the heat absorbed from or rejected to the ground. The efficiency of the tool is verified through comparison with actual electricity consumption data collected from an existing large scale ground coupled heat pump installation over a three-year period. (author)

  11. Advanced Stirling Radioisotope Generator EU2 Anomaly Investigation

    Science.gov (United States)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2016-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically-heated Stirling radioisotope generator built to date. NASA Glenn Research Center (GRC) completed the assembly of the ASRG EU2 in September, 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's ASC-E3 Stirling convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's Engineering Development Unit (EDU) 4 controller. After just 179 hours of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hours later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January, 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from GRC, Sunpower, and Lockheed Martin conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  12. Air source absorption heat pump in district heating: Applicability analysis and improvement options

    International Nuclear Information System (INIS)

    Wu, Wei; Shi, Wenxing; Li, Xianting; Wang, Baolong

    2015-01-01

    Highlights: • Applicability of air source absorption heat pump (ASAHP) district heating is studied. • Return temperature and energy saving rate (ESR) in various conditions are optimized. • ASAHP is more suitable for shorter distance or lower temperature district heating. • Two options can reduce the primary return temperature and improve the applicability. • The maximum ESR is improved from 13.6% to 20.4–25.6% by compression-assisted ASAHP. - Abstract: The low-temperature district heating system based on the air source absorption heat pump (ASAHP) was assessed to have great energy saving potential. However, this system may require smaller temperature drop leading to higher pump consumption for long-distance distribution. Therefore, the applicability of ASAHP-based district heating system is analyzed for different primary return temperatures, pipeline distances, pipeline resistances, supplied water temperatures, application regions, and working fluids. The energy saving rate (ESR) under different conditions are calculated, considering both the ASAHP efficiency and the distribution consumption. Results show that ASAHP system is more suitable for short-distance district heating, while for longer-distance heating, lower supplied hot water temperature is preferred. In addition, the advantages of NH 3 /H 2 O are inferior to those of NH 3 /LiNO 3 , and the advantages for warmer regions and lower pipeline resistance are more obvious. The primary return temperatures are optimized to obtain maximum ESRs, after which the suitable distances under different acceptable ESRs are summarized. To improve the applicability of ASAHP, the integration of cascaded heat exchanger (CHX) and compression-assisted ASAHP (CASAHP) are proposed, which can reduce the primary return temperature. The integration of CHX can effectively improve the applicability of ASAHP under higher supplied water temperatures. As for the utilization of CASAHP, higher compression ratio (CR) is better in

  13. Aspects of radioisotopes utilization in clinical medicine

    International Nuclear Information System (INIS)

    Rocha, A.F.G.; Lima e Forti, C.A. de; Cunha, M. da C.; Souza Maciel, O. de

    1973-01-01

    A revision concerning radioisotope use in Medicine have been dow. Harmless and effeciency of radioisotopes are shown. Techniques and advantages of tracers used for brain scintiscanning, lung scintiscanning, liver scintinscanning, spleen scintiscanning, bone scintiscanning and thyroid scintiscanning are described and images of them are presented [pt

  14. Structure and manual of radioisotope-production data base, ISOP

    International Nuclear Information System (INIS)

    Hata, Kentaro; Terunuma, Kusuo

    1994-02-01

    We planned on collecting the information of radioisotope production which was obtained from research works and tasks at the Department of Radioisotopes in JAERI, and constructed a proto-type data base ISOP after discussion of the kinds and properties of the information available for radioisotope production. In this report the structure and the manual of ISOP are described. (author)

  15. Energy and exergy analysis of a double effect absorption refrigeration system based on different heat sources

    International Nuclear Information System (INIS)

    Kaynakli, Omer; Saka, Kenan; Kaynakli, Faruk

    2015-01-01

    Highlights: • Energy and exergy analysis was performed on double effect series flow absorption refrigeration system. • The refrigeration system runs on various heat sources such as hot water, hot air and steam. • A comparative analysis was carried out on these heat sources in terms of exergy destruction and mass flow rate of heat source. • The effect of heat sources on the exergy destruction of high pressure generator was investigated. - Abstract: Absorption refrigeration systems are environmental friendly since they can utilize industrial waste heat and/or solar energy. In terms of heat source of the systems, researchers prefer one type heat source usually such as hot water or steam. Some studies can be free from environment. In this study, energy and exergy analysis is performed on a double effect series flow absorption refrigeration system with water/lithium bromide as working fluid pair. The refrigeration system runs on various heat sources such as hot water, hot air and steam via High Pressure Generator (HPG) because of hot water/steam and hot air are the most common available heat source for absorption applications but the first law of thermodynamics may not be sufficient analyze the absorption refrigeration system and to show the difference of utilize for different type heat source. On the other hand operation temperatures of the overall system and its components have a major effect on their performance and functionality. In this regard, a parametric study conducted here to investigate this effect on heat capacity and exergy destruction of the HPG, coefficient of performance (COP) of the system, and mass flow rate of heat sources. Also, a comparative analysis is carried out on several heat sources (e.g. hot water, hot air and steam) in terms of exergy destruction and mass flow rate of heat source. From the analyses it is observed that exergy destruction of the HPG increases at higher temperature of the heat sources, condenser and absorber, and lower

  16. Radioisotope production at PUSPATI - five year programme

    International Nuclear Information System (INIS)

    Yusof Azuddin Ali; Abdul Rahman Mohamad Ali.

    1983-01-01

    Most of the basic laboratory facilities for radioisotopes production at PUSPATI will be commissioned by September 1983. Work on setting up of production and dispensing facilities is in progress as the nuclides being worked on are those that are commonly used in medical applications, such as Tc-99m, I-131, P-32 and other nuclides such as Na-24 and K-42. Kits for compounds labelled with Tc-99m such as Stannous Pyrophosphate, Sulfur Colloid and Stannous Glucoheptonate are being prepared. The irradiation facilities available now for radioisotope production at the PUSPATI TRIGA Reactor include a central thimble (flux density 1 x 10 13 n.cm -2 S -1 ) and a rotary specimen rack (flux density 0.2 x 10 13 n.cm -1 S -1 ). Irradiation schedules and target handling techniqes are discussed. Plans for radioisotope production at PUSPATI over the period of 1983-1987, based on present demand for radioisotope, are also explained. (author)

  17. Radioisotopes: problems of responsibility arising from medicine

    International Nuclear Information System (INIS)

    Dupon, Michel.

    1978-09-01

    Radioisotopes have brought about great progress in the battle against illnesses of mainly tumoral origin, whether in diagnosis (nuclear medicine) or in treatment (medical radiotherapy). They are important enough therefore to warrant investigation. Such a study is attempted here, with special emphasis, at a time when medical responsibility proceedings are being taken more and more often on the medicolegal problems arising from their medical use. It is hoped that this study on medical responsibility in the use of radioisotopes will have shown: that the use of radioisotopes for either diagnosis or therapy constitutes a major banch of medicine; that this importance implies an awareness by the practitioner of a vast responsibility, especially in law where legislation to ensure protection as strict as in the field of ionizing radiations is lacking. The civil responsibility of doctors who use radioisotopes remains to be defined, since for want of adequate jurisprudence we are reduced to hypotheses based on general principles [fr

  18. Ground-source heat pump systems in Norway

    International Nuclear Information System (INIS)

    Stene, Joern

    2007-01-01

    The Norwegian ground source heat pump (GSHP) market is reviewed. Boreholes in bedrock are of growing interest for residential systems and of growing interest for larger systems with thermal recharging or thermal energy storage. Ground water is limited to areas where the water has acceptable purity. Challenges and important boundary conditions include 1) high quality GSHP system requires engineering expertise, 2) new building codes and EU directive 'energy performance of buildings.'(2006), and 3) hydronic floor heating systems in 50 percent of new residences (author) (ml)

  19. Internal heat gain from different light sources in the building lighting systems

    Directory of Open Access Journals (Sweden)

    Suszanowicz Dariusz

    2017-01-01

    Full Text Available EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  20. Internal heat gain from different light sources in the building lighting systems

    Science.gov (United States)

    Suszanowicz, Dariusz

    2017-10-01

    EU directives and the Construction Law have for some time required investors to report the energy consumption of buildings, and this has indeed caused low energy consumption buildings to proliferate. Of particular interest, internal heat gains from installed lighting affect the final energy consumption for heating of both public and residential buildings. This article presents the results of analyses of the electricity consumption and the luminous flux and the heat flux emitted by different types of light sources used in buildings. Incandescent light, halogen, compact fluorescent bulbs, and LED bulbs from various manufacturers were individually placed in a closed and isolated chamber, and the parameters for their functioning under identical conditions were recorded. The heat flux emitted by 1 W nominal power of each light source was determined. Based on the study results, the empirical coefficients of heat emission and energy efficiency ratios for different types of lighting sources (dependent lamp power and the light output) were designated. In the heat balance of the building, the designated rates allow for precise determination of the internal heat gains coming from lighting systems using various light sources and also enable optimization of lighting systems of buildings that are used in different ways.

  1. Comparison of the production of medical radioisotopes on reactor and cyclotron

    International Nuclear Information System (INIS)

    Vucina, J.; Vuksanovic, Lj.; Dobrijevic, R.; Karanfilov, E.

    1997-01-01

    The production of radioisotopes for nuclear-medical applications can be performed either on nuclear reactor or on cyclotron. According to the nuclear reactions applied the radioisotopes of different physical characteristics can be produced. In the paper a comparison of the radioisotopes production given. Compared are the main steps in the production: choice of the nuclear reaction, targetry, irradiation and radiochemical separations performed on the irradiated target to isolate the desired radioisotope. The main characteristics of the produced radioisotopes are given and discussed. (author)

  2. First ECR-Ionized Noble Gas Radioisotopes at ISOLDE

    CERN Document Server

    Wenander, F; Gaubert, G; Jardin, P; Lettry, Jacques

    2004-01-01

    The production of light noble gas radioisotopes with high ionization potentials has been hampered by modest ionization efficiencies for standard plasma ion-sources. However, the decay losses are minimal as the lingering time of light noble gases within plasma ion-sources is negligible when compared to its diffusion out of the target material. Previous singly charged ECRIS have shown a higher efficiency but also a lingering time of the order of 1 s and a total weight that prevents remote handling by the ISOLDE robot. The compact MINIMONO efficiently addressed the lingering time and weight issues. In addition, the MINIMONO maintained the high off-line ionization efficiency for light noble gases. This paper describes a standard ISOLDE target unit equipped with a MINIMONO ion-source and the first tests. The ion-source has been tested off-line and equipped with a CaO target for on-line tests. Valuable information was gained about high current (100-500 muA) transport through the ISOLDE mass separators designed for ...

  3. Application of sorption heat pumps for increasing of new power sources efficiency

    Science.gov (United States)

    Vasiliev, L.; Filatova, O.; Tsitovich, A.

    2010-07-01

    In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.

  4. Application of static electricity radioisotope eliminators in oil-processing and petrochemical industry

    International Nuclear Information System (INIS)

    Zhuravlev, V.S.; Evmenov, A.K.; Bondarev, L.M.; Kharlamov, O.V.

    1977-01-01

    Examples are discussed of the use of radioisotope eliminators of the static electricity on the basis of the 239 Pu apha radiation sources in the technological processes of the production and processing synthetic caoutchoucs, rubbers and film materials. The efficiency of different types of eliminators is testified; prospects of their application in the industry are outlined

  5. Use of radioisotopes and nuclear methods in metallurgy

    International Nuclear Information System (INIS)

    Trehber, K.

    1976-01-01

    Some kinds of using radioisotope methods and instruments for regulation and control of metallurgical processes are reviewed. Computized data processing is described as well. The efficiency of industrial application of radioisotopes is remarked

  6. Radio-isotope generator

    International Nuclear Information System (INIS)

    Benjamins, H.M.

    1983-01-01

    A device is claimed for interrupting an elution process in a radioisotope generator before an elution vial is entirely filled. The generator is simultaneously exposed to sterile air both in the direction of the generator column and of the elution vial

  7. HAC and production of radioisotopes and labelled compounds

    International Nuclear Information System (INIS)

    Nozaki, T.

    1984-01-01

    In this paper, the author reviews different methods for the production of radioisotopes and labelled compounds that make use of hot atom reactions. Subsequently he discusses the production of radioisotopes for radiopharmaceuticals; enrichment of (n,γ) products, recoil labelling and related methods (neutron reaction products, cyclotron production, excitation labelling, radiation and discharge induced labelling). The final section offers a survey of radioisotope production using accelerators. Only a selection of the various conditions used in practical RI production is considered. (Auth.)

  8. SELECTION OF HEAT SUPPLY SOURCE FOR MOBILE BUILDING STRUCTURE

    Directory of Open Access Journals (Sweden)

    T. I. Dolgikh

    2014-01-01

    Full Text Available The paper proposes a vortex heat generator with energy transformation of the highest  state  of matter motion  into  the  lowest  one  as  a  heat  supply  source  for a mobile object. Energy transformation coefficient indices close or equal to 1 have been obtained as a result of experiments on efficiency of the vortex heat generator. Such results can be explained with the help of the 2nd Bohr quantum postulate. Standard series of certified VTG heat generators has been proposed for heat supply of the mobile object (field hospital.

  9. A study of Ground Source Heat Pump based on a heat infiltrates coupling model established with FEFLOW

    Science.gov (United States)

    Chen, H.; Hu, C.; Chen, G.; Zhang, Q.

    2017-12-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.

  10. Pumped Fluid Loop Heat Rejection and Recovery Systems for Thermal Control of the Mars Science Laboratory

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael

    2006-01-01

    This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.

  11. Feasibility studies on the production of essential radioisotopes (24Na and 32P) using the Ghana Miniature Neutron Source Reactor (GHARR-1)

    International Nuclear Information System (INIS)

    Dotse, S.C.

    2012-01-01

    Feasibility studies on the production of 32 P and 24 Na using a Miniature Neutron Source Reactor named Ghana Research Reactor-1 (GHARR-1) has been conducted. A theoretical model of the cyclic activation technique was developed for the simulation of specific activities under varying parameters. Specific activity values estimated for four cycles of irradiation with activation parameters falling within the specifications of the reactor were experimentally validated. Experimented results were compared to those theoretically estimated for both 24 Na and 32 P. Experimented specific activity values for both radioisotopes generally fell below their theoretical values but recorded activity build-ups from one cycle to the other. The 24 Na nuclide showed a regular pattern for the increase in specific activity from one cycle to the next with an average percentage difference of experimented to theoretical value of 19%. The 32 P nuclide showed an irregular pattern for the increase in specific activity from one cycle to the next with an average percentage difference of experimental to theoretical value of 11%. The specific activities experimentally attained, with reference to activity levels used for various applications in agriculture and industry suggests the cyclic activation technique can be used for the production of radioisotopes of appreciable activities using low power research reactors, which are characterised with limited excess core reactivity and cannot sustain long periods of irradiation. (au)

  12. Applications of New Chemical Heat Sources Phase 1

    National Research Council Canada - National Science Library

    Bell, William

    2001-01-01

    Report developed under Small Business Innovative Research (SBIR) contract. This project has examined the application of new chemical heat sources, with emphasis on portable heaters for military field rations...

  13. Thermal modeling of multi-shape heating sources on n-layer electronic board

    Directory of Open Access Journals (Sweden)

    Monier-Vinard Eric

    2017-01-01

    Full Text Available The present work completes the toolbox of analytical solutions that deal with resolving steady-state temperatures of a multi-layered structure heated by one or many heat sources. The problematic of heating sources having non-rectangular shapes is addressed to enlarge the capability of analytical approaches. Moreover, various heating sources could be located on the external surfaces of the sandwiched layers as well as embedded at interface of its constitutive layers. To demonstrate its relevance, the updated analytical solution has been compared with numerical simulations on the case of a multi-layered electronic board submitted to a set of heating source configurations. The comparison shows a high agreement between analytical and numerical calculations to predict the centroid and average temperatures. The promoted analytical approach establishes a kit of practical expressions, easy to implement, which would be cumulated, using superposition principle, to help electronic designers to early detect component or board temperatures beyond manufacturer limit. The ability to eliminate bad concept candidates with a minimum of set-up, relevant assumptions and low computation time can be easily achieved.

  14. Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions.

  15. Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-06-01

    As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions

  16. Radioisotope laboratory in Turkey

    International Nuclear Information System (INIS)

    1961-01-01

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies

  17. Radioisotope laboratory in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-04-15

    The Turkish Government formally requested that the Agency provide for one year the services of an expert in the agricultural applications of radioisotopes. Specifically, they wanted this expert first of all to assist in setting up and equipping a pioneer laboratory for the utilization of radioisotopes in agricultural research. Once the laboratory was in operation, the expert was to initiate various research projects using isotope techniques, and to train personnel to carry on this work. The Agency was also asked to supply various specialized equipment for the laboratory, including some radioisotopes. On 10 December 1960 the first phase was complete - the new laboratory was formally opened. It is foreseen that the research projects which will be initiated at the laboratory will include the following: determination of the effect of fertilizers upon yield and quality of field crops and fruit trees, soil fertility studies, studies of mineral element uptake and localization of nutrients in plant body, studies of the folar application of mineral nutrients, especially in fruit trees, investigation of microelements in field crops and fruit trees, investigation of pollination problems, study of the distribution of mineral elements in different fruit seedlings, study of the uptake of nutrients by fruit trees during the rest period, dispersal studies on insects, insecticide studies.

  18. Radioisotopes for medical applications

    International Nuclear Information System (INIS)

    Carr, S.

    1998-01-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country's main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community

  19. Radioisotopes for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Carr, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division

    1998-03-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country`s main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community 2 tabs., 1 fig.

  20. Radioisotopes as Political Instruments, 1946-1953.

    Science.gov (United States)

    Creager, Angela N H

    2009-01-01

    The development of nuclear "piles," soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country's atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments-both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy-in the early Cold War.

  1. Notification determining details of technical standards concerning transport of radioisotopes or goods contaminated by radioisotopes in works or enterprises

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is established under the provisions of the regulation for the execution of the law on the prevention of radiation injuries by radioisotopes. Terms are used in this rule for the same meanings as in the regulation. The limit of the concentration of radioisotopes in the goods contaminated by these isotopes which are not required to be sealed in containers defined by the Director General of the Science and Technology Agency is 1/10,000 of the value A 2 under the notification determining the details of technical standards concerning the transport of radioisotopes or the goods contaminated by radioisotopes outside works or enterprises. The application for the permission of transporting the goods which are highly difficult to be sealed in containers shall list names and addresses, the kinds, quantities, shapes and properties of the transported goods contaminated by radioisotopes, etc. The radiation dose rate of transported goods and vehicles under the regulation is 200 milli-rem an hour on the surfaces of these goods, vehicles and containers, and 10 milli-rem an hour at the distance of 1 meter from their surfaces. The permissible exposure dose of the persons engaging in transport is 1.5 rem a year. Dangerous goods, signs, and the application for the approval of special measures are specified, respectively. (Okada, K.)

  2. Seven Things to Know about Radioisotopes

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2014-01-01

    Each atomic element knows exactly how many protons and neutrons it needs at its centre (nucleus) in order to be stable (stay in its elemental form). Radioisotopes are atomic elements that do not have the correct proton to neutron ratio to remain stable. With an unbalanced number of protons and neutrons, energy is given off by the atom in an attempt to become stable. For example, a stable carbon atom has six protons and six neutrons. Whereas its unstable (and therefore radioactive) isotope carbon-14, has six protons and eight neutrons. Carbon-14 and all other unstable elements are called radioisotopes. This movement towards stability, which involves emitting energy from the atom in the form of radiation, is known as radioactive decay. This radiation can be tracked and measured, making radioisotopes very useful in industry, agriculture and medicine

  3. Development of a method for multielemental determination in water by EDXRF with radioisotopic source of {sup 238}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, C.; Estévez, J.; Montero, A.; Pupo, I.; Herrero, Z.; Leyva, D.; Arteche, J.; Varcárcel, L. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), (Cuba); Van Espen, P. [University of Amberes, (Belgium); Santos Júnior, J. A. dos, E-mail: cserrano@cedaen.edu.cu [Universidade Federal de Pernambuco (UFPE), Recife (Brazil)

    2017-07-01

    A method for determination of Cr, Fe, Co, Ni, Cu, Zn, Hg and Pb in waters by Energy Dispersive X Ray Fluorescence (EDXRF) was implemented, using a radioisotopic source of {sup 238}Pu. For previous concentration was employed a procedure including a coprecipitation step with ammonium pyrrolidine dithiocarbamate (APDC) as quelant agent, the separation of the phases by filtration, the measurement of filter by EDXRF and quantification by a thin layer absolute method. Sensitivity curves for K and L lines were obtained respectively. The sensitivity for most elements was greater by an order of magnitude in the case of measurement with a source of {sup 238}Pu instead of {sup 109}Cd, which means a considerable decrease in measurement times. The influence of the concentration in the precipitation efficiency was evaluated for each element. In all cases the recoveries are close to 100%, for this reason it can be affirmed that the method of determination of the studied elements is quantitative. Metrological parameters of the method such as trueness, precision, detection limit and uncertainty were calculated. A procedure to calculate the uncertainty of the method was elaborated; the most significant source of uncertainty for the thin layer EDXRF method is associated with the determination of instrumental sensitivities. The error associated with the determination, expressed as expanded uncertainty (in %), varied from 15.4% for low element concentrations (2.5-5 μg/L) to 5.4% for the higher concentration range (20-25 μg/L). (author)

  4. Radioisotopes for therapy: an overview

    International Nuclear Information System (INIS)

    Venkatesh, Meera

    2006-01-01

    Radionuclides made great impact in the history of nuclear sciences both at the end of 19th century with the discoveries of Becquerel and madame Curie and later in 1934, when Frederic Joliet and Irene Curie demonstrated the production of the first artificial radioisotopes, 30 P, by bombardment of 27 Al by alpha particles. The subsequent invention of cyclotron and setting up of nuclear reactor opened the floodgate for production of artificial radionuclides. Currently, majority of radionuclides are made artificially by transforming a stable nuclide into an unstable state and thus far over 2500 radionuclides have been produced artificially. Use of radionuclides in various fields immediately followed their production and last century has witnessed tremendous growth in the applications of radiation and radioisotopes, in diverse fields such as medicine, industry, agriculture, food preservation, water resource management, environmental studies, etc. While radiation and radioisotopes are used both for diagnosis as well as for therapy in the field of medicine, therapeutic applications are among the earliest, which began as an empirical science in the beginning and developed into a well structured modality with time. (author)

  5. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  6. Analysis of the Potential of Low-Temperature Heat Pump Energy Sources

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2017-11-01

    Full Text Available The paper deals with an analysis of temperatures of ground masses in the proximities of linear and slinky-type HGHE (horizontal ground heat exchanger. It evaluates and compares the potentials of HGHEs and ambient air. The reason and aim of the verification was to gain knowledge of the temperature course of the monitored low-temperature heat pump energy sources during heating periods and periods of stagnation and to analyse the knowledge in terms of the potential to use those sources for heat pumps. The study was conducted in the years 2012–2015 during three heating periods and three periods of HGHEs stagnation. The results revealed that linear HGHE had the highest temperature potential of the observed low-temperature heat pump energy sources. The average daily temperatures of the ground mass surrounding the linear HGHE were the highest ranging from 7.08 °C to 9.20 °C during the heating periods, and having the lowest temperature variation range of 12.62–15.14 K, the relative frequency of the average daily temperatures of the ground mass being the highest at 22.64% in the temperature range containing the mode of all monitored temperatures in a recorded interval of [4.10, 6.00] °C. Ambient air had lower temperature potential than the monitored HGHEs.

  7. Desalination using low grade heat sources

    Science.gov (United States)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of

  8. Light-Weight Radioisotope Heater Unit Safety Analysis Report (LWRHU-SAR). Volume I. A. Introduction and executive summary. B. Reference Design Document (RDD)

    International Nuclear Information System (INIS)

    Johnson, E.W.

    1985-10-01

    The orbiter and probe portions of the NASA Galileo spacecraft contain components which require auxiliary heat during the mission. To meet these needs, the Department of Energy's (DOE's) Office of Special Nuclear Projects (OSNP) has sponsored the design, fabrication, and testing of a one-watt encapsulated plutonium dioxide-fueled thermal heater named the Light-Weight Radioisotope Heater Unit (LWRHU). This report addresses the radiological risks which might be encountered by people both at the launch area and worldwide should postulate mission failures or malfunctions occur, which would result in the release of the LWRHUs to the environment. Included are data from the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events

  9. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  10. Radioisotopes in Industry

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Philip S. [Oak Ridge National Laboratory; Fuccillo, Jr., Domenic A. [Oak Ridge National Laboratory; Gerrard, Martha W. [Oak Ridge National Laboratory; Lafferty, Jr., Robert H. [Oak Ridge National Laboratory

    1967-05-01

    Radioisotopes, man-made radioactive elements, are used in industry primarily for measuring, testing and processing. How and why they are useful is the subject of this booklet. The booklet discusses their origin, their properties, their uses, and how they may be used in the future.

  11. Radiation protection programme for a radioisotope production facility

    International Nuclear Information System (INIS)

    Makgato, Thutu Nelson

    2015-02-01

    The present project reviews reactor based radioisotope production facilities. An overview of techniques and methodologies used as well as laboratory facilities necessary for the production process are discussed. Specific details of reactor based production and processing of more commonly used industrial and pharmaceutical radioisotopes are provided. Ultimately, based on facilities and techniques utilized as well as the associated hazard assessment, a proposed radiation protection programme is discussed. Elements of the radiation protection programme will also consider lessons from recent incidents and accidents encountered in radioisotope production facilities. (au)

  12. Heat input properties of hollow cathode arc as a welding heat source

    International Nuclear Information System (INIS)

    Nishikawa, Hiroshi; Shobako, Shinichiro; Ohta, Masashi; Ohji, Takayoshi

    2005-01-01

    In order to clarify whether a hollow cathode arc (HCA) can be used as a welding heat source in space, investigations into the fundamental characteristics of HCA were experimentally performed under low pressure conditions. The HCA method enables an arc discharge to ignite and maintain under low pressure conditions; in contrast, low pressure conditions make it extremely difficult for the conventional gas tungsten arc method to form an arc discharge. In an earlier paper, it was shown that the melting process by HCA is very sensitive to process parameters such as the gas flow rate and arc length, and a deep penetration forms when the arc length is long and the gas flow rate is low. In this paper, the distribution of the arc current on the anode surface and the plasma properties of the HCA under low pressure conditions have been made clear and the total heat energy to the anode has been discussed in order to understand the heat input properties of the HCA. The result shows that the HCA in the case of a low gas flow rate is a high and concentrated energy source, and the high energy input to the anode contributes to the deep penetration

  13. Numerical analysis of the heat source characteristics of a two-electrode TIG arc

    International Nuclear Information System (INIS)

    Ogino, Y; Hirata, Y; Nomura, K

    2011-01-01

    Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.

  14. Shielded radioisotope generator and method for using same

    International Nuclear Information System (INIS)

    Fries, B.A.

    1976-01-01

    A nuclide generator for on-site radioisotope generation is disclosed in which the formation of a short-lived daughter radioisotope from its longer-lived parent features batch flow of eluting reagent interior of the generator in a completely shielded environment

  15. Ground source geothermal heat. Ground source heat pumps and underground thermal energy storage systems. Proceedings; Oberflaechennahe Geothermie. Erdgekoppelte Waermepumpen und unterirdische thermische Energiespeicher. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    At the ninth international user forum on shallow geothermal heat on 28th and 29th April, 2009, at BadStaffelstein (Federal Republic of Germany), the following lectures were held: (1) Information system on shallow geothermal heat for Bavaria (Marcellus Schulze); (2) Calculation of the spreading of temperature anomalies in groundwater as an instrument of planning of heat pump systems (Wolfgang Rauch); (3) Comparison of models for simulation of deep geothermal probes (Markus Proell); (4) Impact of the geometry of boreholes and probes on heat transport (Manfred Reuss); (5) Thermal respond tests and temperature depth profiles - Experience from research and practice (Markus Kuebert); (6) A model of simulation for the investigation of the impact of different heat transfer fluids on the efficiency of ground source heat pump devices (Roland Koenigsdorff); (7) The research project EWSplus - Investigations for quality assurance of geothermal probes (Mathieu Riegger); (8) Quality management of plants for the utilization of shallow geothermal heat with geothermal probes - the example of Baden-Wuerttemberg (Bruno Lorinser, Ingrid Stober); (9) Not every heat pump contributes to climate protection (Falk Auer); (10) Field measurements of heat pumps in residential buildings with modern standard and in older buildings (Marek Miara); (11) System technology for a great annual performance factor (Werner Schenk); (12) Modification of older geothermal heat probe devices for use with modern heat pumps (Klaus Friedrich Staerk); (13) Energy-efficient modernisation of a pensioners' condominium from the 1970s with solar-geothermal-air (Michael Guigas); (14) Evaluation and optimization of operation of seasonal storage systems in the foundations of office buildings (Herdis Kipry); (15) Evaluation of an innovative heating and cooling concept with rain water vessels, thermo-active building components and phase change materials in a residential building (Doreen Kalz); (16) Contracts for ground

  16. Heating effects in a liquid metal ion source

    International Nuclear Information System (INIS)

    Mair, G.L.R.; Aitken, K.L.

    1984-01-01

    A reassessment is made of the heating occurring at the anode of a liquid metal ion source, in the light of new microscopic observations. The apex region of the cones is in the form of a cusp, or jet, even at very low currents. The calculation for ohmic heating is conclusive for low currents; no heating occurs at the anode; for high currents (approx. 50-100 μA), substantial heating is conceivable, if a long, very thin, cylindrical jet exists at the apex of the anode. The answer to the problem of external heating, in the form of electrons bombarding the anode, is not quite conclusive; this is because of the impossibility of correctly assessing the electron flux entering the anode. However, it would appear to be a definite conclusion that for reasons of self-consistency field-ionisation of thermally released atoms cannot be a significant ion emission mechanism. (author)

  17. Radioisotopes and radiopharmaceuticals catalogue

    International Nuclear Information System (INIS)

    2002-01-01

    The Chilean Nuclear Energy Commission (CCHEN) presents its radioisotopes and radiopharmaceuticals 2002 catalogue. In it we found physical characteristics of 9 different reactor produced radioisotopes ( Tc-99m, I-131, Sm-153, Ir-192, P-32, Na-24, K-42, Cu-64, Rb-86 ), 7 radiopharmaceuticals ( MDP, DTPA, DMSA, Disida, Phitate, S-Coloid, Red Blood Cells In-Vivo, Red Blood Cells In-Vitro) and 4 labelled compounds ( DMSA-Tc99m, DTPA-Tc99m, MIBG-I131, EDTMP-Sm153 ). In the near future the number of items will be increased with new reactor and cyclotron products. Our production system will be certified by ISO 9000 on March 2003. CCHEN is interested in being a national and an international supplier of these products (RS)

  18. NTP Radioisotopes SOC Ltd

    International Nuclear Information System (INIS)

    Letule, T.

    2017-01-01

    NTP Radioisotopes SOC Ltd, a wholly owned subsidiary of the South African Nuclear Energy Corporation (NECSA). Supplies around 20% of the world's medical radioisotopes used. NTP is a pioneer in the introduction and growth of nuclear medicine as in South Africa. Nuclear medicine is the medical specialty that involves the use of radioactive isotopes in the diagnosis and treatment of diseases. Nuclear medicine contributes to enhancing the lives of the society. There is a compelling need for nuclear medicine to be promoted and utilized in the rest of Africa, due to the increasing prevalence of cancer. Cancer is rapidly becoming a public health crisis in low-income and middle-income countries. In sub-Saharan Africa, patients often present with advanced disease

  19. The law concerning prevention from radiation hazards due to radioisotopes

    International Nuclear Information System (INIS)

    1984-01-01

    The law regulates uses, sales and disposal of radioisotopes, uses of radiation generating apparatuses, disposal of materials contaminated with radioisotopes, and so on, in accordance with the Atomic Energy Fundamental Act, for public safety. Covered are the following: permission for and notification of the uses and permission for businesses selling and disposing of radioisotopes, and approval of designs concerning radiation hazard prevention mechanisms, obligations of the users and business enterprises selling and disposing of radioisotopes, the licensed engineers of radiation, organs, etc. for confirmation of the mechanisms, punitive provisions, and so on. (Mori, K.)

  20. Effect of the Presence of Semi-circular Cylinders on Heat Transfer From Heat Sources Placed in Two Dimensional Channel

    Directory of Open Access Journals (Sweden)

    Ahmed W. Mustava

    2013-04-01

    Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations.  The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass.  The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the

  1. Radioisotope techniques in oil wells

    International Nuclear Information System (INIS)

    Jain, Prabuddha

    1998-01-01

    Radioisotope techniques are quite useful in oil exploration and exploitation. Nuclear logging offers a way of gathering information on porosity, permeability, fluid saturations, hydrocarbon types and lithology. Some of the interesting applications in well drilling are determining depth of filtrate invasion, detection of lost circulation, drill-bit erosion control; primary cement measurements and well completions such as permanent tubular markers, perforation position marking, detection of channeling behind casing and gravel pack operations. Radioisotopes have been successfully used in optimizing production processes such as production profiling injection profiling, corrosion measurements and well to well tracer tests. (author)

  2. Cost-benefit aspects of radioisotope methods

    International Nuclear Information System (INIS)

    Jankowski, L.

    1986-01-01

    The cost-benefit relations in the complex application of radioisotpe techniques increased in the last years to up to 1/10 to 1/15. The most essential cause of this trend is the increase of the capacity of production processes, controlled and automatized by means of radioisotopes, and the solution of qualitatively new technological problems of a high economic relevance. A collection of statistical data about the expediture and benefit of different radioisotopes techniques is presented. (author)

  3. Radioisotope tracers in industrial flow studies

    International Nuclear Information System (INIS)

    Easey, J.F.

    1987-01-01

    The scope of radioisotope tracer work carried out by ANSTO has involved most sectors of Australian industry including iron and steel coal, chemical, petrochemical, natural gas, metallurgical, mineral, power generation, liquified air plant, as well as port authorities, water and sewerage instrumentalities, and environmental agencies. A major class of such studies concerns itself with flow and wear studies involving industrial equipment. Some examples are discussed which illustrate the utility of radioisotope tracer techniques in these applications

  4. Experimental research on novel adsorption chiller driven by low grade heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Shi, Z.X.; Yang, Q.R.; Tian, X.L.; Zhang, J.C.; Wu, J.Y.

    2007-01-01

    A novel silica gel-water adsorption chiller is developed. This chiller consists of three vacuum chambers: two adsorption/desorption (or evaporation/condensation) vacuum chambers and one heat pipe working vacuum chamber. In this chiller, only one vacuum valve is installed between the two adsorption/desorption vacuum chambers to improve its performance when it is driven by a low temperature heat source. The operational reliability of the chiller is highly improved because of fewer moving parts. In this work, the performance of the chiller is experimentally tested under a low grade heat source, such as 55-67 o C. The test results show that the performance of this chiller is satisfying when it is driven by a low grade heat source, such as 65 o C, and the cooling capacity (or refrigeration capacity) will reach about 5 kW when the hot water temperature is 65 o C, the cooling water temperature is 30.5 o C and the chilled water inlet temperature is 15.1 o C. The test results confirm that this kind of adsorption chiller can be effectively driven by a low grade heat source

  5. Heat source component development program, October 1977--February 1978

    International Nuclear Information System (INIS)

    1978-03-01

    The General Purpose Heat Source (GPHS) is being developed by Los Alamos Scientific Laboratory (LASL) for the Department of Energy (DOE) Division of Nuclear Research and Application (DNRA). The first mission scheduled for the GPHS is the NASA Out-of-Ecliptic Flight in January, 1983. During the current reporting period (October--December, 1977, January--February, 1978), activities in this task were conducted as follows: (1) documentation of results of the reentry thermal, ablation, and thermal stress analyses of the conceptual designs; (2) identification and completion of modifications to the thermal and ablation models used to determine the performance response of the heat source modules during reentry; (3) initiation of modifications to the thermal stress model used to determine the performance response of heat source modules during reentry; (4) completion and documentation of the surface chemistry experiments; (5) initiation and completion of activities in support of LASL to define test plans for the trial design phase of the GPHS development program; (6) participation in the GPHS design review meeting held at DOE/Germantown, Maryland, December 19--20, 1977; and (7) initiation of the thermal analysis of Trial Design 1.1

  6. Thermal non-equilibrium heat transfer in a porous cavity in the presence of bio-chemical heat source

    Directory of Open Access Journals (Sweden)

    Nazari Mohsen

    2015-01-01

    Full Text Available This paper is concerned with thermal non-equilibrium natural convection in a square cavity filled with a porous medium in the presence of a biomass which is transported in the cavity. The biomass can consume a secondary moving substrate. The physics of the presented problem is related to the analysis of heat and mass transfer in a composting process that controlled by internal heat generation. The intensity of the bio-heat source generated in the cavity is equal to the rate of consumption of the substrate by the biomass. It is assumed that the porous medium is homogeneous and isotropic. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy equation. A simplified Monod model is introduced along with the governing equations to describe the consumption of the substrate by the biomass. In other word, the transient biochemical heat source which is dependent on a solute concentration is considered in the energy equations. Investigation of the biomass activity and bio-chemical heat generation in the case of thermal non-equilibrium assumption has not been considered in the literature and they are open research topics. The effects of thermal non-equilibrium model on heat transfer, flow pattern and biomass transfer are investigated. The effective parameters which have a direct impact on the generated bio-chemical heat source are also presented. The influences of the non-dimensional parameters such as fluid-to-solid conductivity ratio on the temperature distribution are presented.

  7. Economic Contributions of Radioisotope Production Reactor in Korea

    International Nuclear Information System (INIS)

    Nam, Ji Hee; Kim, Seung Su; Moon, Kee Whan

    2010-01-01

    Radioisotopes (RIs) have been used extensively in the fields of industrial, the agricultural, and the medical applications. Especially the deficiency of radioisotopes such as Mo-99 and I-131 in the medical applications recently is becoming the main issue in our society. Radioisotope with the characteristics of public goods in some aspects is mainly playing as the intermediate inputs or goods in the process of the industrial production, with being expected to produce the economic benefits by creating the new demand in the market or enlarging the value added for the related goods and services. In this study, the contribution effects for Korean economy by the construction and operation of the reactor for radioisotope production would be evaluated the effects produced by the activities such as a RI supplies into domestic industry, the RI exports, the neutron transmutation doping services called NTD, and the exports of RI production reactors

  8. Elemental analysis of the ancient bronze coins by x-ray fluorescence technique using simultaneously radioisotope source and x-ray tube

    International Nuclear Information System (INIS)

    Nguyen The Quynh; Truong Thi An; Tran Duc Thiep; Nguyen Dinh Chien; Dao Tran Cao; Nguyen Quang Liem

    2004-01-01

    The results on elemental analysis of the Vietnamese ancient bronze coins during the time of the Nguyen dynasty (19th century) are presented. The samples were provided by the vietnam National Historical Museum and the elemental analysis was performed on the home-made model EDS-XT-99-01 X-ray fluorescence spectrometer in the Institute of Materials Science, NCST of Vietnam. The samples exited simultaneously by radioisotope source and X-ray tube. The analytical results show the similarity in the elemental composition of the coins issued by different kings of the Nguyen dynasty, but there is the difference in the concentration of the used elements. Another interesting point is that all the coins have zinc (Zn) in their composition, which shows clearly the influence of the occidental metallurgical technology on the money-making technique in Vietnam during the 19th century. (author)

  9. Advanced Stirling Radioisotope Generator Engineering Unit 2 Anomaly Investigation

    Science.gov (United States)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2018-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically heated Stirling radioisotope generator built to date. NASA Glenn Research Center completed the assembly of the ASRG EU2 in September 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's Advanced Stirling Convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's (LM's) Engineering Development Unit (EDU) 4 controller. After just 179 hr of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hr later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from Glenn, Sunpower, and LM conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  10. Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Terry [Townsend Engineering, Inc., Davenport, IA (United States); Slusher, Scott [Townsend Engineering, Inc., Davenport, IA (United States)

    2017-04-24

    The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.

  11. Heating with ice. Efficient heating source for heat pumps. Primary source storage. Alternative to soil sensors and soil collectors; Heizen mit Eis. Effiziente Waermequelle fuer Waermepumpen. Primaerquellenspeicher, Alternative zu Erdsonden und Erdkollektoren

    Energy Technology Data Exchange (ETDEWEB)

    Tippelt, Egbert [Viessmann, Allendorf (Germany)

    2011-12-15

    For several years heat pumps have taken up a fixed place in the mix of annually installed thermal generators. Thus, in the year 2010 every tenth newly installed heater was a heat pump. A new concept for the development and utilization of natural heat now makes this technology even more attractive. From this perspective, the author of the contribution under consideration reports on a SolarEis storage. This SolarEis storage consists of a cylindrical concrete tank with two heat exchangers consiting of plastic pipes. The SolarEis storage uses outdoor air, solar radiation and soil as heat sources for brine / water heat pumps simultaneously.

  12. Performance analysis of air source heat pump system for office building

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Won; KIm, Yong Chan [Korea University, Seoul (Korea, Republic of); Chang, Young Soo [School of Mechanical System Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-11-15

    In this study, the performance of an air source heat pump system installed in a commercial building is analyzed using the developed heat pump performance model and building load simulation data of several regions in Korea. The performance test of an air source heat pump system with a variable speed compressor is tested to develop model that considers changes in the performance characteristics of the heat pump system under various operating conditions. The heat pump system is installed in an environmental chamber, and the experimental equipment is set up according to the manufacturer' specifications as well as the AHRI 1230 test specifications. The performance test conditions of the heat pump system are selected using a central composite design method, in which 29 points for each cooling and heating mode are selected. The developed performance model based on experimental data predicts experimental values with an error of ±5 %. Building cooling and heating loads in three regions in Korea are analyzed using TRNSYS software, which includes standard building and weather data from Seoul, Daejeon and Busan in Korea. The effects of outdoor air temperature and part load ratio on the performance and regional monthly average power consumption of the heat pump system are analyzed.

  13. Energy consumption modeling of air source electric heat pump water heaters

    International Nuclear Information System (INIS)

    Bourke, Grant; Bansal, Pradeep

    2010-01-01

    Electric heat pump air source water heaters may provide an opportunity for significant improvements in residential water heater energy efficiency in countries with temperate climates. As the performance of these appliances can vary widely, it is important for consumers to be able to accurately assess product performance in their application to maximise energy savings and ensure uptake of this technology. For a given ambient temperature and humidity, the performance of an air source heat pump water heater is strongly correlated to the water temperature in or surrounding the condenser. It is therefore important that energy consumption models for these products duplicate the real-world water temperatures applied to the heat pump condenser. This paper examines a recently published joint Australian and New Zealand Standard, AS/NZS 4234: 2008; Heated water systems - Calculation of energy consumption. Using this standard a series TRNSYS models were run for several split type air source electric heat pump water heaters. An equivalent set of models was then run utilizing an alternative water use pattern. Unfavorable errors of up to 12% were shown to occur in modeling of heat pump water heater performance using the current standard compared to the alternative regime. The difference in performance of a model using varying water use regimes can be greater than the performance difference between models of product.

  14. The ion source development for neutral injection heating at JAERI

    International Nuclear Information System (INIS)

    Shirakata, H.; Itoh, T.; Kondoh, U.; Matsuda, S.; Ohara, Y.; Ohga, T.; Shibata, T.; Sugawara, T.; Tanaka, S.

    1976-01-01

    The neutral beam research and development effort at JAERI has been mainly concentrated on design, construction and testing of ion sources needed for present and planned heating experiments. Fundamental characteristics of the ion sources developed are described

  15. The Mars Hopper: Development, Simulation and Experimental Validation of a Radioisotope Exploration Probe for the Martian Surface

    Energy Technology Data Exchange (ETDEWEB)

    Nathan D. Jerred; Spencer Cooley; Robert C. O' Brien; Steven D. Howe; James E. O' Brien

    2012-09-01

    An advanced exploration probe has been proposed by the Center for Space Nuclear Research (CSNR) to acquire detailed data from the Martian surface and subsurface, ‘hop’ large distances to multiple sites in short periods of time and perform this task repeatedly. Although several similar flying vehicles have been proposed utilizing various power sources and complex designs, e.g. solar-electric and chemical-based, the CSNR’s Mars Hopper is based on a radioisotope thermal rocket (RTR) concept. The Mars Hopper’s design relies on the high specific energies [J/kg] of radioisotopes and enhances their low specific power [W/kg] through the use of a thermal capacitance material to store thermal energy over time. During operation, the RTR transfers the stored thermal energy to a flowing gas, which is then expanded through a converging-diverging nozzle, producing thrust. Between flights, the platform will have ample time to perform in-depth science at each location while the propellant tanks and thermal capacitor recharge. Recharging the propellant tanks is accomplished by sublimation freezing of the ambient CO2 atmosphere with a cryocooler, followed by heating and pressurization to yield a liquid storage state. The proposed Mars Hopper will undergo a ballistic flight, consuming the propellant in both ascent and descent, and by using multiple hopper platforms, information can be gathered on a global scale, enabling better resource resolution and providing valuable information for a possible Mars sample-return mission. The CSNR, collaborating with the Idaho National Laboratory (INL) and three universities (University of Idaho, Utah State University and Oregon State University), has identified key components and sub-systems necessary for the proposed hopper. Current project activities include the development of a lab-scale prototypic Mars Hopper and test facility, along with computational fluid dynamics (CFD)/thermal-hydraulic models to yield a better understanding of the

  16. Energy well. Ground-source heat in one-family houses; Energiakaivo. Maalaemmoen hyoedyntaeminen pientaloissa

    Energy Technology Data Exchange (ETDEWEB)

    Juvonen, J.; Lapinlampi, T.

    2013-08-15

    This guide deals with the legislation, planning, building, usage and maintenance of ground-source heat systems. The guide gives recommendations and instructions on national level on the permit practices and how to carry out the whole ground-source heat system project. The main focus of the guide is on energy wells for one-family houses. The principle is that an action permit is needed to build a ground-source heat system. On ground water areas a permit according to the water act may also be required. To avoid any problems, the placement of the system needs to be planned precisely. This guide gives a comprehension to the orderer on the issues that need to be considered before ordering, during construction, when the system is running and when giving up the use of the ground-source heat system. (orig.)

  17. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    Science.gov (United States)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  18. Research reactor production of radioisotopes for medical use

    International Nuclear Information System (INIS)

    Mani, R.S.

    1985-01-01

    More than 70% of all radioisotopes applied in medical diagnosis and research are currently produced in research reactors. Research reactors are also an important source of certain radioisotopes, such as 60 Co, 90 Y, 137 Cs and 198 Au, which are employed in teletherapy and brachytherapy. For regular medical applications, mainly 29 radionuclides produced in research reactors are used. These are now produced on an 'industrial scale' by many leading commercial manufacturers in industrialized countries as well as by national atomic energy establishments in developing countries. Five main neutron-induced reactions have been employed for the regular production of these radionuclides, namely: (n,γ), (n,p), (n,α), (n,γ) followed by decay, and (n, fission). In addition, the Szilard-Chalmers process has been used in low- and medium-flux research reactors to enrich the specific activity of a few radionuclides (mainly 51 Cr) produced by the (n,γ) reaction. Extensive work done over the last three decades has resulted in the development of reliable and economic large-scale production methods for most of these radioisotopes and in the establishment of rigorous specifications and purity criteria for their manifold applications in medicine. A useful spectrum of other radionuclides with suitable half-lives and low to medium toxicity can be produced in research reactors, with the requisite purity and specific activity and at a reasonable cost, to be used as tracers. Thanks to the systematic work done in recent years by many radiopharmaceutical scientists, the radionuclides of several elements, such as arsenic, selenium, rhenium, ruthenium, palladium, cadmium, tellurium, antimony, platinum, lead and the rare earth elements, which until recently were considered 'exotic' in the biomedical field, are now gaining attention. (author)

  19. Organic synthesis with short-lived positron-emitting radioisotopes

    International Nuclear Information System (INIS)

    Pike, V.W.

    1988-01-01

    Chemistry with short-lived positron-emitting radioisotopes of the non-metals, principally 11 C, 13 N and 18 F, has burgeoned over the last decade. This has been almost entirely because of the emergence of positron emission tomography (PET) as a powerful non-invasive technique for investigating pathophysiology in living man. PET is essentially an external technique for the rapid serial reconstruction of the spatial distribution of any positron-emitting radioisotope that has been administered in vivo. Such a distribution is primarily governed by the chemical form in which the positron-emitting radioisotope is incorporated, and importantly for clinical research, is often perturbed by physical, biological or clinical factors. Judicious choice of the chemical form enables specific biological information to be obtained. For example, the labelling of glucose with a positron-emitting radioisotope could be expected to provide a radiopharmaceutical for the study of glucose utilisation in both health and disease. (author)

  20. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  1. Effects of the generator and evaporator temperature differences on a double absorption heat transformer—Different control strategies on utilizing heat sources

    International Nuclear Information System (INIS)

    Wang, Hanzhi; Li, Huashan; Bu, Xianbiao; Wang, Lingbao

    2017-01-01

    Highlights: • Effects of the GETD on the DAHT system performance are analyzed. • Three different configurations are compared in detail. • Suggestions on the heat source control strategies are given. - Abstract: The combination of the absorption heat transformer with renewable energy systems, like solar thermal systems, is raising more and more concern. In those combined systems the strategies on utilizing heat sources can affect system thermodynamic performance significantly. Therefore, this study presents a detailed analysis on the effect of the heat source temperature and different heat source flow patterns on the performance of a double absorption heat transformer (DAHT). A detailed comparative study is carried out to clarify the impact of the generator and evaporator temperature differences (GETD) on the coefficient of performance (COP), exergy efficient (ECOP), exergy destruction rates in the individual components and heat transfer areas needed for each component. The results show that the generator, condenser and absorber-evaporator are responsible for most of the exergy destruction rate in the DAHT system; the parallel-flow configuration (the generator temperature is equal to the evaporator temperature) performs better under the high gross temperature lift conditions; in the case of the counter-flow configuration (the generator temperature is relatively higher), better performance can be obtained in both the COP and ECOP under the proper heat source temperature (85 and 95 °C); the fair-flow configuration (higher temperature in the evaporator) is not recommended in this paper due to no advantages found in either thermodynamic performance or system size.

  2. Diffusion of Implanted Radioisotopes in Solids

    CERN Multimedia

    2002-01-01

    Implantation of radioisotopes into metal and semiconductor samples is performed. The implanted isotope or its decay-product should have a half-life long enough for radiotracer diffusion experiments. Such radioisotopes are utilized to investigate basic diffusion properties in semiconductors and metals and to improve our understanding of the atomic mechanisms of diffusion. For suitably chosen systems the combination of on-line production and clean implantation of radioisotopes at the ISOLDE facility opens new possibilities for diffusion studies in solids. \\\\ \\\\ The investigations are concentrated on diffusion studies of $^{195}$Au in amorphous materials. The isotope $^{195}$Au was obtained from the mass 195 of the mercury beam. $^{195}$Hg decays into $^{195}$Au which is a very convenient isotope for diffusion experiments. \\\\ \\\\ It was found that $^{195}$Au is a slow diffusor in amorphous Co-Zr alloys, whereas Co is a fast diffusor in the same matrix. The ``asymmetry'' in the diffusion behaviour is of considerab...

  3. Natural convection heat transfer in a rectangular pool with volumetric heat sources

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.

    2003-01-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)

  4. Moving heat source in a confined channel: Heat transfer and boiling in endovenous laser ablation of varicose veins

    NARCIS (Netherlands)

    de Boer, Amit; Oliveira, Jorge L. G.; van der Geld, Cees W. M.; Malskat, Wendy S. J.; van den Bos, Renate; Nijsten, Tamar; van Gemert, Martin J. C.

    2017-01-01

    Motion of a moving laser light heat source in a confined volume has important applications such as in endovenous laser ablation (EVLA) of varicose veins. This light heats up the fluid and the wall volume by absorption and heat conduction. The present study compares the flow and temperature fields in

  5. Ground-source heat pump case studies and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  6. Current status of ground-source heat pumps in China

    International Nuclear Information System (INIS)

    Yang Wei; Zhou Jin; Xu Wei; Zhang Guoqiang

    2010-01-01

    As a renewable energy technology, the ground-source heat pump (GSHP) technologies have increasingly attracted world-wide attention due to their advantages of energy efficiency and environmental friendliness. This paper presents Chinese research and application on GSHP followed by descriptions of patents. The policies related to GSHP are also introduced and analyzed. With the support of Chinese government, several new heat transfer models and two new GSHP systems (named pumping and recharging well (PRW) and integrated soil cold storage and ground-source heat pump (ISCS and GSHP) system) have been developed by Chinese researchers. The applications of GSHP systems have been growing rapidly since the beginning of the 21st century with financial incentives and supportive government policies. However, there are still several challenges for the application of GSHP systems in large scale. This paper raises relevant suggestions for overcoming the existing and potential obstacles. In addition, the developing and applying prospects of GSHP systems in China are also discussed.

  7. Radioisotopes production for applications on the health

    International Nuclear Information System (INIS)

    Monroy G, F.; Alanis M, J.

    2010-01-01

    In the Radioactive Materials Department of the Instituto Nacional de Investigaciones Nucleares (ININ) processes have been studied and developed for the radioisotopes production of interest in the medicine, research, industry and agriculture. In particular five new processes have been developed in the last 10 years by the group of the Radioactive Materials Research Laboratory to produce: 99 Mo/ 99m Tc and 188 W/ 188 Re generators, the radio lanthanides: 151 Pm, 147 Pm, 161 Tb, 166 Ho, 177 Lu, 131 I and the 32 P. All these radioisotopes are artificial and they can be produced in nuclear reactors and some of them in particle accelerators. The radioisotope generators are of particular interest, as those of 99 Mo/ 99m Tc and 188 W/ 188 Re presented in this work, because they are systems that allow to produce an artificial radioisotope of interest continually, in these cases the 99m Tc and the 188 Re, without the necessity of having a nuclear reactor or an particle accelerator. They are compact systems armored and sure perfectly of manipulating that, once the radioactive material has decayed, they do not present radiological risk some for the environment and the population. These systems are therefore of supreme utility in places where it is not had nuclear reactors or with a continuous radioisotope supply, due to their time of decaying, for its cost or for logistical problems in their supply, like it is the case of many hospital centers, of research or industries in our country. (Author)

  8. Radioisotope applications in petroleum and gas industries

    International Nuclear Information System (INIS)

    Castagnet, A.C.; Agudo, E.G.; Duarte, U.

    1974-01-01

    The principal radioisotopic technique used for studying and /or controling the drilling, completion, treatment and oil well secondary recovery operations are described. In this cases the radioisotopes are employed almost exclusively as 'markers', in the form of localized and dispersed tracers. The growing acceptance of these techniques is essentially, a consequence of the confidence in the reliability of the data and conclusions derived from their application

  9. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  10. Thermal hydraulic analysis of the encapsulated nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, J.J.; Wade, D.C. [Argonne National Lab., IL (United States)

    2001-07-01

    An analysis has been carried out of the steady state thermal hydraulic performance of the Encapsulated Nuclear Heat Source (ENHS) 125 MWt, heavy liquid metal coolant (HLMC) reactor concept at nominal operating power and shutdown decay heat levels. The analysis includes the development and application of correlation-type analytical solutions based upon first principles modeling of the ENHS concept that encompass both pure as well as gas injection augmented natural circulation conditions, and primary-to-intermediate coolant heat transfer. The results indicate that natural circulation of the primary coolant is effective in removing heat from the core and transferring it to the intermediate coolant without the attainment of excessive coolant temperatures. (authors)

  11. Radioisotope Heater Unit-Based Stirling Power Convertor Development at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Geng, Steven M.; Penswick, Lawrence; Schmitz, Paul C.

    2017-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A variety of mission concepts have been studied by NASA and the U. S. Department of Energy that would utilize RPS for landers, probes, and rovers and only require milliwatts to tens of watts of power. These missions would contain science measuring instruments that could be distributed across planetary surfaces or near objects of interest in space solar flux insufficient for using solar cells. A low power Stirling convertor is being developed to provide an RPS option for future low power applications. Initial concepts convert heat available from several Radioisotope Heater Units to electrical power for spacecraft instruments and communication. Initial development activity includes defining and evaluating a variety of Stirling configurations and selecting one for detailed design, research of advanced manufacturing methods that could simplify fabrication, evaluating thermal interfaces, characterizing components and subassemblies to validate design codes, and preparing for an upcoming demonstration of proof of concept in a laboratory environment.

  12. Nuclear source of district heating in the north-east region of Russia

    International Nuclear Information System (INIS)

    Dolgov, V.V.

    1998-01-01

    The operation of the Bilibin Nuclear Co-generation Plant (BNCP) as a local district heating source is reviewed in this paper. Specific features of the BNCP power unit are given with special emphases on the components of the technological scheme, which are involved in the heat production and supply to the consumers. The scheme of steam extraction from the turbine, the flow diagram of steam in the turbine, as well as the three circuit heat removal system are described. The numerical characteristics of the nuclear heat supply system in various operating modes are presented. The real information characterizing current radiological conditions in the vicinity of the heat generation and distribution equipment is also presented in the paper. The BNCP technical and economical characteristics are compared with those of conventional energy sources. Both advantages and some problems revealed during the twenty-year experience of the BNCP nuclear heat utilization are generally assessed. Safety and reliability characteristics of the reactor and the heat supply system are also described. (author)

  13. Monthly progress report: Heat source technology program

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G. [comp.

    1993-05-01

    This monthly report describes activities performed in support of Cassini fueled-clad production and studies related to the use of {sup 238}PuO{sub 2} in radioisotope power systems carried out for the Office of Special Applications of the US Department of Energy (DOE) by Los Alamos National Laboratory (LANL). Most of the activities described are ongoing; the results and conclusions described may change as the work progresses.

  14. Production and application of radioisotopes - a Canadian perspective

    International Nuclear Information System (INIS)

    O'Neill, W.P.; Evans, D.J.R.

    1988-01-01

    This paper outlines the historical evolutions of radioisotopes from first concepts and discoveries to significant milestones in their production and the development of applications throughout the world. Regarding production, it addresses the methods that have been used at various stages during this evolution outlining the important findings that have led to further developments. With respect to radioisotope applications, the paper addresses the development of markets in industry, medicine, and agriculture and comments on the size of these markets and their rate of growth. Throughout, the paper highlights the Canadian experience and it also presents a Canadian view of emerging prospects and a forecast of how the future for radioisotopes might develop

  15. Determination of combustible volatile matter in coal mine roadway dusts by backscatter of x-rays from a radioisotope source

    International Nuclear Information System (INIS)

    Ailwood, C.R.; Bunch, K.; Fookes, R.A.; Gravitis, V.L.; Watt, J.S.

    1977-01-01

    The combustible volatile matter in coal mine roadway dusts (CVM) has been determined using x-ray backscatter techniques. The correlation between x-ray and chemical techniques is reasonably good for the 92 samples from collieries on the Bulli seam, and the maximum error expected at the maximum level of 11.5 weight per cent CVM permitted in the N.S.W. Coal Mines Regulation Act, 1912, as amended, is about +- 2.5 weight per cent. This x-ray technique can be used only when the combustible volatile content of the coal matter (CVM) varies within a limited range, and a separate calibration is required for each coal seam. Portable equipment based on a radioisotope x-ray source and digital ratemeter makes possible simple and rapid analysis, and with adaptation to use in coal mines should lead to much more comprehensive testing of roadways and hence improved overall prevention of coal dust explosions. (author)

  16. Random-process excursions in radioisotope instruments

    International Nuclear Information System (INIS)

    Galochkin, D.V.; Polovko, S.A.

    1984-01-01

    Approximate expressions are derived for the mathematical expectation, variance, and distribution of the durations of the excursions of the output signal from a ratemeter in a radioisotope relay instrument. The tabulated comparison of results from Monte Carlo simulation and analytical calculation shows good agreement over the mean value and the variance of the excursion duration for T 0.2 sec as calculated and as obtained by Monte Carlo simulation with a computer using 5000 realizations. It is suggested that the results should be used in choosing the optimum parameters of radioisotope relay instruments

  17. Daily intakes of naturally occurring radioisotopes in typical Korean foods

    International Nuclear Information System (INIS)

    Choi, Min-Seok; Lin Xiujing; Lee, Sun Ah; Kim, Wan; Kang, Hee-Dong; Doh, Sih-Hong; Kim, Do-Sung; Lee, Dong-Myung

    2008-01-01

    The concentrations of naturally occurring radioisotopes ( 232 Th, 228 Th, 230 Th, 228 Ra, 226 Ra, and 40 K) in typical Korean foods were evaluated. The daily intakes of these radioisotopes were calculated by comparing concentrations in typical Korean foods and the daily consumption rates of these foods. Daily intakes were as follows: 232 Th, 0.00-0.23; 228 Th, 0.00-2.04; 230 Th, 0.00-0.26; 228 Ra, 0.02-2.73; 226 Ra, 0.01-4.37 mBq/day; and 40 K, 0.01-5.71 Bq/day. The total daily intake of the naturally occurring radioisotopes measured in this study from food was 39.46 Bq/day. The total annual internal dose resulting from ingestion of radioisotopes in food was 109.83 μSv/y, and the radioisotope with the highest daily intake was 40 K. These values were same level compiled in other countries

  18. Natural convection in wavy enclosures with volumetric heat sources

    International Nuclear Information System (INIS)

    Oztop, H.F.; Varol, Y.; Abu-Nada, E.; Chamkha, A.

    2011-01-01

    In this paper, the effects of volumetric heat sources on natural convection heat transfer and flow structures in a wavy-walled enclosure are studied numerically. The governing differential equations are solved by an accurate finite-volume method. The vertical walls of enclosure are assumed to be heated differentially whereas the two wavy walls (top and bottom) are kept adiabatic. The effective governing parameters for this problem are the internal and external Rayleigh numbers and the amplitude of wavy walls. It is found that both the function of wavy wall and the ratio of internal Rayleigh number (Ra I ) to external Rayleigh number (Ra E ) affect the heat transfer and fluid flow significantly. The heat transfer is predicted to be a decreasing function of waviness of the top and bottom walls in case of (IRa/ERa)>1 and (IRa/ERa)<1. (authors)

  19. Linear accelerator for radioisotope production

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-μA source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-μA beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-μA beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons

  20. Radioisotopes as Political Instruments, 1946–1953

    Science.gov (United States)

    Creager, Angela N. H.

    2009-01-01

    The development of nuclear “piles,” soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country’s atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments—both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy—in the early Cold War. PMID:20725612

  1. Thermodynamic analysis on an instantaneous water heating system of shower wastewater source heat pump

    Directory of Open Access Journals (Sweden)

    Yuguo Wu

    2018-09-01

    Full Text Available Water reuse and desalination systems are energy intensive processes, and their increasing use is leading energy consumption within water systems to be an increasingly important issue. Shower wastewater contains large amounts of heat, so there is an opportunity to recover energy from shower water to offset energy consumption elsewhere in water systems. This paper found ways to increase the output of hot water and lower the energy consumption by establishing a thermodynamic model of an instantaneous wastewater source heat pump. The system proved to be very effective, the heating COP (coefficient of performance can reach 3.3 even in the winter. Under the conditions of limited heat transfer area, reducing the suction pressure of a compressor is a more feasible way to increase the hot water output to meet the needs of users rather than increasing the discharge pressure. Besides, increasing the heat transfer area of the evaporator is a more effective option. When the heat transfer area of evaporator varies from 0.5 to 1.0 square meters, a notable change is that the heating COP increases from 3.283 to 3.936. The heating COP in a system with a recuperator can reach 5.672, almost double that compared to the original systems.

  2. A new method to estimate heat source parameters in gas metal arc welding simulation process

    International Nuclear Information System (INIS)

    Jia, Xiaolei; Xu, Jie; Liu, Zhaoheng; Huang, Shaojie; Fan, Yu; Sun, Zhi

    2014-01-01

    Highlights: •A new method for accurate simulation of heat source parameters was presented. •The partial least-squares regression analysis was recommended in the method. •The welding experiment results verified accuracy of the proposed method. -- Abstract: Heat source parameters were usually recommended by experience in welding simulation process, which induced error in simulation results (e.g. temperature distribution and residual stress). In this paper, a new method was developed to accurately estimate heat source parameters in welding simulation. In order to reduce the simulation complexity, a sensitivity analysis of heat source parameters was carried out. The relationships between heat source parameters and welding pool characteristics (fusion width (W), penetration depth (D) and peak temperature (T p )) were obtained with both the multiple regression analysis (MRA) and the partial least-squares regression analysis (PLSRA). Different regression models were employed in each regression method. Comparisons of both methods were performed. A welding experiment was carried out to verify the method. The results showed that both the MRA and the PLSRA were feasible and accurate for prediction of heat source parameters in welding simulation. However, the PLSRA was recommended for its advantages of requiring less simulation data

  3. Application of radiation and radioisotopes in life science

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2005-01-01

    Radiation and Radioisotopes have been played an important role in the wide range of life science, from the field study, such as fertilizer or pesticide development or production of new species, to gene engineering researches. Many mutants through radiation have been provided to the market and the usage of radioactive tracers was an effective tool to study plant physiology. It has been granted that the contribution of radioisotopes has been accelerated the development of the gene engineering technology, which is now overwhelming all the other usages of radiation or radioisotopes. However, because of the difficulty to get social acceptance for gene modified plants, the orientation of the life science is now changing towards, so called ''post genome era''. Therefore, from the point of radiation or radioisotope usage, new application methods are needed to develop new type of researches. We present how (1) neutron activation analysis, (2) neutron radiography and (3) positron emission tomography are promising to study living plant physiology. Some of these techniques are not necessarily new methods but with a little modification, they show new aspects of plant activity. (author)

  4. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  5. Radioisotopes - where have we got to, where are we going ?

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1986-01-01

    Rapid growth has been achieved and there are remarkable possibilities in various fields of radioisotopes and radiation. New applications in molecular biology, in nuclear medicine, and in biotechnology are opening further opportunities for the use of radioisotopes. In the industrial field too there is growth, as microprocessor techniques extend the usefulness of radioisotope methods. And radiation engineering is a success story of its own, as ever-increasing use is made of radiation processing and sterilization, and new horizons open for food irradiation. This paper begins by recalling how isotope technology developed from the research laboratory to become the industry-scale activity it is today. A section is devoted to describing the development of a new radioisotope industry during the period from the 1930s through 1960s, focusing on the growth in the areas of nuclear medicine, radiotherapy, isotope gauging and tracing, production control, industrial processing, and production of radioisotopes. After a brief review of the present it looks into the future to suggest the directions in which new developments may lie. In particular, remarkable growth is expected in such areas as molecular biology, biotechnology, radiography, gauging, process control, radiation processing, and radiation sterilization. A review is also made of the transport and disposal of radioisotopes. (Nogami, K.)

  6. Large-eddy simulation of convective boundary layer generated by highly heated source with open source code, OpenFOAM

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Eguchi, Yuzuru; Sano, Tadashi; Shirai, Koji; Ishihara, Shuji

    2011-01-01

    Spatial- and temporal-characteristics of turbulence structures in the close vicinity of a heat source, which is a horizontal upward-facing round plate heated at high temperature, are examined by using well resolved large-eddy simulations. The verification is carried out through the comparison with experiments: the predicted statistics, including the PDF distribution of temperature fluctuations, agree well with measurements, indicating that the present simulations have a capability to appropriately reproduce turbulence structures near the heat source. The reproduced three-dimensional thermal- and fluid-fields in the close vicinity of the heat source reveals developing processes of coherence structures along the surface: the stationary- and streaky-flow patterns appear near the edge, and such patterns randomly shift to cell-like patterns with incursion into the center region, resulting in thermal-plume meandering. Both the patterns have very thin structures, but the depth of streaky structure is considerably small compared with that of cell-like patterns; this discrepancy causes the layered structures. The structure is the source of peculiar turbulence characteristics, the prediction of which is quite difficult with RANS-type turbulence models. The understanding such structures obtained in present study must be helpful to improve the turbulence model used in nuclear engineering. (author)

  7. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  8. Experimental performance analysis of a direct-expansion ground source heat pump in Xiangtan, China

    International Nuclear Information System (INIS)

    Yang, Wei

    2013-01-01

    The DX GSHP (direct-expansion ground source heat pump), which uses a buried copper piping network through which refrigerant is circulated, is one type of GSHP (ground source heat pump). This study investigates the performance characteristics of a vertical U-bend direct-expansion ground source (geothermal) heat pump system (DX GSHPS) for both heating and cooling. Compared with the conventional GCHP (ground coupled heat pump) system, the DX GSHP system is more efficient, with lower thermal resistance in the GHE (ground heat exchanger) and a lower (higher) condensing (evaporating) temperature in the cooling (heating) mode. In addition, the system performance of the whole DX GSHP system is also higher than that of the conventional GCHP system. A DX GSHP system in Xiangtan, China with a U-bend ground heat exchanger 42 m deep with a nominal outside diameter of 12.7 mm buried in a water well was tested and analysed. The results showed that the performance of this system is very high. The maximum (average) COPs of the system were found to be 6.08 (4.73) and 6.32 (5.03) in the heating and cooling modes, respectively. - Highlights: • The reasons for the higher performance of the DX GSHP (direct-expansion ground source heat pump) are analysed theoretically compared with the conventional GCHP (ground coupled heat pump). • The experimental performance of a DX GSHP system is investigated, which makes a valuable contribution to the literature. • The study is helpful in demonstrating the energy efficiency of the DX GSHP system

  9. Production of radioisotopes at the Boris Kidric Institute of Nuclear Sciences at Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    Teofilovski, C.

    1969-01-01

    The investigations in order to master the production of radioisotopes were commenced simultaneously with the beginning of RA nuclear reactor construction at Vinca, in 1956. A new organization division - Laboratory for chemistry of high activity accepting beside other problems also the programme for mastering the regular production of radioactive material was formed in 1959. Various problems during the realization of this programme have been solved, starting with the staff training for work with radioactive material on the high level activity (to 7500 Ci/source), construction and equipment of the laboratory area for safe work, up to development of the whole series of chemical-technological procedures and techniques for regular production of various radioactive products, as well as the methods for their chemical, radiometric and pharmaceutical control. Owing to the successful realization of this programme, the Institute 'Boris Kidric' supplies to-day regularly 110 organizations in the country with various radioactive products, applied in medicine, industry and research. The annual product of the radioactive solutions of radioisotopes J-131, Au-198, P-32, S-35 etc., amounts to about 75 Ci, radiographic sources Ir-192 and Co-60 to 2000 Ci and Co-60 sources for teletherapy and the other applications to many thousand curies (author) [sr

  10. Production of radioisotopes with BR2 facilities

    International Nuclear Information System (INIS)

    Fallais, C.J.; Morel de Westfaver, A.; Heeren, L.; Baugnet, J.M.; Gandolfo, J.M.; Boeykens, W.

    1978-01-01

    After a brief account on the isotopes production evolution in the industrialized countries the irradiation devices and the types of standardized capsules used in the BR2 reactor are described as well as the thermal neutron flux. Production of most important radioisotopes like 131 Iodine, 60 Cobalt, 192 Iridium and 99 Molybdenum and their main utilizations (uses)are described. The mean specific activities and the limit of use for different radioisotopes are reported. (A.F.)

  11. Melting of a phase change material in a horizontal annulus with discrete heat sources

    Directory of Open Access Journals (Sweden)

    Mirzaei Hooshyar

    2015-01-01

    Full Text Available Phase change materials have found many industrial applications such as cooling of electronic devices and thermal energy storage. This paper investigates numerically the melting process of a phase change material in a two-dimensional horizontal annulus with different arrangements of two discrete heat sources. The sources are positioned on the inner cylinder of the annulus and assumed as constant-temperature boundary conditions. The remaining portion of the inner cylinder wall as well as the outer cylinder wall is considered to be insulated. The emphasis is mainly on the effects of the arrangement of the heat source pair on the fluid flow and heat transfer features. The governing equations are solved on a non-uniform O type mesh using a pressure-based finite volume method with an enthalpy porosity technique to trace the solid and liquid interface. The results are obtained at Ra=104 and presented in terms of streamlines, isotherms, melting phase front, liquid fraction and dimensionless heat flux. It is observed that, depending on the arrangement of heat sources, the liquid fraction increases both linearly and non-linearly with time but will slow down at the end of the melting process. It can also be concluded that proper arrangement of discrete heat sources has the great potential in improving the energy storage system. For instance, the arrangement C3 where the heat sources are located on the bottom part of the inner cylinder wall can expedite the melting process as compared to the other arrangements.

  12. Reactor production and processing of radioisotopes for therapeutic applications in nuclear medicine

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Mirzadeh, S.; Beets, A.L.

    1995-01-01

    Nuclear reactors continue to play an important role in providing radioisotopes for nuclear medicine. Many reactor-produced radioisotopes are ''neutron rich'' and decay by beta-emission and are thus of interest for therapeutic applications. This talk discusses the production and processing of a variety of reactor-produced radioisotopes of current interest, including those produced by the single neutron capture process, double neutron capture and those available from beta-decay of reactorproduced radioisotopes. Generators prepared from reactorproduced radioisotopes are of particular interest since repeated elution inexpensively provides many patient doses. The development of the alumina-based W-188/Re-188 generator system is discussed in detail

  13. Radioisotope Sample Measurement Techniques in Medicine and Biology. Proceedings of the Symposium on Radioisotope Sample Measurement Techniques

    International Nuclear Information System (INIS)

    1965-01-01

    The medical and biological applications of radioisotopes depend on two basically different types of measurements, those on living subjects in vivo and those on samples in vitro. The International Atomic Energy Agency has in the past held several meetings on in vivo measurement techniques, notably whole-body counting and radioisotope scanning. The present volume contains the Proceedings of the first Symposium the Agency has organized to discuss the various aspects of techniques for sample measurement in vitro. The range of these sample measurement techniques is very wide. The sample may weigh a few milligrams or several hundred grams, and may be in the gaseous, liquid or solid state. Its radioactive content may consist of a single, known radioisotope or several unknown ones. The concentration of radioactivity may be low, medium or high. The measurements may be made manually or automatically and any one of the many radiation detectors now available may be used. The 53 papers presented at the Symposium illustrate the great variety of methods now in use for radioactive- sample measurements. The first topic discussed is gamma-ray spectrometry, which finds an increasing number of applications in sample measurements. Other sections of the Proceedings deal with: the use of computers in gamma-ray spectrometry and multiple tracer techniques; recent developments in activation analysis where both gamma-ray spectrometry and computing techniques are applied; thin-layer and paper radio chromatographic techniques for use with low energy beta-ray emitters; various aspects of liquid scintillation counting techniques in the measurement of alpha- and beta-ray emitters, including chemical and colour quenching; autoradiographic techniques; calibration of equipment; and standardization of radioisotopes. Finally, some applications of solid-state detectors are presented; this section may be regarded as a preview of important future developments. The meeting was attended by 203 participants

  14. Heat pumps using vertical boreholls as heat source; Varmepumper med lodrette boringer som varmeoptager

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Svend V. [Teknologisk Institut, Aarhus (Denmark); Thoegersen, L.; Soerensen, Inga [VIA University College, Risskov (Denmark)] [and others

    2013-01-15

    This report presents instructions on what to consider when you have to establish vertical wells as energy sources for ground source heating systems. The report provides an introduction into what to be aware of when it comes to sizing vertical ground hoses as heat absorbers for heat pumps. The initial geological assessments, you have to make are described and there are references to the available tools and websites that exist today. A calculation model is developed for the design of vertical ground hoses. This calculation model is intended as a tool for installers and consultants as well as well drillers. The calculation model contains two computational models, one can be used for initial calculations and dimensioning of vertical ground hoses, and the detailed model can be used for costing by well driller. The simple calculation is based on proven design approach from the German standard VDI 4640, and the detailed calculation is based on a known empirical calculation, which assumes that you know the geology in more detail. In the project measurements were carried out on four installations, and the calculations show that there is good agreement between the measurements and the calculation model. (LN)

  15. New Directions In Radioisotope Spectrum Identification

    International Nuclear Information System (INIS)

    Salaymeh, S.; Jeffcoat, R.

    2010-01-01

    Recent studies have found the performance of commercial handheld detectors with automatic RIID software to be less than acceptable. Previously, we have explored approaches rooted in speech processing such as cepstral features and information-theoretic measures. Scientific advances are often made when researchers identify mathematical or physical commonalities between different fields and are able to apply mature techniques or algorithms developed in one field to another field which shares some of the same challenges. The authors of this paper have identified similarities between the unsolved problems faced in gamma-spectroscopy for automated radioisotope identification and the challenges of the much larger body of research in speech processing. Our research has led to a probabilistic framework for describing and solving radioisotope identification problems. Many heuristic approaches to classification in current use, including for radioisotope classification, make implicit probabilistic assumptions which are not clear to the users and, if stated explicitly, might not be considered desirable. Our framework leads to a classification approach with demonstrable improvements using standard feature sets on proof-of-concept simulated and field-collected data.

  16. Flow Conditions in a Mechanically Ventilated Room with a Convective Heat Source

    DEFF Research Database (Denmark)

    Heiselberg, Per; Nielsen, Peter V.

    The ventilation of a test room (LxWxH = 5.4x3.6x2.4 m) with a wall mounted heat source is investigated for two different air terminal devices.......The ventilation of a test room (LxWxH = 5.4x3.6x2.4 m) with a wall mounted heat source is investigated for two different air terminal devices....

  17. Development of sealed sheet sources for calibration of whole-body counters

    International Nuclear Information System (INIS)

    Miyamoto, Mai; Ishigure, Nobuhito; Ogata, Yoshimune; Narita, Norihiko; Kawaura, Chiyo; Nakano, Takashi

    2009-01-01

    Whole body counters are usually calibrated with the aid of a whole body phantom assembled with simply-shaped plastic vessels that are filled with an aqueous solution of the relevant radioisotopes. Most vessel-type phantoms represent only a human body in which radioisotopes are homogeneously distributed, whereas the radioisotopes in vivo are sometimes localized to specific organs. Each set of the vessels is usually applicable only to a specific combination of radioisotopes, because the replacement of radioisotopes requires troublesome procedures. Possible leakage of the solution is another disadvantage of the vessel-type phantom. The authors are developing a new-type calibration phantom that is free from these disadvantages, in which sealed sheet sources are sandwiched between sections of a sliced anthropomorphic phantom. This paper describes a method to prepare sealed sheet sources for this calibration phantom. Instead of γ-ray emitters a pure β-ray emitter 32 P was used. This isotope is suitable for autoradiography and is easy to handle as its half-life is relatively short. An ink-jet printer was used to spread the solution of 32 P mixed with ink on a sheet of paper. The surface concentration of radioactivity was regulated by the function of color density adjustment of an image processing software. The radioisotope-printed paper was laminated for sealing. Through the measurement of surface concentration of radioactivity with a liquid scintillation counter, the autoradiographical investigation of the pattern of the radioactivity distributed on the sheet sources, the immersion test of the sealed sheet sources and the monitoring of the concentration of 32 P in air during the printing, it was demonstrated that sealed sheet sources for the calibration phantom can be prepared safely by the method described in this paper. Furthermore, by using sheet sources of 99m Tc prepared as a trial it was confirmed that discrete arrangement of sheet sources in a phantom at a

  18. About the possible options for models of convective heat transfer in closed volumes with local heating source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2015-01-01

    Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.

  19. IMPACT OF GEOTHERMAL GRADIENT ON GROUND SOURCE HEAT PUMP SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2014-07-01

    Full Text Available ndisturbed ground temperature is one of the most crucial thermogeological parameters needed for shallow geothermal resources assessment. Energy considered to be geothermal is energy stored in the ground at depths where solar radiation has no effect. At depth where undisturbed ground temperature occurs there is no influence of seasonal variations in air temperature from surface. Exact temperature value, and depth where it occurs, is functionally dependent on surface climate parameters and thermogeologic properties of ground. After abovementioned depth, increase of ground temperature is solely dependent on geothermal gradient. Accurately determined value of undisturbed ground temperature is beneficial for proper sizing of borehole heat exchangers. On practical example of building which is being heated and cooled with shallow geothermal resource, influences of undisturbed ground temperature and geothermal gradient, on size of borehole heat exchanger are going to be presented. Sizing of borehole heat exchanger was calculated with commercial software Ground Loop Designer (GLD, which uses modified line source and cylinder source solutions of heat conduction in solids.

  20. Radioisotope devices and sanitary control over its application in the units and institutions of Army and Navy

    International Nuclear Information System (INIS)

    Velichkin, E.V.; Rymarchuk, A.A.; Shishkanov, A.P.

    1991-01-01

    Sanitary control over the use of radioisotope devices (RID) is considered. To avoid losses of radioactive sources, an attention is paid to the order of RID account, their storage and issue, writing off unfit devices and sources and their burial. The role of military medical personnel grows. They must provide efficiency of safety of radioactive substance use in the units of Army and Navy