WorldWideScience

Sample records for heat shock protein-b6

  1. Heat shock proteins of higher plants

    International Nuclear Information System (INIS)

    Key, J.L.; Lin, C.Y.; Chen, Y.M.

    1981-01-01

    The pattern of protein synthesis changes rapidly and dramatically when the growth temperture of soybean seedling tissue is increased from 28 0 C (normal) to about 40 0 C (heat shock). The synthesis of normal proteins is greatly decreased and a new set of proteins, heat shock proteins, is induced. The heat shock proteins of soybean consist of 10 new bands on one-dimensional NaDodSO 4 gels; a more complex pattern is observed on two-dimensional gels. when the tissue is returned to 28 0 C after 4 hr at 40 0 C, there is progressive decline in the synthesis of heat shock proteins and reappearance of a normal pattern of synthesis by 3 or 4 hr. In vitro translation of poly(A) + RNAs isolated from tissued grown at 28 and 40 0 C shows that the heat shock proteins are translated from a ndw set of mRNAs induced at 40 0 C; furthermore, the abundant class mRNAs for many of the normal proteins persist even though they are translated weakly (or not at all) in vivo at 40 or 42.5 0 C. The heat shock response in soybean appears similar to the much-studied heat shock phenomenon in Drosophila

  2. Riboflavin protects mice against liposaccharide-induced shock through expression of heat shock protein 25

    Science.gov (United States)

    Riboflavin (vitamin B2) is a water-soluble vitamin essential for normal cellular functions, growth and development. The study was aimed at investigating the effects of vitamin B2 on the survival rate, and expressions of tissue heat shock protein 25 (HSP25) and heat shock factor 1 (HSF1) in mice und...

  3. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins.

    Science.gov (United States)

    Rauch, Jennifer N; Tse, Eric; Freilich, Rebecca; Mok, Sue-Ann; Makley, Leah N; Southworth, Daniel R; Gestwicki, Jason E

    2017-01-06

    Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Intergenic sequence between Arabidopsis caseinolytic protease B-cytoplasmic/heat shock protein100 and choline kinase genes functions as a heat-inducible bidirectional promoter.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Grover, Anil

    2014-11-01

    In Arabidopsis (Arabidopsis thaliana), the At1g74310 locus encodes for caseinolytic protease B-cytoplasmic (ClpB-C)/heat shock protein100 protein (AtClpB-C), which is critical for the acquisition of thermotolerance, and At1g74320 encodes for choline kinase (AtCK2) that catalyzes the first reaction in the Kennedy pathway for phosphatidylcholine biosynthesis. Previous work has established that the knockout mutants of these genes display heat-sensitive phenotypes. While analyzing the AtClpB-C promoter and upstream genomic regions in this study, we noted that AtClpB-C and AtCK2 genes are head-to-head oriented on chromosome 1 of the Arabidopsis genome. Expression analysis showed that transcripts of these genes are rapidly induced in response to heat stress treatment. In stably transformed Arabidopsis plants harboring this intergenic sequence between head-to-head oriented green fluorescent protein and β-glucuronidase reporter genes, both transcripts and proteins of the two reporters were up-regulated upon heat stress. Four heat shock elements were noted in the intergenic region by in silico analysis. In the homozygous transfer DNA insertion mutant Salk_014505, 4,393-bp transfer DNA is inserted at position -517 upstream of ATG of the AtClpB-C gene. As a result, AtCk2 loses proximity to three of the four heat shock elements in the mutant line. Heat-inducible expression of the AtCK2 transcript was completely lost, whereas the expression of AtClpB-C was not affected in the mutant plants. Our results suggest that the 1,329-bp intergenic fragment functions as a heat-inducible bidirectional promoter and the region governing the heat inducibility is possibly shared between the two genes. We propose a model in which AtClpB-C shares its regulatory region with heat-induced choline kinase, which has a possible role in heat signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. Synthesis and thermotolerance of heat shock proteins in Campylobacter jejuni

    International Nuclear Information System (INIS)

    Kim, C.K.; Kim, H.O.; Lee, K.J.

    1991-01-01

    The heat shock responses of Campylobacter jejuni were studied by examination of their survival rates and synthesis of heat shock proteins. When C. jejuni cells were treated at the sublethal temperatures of 48C° for 30 minutes, most of the cells maintained their viabilities and synthesized the heat shock proteins of 90, 73, and 66 kD in molecular weight. By the method of two-dimensional electrophoresis, the heat shock proteins of C. jejuni were identified to be Hsp90, Hsp73, and Hsp66. During the heat shock at 48C°, the heat shock proteins were induced from about 5 minutes after the heat shock treatment. Their synthesis was continued upto 30 minutes, but remarkably retarded after 50 minutes. When C. jejune cells were heat shocked at 51C° for 30 minutes, the survival rates of the cells were decreased by about 10 3 fold and synthesis of heat shock proteins and normal proteins was also generally retarded. The cells exposed to 55C° for 30 minutes died off by more than 10 5 cells and the new protein synthesis was not observed. But when C. jejuni cells were heat-shocked at the sublethal temperature of 48C° for 15 to 20 minutes and then were exposed at the lethal temperature of 55C° for 30 minutes, their viabilities were higher than those exposed at 55C° for 30 minutes without pre-heat shock at 48C°. Therefore, the heat shock proteins synthesized at the sublethal temperature of 48C° in C. jejuni were thought to be responsible for thermotolerance. However, when C. jejuni cells heat-shocked at various ranges of sublethal and lethal temperatures were placed back to the optimum temperature of 42C°, the multiplication patterns of the cells pretreated at different temperatures were not much different each other

  6. The pretective effects of heat shock protein 70 on radiation injury of V79 cells

    International Nuclear Information System (INIS)

    Qin Yongchun; Zhang Baoguo; Hong Chengjiao

    2008-01-01

    Westem blot was used to detect the expression of heat shock protein 70 in V79 cells after heat shock pretreatment; V79 cells were irradiated using γ-ray after heat shock pretreatment, survival rate was observed using Colony formation assay. Our study shows that 1) the overexpression of heat shock protein 70 was observed in cells recovering for 1 hour after heat shock pretreatment, with peak expression in cells recovering for 4 hours, and could last for 24 hours; 2) heat shock pretreatment was able to elevate survival rate of V79 cells after irradiation by 60 Co γ ray (when the irradiation dose was less than 6 Gy). The results indicate that heat shock protein 70 has protective effect on radiation induced cell death of V79 cells (when the irradiation dose was less than 6 Gy). (authors)

  7. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further denaturation

    International Nuclear Information System (INIS)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan; Han, Sung Koo; Shim, Young-Soo; Yoo, Chul-Gyu

    2005-01-01

    Heat shock (HS) treatment has been previously shown to suppress the IκB/nuclear factor-κB (NF-κB) cascade by denaturing, and thus inactivating IκB kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the IκB/NF-κB cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-α-induced activation of the IκB/NF-κB pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-α-induced activation of the IκB/NF-κB pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayed TNF-α-induced IκBα degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the IκBα stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the IκB/NF-κB cascade by facilitating the renaturation of IKK and blocking its further denaturation

  8. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    Science.gov (United States)

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  9. Differential Targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with Components of a Protein Disaggregation/Refolding Machine in Differentiated Human Neuronal Cells following Thermal Stress

    Directory of Open Access Journals (Sweden)

    Ian R. Brown

    2017-04-01

    Full Text Available Heat shock proteins (Hsps co-operate in multi-protein machines that counter protein misfolding and aggregation and involve DNAJ (Hsp40, HSPA (Hsp70, and HSPH (Hsp105α. The HSPA family is a multigene family composed of inducible and constitutively expressed members. Inducible HSPA6 (Hsp70B' is found in the human genome but not in the genomes of mouse and rat. To advance knowledge of this little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites with components of a disaggregation/refolding machine was investigated following thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles that have been characterized as sites of transcription. However, HSPA6 did not co-localize at perispeckles with DNAJB1 (Hsp40-1 or HSPH1 (Hsp105α. At 3 h after heat shock, HSPA6 co-localized with these members of the disaggregation/refolding machine at the granular component (GC of the nucleolus. Inducible HSPA1A (Hsp70-1 and constitutively expressed HSPA8 (Hsc70 co-localized at nuclear speckles with components of the machine immediately after heat shock, and at the GC layer of the nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits targeting features that are not apparent for HSPA1A and HSPA8.

  10. Initial crystallographic studies of a small heat-shock protein from Xylella fastidiosa

    International Nuclear Information System (INIS)

    Tada, Susely F. S.; Saraiva, Antonio Marcos; Lorite, Gabriela S.; Rosselli-Murai, Luciana K.; Pelloso, Alexandre César; Santos, Marcelo Leite dos; Trivella, Daniela B. B.; Cotta, Mônica A.; Souza, Anete Pereira de; Aparicio, Ricardo

    2012-01-01

    Initial crystallographic studies of the X. fastidiosa small heat-shock protein HSP17.9 are reported. The ORF XF2234 in the Xylella fastidiosa genome was identified as encoding a small heat-shock protein of 17.9 kDa (HSP17.9). HSP17.9 was found as one of the proteins that are induced during X. fastidiosa proliferation and infection in citrus culture. Recombinant HSP17.9 was crystallized and surface atomic force microscopy experiments were conducted with the aim of better characterizing the HSP17.9 crystals. X-ray diffraction data were collected at 2.7 Å resolution. The crystal belonged to space group P4 3 22, with unit-cell parameters a = 68.90, b = 68.90, c = 72.51 Å, and is the first small heat-shock protein to crystallize in this space group

  11. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    Science.gov (United States)

    Reddy, Palakolanu Sudhakar; Kavi Kishor, Polavarapu B; Seiler, Christiane; Kuhlmann, Markus; Eschen-Lippold, Lennart; Lee, Justin; Reddy, Malireddy K; Sreenivasulu, Nese

    2014-01-01

    The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly

  12. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    Directory of Open Access Journals (Sweden)

    Palakolanu Sudhakar Reddy

    Full Text Available The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp and 22 heat shock factor (Hsf genes in barley. While all three major classes (A, B, C of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE, implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is

  13. Barcoding heat shock proteins to human diseases : looking beyond the heat shock response

    NARCIS (Netherlands)

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H.

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) - and thus generally restoring the disturbed protein homeostasis associated with such diseases - has often been suggested as a

  14. The effect of passive heating on heat shock protein 70 and interleukin-6: a possible treatment tool for metabolic diseases?

    OpenAIRE

    Faulkner, SH; Jackson, S; Fatania, G; Leicht, CA

    2017-01-01

    Exercise and physical activity remain the gold standard methods of enhancing and maintaining health and wellbeing. However, in populations that benefit most from exercise, adherence is often poor and alternatives to exercise are important to bring about health improvements. Recent work suggests a role for passive heating (PH) and heat shock proteins (HSP) in improving cardio-metabolic health. The aim of this study was to investigate the expression of HSP70 and IL-6 in response to either exerc...

  15. Acquired thermotolerance and heat shock in the extremely thermophilic archaebacterium Sulfolobus sp. strain B12.

    Science.gov (United States)

    Trent, J D; Osipiuk, J; Pinkau, T

    1990-03-01

    The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70 degrees C culture at the lethal temperature of 92 degrees C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88 degrees C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.

  16. Level of heat shock proteins decreases in individuals carrying B-chromosomes in the grasshopper Eyprepocnemis plorans

    DEFF Research Database (Denmark)

    Teruel, M; Sørensen, Jesper Givskov; Loeschcke, Volker

    2010-01-01

    We analyzed the effect of B-chromosome presence on expression level of heat shock protein 70 (Hsp70) in cerebral ganglion and gonad in both males and females of the grasshopper Eyprepocnemis plorans. Two natural Spanish populations, Salobreña (Granada) and Torrox (Málaga) were assayed, the former...... harbouring a neutralized (non-driving) B-chromosome (B2) and the latter a parasitic (driving) B-chromosome (B24). The analysis was performed by Western blotting, immunostaining and densitometric measuring expression level of the Hsp70 family in adult individuals. The results showed that Hsp70 levels...

  17. Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells.

    Science.gov (United States)

    Liu, Xiaoxi; Jiang, Linshu; Liu, Fenghua; Chen, Yuping; Xu, Lei; Li, Deyin; Ma, Yunfei; Li, Huanrong; Xu, Jianqin

    2016-08-01

    Purpose Patchouli alcohol (PA) is used to treat gastrointestinal dysfunction. The purpose of this study was to ascertain the function of PA in the regulated process of oxidative stress in rat intestinal epithelial cells (IEC-6). Materials and methods Oxidative stress was stimulated by exposing IEC-6 cells to heat shock (42 °C for 3 h). IEC-6 cells in treatment groups were pretreated with various concentrations of PA (10, 40, and 80 ng/mL) for 3 h before heat shock. Results Heat shock caused damage to the morphology of IEC-6 cells, and increased reactive oxygen species (ROS) level and malondialdehyde (MDA) content. Moreover, mRNA and protein expression by target genes related to oxidative stress in heat shock were also altered. Specifically, the mRNA expression by HSP70, HSP90, GSH-px, NRF2 nd HO-1were all increased, and Nrf2 and Keap1 protein expression were increased after heat shock. However, pretreatment with PA weakened the level of damage to the cellular morphology, and decreased the MDA content caused by heat shock, indicating PA had cytoprotective activities. Pretreatment with PA at high dose significantly increased generation of intracellular ROS. Compared with the heat shock group alone, PA pretreatment significantly decreased the mRNA expression by HSP70, HSP90, SOD, CAT, GSH-px, KEAP1 and HO-1. Furthermore, the high dose of PA significantly increased Nrf2 protein expression, while both the intermediate and high dose of PA significantly increased HO-1 protein expression. Conclusion Heat-shock-induced oxidative stress in IEC-6 cells, and PA could alleviate the Nrf2-Keap1 cellular oxidative stress responses.

  18. Heat shock protein 90 in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Rodina Anna

    2010-06-01

    Full Text Available Abstract Hsp90 is a molecular chaperone with important roles in regulating pathogenic transformation. In addition to its well-characterized functions in malignancy, recent evidence from several laboratories suggests a role for Hsp90 in maintaining the functional stability of neuronal proteins of aberrant capacity, whether mutated or over-activated, allowing and sustaining the accumulation of toxic aggregates. In addition, Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1, the master regulator of the heat shock response, mechanism that cells use for protection when exposed to conditions of stress. These biological functions therefore propose Hsp90 inhibition as a dual therapeutic modality in neurodegenerative diseases. First, by suppressing aberrant neuronal activity, Hsp90 inhibitors may ameliorate protein aggregation and its associated toxicity. Second, by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity. This mini-review will summarize our current knowledge on Hsp90 in neurodegeneration and will focus on the potential beneficial application of Hsp90 inhibitors in neurodegenerative diseases.

  19. An overview on the small heat shock proteins | Mahmood | African ...

    African Journals Online (AJOL)

    In eukaryotes, different heat shock genes are expressed uncoordinatedly, whereas in prokaryote, heat shock genes form a regulon and appear simultaneously. sHSPs are associated with nuclei, cytoskeleton and membranes. They bind partially to denatured proteins, preventing irreversible protein aggregation during stress.

  20. Heat shock protein (Hsp) 40 mutants inhibit Hsp70 in mammalian cells

    NARCIS (Netherlands)

    Michels, AA; Kanon, B; Bensaude, O; Kampinga, HH

    1999-01-01

    Heat shock protein (Hsp) 70 and Hsp40 expressed in mammalian cells had been previously shown to cooperate in accelerating the reactivation of heat-denatured firefly luciferase (Michels, A. A., Kanon, B., Konings, A. W. T., Ohtsuka, K,, Bensaude, O., and Kampinga, H. H. (1997) J. Biol. Chem. 272,

  1. Small heat shock proteins protect against α-synuclein-induced toxicity and aggregation

    International Nuclear Information System (INIS)

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.; Liu Fang; Nguyen, Paul; Rochet, Jean-Christophe; Hyman, Bradley T.; McLean, Pamela J.

    2006-01-01

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). α-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and αB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are ∼2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by ∼80% in a culture model while αB-crystallin reduces toxicity by ∼20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model

  2. Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.

    Science.gov (United States)

    Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F

    2017-01-01

    We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.

  3. An overview on the small heat shock proteins

    African Journals Online (AJOL)

    USER

    2010-02-15

    Feb 15, 2010 ... whose expression is increase when cells are exposed to elevated ... shock due to much slower degradation of the protein, .... Plant sHSPs are all encoded by nuclear genes and are .... genesis, germination, pollen growth and fruit maturation). ... Production of high levels of heat shock proteins can also.

  4. Heat Shock Proteins in Tendinopathy: Novel Molecular Regulators

    Directory of Open Access Journals (Sweden)

    Neal L. Millar

    2012-01-01

    Full Text Available Tendon disorders—tendinopathies—are the primary reason for musculoskeletal consultation in primary care and account for up to 30% of rheumatological consultations. Whilst the molecular pathophysiology of tendinopathy remains difficult to interpret the disease process involving repetitive stress, and cellular load provides important mechanistic insight into the area of heat shock proteins which spans many disease processes in the autoimmune community. Heat shock proteins, also called damage-associated molecular patterns (DAMPs, are rapidly released following nonprogrammed cell death, are key effectors of the innate immune system, and critically restore homeostasis by promoting the reconstruction of the effected tissue. Our investigations have highlighted a key role for HSPs in tendion disease which may ultimately affect tissue rescue mechanisms in tendon pathology. This paper aims to provide an overview of the biology of heat shock proteins in soft tissue and how these mediators may be important regulators of inflammatory mediators and matrix regulation in tendinopathy.

  5. Induction of heat shock-like proteins in Vigna sinensis seedlings growing under ultraviolet-B (280-320 nm) enhanced radiation

    International Nuclear Information System (INIS)

    Nedunchezhian, N.; Annamalainathan, K.; Kulandaivelu, G.

    1992-01-01

    The effect of ultraviolet-B (UV-B) enhanced fluorescent radiation on protein profile and protein synthesis has been investigated in Vigna sinensis L. cv. Walp seedlings growing at various temperatures. In seedlings growing at 30°C, UV-B radiation decreased the level of several proteins as seen in Coomassie brilliant blue stained gel. However, fluorography of the same gel indicates induction of three sets of proteins in the range of 70. 53 and 16 k Da. Such induction under UV-B enhanced radiation resembled that found after heat shock treatments. In seedlings at 10 and 20°C, induction of such proteins varied both qualitatively and quantitatively. At 40°C. UV-B enhanced radiation caused a cumulative effect with temperature. Strong induction of specific proteins by UV-B radiation in seedlings growing under normal temperature indicates a possible protective role

  6. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response.

    Science.gov (United States)

    Kakkar, Vaishali; Meister-Broekema, Melanie; Minoia, Melania; Carra, Serena; Kampinga, Harm H

    2014-04-01

    There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.

  7. Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Österlund, Tobias; Liu, Zihe

    2013-01-01

    The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often low due to limitations of the host strain. Heat shock response (HSR) is an inducible, global, cellular...... stress response, which facilitates the cell recovery from many forms of stress, e.g., heat stress. In S. cerevisiae, HSR is regulated mainly by the transcription factor heat shock factor (Hsf1p) and many of its targets are genes coding for molecular chaperones that promote protein folding and prevent...... the accumulation of mis-folded or aggregated proteins. In this work, we over-expressed a mutant HSF1 gene HSF1-R206S which can constitutively activate HSR, so the heat shock response was induced at different levels, and we studied the impact of HSR on heterologous protein secretion. We found that moderate and high...

  8. Heat shock protein-peptide complex-96 (Vitespen for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Robert J. Amato

    2011-12-01

    Full Text Available Heat shock proteins (HSPs are the most abundant and ubiquitous soluble intracellular proteins. Members of the HSP family bind peptides, they include antigenic peptides generated within cells. HSPs also interact with antigen-presenting cells (APCs through CD91 and other receptors, eliciting a cascade of events that includes re-presentation of HSP-chaperoned peptides by major histocompatability complex (MHC, translocation of nuclear factorkappaB (NFkB into the nuclei, and maturation of dendritic cells (DCs. These consequences point to a key role of heat shock proteins in fundamental immunological phenomena such as activation of APCs, indirect presentation (or crosspriming of antigenic peptides, and chaperoning of peptides during antigen presentation. The properties of HSPs also allow them to be used for immunotherapy of cancers and infections in novel ways. This paper reviews the development and clinical trial progress of vitespen, an HSP peptide complex vaccine based on tumor-derived glycoprotein 96.

  9. Role of heat shock protein 70 in innate alloimmunity

    Directory of Open Access Journals (Sweden)

    Walter G. eLand

    2012-01-01

    Full Text Available This article briefly describes our own experience with the proven demonstration of heat shock protein 70 in reperfused renal allografts from brain-deaddonors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of heat shock protein 70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of heat shock protein 70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings.Nevertheless, heat shock protein 70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can everymolecule be termed a DAMP that is generated in associationwith any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it.In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of heat shock protein 70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of heat shock protein 70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a(futile attempt of the innate immune system to

  10. Adaptive response in Drosophila melanogaster heat shock proteins mutant strains

    International Nuclear Information System (INIS)

    Shaposhnikov, M.V.; Moskalev, A.A.; Turysheva, E.V.

    2007-01-01

    Complete text of publication follows. The members of the heat shock proteins (Hsp) family function as molecular chaperones and assist intracellular folding of newly synthesized proteins. Also it is possible that molecular chaperones are induced during adaptive response to oxidative stress and radiation. The aim of our research was to exam the role of heat shock proteins in adaptive response to oxidative stress after low dose rate gamma-irradiation in Drosophila melanogaster. Drosophilamelanogaster strains were kindly provided by Bloomington Drosophila Stock Center (University of state of Indiana, Bloomington, USA). We used wild type strain (CS), heat shock protein mutant strains (Hsp22, Hsp70, Hsp83), and heat shock factor mutant strain (Hsf). Strains were chronically exposured to adaptive dose of gamma-irradiation in dose rate of 0.17 cGy/h during all stages of life history (from the embrional stage to the stage of matured imago). The rate of absorbed dose was 60 cGy. For oxidative-stress challenge twodays old flies were starved in empty vials for 6 h and then transferred to vials containing only filter paper soaked with 20 mM paraquat in 5% sucrose solution. Survival data were collected after 26 h of treatment. Dead flies were counted daily. The obtained data were subjected to survival analysis by Kaplan and Meier method and presented as survival curves. Statistical analysis was held by non-parametric methods. To test the significance of the difference between the two age distributions Kolmogorov-Smirnov test was applied. Gehan-Braslow- Wilcoxon and Cox-Mantel tests were used for estimation of median life span differences. In addition the minimal and maximal life span, time of 90% death, and mortality rate doubling time (MRDT) were estimated. The obtained results will be discussed in presentation.

  11. A family of related proteins is encoded by the major Drosophila heat shock gene family

    International Nuclear Information System (INIS)

    Wadsworth, S.C.

    1982-01-01

    At least four proteins of 70,000 to 75,000 molecular weight (70-75K) were synthesized from mRNA which hybridized with a cloned heat shock gene previously shown to be localized to the 87A and 87C heat shock puff sites. These in vitro-synthesized proteins were indistinguishable from in vivo-synthesized heat shock-induced proteins when analyzed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of the pattern of this group of proteins synthesized in vivo during a 5-min pulse or during continuous labeling indicates that the 72-75K proteins are probably not kinetic precursors to the major 70K heat shock protein. Partial digestion products generated with V8 protease indicated that the 70-75K heat shock proteins are closely related, but that there are clear differences between them. The partial digestion patterns obtained from heat shock proteins from the Kc cell line and from the Oregon R strain of Drosophila melanogaster are very similar. Genetic analysis of the patterns of 70-75K heat shock protein synthesis indicated that the genes encoding at least two of the three 72-75K heat shock proteins are located outside of the major 87A and 87C puff sites

  12. Activation of catalase activity by a peroxisome-localized small heat shock protein Hsp17.6CII.

    Science.gov (United States)

    Li, Guannan; Li, Jing; Hao, Rong; Guo, Yan

    2017-08-20

    Plant catalases are important antioxidant enzymes and are indispensable for plant to cope with adverse environmental stresses. However, little is known how catalase activity is regulated especially at an organelle level. In this study, we identified that small heat shock protein Hsp17.6CII (AT5G12020) interacts with and activates catalases in the peroxisome of Arabidopsis thaliana. Although Hsp17.6CII is classified into the cytosol-located small heat shock protein subfamily, we found that Hsp17.6CII is located in the peroxisome. Moreover, Hsp17.6CII contains a novel non-canonical peroxisome targeting signal 1 (PTS1), QKL, 16 amino acids upstream from the C-terminus. The QKL signal peptide can partially locate GFP to peroxisome, and mutations in the tripeptide lead to the abolishment of this activity. In vitro catalase activity assay and holdase activity assay showed that Hsp17.6CII increases CAT2 activity and prevents it from thermal aggregation. These results indicate that Hsp17.6CII is a peroxisome-localized catalase chaperone. Overexpression of Hsp17.6CII conferred enhanced catalase activity and tolerance to abiotic stresses in Arabidopsis. Interestingly, overexpression of Hsp17.6CII in catalase-deficient mutants, nca1-3 and cat2 cat3, failed to rescue their stress-sensitive phenotypes and catalase activity, suggesting that Hsp17.6CII-mediated stress response is dependent on NCA1 and catalase activity. Overall, we identified a novel peroxisome-located catalase chaperone that is involved in plant abiotic stress resistance by activating catalase activity. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  13. Impact of Heat Shock Protein A 12B Overexpression on Spinal Astrocyte Survival Against Oxygen-Glucose-Serum Deprivation/Restoration in Primary Cultured Astrocytes.

    Science.gov (United States)

    Xia, Xun; Ma, Yuan; Yang, Li-Bin; Cheng, Jing-Ming; Yang, Tao; Fan, Ke-Xia; Li, Yun-Ming; Liu, En-Yu; Cheng, Lin; Huang, Hai-Dong; Gu, Jian-Wen; Kuang, Yong-Qin

    2016-08-01

    Heat shock protein A 12B (HSPA12B) is a newly discovered member of the heat shock protein 70 family. Preclinical evidence indicates that HSPA12B helps protect the brain from ischemic injury, although its specific function remains unclear. The aim of this study is to investigate whether HSPA12B overexpression can protect astrocytes from oxygen-glucose-serum deprivation/restoration (OGD/R) injury. We analyzed the effects of HSPA12B overexpression on spinal cord ischemia-reperfusion injury and spinal astrocyte survival. After ischemia-reperfusion injury, we found that HSPA12B overexpression decreased spinal cord water content and infarct volume. MTT assay showed that HSPA12B overexpression increased astrocyte survival after OGD/R treatment. Flow cytometry results showed a marked inhibition of OGD/R-induced astrocyte apoptosis. Western blot assay showed that HSPA12B overexpression significantly increased regulatory protein B-cell lymphocyte 2 (Bcl-2) levels, whereas it decreased expression of the Bax protein, which forms a heterodimer with Bcl-2. Measurements of the level of activation of caspase-3 by Caspase-Glo®3/7 Assay kit showed that HSPA12B overexpression markedly inhibited caspase-3 activation. Notably, we demonstrated that the effects of HSPA12B on spinal astrocyte survival depended on activation of the PI3K/Akt signal pathway. These findings indicate that HSPA12B protects against spinal cord ischemia-reperfusion injury and may represent a potential treatment target.

  14. Molecular cloning, phylogenetic analysis and heat shock response of Babesia gibsoni heat shock protein 90.

    Science.gov (United States)

    Yamasaki, Masahiro; Tsuboi, Yoshihiro; Taniyama, Yusuke; Uchida, Naohiro; Sato, Reeko; Nakamura, Kensuke; Ohta, Hiroshi; Takiguchi, Mitsuyoshi

    2016-09-01

    The Babesia gibsoni heat shock protein 90 (BgHSP90) gene was cloned and sequenced. The length of the gene was 2,610 bp with two introns. This gene was amplified from cDNA corresponding to full length coding sequence (CDS) with an open reading frame of 2,148 bp. A phylogenetic analysis of the CDS of HSP90 gene showed that B. gibsoni was most closely related to B. bovis and Babesia sp. BQ1/Lintan and lies within a phylogenetic cluster of protozoa. Moreover, mRNA transcription profile for BgHSP90 exposed to high temperature were examined by quantitative real-time reverse transcription-polymerase chain reaction. BgHSP90 levels were elevated when the parasites were incubated at 43°C for 1 hr.

  15. Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock

    International Nuclear Information System (INIS)

    Eckey-Kaltenbach, H.; Kiefer, E.; Grosskopf, E.; Ernst, D.; Sandermann, H. Jr

    1997-01-01

    Parsley (Petroselinum (crispum L.) is known to respond to pathogen attack by the synthesis of furanocoumarins and to UV irradiation by the synthesis of flavone glycosides whereas ozone treatment results in the induction of both pathways. A cDNA library from parsley plants was differentially screened using labelled reverse-transcribed poly(A)+ RNA isolated from ozone-treated parsley plants. This resulted in the isolation of 13 independent cDNA clones representing ozone-induced genes and of 11 cDNA clones representing ozone-repressed genes. DNA sequencing of several clones resulted in the identification of pathogenesis-related protein 1-3 (PR1-3), of a new member of PR1 cDNAs (PRI-4) and of a small heat shock protein (sHSP). Northern blot analyses showed a transient induction of the three mRNA species after ozone fumigation. In contrast, heat shock treatment of parsley plants resulted in an increase of sHSP mRNA whereas no increase for transcripts of PR1-3 and PR1-4 could be observed. This is the first characterized sHSP cDNA clone for plants induced by heat shock, as well as by oxidative stress caused by ozone. (author)

  16. Comparative Membrane Proteomics Reveals a Nonannotated E. coli Heat Shock Protein.

    Science.gov (United States)

    Yuan, Peijia; D'Lima, Nadia G; Slavoff, Sarah A

    2018-01-09

    Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies. In this report, we add biochemical membrane protein enrichment to our previously developed label-free quantitative proteomics protocol, revealing a never-before-identified heat shock protein in Escherichia coli K12. This putative smORF-encoded heat shock protein, GndA, is likely to be ∼36-55 amino acids in length and contains a predicted transmembrane helix. We validate heat shock-regulated expression of the gndA smORF and demonstrate that a GndA-GFP fusion protein cofractionates with the cell membrane. Quantitative membrane proteomics therefore has the ability to reveal nonannotated small proteins that may play roles in bacterial stress responses.

  17. Heat shock proteins and cancer: How can nanomedicine be harnessed?

    Science.gov (United States)

    Sauvage, Félix; Messaoudi, Samir; Fattal, Elias; Barratt, Gillian; Vergnaud-Gauduchon, Juliette

    2017-02-28

    Heat shock protein (hsp90) is an interesting target for cancer therapy because it is involved in the folding and stabilization of numerous proteins, including many that contribute to the development of cancer. It is part of the chaperone machinery that includes other heat shock proteins (hsp70, hsp27, hsp40) and is mainly localized in the cytosol, although many analogues or isoforms can be found in mitochondrion, endoplasmic reticulum and the cell membrane. Many potential inhibitors of hsp90 have been tested for cancer therapy but their usefulness is limited by their poor solubility in water and their ability to reach the target cells and the correct intracellular compartment. Nanomedicine, the incorporation of active molecules into an appropriate delivery system, could provide a solution to these drawbacks. In this review, we explain the rationale for using nanomedicine for this sort of cancer therapy, considering the properties of the chaperone machinery and of the different hsp90 analogues. We present some results that have already been obtained and put forward some strategies for delivery of hsp90 analogues to specific organelles. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Extracellular small heat shock proteins: exosomal biogenesis and function.

    Science.gov (United States)

    Reddy, V Sudhakar; Madala, Satish K; Trinath, Jamma; Reddy, G Bhanuprakash

    2018-05-01

    Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.

  19. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    Science.gov (United States)

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  20. Circulating Heat Shock Proteins in Women With a History of Recurrent Vulvovaginitis

    Directory of Open Access Journals (Sweden)

    P. C. Giraldo

    1999-01-01

    70-kDa heat shock proteins (hsp60 and hsp70, respectively in the circulation of women with or without a history of recurrent BV or candidal vaginitis and with or without a current lower genital tract infection. Heat shock protein expression is associated with a down-regulation of proinflammatory immune responses that would inhibit microbial infection.

  1. Transformation of heat shock protein gene (HspB-C) of helicobacter pylori into sweet potato varieties

    International Nuclear Information System (INIS)

    Wu Jie; Yan Wenzhao; Zhou Yu; Zhang Xuemei

    2010-01-01

    Sweet potato which is one of the most important crops in the world has many advantages as a new bioreactor. Helicobacter pylori, as a kind of cancer-causing factor by the World Health Organization, has a strong immunogenicity, and its monoclonal antibody has bactericidal activity, which has the possibility as the vaccine components. In this research, we have constructed the plant expression vector with heat shock protein gene (HspB-C) of Helicobacter pylori. This vector was transformed by agrobactrium tumefaciens EHA105 into four sweet potato varieties. After callus-induction and re-differentiation, we got the transgenic plants from sweet potato variety of Nancy holl. (authors)

  2. cDNA cloning and mRNA expression of heat shock protein 70 gene ...

    African Journals Online (AJOL)

    In this study, the full-length heat shock protein 70 of Tegillarca granosa was cloned from cDNA library by rapid amplification of cDNA end (RACE). The open reading frame (ORF) of heat shock protein 70 was 1968 bp, and it encoded a protein of 655 amino acids with a predicted molecular weight of 71.48 kDa and an ...

  3. The Small Heat Shock Protein α-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model

    Directory of Open Access Journals (Sweden)

    Fabian Anders

    2017-11-01

    Full Text Available Glaucoma is a neurodegenerative disease that leads to irreversible retinal ganglion cell (RGC loss and is one of the main causes of blindness worldwide. The pathogenesis of glaucoma remains unclear, and novel approaches for neuroprotective treatments are urgently needed. Previous studies have revealed significant down-regulation of α-crystallin B as an initial reaction to elevated intraocular pressure (IOP, followed by a clear but delayed up-regulation, suggesting that this small heat-shock protein plays a pathophysiological role in the disease. This study analyzed the neuroprotective effect of α-crystallin B in an experimental animal model of glaucoma. Significant IOP elevation induced by episcleral vein cauterization resulted in a considerable impairment of the RGCs and the retinal nerve fiber layer. An intravitreal injection of α-crystallin B at the time of the IOP increase was able to rescue the RGCs, as measured in a functional photopic electroretinogram, retinal nerve fiber layer thickness, and RGC counts. Mass-spectrometry-based proteomics and antibody-microarray measurements indicated that a α-crystallin injection distinctly up-regulated all of the subclasses (α, β, and γ of the crystallin protein family. The creation of an interactive protein network revealed clear correlations between individual proteins, which showed a regulatory shift resulting from the crystallin injection. The neuroprotective properties of α-crystallin B further demonstrate the potential importance of crystallin proteins in developing therapeutic options for glaucoma.

  4. The role of heat shock protein 90 in the regulation of tumor cell apoptosis.

    Science.gov (United States)

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Belkina, M V; Maroshkina, A N

    2011-02-01

    Programmed death of Jurkat tumor cells was studied under conditions of culturing with 17-AAG selective inhibitor of heat shock protein with a molecular weight of 90 kDa and etoposide. Apoptosis realization was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Activity of caspase-3 was evaluated spectrophotometrically. Inhibition of heat shock protein with a molecular weight of 90 kDa activated the apoptotic program in Jurkat tumor cells and etoposide-induced apoptosis. The heat shock protein with a molecular weight of 90 kDa acted as apoptosis inhibitor in tumor cells.

  5. Induction of heat-shock proteins and phagocytic function of chicken macrophage following in vitro heat exposure

    International Nuclear Information System (INIS)

    Miller, L.; Qureshi, M.A.

    1992-01-01

    The protein profiles and phagocytic ability of Sephadex-elicited chicken peritoneal macrophages were examined following heat-shock exposure. Macrophage cultures were exposed to various temperatures, time exposures and recovery periods. Densitometric analysis of SDS-PAGE autoradiographs revealed that heat-induced macrophages synthesized three major (23, 70 and 90 kD) heat-shock proteins (HSPs). The optimal temperature and time for induction of these HSPs was 45-46 degrees C for 1 h, with a variable recovery period for each HSP. Macrophages exposed to 45 degrees C for 30 and 60 min were significantly depressed in phagocytosis of uncoated sheep erythrocytes (SE) under 45 degrees C incubation conditions. However, phagocytosis of antibody-coated SE was not affected when compared to 41 degrees C control cultures. Macrophages allowed to recover at 41 degrees C following heat-shock exhibited no alterations in their phagocytic ability for either antibody-coated or uncoated SE. This study suggests that heat shock induces three major HSPs in chicken peritoneal macrophages in addition to maintaining their Fc-mediated phagocytic function while significantly depressing their nonspecific phagocytosis

  6. Mapping the Interactome of a Major Mammalian Endoplasmic Reticulum Heat Shock Protein 90.

    Directory of Open Access Journals (Sweden)

    Feng Hong

    Full Text Available Up to 10% of cytosolic proteins are dependent on the mammalian heat shock protein 90 (HSP90 for folding. However, the interactors of its endoplasmic reticulum (ER paralogue (gp96, Grp94 and HSP90b1 has not been systematically identified. By combining genetic and biochemical approaches, we have comprehensively mapped the interactome of gp96 in macrophages and B cells. A total of 511 proteins were reduced in gp96 knockdown cells, compared to levels observed in wild type cells. By immunoprecipitation, we found that 201 proteins associated with gp96. Gene Ontology analysis indicated that these proteins are involved in metabolism, transport, translation, protein folding, development, localization, response to stress and cellular component biogenesis. While known gp96 clients such as integrins, Toll-like receptors (TLRs and Wnt co-receptor LRP6, were confirmed, cell surface HSP receptor CD91, TLR4 pathway protein CD180, WDR1, GANAB and CAPZB were identified as potentially novel substrates of gp96. Taken together, our study establishes gp96 as a critical chaperone to integrate innate immunity, Wnt signaling and organ development.

  7. The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae.

    Science.gov (United States)

    Kagawa, H K; Osipiuk, J; Maltsev, N; Overbeek, R; Quaite-Randall, E; Joachimiak, A; Trent, J D

    1995-11-10

    One of the most abundant proteins in the hyperthermophilic archaeon Sulfolobus shibatae is the 59 kDa heat shock protein (TF55) that is believed to form a homo-oligomeric double ring complex structurally similar to the bacterial chaperonins. We discovered a second protein subunit in the S. shibatae ring complex (referred to as alpha) that is stoichiometric with TF55 (renamed beta). The gene and flanking regions of alpha were cloned and sequenced and its inferred amino acid sequence has 54.4% identity and 74.4% similarity to beta. Transcription start sites for both alpha and beta were mapped and three potential transcription regulatory regions were identified. Northern analyses of cultures shifted from normal growth temperatures (70 to 75 degrees C) to heat shock temperatures (85 to 90 degrees C) indicated that the levels of alpha and beta mRNAs increased during heat shock, but at all temperatures their relative proportions remained constant. Monitoring protein synthesis by autoradiography of total proteins from cultures pulse labeled with L(-)[35S]methionine at normal and heat shock temperatures indicated significant increases in alpha and beta synthesis during heat shock. Under extreme heat shock conditions (> or = 90 degrees C) alpha and beta appeared to be the only two proteins synthesized. The purified alpha and beta subunits combined to form high molecular mass complexes with similar mobilities on native polyacrylamide gels to the complexes isolated directly from cells. Equal proportions of the two subunits gave the greatest yield of the complex, which we refer to as a "rosettasome". It is argued that the rosettasome consists of two homo-oligomeric rings; one of alpha and the other of beta. Polyclonal antibodies against alpha and beta from S. shibatae cross-reacted with proteins of similar molecular mass in 10 out of the 17 archaeal species tested, suggesting that the two rosettasome proteins are highly conserved among the archaea. The archaeal sequences were

  8. Heat shock protein 72: release and biological significance during exercise.

    Science.gov (United States)

    Whitham, Martin; Fortes, Matthew Benjamin

    2008-01-01

    The cumulative stressors of exercise manifest themselves at a cellular level by threatening the protein homeostasis of the cell. In these conditions, Heat Shock Proteins (HSP) are synthesised to chaperone mis-folded and denatured proteins. As such, the intracellular HSP response is thought to aid cell survival in the face of otherwise lethal cellular stress. Recently, the inducible isoform of the 70 Kda heat shock protein family, Hsp72 has been detected in the extracellular environment. Furthermore, the release of this protein into the circulation has been shown to occur in response to a range of exercise bouts. The present review summarises the current research on the exercise Hsp72 response, the possible mediators and mechanisms of extracellular (e)Hsp72 release, and the possible biological significance of this systemic response. In particular, the possible role of eHsp72 in the modulation of immunity during exercise is discussed.

  9. Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heat-shock protein alpha B-crystallin-loaded PLGA microparticles

    NARCIS (Netherlands)

    van Noort, J.M.; Bsibsi, M.; Nacken, P.J.; Gerritsen, W.H.; Amor, S.; Holtman, I.R.; Boddeke, E.; van Ark, I.; Leusink-Muis, T.; Folkerts, G.; Hennink, W.E.; Amidi, M.

    2013-01-01

    As an extracellular protein, the small heat-shock protein alpha B-crystallin (HSPB5) has anti-inflammatory effects in several mouse models of inflammation. Here, we show that these effects are associated with the ability of HSPB5 to activate an immune-regulatory response in macrophages via

  10. Activation of an immune-regulatory macrophage response and inhibition of lung inflammation in a mouse model of COPD using heat-shock protein alpha B-crystallin-loaded PLGA microparticles

    NARCIS (Netherlands)

    van Noort, Johannes M.; Bsibsi, Malika; Nacken, Peter J.; Gerritsen, Wouter H.; Amor, Sandra; Holtman, Inge R.; Boddeke, Erik; van Ark, Ingrid; Leusink-Muis, Thea; Folkerts, Gert; Hennink, Wim E.; Amidi, Maryam

    As an extracellular protein, the small heat-shock protein alpha B-crystallin (HSPB5) has anti-inflammatory effects in several mouse models of inflammation. Here, we show that these effects are associated with the ability of HSPB5 to activate an immune-regulatory response in macrophages via

  11. Heat Shock Protein 90 Inhibitor (17-AAG) Induces Apoptosis and Decreases Cell Migration/Motility of Keloid Fibroblasts.

    Science.gov (United States)

    Yun, In Sik; Lee, Mi Hee; Rah, Dong Kyun; Lew, Dae Hyun; Park, Jong-Chul; Lee, Won Jai

    2015-07-01

    The regulation of apoptosis, proliferation, and migration of fibroblasts is altered in keloids. The 90-kDa heat shock protein (heat shock protein 90) is known to play a key role in such regulation. Therefore, the authors investigated whether the inhibition of heat shock protein 90 in keloid fibroblasts could induce apoptosis and attenuate keloid fibroblast proliferation and migration. The authors evaluated heat shock protein 90 expression in keloid tissues with immunohistochemistry. The authors used cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays and annexin V/propidium iodide staining for apoptosis, a wound healing model and cell tracking system to assess cell migration, and Akt Western blotting analysis in keloid fibroblasts after inhibition of heat shock protein 90 with 17-allylaminodemethoxygeldanamycin (17-AAG). The expression of heat shock protein 90 in keloid tissues was significantly increased compared with normal tissues. The 17-AAG-treated keloid fibroblasts showed significantly decreased proliferation, promotion of apoptosis, and decreased expression of Akt. Furthermore, a dose-dependent decrease in cell migration was noted after 17-AAG treatment of keloid fibroblasts. The 17-AAG-treated keloid fibroblasts had less directionality to the wound center and migrated a shorter distance. The authors confirmed that the inhibition of heat shock protein 90 in keloid fibroblasts could promote apoptosis and attenuate proliferation and migration of keloid fibroblasts. Therefore, the authors think that the inhibition of heat shock protein 90 is a key factor in the regulation of biological processes in keloids. With further preclinical study, the authors will be able to apply these results clinically for keloid treatment.

  12. Microarray-based screening of heat shock protein inhibitors.

    Science.gov (United States)

    Schax, Emilia; Walter, Johanna-Gabriela; Märzhäuser, Helene; Stahl, Frank; Scheper, Thomas; Agard, David A; Eichner, Simone; Kirschning, Andreas; Zeilinger, Carsten

    2014-06-20

    Based on the importance of heat shock proteins (HSPs) in diseases such as cancer, Alzheimer's disease or malaria, inhibitors of these chaperons are needed. Today's state-of-the-art techniques to identify HSP inhibitors are performed in microplate format, requiring large amounts of proteins and potential inhibitors. In contrast, we have developed a miniaturized protein microarray-based assay to identify novel inhibitors, allowing analysis with 300 pmol of protein. The assay is based on competitive binding of fluorescence-labeled ATP and potential inhibitors to the ATP-binding site of HSP. Therefore, the developed microarray enables the parallel analysis of different ATP-binding proteins on a single microarray. We have demonstrated the possibility of multiplexing by immobilizing full-length human HSP90α and HtpG of Helicobacter pylori on microarrays. Fluorescence-labeled ATP was competed by novel geldanamycin/reblastatin derivatives with IC50 values in the range of 0.5 nM to 4 μM and Z(*)-factors between 0.60 and 0.96. Our results demonstrate the potential of a target-oriented multiplexed protein microarray to identify novel inhibitors for different members of the HSP90 family. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    Science.gov (United States)

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  14. Chaperone activity of human small heat shock protein-GST fusion proteins.

    Science.gov (United States)

    Arbach, Hannah; Butler, Caley; McMenimen, Kathryn A

    2017-07-01

    Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST

  15. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress.

    Science.gov (United States)

    McLoughlin, Fionn; Basha, Eman; Fowler, Mary E; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha; Vierling, Elizabeth

    2016-10-01

    The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Rütgers, Mark; Muranaka, Ligia Segatto; Schulz-Raffelt, Miriam; Thoms, Sylvia; Schurig, Juliane; Willmund, Felix; Schroda, Michael

    2017-12-01

    A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat-stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat-induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat-induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered. © 2017 John Wiley & Sons Ltd.

  17. The Role of the Heat Shock Protein B8 (HSPB8 in Motoneuron Diseases

    Directory of Open Access Journals (Sweden)

    Paola Rusmini

    2017-06-01

    Full Text Available Amyotrophic lateral sclerosis (ALS and spinal and bulbar muscular atrophy (SBMA are two motoneuron diseases (MNDs characterized by aberrant protein behavior in affected cells. In familial ALS (fALS and in SBMA specific gene mutations lead to the production of neurotoxic proteins or peptides prone to misfold, which then accumulate in form of aggregates. Notably, some of these proteins accumulate into aggregates also in sporadic ALS (sALS even if not mutated. To prevent proteotoxic stresses detrimental to cells, misfolded and/or aggregated proteins must be rapidly removed by the protein quality control (PQC system. The small heat shock protein B8 (HSPB8 is a chaperone induced by harmful events, like proteasome inhibition. HSPB8 is expressed both in motoneuron and muscle cells, which are both targets of misfolded protein toxicity in MNDs. In ALS mice models, in presence of the mutant proteins, HSPB8 is upregulated both in spinal cord and muscle. HSPB8 interacts with the HSP70 co-chaperone BAG3 and enhances the degradation of misfolded proteins linked to sALS, or causative of fALS and of SBMA. HSPB8 acts by facilitating autophagy, thereby preventing misfolded protein accumulation in affected cells. BAG3 and BAG1 compete for HSP70-bound clients and target them for disposal to the autophagy or proteasome, respectively. Enhancing the selective targeting of misfolded proteins by HSPB8-BAG3-HSP70 to autophagy may also decrease their delivery to the proteasome by the BAG1-HSP70 complex, thereby limiting possible proteasome overwhelming. Thus, approaches aimed at potentiating HSPB8-BAG3 may contribute to the maintenance of proteostasis and may delay MNDs progression.

  18. Small heat shock protein αA-crystallin prevents photoreceptor degeneration in experimental autoimmune uveitis.

    Directory of Open Access Journals (Sweden)

    Narsing A Rao

    Full Text Available The small heat shock protein, αA-crystallin null (αA-/- mice are known to be more prone to retinal degeneration than the wild type mice in Experimental Autoimmune Uveoretinitis (EAU. In this report we demonstrate that intravenous administration of αA preserves retinal architecture and prevents photoreceptor damage in EAU. Interestingly, only αA and not αB-crystallin (αB, a closely related small heat shock protein works, pointing to molecular specificity in the observed retinal protection. The possible involvement of αA in retinal protection through immune modulation is corroborated by adaptive transfer experiments, (employing αA-/- and wild type mice with EAU as donors and Rag2-/- as the recipient mice, which indicate that αA protects against the autoimmune challenge by modulating the systemic B and T cell immunity. We show that αA administration causes marked reduction in Th1 cytokines (TNF-α, IL-12 and IFN-γ, both in the retina and in the spleen; notably, IL-17 was only reduced in the retina suggesting local intervention. Importantly, expression of Toll-like receptors and their associated adaptors is also inhibited suggesting that αA protection, against photoreceptor loss in EAU, is associated with systemic suppression of both the adaptive and innate immune responses.

  19. Small heat shock protein αA-crystallin prevents photoreceptor degeneration in experimental autoimmune uveitis.

    Science.gov (United States)

    Rao, Narsing A; Saraswathy, Sindhu; Pararajasegaram, Geeta; Bhat, Suraj P

    2012-01-01

    The small heat shock protein, αA-crystallin null (αA-/-) mice are known to be more prone to retinal degeneration than the wild type mice in Experimental Autoimmune Uveoretinitis (EAU). In this report we demonstrate that intravenous administration of αA preserves retinal architecture and prevents photoreceptor damage in EAU. Interestingly, only αA and not αB-crystallin (αB), a closely related small heat shock protein works, pointing to molecular specificity in the observed retinal protection. The possible involvement of αA in retinal protection through immune modulation is corroborated by adaptive transfer experiments, (employing αA-/- and wild type mice with EAU as donors and Rag2-/- as the recipient mice), which indicate that αA protects against the autoimmune challenge by modulating the systemic B and T cell immunity. We show that αA administration causes marked reduction in Th1 cytokines (TNF-α, IL-12 and IFN-γ), both in the retina and in the spleen; notably, IL-17 was only reduced in the retina suggesting local intervention. Importantly, expression of Toll-like receptors and their associated adaptors is also inhibited suggesting that αA protection, against photoreceptor loss in EAU, is associated with systemic suppression of both the adaptive and innate immune responses.

  20. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock.

    Science.gov (United States)

    Hazra, Joyita; Mukherjee, Pooja; Ali, Asif; Poddar, Soumita; Pal, Mahadeb

    2017-01-01

    An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1.

  1. Stress proteins in lymphocytes: Membrane stabilization does not affect the heat shock response

    International Nuclear Information System (INIS)

    Hughes, C.S.; Repasky, E.A.; Subjeck, J.R.

    1987-01-01

    Temperatures which have been used to induce heat shock proteins (hsps) have been at the upper physiologic limit or well above this limit. In addition, little attention has been given to the effects of physiologic heat exposures on hsp induction in lymphocytes. The author examined temperatures between 39 0 C and 41 0 C on protein synthesis in the following lymphoid cell lines and cells: BDK, EL-4, JM, DO.11, and in dispersed lymph nodes and thymic tissues. In these studies, 39.5 0 appears to be the threshold for hsp induction (as distinguished by gel electrophoresis). At this temperature the induction of the major hsps at 70 and 89 kDa are observed. Hsp 89 appears to be the most strongly induced in all cells examined. In JM cells, a human cell line, heat shock also induces hsp 68, the non-constitutive hsp at this size. These temperatures do not depress normal levels of protein synthesis. When stearic acid or cholesterol was added to lymphocyte cultures prior to heating (which stabilize membranes), hsp induction appears to occur in a manner indistinguishable from cells heated in normal media. This suggests that membrane fluidity (as influenced by these agents) does not affect or depress the heat shock response in these cells. Finally, the authors observed that 2-deoxyglucose and other inducers of glucose regulated proteins in fibroblasts also induce the major glucose regulated proteins in lymphocytes

  2. Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells

    International Nuclear Information System (INIS)

    Santoro, M.G.; Garaci, E.; Amici, C.

    1989-01-01

    Prostaglandins (PGs)A 1 and J 2 were found to potently suppress the proliferation of human K562 erythroleukemia cells and to induce the synthesis of a 74-kDa protein (p74) that was identified as a heat shock protein related to the major 70-kDa heat shock protein group. p74 synthesis was stimulated at doses of PGA 1 and PGJ 2 that inhibited cell replication, and its accumulation ceased upon removal of the PG-induced proliferation block. PGs that did not affect K562 cell replication did not induce p74 synthesis. p74 was found to be localized mainly in the cytoplasm of PG-treated cells, but moderate amounts were found also in dense areas of the nucleus after PGJ 2 treatment. p74 was not necessarily associated with cytotoxicity or with inhibition of cell protein synthesis. The results described support the hypothesis that synthesis of the 70-kDa heat shock proteins is associated with changes in cell proliferation. The observation that PGs can induce the synthesis of heat shock proteins expands our understanding of the mechanism of action of these compounds whose regulatory role is well known in many physiological phenomena, including the control of fever production

  3. Monitoring the Induction of Heat Shock Factor 1/Heat Shock Protein 70 Expression following 17-Allylamino-Demethoxygeldanamycin Treatment by Positron Emission Tomography and Optical Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Mikhail Doubrovin

    2012-01-01

    Full Text Available The cell response to proteotoxic cell stresses is mediated primarily through activation of heat shock factor 1 (HSF1. This transcription factor plays a major role in the regulation of the heat shock proteins (HSPs, including HSP70. We demonstrate that an [124I]iodide-pQHNIG70 positron emission tomography (PET reporter system that includes an inducible HSP70 promoter can be used to image and monitor the activation of the HSF1/HSP70 transcription factor in response to drug treatment (17-allylamino-demethoxygeldanamycin [17-AAG]. We developed a dual imaging reporter (pQHNIG70 for noninvasive imaging of the heat shock response in cell culture and living animals previously and now study HSF1/HSP70 reporter activation in both cell culture and tumor-bearing animals following exposure to 17-AAG. 17-AAG (10–1,000 nM induced reporter expression; a 23-fold increase was observed by 60 hours. Good correspondence between reporter expression and HSP70 protein levels were observed. MicroPET imaging based on [124I]iodide accumulation in pQHNIG70-transduced RG2 xenografts showed a significant 6.2-fold reporter response to 17-AAG, with a corresponding increase in tumor HSP70 and in tumor human sodium iodide symporter and green fluorescent protein reporter proteins. The HSF1 reporter system can be used to screen anticancer drugs for induction of cytotoxic stress and HSF1 activation both in vitro and in vivo.

  4. dFOXO Activates Large and Small Heat Shock Protein Genes in Response to Oxidative Stress to Maintain Proteostasis in Drosophila.

    Science.gov (United States)

    Donovan, Marissa R; Marr, Michael T

    2016-09-02

    Maintaining protein homeostasis is critical for survival at the cellular and organismal level (Morimoto, R. I. (2011) Cold Spring Harb. Symp. Quant. Biol. 76, 91-99). Cells express a family of molecular chaperones, the heat shock proteins, during times of oxidative stress to protect against proteotoxicity. We have identified a second stress responsive transcription factor, dFOXO, that works alongside the heat shock transcription factor to activate transcription of both the small heat shock protein and the large heat shock protein genes. This expression likely protects cells from protein misfolding associated with oxidative stress. Here we identify the regions of the Hsp70 promoter essential for FOXO-dependent transcription using in vitro methods and find a physiological role for FOXO-dependent expression of heat shock proteins in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Regulation of mouse small heat shock protein αb-crystallin gene by aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    2011-04-01

    Full Text Available The stress-inducible small heat shock protein (shsp/αB-crystallin gene is expressed highly in the lens and moderately in other tissues. Here we provide evidence that it is a target gene of the aryl hydrocarbon receptor (AhR transcription factor. A sequence (-329/-323, CATGCGA similar to the consensus xenobiotic responsive element (XRE, called here XRE-like, is present in the αBE2 region of αB-crystallin enhancer and can bind AhR in vitro and in vivo. αB-crystallin protein levels were reduced in retina, lens, cornea, heart, skeletal muscle and cultured muscle fibroblasts of AhR(-/- mice; αB-crystallin mRNA levels were reduced in the eye, heart and skeletal muscle of AhR(-/- mice. Increased AhR stimulated αB-crystallin expression in transfection experiments conducted in conjunction with the aryl hydrocarbon receptor nuclear translocator (ARNT and decreased AhR reduced αB-crystallin expression. AhR effect on aB-crystallin promoter activity was cell-dependent in transfection experiments. AhR up-regulated αB-crystallin promoter activity in transfected HeLa, NIH3T3 and COS-7 cells in the absence of exogenously added ligand (TCDD, but had no effect on the αB-crystallin promoter in C(2C(12, CV-1 or Hepa-1 cells with or without TCDD. TCDD enhanced AhR-stimulated αB-crystallin promoter activity in transfected αTN4 cells. AhR could bind to an XRE-like site in the αB-crystallin enhancer in vitro and in vivo. Finally, site-specific mutagenesis experiments showed that the XRE-like motif was necessary for both basal and maximal AhR-induction of αB-crystallin promoter activity. Our data strongly suggest that AhR is a regulator of αB-crystallin gene expression and provide new avenues of research for the mechanism of tissue-specific αB-crystallin gene regulation under normal and physiologically stressed conditions.

  6. Cloning and characterization of carboxyl terminus of heat shock cognate 70-interacting protein gene from the silkworm, Bombyx mori.

    Science.gov (United States)

    Ohsawa, Takeshi; Fujimoto, Shota; Tsunakawa, Akane; Shibano, Yuka; Kawasaki, Hideki; Iwanaga, Masashi

    2016-11-01

    Carboxyl terminus of heat shock cognate 70-interacting protein (CHIP) is an evolutionarily conserved E3 ubiquitin ligase across different eukaryotic species and is known to play a key role in protein quality control. CHIP has two distinct functional domains, an N-terminal tetratricopeptide repeat (TPR) and a C-terminal U-box domain, which are required for the ubiquitination of numerous labile client proteins that are chaperoned by heat shock proteins (HSPs) and heat shock cognate proteins (HSCs). During our screen for CHIP-like proteins in the Bombyx mori databases, we found a novel silkworm gene, Bombyx mori CHIP. Phylogenetic analysis showed that BmCHIP belongs to Lepidopteran lineages. Quantitative reverse transcription-PCR analysis indicated that BmCHIP was relatively highly expressed in the gonad and fat body. A pull-down experiment and auto-ubiquitination assay showed that BmCHIP interacted with BmHSC70 and had E3 ligase activity. Additionally, immunohistochemical analysis revealed that BmCHIP was partially co-localized with ubiquitin in BmN4 cells. These data support that BmCHIP plays an important role in the ubiquitin proteasome system as an E3 ubiquitin ligase in B. mori. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Isoform composition and stoichiometry of the ∼ 90-kDa heat shock protein associated with glucocorticoid receptors

    International Nuclear Information System (INIS)

    Mendel, D.B.; Orti, E.

    1988-01-01

    The authors observed that the ∼ 90-kDa non-steroid-binding component of nonactivated glucocorticoid receptors purified from WEHI-7 mouse thymoma cells (which has been identified as the ∼ 90-kDa heat shock protein) consistently migrates as a doublet during polyacrylamide gel electrophoresis under denaturing and reducing conditions. It has recently been reported that murine Meth A cells contain a tumor-specific transplantation antigen (TSTA) which is related or identical to the ∼ 90-kDa heat shock protein. The observation that TSTA and the ∼ 90-kDa heat shock protein isolated from these cells exists as two isoforms of similar molecular mass and charge has suggested that the doublet observed is also due to the existence of two isoforms. They have therefore conducted this study to determine whether TSTA and the ∼ 90-kDa component of glucocorticoid receptors are indeed related, to establish whether the receptor preferentially binds one isoform of the ∼ 90-kDa heat shock protein, and to investigate the stoichiometry of the nonactivated receptor complex. They used the BuGr1 and AC88 monoclonal antibodies to purify, respectively, receptor-associated and free ∼ 90-kDa heat shock protein from WEHI-7 cells grown for 48 h with [ 35 S]methionine to metabolically label proteins to steady state. The long-term metabolic labeling approach has also enabled them to directly determine that the purified non-activated glucocorticoid receptor contains a single steroid-binding protein and two ∼ 90-kDa non-steroid-binding subunits. The consistency with which a ∼ 1:2 stoichiometric ratio of steroid binding to ∼ 90-kDa protein is observed supports the view that the ∼ 90-kDa heat shock protein is a true component of nonactivated glucocorticoid-receptor complexes

  8. Non-lethal heat shock increased Hsp70 and immune protein transcripts but not Vibrio tolerance in the white-leg shrimp.

    Directory of Open Access Journals (Sweden)

    Nguyen Hong Loc

    Full Text Available Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70 and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO, peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined.

  9. Non-Lethal Heat Shock Increased Hsp70 and Immune Protein Transcripts but Not Vibrio Tolerance in the White-Leg Shrimp

    Science.gov (United States)

    Loc, Nguyen Hong; MacRae, Thomas H.; Musa, Najiah; Bin Abdullah, Muhd Danish Daniel; Abdul Wahid, Mohd. Effendy; Sung, Yeong Yik

    2013-01-01

    Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70) and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO), peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined. PMID:24039886

  10. Small heat shock proteins can release light dependence of tobacco seed during germination.

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia; Hong, Choo Bong

    2015-03-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress.

    Science.gov (United States)

    Zhang, Shu; Han, Guo-dong; Dong, Yun-wei

    2014-04-01

    Intertidal invertebrates develop effective physiological adaptations to cope with the rapidly changing thermal environment in the intertidal zone. In the present study, the temporal patterns of heart rate, protein carbonyl groups, and genes encoding heat shock proteins (hsp70 and hsp90) and metabolic sensors (ampkα, ampkβ and sirt1) were measured to study the effect of sublethal heat stress on the cardiac function, oxidative stress, heat shock response and cellular metabolism of an intertidal limpet Cellana toreuma. All the physiological parameters are sensitive to temperature and duration of heat stress. Spearman correlation analysis revealed that the correlations between heart rate and levels of heat shock proteins mRNA and metabolic sensors mRNA were statistically significant. These results further suggest that cardiac function plays crucial roles in cellular energy metabolism and heat shock responses. The significant increase of protein carbonyl groups at 34°C after 4h exposure indicated that the failure of cardiac function and the increase of anaerobic metabolism partly leads to the increase of protein carbonyl groups. Generally, the physiological responses to heat stress are sensitive to temperature and are energy-consumptive, as indicated by the upregulation of metabolic sensors mRNA. However, the upregulation of heat shock proteins and metabolic sensors at the post-transcriptional level and related functions need to be confirmed in further experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. N,N'-dinitrosopiperazine--mediated heat-shock protein 70-2 expression is involved in metastasis of nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Zhengke Peng

    Full Text Available N,N'-Dinitrosopiperazine (DNP is invovled in nasopharyngeal carcinoma (NPC development and metastasis, and it shows organ specificity to the nasopharyngeal epithelium. Herein, we demonstrate that DNP induces heat-shock protein (HSP 70-2 expression in NPC cells (6-10B at a non-cytotoxic concentration. DNP induced HSP70-2 expression in a dose- and time- dependent manner, but showed no effect on other HSP70 family members. Furthermore, DNP also increased HSP70-2 RNA transcription through directly binding to the hypoxia-responsive elements (HRE and heat shock elements (HSE located in the HSP70-2 promoter. DNP-mediated HSP70-2 expression might act through enhancing the transcription of HSP70-2 RNA. Importantly, DNP induced motility and invasion of 6-10B cells dose- and time-dependently, and DNP-mediated NPC metastasis was confirmed in nude mice, which showed high HSP70-2 expression in the metastatic tumor tissue. However, the motility and invasion of NPC cells that were stably transfected using short interfering RNA against HSP70-2 could not effectively induce DNP. These results indicate that DNP induces HSP70-2 expression through increasing HSP70-2 transcription, increases the motility and invasion of cells, and promotes NPC tumor metastasis. Therefore, DNP mediated HSP70-2 expression may be an important factor of NPC-high metastasis.

  13. Induction of thermal shock proteins and changes in radiosensitivity after heat treatment of Bombyx mori L. embryos

    International Nuclear Information System (INIS)

    Agaev, F.A.

    1993-01-01

    The method of gel-electrophoresis was used to study thermal shock protein synthesis in Bombyx mori embryos exposed to a mixture of heat and gamma-radiation. Induction of thermal shock protein synthesis was not inhibited by gamma-radiation. It is suggested that thermal shock proteins are involved embryo radiosensitivity modification

  14. Induction of Heat Shock Protein 70 Ameliorates Ultraviolet-Induced Photokeratitis in Mice

    Directory of Open Access Journals (Sweden)

    Yukihiro Horie

    2013-01-01

    Full Text Available Acute ultraviolet (UV B exposure causes photokeratitis and induces apoptosis in corneal cells. Geranylgeranylacetone (GGA is an acyclic polyisoprenoid that induces expression of heat shock protein (HSP70, a soluble intracellular chaperone protein expressed in various tissues, protecting cells against stress conditions. We examined whether induction of HSP70 has therapeutic effects on UV-photokeratitis in mice. C57 BL/6 mice were divided into four groups, GGA-treated (500 mg/kg/mouse and UVB-exposed (400 mJ/cm2, GGA-untreated UVB-exposed (400 mJ/cm2, GGA-treated (500 mg/kg/mouse but not exposed and naive controls. Eyeballs were collected 24 h after irradiation, and corneas were stained with hematoxylin and eosin (H&E and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL. HSP70, reactive oxygen species (ROS production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and protein kinase B (Akt expression were also evaluated. Irradiated corneal epithelium was significantly thicker in the eyes of mice treated with GGA compared with those given the vehicle alone (p < 0.01. Significantly fewer TUNEL-positive cells were observed in the eyes of GGA-treated mice than controls after irradiation (p < 0.01. Corneal HSP70 levels were significantly elevated in corneas of mice treated with GGA (p < 0.05. ROS signal was not affected by GGA. NF-κB activation was reduced but phospho-(Ser/Ther Akt substrate expression was increased in corneas after irradiation when treated with GGA. GGA-treatment induced HSP70 expression and ameliorated UV-induced corneal damage through the reduced NF-κB activation and possibly increased Akt phosphorilation.

  15. Characterization and Expression of Genes Encoding Three Small Heat Shock Proteins in Sesamia inferens (Lepidoptera: Noctuidae)

    OpenAIRE

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2014-01-01

    The pink stem borer, Sesamia inferens (Walker), is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs) encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino a...

  16. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas.

    Science.gov (United States)

    MacRae, T H

    2000-06-01

    Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.

  17. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per

    2014-01-01

    respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping...... and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat...... shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions...

  18. Guidelines for the nomenclature of the human heat shock proteins

    NARCIS (Netherlands)

    Kampinga, Harm H.; Hageman, Jurre; Vos, Michel J.; Kubota, Hiroshi; Tanguay, Robert M.; Bruford, Elspeth A.; Cheetham, Michael E.; Chen, B.; Hightower, Lawrence E.

    The expanding number of members in the various human heat shock protein (HSP) families and the inconsistencies in their nomenclature have often led to confusion. Here, we propose new guidelines for the nomenclature of the human HSP families, HSPH (HSP110), HSPC (HSP90), HSPA (HSP70), DNAJ (HSP40),

  19. Hyperglycemia adversely modulates endothelial nitric oxide synthase during anesthetic preconditioning through tetrahydrobiopterin- and heat shock protein 90-mediated mechanisms.

    Science.gov (United States)

    Amour, Julien; Brzezinska, Anna K; Jager, Zachary; Sullivan, Corbin; Weihrauch, Dorothee; Du, Jianhai; Vladic, Nikolina; Shi, Yang; Warltier, David C; Pratt, Phillip F; Kersten, Judy R

    2010-03-01

    Endothelial nitric oxide synthase activity is regulated by (6R-)5,6,7,8-tetrahydrobiopterin (BH4) and heat shock protein 90. The authors tested the hypothesis that hyperglycemia abolishes anesthetic preconditioning (APC) through BH4- and heat shock protein 90-dependent pathways. Myocardial infarct size was measured in rabbits in the absence or presence of APC (30 min of isoflurane), with or without hyperglycemia, and in the presence or absence of the BH4 precursor sepiapterin. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells cultured in normal (5.5 mm) or high (20 mm) glucose conditions, with or without sepiapterin (10 or 100 microm). APC decreased myocardial infarct size compared with control experiments (26 +/- 6% vs. 46 +/- 3%, respectively; P < 0.05), and this action was blocked by hyperglycemia (43 +/- 4%). Sepiapterin alone had no effect on infarct size (46 +/- 3%) but restored APC during hyperglycemia (21 +/- 3%). The beneficial actions of sepiapterin to restore APC were blocked by the nitric oxide synthase inhibitor N (G)-nitro-L-arginine methyl ester (47 +/- 2%) and the BH4 synthesis inhibitor N-acetylserotonin (46 +/- 3%). Isoflurane increased nitric oxide production to 177 +/- 13% of baseline, and this action was attenuated by high glucose concentrations (125 +/- 6%). Isoflurane increased, whereas high glucose attenuated intracellular BH4/7,8-dihydrobiopterin (BH2) (high performance liquid chromatography), heat shock protein 90-endothelial nitric oxide synthase colocalization (confocal microscopy) and endothelial nitric oxide synthase activation (immunoblotting). Sepiapterin increased BH4/BH2 and dose-dependently restored nitric oxide production during hyperglycemic conditions (149 +/- 12% and 175 +/- 9%; 10 and 100 microm, respectively). The results indicate that tetrahydrobiopterin and heat shock protein 90-regulated endothelial nitric oxide synthase activity play a central

  20. MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jeng-Shane Lin

    2018-02-01

    Full Text Available Global warming is causing a negative impact on plant growth and adversely impacts on crop yield. MicroRNAs (miRNAs are critical in regulating the expression of genes involved in plant development as well as defense responses. The effects of miRNAs on heat-stressed Arabidopsis warrants further investigation. Heat stress increased the expression of miR160 and its precursors but considerably reduced that of its targets, ARF10, ARF16, and ARF17. To study the roles of miR160 during heat stress, transgenic Arabidopsis plants overexpressing miR160 precursor a (160OE and artificial miR160 (MIM160, which mimics an inhibitor of miR160, were created. T-DNA insertion mutants of miR160 targets were also used to examine their tolerances to heat stress. Results presented that overexpressing miR160 improved seed germination and seedling survival under heat stress. The lengths of hypocotyl elongation and rachis were also longer in 160OE than the wild-type (WT plants under heat stress. Interestingly, MIM160 plants showed worse adaption to heat. In addition, arf10, arf16, and arf17 mutants presented similar phenotypes to 160OE under heat stress to advance abilities of thermotolerance. Moreover, transcriptome and qRT-PCR analyses revealed that HSP17.6A, HSP17.6II, HSP21, and HSP70B expression levels were regulated by heat in 160OE, MIM160, arf10, arf16, and arf17 plants. Hence, miR160 altered the expression of the heat shock proteins and plant development to allow plants to survive heat stress.

  1. Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy.

    Science.gov (United States)

    Zhou, Jian-da; Luo, Cheng-qun; Xie, Hui-qing; Nie, Xin-min; Zhao, Yan-zhong; Wang, Shao-hua; Xu, Yi; Pokharel, Pashupati Babu; Xu, Dan

    2008-07-20

    Chronic dermal ulcers are also referred to as refractory ulcers. This study was conducted to elucidate the therapeutic effect of laser on chronic dermal ulcers and the induced expression of heat shock factor 1 (HSF1) and heat shock protein 70 (HSP70) in wound tissues. Sixty patients with 84 chronic dermal ulcers were randomly divided into traditional therapy and laser therapy groups. Laser treatment was performed in addition to traditional therapy in the laser therapy group. The treatment efficacy was evaluated after three weeks. Five tissue sections of healing wounds were randomly collected along with five normal skin sections as controls. HSP70-positive cells from HSP70 immunohistochemical staining were counted and the gray scale of positive cells was measured for statistical analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the mRNA and protein expressions of HSF1 and HSP70. The cure rate of the wounds and the total efficacy in the laser therapy group were significantly higher than those in the traditional therapy group (P ulcers plays a facilitating role in healing due to the mechanism of laser-activated endogenous heat shock protection in cells in wound surfaces.

  2. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress.

    Science.gov (United States)

    Hao, Y; Gu, X H

    2014-11-01

    This study was conducted to determine the effects of heat shock protein 90 (HSP90) expression on pH, lipid peroxidation, heat shock protein 70 (HSP70), and glucocorticoid receptor (GR) expression of pectoralis major in broilers exposed to acute heat stress. In total, 90 male broilers were randomly allocated to 3 groups: control (CON), heat stress (HS), or geldanamycin treatment (GA). On d 41, the broilers in the GA group were injected intraperitoneally with GA (5 μg/kg of BW), and the broilers in the CON and HS groups were injected intraperitoneally with saline. Twenty-four hours later, the broilers in the CON group were moved to environmental chambers controlled at 22°C for 2 h, and the broilers in the HS and GA groups were moved to environmental chambers controlled at 40°C for 2 h. The pH values of the pectoralis major after 30 min and 24 h of chilling after slaughter of HS and GA broilers were significantly lower (P stress caused significant increases in sera corticosterone and lactic dehydrogenase, the activity of malondialdehyde and superoxide dismutase, the expression of HSP90 and HSP70, and nuclear expression of GR protein in the pectoralis major (P stress induced a significant decrease in GR protein expression in the cytoplasm and GR mRNA expression. Furthermore, the low expression of HSP90 significantly increased levels of lactic dehydrogenase and malondialdehyde and GR protein expression in the cytoplasm under heat stress (P shock protein 90 was positively correlated with corticosterone and superoxide dismutase activities (P < 0.01), and HSP90 mRNA was negatively correlated with pH after chilling for 24 h. The results demonstrated that HSP90 plays a pivotal role in protecting cells from oxidation. ©2014 Poultry Science Association Inc.

  3. Heat shock transcription factors regulate heat induced cell death in a ...

    Indian Academy of Sciences (India)

    2007-03-29

    Mar 29, 2007 ... Heat shock transcription factors regulate heat induced cell death in a rat ... the synthesis of heat shock proteins (Hsps) which is strictly regulated by ... The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA ...

  4. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells.

    Science.gov (United States)

    Abreu, Patrícia L; Cunha-Oliveira, Teresa; Ferreira, Leonardo M R; Urbano, Ana M

    2018-03-16

    Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.

  5. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress

    International Nuclear Information System (INIS)

    Bryantsev, A.L.; Chechenova, M.B.; Shelden, E.A.

    2007-01-01

    During stress, the mammalian small heat shock protein Hsp27 enters cell nuclei. The present study examines the requirements for entry of Hsp27 into nuclei of normal rat kidney (NRK) renal epithelial cells, and for its interactions with specific nuclear structures. We find that phosphorylation of Hsp27 is necessary for the efficient entry into nuclei during heat shock but not sufficient for efficient nuclear entry under control conditions. We further report that Hsp27 is recruited to an RNAse sensitive fraction of SC35 positive nuclear speckles, but not other intranuclear structures, in response to heat shock. Intriguingly, Hsp27 phosphorylation, in the absence of stress, is sufficient for recruitment to speckles found in post-anaphase stage mitotic cells. Additionally, pseudophosphorylated Hsp27 fused to a nuclear localization peptide (NLS) is recruited to nuclear speckles in unstressed interphase cells, but wildtype and nonphosphorylatable Hsp27 NLS fusion proteins are not. The expression of NLS-Hsp27 mutants does not enhance colony forming abilities of cells subjected to severe heat shock, but does regulate nuclear speckle morphology. These data demonstrate that phosphorylation, but not stress, mediates Hsp27 recruitment to an RNAse soluble fraction of nuclear speckles and support a site-specific role for Hsp27 within the nucleus

  6. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    Science.gov (United States)

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  7. Heat-shock proteins in stromal joint tissues: innocent bystanders or disease-initiating proteins?

    Science.gov (United States)

    Lambrecht, Stijn; Juchtmans, Nele; Elewaut, Dirk

    2014-02-01

    Heat-shock proteins (HSPs) are molecular chaperones that are highly conserved between species. In recent decades it has become clear that these proteins play an important role in the pathogenesis of inflammatory and degenerative joint diseases by (dys)regulating the immune system and by direct effects on the stromal tissues of the joint. In this review we discuss current insights into the expression pattern of HSPs in connective tissues, the direct biological role of HSPs in stromal tissues and the potential clinical applications.

  8. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Gabriela Huelgas-Morales

    2016-04-01

    Full Text Available In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline—the immortal cell lineage required for sexual reproduction—protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures.

  9. The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in Caenorhabditis elegans.

    Science.gov (United States)

    Huelgas-Morales, Gabriela; Silva-García, Carlos Giovanni; Salinas, Laura S; Greenstein, David; Navarro, Rosa E

    2016-04-07

    In response to stressful conditions, eukaryotic cells launch an arsenal of regulatory programs to protect the proteome. One major protective response involves the arrest of protein translation and the formation of stress granules, cytoplasmic ribonucleoprotein complexes containing the conserved RNA-binding proteins TIA-1 and TIAR. The stress granule response is thought to preserve mRNA for translation when conditions improve. For cells of the germline-the immortal cell lineage required for sexual reproduction-protection from stress is critically important for perpetuation of the species, yet how stress granule regulatory mechanisms are deployed in animal reproduction is incompletely understood. Here, we show that the stress granule protein TIAR-1 protects the Caenorhabditis elegans germline from the adverse effects of heat shock. Animals containing strong loss-of-function mutations in tiar-1 exhibit significantly reduced fertility compared to the wild type following heat shock. Analysis of a heat-shock protein promoter indicates that tiar-1 mutants display an impaired heat-shock response. We observed that TIAR-1 was associated with granules in the gonad core and oocytes during several stressful conditions. Both gonad core and oocyte granules are dynamic structures that depend on translation; protein synthesis inhibitors altered their formation. Nonetheless, tiar-1 was required for the formation of gonad core granules only. Interestingly, the gonad core granules did not seem to be needed for the germ cells to develop viable embryos after heat shock. This suggests that TIAR-1 is able to protect the germline from heat stress independently of these structures. Copyright © 2016 Huelgas-Morales et al.

  10. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    Science.gov (United States)

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  11. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel.

    Science.gov (United States)

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren; Altier, Christophe

    2016-01-01

    Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund's Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund's Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function

  12. Molecular characterization and expression analysis of a heat shock protein 90 gene from disk abalone (Haliotis discus).

    Science.gov (United States)

    Wang, Ning; Whang, Ilson; Lee, Jae-Seong; Lee, Jehee

    2011-06-01

    Heat shock protein 90s (hsp90s) are chaperones that contribute to the proper folding of cellular proteins and help animals cope with the cellular protein damages in stress conditions. In this study, an hsp90 gene was isolated from disc abalone (Haliotis discus). The complete nucleotide sequence of the hsp90 gene contains an open reading frame of 2,184 base pairs, encoding an 84 kDa protein. Disk abalone hsp90 shares high sequence similarity with other hsp90 family proteins. Although the phylogenetic analysis did not classify it into the hsp90α group, the inductivity of this gene was confirmed by heat shock and lipopolysaccharide (LPS) challenge test. Disk abalone hsp90 gene displayed a rapid and reversible induction response to both an exposure of typical heat shock and the LPS challenge. Once given the sublethal heat shock treatment, the transcription of disk abalone hsp90 gene was significantly up-regulated. With a recovery of 12 h, the transcription of disk abalone hsp90 gene gradually attenuated to the control level. These observations reflected the feedback regulation of abalone heat shock responses faithfully. In response to LPS challenge, the transcription of disk abalone hsp90 gene was significantly increased within 2 h and it approached maximum induction at 4 h later and recovered finally the reference level in 24 h. Take all together, the cloning and expression analysis of disk abalone hsp90 gene provided useful molecular information of abalone responses in stress conditions and potential ways to monitor the chronic stressors in abalone culture environments and diagnose the animal health status.

  13. The dynamics of heat shock system activation in Monomac-6 cells upon Helicobacter pylori infection.

    Science.gov (United States)

    Pierzchalski, P; Jastrzebska, M; Link-Lenczowski, P; Leja-Szpak, A; Bonior, J; Jaworek, J; Okon, K; Wojcik, P

    2014-12-01

    Immune system cells, particularly phagocytes, are exposed to direct contact with pathogens. Because of its nature - elimination of pathogenes - their cytoprotective systems supposed to be quick and forceful. Physiological consequence of phagocytosis for the phagocyte is the apoptotic death to prevent the eventual survival of bacteria as intracellular parasites. However, in some cases, defense systems used by the bacteria force the immune cells to prolong the contact with the pathogen for its effective elimination. Experiments were performed on Monomac-6 cells exposed to live CagA, VacA expressing Helicobacter pylori (H. pylori) over different period of time. Total cellular RNA, cytoplasmic and nuclear proteins were isolated for polymerase chain reaction, Western-blot and electrophoretic mobility shift assay, respectively. We found that Monomac-6 cells infection with H. pylori resulted in the translocation of the entire cellular content of the heat shock protein 70 (HSP70) into the cytoplasm, where its presence could protect cell against toxic products of engulfed bacteria and premature apoptosis. At the same time the nuclear translocation of heat shock factor 1 (HSF-1) and activation of HSP70 gene transcription was noticed. Action of HSP70 might to postpone monocyte apoptosis through protecting cytoplasmic and nuclear proteins from damaging effect of bacterial products, what could be the defending mechanism against the toxic stress caused by engulfed bacteria and provide the immune cell with the sufficient amount of time required for neutralization of the bacteria from phagosomes, even at the expense of temporary lack of the protection of nuclear proteins.

  14. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2014-01-01

    Heat-induced hormesis, i.e. the beneficial effect of mild heat-induced stress, increases the average lifespan of many organisms. This effect, which depends on the heat shock factor, decreases the log mortality rate weeks after the stress has ceased. To identify candidate genes that mediate......-treated flies. Several hsp70 probe sets were up-regulated 1.7–2-fold in the mildly stressed flies weeks after the last heat treatment (P shock protein, Hsp70, is reported to return to normal levels of expression shortly after heat stress. We...... conclude that the heat shock response, and Hsp70 in particular, may be central to the heat-induced increase in the average lifespan in flies that are exposed to mild heat stress early in life....

  15. Identification and changes in the seasonal concentrations of heat shock proteins in roe deer (Capreolus capreolus) epididymides.

    Science.gov (United States)

    Majewska, A M; Kordan, W; Koziorowska-Gilun, M; Wysocki, P

    2017-02-01

    Heat shock proteins (HSPs) act as molecular chaperones with important regulatory functions. HSPs are considered to be essential factors in animal reproduction. In view of seasonal variations in the secretory activity of the reproductive tract of mature roe deer (Capreolus capreolus), the aims of this study were to identify HSPs in the epididymides and compare the expression of the identified proteins in three periods of the reproductive season. Two-dimensional polyacrylamide gel electrophoresis revealed the highest number of polypeptides in homogenates of epididymal tissues and in caput, corpus and cauda epididymal fluids throughout the reproductive season. Epididymal tissue homogenates and epididymal fluids were analysed by tandem mass spectrometry (MS/MS) to reveal 31 polypeptides with enzymatic activity, including polypeptides with antioxidant properties, structural and cell signalling functions. Moreover, among the identified polypeptides, five of them were similar to heat shock proteins: endoplasmin (Grp94); heat shock protein 90 kDa (HSP90); 78-kDa glucose-regulated protein (Grp78); chain A, the crystal structure of the human HSP70 ATPase domain and heat shock protein beta-1 isoform X. The concentrations of the analysed polypeptides, expressed in optical density units (ODU), differed significantly (p ≤ .05) across the examined periods of the reproductive season. The highest ODU values for almost all analysed proteins were observed during the rutting period. The presence of HSPs in the epididymal tissues and fluids of roe deer in different periods of the reproductive season could indicate that those proteins play an important role in sperm maturation in the epididymis. © 2016 Blackwell Verlag GmbH.

  16. Effect of Geranylgeranylacetone on Ultraviolet Radiation Type B-Induced Cataract in Heat-Shock Transcription Factor 1 Heterozygous Mouse.

    Science.gov (United States)

    Ogasawara, Satoshi; Hashizume, Kouhei; Okuno, Takashi; Imaizumi, Toshiyasu; Inomata, Yui; Tezuka, Yu; Sanbe, Atushi; Kurosaka, Daijiro

    2017-05-01

    We investigated whether heat-shock transcription factor 1 (HSF1) was involved in ultraviolet radiation type B (UVR-B)-induced lens opacity (cataract) using HSF1 heterozygous mice. We also examined the effects of geranylgeranylacetone (GGA), an inducer of heat-shock proteins via activation of HSF, on the UVR-B-induced cataract. Male HSF1 +/- and WT mice were unilaterally exposed to UVR-B (total: 1200mJ) at 16 weeks of age. At 48 h after the last UVR-B irradiation, the lens was isolated and the induction of the cataract was quantified as the cataract area ratio (opacity area/anterior capsule). GGA was orally administered at a dosage of 500 mg/kg once a day for two days before the first UVR-B exposure until the end of the experiment (21days in total). The HSF1 expression was more greatly decreased in the lens from HSF1 +/- mice than in that from WT mice (p B exposure could mainly induce cataracts in the anterior capsule in both HSF1 +/- and WT mice, while the opacity of the lens was markedly enhanced in HSF 1+/- mice compared to that in WT mice(p (0.01). GGA treatment could prevent the induction of lens opacity by UVR-B exposure in both WT and HSF1 +/- mice as compared with the non-administration group (p B radiation was seen in lens protein levels of αA-crystallin, αB-crystallin, or γ-crystallin with or without GGA administration among all groups of mice. In contrast to the crystallins, the lens protein level of HSP25 was decreased by UVR-B exposure in both HSF1 +/- and WT mice, and was significantly recovered in WT mice by the GGA treatment (p B-induced cataracts, possibly via regulation of HSPs such as HSP25.

  17. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus gallus).

    Science.gov (United States)

    Xie, Jingjing; Tang, Li; Lu, Lin; Zhang, Liyang; Xi, Lin; Liu, Hsiao-Ching; Odle, Jack; Luo, Xugang

    2014-01-01

    Heat stress due to high environmental temperature negatively influences animal performances. To better understand the biological impact of heat stress, laying broiler breeder chickens were subjected either to acute (step-wisely increasing temperature from 21 to 35°C within 24 hours) or chronic (32°C for 8 weeks) high temperature exposure. High temperature challenges significantly elevated body temperature of experimental birds (Pshock transcription factors (HSFs) and heat shock proteins (HSPs) 70 and 90 were differently affected by acute and chronic treatment. Tissue-specific responses to thermal challenge were also found among heart, liver and muscle. In the heart, acute heat challenge affected lipid oxidation (P = 0.05) and gene expression of all 4 HSF gene expression was upregulated (Pstress increased protein oxidation, but HSFs and HSPs gene expression remained unaltered. Only tendencies to increase were observed in HSP 70 (P = 0.052) and 90 (P = 0.054) gene expression after acute heat stress. The differential expressions of HSF and HSP genes in different tissues of laying broiler breeder chickens suggested that anti-heat stress mechanisms might be provoked more profoundly in the heart, by which the muscle was least protected during heat stress. In addition to HSP, HSFs gene expression could be used as a marker during acute heat stress.

  18. Errors in macromolecular synthesis after stress. A study of the possible protective role of the small heat shock proteinsBiochemistry

    NARCIS (Netherlands)

    Marin Vinader, L.

    2006-01-01

    The general goal of this thesis was to gain insight in what small heat shock proteins (sHsps) do with respect to macromolecular synthesis during a stressful situation in the cell. It is known that after a non-lethal heat shock, cells are better protected against a subsequent more severe heat shock,

  19. Heat Shock Protein 90 Inhibitor Decreases Collagen Synthesis of Keloid Fibroblasts and Attenuates the Extracellular Matrix on the Keloid Spheroid Model.

    Science.gov (United States)

    Lee, Won Jai; Lee, Ju Hee; Ahn, Hyo Min; Song, Seung Yong; Kim, Yong Oock; Lew, Dae Hyun; Yun, Chae-Ok

    2015-09-01

    The 90-kDa heat-shock protein (heat-shock protein 90) is an abundant cytosolic chaperone, and inhibition of heat-shock protein 90 by 17-allylamino-17-demethoxygeldanamycin (17-AAG) compromises transforming growth factor (TGF)-β-mediated transcriptional responses by enhancing TGF-β receptor I and II degradation, thus preventing Smad2/3 activation. In this study, the authors evaluated whether heat-shock protein 90 regulates TGF-β signaling in the pathogenesis and treatment of keloids. Keloid fibroblasts were treated with 17-AAG (10 μM), and mRNA levels of collagen types I and III were determined by real-time reverse- transcriptase polymerase chain reaction. Also, secreted TGF-β1 was assessed by enzyme-linked immunosorbent assay. The effect of 17-AAG on protein levels of Smad2/3 complex was determined by Western blot analysis. In addition, in 17-AAG-treated keloid spheroids, the collagen deposition and expression of major extracellular matrix proteins were investigated by means of Masson trichrome staining and immunohistochemistry. The authors found that heat-shock protein 90 is overexpressed in human keloid tissue compared with adjacent normal tissue, and 17-AAG decreased mRNA levels of type I collagen, secreted TGF-ß1, and Smad2/3 complex protein expression in keloid fibroblasts. Masson trichrome staining revealed that collagen deposition was decreased in 17-AAG-treated keloid spheroids, and immunohistochemical analysis showed that expression of collagen types I and III, elastin, and fibronectin was markedly decreased in 17-AAG-treated keloid spheroids. These results suggest that the antifibrotic action of heat-shock protein 90 inhibitors such as 17-AAG may have therapeutic effects on keloids.

  20. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles.

    Science.gov (United States)

    Heikkila, John J

    2017-01-01

    Small heat shock proteins (sHSPs) are a superfamily of molecular chaperones with important roles in protein homeostasis and other cellular functions. Amphibians, reptiles, fish and birds have a shsp gene called hsp30, which was also referred to as hspb11 or hsp25 in some fish and bird species. Hsp30 genes, which are not found in mammals, are transcribed in response to heat shock or other stresses by means of the heat shock factor that is activated in response to an accumulation of unfolded protein. Amino acid sequence analysis revealed that representative HSP30s from different classes of non-mammalian vertebrates were distinct from other sHSPs including HSPB1/HSP27. Studies with amphibian and fish recombinant HSP30 determined that they were molecular chaperones since they inhibited heat- or chemically-induced aggregation of unfolded protein. During non-mammalian vertebrate development, hsp30 genes were differentially expressed in selected tissues. Also, heat shock-induced stage-specific expression of hsp30 genes in frog embryos was regulated at the level of chromatin structure. In adults and/or tissue culture cells, hsp30 gene expression was induced by heat shock, arsenite, cadmium or proteasomal inhibitors, all of which enhanced the production of unfolded/damaged protein. Finally, immunocytochemical analysis of frog and chicken tissue culture cells revealed that proteotoxic stress-induced HSP30 accumulation co-localized with aggresome-like inclusion bodies. The congregation of damaged protein in aggresomes minimizes the toxic effect of aggregated protein dispersed throughout the cell. The current availability of probes to detect the presence of hsp30 mRNA or encoded protein has resulted in the increased use of hsp30 gene expression as a marker of proteotoxic stress in non-mammalian vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Circulating antibodies to inducible heat shock protein 70 in patients with uveitis

    NARCIS (Netherlands)

    de Smet, M. D.; Ramadan, A.

    2001-01-01

    Heat shock proteins with molecular weight 70 kDa (hsp70) are highly conserved immunogenic intracellular molecules. There are two main subtypes: one is expressed constitutively (hsc70), while the other is induced under stressful conditions (ihsp70). Using an ELISA directed against recombinant human

  2. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice.

    Science.gov (United States)

    Cheng, Q; Zhou, Y; Liu, Z; Zhang, L; Song, G; Guo, Z; Wang, W; Qu, X; Zhu, Y; Yang, D

    2015-03-01

    As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. The functional range of heat shock proteins to combat environmental toxicity

    International Nuclear Information System (INIS)

    Mahmood, K.; Mahmood, Q.; Pervez, A.; Nasreen, S.

    2012-01-01

    Almost all the organisms possess a system to cope with the harsh physiochemical factors of environment. Such a system is based on a group of stress genes, which show rapid responses in form of stress proteins, especially heat shock proteins, when cells are confronted with insult. Heat shock proteins are now known to express in response to variety of toxic and stress conditions including diseases. As a molecular chaperone, against cytotoxicity, these ensure the functional ability of cells by repairing the denatured proteins, cellular structures like cytoskeleton and centrosomes and processes dealing with protein synthesis are stabilized or repaired during a second stress in stress tolerant cells and organisms. In unstressed cells these play an imperative role in the synthesis and transport of normal proteins. Their role in certain diseases reveals their potential application in medical field. Certain Hsp are helpful in coping carcinogenicity caused environmental pollutants and have been suggested to have anti-apoptotic, anti stress and anti-allergic function. Their expression is tissue and species specific with respect to type, intensity and duration of a toxicant. These are developmentally regulated and help in process of differentiation and thus their abnormal regulation impairs the normal development. However, their role as bio marker in risk assessment of environmental pollution warrants further research. Due to broad functional range, therefore, present review is embracing the functional aspects of smaller and Hsp 70 families expressing in animals under toxic conditions. (author)

  4. Role of heat shock proteins in cell apoptosis

    Directory of Open Access Journals (Sweden)

    Arleta Kaźmierczuk

    2010-06-01

    Full Text Available Apoptosis is, apart from necrosis and autophagy, one of the possible cell death mechanisms eliminating needless, not normal or infected cells. This process ensures quantitative and qualitative cell control of organisms. Apoptosis is tightly regulated, it requires both activation of a large number of genes and energy input. Up-to-date two main apoptotic pathways have been recognized – external/receptor and internal, processed with the participation of mitochondria. Heat shock proteins HSPs, the molecules known from their chaperone activity and molecular conservatism, play essential functions in the course of apoptosis. Among that proteins family, i.e. HSP100, 90, 70, 60, 40 and small molecular (sHSP, there are agents mainly protective against programmed cell death. However, in some conditions some of these proteins may promote apoptosis. This review describes different key apoptotic proteins interacting with main members of HSP family and the consequence of these events for cell survival or apoptosis.

  5. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning.

    Science.gov (United States)

    Tung, Hsuan; Wei, Sung-Chan; Lo, Huei-Ru; Chao, Yu-Chan

    2016-01-01

    Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s) or factor(s) that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs) were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and

  6. Heat shock protein 70 promotes coxsackievirus B3 translation initiation and elongation via Akt-mTORC1 pathway depending on activation of p70S6K and Cdc2.

    Science.gov (United States)

    Wang, Fengping; Qiu, Ye; Zhang, Huifang M; Hanson, Paul; Ye, Xin; Zhao, Guangze; Xie, Ronald; Tong, Lei; Yang, Decheng

    2017-07-01

    We previously demonstrated that coxsackievirus B3 (CVB3) infection upregulated heat shock protein 70 (Hsp70) and promoted CVB3 multiplication. Here, we report the underlying mechanism by which Hsp70 enhances viral RNA translation. By using an Hsp70-overexpressing cell line infected with CVB3, we found that Hsp70 enhanced CVB3 VP1 translation at two stages. First, Hsp70 induced upregulation of VP1 translation at the initiation stage via upregulation of internal ribosome entry site trans-acting factor lupus autoantigen protein and activation of eIF4E binding protein 1, a cap-dependent translation suppressor. Second, we found that Hsp70 increased CVB3 VP1 translation by enhancing translation elongation. This was mediated by the Akt-mammalian target of rapamycin complex 1 signal cascade, which led to the activation of eukaryotic elongation factor 2 via p70S6K- and cell division cycle protein 2 homolog (Cdc2)-mediated phosphorylation and inactivation of eukaryotic elongation factor 2 kinase. We also determined the position of Cdc2 in this signal pathway, indicating that Cdc2 is regulated by mammalian target of rapamycin complex 1. This signal transduction pathway was validated using a number of specific pharmacological inhibitors, short interfering RNAs (siRNAs) and a dominant negative Akt plasmid. Because Hsp70 is a central component of the cellular network of molecular chaperones enhancing viral replication, these data may provide new strategies to limit this viral infection. © 2017 John Wiley & Sons Ltd.

  7. Analysis of transactivation potential of rice (Oryza sativa L.) heat shock factors.

    Science.gov (United States)

    Lavania, Dhruv; Dhingra, Anuradha; Grover, Anil

    2018-06-01

    Based on yeast one-hybrid assays, we show that the presence of C-terminal AHA motifs is not a prerequisite for transactivation potential in rice heat shock factors. Transcriptional activation or transactivation (TA) of heat stress responsive genes takes place by binding of heat shock factors (Hsfs) to heat shock elements. Analysis of TA potential of thirteen rice (Oryza sativa L.) Hsfs (OsHsfs) carried out in this study by yeast one-hybrid assay showed that OsHsfsA3 possesses strong TA potential while OsHsfs A1a, A2a, A2b, A4a, A4d, A5, A7b, B1, B2a, B2b, B2c and B4d lack TA potential. From a near complete picture of TA potential of the OsHsf family (comprising of 25 members) emerging from this study and an earlier report from our group (Mittal et al. in FEBS J 278(17):3076-3085, 2011), it is concluded that (1) overall, six OsHsfs, namely A3, A6a, A6b, A8, C1a and C1b possess TA potential; (2) four class A OsHsfs, namely A3, A6a, A6b and A8 have TA potential out of which A6a and A6b contain AHA motifs while A3 and A8 lack AHA motifs; (3) nine class A OsHsfs, namely A1a, A2a, A2b, A2e, A4a, A4d, A5, A7a and A7b containing AHA motif(s) lack TA function in the yeast assay system; (4) all class B OsHsfs lack AHA motifs and TA potential (B4a not analyzed) and (5) though all class C OsHsf members lack AHA motifs, two members C1a and C1b possess TA function, while one member C2a lacks TA potential (C2b not analyzed). Thus, the presence or absence of AHA motif is possibly not the only factor determining TA potential of OsHsfs. Our findings will help to identify the transcriptional activators of rice heat shock response.

  8. Role of the Escherichia coli grpE heat shock protein in the initiation of bacteriophage lambda DNA replication.

    Science.gov (United States)

    Osipiuk, J; Zylicz, M

    1991-01-01

    Initiation of replication of lambda DNA requires assembly of the proper nucleoprotein complex consisting of the lambda origin of replication-lambda O-lambda P-dnaB proteins. The dnaJ, dnaK and grpE heat shock proteins destabilize the lambda P-dnaB interaction in this complex permitting dnaB helicase to unwind lambda DNA near ori lambda sequence. First step of this disassembling reaction is the binding of dnaK protein to lambda P protein. In this report we examined the influence of dnaJ and grpE proteins on stability of the lambda P-dnaK complex. Our results show that grpE alone dissociates this complex, but both grpE and dnaJ together do not. These results suggest that, in the presence of grpE protein, dnaK protein has a higher affinity for lambda P protein complexed with dnaJ protein than in the situation where grpE protein is not used.

  9. Heat shock protection against cold stress of Drosophila melanogaster

    OpenAIRE

    Burton, Vicky; Mitchell, Herschel K.; Young, Patricia; Petersen, Nancy S.

    1988-01-01

    Heat shock protein synthesis can be induced during recovery from cold treatment of Drosophila melanogaster larvae. Survival of larvae after a cold treatment is dramatically improved by a mild heat shock just before the cold shock. The conditions which induce tolerance to cold are similar to those which confer tolerance to heat.

  10. Impact of Heat-Shock Treatment on Yellowing of Pak Choy Leaves

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang-yang; SHEN Lian-qing; YUAN Hai-na

    2004-01-01

    The physiological mechanism of maintaining the green colour of pak choy leaves (Brassica rapa var chinensis) with heat-shock treatment was studied. Chlorophyll in the outer leaves of pak choy degraded rapidly during storage at ambient temperature (20 ± 2℃), a slight yellow appeared. Heat-shock treatment (46- 50℃) had a mild effect on maintaining the green colour of outer leaves. Normal chlorophyll degradation was associated with a binding of chlorophyll with chlorophyll-binding-protein preceding chlorophyll breakdown.Heat-shock treatment was found to reduce the binding-capacity between chlorophyllbinding-protein and chlorophyll. In the chlorophyll degradation pathway, pheide dioxygenase was synthesized during leaf senescence which was considered to be a key enzyme in chlorophyll degradation. Activity of this enzyme was reduced following heat-shock treatment, which might explain the observed reduction in chlorophyll breakdown. Two groups of heat-shock proteins were detected in treated leaves, the first group containing proteins from 54KDa to 74 Kda, and the second group contained proteins from 15 KDa to 29KDa. Heat-shock treatment was also found to retard the decline of glucose and fructose (the main energy substrates) of outer leaves.

  11. Crystal structure of a small heat-shock protein from Xylella fastidiosa reveals a distinct high-order structure.

    Science.gov (United States)

    Fonseca, Emanuella Maria Barreto; Scorsato, Valéria; Dos Santos, Marcelo Leite; Júnior, Atilio Tomazini; Tada, Susely Ferraz Siqueira; Dos Santos, Clelton Aparecido; de Toledo, Marcelo Augusto Szymanski; de Souza, Anete Pereira; Polikarpov, Igor; Aparicio, Ricardo

    2017-04-01

    Citrus variegated chlorosis is a disease that attacks economically important citrus plantations and is caused by the plant-pathogenic bacterium Xylella fastidiosa. In this work, the structure of a small heat-shock protein from X. fastidiosa (XfsHSP17.9) is reported. The high-order structures of small heat-shock proteins from other organisms are arranged in the forms of double-disc, hollow-sphere or spherical assemblies. Unexpectedly, the structure reported here reveals a high-order architecture forming a nearly square cavity.

  12. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    Science.gov (United States)

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  13. The heat-shock protein/chaperone network and multiple stress resistance.

    Science.gov (United States)

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2017-04-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat-shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone 'client proteins', many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat-shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction

    NARCIS (Netherlands)

    Fuchs, Margit; Poirier, Dominic J.; Seguin, Samuel J.; Lambert, Herman; Carra, Serena; Charette, Steve J.; Landry, Jacques

    2010-01-01

    The molecular chaperone HspB8 [Hsp (heat-shock protein) B8] is member of the B-group of Hsps. These proteins bind to unfolded or misfolded proteins and protect them from aggregation. HspB8 has been reported to form a stable molecular complex with the chaperone cohort protein Bag3 (Bcl-2-associated

  15. Small heat shock protein message in etiolated Pea seedlings under altered gravity

    Science.gov (United States)

    Talalaiev, O.

    Plants are subjected to various environmental changes during their life cycle To protect themselves against unfavorable influences plant cells synthesize several classes of small heat shock proteins sHsp ranging in size from 15 to 30 kDa This proteins are able to enhance the refolding of chemically denatured proteins in an ATP-independent manner in other words they can function as molecular chaperones The potential contribution of effects of space flight at the plant cellular and gene regulation level has not been characterized yet The object of our study is sHsp gene expression in etiolated Pisum sativum seedlings exposed to altered gravity and environmental conditions We designed primers to detect message for two inducible forms of the cytosolic small heat shock proteins sHsp 17 7 and sHsp 18 1 Applying the RT- PCR we explore sHsps mRNA in pea seedling cells subjected to two types of altered gravity achieved by centrifugation from 3 to 8g by clinorotation 2 rpm and temperature elevation 42oC Temperature elevation as the positive control significantly increased PsHspl7 7 PsHspl8 1 expression We investigate the expression of actin it was constant and comparable for unstressed controls for all variants Results are under discussion

  16. Dynamics of the association of heat shock protein HSPA6 (Hsp70B') and HSPA1A (Hsp70-1) with stress-sensitive cytoplasmic and nuclear structures in differentiated human neuronal cells.

    Science.gov (United States)

    Shorbagi, Sadek; Brown, Ian R

    2016-11-01

    Heat shock proteins (Hsps) are cellular repair agents that counter the effects of protein misfolding that is a characteristic feature of neurodegenerative diseases. HSPA1A (Hsp70-1) is a widely studied member of the HSPA (Hsp70) family. The little-studied HSPA6 (Hsp70B') is present in the human genome and absent in mouse and rat; hence, it is missing in current animal models of neurodegenerative diseases. Differentiated human neuronal SH-SY5Y cells were employed to compare the dynamics of the association of YFP-tagged HSPA6 and HSPA1A with stress-sensitive cytoplasmic and nuclear structures. Following thermal stress, live-imaging confocal microscopy and Fluorescence Recovery After Photobleaching (FRAP) demonstrated that HSPA6 displayed a prolonged and more dynamic association, compared to HSPA1A, with centrioles that play critical roles in neuronal polarity and migration. HSPA6 and HSPA1A also targeted nuclear speckles, rich in RNA splicing factors, and the granular component of the nucleolus that is involved in rRNA processing and ribosomal subunit assembly. HSPA6 and HSPA1A displayed similar FRAP kinetics in their interaction with nuclear speckles and the nucleolus. Subsequently, during the recovery from neuronal stress, HSPA6, but not HSPA1A, localized with the periphery of nuclear speckles (perispeckles) that have been characterized as transcription sites. The stress-induced association of HSPA6 with perispeckles displayed the greatest dynamism compared to the interaction of HSPA6 or HSPA1A with other stress-sensitive cytoplasmic and nuclear structures. This suggests involvement of HSPA6 in transcriptional recovery of human neurons from cellular stress that is not apparent for HSPA1A.

  17. Heat shock protein 90 (Hsp90) chaperone complex. A molecular target for enhancement of thermosensitivity and radiosensitivity

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Nonaka, Tetsuo; Kitamoto, Yoshizumi; Sakurai, Hideyuki

    2002-01-01

    Heat shock protein 90 (Hsp90) is a highly conserved heat shock protein in animal and plants, and exists abundantly in the cytoplasm in unstressed condition, accounting for 1-2% in cytoplasmic proteins. Main difference of Hsp90 from other Hsps are its substrate that Hsp90 binds to. These substrates include various signal transduction proteins, kinase, steroid receptors and transcription factors, therefore, Hsp90 plays a key role in maintaining cellular signal transduction networks. Many chaperoned proteins (client proteins) of Hsp90 are associated with cellular proliferation or malignant transformation, thus Hsp90 chaperone complex has been focused as targets for cancer therapy. Among the client proteins, there are several molecules that have been defined as targets or factors for determination or enhancement of radiosensitivity or thermosensitivity. Thus, it is easily speculated that Hsp90 chaperone complex inhibitors that disrupt association of Hsp90 and client protein in combination with radiation or/and heat has potential effect on enhancement of radiosensitivity or thermosensitivity. In this paper, possible mechanisms in enhancing radiosensitivity or thermosensitivity according to the client proteins will be summarized. (author)

  18. The stress-induced heat shock protein 70.3 expression is regulated by a dual-component mechanism involving alternative polyadenylation and HuR.

    Science.gov (United States)

    Kraynik, Stephen M; Gabanic, Andrew; Anthony, Sarah R; Kelley, Melissa; Paulding, Waltke R; Roessler, Anne; McGuinness, Michael; Tranter, Michael

    2015-06-01

    Heat shock protein 70.3 (Hsp70.3) expression increases in response to cellular stress and plays a cytoprotective role. We have previously shown that Hsp70.3 expression is controlled through coordinated post-transcriptional regulation by miRNAs and alternative polyadenylation (APA), and APA-mediated shortening of the Hsp70.3 3'-UTR facilitates increased protein expression. A stress-induced increase in Hsp70.3 mRNA and protein expression is accompanied by alternative polyadenylation (APA)-mediated truncation of the 3'UTR of the Hsp70.3 mRNA transcript. However, the role that APA plays in stress-induced expression of Hsp70.3 remains unclear. Our results show that APA-mediated truncation of the Hsp70.3 3'UTR increases protein expression through enhanced polyribosome loading. Additionally, we demonstrate that the RNA binding protein HuR, which has been previously shown to play a role in mediating APA, is necessary for heat shock mediated increase in Hsp70.3 mRNA and protein. However, it is somewhat surprising to note that HuR does not play a role in APA of the Hsp70.3 mRNA, and these two regulatory events appear to be mutually exclusive regulators of Hsp70.3 expression. These results not only provide important insight to the regulation of stress response genes following heat shock, but also contribute an enhanced understanding of how alternative polyadenylation contributes to gene regulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows.

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-06-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pdairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future.

  20. Structure of intermediate shocks and slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Wu, B.H.; Lee, L.C.

    2005-01-01

    The structure of slow shocks and intermediate shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. This study is an extension of an earlier work [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002)], in which the effects of heat conduction are examined for the case that the tangential magnetic fields on the two side of initial current sheet are exactly antiparallel (B y =0). For the B y =0 case, a pair of slow shocks is formed as the result of evolution of the initial current sheet, and each slow shock consists of two parts: the isothermal main shock and the foreshock. In the present paper, cases with B y ≠0 are also considered, in which the evolution process leads to the presence of an additional pair of time-dependent intermediate shocks (TDISs). Across the main shock of the slow shock, jumps in plasma density, velocity, and magnetic field are significant, but the temperature is continuous. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. In contrast to the earlier study, the foreshock is found to reach a steady state with a constant width in the slow shock frame. In cases with B y ≠0, the plasma density and pressure increase and the magnetic field decreases across TDIS. The TDIS initially can be embedded in the slow shock's foreshock structure, and then moves out of the foreshock region. With an increasing B y , the propagation speed of foreshock leading edge tends to decrease and the foreshock reaches its steady state at an earlier time. Both the pressure and temperature downstreams of the main shock decrease with increasing B y . The results can be applied to the shock heating in the solar corona and

  1. PERAN HEAT SHOCK PROTEINS (HSP DALAM PATOGENESIS PENYAKIT OTOIMUN DI DALAM RONGGA MULUT

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar

    2015-08-01

    Full Text Available Heat Shock Proteins (HSP are highly conserved immunoreactive group of proteins found in microorganisms and animal/human tissue. In addition to heat, other stressful conditiions also induce stressed proteins, especially anorexia, heavy metal ion, exposure to H2O2 and infection by DNA or RNA viruses. Recent studies suggest the involvement of HSPs as autoantigens in autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, Bechet's syndrome, recurrent oral uclers, oral lichen planus and other. The HSPs 60 - 65 KDa might be involved in the pathogenesis of autoimmune diseases such as Bechet's syndrome, recurrent oral ulcers, and oral lichen planus. This paper will discuss the immunopathogenesis mechanism of those diseases induced by HSPs.

  2. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  3. Mild electrical stimulation with heat stimulation increase heat shock protein 70 in articular chondrocyte.

    Science.gov (United States)

    Hiraoka, Nobuyuki; Arai, Yuji; Takahashi, Kenji A; Mazda, Osam; Kishida, Tsunao; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Morino, Saori; Suico, Mary Ann; Kai, Hirofumi; Kubo, Toshikazu

    2013-06-01

    The objective of this study is to investigate the effects of mild electrical stimulation (MES) and heat stress (HS) on heat shock protein 70 (HSP70), that protects chondrocytes and enhances cartilage matrix metabolism, in chondrocyte and articular cartilage. Rabbit articular chondrocytes were treated with MES and/or HS. The safeness was assessed by LDH assay and morphology. HSP70 protein, ubiquitinated proteins and HSP70 mRNA were examined by Western blotting and real-time PCR. Rat knee joints were treated with MES and/or HS. HSP70 protein, ubiquitinated proteins, HSP70 mRNA and proteoglycan core protein (PG) mRNA in articular cartilage were investigated. In vitro, HS increased HSP70 mRNA and HSP70 protein. MES augmented ubiquitinated protein and HSP70 protein, but not HSP70 mRNA. MES + HS raised HSP70 mRNA and ubiquitinated protein, and significantly increased HSP70 protein. In vivo, HS and MES + HS treatment augmented HSP70 mRNA. HS modestly augmented HSP70 protein. MES + HS significantly increased HSP70 protein and ubiquitinated proteins. PG mRNA was markedly raised by MES + HS. This study demonstrated that MES, in combination with HS, increases HSP70 protein in chondrocytes and articular cartilage, and promotes cartilage matrix metabolism in articular cartilage. MES in combination with HS can be a novel physical therapy for osteoarthritis by inducing HSP70 in articular cartilage. Copyright © 2013 Orthopaedic Research Society.

  4. Detection of 70 kDa heat shock protein in the saliva of dairy cows.

    Science.gov (United States)

    Lamy, Elsa; Jurkovich, Viktor; Rodrigues, Lénia; Geraldo, Ana; Cachucho, Liliana; Silva, Flávio; Matos, Catarina; Capela E Silva, Fernando; Pinheiro, Cristina; Könyves, László; Bakony, Mikolt; Pereira, Alfredo

    2017-08-01

    This Research Communication describes, for the first time, the detection of HSP70 in saliva of dairy cows. Thermal stress is a major environmental stress that limits animal growth, metabolism, and productivity. The cellular response to heat stress involves the synthesis of heat shock proteins (HSPs), presumably to protect the functional stability of cells at increasing temperatures. HSP70 has been found to be present in cattle blood serum and may also be present in other secretory fluids, such as saliva, as already observed in humans. The aim of this study was to detect heat shock protein HSP70 in bovine saliva. Saliva samples were taken from higher- (n = 5) and lower milk producing (n = 5) Holstein-Friesian cows in summer and in winter for the detection of HSP70. HSP70 concentrations were assayed using the ELISA technique. Salivary HSP70 concentrations ranged from 0·524 to 12·174 ng/ml in cows. Higher salivary HSP70 concentrations were significantly associated with higher milk production and higher environmental temperature, but not with rectal temperature.

  5. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows*

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-01-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pheat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future. PMID:26055916

  6. Exercise induces the release of heat shock protein 72 from the human brain in vivo

    OpenAIRE

    Lancaster, G. I.; Møller, K.; Nielsen, B.; Secher, N. H.; Febbraio, M. A.; Nybo, L.

    2004-01-01

    The present study tested the hypothesis that in response to physical stress the human brain has the capacity to release heat shock protein 72 (Hsp72) in vivo. Therefore, 6 humans (males) cycled for 180 minutes at 60% of their maximal oxygen uptake, and the cerebral Hsp72 response was determined on the basis of the internal jugular venous to arterial difference and global cerebral blood flow. At rest, there was a net balance of Hsp72 across the brain, but after 180 minutes of exercise, we were...

  7. Caloric restriction induces heat shock response and inhibits B16F10 cell tumorigenesis both in vitro and in vivo

    Science.gov (United States)

    Novelle, Marta G.; Davis, Ashley; Price, Nathan L.; Ali, Ahmed; Fürer-Galvan, Stefanie; Zhang, Yongqing; Becker, Kevin; Bernier, Michel; de Cabo, Rafael

    2015-01-01

    Caloric restriction (CR) without malnutrition is one of the most consistent strategies for increasing mean and maximal lifespan and delaying the onset of age-associated diseases. Stress resistance is a common trait of many long-lived mutants and life-extending interventions, including CR. Indeed, better protection against heat shock and other genotoxic insults have helped explain the pro-survival properties of CR. In this study, both in vitro and in vivo responses to heat shock were investigated using two different models of CR. Murine B16F10 melanoma cells treated with serum from CR-fed rats showed lower proliferation, increased tolerance to heat shock and enhanced HSP-70 expression, compared to serum from ad libitum-fed animals. Similar effects were observed in B16F10 cells implanted subcutaneously in male C57BL/6 mice subjected to CR. Microarray analysis identified a number of genes and pathways whose expression profile were similar in both models. These results suggest that the use of an in vitro model could be a good alternative to study the mechanisms by which CR exerts its anti-tumorigenic effects. PMID:25948793

  8. Heat Shock Proteins: Pathogenic Role in Atherosclerosis and Potential Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Arman Kilic

    2012-01-01

    Full Text Available Heat shock proteins (HSPs are a highly conserved group of proteins that are constitutively expressed and function as molecular chaperones, aiding in protein folding and preventing the accumulation of misfolded proteins. In the arterial wall, HSPs have a protective role under normal physiologic conditions. In disease states, however, HSPs expressed on the vascular endothelial cell surface can act as targets for detrimental autoimmunity due to their highly conserved sequences. Developing therapeutic strategies for atherosclerosis based on HSPs is challenged by the need to balance such physiologic and pathologic roles of these proteins. This paper summarizes the role of HSPs in normal vascular wall processes as well as in the development and progression of atherosclerosis. The potential implications of HSPs in clinical therapies for atherosclerosis are also discussed.

  9. Overexpression of heat shock GroEL stress protein in leptospiral biofilm.

    Science.gov (United States)

    Vinod Kumar, K; Lall, Chandan; Vimal Raj, R; Vedhagiri, K; Kartick, C; Surya, P; Natarajaseenivasan, K; Vijayachari, P

    2017-01-01

    Leptospira is the causative agent of leptospirosis, which is an emerging zoonotic disease. Recent studies on Leptospira have demonstrated biofilm formation on abiotic surfaces. The protein expressed in the biofilm was investigated by using SDS-PAGE and immunoblotting in combination with MALDI-TOF mass spectrometry. The proteins expressed in Leptospira biofilm and planktonic cells was analyzed and compared. Among these proteins, one (60 kDa) was found to overexpress in biofilm as compared to the planktonic cells. MALDI-TOF analysis identified this protein as stress and heat shock chaperone GroEL. Our findings demonstrate that GroEL is associated with Leptospira biofilm. GroEL is conserved, highly immunogenic and a prominent stress response protein in pathogenic Leptospira spp., which may have clinical relevance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling

    Directory of Open Access Journals (Sweden)

    Ribeiro Daniela A

    2011-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic bacterium that has been successfully used in metal bioleaching. In this study, an analysis of the A. ferrooxidans ATCC 23270 genome revealed the presence of three sHSP genes, Afe_1009, Afe_1437 and Afe_2172, that encode proteins from the HSP20 family, a class of intracellular multimers that is especially important in extremophile microorganisms. Results The expression of the sHSP genes was investigated in A. ferrooxidans cells submitted to a heat shock at 40°C for 15, 30 and 60 minutes. After 60 minutes, the gene on locus Afe_1437 was about 20-fold more highly expressed than the gene on locus Afe_2172. Bioinformatic and phylogenetic analyses showed that the sHSPs from A. ferrooxidans are possible non-paralogous proteins, and are regulated by the σ32 factor, a common transcription factor of heat shock proteins. Structural studies using homology molecular modeling indicated that the proteins encoded by Afe_1009 and Afe_1437 have a conserved α-crystallin domain and share similar structural features with the sHSP from Methanococcus jannaschii, suggesting that their biological assembly involves 24 molecules and resembles a hollow spherical shell. Conclusion We conclude that the sHSPs encoded by the Afe_1437 and Afe_1009 genes are more likely to act as molecular chaperones in the A. ferrooxidans heat shock response. In addition, the three sHSPs from A. ferrooxidans are not recent paralogs, and the Afe_1437 and Afe_1009 genes could be inherited horizontally by A. ferrooxidans.

  11. Heat shock protein 10 (Hsp10) in immune-related diseases: one coin, two sides

    Science.gov (United States)

    Jia, Haibo; Halilou, Amadou I.; Hu, Liang; Cai, Wenqian; Liu, Jing; Huang, Bo

    2011-01-01

    Heat shock protein 10 (Hsp10) in eukaryotes, originally identified as a mitochondrial chaperone, now is also known to be present in cytosol, cell surface, extracellular space and peripheral blood. Functionally besides participating in mitochondrial protein folding in association with Hsp60, Hsp10 appears to be related to pregnancy, cancer and autoimmune inhibition. Hsp10 can be released to peripheral blood at very early time point of pregnancy and given another name called early pregnancy factor (EPF), which seems to play a critical role in developing a pregnant niche. In malignant disorders, Hsp10 is usually abnormally expressed in the cytosol of malignant cells and further released to extracellular space, resulting in tumor-promoting effect from various aspects. Furthermore, distinct from other heat shock protein members, whose soluble form is recognized as danger signal by immune cells and triggers immune responses, Hsp10 after release, however, is designed to be an inhibitory signal by limiting immune response. This review discusses how Hsp10 participates in various physiological and pathological processes from basic protein molecule folding to pregnancy, cancer and autoimmune diseases, and emphasizes how important the location is for the function exertion of a molecule. PMID:21969171

  12. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre; Hirt, Heribert; Bendahmane, Abdelhafid

    2016-01-01

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  13. The heat shock protein/chaperone network and multiple stress resistance

    KAUST Repository

    Jacob, Pierre

    2016-11-15

    Crop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone

  14. Apoptosis in response to heat stress is positively associated with heat-shock protein 90 expression in chicken myocardial cells in vitro.

    Science.gov (United States)

    Zhang, Xiao-Hui; Wu, Hong; Tang, Shu; Li, Qiao-Ning; Xu, Jiao; Zhang, Miao; Su, Ya-Nan; Yin, Bin; Zhao, Qi-Ling; Kemper, Nicole; Hartung, Joerg; Bao, En-Dong

    2017-06-30

    To determine heat-shock protein (Hsp)90 expression is connected with cellular apoptotic response to heat stress and its mechanism, chicken ( Gallus gallus ) primary myocardial cells were treated with the Hsp90 promoter, aspirin, and its inhibitor, geldanamycin (GA), before heat stress. Cellular viability, heat-stressed apoptosis and reactive oxygen species level under different treatments were measured, and the expression of key proteins of the signaling pathway related to Hsp90 and their colocalization with Hsp90 were detected. The results showed that aspirin treatment increased the expression of protein kinase B (Akt), the signal transducer and activator of transcription (STAT)-3 and p-IKKα/β and the colocalization of Akt and STAT-3 with Hsp90 during heat stress, which was accompanied by improved viability and low apoptosis. GA significantly inhibited Akt expression and p-IKKα/β level, but not STAT-3 quantity, while the colocalization of Akt and STAT-3 with Hsp90 was weakened, followed by lower cell viability and higher apoptosis. Aspirin after GA treatment partially improved the stress response and apoptosis rate of tested cells caused by the recovery of Akt expression and colocalization, rather than the level of STAT-3 (including its co-localization with Hsp90) and p-IKKα/β. Therefore, Hsp90 expression has a positive effect on cellular capacity to resist heat-stressed injury and apoptosis. Moreover, inhibition of Hsp90 before stress partially attenuated its positive effects.

  15. Destabilization and recovery of a yeast prion after mild heat shock.

    Science.gov (United States)

    Newnam, Gary P; Birchmore, Jennifer L; Chernoff, Yury O

    2011-05-06

    Yeast prion [PSI(+)] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI(+)] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI(+)]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI(+)] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI(+)] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI(+)] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Analysis of Msx1 and Msx2 transactivation function in the context of the heat shock 70 (Hspa1b) gene promoter.

    Science.gov (United States)

    Zhuang, Fengfeng; Nguyen, Manuel P; Shuler, Charles; Liu, Yi-Hsin

    2009-04-03

    Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent transactivation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and heat shock factors may play a contributing role.

  17. Crystallization and preliminary X-ray diffraction analysis of XAC1151, a small heat-shock protein from Xanthomonas axonopodis pv. citri belonging to the α-crystallin family

    Energy Technology Data Exchange (ETDEWEB)

    Hilario, Eduardo; Teixeira, Elaine Cristina; Pedroso, Gisele Audrei; Bertolini, Maria Célia [Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, Araraquara-SP (Brazil); Medrano, Francisco Javier, E-mail: fjmedrano@yahoo.com [Departamento de Cristalografia de Proteínas, Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas-SP (Brazil); Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, Araraquara-SP (Brazil)

    2006-05-01

    XAC1151, a small heat-shock protein from X. axonopodis pv. citri belonging to the α-crystallin family, was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 Å resolution using a synchrotron-radiation source. The hspA gene (XAC1151) from Xanthomonas axonopodis pv. citri encodes a protein of 158 amino acids that belongs to the small heat-shock protein (sHSP) family of proteins. These proteins function as molecular chaperones by preventing protein aggregation. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 Å resolution using a synchrotron-radiation source. The crystal belongs to the rhombohedral space group R3, with unit-cell parameters a = b = 128.7, c = 55.3 Å. The crystal structure was solved by molecular-replacement methods. Structure refinement is in progress.

  18. The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit

    International Nuclear Information System (INIS)

    Sabehat, A.; Weiss, D.; Lurie, S.

    1996-01-01

    Heating tomato fruit (Lycopersicon esculentum) for 48 h at 38 degrees C prevented chilling injury from developing after 21 d at 2 degrees C, whereas unheated fruit developed high levels of injury. Although the overall protein pattern as seen by Coomassie blue staining was similar from heated and unheated fruit, some high- and many low-molecular-mass proteins were observed in the heated fruit that were absent or present in reduced amounts in unheated fruit. When fruit were injected with [35S]methionine at harvest and then heated, they accumulated high levels of specific radiolabeled proteins that could still be detected after 21 d at 2 degrees C. If the fruit were held at 20 degrees C after heating, the label in the proteins declined rapidly and these fruit were also sensitive to chilling injury. Hsp70 antibody reacted more strongly with proteins from heated and chilled fruit than with proteins from chilled fruit. Hsp18.1 antibody reacted strongly with proteins from heated fruit but not with those from unheated fruit. A 23-kD protein, highly labeled in heated fruit but not in unheated fruit, had its amino terminus sequenced. To our knowledge, this is the first report showing a relationship between the persistence of heat-shock proteins and chilling tolerance in a plant tissue

  19. Heat Shock Proteins as Danger Signals for Cancer Detection

    International Nuclear Information System (INIS)

    Seigneuric, Renaud; Mjahed, Hajare; Gobbo, Jessica; Joly, Anne-Laure; Berthenet, Kevin; Shirley, Sarah; Garrido, Carmen

    2011-01-01

    First discovered in 1962, heat shock proteins (HSPs) are highly studied with about 35,500 publications on the subject to date. HSPs are highly conserved, function as molecular chaperones for a large panel of “client” proteins and have strong cytoprotective properties. Induced by many different stress signals, they promote cell survival in adverse conditions. Therefore, their roles have been investigated in several conditions and pathologies where HSPs accumulate, such as in cancer. Among the diverse mammalian HSPs, some members share several features that may qualify them as cancer biomarkers. This review focuses mainly on three inducible HSPs: HSP27, HPS70, and HSP90. Our survey of recent literature highlights some recurring weaknesses in studies of the HSPs, but also identifies findings that indicate that some HSPs have potential as cancer biomarkers for successful clinical applications.

  20. Inducing Heat Shock Proteins Enhances the Stemness of Frozen-Thawed Adipose Tissue-Derived Stem Cells.

    Science.gov (United States)

    Shaik, Shahensha; Hayes, Daniel; Gimble, Jeffrey; Devireddy, Ram

    2017-04-15

    Extensive research has been performed to determine the effect of freezing protocol and cryopreservation agents on the viability of adipose tissue-derived stromal/stem cells (ASCs) as well as other cells. Unfortunately, the conclusion one may draw after decades of research utilizing fundamentally similar cryopreservation techniques is that a barrier exists, which precludes full recovery. We hypothesize that agents capable of inducing a subset of heat shock proteins (HSPs) and chaperones will reduce the intrinsic barriers to the post-thaw recovery of ASCs. ASCs were exposed to 43°C for 1 h to upregulate HSPs, and the temporal HSP expression profile postheat shock was determined by performing quantitative polymerase chain reaction (PCR) and western blotting assays. The expression levels of HSP70 and HSP32 were found to be maximum at 3 h after the heat shock, whereas HSP90 and HSP27 remain unchanged. The heat shocked ASCs cryopreserved during maximal HSPs expression exhibited increased post-thaw viability than the nonheat shocked samples. Histochemical staining and quantitative reverse transcription-PCR indicated that the ASC differentiation potential was retained. Thus, suggesting that the upregulation of HSPs before a freezing insult is beneficial to ASCs and a potential alternative to the use of harmful cryoprotective agents.

  1. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    Science.gov (United States)

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Identification of cytosolic peroxisome proliferator binding protein as a member of the heat shock protein HSP70 family.

    Science.gov (United States)

    Alvares, K; Carrillo, A; Yuan, P M; Kawano, H; Morimoto, R I; Reddy, J K

    1990-01-01

    Clofibrate and many of its structural analogues induce proliferation of peroxisomes in the hepatic parenchymal cells of rodents and certain nonrodent species including primates. This induction is tissue specific, occurring mainly in the liver parenchymal cells and to a lesser extent in the kidney cortical epithelium. The induction of peroxisomes is associated with a predictable pleiotropic response, characterized by hepatomegaly, and increased activities and mRNA levels of certain peroxisomal enzymes. Using affinity chromatography, we had previously isolated a protein that binds to clofibric acid. We now show that this protein is homologous with the heat shock protein HSP70 family by analysis of amino acid sequences of isolated peptides from trypsin-treated clofibric acid binding protein and by cross-reactivity with a monoclonal antibody raised against the conserved region of the 70-kDa heat shock proteins. The clofibric acid-Sepharose column could bind HSP70 proteins isolated from various species, which could then be eluted with either clofibric acid or ATP. Conversely, when a rat liver cytosol containing multiple members of the HSP70 family was passed through an ATP-agarose column, and eluted with clofibric acid, only P72 (HSC70) was eluted. These results suggest that clofibric acid, a peroxisome proliferator, preferentially interacts with P72 at or near the ATP binding site. Images PMID:2371272

  3. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice.

    Science.gov (United States)

    Shen, Hai-Ying; He, Jin-Cai; Wang, Yumei; Huang, Qing-Yuan; Chen, Jiang-Fan

    2005-12-02

    As key molecular chaperone proteins, heat shock proteins (HSPs) represent an important cellular protective mechanism against neuronal cell death in various models of neurological disorders. In this study, we investigated the effect as well as the molecular mechanism of geldanamycin (GA), an inhibitor of Hsp90, on 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity, a mouse model of Parkinson disease. Neurochemical analysis showed that pretreatment with GA (via intracerebral ventricular injection 24 h prior to MPTP treatment) increased residual dopamine content and tyrosine hydroxylase immunoreactivity in the striatum 24 h after MPTP treatment. To dissect out the molecular mechanism underlying this neuroprotection, we showed that the GA-mediated protection against MPTP was associated with a reduction of cytosolic Hsp90 and an increase in Hsp70, with no significant changes in Hsp40 and Hsp25 levels. Furthermore, in parallel with the induction of Hsp70, striatal nuclear HSF1 levels and HSF1 binding to heat shock element sites in the Hsp70 promoter were significantly enhanced by the GA pretreatment. Together these results suggested that the molecular cascade leading to the induction of Hsp70 is critical to the neuroprotection afforded by GA against MPTP-induced neurotoxicity in the brain and that pharmacological inhibition of Hsp90 may represent a potential therapeutic strategy for Parkinson disease.

  4. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells

    International Nuclear Information System (INIS)

    Banzet, N.; Richaud, C.; Deveaux, Y.; Kazmaier, M.; Gagnon, J.; Triantaphylides, C.

    1998-01-01

    Changes in gene expression, by application of H2O2, O2.- generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2.- generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I-IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential

  5. Acute Heat Stress Changes Protein Expression in the Testes of a Broiler-Type Strain of Taiwan Country Chickens.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chan, Hong-Lin; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2018-03-19

    Heat stress leads to decreased fertility in roosters. This study investigated the global protein expression in response to acute heat stress in the testes of a broiler-type strain of Taiwan country chickens (TCCs). Twelve 45-week-old roosters were randomly allocated to the control group maintained at 25°C, and three groups subjected to acute heat stress at 38°C for 4 h, with 0, 2, and 6 h of recovery, respectively. Testis samples were collected for hematoxylin and eosin staining, apoptosis assay, and protein analysis. The results revealed 101 protein spots that differed significantly from the control following exposure to acute heat stress. The proteins that were differentially expressed participated mainly in protein metabolism and other metabolic processes, responses to stimuli, apoptosis, cellular organization, and spermatogenesis. Proteins that negatively regulate apoptosis were downregulated and proteins involved in autophagy and major heat shock proteins (HSP90α, HSPA5, and HSPA8) were upregulated in the testes of heat-stressed chickens. In conclusion, acute heat stress causes a change in protein expression in the testes of broiler-type B strain TCCs and may thus impair cell morphology, spermatogenesis, and apoptosis. The expression of heat shock proteins increased to attenuate the testicular injury induced by acute heat stress.

  6. Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90

    Science.gov (United States)

    Kitson, Russell R. A.; Chang, Chuan-Hsin; Xiong, Rui; Williams, Huw E. L.; Davis, Adrienne L.; Lewis, William; Dehn, Donna L.; Siegel, David; Roe, S. Mark; Prodromou, Chrisostomos; Ross, David; Moody, Christopher J.

    2013-01-01

    The benzoquinone ansamycin geldanamycin and its derivatives are inhibitors of heat shock protein Hsp90, an emerging target for novel therapeutic agents both in cancer and in neurodegeneration. However, toxicity of these compounds to normal cells has been ascribed to reaction with thiol nucleophiles at the quinone 19-position. We reasoned that blocking this position would ameliorate toxicity, and that it might also enforce a favourable conformational switch of the trans-amide group into the cis-form required for protein binding. We report here an efficient synthesis of such 19-substituted compounds and realization of our hypotheses. Protein crystallography established that the new compounds bind to Hsp90 with, as expected, a cis-amide conformation. Studies on Hsp90 inhibition in cells demonstrated the molecular signature of Hsp90 inhibitors: decreases in client proteins with compensatory increases in other heat shock proteins in both human breast cancer and dopaminergic neural cells, demonstrating their potential for use in the therapy of cancer or neurodegenerative diseases. PMID:23511419

  7. Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride.

    Science.gov (United States)

    Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram

    2017-09-01

    Acute fluoride (F - ) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F - induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F - -intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F - for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F - -intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F - -treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F - -induced heart failure.

  8. Inhibiting Heat-Shock Protein 90 Reverses Sensory Hypoalgesia in Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Michael J Urban

    2010-07-01

    Full Text Available Increasing the expression of Hsp70 (heat-shock protein 70 can inhibit sensory neuron degeneration after axotomy. Since the onset of DPN (diabetic peripheral neuropathy is associated with the gradual decline of sensory neuron function, we evaluated whether increasing Hsp70 was sufficient to improve several indices of neuronal function. Hsp90 is the master regulator of the heat-shock response and its inhibition can up-regulate Hsp70. KU-32 (N-{7-[(2R, 3R, 4S, 5R-3, 4-dihydroxy-5-methoxy-6, 6-dimethyl-tetrahydro-2H-pyran-2-yloxy]-8-methyl-2-oxo-2H-chromen-3-yl}acetamide was developed as a novel, novobiocin-based, C-terminal inhibitor of Hsp90 whose ability to increase Hsp70 expression is linked to the presence of an acetamide substitution of the prenylated benzamide moiety of novobiocin. KU-32 protected against glucose-induced death of embryonic DRG (dorsal root ganglia neurons cultured for 3 days in vitro. Similarly, KU-32 significantly decreased neuregulin 1-induced degeneration of myelinated Schwann cell DRG neuron co-cultures prepared from WT (wild-type mice. This protection was lost if the co-cultures were prepared from Hsp70.1 and Hsp70.3 KO (knockout mice. KU-32 is readily bioavailable and was administered once a week for 6 weeks at a dose of 20 mg/kg to WT and Hsp70 KO mice that had been rendered diabetic with streptozotocin for 12 weeks. After 12 weeks of diabetes, both WT and Hsp70 KO mice developed deficits in NCV (nerve conduction velocity and a sensory hypoalgesia. Although KU-32 did not improve glucose levels, HbA1c (glycated haemoglobin or insulin levels, it reversed the NCV and sensory deficits in WT but not Hsp70 KO mice. These studies provide the first evidence that targeting molecular chaperones reverses the sensory hypoalgesia associated with DPN.

  9. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    Science.gov (United States)

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5

  10. Anyalysis of Msx1 and Msx2 Transactivation Function in the Context of the Heat Shock 70 (Hspa1b) Gene Promoter

    Science.gov (United States)

    Zhuang, Fengfeng; Nguyen, Manuel P.; Shuler, Charles; Liu, Yi-Hsin

    2009-01-01

    Previous studies have shown that Msx proteins control gene transcription predominantly through repression mechanisms. However, gene expression studies using either the gain-of-function or the loss-of-function mutants revealed many gene targets whose expression require functional Msx proteins. To date, investigations into the mechanisms of Msx-dependent trans-activation have been hindered by the lack of a responsive promoter. Here, we demonstrated the usefulness of the mouse Hspa1b promoter in probing Msx-dependent mechanisms of gene activation. We showed that Msx protein activates Hspa1b promoter via its C-terminal domain. The activation absolutely depends on the HSEs and physical interactions between Msx proteins and Heat shock factors may play a contributing role. PMID:19338779

  11. Heat Tolerance Induction of the Indian Meal Moth (Lepidoptera: Pyralidae) Is Accompanied by Upregulation of Heat Shock Proteins and Polyols.

    Science.gov (United States)

    Kim, Minhyun; Lee, Seunghee; Chun, Yong Shik; Na, Jahyun; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun

    2017-08-01

    The Indian meal moth, Plodia interpunctella, causes massive damage to stored grains and processed foods. Heat treatment has been widely used to control insect pests infesting stored grains. However, heat treatment may result in unsatisfactory control owing to heat tolerance of target insects. This study quantified the heat tolerance and analyzed its induction in P. interpunctella. Susceptibility of P. interpunctella to different high temperatures was assessed in all developmental stages. Heat treatment at 44 °C for 1 h caused significant mortalities to all developmental stages, with late-instar larvae exhibiting the highest tolerance. However, the survivorship to heat treatment was significantly increased by pre-exposure to 37 °C for 30 min. The induction of heat tolerance was accompanied by upregulation of two heat shock proteins of Hsc70 and Hsp90. Trehalose and glycerol concentrations in the hemolymph also increased after pre-exposure to 37 °C for 30 min. RNA interference (RNAi) by specific double-stranded RNAs effectively suppressed the inducible expressions of both Hsc70 and Hsp90 in response to 37 °C for 30 min. Either RNAi of Hsc70 or Hsp90 significantly impaired the heat tolerance induction of P. interpunctella. These results suggest that the induction of heat tolerance in P. interpunctella involves the upregulation of these heat shock proteins and hemolymph polyol levels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    Science.gov (United States)

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Nuclear transport of heat shock proteins in stressed cells

    International Nuclear Information System (INIS)

    Chughtai, Zahoor Saeed

    2001-01-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or β-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-β-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single β-importin gene. With this assay I have identified Nmd5p as a β-importin required to concentrate Star-β-galactosidase in nuclei of stationary phase cells. (author)

  14. Nuclear transport of heat shock proteins in stressed cells

    Energy Technology Data Exchange (ETDEWEB)

    Chughtai, Zahoor Saeed

    2001-07-01

    Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy , and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the heat shock protein hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of nutrient-depleted cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. Upon starvation, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or {beta}-gaIactosidase to nuclei. To determine whether nuclear accumulation of Star-{beta}-galactosidase depends on a specific nuclear carrier, I have analyzed its distribution in mutant yeast strains that carry a deletion of a single {beta}-importin gene. With this assay I have identified Nmd5p as a {beta}-importin required to concentrate Star-{beta}-galactosidase in nuclei of stationary phase cells. (author)

  15. Downregulation of heat shock protein B8 decreases osteogenic differentiation potential of dental pulp stem cells during in vitro proliferation.

    Science.gov (United States)

    Flanagan, M; Li, C; Dietrich, M A; Richard, M; Yao, S

    2018-04-01

    Tissue-derived stem cells, such as dental pulp stem cells (DPSCs), reduce differentiation capability during in vitro culture. We found that cultured DPSCs reduce expression of heat shock protein B8 (HspB8) and GIPC PDZ domain containing family member 2 (Gipc2). Our objectives were to evaluate the changes in DPSC composition during in vitro proliferation and to determine whether HspB8 and Gipc2 have function in differentiation potential of DPSCs. Different passages of rat DPSCs were evaluated for changes in CD90+ and/or CD271+ stem cells and changes in osteogenic potential. Real-time RT-PCR and immunostaining were conducted to determine expression of HspB8 and Gipc2. Expression of the genes in DPSCs was knocked down by siRNA, followed by osteogenic induction to evaluate the function of the genes. About 90% of cells in the DPSC cultures were CD90+ and/or CD271+ cells without dramatic change during in vitro proliferation. The DPSCs at passages 3 to 5 (P3 to P5) possess strong osteogenic potential, but such potential was greatly reduced at later passages. Expression of HspB8 and Gipc2 was significantly reduced at P11 versus P3. Knock-down of HspB8 expression abolished osteogenic potential of the DPSCs, but knock-down of Gipc2 had no effect. CD90+ and CD271+ cells are the major components of DPSCs in in vitro culture. High-level expression of HspB8 was critical for maintaining differentiation potential of DPSCs. © 2017 John Wiley & Sons Ltd.

  16. Heat shock protein 70 and heat shock protein 90 expression in light- and dark-adapted adult octopus retinas.

    Science.gov (United States)

    Ochoa, Gina H; Clark, Ying Mei; Matsumoto, Brian; Torres-Ruiz, Jose A; Robles, Laura J

    2002-02-01

    Light- and dark-adaptation leads to changes in rhabdom morphology and photopigment distribution in the octopus retina. Molecular chaperones, including heat shock proteins (Hsps), may be involved in specific signaling pathways that cause changes in photoreceptor actin- and tubulin-based cytoskeletons and movement of the photopigments, rhodopsin and retinochrome. In this study, we used immunoblotting, in situ RT-PCR, immunofluorescence and confocal microscopy to localize the inducible form of Hsp70 and the larger Hsp90 in light- and dark-adapted and dorsal and ventral halves of adult octopus retinas. The Hsps showed differences in distribution between the light and dark and in dorsal vs. ventral position in the retina. Double labeling confocal microscopy co-localized Hsp70 with actin and tubulin, and Hsp90 with the photopigment, retinochrome. Our results demonstrate the presence of Hsp70 and Hsp90 in otherwise non-stressed light- and dark-adapted octopus retinas. These Hsps may help stabilize the cytoskeleton, important for rhabdom structure, and are perhaps involved in the redistribution of retinochrome in conditions of light and dark.

  17. Circulating heat shock proteins in women with a history of recurrent vulvovaginitis.

    Science.gov (United States)

    Giraldo, P C; Ribeiro-Filho, A D; Simões, J A; Neuer, A; Feitosa, S B; Witkin, S S

    1999-01-01

    OBJECTIVE: Predisposing factors influencing recurrences of bacterial vaginosis (BV) or vaginitis from Candida remain unidentified for most women. As a component of studies to determine host susceptibility factors to genital tract infections in women, we measured expression of the 60-kDa and 70-kDa heat shock proteins (hsp60 and hsp70, respectively) in the circulation of women with or without a history of recurrent BV or candidal vaginitis and with or without a current lower genital tract infection. Heat shock protein expression is associated with a down-regulation of pro-inflammatory immune responses that would inhibit microbial infection. METHOD: The investigators measured hsp60 and hsp70, antibodies to these proteins, the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha), and the anti-inflammatory cytokine interleukin-10 (IL-10) in sera by ELISA. The study population consisted of 100 women who attended a gynecology clinic in Campinas, Brazil. Of those, 55 had a history of recurrent vulvovaginitis (RV), while 45 were controls with no such history. Only women who were asymptomatic for at least 1 month were studied. RESULTS: Although all were asymptomatic, clinical and microbiological examination revealed that five of the women with a history of RV and two controls had a current candidal vaginal infection; 16 RV patients and 12 controls had BV; and six RV patients had both BV and candidiasis. Twenty-eight RV patients and 31 controls had no clinical or microbiological detectable vaginal infection. Among the RV patients, hsp60 and hsp70 were more prevalent in those with current BV (40.9% and 50.0%, respectively) or a candidal infection (45.5% and 54.5%) than in women with no current infection (21.4% and 17.9%). In the women with no history of RV, BV was not associated with a high prevalence of hsp60 (8.3%) or hsp70 (8.3%). Interleukin-10 and TNF were not more prevalent in vaginitis patients or controls with a current candidal infection or BV than in

  18. Structure of fast shocks in the presence of heat conduction

    International Nuclear Information System (INIS)

    Tsai, C. L.; Chen, H. H.; Wu, B. H.; Lee, L. C.

    2007-01-01

    There are three types of magnetohydrodynamic (MHD) shocks: the fast shock, intermediate shock, and slow shock. The structure of slow shocks and intermediate shocks in the presence of heat conduction has been studied earlier [C. L. Tsai, R. H. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 9, 1185 (2002); C. L. Tsai, B. H. Wu, and L. C. Lee, Phys. Plasmas 12, 82501 (2005)]. Based on one-dimensional MHD numerical simulations with a heat conduction term, the evolution and structure of fast shocks are studied. The fast shock will form a foreshock in the presence of heat conduction. The foreshock is formed due to the heat flow from downstream to upstream and located in the immediate upstream of the main shock. In the steady state, the value of diffusion velocity V d in the foreshock is found to nearly equal the upstream convection velocity in the fast shock frame. It is found that the density jump across the main shock in high Mach number case can be much larger than 4 in the early simulation time. However the density jump will gradually evolve to a value smaller than 4 at steady state. By using the modified Rankine-Hugoniot relations with heat flux, the density jump across the fast shock is examined for various upstream parameters. The results show that the calculated density jump with heat flux is very close to the simulation value and the density jump can far exceed the maximum value of 4 without heat conduction. The structure of foreshock and main shock is also studied under different plasma parameters, such as the heat conductivity K 0 , the ratio of upstream plasma pressure to magnetic pressure β 1 , Alfven Mach number M A1 , and the angle θ 1 between shock normal and magnetic field. It is found that as the upstream shock parameters K 0 , β 1 , and M A1 increase or θ 1 decreases, the width of foreshock L d increases. The present results can be applied to fast shocks in the solar corona, solar wind, and magnetosphere, in which the heat conduction effects are

  19. Characterization of CaHsp70-1, a Pepper Heat-Shock Protein Gene in Response to Heat Stress and Some Regulation Exogenous Substances in Capsicum annuum L.

    Science.gov (United States)

    Guo, Meng; Zhai, Yu-Fei; Lu, Jin-Ping; Chai, Lin; Chai, Wei-Guo; Gong, Zhen-Hui; Lu, Ming-Hui

    2014-01-01

    Pepper (Capsicum annuum L.) is sensitive to heat stress (HS). Heat shock proteins 70 (Hsp70s) play a crucial role in protecting plant cells against HS and control varies characters in different plants. However, CaHsp70-1 gene was not well characterized in pepper. In this study, CaHsp70-1 was cloned from the pepper thermotolerant line R9, which encoded a protein of 652 amino acids, with a molecular weight of 71.54 kDa and an isoelectric point of 5.20. CaHsp70-1 belongs to the cytosolic Hsp70 subgroup, and best matched with tomato SlHsp70. CaHsp70-1 was highly induced in root, stem, leaf and flower in R9 with HS treatment (40 °C for 2 h). In both thermosensitive line B6 and thermotolerant line R9, CaHsp70-1 significantly increased after 0.5 h of HS (40 °C), and maintained in a higher level after 4 h HS. The expression of CaHsp70-1 induced by CaCl2, H2O2 and putrescine (Put) under HS were difference between B6 and R9 lines. The different expression patterns may be related to the differences in promoters of CaHsp70-1 from the two lines. These results suggest that CaHsp70-1 as a member of cytosolic Hsp70 subgroup, may be involved in HS defense response via a signal transduction pathway contained Ca2+, H2O2 and Put. PMID:25356507

  20. Prokaryotic expression of chicken interferon-γ fusion protein and its effect on expression of poultry heat shock protein 70 under heat stress.

    Science.gov (United States)

    Sun, Jinhua; Chen, Yinglin; Qin, Feiyue; Guan, Xueting; Xu, Wei; Xu, Liangmei

    2017-06-01

    Interferons have attracted considerable attention due to their vital roles in the host immune response and low induction of antibiotic resistance. In this study, total RNA was extracted from spleen cells of chicken embryos inoculated with Newcastle disease vaccine, and the full-length chicken interferon-γ (ChIFN-γ) gene was amplified by RT-PCR. The full complementary DNA sequence of the ChIFN-γ gene was 495 bp long and was cloned into the prokaryotic expression vector pProEX™HT b . The plasmid was transformed into Escherichia coli DH5α and the expression of ChIFN-γ was induced by isopropyl β-D-1-thiogalactopyranoside. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis and Western blot results showed the expressed fusion protein had a molecular weight of approximately 18 kDa and was recognized by an anti-His mAb. Moreover, ChIFN-γ was found to demonstrate anti-viral activity in vitro. To test the in vivo function of ChIFN-γ in broilers under heat stress, a total of 100 broilers were randomly assigned to either a control group or a treated group, in which they were hypodermically injected with recombinant ChIFN-γ. Results demonstrated ChIFN-γ affects the messenger RNA expression levels of heat shock protein 70 (HSP70) in the heart and lung tissues, and decreases the concentration of HSP70 in serum. Therefore, we conclude recombinant ChIFN-γ can reduce heat stress to some extent in vivo. © 2016 Japanese Society of Animal Science.

  1. Effects of long-term heat stress and dietary restriction on the expression of genes of steroidogenic pathway and small heat-shock proteins in rat testicular tissue.

    Science.gov (United States)

    Bozkaya, F; Atli, M O; Guzeloglu, A; Kayis, S A; Yildirim, M E; Kurar, E; Yilmaz, R; Aydilek, N

    2017-08-01

    The aim was to investigate the effects of long-term heat stress and dietary restriction on the expression of certain genes involving in steroidogenic pathway and small heat-shock proteins (sHSPs) in rat testis. Sprague Dawley rats (n = 24) were equally divided into four groups. Group I and II were kept at an ambient temperature of 22°C, while Groups III and IV were reared at 38°C for 9 weeks. Feed was freely available for Group I and Group III, while Group II and Group IV were fed 60% of the diet consumed by their ad libitum counterparts. At the end of 9 weeks, testicles were collected under euthanasia. Total RNA was isolated from testis tissue samples. Expression profiles of the genes encoding androgen-binding protein, follicle-stimulating hormone receptor, androgen receptor, luteinising hormone receptor, steroidogenic acute regulatory protein (StAR), cyclooxygenase-2 and sHSP genes were assessed at mRNA levels using qPCR. Long-term heat stress decreased the expression of StAR and HspB10 genes while dietary restriction upregulated StAR gene expression. The results suggested that long-term heat stress negatively affected the expression of StAR and HspB10 genes and the dietary restriction was able to reverse negative effect of heat stress on the expression of StAR gene in rat testis. © 2016 Blackwell Verlag GmbH.

  2. Heat Shock Protein-Inducing Property of Diarylheptanoid Containing Chalcone Moiety from Alpinia katsumadai

    Directory of Open Access Journals (Sweden)

    Joo-Won Nam

    2017-10-01

    Full Text Available A new diarylheptanoid containing a chalcone moiety, katsumain H (1, was isolated from the seeds of Alpinia katsumadai. The structure was elucidated using a combination of 1D/2D NMR spectroscopy and mass spectrometry data analysis. The absolute configurations of C-3, C-5, and C-7 in 1 were assigned based on its optical rotation and after comparing its NMR chemical shifts with those of its diastereoisomers, katsumain E and katsumain F, which were previously isolated from this plant and characterized. In this study, the stimulatory effects of compounds 1 and 2 were evaluated on heat shock factor 1 (HSF1, heat shock protein 27 (HSP27, and HSP70. Compounds 1 and 2 increased the expression of HSF1 (1.056- and 1.200-fold, respectively, HSP27 (1.312- and 1.242-fold, respectively, and HSP70 (1.234- and 1.271-fold, respectively, without increased cytotoxicity.

  3. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.

    Science.gov (United States)

    Weidmann, Stéphanie; Maitre, Magali; Laurent, Julie; Coucheney, Françoise; Rieu, Aurélie; Guzzo, Jean

    2017-04-17

    Lactococcus lactis is a lactic acid bacterium widely used in cheese and fermented milk production. During fermentation, L. lactis is subjected to acid stress that impairs its growth. The small heat shock protein (sHsp) Lo18 from the acidophilic species Oenococcus oeni was expressed in L. lactis. This sHsp is known to play an important role in protein protection and membrane stabilization in O. oeni. The role of this sHsp could be studied in L. lactis, since no gene encoding for sHsp has been detected in this species. L. lactis subsp. cremoris strain MG1363 was transformed with the pDLhsp18 plasmid, which is derived from pDL278 and contains the hsp18 gene (encoding Lo18) and its own promoter sequence. The production of Lo18 during stress conditions was checked by immunoblotting and the cellular distribution of Lo18 in L. lactis cells after heat shock was determined. Our results clearly indicated a role for Lo18 in cytoplasmic protein protection and membrane stabilization during stress. The production of sHsp in L. lactis improved tolerance to heat and acid conditions in this species. Finally, the improvement of the L. lactis survival in milk medium thanks to Lo18 was highlighted, suggesting an interesting role of this sHsp. These findings suggest that the expression of a sHsp by a L. lactis strain results in greater resistance to stress, and, can consequently enhance the performances of industrial strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus.

    Directory of Open Access Journals (Sweden)

    Vladimír Kostál

    Full Text Available BACKGROUND: The Pyrrhocoris apterus (Insecta: Heteroptera adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps and the role of Hsps during repair of heat- and cold-induced injury. PRINCIPAL FINDINGS: The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70 and cognate forms (PaHsc70 were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR and corresponding protein (Western blotting were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. CONCLUSION: Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus.

  5. Ultraviolet filters and heat shock proteins: effects in Chironomus riparius by benzophenone-3 and 4-methylbenzylidene camphor.

    Science.gov (United States)

    Martín-Folgar, Raquel; Aquilino, Mónica; Ozáez, Irene; Martínez-Guitarte, José-Luis

    2018-01-01

    Benzophenone-3 (BP3) and 4-methylbenzylidene camphor (4MBC) are common ultraviolet filters (UV filters), compounds considered as emergent contaminants, used in different products like plastics and personal care products. The levels of these compounds are rising in the wild, but the effects they have on invertebrates are poorly understood. Chironomus riparius is a benthic insect widely used in toxicology, and several studies have been previously performed in our laboratory to determine the effects these compounds have on this organism at the molecular level. We have shown that UV filters can alter the mRNA levels of heat shock protein 70 (Hsp70), one of the most studied heat shock proteins. Although these proteins are crucial for the survival of organisms, little data is available on the effects these emergent contaminants have on them, especially in invertebrates. Here, we analyzed the transcriptional activity of 12 genes covering the different groups of heat shock protein [Hsp10, Hsp17, Hsp21, Hsp22, Hsp23, Hsp24, Hsp27, Hsp34, Hsp40, Hsp60, Hsc70 (3), and Hsc70 (4)] in response to 0.1 and 1 mg/L concentrations of BP3 and 4MBC at 8 and 24 h. The results showed that some small Hsp (sHsp) genes were altered by these compounds, while the genes of proteins present in mitochondria, Hsp10 and Hsp60, did not change. sHsps are also involved in developmental processes, so the observed variations could be due to the endocrine disruption activity described for these compounds rather than to a stress response.

  6. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Jacobsen, Susanne; Hammer, Karin

    1997-01-01

    The bacterium Lactococcus lactis has become a model organism in studies of growth physiology and membrane transport, as a result of its simple fermentative metabolism. It is also used as a model for studying the importance of specific genes and functions during lie in excess nutrients, by compari...... the timing during heat stress although at a lower induction level. These data indicate an overlap between the heat shock and salt stress responses in L. lactis......., by comparison of prototrophic wild-type strains and auxotrophic domesticated (daily) strains. In a study of the capacity of domesticated strains to perform directed responses toward various stress conditions, we have analyzed the heat and salt stress response in the established L,. lactis subsp. cremoris...... laboratory strain MG1363, which was originally derived from a dairy strain, After two-dimensional separation of proteins, the DnaK, GroEL, and GroES heat shock proteins, the HrcA (Orf1) heat shack repressor, and the glycolytic enzymes pyruvate kinase, glyceral-dehyde-3-phosphate dehydrogenase...

  7. The role of heat shock protein (HSP as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture

    Directory of Open Access Journals (Sweden)

    Sri Wigati Mardi Mulyani

    2014-03-01

    Full Text Available Background: The concept of stem cell therapy is one of the new hope as a medical therapy on salivary gland defect. However, the lack of viability of the transplanted stem cells survival rate led to the decrease of effectiveness of stem cell therapy. The underlying assumption in the decrease of viability and function of stem cells is an increase of apoptosis incidence. It suggests that the microenvironment in the area of damaged tissues is not conducive to support stem cell viability. One of the microenvironment is the hypoxia condition. Several scientific journals revealed that the administration of hypoxic cell culture can result in stress cells but on the other hand the stress condition of the cells also stimulates heat shock protein 27 (HSP 27 as antiapoptosis through inhibition of caspase 9. Purpose: The purpose of this study was to examine the role of heat shock protein 27 as inhibitor apoptosis in hypoxic conditions of bone marrow stem cell culture. Methods: Stem cell culture was performed in hypoxic conditions (O2 1% and measured the resistance to apoptosis through HSP 27 and caspase 9 expression of bone marrow mesenchymal stem cells by using immunoflorecence and real time PCR. Results: The result of study showed that preconditioning hypoxia could inhibit apoptosis through increasing HSP 27 and decreasing level of caspase 9. Conclusion: The study suggested that hypoxic precondition could reduce apoptosis by increasing amount of heat shock protein 27 and decreasing caspase 9.Latar belakang: Konsep terapi stem cell merupakan salah satu harapan baru sebagai terapi medis kelainan kelenjar ludah. Namun, rendahnya viabilitas stem cell yang ditransplantasikan menyebabkan penurunan efektivitas terapi. Asumsi yang mendasari rendahnya viabilitas dan fungsi stem cell adalah tingginya kejadian apoptosis. Hal ini menunjukkan bahwa lingkungan mikro di daerah jaringan yang rusak tidak kondusif untuk mendukung viabilitas stem cell. Salah satu lingkungan

  8. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis.

    Science.gov (United States)

    Kumar, Mukesh; Busch, Wolfgang; Birke, Hannah; Kemmerling, Birgit; Nürnberger, Thorsten; Schöffl, Friedrich

    2009-01-01

    In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdf1.2a/b in mutant plants. The Pdf expression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdf genes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses.

  9. Characterization and expression of genes encoding three small heat shock proteins in Sesamia inferens (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2014-12-12

    The pink stem borer, Sesamia inferens (Walker), is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs) encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens.

  10. Characterization and Expression of Genes Encoding Three Small Heat Shock Proteins in Sesamia inferens (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Meng Sun

    2014-12-01

    Full Text Available The pink stem borer, Sesamia inferens (Walker, is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens.

  11. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster.

    Science.gov (United States)

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J; Nielsen, Mark; Hussain, Saber M; Rowe, John J

    2010-02-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 microg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity. Copyright 2009 Elsevier Inc. All rights reserved.

  12. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Ahamed, Maqusood; Posgai, Ryan; Gorey, Timothy J.; Nielsen, Mark; Hussain, Saber M.; Rowe, John J.

    2010-01-01

    Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 μg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity.

  13. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology.

    Science.gov (United States)

    Kiang, J G; Tsokos, G C

    1998-11-01

    Heat shock proteins (HSPs) are detected in all cells, prokaryotic and eukaryotic. In vivo and in vitro studies have shown that various stressors transiently increase production of HSPs as protection against harmful insults. Increased levels of HSPs occur after environmental stresses, infection, normal physiological processes, and gene transfer. Although the mechanisms by which HSPs protect cells are not clearly understood, their expression can be modulated by cell signal transducers, such as changes in intracellular pH, cyclic AMP, Ca2+, Na+, inositol trisphosphate, protein kinase C, and protein phosphatases. Most of the HSPs interact with other proteins in cells and alter their function. These and other protein-protein interactions may mediate the little understood effects of HSPs on various cell functions. In this review, we focus on the structure of the HSP-70 family (HSP-70s), regulation of HSP-70 gene expression, their cytoprotective effects, and the possibility of regulating HSP-70 expression through modulation of signal transduction pathways. The clinical importance and therapeutic potential of HSPs are discussed.

  14. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans.

    Directory of Open Access Journals (Sweden)

    Martin L Duennwald

    Full Text Available How small heat shock proteins (sHsps might empower proteostasis networks to control beneficial prions or disassemble pathological amyloid is unknown. Here, we establish that yeast sHsps, Hsp26 and Hsp42, inhibit prionogenesis by the [PSI+] prion protein, Sup35, via distinct and synergistic mechanisms. Hsp42 prevents conformational rearrangements within molten oligomers that enable de novo prionogenesis and collaborates with Hsp70 to attenuate self-templating. By contrast, Hsp26 inhibits self-templating upon binding assembled prions. sHsp binding destabilizes Sup35 prions and promotes their disaggregation by Hsp104, Hsp70, and Hsp40. In yeast, Hsp26 or Hsp42 overexpression prevents [PSI+] induction, cures [PSI+], and potentiates [PSI+]-curing by Hsp104 overexpression. In vitro, sHsps enhance Hsp104-catalyzed disaggregation of pathological amyloid forms of α-synuclein and polyglutamine. Unexpectedly, in the absence of Hsp104, sHsps promote an unprecedented, gradual depolymerization of Sup35 prions by Hsp110, Hsp70, and Hsp40. This unanticipated amyloid-depolymerase activity is conserved from yeast to humans, which lack Hsp104 orthologues. A human sHsp, HspB5, stimulates depolymerization of α-synuclein amyloid by human Hsp110, Hsp70, and Hsp40. Thus, we elucidate a heretofore-unrecognized human amyloid-depolymerase system that could have applications in various neurodegenerative disorders.

  15. Induction of Heat Shock Protein Expression in Cervical Epithelial Cells by Human Semen

    Directory of Open Access Journals (Sweden)

    J. C. Jeremias

    1999-01-01

    Full Text Available Objective: The 70kD heat shock protein (Hsp70, induced when cells are subjected to environmental stress, prevents the denaturation and incorrect folding of polypeptides and may expedite replication and transmission of DNA and RNA viruses. We analyzed whether messenger RNA (mRNA for Hsp70 was expressed following exposure of a cultured human cervical cell line (HeLa cells to human semen or in cervical cells from sexually active women.

  16. The Heat Shock Protein 26 Gene is Required for Ethanol Tolerance in Drosophila

    Directory of Open Access Journals (Sweden)

    Awoyemi A. Awofala

    2011-01-01

    Full Text Available Stress plays an important role in drug- and addiction-related behaviours. However, the mechanisms underlying these behavioural responses are still poorly understood. In the light of recent reports that show consistent regulation of many genes encoding stress proteins including heat shock proteins following ethanol exposure in Drosophila , it was hypothesised that transition to alcohol dependence may involve the dysregulation of the circuits that mediate behavioural responses to stressors. Thus, behavioural genetic methodologies were used to investigate the role of the Drosophila hsp26 gene, a small heat shock protein coding gene which is induced in response to various stresses, in the development of rapid tolerance to ethanol sedation. Rapid tolerance was quantified as the percentage difference in the mean sedation times between the second and first ethanol exposure. Two independently isolated P-element mutations near the hsp26 gene eliminated the capacity for tolerance. In addition, RNAi-mediated functional knockdown of hsp26 expression in the glial cells and the whole nervous system also caused a defect in tolerance development. The rapid tolerance phenotype of the hsp26 mutants was rescued by the expression of the wild-type hsp26 gene in the nervous system. None of these manipulations of the hsp26 gene caused changes in the rate of ethanol absorption. Hsp26 genes are evolutionary conserved, thus the role of hsp26 in ethanol tolerance may present a new direction for research into alcohol dependency.

  17. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    Science.gov (United States)

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  18. Manipulating heat shock protein expression in laboratory animals.

    Science.gov (United States)

    Tolson, J Keith; Roberts, Stephen M

    2005-02-01

    Upregulation of heat shock proteins (Hsps) has been observed to impart resistance to a wide variety of physical and chemical insults. Elucidation of the role of Hsps in cellular defense processes depends, in part, on the ability to manipulate Hsp expression in laboratory animals. Simple methods of inducing whole body hyperthermia, such as warm water immersion or heating pad application, are effective in producing generalized expression of Hsps. Hsps can be upregulated locally with focused direct or indirect heating, such as with ultrasound or with laser or microwave radiation. Increased Hsp expression in response to toxic doses of xenobiotics has been commonly observed. Some pharmacologic agents are capable of altering Hsps more specifically by affecting processes involved in Hsp regulation. Gene manipulation offers the ability to selectively increase or decrease individual Hsps. Knockout mouse strains and Hsp-overexpressing transgenics have been used successfully to examine the role of specific Hsps in protection against hyperthermia, chemical insults, and ischemia-reperfusion injury. Gene therapy approaches also offer the possibility of selective alteration of Hsp expression. Some methods of increasing Hsp expression have application in specialized areas of research, such cold response, myocardial protection from exercise, and responses to stressful or traumatic stimuli. Each method of manipulating Hsp expression in laboratory animals has advantages and disadvantages, and selection of the best method depends upon the experimental objectives (e.g., the alteration in Hsp expression needed, its timing, and its location) and resources available.

  19. Effects of a heat shock protein inducer on the atrial fibrillation substrate caused by acute atrial ischaemia

    NARCIS (Netherlands)

    Sakabe, Masao; Shiroshita-Takeshita, Akiko; Maguy, Ange; Brundel, Bianca J. J. M.; Fujiki, Akira; Inoue, Hiroshi; Nattel, Stanley

    2008-01-01

    Aims Heat shock proteins (HSPs) are a set of endogenous cytoprotective factors activated by various pathological conditions. This study addressed the effects of geranylgeranylacetone (GGA), an orally active HSP inducer, on the atrial fibrillation (AF) substrate associated with acute atria( ischaemia

  20. An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response.

    Science.gov (United States)

    Myouga, Fumiyoshi; Motohashi, Reiko; Kuromori, Takashi; Nagata, Noriko; Shinozaki, Kazuo

    2006-10-01

    Analysis of albino or pale-green (apg) mutants is important for identifying nuclear genes responsible for chloroplast development and pigment synthesis. We have identified 38 apg mutants by screening 11 000 Arabidopsis Ds-tagged lines. One mutant, apg6, contains a Ds insertion in a gene encoding APG6 (ClpB3), a homologue of the heat-shock protein Hsp101 (ClpB1). We isolated somatic revertants and identified two Ds-tagged and one T-DNA-tagged mutant alleles of apg6. All three alleles gave the same pale-green phenotype. These results suggest that APG6 is important for chloroplast development. The APG6 protein contains a transit peptide and is localized in chloroplasts. The plastids of apg6 pale-green cells were smaller than those of the wild type, and contained undeveloped thylakoid membranes. APG6 mRNA accumulated in response to heat shock in various organs, but not in response to other abiotic stresses. Under normal conditions, APG6 is constitutively expressed in the root tips, the organ boundary region, the reproductive tissues of mature plants where plastids exist as proplastids, and slightly in the stems and leaves. In addition, constitutive overexpression of APG6 in transgenic plants inhibited chloroplast development and resulted in a mild pale-green phenotype. The amounts of chloroplast proteins related to photosynthesis were markedly decreased in apg6 mutants. These results suggest that APG6 functions as a molecular chaperone involved in plastid differentiation mediating internal thylakoid membrane formation and conferring thermotolerance to chloroplasts during heat stress. The APG6 protein is not only involved in heat-stress response in chloroplasts, but is also essential for chloroplast development.

  1. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  2. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    Science.gov (United States)

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  3. Heat Shock Protein 90 regulates encystation in Entamoeba

    Directory of Open Access Journals (Sweden)

    Meetali eSingh

    2015-10-01

    Full Text Available Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely – trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90 in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba.

  4. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms

    DEFF Research Database (Denmark)

    Rohde, Mikkel; Daugaard, Mads; Jensen, Mette Hartvig

    2005-01-01

    Whereas the stress-inducible heat-shock protein 70 (Hsp70) has gained plenty of attention as a putative target for tumor therapy, little is known about the role of other Hsp70 proteins in cancer. Here we present the first thorough analysis of the expression and function of the cytosolic Hsp70...... proteins in human cancer cells and identify Hsp70-2, a protein essential for spermatogenesis, as an important regulator of cancer cell growth. Targeted knock-down of the individual family members by RNA interference revealed that both Hsp70 and Hsp70-2 were required for cancer cell growth, whereas...

  5. Heat Shock Proteins and Mitogen-activated Protein Kinases in Steatotic Livers Undergoing Ischemia-Reperfusion: Some Answers

    Science.gov (United States)

    Massip-Salcedo, Marta; Casillas-Ramirez, Araní; Franco-Gou, Rosah; Bartrons, Ramón; Ben Mosbah, Ismail; Serafin, Anna; Roselló-Catafau, Joan; Peralta, Carmen

    2006-01-01

    Ischemic preconditioning protects steatotic livers against ischemia-reperfusion (I/R) injury, but just how this is achieved is poorly understood. Here, I/R or preconditioning plus I/R was induced in steatotic and nonsteatotic livers followed by investigating the effect of pharmacological treatments that modulate heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs). MAPKs, HSPs, protein kinase C, and transaminase levels were measured after reperfusion. We report that preconditioning increased HSP72 and heme-oxygenase-1 (HO-1) at 6 and 24 hours of reperfusion, respectively. Unlike nonsteatotic livers, steatotic livers benefited from HSP72 activators (geranylgeranylacetone) throughout reperfusion. This protection seemed attributable to HO-1 induction. In steatotic livers, preconditioning and geranylgeranylacetone treatment (which are responsible for HO-1 induction) increased protein kinase C activity. HO-1 activators (cobalt(III) protoporphyrin IX) protected both liver types. Preconditioning reduced p38 MAPK and c-Jun N-terminal kinase (JNK), resulting in HSP72 induction though HO-1 remained unmodified. Like HSP72, both p38 and JNK appeared not to be crucial in preconditioning, and inhibitors of p38 (SB203580) and JNK (SP600125) were less effective against hepatic injury than HO-1 activators. These results provide new data regarding the mechanisms of preconditioning and may pave the way to the development of new pharmacological strategies in liver surgery. PMID:16651615

  6. Heat Shock Proteins in Vascular Diabetic Complications: Review and Future Perspective

    Directory of Open Access Journals (Sweden)

    Stefania Bellini

    2017-12-01

    Full Text Available Heat shock proteins (HSPs are a large family of proteins highly conserved throughout evolution because of their unique cytoprotective properties. Besides assisting protein refolding and regulating proteostasis under stressful conditions, HSPs also play an important role in protecting cells from oxidative stress, inflammation, and apoptosis. Therefore, HSPs are crucial in counteracting the deleterious effects of hyperglycemia in target organs of diabetes vascular complications. Changes in HSP expression have been demonstrated in diabetic complications and functionally related to hyperglycemia-induced cell injury. Moreover, associations between diabetic complications and altered circulating levels of both HSPs and anti-HSPs have been shown in clinical studies. HSPs thus represent an exciting therapeutic opportunity and might also be valuable as clinical biomarkers. However, this field of research is still in its infancy and further studies in both experimental diabetes and humans are required to gain a full understanding of HSP relevance. In this review, we summarize current knowledge and discuss future perspective.

  7. Simple, economical heat-shock devices for zebrafish housing racks.

    Science.gov (United States)

    Duszynski, Robert J; Topczewski, Jacek; LeClair, Elizabeth E

    2011-12-01

    One reason for the popularity of the zebrafish (Danio rerio) as a model vertebrate is the ability to manipulate gene expression in this organism. A common method is to induce gene expression transiently under control of a heat-shock promoter (e.g., hsp70l). By making simple mechanical adjustments to small aquarium heaters (25-50W), we were able to produce consistent and reliable heat-shock conditions within a conventional zebrafish housing system. Up to two heat-shock intervals per day (>37°C) could be maintained under conditions of continuous flow (5-25 mL/min). Temperature logging every 30 s indicated rapid warm up times, consistent heat-shock lengths, and accurate and precise peak water temperatures (mean±SD=38°C±0.2°C). The biological effects of these heat-shock treatments were confirmed by observing inducible expression of enhanced green fluorescent protein (EGFP) and inhibition of caudal fin regeneration in a transgenic fish line expressing a dominant negative fibroblast growth factor receptor (Tg(hsp70l:dnfgfr1-EGFP)(pd1)). These devices are inexpensive, easily modified, and can be calibrated to accommodate a variety of experimental designs. After setup on a programmable timer, the heaters require no intervention to produce consistent daily heat shocks, and all other standard care protocols can be followed in the fish facility. The simplicity and stability of these devices make them suitable for long-term heat shocks at any stage of the zebrafish lifecycle (>7 days postfertilization), and useful for both laboratory and classroom experiments on transgenic zebrafish.

  8. Heat shock proteins on the human sperm surface.

    Science.gov (United States)

    Naaby-Hansen, Soren; Herr, John C

    2010-01-01

    The sperm plasma membrane is known to be critical to fertilization and to be highly regionalized into domains of head, mid- and principal pieces. However, the molecular composition of the sperm plasma membrane and its alterations during genital tract passage, capacitation and the acrosome reaction remains to be fully dissected. A two-dimensional gel-based proteomic study previously identified 98 human sperm proteins which were accessible for surface labelling with both biotin and radioiodine. In this report twelve dually labelled protein spots were excised from stained gels or PDVF membranes and analysed by mass spectrometry (MS) and Edman degradation. Seven members from four different heat shock protein (HSP) families were identified including HYOU1 (ORP150), HSPC1 (HSP86), HSPA5 (Bip), HSPD1 (HSP60), and several isoforms of the two testis-specific HSP70 chaperones HSPA2 and HSPA1L. An antiserum raised against the testis-specific HSPA2 chaperone reacted with three 65kDa HSPA2 isoforms and three high molecular weight surface proteins (78-79kDa, 84kDa and 90-93kDa). These proteins, together with seven 65kDa HSP70 forms, reacted with human anti-sperm IgG antibodies that blocked in vitro fertilization in humans. Three of these surface biotinylated human sperm antigens were immunoprecipitated with a rabbit antiserum raised against a linear peptide epitope in Chlamydia trachomatis HSP70. The results indicate diverse HSP chaperones are accessible for surface labelling on human sperm. Some of these share epitopes with C. trachomatis HSP70, suggesting an association between genital tract infection, immunity to HSP70 and reproductive failure. 2009 Elsevier Ireland Ltd. All rights reserved.

  9. Circulating Heat Shock Protein 70 in Health, Aging and Disease

    Directory of Open Access Journals (Sweden)

    Demanet Christian

    2011-03-01

    Full Text Available Abstract Background Heat shock proteins (Hsp are ubiquitously synthesised in virtually all species and it is hypothesised that they might have beneficial health effects. Recent studies have identified circulating Hsp as an important mediator in inflammation - the effects of low-grade inflammation in the aging process are overwhelming. While much is known about intracellular Hsp70, scant data exist on circulating Hsp70 in the aging context. Therefore, the objectives of this study were to investigate the effect of age and disease on circulating Hsp70 and, in particular, to evaluate the association between circulating Hsp70 and inflammatory parameters. Results Serum Hsp70, Interleukin (IL -10, IL-6 and Tumor Necrosis Factor (TNF alpha concentrations were determined in 90 hospitalised geriatric patients (aged 83 ± 6 years and in 200 community-dwelling control subjects (100 elderly, aged 74 ± 5 years, and 100 young, aged 23 ± 3 years. In the community-dwelling elderly, serum Hsp70 and IL-10 concentrations were significantly lower and IL-6 was significantly higher when compared to healthy young control subjects. Elderly patients presenting inflammation (CRP serum levels ≥5 mg/L showed significantly (p = 0.007 higher Hsp70 values; and Hsp70 correlated positively (p Conclusions The present data provide new evidence that serum concentration of Hsp70 decreases with age in a normal population. Our study also shows that higher levels of Hsp70 are associated with inflammation and frailty in elderly patients.

  10. In situ detection of a heat-shock regulatory element binding protein using a soluble short synthetic enhancer sequence

    Energy Technology Data Exchange (ETDEWEB)

    Harel-Bellan, A; Brini, A T; Farrar, W L [National Cancer Institute, Frederick, MD (USA); Ferris, D K [Program Resources, Inc., Frederick, MD (USA); Robin, P [Institut Gustave Roussy, Villejuif (France)

    1989-06-12

    In various studies, enhancer binding proteins have been successfully absorbed out by competing sequences inserted into plasmids, resulting in the inhibition of the plasmid expression. Theoretically, such a result could be achieved using synthetic enhancer sequences not inserted into plasmids. In this study, a double stranded DNA sequence corresponding to the human heat shock regulatory element was chemically synthesized. By in vitro retardation assays, the synthetic sequence was shown to bind specifically a protein in extracts from the human T cell line Jurkat. When the synthetic enhancer was electroporated into Jurkat cells, not only the enhancer was shown to remain undegraded into the cells for up to 2 days, but also its was shown to bind intracellularly a protein. The binding was specific and was modulated upon heat shock. Furthermore, the binding protein was shown to be of the expected molecular weight by UV crosslinking. However, when the synthetic enhancer element was co-electroporated with an HSP 70-CAT reporter construct, the expression of the reporter plasmid was consistently enhanced in the presence of the exogenous synthetic enhancer.

  11. Acquired Thermotolerance and Heat Shock Proteins in Thermophiles from the Three Phylogenetic Domains

    DEFF Research Database (Denmark)

    Trent, Jonathan D.; Gabrielsen, Mette; Jensen, Bo

    1994-01-01

    Thermophilic organisms from each of the three phylogenetic domains (Bacteria, Archaea, and Eucarya) acquired thermotolerance after heat shock. Bacillus caldolyticus grown at 60 degrees C and heat shocked at 69 degrees C for 10 min showed thermotolerance at 74 degrees C, Sulfolobus shibatae grown...

  12. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity.

    Science.gov (United States)

    Park, Chang-Jin; Seo, Young-Su

    2015-12-01

    As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

  13. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

    Directory of Open Access Journals (Sweden)

    Chang-Jin Park

    2015-12-01

    Full Text Available As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs or resistance (R proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

  14. Small heat-shock proteins and leaf cooling capacity account for the unusual heat tolerance of the central spike leaves in Agave tequilana var. Weber.

    Science.gov (United States)

    Luján, Rosario; Lledías, Fernando; Martínez, Luz María; Barreto, Rita; Cassab, Gladys I; Nieto-Sotelo, Jorge

    2009-12-01

    Agaves are perennial crassulacean acid metabolism (CAM) plants distributed in tropical and subtropical arid environments, features that are attractive for studying the heat-shock response. In agaves, the stress response can be analysed easily during leaf development, as they form a spirally shaped rosette, having the meristem surrounded by folded leaves in the centre (spike) and the unfolded and more mature leaves in the periphery. Here, we report that the spike of Agave tequilana is the most thermotolerant part of the rosette withstanding shocks of up to 55 degrees C. This finding was inconsistent with the patterns of heat-shock protein (Hsp) gene expression, as maximal accumulation of Hsp transcripts was at 44 degrees C in all sectors (spike, inner, middle and outer). However, levels of small HSP (sHSP)-CI and sHSP-CII proteins were conspicuously higher in spike leaves at all temperatures correlating with their thermotolerance. In addition, spike leaves showed a higher stomatal density and abated more efficiently their temperature several degrees below that of air. We propose that the greater capacity for leaf cooling during the day in response to heat stress, and the elevated levels of sHSPs, constitute part of a set of strategies that protect the SAM and folded leaves of A. tequilana from high temperatures.

  15. Systemic release of cytokines and heat shock proteins in porcine models of polytrauma and hemorrhage

    Science.gov (United States)

    Baker, Todd A.; Romero, Jacqueline; Bach, Harold H.; Strom, Joel A.; Gamelli, Richard L.; Majetschak, Matthias

    2011-01-01

    Objective To define systemic release kinetics of a panel of cytokines and heat shock proteins (HSP) in porcine polytrauma/hemorrhage models and to evaluate whether they could be useful as early trauma biomarkers. Design and Setting Prospective study in a research laboratory. Subjects Twenty-one Yorkshire pigs. Measurements and Main Results Pigs underwent polytrauma (femur fractures/lung contusion, P), hemorrhage (mean arterial pressure 25-30mmHg, H), polytrauma plus hemorrhage (P/H) or sham procedure (S). Plasma was obtained at baseline, in 5-15min intervals during a 60min shock period without intervention and in 60-120min intervals during fluid resuscitation for up to 300min. Plasma was assayed for IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12/IL-23p40, IL-13, IL-17, IL-18, IFNγ, TGFβ, TNFα, HSP40, HSP70 and HSP90 by ELISA. All animals after S, P and H survived (n=5/group). Three of six animals after P/H died. IL-10 increased during shock after P and this increase was attenuated after H. TNFα increased during the shock period after P, H and also after S. P/H abolished the systemic IL-10 and TNFα release and resulted in 20-30% increased levels of IL-6 during shock. As fluid resuscitation was initiated TNFα and IL-10 levels decreased after P, H and P/H, HSP 70 increased after P, IL-6 levels remained elevated after P/H and also increased after P and S. Conclusions Differential regulation of the systemic cytokine release after polytrauma and/or hemorrhage, in combination with the effects of resuscitation, can explain the variability and inconsistent association of systemic cytokine/HSP levels with clinical variables in trauma patients. Insults of major severity (P/H) partially suppress the systemic inflammatory response. The plasma concentrations of the measured cytokines/HSPs do not reflect injury severity or physiological changes in porcine trauma models and are unlikely to be able to serve as useful trauma biomarkers in patients. PMID:21983369

  16. Expression of Heat Shock Protein 27 in Benign Prostatic Hyperplasia with Chronic Inflammation

    OpenAIRE

    Jiang, Yuqing; Wang, Xiuli; Guo, Yuexian; Li, Wenping; Yang, Shijie; Li, Wei; Cai, Wenqing

    2015-01-01

    Background Heat shock protein 27 (HSP 27) is known as a mediator in immune response and has been recently found to be expressed in prostate cancer. This study aimed to investigate the role of HSP27 in inflammatory BPH. Material/Methods Hospitalized BPH patients who received TURP were divided into 4 groups by the presence and degrees of chronic inflammation: non-inflammatory BPH (NI BPH), mild-inflammatory BPH (MI BPH), moderate-inflammatory BPH (MOI BPH), and severe-inflammatory BPH (SI BPH)....

  17. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    Science.gov (United States)

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic PreconditioningCraig...

  18. Short-term heat shock affects the course of immune response in Galleria mellonella naturally infected with the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Vertyporokh, Lidiia; Taszłow, Paulina; Samorek-Pieróg, Małgorzata; Wojda, Iwona

    2015-09-01

    We aimed to investigate how exposition of infected insects to short-term heat shock affects the biochemical and molecular aspects of their immune response. Galleria mellonella larvae were exposed to 43°C for 15min, at the seventy second hour after natural infection with entomopathogenic fungus Beauveria bassiana. As a result, both qualitative and quantitative changes in hemolymph protein profiles, and among them infection-induced changes in the amount of apolipophorin III (apoLp-III), were observed. Heat shock differently affects the expression of the tested immune-related genes. It transiently inhibits expression of antifungal peptides gallerimycin and galiomicin in both the fat body and hemocytes of infected larvae. The same, although to a lesser extent, concerned apoLp-III gene expression and was observed directly after heat shock. Nevertheless, in larvae that had recovered from heat shock, apoLp-III expression was higher in comparison to unshocked larvae in the fat body but not in hemocytes, which was consistent with the higher amount of this protein detected in the hemolymph of the infected, shocked larvae. Furthermore, lysozyme-type activity was higher directly after heat shock, while antifungal activity was significantly higher also in larvae that had recovered from heat shock, in comparison to the respective values in their non-shocked, infected counterparts. These results show how changes in the external temperature modulate the immune response of G. mellonella suffering from infection with its natural pathogen B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study.

    Science.gov (United States)

    Wang, Yongfei; Lin, Shoukai; Song, Qi; Li, Kuan; Tao, Huan; Huang, Jian; Chen, Xinhai; Que, Shufu; He, Huaqin

    2014-05-07

    Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors. In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities. Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/.

  20. Expression of small heat shock proteins from pea seedlings under gravity altered conditions

    Science.gov (United States)

    Talalaev, Alexandr S.

    2005-08-01

    A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.

  1. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards.

    Science.gov (United States)

    Takii, Ryosuke; Fujimoto, Mitsuaki; Matsuura, Yuki; Wu, Fangxu; Oshibe, Namiko; Takaki, Eiichi; Katiyar, Arpit; Akashi, Hiroshi; Makino, Takashi; Kawata, Masakado; Nakai, Akira

    2017-01-01

    Cells cope with temperature elevations, which cause protein misfolding, by expressing heat shock proteins (HSPs). This adaptive response is called the heat shock response (HSR), and it is regulated mainly by heat shock transcription factor (HSF). Among the four HSF family members in vertebrates, HSF1 is a master regulator of HSP expression during proteotoxic stress including heat shock in mammals, whereas HSF3 is required for the HSR in birds. To examine whether only one of the HSF family members possesses the potential to induce the HSR in vertebrate animals, we isolated cDNA clones encoding lizard and frog HSF genes. The reconstructed phylogenetic tree of vertebrate HSFs demonstrated that HSF3 in one species is unrelated with that in other species. We found that the DNA-binding activity of both HSF1 and HSF3 in lizard and frog cells was induced in response to heat shock. Unexpectedly, overexpression of lizard and frog HSF3 as well as HSF1 induced HSP70 expression in mouse cells during heat shock, indicating that the two factors have the potential to induce the HSR. Furthermore, knockdown of either HSF3 or HSF1 markedly reduced HSP70 induction in lizard cells and resistance to heat shock. These results demonstrated that HSF1 and HSF3 cooperatively regulate the HSR at least in lizards, and suggest complex mechanisms of the HSR in lizards as well as frogs.

  2. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions

    Directory of Open Access Journals (Sweden)

    Botond Penke

    2018-01-01

    Full Text Available Neurodegenerative diseases (NDDs such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease (HD, amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS, endoplasmic reticulum associated degradation (ERAD, and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy. The role of heat shock proteins (Hsps in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.

  3. Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge

    Science.gov (United States)

    Plant pests including insects must manipulate plants in order to utilize the nutrition and environment of the host. Here, we show that the heat-shock protein gene Mayetiola destructor susceptibility gene-1 (Mds-1) is a major susceptibility gene in wheat that allows the gall midge M. destructor, com...

  4. The Immunomodulatory Potential of tolDCs Loaded with Heat Shock Proteins

    Directory of Open Access Journals (Sweden)

    Willem van Eden

    2017-11-01

    Full Text Available Disease suppressive T cell regulation may depend on cognate interactions of regulatory T cells with self-antigens that are abundantly expressed in the inflamed tissues. Heat shock proteins (HSPs are by their nature upregulated in stressed cells and therefore abundantly present as potential targets for such regulation. HSP immunizations have led to inhibition of experimentally induced inflammatory conditions in various models. However, re-establishment of tolerance in the presence of an ongoing inflammatory process has remained challenging. Since tolerogenic DCs (tolDCs have the combined capacity of mitigating antigen-specific inflammatory responses and of endowing T cells with regulatory potential, it seems attractive to combine the anti-inflammatory qualities of tolDCs with those of HSPs.

  5. Heat shock protein HSP60 and the perspective for future using as vaccine antigens

    Directory of Open Access Journals (Sweden)

    Joanna Bajzert

    2015-10-01

    Full Text Available Heat Shock Proteins (HSPs are widely spread in nature, highly conserved proteins, found in all prokaryotic and eukaryotic cells. HSPs have been classified in 10 families, one of them is the HSP60 family. HSP60 function in the cytoplasm as ATP-dependent molecular chaperones by assisting the folding of newly synthesised polypeptides and the assembly of multiprotein complexes. There is a large amount of evidence which demonstrate that HSP60 is expressed on the cell surface. Especially in bacteria the expression on the surface occurs constitutively and increases remarkably during host infection. HSP60 also play an important role in biofilm formation. In the extracellular environment, HSP60 alone or with self or microbial proteins can acts not only as a link between immune cells, but also as a coordinator of the immune system activity. This protein could influence the immune system in a different way because they act as an antigen, a carrier of other functional molecules or as a ligand for receptor. They are able to stimulate both cells of the acquired (naïve, effector, regulatory T lymphocyte, B lymphocyte and the innate (macrophages, monocytes, dendritic cells immune system. HSPs have been reported to be potent activators of the immune system and they are one of the immunodominant bacterial antigens they could be a good candidate for a subunit vaccine or as an adjuvant.

  6. The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon.

    Science.gov (United States)

    Voigt, Birgit; Schroeter, Rebecca; Jürgen, Britta; Albrecht, Dirk; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Schweder, Thomas; Hecker, Michael

    2013-07-01

    The heat and ethanol stress response of Bacillus licheniformis DSM13 was analyzed at the transcriptional and/or translational level. During heat shock, regulons known to be heat-induced in Bacillus subtilis 168 are upregulated in B. licheniformis, such as the HrcA, SigB, CtsR, and CssRS regulon. Upregulation of the SigY regulon and of genes controlled by other extracytoplasmic function (ECF) sigma factors indicates a cell-wall stress triggered by the heat shock. Furthermore, tryptophan synthesis enzymes were upregulated in heat stressed cells as well as regulons involved in usage of alternative carbon and nitrogen sources. Ethanol stress led to an induction of the SigB, HrcA, and CtsR regulons. As indicated by the upregulation of a SigM-dependent protein, ethanol also triggered a cell wall stress. To characterize the SigB regulon of B. licheniformis, we analyzed the heat stress response of a sigB mutant. It is shown that the B. licheniformis SigB regulon comprises additional genes, some of which do not exist in B. subtilis, such as BLi03885, encoding a hypothetical protein, the Na/solute symporter gene BLi02212, the arginase homolog-encoding gene BLi00198 and mcrA, encoding a protein with endonuclease activity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast.

    Science.gov (United States)

    Gao, Caiqiu; Jiang, Bo; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping

    2012-04-01

    It is well known that plant heat shock proteins (HSPs) play important roles both in response to adverse environmental conditions and in various developmental processes. However, among plant HSPs, the functions of tree plant HSPs are poorly characterized. To improve our understanding of tree HSPs, we cloned and characterized an HSP gene (ThHSP18.3) from Tamarix hispida. Sequence alignment reveals that ThHSP18.3 belongs to the class I small heat shock protein family. A transient expression assay showed that ThHSP18.3 protein was targeted to the cell nucleus. Treatment of Tamarix hispida with cold and heat shock highly induced ThHSP18.3 expression in all studied leaves, roots and stems, whereas, treatment of T. hispida with NaCl, NaHCO(3), and PEG induced ThHSP18.3 expression in leaves and decreased its expression in roots and stems. Further, to study the role of ThHSP18.3 in stress tolerance under different stress conditions, we cloned ThHSP18.3 into the pYES2 vector, transformed and expressed the vector in yeast Saccharomyces cerevisiae. Yeast cells transformed with an empty pYES2 vector were employed as a control. Compared to the control, yeast cells expressing ThHSP18.3 showed greater tolerance to salt, drought, heavy metals, and both low and high temperatures, indicating that ThHSP18.3 confers tolerance to these stress conditions. These results suggested that ThHSP18.3 is involved in tolerance to a variety of stress conditions in T. hispida.

  8. Radiosynthesis of [{sup 18}F]fluoromethyldeoxyspergualin for molecular imaging of heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradip; Li, King C. [Department of Radiology, Nuclear Medicine Division, Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, MB1-066, Houston, TX 77030 (United States); Lee, Daniel Y., E-mail: dlee@tmhs.or [Department of Radiology, Nuclear Medicine Division, Methodist Hospital Research Institute, Weill Cornell Medical College, 6565 Fannin Street, MB1-066, Houston, TX 77030 (United States)

    2011-03-15

    To probe the in vivo role of stress response factors in normal physiology and in solid tumors we have designed a stable {sup 18}F-labeled molecular imaging agent based on a ligand for heat shock protein 70 (HSP70). We describe the synthesis of [{sup 18}F] fluorodeoxymethylspergualin ([{sup 18}F]MeDSG) as a new radiopharmaceutical probe using a prosthetic group, [{sup 18}F]SFB, for efficient and rapid radiolabeling. Ongoing molecular imaging studies are under way to detect HSP70 expression in tumors by positron emission tomography.

  9. [Heat shock protein 90--modulator of TNFalpha-induced apoptosis of Jurkat tumor cells].

    Science.gov (United States)

    Kaĭgorodova, E V; Riazantseva, N V; Novitskiĭ, V V; Moroshkina, A N; Belkina, M V; Iakushina, V D

    2011-01-01

    rTNFalpha-induced programmed death of Jurkat tumor cells cultured with 17-AAG, a selective inhibitor of heat shock protein (Hsp90), was studied by fluorescent microscopy with the use of FITC-labeled annexin V and propidium iodide. Caspase-3 and -8 activities were determined by spectrophotometry using a caspase- 3 and -8 colorimetric assay kit. It was shown that inhibition of Hsp90 leads to activation of Jurkat cell apoptosis while Hsp90 itself suppresses this process. 17-AAG enhances rTNFa-induced apoptosis of tumor cells.

  10. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    International Nuclear Information System (INIS)

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-01-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 μg/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition

  11. Heavy metal accumulation, heat shock protein expression and cytogenetic changes in Tetrix tenuicornis (L.) (Tetrigidae, Orthoptera) from polluted areas

    International Nuclear Information System (INIS)

    Warchalowska-Sliwa, E.; Niklinska, M.; Goerlich, A.; Michailova, P.; Pyza, E.

    2005-01-01

    The orthopteran insect Tetrix tenuicornis, collected from polluted and unpolluted areas, was used to study heavy metal accumulation and its impact on stress protein levels and on changes in the number and morphology of chromosomes in mitotic and meiotic cells. During two consecutive years, insects were collected from polluted areas of zinc-lead mine spoils near Boleslaw (Poland) and from unpolluted areas near Busko and Staszow (Poland). T. tenuicornis from the polluted area showed 1.5, 4.03, 4.32 and 41.73 times higher concentrations of copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd), respectively, than insects of the same species collected from unpolluted areas. Insects exposed to heavy metals showed only small changes, and rather a decrease in the concentration of constitutive and inducible heat shock proteins Hsp70, the level of which increases under stress conditions. A cytogenetic study of T. tenuicornis revealed intra-population anomalies in chromosome number and morphology in mitotic and meiotic cells and the presence of an additional B chromosome in germinal cells. In 50% of females collected from polluted areas, mosaic oogonial mitotic chromosome sets and diploid, hypo- or hypertetraploid, tetraploid, and octoploid chromosome numbers were detected. In turn, 14.6% of males showed a heterozygous deficiency of chromatin in L 2 and M 3 bivalents in addition to the presence of B chromosomes. - Metals accumulation caused genotoxicity in insects

  12. Identification of a small heat-shock protein associated with a ras-mediated signaling pathway in ectomycorrhizal symbiosis

    Science.gov (United States)

    Shiv Hiremath; Kirsten Lehtoma; Gopi K. Podila

    2009-01-01

    Initiation, development, and establishment of a functional ectomycorrhiza involve a series of biochemical events mediated by a number of genes from the fungus as well as the host plant. We have identified a heat shock protein gene from Laccaria bicolor (Lbhsp) that appears to play a role in these events. The size and...

  13. MIPS: a calmodulin-binding protein of Gracilaria lemaneiformis under heat shock.

    Science.gov (United States)

    Zhang, Xuan; Zhou, Huiyue; Zang, Xiaonan; Gong, Le; Sun, Hengyi; Zhang, Xuecheng

    2014-08-01

    To study the Ca(2+)/Calmodulin (CaM) signal transduction pathway of Gracilaria lemaneiformis under heat stress, myo-inositol-1-phosphate synthase (MIPS), a calmodulin-binding protein, was isolated using the yeast two-hybrid system. cDNA and DNA sequences of mips were cloned from G. lemaneiformis by using 5'RACE and genome walking procedures. The MIPS DNA sequence was 2,067 nucleotides long, containing an open reading frame (ORF) of 1,623 nucleotides with no intron. The mips ORF was predicted to encode 540 amino acids, which included the conserved MIPS domain and was 61-67 % similar to that of other species. After analyzing the amino acid sequence of MIPS, the CaM-Binding Domain (CaMBD) was inferred to be at a site spanning from amino acid 212 to amino acid 236. The yeast two-hybrid results proved that MIPS can interact with CaM and that MIPS is a type of calmodulin-binding protein. Next, the expression of CaM and MIPS in wild-type G. lemaneiformis and a heat-tolerant G. lemaneiformis cultivar, "981," were analyzed using real-time PCR under a heat shock of 32 °C. The expression level displayed a cyclical upward trend. Compared with wild type, the CaM expression levels of cultivar 981 were higher, which might directly relate to its resistance to high temperatures. This paper indicates that MIPS and CaM may play important roles in the high-temperature resistance of G. lemaneiformis.

  14. Pulmonary heat shock protein expression after exposure to a metabolically activated Clara cell toxicant: relationship to protein adduct formation

    International Nuclear Information System (INIS)

    Williams, Kurt J.; Cruikshank, Michael K.; Plopper, Charles G.

    2003-01-01

    Heat shock proteins/stress proteins (Hsps) participate in regulation of protein synthesis and degradation and serve as general cytoprotectants, yet their role in lethal Clara cell injury is not clear. To define the pattern of Hsp expression in acute lethal Clara cell injury, mice were treated with the Clara cell-specific toxicant naphthalene (NA), and patterns of expression compared to electrophilic protein adduction and previously established organellar degradation and gluathione (GSH) depletion. In sites of lethal injury (distal bronchiole), prior to organellar degradation (1 h post-NA), protein adduction is detectable and ubiquitin, Hsp 25, Hsp 72, and heme-oxygenase 1 (HO-1) are increased. Maximal Hsp expression, protein adduction, and GSH depletion occur simultaneous (by 2-3 h) with early organelle disruption. Hsp expression is higher later (6-24 h), only in exfoliating cells. In airway sites (proximal bronchiole) with nonlethal Clara cell injury elevation of Hsp 25, 72, and HO-1 expression follows significant GSH depletion (greater than 50% 2 h post-NA). This data build upon our previous studies and we conclude that (1) in lethal (terminal bronchiole) and nonlethal (proximal bronchiole) Clara cell injury, Hsp induction is associated with the loss of GSH and increased protein adduction, and (2) in these same sites, organelle disruption is not a prerequisite for Hsp induction

  15. Characteristics of six small heat shock protein genes from Bactrocera dorsalis: Diverse expression under conditions of thermal stress and normal growth.

    Science.gov (United States)

    Dou, Wei; Tian, Yi; Liu, Hong; Shi, Yan; Smagghe, Guy; Wang, Jin-Jun

    2017-11-01

    To explore the functions of small heat shock proteins (sHsps) in relation to thermal stress and development in Bactrocera dorsalis (Hendel), one of the most economically important pest species attacking a wide range of fruits and vegetables, six full-length cDNAs of sHsp genes (BdHsp17.7, 18.4, 20.4, 20.6, 21.6 and 23.8) were cloned, and the expression patterns in different developmental stages and tissues, as well as in response to both thermal and 20-hydroxyecdysone (20E) exposures, were examined using real time quantitative PCR. The open reading frames (ORFs) of six sHsps are 453, 489, 537, 543, 567 and 630bp in length, encoding proteins with molecular weights of 17.7, 18.4, 20.4, 20.6, 21.6 and 23.8kDa, respectively. BdHsp18.4 and BdHsp20.4 maintained lower expression levels in both eggs and larvae, whereas remarkably up-regulated after the larval-pupal transformation, suggesting that these two sHsps may be involved in metamorphosis. Significant tissue specificity exists among sHsps: the highest expression of BdHsp20.6 and BdHsp23.8 in the Malpighian tubules and ovary, respectively, versus a peak in the fat body for others. BdHsp20.4 and BdHsp20.6 were significantly up-regulated by thermal stress. In contrast, BdHsp18.4 and BdHsp23.8 reacted only to heat stress. BdHsp17.7 and BdHsp21.6 were insensitive to both heat and cold stresses. The degree of sHsps response depends on intensity of 20E treatment, i.e., dose and time. These results strongly suggest functional differentiation within the sHsp subfamily in B. dorsalis. The physiological function of sHsp members under thermal stress and normal growth remains the subjects of further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    Science.gov (United States)

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P stress. In contrast, serum malonaldehyde concentrations were decreased (P stress also reduced (P stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance and reduces oxidative stress in heat-stressed black-boned chickens by increasing serum growth hormone concentrations and modulating the expression of heat shock genes in organs of the immune system.

  17. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions

    International Nuclear Information System (INIS)

    Homa, Joanna; Olchawa, Ewa; Stuerzenbaum, Stephen R.; John Morgan, A.; Plytycz, Barbara

    2005-01-01

    This paper provides direct evidence that earthworm immune cells, coelomocytes, are exposed to bio-reactive quantities of metals within 3 days after dermal exposure, and that they respond by upregulating metallothionein (MT) and heat shock protein (HSP70, HSP72) expression. Indirect support for the hypothesis that coelomocytes are capable of trafficking metals was also obtained. Coelomocytes were expelled from adult individuals of Eisenia fetida after 3-day exposure either to metal ions (Zn, Cu, Pb, Cd) or to distilled water (controls) via filter papers. The number of coelomocytes was significantly decreased after Cu, Pb, or Cd treatment. Cytospin preparations of coelomocytes were subjected to immunoperoxidase staining with monoclonal antibodies against human heat shock proteins (HSP70 or HSP72), or rabbit polyclonal antibodies raised against metallothionein 2 (w-MT2) of Lumbricus rubellus. Applied antibodies detected the respective proteins of E. fetida and revealed that the expression of HSP70, HSP72 and w-MT2 proteins was either induced or significantly enhanced in coelomocytes from metal-exposed animals. In conclusion, stress protein expression in earthworm coelomocytes may be used as sensitive biomarkers of metal contaminations. Further experimentation is needed for quantitative analysis of kinetics of metal-induced stress protein expression in earthworm coelomocytes. - Metals upregulate stress response proteins in earthworm coelomocytes

  18. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Homa, Joanna [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland); Olchawa, Ewa [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland); Stuerzenbaum, Stephen R. [Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff Wales CF10 3TL (United Kingdom); John Morgan, A. [Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff Wales CF10 3TL (United Kingdom); Plytycz, Barbara [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland)]. E-mail: plyt@zuk.iz.uj.edu.pl

    2005-05-01

    This paper provides direct evidence that earthworm immune cells, coelomocytes, are exposed to bio-reactive quantities of metals within 3 days after dermal exposure, and that they respond by upregulating metallothionein (MT) and heat shock protein (HSP70, HSP72) expression. Indirect support for the hypothesis that coelomocytes are capable of trafficking metals was also obtained. Coelomocytes were expelled from adult individuals of Eisenia fetida after 3-day exposure either to metal ions (Zn, Cu, Pb, Cd) or to distilled water (controls) via filter papers. The number of coelomocytes was significantly decreased after Cu, Pb, or Cd treatment. Cytospin preparations of coelomocytes were subjected to immunoperoxidase staining with monoclonal antibodies against human heat shock proteins (HSP70 or HSP72), or rabbit polyclonal antibodies raised against metallothionein 2 (w-MT2) of Lumbricus rubellus. Applied antibodies detected the respective proteins of E. fetida and revealed that the expression of HSP70, HSP72 and w-MT2 proteins was either induced or significantly enhanced in coelomocytes from metal-exposed animals. In conclusion, stress protein expression in earthworm coelomocytes may be used as sensitive biomarkers of metal contaminations. Further experimentation is needed for quantitative analysis of kinetics of metal-induced stress protein expression in earthworm coelomocytes. - Metals upregulate stress response proteins in earthworm coelomocytes.

  19. Mechanical analysis of a heat-shock induced developmental defect

    Science.gov (United States)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  20. Antibodies to Chlamydia trachomatis heat shock proteins in women with tubal factor infertility are associated with prior infection by C. trachomatis but not by C. pneumoniae

    DEFF Research Database (Denmark)

    Persson, K; Osser, S; Birkelund, Svend

    1999-01-01

    The antibody response to heat shock proteins 60 and 10 were studied in 163 patients with tubal factor infertility and in 163 age-matched pregnant women. The associations of these antibodies with specific antibodies to Chlamydia trachomatis and to Chlamydia pneumoniae as well as with antibodies...... proteins and to C. trachomatis but no independent influence of antibodies to C. pneumoniae. No interaction between C. trachomatis and C. pneumoniae suggesting a synergistic effect was found although the heat shock proteins from these two organisms are immunologically similar. Antibodies to the chlamydial...

  1. Histoplasma capsulatum heat-shock 60 orchestrates the adaptation of the fungus to temperature stress.

    Directory of Open Access Journals (Sweden)

    Allan Jefferson Guimarães

    2011-02-01

    Full Text Available Heat shock proteins (Hsps are among the most widely distributed and evolutionary conserved proteins. Hsps are essential regulators of diverse constitutive metabolic processes and are markedly upregulated during stress. A 62 kDa Hsp (Hsp60 of Histoplasma capsulatum (Hc is an immunodominant antigen and the major surface ligand to CR3 receptors on macrophages. However little is known about the function of this protein within the fungus. We characterized Hc Hsp60-protein interactions under different temperature to gain insights of its additional functions oncell wall dynamism, heat stress and pathogenesis. We conducted co-immunoprecipitations with antibodies to Hc Hsp60 using cytoplasmic and cell wall extracts. Interacting proteins were identified by shotgun proteomics. For the cell wall, 84 common interactions were identified among the 3 growth conditions, including proteins involved in heat-shock response, sugar and amino acid/protein metabolism and cell signaling. Unique interactions were found at each temperature [30°C (81 proteins, 37°C (14 and 37/40°C (47]. There were fewer unique interactions in cytoplasm [30°C (6, 37°C (25 and 37/40°C (39] and four common interactions, including additional Hsps and other known virulence factors. These results show the complexity of Hsp60 function and provide insights into Hc biology, which may lead to new avenues for the management of histoplasmosis.

  2. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    Science.gov (United States)

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  3. Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases?

    Science.gov (United States)

    Jansen, Manon A A; Spiering, Rachel; Broere, Femke; van Laar, Jacob M; Isaacs, John D; van Eden, Willem; Hilkens, Catharien M U

    2018-01-01

    Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to restore immune tolerance in autoimmune diseases. The rationale of using tolDCs is that they can specifically target the pathogenic T-cell response while leaving other, protective, T-cell responses intact. Several ways of generating therapeutic tolDCs have been described, but whether these tolDCs should be loaded with autoantigen(s), and if so, with which autoantigen(s), remains unclear. Autoimmune diseases, such as rheumatoid arthritis, are not commonly defined by a single, universal, autoantigen. A possible solution is to use surrogate autoantigens for loading of tolDCs. We propose that heat-shock proteins may be a relevant surrogate antigen, as they are evolutionarily conserved between species, ubiquitously expressed in inflamed tissues and have been shown to induce regulatory T cells, ameliorating disease in various arthritis mouse models. In this review, we provide an overview on how immune tolerance may be restored by tolDCs, the problem of selecting relevant autoantigens for loading of tolDCs, and why heat-shock proteins could be used as surrogate autoantigens. © 2017 John Wiley & Sons Ltd.

  4. Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment.

    Science.gov (United States)

    Yang, Guiyan; Wang, Yucheng; Zhang, Kaimin; Gao, Caiqiu

    2014-03-01

    Heat shock proteins (HSPs) play important roles in protecting plants against environmental stresses. Furthermore, small heat shock proteins (sHSPs) are the most ubiquitous HSP subgroup with molecular weights ranging from 15 to 42 kDa. In this study, nine sHSP genes (designated as ThsHSP1-9) were cloned from Tamarix hispida. Their expression patterns in response to cold, heat shock, NaCl, PEG and abscisic acid (ABA) treatments were investigated in the roots and leaves of T. hispida by real-time RT-PCR analysis. The results showed that most of the nine ThsHSP genes were expressed at higher levels in roots than in leaves under normal growth condition. All of ThsHSP genes were highly induced under conditions of cold (4 °C) and different heat shocks (36, 40, 44, 48 and 52 °C). Under NaCl stress, all nine ThsHSPs genes were up-regulated at least one stress time-point in both roots and leaves. Under PEG and ABA treatments, the nine ThsHSPs showed various expression patterns, indicating a complex regulation pathway among these genes. This study represents an important basis for the elucidation of ThsHSP gene function and provides essential information that can be used for stress tolerance genetic engineering in future studies.

  5. Novel Mechanism of Attenuation of LPS-Induced NF-κB Activation by the Heat Shock Protein 90 Inhibitor, 17-N-allylamino-17-demethoxygeldanamycin, in Human Lung Microvascular Endothelial Cells

    Science.gov (United States)

    Thangjam, Gagan S.; Dimitropoulou, Chistiana; Joshi, Atul D.; Barabutis, Nektarios; Shaw, Mary C.; Kovalenkov, Yevgeniy; Wallace, Chistopher M.; Fulton, David J.; Patel, Vijay

    2014-01-01

    Heat shock protein (hsp) 90 inhibition attenuates NF-κB activation and blocks inflammation. However, the precise mechanism of NF-κB regulation by hsp90 in the endothelium is not clear. We investigated the mechanisms of hsp90 inhibition by 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) on NF-κB activation by LPS in primary human lung microvascular endothelial cells. Transcriptional activation of NF-κB was measured by luciferase reporter assay, gene expression by real-time RT-PCR, DNA binding of transcription factors by chromatin immunoprecipitation assay, protein–protein interaction by coimmunoprecipitation/immunoblotting, histone deacetylase (HDAC)/histone acetyltransferase enzyme activity by fluorometry, and nucleosome eviction by partial microccocal DNase digestion. In human lung microvascular endothelial cells, 17-AAG–induced degradation of IKBα was accomplished regardless of the phosphorylation/ubiquitination state of the protein. Hence, 17-AAG did not block LPS-induced NF-κB nuclear translocation and DNA binding activity. Instead, 17-AAG blocked the recruitment of the coactivator, cAMP response element binding protein binding protein, and prevented the assembly of a transcriptionally competent RNA polymerase II complex at the κB elements of the IKBα (an NF-κB–responsive gene) promoter. The effect of LPS on IKBα mRNA expression was associated with rapid deacetylation of histone-H3(Lys9) and a dramatic down-regulation of core histone H3 binding. Even though treatment with an HDAC inhibitor produced the same effect as hsp90 inhibition, the effect of 17-AAG was independent of HDAC. We conclude that hsp90 inhibition attenuates NF-κB transcriptional activation by preventing coactivator recruitment and nucleosome eviction from the target promoter in human lung endothelial cells. PMID:24303801

  6. Cloning, expression, purification, crystallization and preliminary X-ray analysis of the 31 kDa Vibrio cholerae heat-shock protein VcHsp31

    International Nuclear Information System (INIS)

    Das, Samir; Dey, Sanjay; Roy, Trina; Sen, Udayaditya

    2011-01-01

    A heat-shock protein from V. cholerae (VcHsp31) has been cloned, expressed, purified and crystallized. Crystals of VcHsp31 belonged to a monoclinic space group and diffracted to 1.9 Å resolution. The Gram-negative bacterium Vibrio cholerae, which is responsible for the diarrhoeal disease cholera in humans, induces the expression of numerous heat-shock genes. VcHsp31 is a 31 kDa putative heat-shock protein that belongs to the DJ-1/PfpI superfamily, functioning as both a chaperone and a protease. VcHsp31 has been cloned, overexpressed and purified by Ni 2+ –NTA affinity chromatography followed by gel filtration. Crystals of VcHsp31 were grown in the presence of PEG 6000 and MPD; they belonged to space group P2 1 and diffracted to 1.9 Å resolution. Assuming the presence of six molecules in the asymmetric unit, the Matthews coefficient was estimated to be 1.97 Å 3 Da −1 , corresponding to a solvent content of 37.4%

  7. Virus-Heat Shock Protein Interaction and a Novel Axis for Innate Antiviral Immunity

    Directory of Open Access Journals (Sweden)

    Michael Oglesbee

    2012-09-01

    Full Text Available Virus infections induce heat shock proteins that in turn enhance virus gene expression, a phenomenon that is particularly well characterized for the major inducible 70 kDa heat shock protein (hsp70. However, hsp70 is also readily induced by fever, a phylogenetically conserved response to microbial infections, and when released from cells, hsp70 can stimulate innate immune responses through toll like receptors 2 and 4 (TLR2 and 4. This review examines how the virus-hsp70 relationship can lead to host protective innate antiviral immunity, and the importance of hsp70 dependent stimulation of virus gene expression in this host response. Beginning with the well-characterized measles virus-hsp70 relationship and the mouse model of neuronal infection in brain, we examine data indicating that the innate immune response is not driven by intracellular sensors of pathogen associated molecular patterns, but rather by extracellular ligands signaling through TLR2 and 4. Specifically, we address the relationship between virus gene expression, extracellular release of hsp70 (as a damage associated molecular pattern, and hsp70-mediated induction of antigen presentation and type 1 interferons in uninfected macrophages as a novel axis of antiviral immunity. New data are discussed that examines the more broad relevance of this protective mechanism using vesicular stomatitis virus, and a review of the literature is presented that supports the probable relevance to both RNA and DNA viruses and for infections both within and outside of the central nervous system.

  8. Heat-shock responses in two leguminous plants: a comparative study.

    Science.gov (United States)

    Ortiz, C; Cardemil, L

    2001-08-01

    Relative growth rates, basal and acclimated thermotolerance, membrane damage, fluorescence emission, and relative levels of free and conjugated ubiquitin and HSP70 were compared after 2 h of treatment at different temperatures between Prosopis chilensis and Glycine max (soybean), cv. McCall, to evaluate if the thermotolerance of these two plants was related to levels of accumulation of heat shock proteins. Seedlings of P. chilensis germinated at 25 degrees C and at 35 degrees C and grown at temperatures above germination temperature showed higher relative growth than soybean seedlings treated under the same conditions. The lethal temperature of both species was 50 degrees C after germination at 25 degrees C. However, they were able to grow at 50 degrees C after germination at 35 degrees C. Membrane damage determinations in leaves showed that P. chilensis has an LT(50) 6 degrees C higher than that of soybean. There were no differences in the quantum yield of photosynthesis (F(v)/F(m)), between both plants when the temperatures were raised. P. chilensis showed higher relative levels of free ubiquitin, conjugated ubiquitin and HSP70 than soybean seedlings when the temperatures were raised. Time-course studies of accumulation of these proteins performed at 40 degrees C showed that the relative accumulation rates of ubiquitin, conjugated ubiquitin and HSP70 were higher in P. chilensis than in soybean. In both plants, free ubiquitin decreased during the first 5 min and increased after 30 min of heat shock, conjugated ubiquitin increased after 30 min and HSP70 began to increase dramatically after 20 min of heat shock. From these data it is concluded that P. chilensis is more tolerant to acute heat stress than soybean.

  9. Over-expression of gene encoding heat shock protein 70 from Mycobacterium tuberculosis and its evaluation as vaccine adjuvant

    Directory of Open Access Journals (Sweden)

    J Dhakal

    2013-01-01

    Full Text Available Background: Heat shock proteins (Hsps are evolutionary ancient and highly conserved molecular chaperons found in prokaryotes as well as eukaryotes. Hsp70 is a predominant member of Hsp family. Microbial Hsp70s (mHsp70s have acquired special significance in immunity since they have been shown to be potent activators of the innate immune system and generate specific immune responses against tumours and infectious agents. Objectives: The present study was aimed to clone express and purify recombinant Hsp70 from the Mycobacterium tuberculosis and characterise it immunologically. The study also aimed at determining the potential of recombinant M. tuberculosis heat shock protein (rMTB-Hsp70 as adjuvant or antigen carrier. Materials and Methods: Cloning of M. tuberculosis heat shock protein (MTB-Hsp70 amplicon was carried out using the pGEMT-Easy vector although for expression, pProExHTb prokaryotic expression vector was used. Purification of recombinant Hsp70 was carried out by nickel-nitrilotriacetic acid (Ni-NTA affinity chromatography. For immunological characterization and determining the adjuvant effect of MTB-Hsp70, BALB/c mice were used. The data obtained was statistically analysed. Results: Hsp70 gene was cloned, sequenced and the sequence data were submitted to National Center for Biotechnology Information (NCBI. Recombinant MTB-Hsp70 was successfully over-expressed using the prokaryotic expression system and purified to homogeneity. The protein was found to be immunodominant. Significant adjuvant effect was produced by the rMTB-Hsp70 when inoculated with recombinant outer membrane protein 31; however, effect was less than the conventionally used the Freund′s adjuvant. Conclusion: Protocol standardised can be followed for bulk production of rHsp70 in a cost-effective manner. Significant adjuvant effect was produced by rMTB-Hsp70; however, the effect was than Freund′s adjuvant. Further, studies need to be carried out to explore its

  10. Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor.

    Science.gov (United States)

    Surya, Sanjna L; Long, Marcus J C; Urul, Daniel A; Zhao, Yi; Mercer, Emily J; EIsaid, Islam M; Evans, Todd; Aye, Yimon

    2018-02-08

    Small heat shock protein (sHSP)-B7 (HSPB7) is a muscle-specific member of the non-ATP-dependent sHSPs. The precise role of HSPB7 is enigmatic. Here, we disclose that zebrafish Hspb7 is a kinetically privileged sensor that is able to react rapidly with native reactive electrophilic species (RES), when only substoichiometric amounts of RES are available in proximity to Hspb7 expressed in living cells. Among the two Hspb7-cysteines, this RES sensing is fulfilled by a single cysteine (C117). Purification and characterizations in vitro reveal that the rate for RES adduction is among the most efficient reported for protein-cysteines with native carbonyl-based RES. Covalent-ligand binding is accompanied by structural changes (increase in β-sheet-content), based on circular dichroism analysis. Among the two cysteines, only C117 is conserved across vertebrates; we show that the human ortholog is also capable of RES sensing in cells. Furthermore, a cancer-relevant missense mutation reduces this RES-sensing property. This evolutionarily conserved cysteine-biosensor may play a redox-regulatory role in cardioprotection.

  11. Gene expression of heat shock protein 70, interleukin-1β and tumor necrosis factor α as tools to identify immunotoxic effects on Xenopus laevis: A dose–response study with benzo[a]pyrene and its degradation products

    International Nuclear Information System (INIS)

    Martini, Federica; Fernández, Carlos; Tarazona, José V.; Pablos, M. Victoria

    2012-01-01

    The exposure to benzo[a]pyrene (B[a]P) results in an alteration of immune function in mammals and fish, and the analysis of cytokine mRNA levels has been suggested for predicting the immunomodulatory potential of chemicals. To obtain evidence of the innate immune responses to B[a]P in Xenopus laevis, the present study monitored the mRNA expression of interleukin 1-β (IL-1β), tumor necrosis factor α (TNF-α) and heat shock protein 70 (HSP70) in a laboratorial exposure. Tadpoles exposed to 8.36, 14.64, 89.06 and 309.47 μg/L of B[a]P,were used for detecting hsp70, IL-1β and TNF-α mRNA induction. A dose–response increase in the expression of hsp70 and IL-1β mRNA was found. The results of this study confirmed the use of hsp70 and IL-1β, but not TNF-α, as sensitive indicators of immunotoxic effect of B[a]P in X. laevis. Further research would be required for the validation of these endpoints. - Highlights: ► We study innate immune responses to benzo[a]pyrene in Xenopus laevis. ► mRNA expression of three typical proinflammatory proteins was monitored. ► Heat shock protein 70 mRNA induction showed a concentration/response/time relationship. ► Interleukin 1-β also showed a clear concentration/response relationship. ► Interleukin 1-β and heat shock protein 70 are useful indicators of immunotoxic effects. - The present study analyzed the use of cytokine mRNA levels as an earlier tool for predicting immunotoxicological risks to Xenopus laevis in a dose–response pattern.

  12. Solution structure of GSP13 from Bacillus subtilis exhibits an S1 domain related to cold shock proteins

    International Nuclear Information System (INIS)

    Yu Wenyu; Hu Jicheng; Yu Bingke; Xia Wei; Jin Changwen; Xia Bin

    2009-01-01

    GSP13 encoded by gene yugI is a σ B -dependent general stress protein in Bacillus subtilis, which can be induced by heat shock, salt stress, ethanol stress, glucose starvation, oxidative stress and cold shock. Here we report the solution structure of GSP13 and it is the first structure of S1 domain containing protein in Bacillus subtilis. The structure of GSP13 mainly consists of a typical S1 domain along with a C-terminal 50-residue flexible tail, different from the other known S1 domain containing proteins. Comparison with other S1 domain structures reveals that GSP13 has a conserved RNA binding surface, and it may function similarly to cold shock proteins in response to cold stress

  13. A DOUBLE KNOCKOUT; A NOVEL APPROACH TO UNDERSTANDING STRESS-INDUCIBLE 70 KDA HEAT SHOCK PROTEINS (HSP70S) ON DEVELOPMENT AND REPRODUCTION

    Science.gov (United States)

    Heat and chemical toxicants which disrupt spermatogenesis and cause male infertility are thought to induce the expression of Hsp70-1 and 70-3, the major inducible heat shock proteins of the 70kDa family. Previous studies from several laboratories including our own have characteri...

  14. Heat-shock protein dysregulation is associated with functional and pathological TDP-43 aggregation

    Science.gov (United States)

    Chang, Hsiang-Yu; Hou, Shin-Chen; Way, Tzong-Der; Wong, Chi-Huey; Wang, I.-Fan

    2013-11-01

    Conformational disorders are involved in various neurodegenerative diseases. Reactive oxygen species (ROS) are the major contributors to neurodegenerative disease; however, ROS that affect the structural changes in misfolded disease proteins have yet to be well characterized. Here we demonstrate that the intrinsic propensity of TDP-43 to aggregate drives the assembly of TDP-43-positive stress granules and soluble toxic TDP-43 oligomers in response to a ROS insult via a disulfide crosslinking-independent mechanism. Notably, ROS-induced TDP-43 protein assembly correlates with the dynamics of certain TDP-43-associated chaperones. The heat-shock protein (HSP)-90 inhibitor 17-AAG prevents ROS-induced TDP-43 aggregation, alters the type of TDP-43 multimers and reduces the severity of pathological TDP-43 inclusions. In summary, our study suggests that a common mechanism could be involved in the pathogenesis of conformational diseases that result from HSP dysregulation.

  15. Examination the expression pattern of HSP70 heat shock protein in chicken PGCs and developing genital ridge

    Directory of Open Access Journals (Sweden)

    Mahek Anand

    2016-05-01

    Full Text Available Chicken Primordial Germ cells (PGCs are emerging pioneers in the field of applied embryology and stem cell technology. Now-a-days transgenic chickens are promising models to study human disease pathophysiology and drug designing. However, most of the molecular mechanism, which govern the stemness and pluripotency of chicken PGCs, not known in details. Recent studies have indicated the role of HSP70 in early embryonic development in many vertebrate species. Exposure of chicken to heat stress result in activation of heat shock factors which activate the transcription of HSP70. Exposure chicken eggs to acute heat stress effects HSP70 expression in PGCs and gonads. HSP70 helps in maintaining the integrity of chicken PGCs. A new emerging role of HSP70 in apoptosis has emerged. In our lab, we aim to characterize the expression of cHsp70 in chicken PGCs and gonads during embryonic development by subjecting the parents to acute levels of heat stress. Chickens whose parents subjected to heat stress showed varied expression of cHsp70 and also improved thermo tolerance. In the future we plan to study other factors and miRNAs, which is characterized as an emerging player in regulating heat shock protein response in chicken and also plays an important role in apoptosis.

  16. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview.

    Science.gov (United States)

    Pockley, A Graham; Henderson, Brian

    2018-01-19

    Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory 'danger signals' for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  17. Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization.

    Science.gov (United States)

    Wang, Xiaoming; Wang, Ruochen; Ma, Chuang; Shi, Xue; Liu, Zhenshan; Wang, Zhonghua; Sun, Qixin; Cao, Jun; Xu, Shengbao

    2017-05-31

    Wheat (Triticum aestivum), one of the world's most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.

  18. Identification of proteins whose synthesis in Saccharomyces cerevisiae is induced by DNA damage and heat shock

    International Nuclear Information System (INIS)

    Gailit, James

    1990-01-01

    Protein synthesis in Saccharomyces cerevisiae after exposure to ultraviolet light (UV) was examined by two-dimensional gel electrophoresis of pulse-labelled proteins. The synthesis of 12 distinct proteins was induced by treatment with UV doses of 10-200 J/m 2 . The induced proteins differed in minimum dose necessary for induction, maximum dose at which induction still occurred and constitutive level present in unirradiated cells. A chemical mutagen, 4-nitroquinoline-1-oxide, induced synthesis of the same proteins. Induction after UV treatment was observed in seven different yeast strains, including three mutants deficient in DNA repair. Synthesis of five of the proteins was also induced by brief heat shock treatment. These five may be members of a family of proteins whose synthesis is regulated by two different pathways responding to different types of stress. (author)

  19. Caffeine Induces the Stress Response and Up-Regulates Heat Shock Proteins in Caenorhabditis elegans.

    Science.gov (United States)

    Al-Amin, Mohammad; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2016-02-01

    Caffeine has both positive and negative effects on physiological functions in a dose-dependent manner. C. elegans has been used as an animal model to investigate the effects of caffeine on development. Caffeine treatment at a high dose (30 mM) showed detrimental effects and caused early larval arrest. We performed a comparative proteomic analysis to investigate the mode of action of high-dose caffeine treatment in C. elegans and found that the stress response proteins, heat shock protein (HSP)-4 (endoplasmic reticulum [ER] chaperone), HSP-6 (mitochondrial chaperone), and HSP-16 (cytosolic chaperone), were induced and their expression was regulated at the transcriptional level. These findings suggest that high-dose caffeine intake causes a strong stress response and activates all three stress-response pathways in the worms, including the ER-, mitochondrial-, and cytosolic pathways. RNA interference of each hsp gene or in triple combination retarded growth. In addition, caffeine treatment stimulated a food-avoidance behavior (aversion phenotype), which was enhanced by RNAi depletion of the hsp-4 gene. Therefore, up-regulation of hsp genes after caffeine treatment appeared to be the major responses to alleviate stress and protect against developmental arrest.

  20. Morphology of the mitochondria in heat shock protein 60 deficient fibroblasts from mitochondrial myopathy patients : Effects of stress conditions

    NARCIS (Netherlands)

    Huckriede, A; Heikema, A; Sjollema, K; Briones, P; Agsteribbe, E

    1995-01-01

    We have described two mitochondrial (mt) myopathy patients with reduced activities of various mt enzymes associated with significantly decreased amounts of heat shock protein 60 (hsp60). Experimental evidence suggested that the lack of hsp60 was the primary defect. Since hsp60 is essential for the

  1. Molecular characterization of three heat shock protein 70 genes and their expression profiles under thermal stress in the citrus red mite.

    Science.gov (United States)

    Yang, Li-Hong; Jiang, Hong-Bo; Liu, Yong-Hua; Dou, Wei; Wang, Jin-Jun

    2012-04-01

    Three heat shock protein 70 family transcripts, named PcHsp70-1, PcHsp70-2 and PcHsp70-3, were isolated from the citrus red mite, Panonychus citri. PcHsp70-1, PcHsp70-2, and PcHsp70-3 contained an open reading frame of 1977, 1968, and 2028 nucleotides that encoded 658, 655 and 675 amino acid residues, respectively. Comparison of deduced amino acid sequences of PcHsp70-1 and PcHsp70-2 showed 86.34% identity, while the amino acid sequence of PcHsp70-3 was only 57.39 and 58.75% identical to that of PcHsp70-1 and PcHsp70-2, respectively. Sequences and phylogenetic analyses suggested that PcHsp70-1 and PcHsp70-2 were cytosolic Hsps, whereas PcHsp70-3 was located in ER (endoplasmic reticulum). To accurately validate mRNA expression profiles of the three Hsp70s under thermal stress conditions, seven housekeeping genes were evaluated. Alpha-tubulin and RpII were selected as optimal endogenous references for cold shock and heat shock conditions, respectively. Real-time quantitative RT-PCR revealed that only the mRNA expression of PcHsp70-2 was up-regulated under heat shocks, and all of the three Hsp70s were constitutively expressed under cold shocks. The results suggest that the three Hsp70s were more critical to coping with heat than cold shocks.

  2. The role of small heat shock proteins in parasites.

    Science.gov (United States)

    Pérez-Morales, Deyanira; Espinoza, Bertha

    2015-09-01

    The natural life cycle of many protozoan and helminth parasites involves exposure to several hostile environmental conditions. Under these circumstances, the parasites arouse a cellular stress response that involves the expression of heat shock proteins (HSPs). Small HSPs (sHSPs) constitute one of the main families of HSPs. The sHSPs are very divergent at the sequence level, but their secondary and tertiary structures are conserved and some of its members are related to α-crystallin from vertebrates. They are involved in a variety of cellular processes. As other HSPs, the sHSPs act as molecular chaperones; however, they have shown other activities apparently not related to chaperone action. In this review, the diverse activities of sHSPs in the major genera of protozoan and helminth parasites are described. These include stress response, development, and immune response, among others. In addition, an analysis comparing the sequences of sHSPs from some parasites using a distance analysis is presented. Because many parasites face hostile conditions through its life cycles the study of HSPs, including sHSPs, is fundamental.

  3. The heat shock proteins at the increasing of the radioresistance of silkworm embryo Bombyx Moril

    International Nuclear Information System (INIS)

    Agaev, F.A.; Garibov, A.A.; Aliev, D.I.; Alieva, I.N.

    2002-01-01

    The aim of this study is revealing the role of Heat Shock Proteins (HSP) at the radio-modification effect of Heat Shock (HS) on the silkworm embryo. Our preliminary study was indicated that 3-daily silkworm embryo is more than 10-12 times sensitive to gamma-radiation in comparative to 7-daily embryo. Investigation of the HS effect on the radiosensitivity of the embryo indicates that thermal treatment (40 deg. C) of 3 daily embryo during 60 min before irradiation leads the increasing of its radioresistance. At the same time, the HS treatment immediately after irradiation capable increases strike affect of irradiation. LD 50 for heat treated embryo before and after irradiation consists of 46.7 and 19.0 Gy, correspondingly. For embryo irradiated without heat treatment LD 50 is 29.5 Gy. Identical effects are observed for 7-daily embryo. Increasing of the radioresistance by HS before irradiation, obviously, may be explained by the embryo cell reply to the stress factor and capable initiated by different biochemical shifts, for example, by induction of HPS synthesis. According to the results of carried out experiments HS treatment leads to the induction or increasing of the HSP synthesis into this embryo. Protein with molecular mass 70 kDa (HSP-70 kDa) has been synthesised de novo. The synthesis of the other two proteins (HSP-83 kDa and HSP-68 kDa) significantly increases at the high temperature. It is noted, that HSP-70 kDa consists of 55-60 % of whole included radioactive mark. Identical induction was observed in the experiments at the combined effect both HS and gamma-radiation on the embryo. At the post-radiation heat treatment the induction of HSP synthesis is observed, too. It was concluded that damages induced by irradiation can not prevent HSP induction into embryo. The result of comparative analysis was shown that in 3-daily embryo in spite of 7-daily embryo the synthesis of HSP is more intensive and correlated with the radio- modification effect of HS. The

  4. Thermal response of rat fibroblasts stably transfected with the human 70-kDa heat shock protein-encoding gene

    International Nuclear Information System (INIS)

    Li, G.C.; Li, Ligeng; Liu, Yunkang; Mak, J.Y.; Chen, Lili; Lee, W.M.F.

    1991-01-01

    The major heat shock protein hsp70 is synthesized by cells of a wide variety of organisms in response to heat shock or other environmental stresses and is assumed to play an important role in protecting cells from thermal stress. The authors have tested this hypothesis directly by transfecting a constitutively expressed recombinant human hsp70-encoding gene into rat fibroblasts and examining the relationship between the levels of human hsp70 expressed and thermal resistance of the stably transfected rat cells. Successful transfection and expression of the gene for human hsp70 were characterized by RNA hybridization analysis, low-dimensional gel electrophoresis, and immunoblot analysis. When individual cloned cell lines were exposed to 45C and their thermal survivals were determined by colony-formation assay, they found that the expression of human hsp70 conferred heat resistance to the rat cells. These results reinforce the hypothesis that hsp70 has a protective function against thermal stress

  5. Reduced heat shock response in human mononuclear cells during aging and its association with polymorphisms in HSP70 genes

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvraa, Steen; Bross, Peter

    2006-01-01

    Age-dependent changes in heat shock response (HSR) were studied in mononuclear cells (monocytes and lymphocytes) collected from young (mean age = 22.6 +/- 1.7 years) and middle-aged (mean age = 56.3 +/- 4.7 years) subjects after 1 hour of heat shock at 42 degrees C. Genotype-specific HSR...... was measured by genotyping the subjects for 3 single nucleotide polymorphisms, HSPA1A(A-110C), HSPA1B(A1267G), and HSPA1L(T2437C), 1 each in the 3 HSP70 genes. A significant age-related decrease in the induction of Hsp70 occurred after heat shock in both monocytes and lymphocytes. The noninducible...

  6. PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70-KILODALTON HEAT SHOCK PROTEIN HSPA2

    Science.gov (United States)

    THE PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70 kDa HEAT SHOCK PROTEIN HSPA2* Gabor Huszar1, Kathryn Stone2, David Dix3 and Lynne Vigue11The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, 2 W.M. Keck Foundatio...

  7. Pathology-Dependent Effects Linked to Small Heat Shock Proteins Expression: An Update

    Directory of Open Access Journals (Sweden)

    A.-P. Arrigo

    2012-01-01

    Full Text Available Small heat shock proteins (small Hsps are stress-induced molecular chaperones that act as holdases towards polypeptides that have lost their folding in stress conditions or consequently of mutations in their coding sequence. A cellular protection against the deleterious effects mediated by damaged proteins is thus provided to cells. These chaperones are also highly expressed in response to protein conformational and inflammatory diseases and cancer pathologies. Through specific and reversible modifications in their phospho-oligomeric organization, small Hsps can chaperone appropriate client proteins in order to provide cells with resistance to different types of injuries or pathological conditions. By helping cells to better cope with their pathological status, their expression can be either beneficial, such as in diseases characterized by pathological cell degeneration, or deleterious when they are required for tumor cell survival. Moreover, small Hsps are actively released by cells and can act as immunogenic molecules that have dual effects depending on the pathology. The cellular consequences linked to their expression levels and relationships with other Hsps as well as therapeutic strategies are discussed in view of their dynamic structural organization required to interact with specific client polypeptides.

  8. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    Energy Technology Data Exchange (ETDEWEB)

    Thonel, Aurelie de [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); Mezger, Valerie, E-mail: valerie.mezger@univ-paris-diderot.fr [CNRS, UMR7216 Epigenetics and Cell Fate, Paris (France); University Paris Diderot, 75013 Paris (France); Garrido, Carmen, E-mail: valerie.mezger@univ-paris-diderot.fr [INSERM U866, Dijon (France); Faculty of Medicine and Pharmacy, University of Burgundy, 21033 Dijon (France); CHU, Dijon BP1542, Dijon (France)

    2011-03-07

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.

  9. Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

    International Nuclear Information System (INIS)

    Thonel, Aurelie de; Mezger, Valerie; Garrido, Carmen

    2011-01-01

    Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents

  10. Heat shock protein 27 phosphorylation state is associated with cancer progression

    Directory of Open Access Journals (Sweden)

    Maria eKatsogiannou

    2014-10-01

    Full Text Available Understanding the mechanisms that control stress-induced survival is critical to explain how tumors frequently resist to treatment and to improve current anti-cancer therapies. Cancer cells are able to cope with stress and escape drug toxicity by regulating heat shock proteins (Hsps expression and function. Hsp27 (HSPB1, a member of the small Hsp family, represents one of the key players of many signaling pathways contributing to tumorigenicity, treatment resistance and apoptosis inhibition. Hsp27 is overexpressed in many types of cancer and its functions are regulated by post-translational modifications, such as phosphorylation. Protein phosphorylation is the most widespread signaling mechanism in eukaryotic cells, and it is involved in all fundamental cellular processes. Aberrant phosphorylation of Hsp27 has been associated with several diseases such as cancer but the molecular mechanisms by which it is implicated in cancer development and progression remain undefined. This review focuses on the role of phosphorylation in Hsp27 functions in cancer cells and its potential usefulness as therapeutic target in cancer.

  11. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.

    Science.gov (United States)

    Fragkostefanakis, Sotirios; Röth, Sascha; Schleiff, Enrico; Scharf, Klaus-Dieter

    2015-09-01

    Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops. © 2014 John Wiley & Sons Ltd.

  12. Widespread Inhibition of Posttranscriptional Splicing Shapes the Cellular Transcriptome following Heat Shock

    Directory of Open Access Journals (Sweden)

    Reut Shalgi

    2014-06-01

    Full Text Available During heat shock and other proteotoxic stresses, cells regulate multiple steps in gene expression in order to globally repress protein synthesis and selectively upregulate stress response proteins. Splicing of several mRNAs is known to be inhibited during heat stress, often meditated by SRp38, but the extent and specificity of this effect have remained unclear. Here, we examined splicing regulation genome-wide during heat shock in mouse fibroblasts. We observed widespread retention of introns in transcripts from ∼1,700 genes, which were enriched for tRNA synthetase, nuclear pore, and spliceosome functions. Transcripts with retained introns were largely nuclear and untranslated. However, a group of 580+ genes biased for oxidation reduction and protein folding functions continued to be efficiently spliced. Interestingly, these unaffected transcripts are mostly cotranscriptionally spliced under both normal and stress conditions, whereas splicing-inhibited transcripts are mostly spliced posttranscriptionally. Altogether, our data demonstrate widespread repression of splicing in the mammalian heat stress response, disproportionately affecting posttranscriptionally spliced genes.

  13. Dietary Nutrients and Bioactive Substances Modulate Heat Shock Protein (HSP) Expression: A Review.

    Science.gov (United States)

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Amaya-Farfan, Jaime

    2018-05-28

    Interest in the heat shock proteins (HSPs), as a natural physiological toolkit of living organisms, has ranged from their chaperone function in nascent proteins to the remedial role following cell stress. As part of the defence system, HSPs guarantee cell tolerance against a variety of stressors, including exercise, oxidative stress, hyper and hypothermia, hyper and hypoxia and improper diets. For the past couple of decades, research on functional foods has revealed a number of substances likely to trigger cell protection through mechanisms that involve the induction of HSP expression. This review will summarize the occurrence of the most easily inducible HSPs and describe the effects of dietary proteins, peptides, amino acids, probiotics, high-fat diets and other food-derived substances reported to induce HSP response in animals and humans studies. Future research may clarify the mechanisms and explore the usefulness of this natural alternative of defense and the modulating mechanism of each substance.

  14. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Science.gov (United States)

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  15. Heat shock protein 90β: A novel mediator of vitamin D action

    International Nuclear Information System (INIS)

    Angelo, Giana; Lamon-Fava, Stefania; Sonna, Larry A.; Lindauer, Meghan L.; Wood, Richard J.

    2008-01-01

    We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90β expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90β by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%, respectively, in Hsp90β-deficient cells. Nuclear protein for VDR and RXRα, its heterodimer partner, were not reduced in Hsp90β-deficient cells. These findings indicate that Hsp90β is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90β in VDR signaling

  16. Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range.

    Science.gov (United States)

    Massa, Sónia I; Pearson, Gareth A; Aires, Tânia; Kube, Michael; Olsen, Jeanine L; Reinhardt, Richard; Serrão, Ester A; Arnaud-Haond, Sophie

    2011-09-01

    Predicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera noltii during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to four recovery times following sub-lethal temperature stress, and a non-stressed control. We sequenced and analyzed 7009 sequence reads from 30min, 2h, 4h and 24h after the beginning of the heat-shock (AHS), and 1585 from the control library, for a total of 8594 sequence reads. Among 51 Tentative UniGenes (TUGs) exhibiting significantly different expression between libraries, 19 (37.3%) were identified as 'molecular chaperones' and were over-expressed following heat-shock, while 12 (23.5%) were 'photosynthesis TUGs' generally under-expressed in heat-shocked plants. A time course analysis of expression showed a rapid increase in expression of the molecular chaperone class, most of which were heat-shock proteins; which increased from 2 sequence reads in the control library to almost 230 in the 30min AHS library, followed by a slow decrease during further recovery. In contrast, 'photosynthesis TUGs' were under-expressed 30min AHS compared with the control library, and declined progressively with recovery time in the stress libraries, with a total of 29 sequence reads 24h AHS, compared with 125 in the control. A total of 4734 TUGs were screened for EST-Single Sequence Repeats (EST-SSRs) and 86 microsatellites were identified. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins

    DEFF Research Database (Denmark)

    Nylandsted, J; Jäättelä, M; Hoffmann, E K

    2004-01-01

    Cell shrinkage is a ubiquitous feature of programmed cell death (PCD), but whether it is an obligatory signalling event in PCD is unclear. Heat shock protein 70 (Hsp70) potently counteracts PCD in many cells, by mechanisms that are incompletely understood. In the present investigation, we found...... that severe hypertonic stress greatly diminished the viability of murine fibrosarcoma cells (WEHI-902) and immortalized murine embryonic fibroblasts (iMEFs). This effect was attenuated markedly by Hsp70 over-expression. To determine whether the protective effect of Hsp70 was mediated via an effect on volume...... regulatory ion transport, we compared regulatory volume decrease (RVD) and increase (RVI) in control WEHI-902 cells and after increasing Hsp70 levels by heat shock or over-expression (WEHI-912). Hsp70 levels affected neither RVD, RVI nor the relative contributions of the Na(+)/H(+)-exchanger (NHE1) and Na...

  18. Exosomal Heat Shock Proteins as New Players in Tumour Cell-to-cell Communication

    Directory of Open Access Journals (Sweden)

    Claudia Campanella

    2014-06-01

    Full Text Available Exosomes have recently been proposed as novel elements in the study of intercellular communication in normal and pathological conditions. The biomolecular composition of exosomes reflects the specialized functions of the original cells. Heat shock proteins (Hsps are a group of chaperone proteins with diverse biological roles. In recent years, many studies have focused on the extracellular roles played by Hsps that appear to be involved in cancer development and immune system stimulation. Hsps localized on the surface of exosomes, secreted by normal and tumour cells, could be key players in intercellular cross-talk, particularly during the course of different diseases, such as cancer. Exosomal Hsps offer significant opportunities for clinical applications, including their use as potential novel biomarkers for the diagnoses or prognoses of different diseases, or for therapeutic applications and drug delivery.

  19. Exosomal Heat Shock Proteins as New Players in Tumour Cell-to-Cell Communication

    Directory of Open Access Journals (Sweden)

    Claudia Campanella

    2014-06-01

    Full Text Available Exosomes have recently been proposed as novel elements in the study of intercellular communication in normal and pathological conditions. The biomolecular composition of exosomes reflects the specialized functions of the original cells. Heat shock proteins (Hsps are a group of chaperone proteins with diverse biological roles. In recent years, many studies have focused on the extracellular roles played by Hsps that appear to be involved in cancer development and immune system stimulation. Hsps localized on the surface of exosomes, secreted by normal and tumour cells, could be key players in intercellular cross-talk, particularly during the course of different diseases, such as cancer. Exosomal Hsps offer significant opportunities for clinical applications, including their use as potential novel biomarkers for the diagnoses or prognoses of different diseases, or for therapeutic applications and drug delivery.

  20. Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis

    DEFF Research Database (Denmark)

    Martin-Ventura, Jose Luis; Duran, Mari Carmen; Blanco-Colio, Luis Miguel

    2004-01-01

    -DE). Among the differently secreted proteins, we have identified heat shock protein-27 (HSP27). Surprisingly, compared with control arteries, HSP27 release was drastically decreased in atherosclerotic plaques and barely detectable in complicated plaque supernatants. HSP27 was expressed primarily...... by intact vascular cells of normal arteries and carotid plaques (immunohistochemistry). Plasma detection of soluble HSP27 showed that circulating HSP27 levels are significantly decreased in the blood of patients with carotid stenosis relative to healthy subjects (0.19 [0.1 to 1.95] versus 83 [71.8 to 87...

  1. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants.

    Science.gov (United States)

    March, Jordon K; Pratt, Michael D; Lowe, Chinn-Woan; Cohen, Marissa N; Satterfield, Benjamin A; Schaalje, Bruce; O'Neill, Kim L; Robison, Richard A

    2015-10-01

    This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking after disinfectant treatment that promotes the optimal recovery of spores deposited on carriers. Suspension tests were used to obtain inactivation kinetics for the disinfectants against three spore types. The effects of heat-shocking spores after disinfectant treatment were also determined. Generalized linear mixed models were used to estimate 6-log reduction times for each spore type, disinfectant, and heat treatment combination. Reduction times were compared statistically using the delta method. Carrier tests were performed according to AOAC Official Method 966.04 and a modified version that employed immediate heat-shocking after disinfectant treatment. Carrier test results were analyzed using Fisher's exact test. PAA-based disinfectants had significantly shorter 6-log reduction times than the GA-based disinfectant. Heat-shocking B. anthracis spores after PAA treatment resulted in significantly shorter 6-log reduction times. Conversely, heat-shocking B. subtilis spores after PAA treatment resulted in significantly longer 6-log reduction times. Significant interactions were also observed between spore type, disinfectant, and heat treatment combinations. Immediately heat-shocking spore carriers after disinfectant treatment produced greater spore recovery. Sporicidal activities of disinfectants were not consistent across spore species. The effects of heat-shocking spores after disinfectant treatment were dependent on both disinfectant and spore species. Caution must be used when extrapolating sporicidal data of disinfectants from one spore species to another. Heat-shocking

  2. Heat shock modulates the subcellular localization, stability, and activity of HIPK2

    International Nuclear Information System (INIS)

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam

    2016-01-01

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  3. Heat shock modulates the subcellular localization, stability, and activity of HIPK2

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Mamta; Bhadauriya, Pratibha; Ganesh, Subramaniam, E-mail: sganesh@iitk.ac.in

    2016-04-15

    The homeodomain-interacting protein kinase-2 (HIPK2) is a highly conserved serine/threonine kinase and is involved in transcriptional regulation. HIPK2 is a highly unstable protein, and is kept at a low level under normal physiological conditions. However, exposure of cells to physiological stress – such as hypoxia, oxidative stress, or UV damage – is known to stabilize HIPK2, leading to the HIPK2-dependent activation of p53 and the cell death pathway. Therefore HIPK2 is also known as a stress kinase and as a stress-activated pro-apoptotic factor. We demonstrate here that exposure of cells to heat shock results in the stabilization of HIPK2 and the stabilization is mediated via K63-linked ubiquitination. Intriguingly, a sub-lethal heat shock (42 °C, 1 h) results in the cytoplasmic localization of HIPK2, while a lethal heat shock (45 °C, 1 h) results in its nuclear localization. Cells exposed to the lethal heat shock showed significantly higher levels of the p53 activity than those exposed to the sub-lethal thermal stress, suggesting that both the level and the nuclear localization are essential for the pro-apoptotic activity of HIPK2 and that the lethal heat shock could retain the HIPK2 in the nucleus to promote the cell death. Taken together our study underscores the importance of HIPK2 in stress mediated cell death, and that the HIPK2 is a generic stress kinase that gets activated by diverse set of physiological stressors.

  4. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    International Nuclear Information System (INIS)

    Wang, Robert Y.L.; Kuo, Rei-Lin; Ma, Wei-Chieh; Huang, Hsing-I; Yu, Jau-Song; Yen, Sih-Min; Huang, Chi-Ruei; Shih, Shin-Ru

    2013-01-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells

  5. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Robert Y.L., E-mail: yuwang@mail.cgu.edu.tw [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Kuo, Rei-Lin [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Ma, Wei-Chieh [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Hsing-I [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yu, Jau-Song [Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yen, Sih-Min [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Chi-Ruei [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Shih, Shin-Ru [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China)

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  6. Expression of the stress-response regulators CtsR and HrcA in the uropathogen Staphylococcus saprophyticus during heat shock.

    Science.gov (United States)

    Rossi, Ciro César; de Oliveira, Lorayne Lauria; de Carvalho Rodrigues, Deivid; Ürményi, Turán Peter; Laport, Marinella Silva; Giambiagi-deMarval, Marcia

    2017-08-01

    The uropathogen Staphylococcus saprophyticus is an ubiquitous bacterium but little is known about mechanisms that allow its persistence in diverse environments. Here we evaluated S. saprophyticus growth and survival during heat shock, the expression of stress response regulators ctsR and hrcA through qRT-PCR and heat shock protein synthesis through 35 S-Met metabolic labeling. S. saprophyticus does not tolerate temperatures much higher than the optimal 37 °C, as its growth is greatly affected at 42 °C, though viability is maintained up to 48 °C. At 42 °C, the expression of ctsR and hrcA repressor genes approximately triple when compared to 37 °C and continue to increase together with temperature till 48 °C. Expression of hrcA peaks after 20 min of heat shock and decreases significantly after 30 min, indicating that heat stress response regulated by this gene may last 20-30 min. An increase in temperature is accompanied by the synthesis of at least eight proteins, three of which are likely the chaperones DnaK, GroEL and ClpB. In silico analysis indicate that the groEL gene may be regulated by HrcA, clpB by CtsR and dnaK by both repressors. This is the first work to discuss heat stress response in S. saprophyticus and a step forward in the understanding of mechanisms that make this a widespread and emergent pathogen.

  7. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  8. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure.

    Science.gov (United States)

    Li, Yuting; Zhao, Qi; Duan, Xinle; Song, Chunman; Chen, Maohua

    2017-03-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), a worldwide destructive pest, is more heat tolerant than other wheat aphids, and it has developed resistance to different insecticides. Heat shock proteins (HSPs) play an important role in coping with environmental stresses. To investigate Hsp transcriptional responses to heat and insecticide stress, four full-length Hsp genes from R. padi (RpHsp60, RpHsc70, RpHsp70-1, and RpHsp70-2) were cloned. Four RpHsps were expressed during all R. padi developmental stages, but at varying levels. The mRNA levels of RpHsps were increased under thermal stress and reached maximal induction at a lower temperature (36°C) in the alate morph than in the apterous morph (37°C or 38°C). RpHsp expressions under heat stress suggest that RpHsp70-1 and RpHsp70-2 are inducible in both apterous and alate morphs, RpHsc70 is only heat-inducible in apterous morph, and RpHsp60 exhibits poor sensitivity to heat stress. The pretreatment at 37°C significantly increase both the survival rate and the RpHsps expression level of R. padi at subsequent lethal temperature. Under exposure to two sublethal concentrations (LC 10 and LC 30 ) of beta-cypermethrin, both RpHsp70-1 and RpHsp70-2 expressions were induced and reached a maximum 24h after exposure. In contrast, expression of RpHsp60 was not induced by either sublethal concentration of beta-cypermethrin. Moreover, the responses of RpHsp70-1 and RpHsp70-2 to heat shock were more sensitive than those to beta-cypermethrin. These results suggest that induction of RpHsp expression is related to thermal tolerance, and that RpHsp70-1 and RpHsp70-2 are the primary genes involved in the response to both heat and pesticide stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L..

    Directory of Open Access Journals (Sweden)

    Xiaotao Ding

    Full Text Available Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease.

  10. Dynamic behavior of small heat shock protein inhibition on amyloid fibrillization of a small peptide (SSTSAA) from RNase A

    International Nuclear Information System (INIS)

    Xi, Dong; Dong, Xiao; Deng, Wei; Lai, Luhua

    2011-01-01

    Highlights: ► Mechanism of small heat shock protein inhibition on fibril formation was studied. ► Peptide SSTSAA with modified ends was used for amyloid fibril formation. ► FRET signal was followed during the fibril formation. ► Mj HSP16.5 inhibits fibril formation when introduced in the lag phase. ► Mj HSP16.5 slows down fibril formation when introduced after the lag phase. -- Abstract: Small heat shock proteins, a class of molecular chaperones, are reported to inhibit amyloid fibril formation in vitro, while the mechanism of inhibition remains unknown. In the present study, we investigated the mechanism by which Mj HSP16.5 inhibits amyloid fibril formation of a small peptide (SSTSAA) from RNase A. A model peptide (dansyl-SSTSAA-W) was designed by introducing a pair of fluorescence resonance energy transfer (FRET) probes into the peptide, allowing for the monitoring of fibril formation by this experimental model. Mj HSP16.5 completely inhibited fibril formation of the model peptide at a molar ratio of 1:120. The dynamic process of fibril formation, revealed by FRET, circular dichroism, and electron microscopy, showed a lag phase of about 2 h followed by a fast growth period. The effect of Mj HSP16.5 on amyloid fibril formation was investigated by adding it into the incubation solution during different growth phases. Adding Mj HSP16.5 to the incubating peptide before or during the lag phase completely inhibited fibril formation. However, introducing Mj HSP16.5 after the lag phase only slowed down the fibril formation process by adhering to the already formed fibrils. These findings provide insight into the inhibitory roles of small heat shock proteins on amyloid fibril formation at the molecular level.

  11. Dynamic behavior of small heat shock protein inhibition on amyloid fibrillization of a small peptide (SSTSAA) from RNase A

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Dong [BNLMS, State Key Laboratory of Structural Chemistry for Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Center for Theoretical Biology, Peking University, Beijing 100871 (China); Dong, Xiao; Deng, Wei [BNLMS, State Key Laboratory of Structural Chemistry for Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Lai, Luhua, E-mail: lhlai@pku.edu.cn [BNLMS, State Key Laboratory of Structural Chemistry for Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Center for Theoretical Biology, Peking University, Beijing 100871 (China)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mechanism of small heat shock protein inhibition on fibril formation was studied. Black-Right-Pointing-Pointer Peptide SSTSAA with modified ends was used for amyloid fibril formation. Black-Right-Pointing-Pointer FRET signal was followed during the fibril formation. Black-Right-Pointing-Pointer Mj HSP16.5 inhibits fibril formation when introduced in the lag phase. Black-Right-Pointing-Pointer Mj HSP16.5 slows down fibril formation when introduced after the lag phase. -- Abstract: Small heat shock proteins, a class of molecular chaperones, are reported to inhibit amyloid fibril formation in vitro, while the mechanism of inhibition remains unknown. In the present study, we investigated the mechanism by which Mj HSP16.5 inhibits amyloid fibril formation of a small peptide (SSTSAA) from RNase A. A model peptide (dansyl-SSTSAA-W) was designed by introducing a pair of fluorescence resonance energy transfer (FRET) probes into the peptide, allowing for the monitoring of fibril formation by this experimental model. Mj HSP16.5 completely inhibited fibril formation of the model peptide at a molar ratio of 1:120. The dynamic process of fibril formation, revealed by FRET, circular dichroism, and electron microscopy, showed a lag phase of about 2 h followed by a fast growth period. The effect of Mj HSP16.5 on amyloid fibril formation was investigated by adding it into the incubation solution during different growth phases. Adding Mj HSP16.5 to the incubating peptide before or during the lag phase completely inhibited fibril formation. However, introducing Mj HSP16.5 after the lag phase only slowed down the fibril formation process by adhering to the already formed fibrils. These findings provide insight into the inhibitory roles of small heat shock proteins on amyloid fibril formation at the molecular level.

  12. 14-3-3σ induces heat shock protein 70 expression in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Liu, Chia-Chia; Wang, John; Shyue, Song-Kun; Sung, Li-Ying; Liou, Jun-Yang; Jan, Yee-Jee; Ko, Bor-Sheng; Wu, Yao-Ming; Liang, Shu-Man; Chen, Shyh-Chang; Lee, Yen-Ming; Liu, Tzu-An; Chang, Tzu-Ching

    2014-01-01

    14-3-3σ is implicated in promoting tumor development of various malignancies. However, the clinical relevance of 14-3-3σ in hepatocellular carcinoma (HCC) tumor progression and modulation and pathway elucidation remain unclear. We investigated 14-3-3σ expression in 109 HCC tissues by immunohistochemistry. Overexpression and knockdown experiments were performed by transfection with cDNA or siRNA. Protein expression and cell migration were determined by Western blot and Boyden chamber assay. In this study, we found that 14-3-3σ is abundantly expressed in HCC tumors. Stable or transient overexpression of 14-3-3σ induces the expression of heat shock factor-1α (HSF-1α) and heat shock protein 70 (HSP70) in HCC cells. Moreover, expression of 14-3-3σ significantly correlates with HSF-1α/HSP70 in HCC tumors and both 14-3-3σ and HSP70 overexpression are associated with micro-vascular thrombi in HCC patients, suggesting that 14-3-3σ/HSP70 expression is potentially involved in cell migration/invasion. Results of an in vitro migration assay indicate that 14-3-3σ promotes cell migration and that 14-3-3σ-induced cell migration is impaired by siRNA knockdown of HSP70. Finally, 14-3-3σ-induced HSF-1α/HSP70 expression is abolished by the knockdown of β-catenin or activation of GSK-3β. Our findings indicate that 14-3-3σ participates in promoting HCC cell migration and tumor development via β-catenin/HSF-1α/HSP70 pathway regulation. Thus, 14-3-3σ alone or combined with HSP70 are potential prognostic biomarkers for HCC

  13. The heat shock protein 90 inhibitor 17-AAG suppresses growth and induces apoptosis in human cholangiocarcinoma cells.

    Science.gov (United States)

    Zhang, Jianjun; Zheng, Zhichao; Zhao, Yan; Zhang, Tao; Gu, Xiaohu; Yang, Wei

    2013-11-01

    The aim of this study was to investigate the effects of 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a heat shock protein 90 (HSP90) inhibitor, on the proliferation, cell cycle, and apoptosis of human cholangiocarcinoma (CCA) cells. Cell proliferation and cell cycle distribution were measured by the MTT assay and flow cytometry analysis, respectively. Induction of apoptosis was determined by flow cytometry and Hoechst staining. The expressions of cleaved poly ADP-ribose polymerase (PARP), Bcl-2, Survivin, and Cyclin B1 were detected by Western blot analysis. The activity of caspase-3 was also examined. We found that 17-AAG inhibited cell growth and induced G2/M cell cycle arrest and apoptosis in CCA cells together with the down-regulation of Bcl-2, Survivin and Cyclin B1, and the up-regulation of cleaved PARP. Moreover, increased caspase-3 activity was also observed in CCA cells treated with 17-AAG. In conclusion, our data suggest that the inhibition of HSP90 function by 17-AAG may provide a promising therapeutic strategy for the treatment of human CCA.

  14. Heat shock cognate protein 70 contributes to Brucella invasion into trophoblast giant cells that cause infectious abortion

    Directory of Open Access Journals (Sweden)

    Furuoka Hidefumi

    2008-12-01

    Full Text Available Abstract Background The cell tropism of Brucella abortus, a causative agent of brucellosis and facultative intracellular pathogen, in the placenta is thought to be a key event of infectious abortion, although the molecular mechanism for this is largely unknown. There is a higher degree of bacterial colonization in the placenta than in other organs and many bacteria are detected in trophoblast giant (TG cells in the placenta. In the present study, we investigated mechanism of B. abortus invasion into TG cells. Results We observed internalization and intracellular growth of B. abortus in cultured TG cells. A monoclonal antibody that inhibits bacterial internalization was isolated and this reacted with heat shock cognate protein 70 (Hsc70. Depletion and over expression of Hsc70 in TG cells inhibited and promoted bacterial internalization, respectively. IFN-γ receptor was expressed in TG cells and IFN-γ treatment enhanced the uptake of bacteria by TG cells. Administering the anti-Hsc70 antibody to pregnant mice served to prevent infectious abortion. Conclusion B. abortus infection of TG cells in placenta is mediated by Hsc70, and that such infection leads to infectious abortion.

  15. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Treger, J M; McEntee, K

    1999-02-01

    Transcription of the polyubiquitin gene UBI4 of Saccharomyces cerevisiae is strongly induced by a variety of environmental stresses, such as heat shock, nutrient depletion and exposure to DNA-damaging agents. This transcriptional response of UBI4 is likely to be the primary mechanism for increasing the pool of ubiquitin for degradation of stress-damaged proteins. Deletion and promoter fusion studies of the 5' regulatory sequences indicated that two different elements, heat shock elements (HSEs) and stress response element (STREs), contributed independently to heat shock regulation of the UBI4 gene. In the absence of HSEs, STRE sequences localized to the intervals -264 to -238 and -215 to -183 were needed for stress control of transcription after heat shock. Site-directed mutagenesis of the STRE (AG4) at -252 to -248 abolished heat shock induction of UBI4 transcription. Northern analysis demonstrated that cells containing either a temperature-sensitive HSF or non-functional Msn2p/Msn4p transcription factors induced high levels of UBI4 transcripts after heat shock. In cells deficient in both heat stress pathways, heat-induced UBI4 transcript levels were considerably lower but not abolished, suggesting a role for another factor(s) in stress control of its expression.

  16. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response.

    Science.gov (United States)

    Miragem, Antônio Azambuja; Homem de Bittencourt, Paulo Ivo

    2017-09-01

    Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO

  17. Placental heat shock proteins: no immunohistochemical evidence for a differential stress response in preterm labour.

    Science.gov (United States)

    Divers, M J; Bulmer, J N; Miller, D; Lilford, R J

    1995-01-01

    The aetiology of idiopathic preterm labour remains obscure. The hypothesis that a stress response induced by low-grade bacterial infection in utero-placental tissues was investigated. Distribution of cognate and inducible isoforms of heat shock proteins (HSP) 70 kD, HSP 60 kD and HSP 90 kD were investigated in an immunohistochemical study of placental and decidual tissues before and after labour at varying gestations. Subjects were pregnant women undergoing singleton delivery after idiopathic preterm labour at less than 34 weeks' gestation (n = 23); spontaneous term labour at 37-42 weeks' gestation (n =24); preterm caesarean sections at less than 34 weeks' gestation for preeclampsia or intrauterine growth retardation (n=14); elective caesarean section at 37-42 weeks' gestation for cephalopelvic disproportion (n = 6). HSP expression was constant throughout the third trimester of pregnancy and did not change following the onset of labour, regardless of gestational age. A stress response in decidual tissues as determined by immunohistochemical analysis is apparently not associated with preterm labour.

  18. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Krivoruchko, Anastasia; Storey, Kenneth B

    2010-03-01

    The effects of 20 h of anoxic submergence in cold water and 5 h of aerobic recovery on the heat shock response were analyzed in four organs of the anoxia-tolerant turtle Trachemys scripta elegans. Immunoblotting was used to analyze levels of active and inactive forms of the heat shock transcription factor 1 (HSF1), nuclear translocation of HSF1, and the levels of six heat shock proteins (HSPs). PCR was also used to retrieve the turtle HSF1 nucleotide sequence; its deduced amino acid sequence showed 97% identity with chicken HSF1. White skeletal muscle showed a strong fivefold increase in the amount of active HSF1 under anoxic conditions as well as an 80% increase in nuclear localization. This was accompanied by upregulation of five HSPs by 1.8- to 2.9-fold: Hsp25, Hsp40, Hsp70, Hsc70, and Hsp90, the latter two remained elevated after 5 h of aerobic recovery. Kidney and liver showed little change in active HSF1 content during anoxia and recovery, but a significant increase in the nuclear localization of HSF1 during anoxia. This supported enhanced expression of three HSPs in kidney (Hsp40, Hsc70, and Hsp90) and four in liver (Hsp40, Hsp60, Hsp70, Hsc70). Heart displayed a strong increase in active HSF1 during anoxia and recovery (6.6- to 6.8-fold higher than control) and increased nuclear localization but heart HSP levels did not rise. The data demonstrate organ-specific regulation of HSPs during anoxia exposure and aerobic recovery in T. s. elegans and suggest that the heat shock response is an important aspect of cytoprotection during facultative anaerobiosis, particularly with regard to underwater hibernation of turtles in cold water.

  19. Molecular cloning and expression of a heat-shock cognate 70 (hsc70) gene from swordtail fish ( Xiphophorus helleri)

    Science.gov (United States)

    Li, Ningqiu; Fu, Xiaozhe; Han, Jingang; Shi, Cunbin; Huang, Zhibin; Wu, Shuqin

    2013-07-01

    Heat shock proteins are a family of molecular chaperones that are involved in many aspects of protein homeostasis. In the present study, a full-length cDNA, encoding the constitutively expressed 70-kDa heat shock cognate protein (Hsc70), was isolated from swordtail fish ( Xiphophorus helleri) and designated as XheHsc70. The Xhehsc70 cDNA was 2 104 bp long with an open reading frame of 1 941 bp, and it encoded a protein of 646 amino acids with a theoretical molecular weight of 70.77 kDa and an isoelectric point of 5.04. The deduced amino acid sequence shared 94.1%-98.6% identities with the Hsc70s from a number of other fish species. Tissue distribution results show that the Xhehsc70 mRNA was expressed in brain, heart, head kidney, kidney, spleen, liver, muscle, gill, and peripheral blood. After immunization with formalin-killed Vibrio alginolyticus cells there was a significant increase in the Xhehsc70 mRNA transcriptional level in the head kidney of the vaccinated fish compared with in the control at 6, 12, 24, and 48 h as shown by quantitative real time RT-PCR. Based on an analysis of the amino acid sequence of XheHsc70, its phylogeny, and Xhehsc70 mRNA expression, XheHsc70 was identified as a member of the cytoplasmic Hsc70 (constitutive) subfamily of the Hsp70 family of heat shock proteins, suggesting that it may play a role in the immune response. The Xhehsc70 cDNA sequence reported in this study was submitted to GenBank under the accession number JF739182.

  20. Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassostrea hongkongensis responding to thermal stress and exposure of Cu(2+) and malachite green.

    Science.gov (United States)

    Zhang, Zhanhui; Zhang, Qizhong

    2012-04-15

    Heat shock protein 70 (HSP70) acts mostly as a molecular chaperone and plays a key role in the process of protecting cells by facilitating the folding of nascent peptides and the cellular stress response. The cDNA of the oyster Crassostrea hongkongensis hsp70 (designated chhsp70) was cloned with the techniques of homological cloning and rapid amplification of cDNA ends (RACE). The full-length chhsp70 cDNA was 2251bp, consisting of a 130bp 5'-UTR, 216bp 3'-UTR with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1905bp, which encoded a polypeptide of 634 amino acids. Three classical HSP signature motifs were detected in ChHSP70, i.e., DLGTT-S-V, IFDLGGGTFDVSIL and VVLVGGSTRIPKIQK. BLAST analysis revealed that the ChHSP70 shared high identity with other bivalve HSP70. The phylogenetic analysis indicated that the ChHSP70 was a member of the HSP70 family. The chhsp70 mRNA transcripts were quantified by fluorescent real time RT-PCR under both unstressed and stressed conditions, i. e., heat shock and exposure to Cu(2+) and malachite green. Basal expression level was similar in mantle, gill, digestive gland, and heart, but higher in muscle than that in the others. A similar trend showed that the chhsp70 mRNA expression significantly increased at 3-6h, then dropped and returned to control level at 24h in the five tissues and organs mentioned above after heat shock. A clearly time-dependent expression pattern of chhsp70 mRNA in digestive gland and gill of the oyster was observed after exposure of Cu(2+) and malachite green. In the two tissues, the chhsp70 mRNA level reached the maximum at 6h after malachite green exposure and on day 4 after Cu(2+) exposure, and then decreased progressively to the control level. The results indicated that ChHSP70 of the oyster is an inducible protein, and plays an important role in response to the Cu(2+) and malachite green polluted stress, so chhsp70 might be used as a potential molecular

  1. Crystal structure of an activated variant of small heat shock protein Hsp16.5.

    Science.gov (United States)

    McHaourab, Hassane S; Lin, Yi-Lun; Spiller, Benjamin W

    2012-06-26

    How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.

  2. Estradiol improves cardiac and hepatic function after trauma-hemorrhage: role of enhanced heat shock protein expression.

    Science.gov (United States)

    Szalay, László; Shimizu, Tomoharu; Suzuki, Takao; Yu, Huang-Ping; Choudhry, Mashkoor A; Schwacha, Martin G; Rue, Loring W; Bland, Kirby I; Chaudry, Irshad H

    2006-03-01

    Although studies indicate that 17beta-estradiol administration after trauma-hemorrhage (T-H) improves cardiac and hepatic functions, the underlying mechanisms remain unclear. Because the induction of heat shock proteins (HSPs) can protect cardiac and hepatic functions, we hypothesized that these proteins contribute to the salutary effects of estradiol after T-H. To test this hypothesis, male Sprague-Dawley rats ( approximately 300 g) underwent laparotomy and hemorrhagic shock (35-40 mmHg for approximately 90 min) followed by resuscitation with four times the shed blood volume in the form of Ringer lactate. 17beta-estradiol (1 mg/kg body wt) was administered at the end of the resuscitation. Five hours after T-H and resuscitation there was a significant decrease in cardiac output, positive and negative maximal rate of left ventricular pressure. Liver function as determined by bile production and indocyanine green clearance was also compromised after T-H and resuscitation. This was accompanied by an increase in plasma alanine aminotransferase (ALT) levels and liver perfusate lactic dehydrogenase levels. Furthermore, circulating levels of TNF-alpha, IL-6, and IL-10 were also increased. In addition to decreased cardiac and hepatic function, there was an increase in cardiac HSP32 expression and a reduction in HSP60 expression after T-H. In the liver, HSP32 and HSP70 were increased after T-H. There was no change in heart HSP70 and liver HSP60 after T-H and resuscitation. Estradiol administration at the end of T-H and resuscitation increased heart/liver HSPs expression, ameliorated the impairment of heart/liver functions, and significantly prevented the increase in plasma levels of ALT, TNF-alpha, and IL-6. The ability of estradiol to induce HSPs expression in the heart and the liver suggests that HSPs, in part, mediate the salutary effects of 17beta-estradiol on organ functions after T-H.

  3. A broad set of different llama antibodies specific for a 16 kDa heat shock protein of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Anke K Trilling

    Full Text Available BACKGROUND: Recombinant antibodies are powerful tools in engineering of novel diagnostics. Due to the small size and stable nature of llama antibody domains selected antibodies can serve as a detection reagent in multiplexed and sensitive assays for M. tuberculosis. METHODOLOGY/PRINCIPAL FINDINGS: Antibodies for Mycobacterium tuberculosis (M. tb recognition were raised in Alpaca, and, by phage display, recombinant variable domains of heavy-chain antibodies (VHH binding to M. tuberculosis antigens were isolated. Two phage display selection strategies were followed: one direct selection using semi-purified protein antigen, and a depletion strategy with lysates, aiming to avoid cross-reaction to other mycobacteria. Both panning methods selected a set of binders with widely differing complementarity determining regions. Selected recombinant VHHs were produced in E. coli and shown to bind immobilized lysate in direct Enzymelinked Immunosorbent Assay (ELISA tests and soluble antigen by surface plasmon resonance (SPR analysis. All tested VHHs were specific for tuberculosis-causing mycobacteria (M. tuberculosis, M. bovis and exclusively recognized an immunodominant 16 kDa heat shock protein (hsp. The highest affinity VHH had a dissociation constant (KD of 4 × 10(-10 M. CONCLUSIONS/SIGNIFICANCE: A broad set of different llama antibodies specific for 16 kDa heat shock protein of M. tuberculosis is available. This protein is highly stable and abundant in M. tuberculosis. The VHH that detect this protein are applied in a robust SPR sensor for identification of tuberculosis-causing mycobacteria.

  4. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: Role of 70kDa heat shock protein expression

    Czech Academy of Sciences Publication Activity Database

    Tollarová-Borovanská, Michaela; Lalouette, L.; Košťál, Vladimír

    2009-01-01

    Roč. 30, č. 5 (2009), s. 312-319 ISSN 0143-2044 R&D Projects: GA ČR GA206/07/0269 Institutional research plan: CEZ:AV0Z50070508 Keywords : insect * cold tolerance * heat shock proteins Subject RIV: ED - Physiology Impact factor: 1.074, year: 2009

  5. The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene

    NARCIS (Netherlands)

    Wimmer, Bernhard; Lottspeich, Friedrich; Klei, Ida van der; Veenhuis, Marten; Gietl, Christine

    1997-01-01

    The monoclonal a-70-kDa heat shock protein (hsp70) antibody recognizes in crude extracts from watermelon (Citrullus vulgaris) cotyledons with molecular masses of 70 and 72 KDa, Immunocytochemistry on watermelon cotyledon tissue and on isolated glyoxysomes identified hsp70s in the matrix of

  6. The level of heat shock protein 90 in pig Longissimus dorsi muscle and its relationship with meat pH and quality.

    Science.gov (United States)

    Zhang, Muhan; Wang, Daoying; Geng, Zhiming; Bian, Huan; Liu, Fang; Zhu, Yongzhi; Xu, Weimin

    2014-12-15

    The 90 kDa heat shock protein (HSP90) is a molecular chaperone that participates in various cellular processes, the role and significance of HSP90 in postmortem muscle though remains unclear. In the present study, pig Longissimus dorsi muscles, categorized into three pH groups, were tested for HSP90 levels and meat quality parameters (i.e. water holding capacity, colour, tenderness and lipid oxidation). The muscles with a high initial pH (pHi) group (pH>6.4) possessing the greatest water holding capacity and lightness, contained the highest HSP90 level, followed by intermediate (6.0-6.4) and low pHi groups (pHwater retention of meat and may be involved in postmortem meat quality development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [Suppressive Effects of Extract of Cedar Wood on Heat-induced Expression of Cellular Heat Shock Protein].

    Science.gov (United States)

    Miyakoshi, Junji; Matsubara, Eri; Narita, Eijiro; Koyama, Shin; Shimizu, Yoko; Kawai, Shuichi

    2018-01-01

     In recent years, highly antimicrobial properties of cedar heartwood essential oil against the wood-rotting fungi and pathogenic fungi have been reported in several papers. Antimicrobial properties against oral bacteria by hinokitiol contained in Thujopsis have been also extensively studied. The relation of naturally derived components and human immune system has been studied in some previous papers. In the present study, we focused on Japanese cedar, which has the widest artificial afforestation site in the country among various tree species. Extract oil was obtained from mixture of sapwood and heartwood of about 40-year cedar grown in Oguni, Kumamoto, Japan. We examined the influence of extract components from Japanese cedar woods on the expression of heat shock protein 70 (Hsp70) during heating, and on the micronucleus formation induced by the treatment of bleomycin as a DNA damaging agent. Cell lines used in this study were human fetal glial cells (SVGp12) and human glioma cells (MO54). Remarkable suppression of the Hsp70 expression induced by heating at 43°C was detected by the treatment of cedar extract in both SVGp12 and MO54 cells. We also found that cedar extract had an inhibitory tendency to reduce the micronucleus formation induced by bleomycin. From these results, the extract components from Japanese cedar woods would have an inhibitory effect of the stress response as a suppression of the heat-induced Hsp70 expression, and might have a reductive effect on carcinogenicity.

  8. Variation in bull beef quality due to ultimate muscle pH is correlated to endopeptidase and small heat shock protein levels.

    Science.gov (United States)

    Pulford, D J; Dobbie, P; Fraga Vazquez, S; Fraser-Smith, E; Frost, D A; Morris, C A

    2009-09-01

    This study set out to determine if ultimate pH (pH(u)) affected the performance of intracellular small heat shock protein and endopeptidase dynamics in muscle during beef ageing. Longissimus dorsi muscles from 39 Angus or Limousin×Angus bulls were examined to see if pH(u) achieved at 22h post mortem (rigor) affected tenderness and water holding capacity of beef. Samples were segregated into three pH(u) groups termed high (pH>6.3), intermediate (5.7pHpHpH(u) beef. More than 30% of bull beef did not achieve acceptable tenderness at 8 days post mortem with this ageing regime. No significant differences in calpain or cathepsin enzyme levels due to meat pH were observed until after 22h post mortem, but low pH(u) beef had elevated caspase 3/7 activity soon after slaughter. At 22h post mortem, greater levels of μ-calpain enzyme were found in the high and intermediate pH(u) beef and cathepsin B levels were superior in the low pH(u) beef after 2 days post mortem. Different rates of desmin and troponin T protein degradation were also observed in aged bull beef. Both proteins were degraded within 6h post mortem for high pH(u) beef, but took >3 days post mortem for intermediate pH(u) beef. High levels of alpha β-crystallin (aβC) at 22h post mortem coincided with delayed muscle protein degradation for low pH(u) beef. Our results support the hypothesis that aβC shields myofibrils and buffers against endopeptidase degradation of beef structure during ageing.

  9. Heat capacity of NdB.sub.6./sub..

    Czech Academy of Sciences Publication Activity Database

    Reiffers, M.; Šebek, Josef; Šantavá, Eva; Shitsevalova, N.; Gabáni, S.; Pristáš, G.; Flachbart, K.

    2007-01-01

    Roč. 310, - (2007), e595-e597 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100520 Keywords : heat capacity * NdB 6 * magnetic contribution Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  10. Initiation of lambda DNA replication. The Escherichia coli small heat shock proteins, DnaJ and GrpE, increase DnaK's affinity for the lambda P protein.

    Science.gov (United States)

    Osipiuk, J; Georgopoulos, C; Zylicz, M

    1993-03-05

    It is known that the initiation of bacteriophage lambda replication requires the orderly assembly of the lambda O.lambda P.DnaB helicase protein preprimosomal complex at the ori lambda DNA site. The DnaK, DnaJ, and GrpE heat shock proteins act together to destabilize the lambda P.DnaB complex, thus freeing DnaB and allowing it to unwind lambda DNA near the ori lambda site. The first step of this disassembly reaction is the binding of DnaK to the lambda P protein. In this report, we examined the influence of the DnaJ and GrpE proteins on the stability of the lambda P.DnaK complex. We present evidence for the existence of the following protein-protein complexes: lambda P.DnaK, lambda P.DnaJ, DnaJ.DnaK, DnaK.GrpE, and lambda P.DnaK.GrpE. Our results suggest that the presence of GrpE alone destabilizes the lambda P.DnaK complex, whereas the presence of DnaJ alone stabilizes the lambda P.DnaK complex. Using immunoprecipitation, we show that in the presence of GrpE, DnaK exhibits a higher affinity for the lambda P.DnaJ complex than it does alone. Using cross-linking with glutaraldehyde, we show that oligomeric forms of DnaK exhibit a higher affinity for lambda P than monomeric DnaK. However, in the presence of GrpE, monomeric DnaK can efficiently bind lambda P protein. These findings help explain our previous results, namely that in the GrpE-dependent lambda DNA replication system, the DnaK protein requirement can be reduced up to 10-fold.

  11. Molecular Stress-inducing Compounds Increase Osteoclast Formation in a Heat Shock Factor 1 Protein-dependent Manner*

    Science.gov (United States)

    Chai, Ryan C.; Kouspou, Michelle M.; Lang, Benjamin J.; Nguyen, Chau H.; van der Kraan, A. Gabrielle J.; Vieusseux, Jessica L.; Lim, Reece C.; Gillespie, Matthew T.; Benjamin, Ivor J.; Quinn, Julian M. W.; Price, John T.

    2014-01-01

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss. PMID:24692538

  12. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    Science.gov (United States)

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  13. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells.

    Science.gov (United States)

    Davis, Angela L; Qiao, Shuxi; Lesson, Jessica L; Rojo de la Vega, Montserrat; Park, Sophia L; Seanez, Carol M; Gokhale, Vijay; Cabello, Christopher M; Wondrak, Georg T

    2015-01-16

    Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinder(TM) PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. © 2015 by The

  14. 16 kDa heat shock protein from heat-inactivated Mycobacterium tuberculosis is a homodimer - suitability for diagnostic applications with specific llama VHH monoclonals.

    Directory of Open Access Journals (Sweden)

    Saurabh K Srivastava

    Full Text Available BACKGROUND: The 16 kDa heat shock protein (HSP is an immuno-dominant antigen, used in diagnosis of infectious Mycobacterium tuberculosis (M.tb. causing tuberculosis (TB. Its use in serum-based diagnostics is limited, but for the direct identification of M.tb. bacteria in sputum or cultures it may represent a useful tool. Recently, a broad set of twelve 16 kDa specific heavy chain llama antibodies (VHH has been isolated, and their utility for diagnostic applications was explored. METHODOLOGY/PRINCIPAL FINDINGS: To identify the epitopes recognized by the nine (randomly selected from a set of twelve 16 kDa specific VHH antibodies distinct VHH antibodies, 14 overlapping linear epitopes (each 20 amino acid long were characterized using direct and sandwich ELISA techniques. Seven out of 14 epitopes were recognized by 8 out of 9 VHH antibodies. The two highest affinity binders B-F10 and A-23 were found to bind distinct epitopes. Sandwich ELISA and SPR experiments showed that only B-F10 was suitable as secondary antibody with both B-F10 and A-23 as anchoring antibodies. To explain this behavior, the epitopes were matched to the putative 3D structure model. Electrospray ionization time-of-flight mass spectrometry and size exclusion chromatography were used to determine the higher order conformation. A homodimer model best explained the differential immunological reactivity of A-23 and B-F10 against heat-treated M.tb. lysates. CONCLUSIONS/SIGNIFICANCE: The concentrations of secreted antigens of M.tb. in sputum are too low for immunological detection and existing kits are only used for identifying M.tb. in cultures. Here we describe how specific combinations of VHH domains could be used to detect the intracellular HSP antigen. Linked to methods of pre-concentrating M.tb. cells prior to lysis, HSP detection may enable the development of protein-based diagnostics of sputum samples and earlier diagnosis of diseases.

  15. Ekspresi Human Leukocyte Antigen-G (HLA-G dan Heat-Shock Protein-70 (Hsp-70 pada Pertumbuhan Janin Terhambat

    Directory of Open Access Journals (Sweden)

    Sri Sulistyowati

    2014-03-01

    Full Text Available Intra uterine growth retardation (IUGR is one of the leading causes of higher morbidity and mortality in perinatal. Immune maladaptation affects trophoblast invasion and spiralis arteria remodeling that will cause placental tissue hypoxia. This research aimed to analyze human leukocyte antigen-G (HLA-G and heat-shock protein-70 (Hsp-70 expression on the IUGR trophoblast and normal pregnancy, by applying analytical observational method and cross sectional approach. This research was conducted at the Obstetric and Gynecology Department of Dr. Moewardi Hospital Surakarta from November to December 2011. The total samples were 30, divided into two groups. There were 15 samples trophoblast on IUGR and 15 samples trophoblast from normal pregnancy. All samples were tested for HLA-G and Hsp-70 using immunohistochemistry. The data were analyzed by using t-test. The mean of HLA-G expression on the IUGR groups was 32.42±8.90 and on the normal pregnancy groups was 43.92±14.91 (p=0.016. Heat-shock protein70 expression on the IUGR groups was 2.4355+0.26647 and on the normal pregnancy groups was 1.5920+0.17142 with p=0.008. In conclusion, in IUGR, the HLA-G expression is lower and the Hsp-70 expression is higher than in normal pregnancy.

  16. Heat shock factor 1 upregulates transcription of Epstein–Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    International Nuclear Information System (INIS)

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-01-01

    Epstein–Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the − 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  17. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng-Wei [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Wu, Xian-Rui [Department of Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou (China); Liu, Wen-Ju; Liao, Yi-Ji [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Lin, Sheng [Laboratory of Integrated Biosciences, School of Life Science, Sun Yat-sen University, Guangzhou (China); Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Mai, Shi-Juan, E-mail: maishj@sysucc.org.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China); Xie, Dan, E-mail: xied@mail.sysu.edu.cn [The State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou (China)

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  18. 1,3,5-Trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone directly targets heat shock protein 27 in hepatocellular carcinoma.

    Science.gov (United States)

    Fu, Wei-Ming; Wang, Wei-Mao; Wang, Hua; Zhu, Xiao; Liang, Yan; Kung, Hsiang-Fu; Zhang, Jin-Fang

    2014-02-01

    We previously showed that the small molecule 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP) induces apoptosis in hepatocellular carcinoma (HCC) by suppressing Hsp27 expression, although the mechanism is not fully understood. To investigate the functional association between TDP and Hsp27 protein in HCC, recombinant Hsp27 protein was incubated with TDP at room temperature, and assayed by mass spectrum (MS) and natural electrophoresis. TDP effectively stimulated Hsp27 to form aggregates ex vitro, leading to suppression of its chaperone activity. The aggregates were degraded by the ubiquitin-proteasome (UPS) pathway. TDP directly interacted with Asp17 and Phe55 in chain C of Hsp27 on the basis of bioinformatic prediction. In conclusion, Hsp27 is a direct target of TDP in its anti-cancer activity, which provides strong support for a clinical application. © 2013 International Federation for Cell Biology.

  19. Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish

    Science.gov (United States)

    Lahvic, Jamie L.; Ji, Yongchang; Marin, Paloma; Zuflacht, Jonah P.; Springel, Mark W.; Wosen, Jonathan E.; Davis, Leigh; Hutson, Lara D.; Amack, Jeffrey D.; Marvin, Martha J.

    2013-01-01

    Small heat shock proteins (sHsps) regulate cellular functions not only under stress, but also during normal development, when they are expressed in organ-specific patterns. Here we demonstrate that two small heat shock proteins expressed in embryonic zebrafish heart, hspb7 and hspb12, have roles in the development of left-right asymmetry. In zebrafish, laterality is determined by the motility of cilia in Kupffer’s vesicle (KV), where hspb7 is expressed; knockdown of hspb7 causes laterality defects by disrupting the motility of these cilia. In embryos with reduced hspb7, the axonemes of KV cilia have a 9+0 structure, while control embyros have a predominately 9+2 structure. Reduction of either hspb7 or hspb12 alters the expression pattern of genes that propagate the signals that establish left-right asymmetry: the nodal-related gene southpaw (spaw) in the lateral plate mesoderm, and its downstream targets pitx2, lefty1 and lefty2. Partial depletion of hspb7 causes concordant heart, brain and visceral laterality defects, indicating that loss of KV cilia motility leads causes coordinated but randomized laterality. Reducing hspb12 leads to similar alterations in the expression of downstream laterality genes, but at a lower penetrance. Simultaneous reduction of hspb7 and hspb12 randomizes heart, brain and visceral laterality, suggesting that these two genes have partially redundant functions in the establishment of left-right asymmetry. In addition, both hspb7 and hspb12 are expressed in the precardiac mesoderm and in the yolk syncytial layer, which supports the migration and fusion of mesodermal cardiac precursors. In embryos in which the reduction of hspb7 or hspb12 was limited to the yolk, migration defects predominated, suggesting that the yolk expression of these genes rather than heart expression is responsible for the migration defects. PMID:24140541

  20. Effect of LaB6 on the thermal shock property of MoSi2-SiC coating for carbon/carbon composites

    International Nuclear Information System (INIS)

    Li Ting; Li Hejun; Shi Xiaohong

    2013-01-01

    Highlights: ► LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC multi-composition coatings were coated on C/C composites by pack cementation. ► The microstructure and thermal shock resistance of both coatings were investigated. ► The addition of LaB 6 can increase the compactness, flexural strength and fracture toughness of the MoSi 2 -SiC coating simultaneously. ► Both coatings bond well with the substrates before and after thermal cycling oxidation between 1773 K and room temperature. ► The LaB 6 -MoSi 2 -SiC coated C/C shows better thermal shock resistance than the MoSi 2 -SiC coated C/C. - Abstract: LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coatings were prepared on the surface of carbon/carbon composites by pack cementation method. The crystal structures of the coatings were measured by X-ray diffraction. The morphologies and element distributions were also analyzed by scanning electron microscopy and energy dispersive spectroscopy, respectively. The effect of LaB 6 on the microstructure and thermal shock resistance of MoSi 2 -SiC coating was investigated. The results indicated that the LaB 6 -MoSi 2 -SiC coating possessed a denser structure and superior thermal shock resistance. After 25 times of thermal cycling oxidation between 1773 K and room temperature, the weight losses of the LaB 6 -MoSi 2 -SiC and MoSi 2 -SiC coated samples were 0.627% and 2.019%, respectively.

  1. Transfection of Chinese hamster ovary DHFR/sup -/ cells with the gene coding for heat shock protein 70 from drosophila melanogaster

    International Nuclear Information System (INIS)

    Duffy, J.J.; Carper, S.W.; Gerner, E.W.

    1987-01-01

    Chinese hamster ovary DHFR/sup -/ cells (CHO-DHFR/sup -/) were transfected with the plasmid pSV2-dhfr expressing the mouse gene coding for dhfr or with the same plasmid containing the gene coding for the Drosophila melanogaster heat shock protein 70 (hsp70), pSVd-hsp70. Three subcloned cell lines selected for expression of the dhfr gene were shown to contain either the vector sequence (G cells) or varying copies of pSVd-hsp70 (H cells). One line of H cells was shown to contain > 30 copies of the D. melanogaster hsp70 gene and to express the hsp70 RNA at significant levels. No difference between G and H cells was observed in the rate of growth, in the development of thermotolerance, or in the sensitivity of actin microfilament bundles to heat shock. However, H cells containing the transfected hsp70 gene had an altered morphology when compared to the G cells and the parental CHO-DHFR/sup -/ cells being more fibroblastic. The adhesion properties of the H cells was also decreased when compared to the G cells. These results show that insertion of the D. melanogaster gene into CHO cells does not effect growth rates or heat shock responses but may alter cell morphology and adhesion

  2. Arctigenin from Fructus Arctii is a novel suppressor of heat shock response in mammalian cells

    Science.gov (United States)

    Ishihara, Keiichi; Yamagishi, Nobuyuki; Saito, Youhei; Takasaki, Midori; Konoshima, Takao; Hatayama, Takumi

    2006-01-01

    Because heat shock proteins (Hsps) are involved in protecting cells and in the pathophysiology of diseases such as inflammation, cancer, and neurodegenerative disorders, the use of regulators of the expression of Hsps in mammalian cells seems to be useful as a potential therapeutic modality. To identify compounds that modulate the response to heat shock, we analyzed several natural products using a mammalian cell line containing an hsp promoter-regulated reporter gene. In this study, we found that an extract from Fructus Arctii markedly suppressed the expression of Hsp induced by heat shock. A component of the extract arctigenin, but not the component arctiin, suppressed the response at the level of the activation of heat shock transcription factor, the induction of mRNA, and the synthesis and accumulation of Hsp. Furthermore, arctigenin inhibited the acquisition of thermotolerance in mammalian cells, including cancer cells. Thus, arctigenin seemed to be a new suppressive regulator of heat shock response in mammalian cells, and may be useful for hyperthermia cancer therapy. PMID:16817321

  3. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  4. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  5. Induction of Triploidy in Clarias Gariepinus by Heat Shock of ...

    African Journals Online (AJOL)

    Eggs and milt were collected from female and male Clarias gariepinus respectively. Fertilized eggs were given heat-shock at 40 and 41oC for 4.5 minutes duration. The eggs were shocked at different post fertilization periods viz: immediately after fertilization, 2, 3, 4, 5 and 6 mins after fertilization. Percentage hatchability for ...

  6. Proteasome activity or expression is not altered by activation of the heat shock transcription factor Hsf1 in cultured fibroblasts or myoblasts.

    Science.gov (United States)

    Taylor, David M; Kabashi, Edor; Agar, Jeffrey N; Minotti, Sandra; Durham, Heather D

    2005-01-01

    Heat shock proteins (Hsps) with chaperoning function work together with the ubiquitin-proteasome pathway to prevent the accumulation of misfolded, potentially toxic proteins, as well as to control catabolism of the bulk of cytoplasmic, cellular protein. There is evidence for the involvement of both systems in neurodegenerative disease, and a therapeutic target is the heat shock transcription factor, Hsf1, which mediates upregulation of Hsps in response to cellular stress. The mechanisms regulating expression of proteasomal proteins in mammalian cells are less well defined. To assess any direct effect of Hsf1 on expression of proteasomal subunits and activity in mammalian cells, a plasmid encoding a constitutively active form of Hsf1 (Hsf1act) was expressed in mouse embryonic fibroblasts lacking Hsf1 and in cultured human myoblasts. Plasmid encoding an inactivatible form of Hsf1 (Hsf1inact) served as control. In cultures transfected with plasmid hsf1act, robust expression of the major stress-inducible Hsp, Hsp70, occurred but not in cultures transfected with hsf1inact. No significant changes in the level of expression of representative proteasomal proteins (structural [20Salpha], a nonpeptidase beta subunit [20Sbeta3], or 2 regulatory subunits [19S subunit 6b, 11 Salpha]) or in chymotrypsin-, trypsin-, and caspaselike activities of the proteasome were measured. Thus, stress-induced or pharmacological activation of Hsf1 in mammalian cells would upregulate Hsps but not directly affect expression or activity of proteasomes.

  7. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat)

    Science.gov (United States)

    Cubano, L. A.; Lewis, M. L.

    2001-01-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  8. Heat shock protein 70 inhibitors. 2. 2,5'-thiodipyrimidines, 5-(phenylthio)pyrimidines, 2-(pyridin-3-ylthio)pyrimidines, and 3-(phenylthio)pyridines as reversible binders to an allosteric site on heat shock protein 70.

    Science.gov (United States)

    Taldone, Tony; Kang, Yanlong; Patel, Hardik J; Patel, Maulik R; Patel, Pallav D; Rodina, Anna; Patel, Yogita; Gozman, Alexander; Maharaj, Ronnie; Clement, Cristina C; Lu, Alvin; Young, Jason C; Chiosis, Gabriela

    2014-02-27

    The discovery and development of heat shock protein 70 (Hsp70) inhibitors is currently a hot topic in cancer. In the preceding paper in this issue ( 10.1021/jm401551n ), we have described structure-activity relationship studies in the first Hsp70 inhibitor class rationally designed to bind to a novel allosteric pocket located in the N-terminal domain of the protein. These ligands contained an acrylamide to take advantage of an active cysteine embedded in the allosteric pocket and acted as covalent protein modifiers upon binding. Here, we perform chemical modifications around the irreversible inhibitor scaffold to demonstrate that covalent modification is not a requirement for activity within this class of compounds. The study identifies derivative 27c, which mimics the biological effects of the irreversible inhibitors at comparable concentrations. Collectively, the back-to-back manuscripts describe the first pharmacophores that favorably and selectively interact with a never explored pocket in Hsp70 and provide a novel blueprint for a cancer-oriented development of Hsp70-directed ligands.

  9. One out of four: HspL but no other small heat shock protein of Agrobacterium tumefaciens acts as efficient virulence-promoting VirB8 chaperone.

    Directory of Open Access Journals (Sweden)

    Yun-Long Tsai

    Full Text Available Alpha-crystallin-type small heat shock proteins (sHsps are ubiquitously distributed in most eukaryotes and prokaryotes. Four sHsp genes named hspL, hspC, hspAT1, and hspAT2 were identified in Agrobacterium tumefaciens, a plant pathogenic bacterium capable of unique interkingdom DNA transfer via type IV secretion system (T4SS. HspL is highly expressed in virulence-induced growth condition and functions as a VirB8 chaperone to promote T4SS-mediated DNA transfer. Here, we used genetic and biochemical approaches to investigate the involvement of the other three sHsps in T4SS and discovered the molecular basis underlying the dominant function of HspL in promoting T4SS function. While single deletion of hspL but no other sHsp gene reduced T4SS-mediated DNA transfer and tumorigenesis efficiency, additional deletion of other sHsp genes in the hspL deletion background caused synergistic effects in the virulence phenotypes. This is correlated with the high induction of hspL and only modest increase of hspC, hspAT1, and hspAT2 at their mRNA and protein abundance in virulence-induced growth condition. Interestingly, overexpression of any single sHsp gene alone in the quadruple mutant caused increased T4SS-mediated DNA transfer and tumorigenesis. Thermal aggregation protecting assays in vitro indicated that all four sHsps exhibit chaperone activity for the model substrate citrate synthase but only HspL functions as efficient chaperone for VirB8. The higher VirB8 chaperone activity of HspL was also demonstrated in vivo, in which lower amounts of HspL than other sHsps were sufficient in maintaining VirB8 homeostasis in A. tumefaciens. Domain swapping between HspL and HspAT2 indicated that N-terminal, central alpha-crystallin, and C-terminal domains of HspL all contribute to HspL function as an efficient VirB8 chaperone. Taken together, we suggest that the dominant role of HspL in promoting T4SS function is based on its higher expression in virulence

  10. Hepatitis C Virus E2 Protein Induces Upregulation of IL-8 Pathways and Production of Heat Shock Proteins in Human Thyroid Cells.

    Science.gov (United States)

    Hammerstad, Sara Salehi; Stefan, Mihaela; Blackard, Jason; Owen, Randall P; Lee, Hanna J; Concepcion, Erlinda; Yi, Zhengzi; Zhang, Weijia; Tomer, Yaron

    2017-02-01

    Thyroiditis is one of the most common extrahepatic manifestations of hepatitis C virus (HCV) infection. By binding to surface cell receptor CD81, HCV envelope glycoprotein E2 mediates entry of HCV into cells. Studies have shown that different viral proteins may individually induce host responses to infection. We hypothesized that HCV E2 protein binding to CD81 expressed on thyroid cells activates a cascade of inflammatory responses that can trigger autoimmune thyroiditis in susceptible individuals. Human thyroid cell lines ML-1 and human thyrocytes in primary cell culture were treated with HCV recombinant E2 protein. The expression of major proinflammatory cytokines was measured at the messenger RNA and protein levels. Next-generation transcriptome analysis was used to identify early changes in gene expression in thyroid cells induced by E2. HCV envelope protein E2 induced strong inflammatory responses in human thyrocytes, resulting in production of interleukin (IL)-8, IL-6, and tumor necrosis factor-α. Furthermore, the E2 protein induced production of several heat shock proteins including HSP60, HSP70p12A, and HSP10, in human primary thyrocytes. In thyroid cell line ML-1, RNA sequencing identified upregulation of molecules involved in innate immune pathways with high levels of proinflammatory cytokines and chemokines and increased expression of costimulatory molecules, specifically CD40, known to be a major thyroid autoimmunity gene. Our data support a key role for HCV envelope protein E2 in triggering thyroid autoimmunity through activation of cytokine pathways by bystander mechanisms. Copyright © 2017 by the Endocrine Society

  11. Expression profiles of two small heat shock proteins and antioxidant enzyme activity in Mytilus galloprovincialis exposed to cadmium at environmentally relevant concentrations

    Science.gov (United States)

    You, Liping; Ning, Xuanxuan; Chen, Leilei; Zhang, Linbao; Zhao, Jianmin; Liu, Xiaoli; Wu, Huifeng

    2014-03-01

    Small heat shock proteins encompass a widespread but diverse class of proteins, which play key roles in protecting organisms from various stressors. In the present study, the full-length cDNAs of two small heat shock proteins (MgsHSP22 and MgsHSP24.1) were cloned from Mytilus galloprovincialis, which encoded peptides of 181 and 247 amino acids, respectively. Both MgsHSP22 and MgsHSP24.1 were detected in all tissues examined by real-time PCR, with the highest expression being observed in muscle and gonad tissues. The real-time PCR results revealed that Cd significantly inhibited MgsHSP22 expression at 24 h and MgsHSP24.1 at 24 and 48 h under 5 μg/L Cd 2+ exposure. MgsHSP24.1 expression was also significantly inhibited after 50 μg/L Cd2+ exposure for 48 h. With regard to antioxidant enzymes, increased GPx and CAT activity were detected under Cd2+ stress (5 and 50 μg/L), while no significant difference in SOD activity was observed throughout the experiment. Overall, both MgsHsps and antioxidant enzymes revealed their potential as Cd stress biomarkers in M. galloprovincialis.

  12. Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress.

    Science.gov (United States)

    Liu, J; Ye, G; Zhou, Y; Liu, Y; Zhao, L; Liu, Y; Chen, X; Huang, D; Liao, S F; Huang, K

    2014-06-01

    This study was conducted to evaluate the effects of supplemental common yeast culture (CY) and glycerol-enriched yeast culture (GY) on performance, plasma metabolites, antioxidant status, and heat shock protein 70 (HSP70) mRNA expression in lactating Holstein cows under heat stress. During summer months, 30 healthy multiparous lactating cows (parity 3.25 ± 0.48; 60 ± 13 d in milk [DIM]; 648 ± 57 kg BW; an average milk yield of 33.8 ± 1.6 kg/d) were blocked by parity, previous milk yield, and DIM and randomly allocated to 3 dietary treatments: no supplemental yeast culture (Control), 1 L/d of CY (33.1 g yeast) per cow, and 2 L/d of GY (153.2 g glycerol and 31.6 g yeast) per cow. During the 60-d experiment, values of air temperature and relative humidity inside the barn were recorded hourly every 3 d to calculate temperature-humidity index (THI). Weekly rectal temperatures (RT) and respiration rates and daily DMI and milk yield were recorded for all cows. Milk and blood samples were taken twice monthly, and BW and BCS were obtained on d 0 and 60. In this experiment, THI values indicated cows experienced a moderate heat stress. Cows supplemented with CY and GY had greater yields of milk, energy-corrected milk and milk fat, and milk fat percent but lower HSP70 mRNA expression in peripheral blood lymphocytes than Control cows (P cows. In conclusion, either CY or GY supplementation partially mitigated the negative effects of heat stress on performance and HSP70 mRNA expression of lactating cows, and GY supplementation provided additional improvements in energy status and HSP70 gene expression of lactating cows.

  13. Protein quality control in protection against systolic overload cardiomyopathy: the long term role of small heat shock proteins.

    Science.gov (United States)

    Kumarapeli, Asangi R K; Horak, Kathleen; Wang, Xuejun

    2010-07-21

    Molecular chaperones represent the first line of defense of intracellular protein quality control. As a major constituent of molecular chaperones, heat shock proteins (HSP) are known to confer cardiomyocyte short-term protection against various insults and injuries. Previously, we reported that the small HSP alphaB-crystallin (CryAB) attenuates cardiac hypertrophic response in mice subjected to 2 weeks of severe pressure overload. However, the long-term role of small HSPs in cardiac hypertrophy and failure has rarely been studied. The present study investigates the cardiac responses to chronic severe pressure overload in CryAB/HSPB2 germ line ablated (KO) and cardiac-specific CryAB overexpressingtransgenic (TG) mice. Pressure overload was induced by transverse aortic constriction in KO, TG, and non-transgenic wild type (NTG) control mice and 10 weeks later molecular, cellular, and whole organ level hypertrophic responses were analyzed. As we previously described, CryAB/HSPB2 KO mice showed abnormal baseline cardiac physiology that worsened into a restrictive cardiomyopathic phenotype with aging. Severe pressure overload in these mice led to rapid deterioration of heart function and development of congestive cardiac failure. Contrary to their short term protective phenotype, CryAB TG mice showed no significant effects on cardiac hypertrophic responses and very modest improvement of hemodynamics during chronic systolic overload. These findings indicate that small HSPs CryAB and/or HSPB2 are essential to maintain cardiac structure and function but overex-pression of CryAB is not sufficient to confer a sustained protection against chronic systolic overload.

  14. Heat stress proteins in hypertension

    International Nuclear Information System (INIS)

    Malo, D.; Tremblay, J.; Pang, S.C.; Schlager, G.; Hamet, P.

    1986-01-01

    It has been described that spontaneously hypertensive rats (SHR) are more sensitive to an acute environmental heat stress and that cultured cardiomyocytes from neonatal SHR are demonstrated to be more thermosensitive. In addition, chronically heat exposed spontaneously hypertensive mice leads to a decrease of blood pressure in these animals. Heat shock is known to induce the synthesis of a new set of proteins (HSP) in every cell tested. This ubiquitous response seems to be involved in the induction of a thermotolerant state. The synthesis of 70K HSP was observed in lymphocytes isolated from the spleen of chronically heated mice. They used lymphocytes, previously isolated on a ficoll gradient, to evaluate the HSP induction in normotensive (WKY) and hypertensive (SHR) rats. The heat shock was induced by exposing the lymphocytes at 46 0 C during 5 min in a hot water bath. The cells were then labeled with ( 75 Se)-methionine, washed, homogenized and separated on 5-30% SDS-polyacrylamide gel. Preliminary results suggest an abnormal pattern of induction of 70K and 90K HSP in hypertension. Heat sensitivity, thermotolerance and expression of HSP may, thus, be related to hypertension

  15. The relationship between heat shock protein 72 expression in skeletal muscle and insulin sensitivity is dependent on adiposity

    DEFF Research Database (Denmark)

    Henstridge, Darren C; Forbes, Josephine M; Penfold, Sally A

    2010-01-01

    Decreased gene expression of heat shock protein 72 (HSP72) in skeletal muscle is associated with insulin resistance in humans. We aimed to determine whether HSP72 protein expression in insulin-sensitive tissues is related to criterion standard measures of adiposity and insulin resistance in a young...... healthy human population free of hyperglycemia. Healthy participants (N = 17; age, 30 ± 3 years) underwent measurement of body composition (dual-energy x-ray absorptiometry), a maximum aerobic capacity test (VO(2max)), an oral glucose tolerance test, and a hyperinsulinemic-euglycemic clamp (M) to access...... insulin sensitivity. Skeletal muscle and subcutaneous adipose tissue biopsies were obtained by percutaneous needle biopsy. HSP72 protein expression in skeletal muscle was inversely related to percentage body fat (r = -0.54, P

  16. A model in which heat shock protein 90 targets protein-folding clefts: rationale for a new approach to neuroprotective treatment of protein folding diseases.

    Science.gov (United States)

    Pratt, William B; Morishima, Yoshihiro; Gestwicki, Jason E; Lieberman, Andrew P; Osawa, Yoichi

    2014-11-01

    In an EBM Minireview published in 2010, we proposed that the heat shock protein (Hsp)90/Hsp70-based chaperone machinery played a major role in determining the selection of proteins that have undergone oxidative or other toxic damage for ubiquitination and proteasomal degradation. The proposal was based on a model in which the Hsp90 chaperone machinery regulates signaling by modulating ligand-binding clefts. The model provides a framework for thinking about the development of neuroprotective therapies for protein-folding diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and the polyglutamine expansion disorders, such as Huntington's disease (HD) and spinal and bulbar muscular atrophy (SBMA). Major aberrant proteins that misfold and accumulate in these diseases are "client" proteins of the abundant and ubiquitous stress chaperone Hsp90. These Hsp90 client proteins include tau (AD), α-synuclein (PD), huntingtin (HD), and the expanded glutamine androgen receptor (polyQ AR) (SBMA). In this Minireview, we update our model in which Hsp90 acts on protein-folding clefts and show how it forms a rational basis for developing drugs that promote the targeted elimination of these aberrant proteins. © 2014 by the Society for Experimental Biology and Medicine.

  17. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  18. Heat shock proteins and survival strategies in congeneric land snails (Sphincterochila) from different habitats.

    Science.gov (United States)

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2012-09-01

    Polmunate land snails are subject to stress conditions in their terrestrial habitat, and depend on a range of behavioural, physiological and biochemical adaptations for coping with problems of maintaining water, ionic and thermal balance. The involvement of the heat shock protein (HSP) machinery in land snails was demonstrated following short-term experimental aestivation and heat stress, suggesting that land snails use HSPs as part of their survival strategy. As climatic variation was found to be associated with HSP expression, we tested whether adaptation of land snails to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desert species Sphincterochila zonata and a Mediterranean-type species Sphincterochila cariosa. Our study suggests that Sphincterochila species use HSPs as part of their survival strategy following desiccation and heat stress, and as part of the natural annual cycle of activity and aestivation. Our studies also indicate that adaptation to different habitats results in the development of distinct strategies of HSP expression in response to stress, namely the reduced expression of HSPs in the desert-inhabiting species. We suggest that these different strategies reflect the difference in heat and aridity encountered in the natural habitats, and that the desert species S. zonata relies on mechanisms and adaptations other than HSP induction thus avoiding the fitness consequences of continuous HSP upregulation.

  19. Protective effects of heat shock protein 70 on the acute lung injury of rats with heat stroke and its mechanism

    Directory of Open Access Journals (Sweden)

    Yan GENG

    2017-06-01

    Full Text Available Objective To investigate the protective effect of heat shock protein (HSP 70 on the acute lung injury (ALI of rats with heat stroke. Methods Sixty four rats were randomly (by employing a random number table assigned into a sham-heated group (Sham group, heat stress group (HS group, and HS plus gluttamine treatment group (HS+GLN group and HS plus quercet in treatment group (HS+QU group, 16 each. All rats were housed in a artificial climate chamber, with the rats in the sham groups exposed to a temperature of 23℃ and humidity of 55%±5%, while the rats of HS, HS+GLN and HS+QU groups to an ambient temperature of 39℃ and humidity of 65%. During heat stress or sham heating, rectal temperature (Tr, systolic blood pressure (SBP and pulse rate (PR were monitored to observe the difference in heat stress response among the groups. The time point at which the SBP started to drop from the peak level was taken as the point of HS onset. At the onset of HS, heat exposure was terminated, then the rats were immediately removed from the chamber, and returned to room temperature. The rats were scarified 0h and 6h after HS onset respectively. After bronchoalveolar lavage fluid (BALF was collected, the lungs of all animals were harvested for pathological examination of lung injury. The concentrations of IL-1β, TNF-α and IL-6 in BALF and HSP70 in lung homogenate were measured by using an enzyme linked immunosorbent assay kit. Results Compared with HS and HS+QU groups, the rats in HS+GLN group required significantly greater heat load to induce HS (P<0.001, and had longer survival time span after HS onset. Compared with Sham group, the concentration of HSP70 in lung homogenate in HS group increased in a time-dependent manner (P<0.001. In comparison with HS group, the concentration of HSP70 in lung homogenate from HS+GLN group was significantly elevated at each time point (P<0.001, while the treatment with QU significantly inhibited the expression of HSP70 (P<0

  20. A SIMPLE EXPERIMENTAL MODEL OF HEAT SHOCK RESPONSE IN RATS

    Directory of Open Access Journals (Sweden)

    Tufi Neder Meyer

    1998-10-01

    Full Text Available Objective: To obtain a simple model for the elicitation of the heat shock response in rats. Design: Laboratory study. Setting: University research laboratories. Sample: Seventy-nine adult male albino rats (weight range 200 g to 570 g. Procedures: Exposure to heat stress by heating animals in a warm bath for 5 min after their rectal temperatures reached 107.60 F (420 C. Liver and lung samples were collected for heat-shock protein 70 (HSP70 detection (Western analysis. Results: Western analysis was positive for HSP70 in the liver and in the lungs of heated animals. There was a temporal correlation between heating and HSP70 detection: it was strongest 1 day after heating and reduced afterwards. No heated animals died. Conclusion: These data show that heating rats in a warm (45o C bath, according to parameters set in this model, elicits efficiently the heat shock response.OBJETIVO: Obter um modelo simples para tentar esclarecer a resposta ao choque térmico em ratos. LOCAL: Laboratório de pesquisa da Universidade. MÉTODO: Amostra: 79 ratos albinos, adultos, entre 200g a 570g. Procedimentos: Exposição ao calor, em banho quente, por 5 minutos, após a temperatura retal chegar a 42 graus centigrados. Biópsias de fígado e pulmão foram obtidas para detectar a proteina 70 (HSP 70, pelo "Western blot". RESULTADOS: As análises foram positivas nos animais aquecidos, com uma correlação entre aquecimento e constatação da HSP 70. Foi mais elevada no primeiro dia e não houve óbitos nos animais aquecidos. CONCLUSÃO: Os ratos aquecidos a 45 graus centígrados respondem eficientemente ao choque térmico.

  1. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  2. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.

    Science.gov (United States)

    Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan

    2017-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

  3. Thermotolerance and Heat-Shock Protein Gene Expression Patterns in Bemisia tabaci (Hemiptera: Aleyrodidae) Mediterranean in Relation to Developmental Stage.

    Science.gov (United States)

    Jiang, Rui; Qi, Lan-Da; Du, Yu-Zhou; Li, Yuan-Xi

    2017-10-01

    Temperature plays an important role in the growth, development, and geographic distribution of insects. There is convincing evidence that heat-shock proteins (HSPs) play important roles in helping organisms adapt to thermal stress. To better understand the physiological and ecological influence of thermal stress on the different development stages of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Mediterranean species (MED), nymphs and adults were shocked with temperatures of 35, 38, and 41℃ for 1 and 2 h, respectively, and the survival rate, fecundity, and developmental duration were investigated in the laboratory. The expression levels of the hsp40, hsp70, and hsp90 genes were assessed using real-time PCR. The results indicate that the survival rates of the nymphs and adults decreased with increased temperature. A 2-h heat shock at 41℃ induced a significant reduction in fecundity in adults and an increase in developmental duration in young nymphs. Hsp90 showed higher temperature responses to thermal stress than hsp40 or hsp70. The expression levels of the hsps in the adults were significantly down-regulated by a 2-h heat shock at 41℃ compared with that by a 1-h treatment. A significant decrease in the expression levels of the hsps also occurred in the adults when the temperature increased from 38 to 41℃ for the 2-h treatment, whereas no significant decrease occurred in the nymphs. Compared with previous studies, we provide some evidence indicating that MED has the potential to adapt to a wider temperature range than the Middle East-Asia Minor 1 species. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Chlamydia trachomatis and chlamydial heat shock protein 60-specific antibody and cell-mediated responses predict tubal factor infertility

    DEFF Research Database (Denmark)

    Tiitinen, A.; Surcel, H.-M.; Halttunen, M.

    2006-01-01

    60)-specific immunoglobulin G (IgG) antibodies were analysed using enzyme-linked immunosorbent assay (ELISA) kits. Proliferative reactivity of peripheral blood mononuclear cells was studied in vitro against Chlamydia elementary body (EB) and recombinant CHSP60 antigens. RESULTS: C. trachomatis......BACKGROUND: To evaluate the role of Chlamydia trachomatis-induced humoral and cell-mediated immune (CMI) responses in predicting tubal factor infertility (TFI). METHODS: Blood samples were taken from 88 women with TFI and 163 control women. C. trachomatis and chlamydial heat shock protein 60 (CHSP...

  5. Increased expression of heat shock protein 105 in rat uterus of early pregnancy and its significance in embryo implantation

    Directory of Open Access Journals (Sweden)

    Hu Zhao-Yuan

    2009-03-01

    Full Text Available Abstract Background Heat shock proteins (Hsps are a set of highly conserved proteins, Hsp105, has been suggested to play a role in reproduction. Methods Spatio-temporal expression of Hsp105 in rat uterus during peri-implantation period was examined by immunohistochemistry and Western blot, pseudopregnant uterus was used as control. Injection of antisense oligodeoxynucleotides to Hsp105 into pregnant rat uteri was carried out to look at effect of Hsp105 on embryo implantation. Results Expression of Hsp105 was mainly in the luminal epithelium on day 1 of pregnancy, and reached a peak level on day 5, whereas in stroma cells, adjacent to the implanting embryo, the strongest expression of Hsp105 was observed on day 6. The immunostaining profile in the uterus was consistent with that obtained by Western blot in the early pregnancy. In contrast, no obvious peak level of Hsp105 was observed in the uterus of pseudopregnant rat on day 5 or day 6. Furthermore, injection of antisense oligodeoxynucleotides to Hsp105 into the rat uterine horn on day 3 of pregnancy obviously suppressed the protein expression as expected and reduced number of the implanted embryos as compared with the control. Conclusion Temporal and spatial changes in Hsp105 expression in pregnant rat uterus may play a physiological role in regulating embryo implantation.

  6. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response.

    Directory of Open Access Journals (Sweden)

    Roelien A M Meijering

    Full Text Available The heat shock response (HSR is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress. The HSR is mediated by the heat shock transcription factor 1 (HSF1, which binds to conserved heat shock elements (HSE in the promoter region of heat shock genes, resulting in the expression of heat shock proteins (HSP. Recently, we observed that hyperactivation of RhoA conditions cardiomyocytes for the cardiac arrhythmia atrial fibrillation. Also, the HSR is annihilated in atrial fibrillation, and induction of HSR mitigates sensitization of cells to this disease. Therefore, we hypothesized active RhoA to suppress the HSR resulting in sensitization of cells for proteotoxic stimuli.Stimulation of RhoA activity significantly suppressed the proteotoxic stress-induced HSR in HL-1 atrial cardiomyocytes as determined with a luciferase reporter construct driven by the HSF1 regulated human HSP70 (HSPA1A promoter and HSP protein expression by Western Blot analysis. Inversely, RhoA inhibition boosted the proteotoxic stress-induced HSR. While active RhoA did not preclude HSF1 nuclear accumulation, phosphorylation, acetylation, or sumoylation, it did impair binding of HSF1 to the hsp genes promoter element HSE. Impaired binding results in suppression of HSP expression and sensitized cells to proteotoxic stress.These results reveal that active RhoA negatively regulates the HSR via attenuation of the HSF1-HSE binding and thus may play a role in sensitizing cells to proteotoxic stimuli.

  7. Blood-flow restricted training leads to myocelullar macrophage infiltration and upregulation of heat-shock proteins, but no apparent muscle damage

    DEFF Research Database (Denmark)

    Nielsen, Jakob L; Aagaard, Per; Prokhorova, Tatyana A

    2017-01-01

    Previous studies indicate that low-load muscle contractions performed under local blood-flow restriction (BFR) may initially induce muscle damage and stress. However, whether these factors are evoked with longitudinal BFR training remains unexplored at the myocellular level. Two distinct study...... into the intervention (Mid8) and 3 and 10 days after training cessation (Post3,Post10) to examine macrophage (M1/M2) content as well as heat-shock protein (HSP27/70) and tenascin-C expression. Blood samples (1 wk) were collected before and after (0.1-24 h) the first and last training session to examine markers...... of muscle damage (CK), oxidative stress (TAC,GSH) and inflammation (MCP1,IL-6,TNFa). M1-macrophage content increased 108-165% with BFRE and LLE at Post3 (P

  8. Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.

    Science.gov (United States)

    Merino, Irene; Contreras, Angela; Jing, Zhong-Ping; Gallardo, Fernando; Cánovas, Francisco M; Gómez, Luis

    2014-02-01

    Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula×Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones.

  9. Heat-shock-induced enhanced reactivation of UV-irradiated Herpesvirus

    Energy Technology Data Exchange (ETDEWEB)

    Yager, J.D.; Zurlo, J.; Penn, A.L.

    1985-09-01

    The objective of this study was to compare the ability of heat shock (HS) with that of another type of cellular stress, UV irradiation, to cause the induction of enhanced viral reactivation, a process that may represent an SOS-type repair process in mammalian cells. These results indicate that, like UV irradiation, HS at levels inhibitory to cell growth induced enhanced viral reactivation in Vero cells. The results also suggest that at least two proteins in the HS protein family are not necessary for this response to occur. (Auth.). 27 refs.; 5 figs.

  10. Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef.

    Science.gov (United States)

    Juneja, V K; Klein, P G; Marmer, B S

    1998-04-01

    Duplicate beef gravy or ground beef samples inoculated with a suspension of a four-strain cocktail of Escherichia coli O157:H7 were subjected to sublethal heating at 46 degrees C for 15-30 min, and then heated to a final internal temperature of 60 degrees C. Survivor curves were fitted using a linear model that incorporated a lag period (TL), and D-values and 'time to a 4D inactivation' (T4D) were calculated. Heat-shocking allowed the organism to survive longer than non-heat-shocked cells; the T4D values at 60 degrees C increased 1.56- and 1.50-fold in beef gravy and ground beef, respectively. In ground beef stored at 4 degrees C, thermotolerance was lost after storage for 14 h. However, heat-shocked cells appeared to maintain their thermotolerance for at least 24 h in ground beef held to 15 or 28 degrees C. A 25 min heat shock at 46 degrees C in beef gravy resulted in an increase in the levels of two proteins with apparent molecular masses of 60 and 69 kDa. These two proteins were shown to be immunologically related to GroEL and DnaK, respectively. Increased heat resistance due to heat shock must be considered while designing thermal processes to assure the microbiological safety of thermally processed foods.

  11. Heat shock induced change in protein ubiquitination in Chlamydomonas

    International Nuclear Information System (INIS)

    Shimogawara, K.; Muto, S.

    1989-01-01

    Ubiquitin was purified from pea (Pisum sativum L.) and its antibody was produced. Western blot analysis showed that the antibody cross-reacted with ubiquitins from a green alga Chlamydomonas reinhardtii, a brown alga Laminaria angustata and a red alga Porphyridium cruentum but not with ubiquitin from a blue-green alga Synechococcus sp. In Chlamydomonas, the antibody also reacted with some ubiquitinated proteins including 28- and 31-kDa polypeptides. The isoelectric points of Chlamydomonas ubiquitin and the 28- and 31-kDa ubiquitinated proteins were 8.0, 8.9 and 10.3, respectively. The ubiquitinated proteins, including the 28- and 31-kDa polypeptides were detected after in vitro ATP-dependent ubiquitination of Chlamydomonas cell extract with l25 I-labeled bovine ubiquitin. Heat treatment of Chlamydomonas cells (>40°C) caused drastic increase of ubiquitinated proteins with high mol wt (>60kDa), and coordinated redistribution or decrease of other ubiquitinated proteins and free ubiquitin. Quantitative analysis revealed that the 28- and 31-kDa ubiquitinated proteins showed different responses against heat stress, i.e. the former being more sensitive than the latter. (author)

  12. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and the correlation with stationary growth phase

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1982-01-01

    Radiation resistance and thermal resistance vary as a function of culture temperature in logarithmically growing Saccharomyces cerevisiae and are related to the optimum temperature for growth. Radiation resistance and thermal resistance were also induced when cells grown at low temperatures were subjected to a heat shock at or above the optimum growth temperature. Exposure to ionizing radiation followed by a short incubation at low temperature also induced resistance to killing by heat. Heat-shocked cells are induced to a level of thermal and radioresistance much greater than the characteristic resistance level of cells grown continuously at the shock temperature. This high level of resistance, which resembles that of stationary-phase cells, decays to the characteristic log-phase level within one doubling of cell number after the heat shock. Both induction of resistance and decay of that induction require protein synthesis. It is postulated that induction of resistance by heat shock or ionizing radiation is a response of the cells to stress and represents a preparation to enter stationary phase

  13. A potential role for Helicobacter pylori heat shock protein 60 in gastric tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Si [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); He, Pei-Juin [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Tsai, Nu-Man [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Li, Chi-Han; Yang, Shang-Chih; Hsu, Wei-Tung [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Wu, Ming-Shiang [Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Wu, Chang-Jer [Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (China); Cheng, Tain-Lu [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liao, Kuang-Wen, E-mail: kitchhen@yahoo.com.tw [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China)

    2010-02-05

    Helicobacter pylori has been found to promote the malignant process leading to gastric cancer. Heat shock protein 60 of H. pylori (HpHSP60) was previously been identified as a potent immunogene. This study investigates the role of HpHSP60 in gastric cancer carcinogenesis. The effect of HpHSP60 on cell proliferation, anti-death activity, angiogenesis and cell migration were explored. The results showed that HpHSP60 enhanced migration by gastric cancer cells and promoted tube formation by umbilical vein endothelial cells (HUVECs); however, HpHSP60 did not increase cell proliferation nor was this protein able to rescue gastric cancer cells from death. Moreover, the results also indicated HpHSP60 had different effects on AGS gastric cancer cells or THP-1 monocytic cells in terms of their expression of pro-inflammatory cytokines, which are known to be important to cancer development. We propose that HpHSP60 may trigger the initiation of carcinogenesis by inducing pro-inflammatory cytokine release and by promoting angiogenesis and metastasis. Thus, this extracellular pathogen-derived HSP60 is potentially a vigorous virulence factor that can act as a carcinogen during gastric tumorigenesis.

  14. The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Chen, Han-Jou; Mitchell, Jacqueline C; Novoselov, Sergey; Miller, Jack; Nishimura, Agnes L; Scotter, Emma L; Vance, Caroline A; Cheetham, Michael E; Shaw, Christopher E

    2016-05-01

    Detergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in ∼95% of amyotrophic lateral sclerosis and ∼60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation. Here we show that manipulation of the heat shock response by expression of dominant active HSF1 results in a dramatic reduction of insoluble and hyperphosphorylated TDP-43 that enhances cell survival, whereas expression of dominant negative HSF1 leads to enhanced TDP-43 aggregation and hyperphosphorylation. To determine which chaperones were mediating TDP-43 clearance we over-expressed a range of heat shock proteins (HSPs) and identified DNAJB2a (encoded by DNAJB2, and also known as HSJ1a) as a potent anti-aggregation chaperone for TDP-43. DNAJB2a has a J domain, allowing it to interact with HSP70, and ubiquitin interacting motifs, which enable it to engage the degradation of its client proteins. Using functionally deleted DNAJB2a constructs we demonstrated that TDP-43 clearance was J domain-dependent and was not affected by ubiquitin interacting motif deletion or proteasome inhibition. This indicates that TDP-43 is maintained in a soluble state by DNAJB2a, leaving the total levels of TDP-43 unchanged. Additionally, we have demonstrated that the levels of HSF1 and heat shock proteins are significantly reduced in affected neuronal tissues from a TDP-43 transgenic mouse model of amyotrophic lateral sclerosis and patients with

  15. Plasminogen and angiostatin interact with heat shock proteins.

    Science.gov (United States)

    Dudani, Anil K; Mehic, Jelica; Martyres, Anthony

    2007-06-01

    Previous studies from this laboratory have demonstrated that plasminogen and angiostatin bind to endothelial cell (EC) surface-associated actin via their kringles in a specific manner. Heat shock proteins (hsps) like hsp 27 are constitutively expressed by vascular ECs and regulate actin polymerization, cell growth, and migration. Since many hsps have also been found to be highly abundant on cell surfaces and there is evidence that bacterial surface hsps may interact with human plasminogen, the purpose of this study was to determine whether human plasminogen and angiostatin would interact with human hsps. ELISAs were developed in our laboratory to assess these interactions. It was observed that plasminogen bound to hsps 27, 60, and 70. In all cases, binding was inhibited (85-90%) by excess (50 mM) lysine indicating kringle involvement. Angiostatin predominantly bound to hsp 27 and to hsp 70 in a concentration- and kringle-dependent manner. As observed previously for actin, there was concentration-dependent inhibition of angiostatin's interaction with hsp 27 by plasminogen. In addition, 30-fold molar excess actin inhibited (up to 50%), the interaction of plasminogen with all hsps. However, 30-fold molar excess actin could only inhibit the interaction of angiostatin with hsp 27 by 15-20%. Collectively, these data indicate that (i) while plasminogen interacts specifically with hsp 27, 60, and 70, angiostatin interacts predominantly with hsp 27 and to some extent with hsp 70; (ii) plasminogen only partially displaces angiostatin's binding to hsp 27 and (iii) actin only partially displaces plasminogen/angiostatin binding to hsps. It is conceivable therefore that surface-associated hsps could mediate the binding of these ligands to cells like ECs.

  16. Characterization of heat shock cognate protein 70 gene and its differential expression in response to thermal stress between two wing morphs of Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhou, Qiang

    2016-09-01

    Previous studies have demonstrated differences in thermotolerance between two wing morphs of Nilaparvata lugens, the most serious pest of rice across the Asia. To reveal the molecular regulatory mechanisms underlying the differential thermal resistance abilities between two wing morphs, a full-length of transcript encoding heat shock cognate protein 70 (Hsc70) was cloned, and its expression patterns across temperature gradients were analyzed. The results showed that the expression levels of NlHsc70 in macropters increased dramatically after heat shock from 32 to 38°C, while NlHsc70 transcripts in brachypters remained constant under different temperature stress conditions. In addition, NlHsc70 expression in the macropters was significantly higher than that in brachypters at 1 and 2h recovery from 40°C heat shock. There was no significant difference in NlHsc70 mRNA expression between brachypters and macropters under cold shock conditions. Therefore, NlHsc70 was indeed a constitutively expressed member of the Hsp70 family in brachypters of N. lugens, while it was heat-inducible in macropters. Furthermore, the survival rates of both morphs injected with NlHsc70 dsRNA were significantly decreased following heat shock at 40°C or cold shock at 0°C for 1h. These results suggested that the up-regulation of NlHsc70 is possibly related to the thermal resistance, and the more effective inducement expression of NlHsc70 in macropters promotes a greater thermal tolerance under temperature stress conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles

    International Nuclear Information System (INIS)

    Dufresne, Philippe J.; Thivierge, Karine; Cotton, Sophie; Beauchemin, Chantal; Ide, Christine; Ubalijoro, Eliane; Laliberte, Jean-Francois; Fortin, Marc G.

    2008-01-01

    Tandem affinity purification was used in Arabidopsis thaliana to identify cellular interactors of Turnip mosaic virus (TuMV) RNA-dependent RNA polymerase (RdRp). The heat shock cognate 70-3 (Hsc70-3) and poly(A)-binding (PABP) host proteins were recovered and shown to interact with the RdRp in vitro. As previously shown for PABP, Hsc70-3 was redistributed to nuclear and membranous fractions in infected plants and both RdRp interactors were co-immunoprecipitated from a membrane-enriched extract using RdRp-specific antibodies. Fluorescently tagged RdRp and Hsc70-3 localized to the cytoplasm and the nucleus when expressed alone or in combination in Nicotiana benthamiana. However, they were redistributed to large perinuclear ER-derived vesicles when co-expressed with the membrane binding 6K-VPg-Pro protein of TuMV. The association of Hsc70-3 with the RdRp could possibly take place in membrane-derived replication complexes. Thus, Hsc70-3 and PABP2 are potentially integral components of the replicase complex and could have important roles to play in the regulation of potyviral RdRp functions

  18. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis.

    Science.gov (United States)

    Dai, Chengkai

    2018-01-19

    The heat-shock, or HSF1-mediated proteotoxic stress, response (HSR/HPSR) is characterized by induction of heat-shock proteins (HSPs). As molecular chaperones, HSPs facilitate the folding, assembly, transportation and degradation of other proteins. In mammals, heat shock factor 1 (HSF1) is the master regulator of this ancient transcriptional programme. Upon proteotoxic insults, the HSR/HPSR is essential to proteome homeostasis, or proteostasis, thereby resisting stress and antagonizing protein misfolding diseases and ageing. Contrasting with these benefits, an unexpected pro-oncogenic role of the HSR/HPSR is unfolding. Whereas HSF1 remains latent in primary cells without stress, it becomes constitutively activated within malignant cells, rendering them addicted to HSF1 for their growth and survival. Highlighting the HSR/HPSR as an integral component of the oncogenic network, several key pathways governing HSF1 activation by environmental stressors are causally implicated in malignancy. Importantly, HSF1 impacts the cancer proteome systemically. By suppressing tumour-suppressive amyloidogenesis, HSF1 preserves cancer proteostasis to support the malignant state, both providing insight into how HSF1 enables tumorigenesis and suggesting disruption of cancer proteostasis as a therapeutic strategy. This review provides an overview of the role of HSF1 in oncogenesis, mechanisms underlying its constitutive activation within cancer cells and its pro-oncogenic action, as well as potential HSF1-targeting strategies.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  19. The role of the molecular chaperone heat shock protein A2 (HSPA2 in regulating human sperm-egg recognition

    Directory of Open Access Journals (Sweden)

    Brett Nixon

    2015-01-01

    Full Text Available One of the most common lesions present in the spermatozoa of human infertility patients is an idiopathic failure of sperm-egg recognition. Although this unique cellular interaction can now be readily by-passed by assisted reproductive strategies such as intracytoplasmic sperm injection (ICSI, recent large-scale epidemiological studies have encouraged the cautious use of this technology and highlighted the need for further research into the mechanisms responsible for defective sperm-egg recognition. Previous work in this field has established that the sperm domains responsible for oocyte interaction are formed during spermatogenesis prior to being dynamically modified during epididymal maturation and capacitation in female reproductive tract. While the factors responsible for the regulation of these sequential maturational events are undoubtedly complex, emerging research has identified the molecular chaperone, heat shock protein A2 (HSPA2, as a key regulator of these events in human spermatozoa. HSPA2 is a testis-enriched member of the 70 kDa heat shock protein family that promotes the folding, transport, and assembly of protein complexes and has been positively correlated with in vitro fertilization (IVF success. Furthermore, reduced expression of HSPA2 from the human sperm proteome leads to an impaired capacity for cumulus matrix dispersal, sperm-egg recognition and fertilization following both IVF and ICSI. In this review, we consider the evidence supporting the role of HSPA2 in sperm function and explore the potential mechanisms by which it is depleted in the spermatozoa of infertile patients. Such information offers novel insights into the molecular mechanisms governing sperm function.

  20. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Paulsen, G; Schjerling, P

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response...... in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal...

  1. Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Adélle Burger

    2014-01-01

    Full Text Available The neglected tropical disease, African Trypanosomiasis, is fatal and has a crippling impact on economic development. Heat shock protein 70 (Hsp70 is an important molecular chaperone that is expressed in response to stress and Hsp40 acts as its co-chaperone. These proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. A novel cytosolic Hsp70, from Trypanosoma brucei, TbHsp70.c, contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. The ability of a cytosolic Hsp40 from Trypanosoma brucei J protein 2, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective was to functionally characterize TbHsp70.c to further expand our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed the ability to suppress aggregation of thermolabile MDH and chemically denatured rhodanese. ATPase assays revealed a 2.8-fold stimulation of the ATPase activity of TbHsp70.c by Tbj2. TbHsp70.c and Tbj2 both demonstrated chaperone activity and Tbj2 functions as a co-chaperone of TbHsp70.c. In vivo heat stress experiments indicated upregulation of the expression levels of TbHsp70.c.

  2. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea.

    Science.gov (United States)

    Sato, Hiroshi; Nakasone, Kaoru; Yoshida, Takao; Kato, Chiaki; Maruyama, Tadashi

    2015-07-01

    When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).

  3. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat.

    Science.gov (United States)

    Muthusamy, Senthilkumar K; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C

    2017-04-01

    Small Heat Shock Proteins (sHSPs)/HSP20 are molecular chaperones that protect plants by preventing protein aggregation during abiotic stress conditions, especially heat stress. Due to global climate change, high temperature is emerging as a major threat to wheat productivity. Thus, the identification of HSP20 and analysis of HSP transcriptional regulation under different abiotic stresses in wheat would help in understanding the role of these proteins in abiotic stress tolerance. We used sequences of known rice and Arabidopsis HSP20 HMM profiles as queries against publicly available wheat genome and wheat full length cDNA databases (TriFLDB) to identify the respective orthologues from wheat. 163 TaHSP20 (including 109 sHSP and 54 ACD) genes were identified and classified according to the sub-cellular localization and phylogenetic relationship with sequenced grass genomes (Oryza sativa, Sorghum bicolor, Zea mays, Brachypodium distachyon and Setaria italica). Spatio-temporal, biotic and abiotic stress-specific expression patterns in normalized RNA seq and wheat array datasets revealed constitutive as well as inductive responses of HSP20 in different tissues and developmental stages of wheat. Promoter analysis of TaHSP20 genes showed the presence of tissue-specific, biotic, abiotic, light-responsive, circadian and cell cycle-responsive cis-regulatory elements. 14 TaHSP20 family genes were under the regulation of 8 TamiRNA genes. The expression levels of twelve HSP20 genes were studied under abiotic stress conditions in the drought- and heat-tolerant wheat genotype C306. Of the 13 TaHSP20 genes, TaHSP16.9H-CI showed high constitutive expression with upregulation only under salt stress. Both heat and salt stresses upregulated the expression of TaHSP17.4-CI, TaHSP17.7A-CI, TaHSP19.1-CIII, TaACD20.0B-CII and TaACD20.6C-CIV, while TaHSP23.7-MTI was specifically induced only under heat stress. Our results showed that the identified TaHSP20 genes play an important role under

  4. Critical role of heat shock protein 27 in bufalin-induced apoptosis in human osteosarcomas: a proteomic-based research.

    Directory of Open Access Journals (Sweden)

    Xian-biao Xie

    Full Text Available Bufalin is the primary component of the traditional Chinese herb "Chan Su". Evidence suggests that this compound possesses potent anti-tumor activities, although the exact molecular mechanism(s is unknown. Our previous study showed that bufalin inhibited growth of human osteosarcoma cell lines U2OS and U2OS/MTX300 in culture. Therefore, this study aims to further clarify the in vitro and in vivo anti-osteosarcoma effects of bufalin and its molecular mechanism of action. We found bufalin inhibited both methotrexate (MTX sensitive and resistant human osteosarcoma cell growth and induced G2/M arrest and apoptosis. Using a comparative proteomics approach, 24 differentially expressed proteins following bufalin treatment were identified. In particular, the level of an anti-apoptotic protein, heat shock protein 27 (Hsp27, decreased remarkably. The down-regulation of Hsp27 and alterations of its partner signaling molecules (the decrease in p-Akt, nuclear NF-κB p65, and co-immunoprecipitated cytochrome c/Hsp27 were validated. Hsp27 over-expression protected against bufalin-induced apoptosis, reversed the dephosphorylation of Akt and preserved the level of nuclear NF-κB p65 and co-immunoprecipitated Hsp27/cytochrome c. Moreover, bufalin inhibited MTX-resistant osteosarcoma xenograft growth, and a down-regulation of Hsp27 in vivo was observed. Taken together, bufalin exerted potent anti-osteosarcoma effects in vitro and in vivo, even in MTX resistant osteosarcoma cells. The down-regulation of Hsp27 played a critical role in bufalin-induced apoptosis in osteosarcoma cells. Bufalin may have merit to be a potential chemotherapeutic agent for osteosarcoma, particularly in MTX-resistant groups.

  5. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4.

    Science.gov (United States)

    Ruibal, Cecilia; Castro, Alexandra; Carballo, Valentina; Szabados, László; Vidal, Sabina

    2013-11-05

    Plant small heat shock proteins (sHsps) accumulate in response to various environmental stresses, including heat, drought, salt and oxidative stress. Numerous studies suggest a role for these proteins in stress tolerance by preventing stress-induced protein aggregation as well as by facilitating protein refolding by other chaperones. However, in vivo evidence for the involvement of sHsps in tolerance to different stress factors is still missing, mainly due to the lack of appropriate mutants in specific sHsp genes. In this study we characterized the function of a sHsp in abiotic stress tolerance in the moss Physcomitrella patens, a model for primitive land plants. Using suppression subtractive hybridization, we isolated an abscisic acid-upregulated gene from P. patens encoding a 16.4 kDa cytosolic class II sHsp. PpHsp16.4 was also induced by salicylic acid, dithiothreitol (DTT) and by exposure to various stimuli, including osmotic and salt stress, but not by oxidative stress-inducing compounds. Expression of the gene was maintained upon stress relief, suggesting a role for this protein in the recovery stage. PpHsp16.4 is encoded by two identical genes arranged in tandem in the genome. Targeted disruption of both genes resulted in the inability of plants to recover from heat, salt and osmotic stress. In vivo localization studies revealed that PpHsp16.4 localized in cytosolic granules in the vicinity of chloroplasts under non stress conditions, suggesting possible distinct roles for this protein under stress and optimal growth. We identified a member of the class II sHsp family that showed hormonal and abiotic stress gene regulation. Induction of the gene by DTT treatment suggests that damaged proteins may act as signals for the stress-induction of PpHsp16.4. The product of this gene was shown to localize in cytosolic granules near the chloroplasts, suggesting a role for the protein in association with these organelles. Our study provides the first direct genetic

  6. Effects of chronic portal hypertension on small heat-shock proteins in mesenteric arteries.

    Science.gov (United States)

    Chen, Xuesong; Zhang, Hai-Ying; Pavlish, Kristin; Benoit, Joseph N

    2005-04-01

    Previous studies have shown that impaired vasoconstrictor function in chronic portal hypertension is mediated via cAMP-dependent events. Recent data have implicated two small heat-shock proteins (HSP), namely HSP20 and HSP27, in the regulation of vascular tone. Phosphorylation of HSP20 is associated with vasorelaxation, whereas phosphorylation of HSP27 is associated with vasoconstriction. We hypothesized that alterations in the expression and/or phosphorylation of small HSPs may play a role in impaired vasoconstriction in portal hypertension. A rat model of prehepatic chronic portal hypertension was used. Studies were conducted in small mesenteric arteries isolated from normal and portal hypertensive rats. Protein levels of HSP20 and HSP27 were detected by Western blot analysis. Protein phosphorylation was analyzed by isoelectric focusing. HSP20 mRNA expression was determined by RT-PCR. To examine the role of cAMP in the regulation of small HSP phosphorylation and expression, we treated both normal and portal hypertensive vessels with a PKA inhibitor Rp-cAMPS. We found both an increased HSP20 phosphorylation and a decreased HPS20 protein level in portal hypertension, both of which were restored to normal by PKA inhibition. However, PKA did not change HSP20 mRNA expression. We conclude that decreased HSP20 protein level is mediated by cAMP-dependent pathway and that impaired vasoconstrictor function in portal hypertension may be partially explained by decreased expression of HSP20. We also suggest that the phosphorylation of HSP20 by PKA may alter HSP20 turnover.

  7. Cloning and expression of the coding regions of the heat shock proteins HSP10 and HSP16 from Piscirickettsia salmonis

    Directory of Open Access Journals (Sweden)

    VIVIAN WILHELM

    2003-01-01

    Full Text Available The genes encoding the heat shock proteins HSP10 and HSP16 of the salmon pathogen Piscirickettsia salmonis have been isolated and sequenced. The HSP10 coding sequence is located in an open reading frame of 291 base pairs encoding 96 aminoacids. The HSP16 coding region was isolated as a 471 base pair fragment encoding a protein of 156 aminoacids. The deduced aminoacid sequences of both proteins show a significant homology to the respective protein from other prokaryotic organisms. Both proteins were expressed in E. coli as fusion proteins with thioredoxin and purified by chromatography on Ni-column. A rabbit serum against P. salmonis total proteins reacts with the recombinant HSP10 and HSP16 proteins. Similar reactivity was determined by ELISA using serum from salmon infected with P. salmonis. The possibility of formulating a vaccine containing these two proteins is discussed

  8. The Roles of Heat Shock Proteins 70 and 90 in Exopalaemon carinicauda After WSSV and Vibrio anguillarum Challenges

    Science.gov (United States)

    Li, Jitao; Li, Jian; Duan, Yafei; Chen, Ping; Liu, Ping

    2018-04-01

    Heat shock proteins (HSPs), such as HSP70 and HSP90, are a suite of highly conserved proteins produced in all cellular organisms when they are exposed to stresses. In aquatic animals, they have been proved to play important roles in response to environmental pollutants and particularly in the non-specific immune responses to pathogen infections. In the present study, the expression profiles of HSP70 and HSP90 genes in hemocytes and hepatopancreas from the ridgetail white prawn Exopalaemon carinicauda infected with WSSV and Vibrio anguillarum were detected using reverse transcription polymerase chain reaction (RT-PCR). After WSSV challenge, the expression level of HSP 70 gene transcripts in the hemocytes and hepatopancreas increased to peak level at 6 h and 48 h, respectively. HSP90 gene transcripts in hemocytes and hepatopancreas were up-regulated significantly at 12 h and 6 h, respectively. During V. anguillarum challenge, the mRNA content of HSP70 gene in hemocytes and hepatopancreas increased significantly at 12 h and 6 h post-infection, respectively. The expression level of HSP90 gene both in hemocytes and hepatopancreas were up-regulated in the first 3 h. The expression patterns of HSP70 and HSP90 genes in hemocytes and hepatopancreas showed temporal and spatial differences after challenged with WSSV and V. anguillarum. The results suggested that HSPs might be involved in immune responses to pathogens challenge in E. carinicauda.

  9. Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1.

    Directory of Open Access Journals (Sweden)

    Yoko Igarashi

    Full Text Available Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1 plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.

  10. Heat-Induced Changes in Heat Shock Protein Genes Expression in Crossbred and Baladi Pregnant Cows and Their Offspring

    International Nuclear Information System (INIS)

    Khalil, W.K.B.; Nessim, M.Z.; El- Masry, K.A.

    2010-01-01

    The experiment was carried out during August (hot climate) on twelve pregnant cows of six crossbred (50% native Baladi and 50% Brown Swiss) and six native Baladi pregnant cows in the same age and the second parity during their mid-pregnancy as detected by rectal palpation. The experiment was repeated during December (mild climate) on similar twelve pregnant cows. Blood sample was obtained from each cow at the end of August (first group) and at the end of December (second group) to obtain heat shock protein genes expression (HSP72, HSP70.01, HSP70, HSP47, k Dalton and Actin) in pregnant cows under mild and hot climate to find out, which breed is more tolerant to heat stress and to estimate offspring birth weight and their growth performances during suckling period. Comparison was made between hot climate cows group and mild climate cows group to estimate heat- induced changes in both breeds in expression level of the Hsp genes and to compare with their neonate birth weight and growth performances during suckling period. The results revealed that expression level of the Hsp genes (Hsp72, Hsp70.1, Hsp70 and Hsp 47) was higher (p<0.01) in hot season compared to that of mild season. Expression level of the Hsp genes (Hsp70.1, Hsp70 and Hsp 47) was higher (p<0.05) in crossbred cows than in Baldi cows under summer hot season. This indicates that crossbred cows are less heat tolerant than Baladi cows under heat stress climate. Heat induced decrease (p<0.01) in offspring birth weight in Baladi and crossbred by 18.1% and 25%, respectively, in weaning weight by 14.61% and 23.14%, respectively and in body weight gain by 14.61% and 21.18%, respectively

  11. Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock.

    Science.gov (United States)

    Hamilton, I R; Svensäter, G

    1998-10-01

    Our previous research has demonstrated that with the more aciduric oral bacteria, an acid shock to sub-lethal pH values results in the induction of an acid tolerance response that protects the cells at extremely low pH (pH 3.0-4.0) that kills unadapted control cells maintained at pH 7.5 (Oral Microbiol Immunol 1997: 12: 266-273). In this study, we were interested in comparing the protein profiles of acid-shocked and control cells of nine organisms from three acid-ogenic genera that could be categorized as strong, weak and non-acid responders in an attempt to identify proteins that could be classified as acid-regulated proteins and which may be important in the process of survival at very low pH. For this, log-phase cultures were rapidly acidified from pH 7.5 to 5.5 in the presence of [14C]-amino acids for varying periods up to 2 h, the period previously shown to be required for maximum induction of the acid response. The cells were extracted for total protein and subjected to one-dimensional sodium dodecyl sulfate-polyacrylamide chromatography with comparable control and acid-shocked protein profiles compared by scanning and computer analysis. Of particular interest were the proteins in the acid-shocked cells that showed enhanced labeling (i.e., synthesis) over the control cells, since these were considered acid-regulated proteins of importance in pH homeostasis. Streptococcus mutans LT11 generated the most rapid and complex pattern: a total of 36 acid-regulated proteins showing enhanced synthesis, with 25 appearing within the first 30 min of acid shock. The enhanced synthesis was transient with all proteins, with the exception of two with molecular weights of 50/49 and 33/32 kDa. Within the acid-regulated proteins were proteins having molecular weights comparable to the heat shock proteins and the various subunits of the membrane H+/ATPase. By comparison, the strong responder, Lactobacillus casei 151, showed the enhanced formation of only nine proteins within the

  12. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-02-01

    Full Text Available The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg. 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  13. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

    Science.gov (United States)

    Yang, Wei; Wang, Huanlin

    2018-02-01

    The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg). 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  14. heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis

    Directory of Open Access Journals (Sweden)

    Yan eWang

    2016-01-01

    Full Text Available Heat shock factors (Hsfs are important regulators of stress-response in plants. However, our understanding of Hsf genes and their responses to temperature stresses in two Pooideae cool-season grasses, Festuca arundinacea and Lolium perenne, is limited. Here we conducted comparative transcriptome analyses of plant leaves exposed to heat or cold stress for 10 h. Approximately, 30% and 25% of the genes expressed in the two species showed significant changes under heat and cold stress respectively, including subsets of Hsfs and their target genes. We uncovered 74 Hsfs in F. arundinacea and 52 Hsfs in L. perenne, and categorized these genes into three subfamilies, HsfA, HsfB, and HsfC based on protein sequence homology to known Hsf members in model organisms. The Hsfs showed a strong response to heat and/or cold stress. The expression of HsfAs was elevated under heat stress, especially in class HsfA2, which exhibited the most dramatic responses. HsfBs were upregulated by the both temperature conditions, and HsfCs mainly showed an increase in expression under cold stress. The target genes of Hsfs, such as heat shock protein (HSP, ascorbate peroxidase (APX, inositol-3-phosphate synthase (IPS, and galactinol synthase (GOLS1, showed strong and unique responses to different stressors. We comprehensively detected Hsfs and their target genes in F. arundinacea and L. perenne, providing a foundation for future gene function studies and genetic engineering to improve stress tolerance in grasses and other crops.

  15. Synergistic skin heat shock protein expression in response to combined laser treatment with a diode laser and ablative fractional lasers.

    Science.gov (United States)

    Paasch, Uwe; Sonja, Grunewald; Haedersdal, Merete

    2014-06-01

    Diode laser-based skin heating has been shown to minimise scars by interfering with wound healing responses through the induction of heat shock proteins (HSP). HSP are also induced after ablative fractional laser (AFXL) wound healing. AFXL itself is highly recommended for scar treatment. Therefore, the sequential combination of both modalities may produce superior outcomes. The aim of this study was to examine the pretreatment effects of a diode laser before AFXL on wound healing responses in terms of HSP up-regulation in an in vitro model. Immediate responses and responses on days 1, 3 or 6 post-procedure were studied in an in vitro porcine skin model (n = 240). Untreated samples served as control. Immunohistochemical investigation (Hsp70) was performed in all untreated controls, diode laser-, AFXL-, and in diode laser + AFXL-treated samples. Hsp70 was shown to be up-regulated by all interventions between days 1 and 6 after interventions. The largest effect was caused by the combination of a diode laser and an AFXL procedure. Diode laser exposure induces a skin HSP response that can be further enhanced by sequential AFXL treatment. Clinical studies are necessary to investigate the dose response of HSP on scar formation and refine suitable laser exposure settings.

  16. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    International Nuclear Information System (INIS)

    Kim, Yoon Sik; Seo, Hyun Wook; Jung, Guhung

    2015-01-01

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H 2 O 2 and GSH modulate HBV capsid assembly. • H 2 O 2 facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H 2 O 2 and GSH induce conformation change of Hsp90

  17. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  18. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  19. Sequence characterization of heat shock protein gene of Cyclospora cayetanensis isolates from Nepal, Mexico, and Peru.

    Science.gov (United States)

    Sulaiman, Irshad M; Torres, Patricia; Simpson, Steven; Kerdahi, Khalil; Ortega, Ynes

    2013-04-01

    We have described the development of a 2-step nested PCR protocol based on the characterization of the 70-kDa heat shock protein (HSP70) gene for rapid detection of the human-pathogenic Cyclospora cayetanensis parasite. We tested and validated these newly designed primer sets by PCR amplification followed by nucleotide sequencing of PCR-amplified HSP70 fragments belonging to 16 human C. cayetanensis isolates from 3 different endemic regions that include Nepal, Mexico, and Peru. No genetic polymorphism was observed among the isolates at the characterized regions of the HSP70 locus. This newly developed HSP70 gene-based nested PCR protocol provides another useful genetic marker for the rapid detection of C. cayetanensis in the future.

  20. Enhancement of Tumor-Specific T Cell–Mediated Immunity in Dendritic Cell–Based Vaccines by Mycobacterium tuberculosis Heat Shock Protein X

    Science.gov (United States)

    Jung, In Duk; Shin, Sung Jae; Lee, Min-Goo; Kang, Tae Heung; Han, Hee Dong; Lee, Seung Jun; Kim, Woo Sik; Kim, Hong Min; Park, Won Sun; Kim, Han Wool; Yun, Cheol-Heui; Lee, Eun Kyung; Wu, T.-C.

    2014-01-01

    Despite the potential for stimulation of robust antitumor immunity by dendritic cells (DCs), clinical applications of DC-based immunotherapy are limited by the low potency in generating tumor Ag-specific T cell responses. Therefore, optimal conditions for generating potent immunostimulatory DCs that overcome tolerance and suppression are key factors in DC-based tumor immunotherapy. In this study, we demonstrate that use of the Mycobacterium tuberculosis heat shock protein X (HspX) as an immunoadjuvant in DC-based tumor immunotherapy has significant potential in therapeutics. In particular, the treatment aids the induction of tumor-reactive T cell responses, especially tumor-specific CTLs. The HspX protein induces DC maturation and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IFN-β) through TLR4 binding partially mediated by both the MyD88 and the TRIF signaling pathways. We employed two models of tumor progression and metastasis to evaluate HspX-stimulated DCs in vivo. The administration of HspX-stimulated DCs increased the activation of naive T cells, effectively polarizing the CD4+ and CD8+ T cells to secrete IFN-γ, as well as enhanced the cytotoxicity of splenocytes against HPV-16 E7 (E7)–expressing TC-1 murine tumor cells in therapeutic experimental animals. Moreover, the metastatic capacity of B16-BL6 melanoma cancer cells toward the lungs was remarkably attenuated in mice that received HspX-stimulated DCs. In conclusion, the high therapeutic response rates with tumor-targeted Th1-type T cell immunity as a result of HspX-stimulated DCs in two models suggest that HspX harnesses the exquisite immunological power and specificity of DCs for the treatment of tumors. PMID:24990079

  1. Loss of proteostatic control as a substrate for Atrial Fibrillation; a novel target for upstream therapy by Heat Shock Proteins

    Directory of Open Access Journals (Sweden)

    Roelien Amanda Marjolein Meijering

    2012-02-01

    Full Text Available Atrial Fibrillation (AF is the most common, sustained clinical tachyarrhythmia associated with significant morbidity and mortality. AF is a persistent condition with progressive structural remodeling of the atrial cardiomyocytes due to the AF itself, resulting in cellular changes commonly observed in ageing and in other heart diseases. While rhythm control by electrocardioversion or drug treatment is the treatment of choice in symptomatic AF patients, its effectiveness is still limited. Current research is directed at preventing new-onset AF by limiting the development of substrates underlying AF promotion and resembles mechanism-based therapy. Upstream therapy refers to the use of non-ion channel anti-arrhythmic drugs that modify the atrial substrate- or target-specific mechanisms of AF, with the ultimate aim to prevent the occurrence (primary prevention or recurrence of the arrhythmia following (spontaneous conversion (secondary prevention.Heat shock proteins (HSPs are molecular chaperones and comprise a large family of proteins involved in the protection against various forms of cellular stress. Their classical function is the conservation of proteostasis via prevention of toxic protein aggregation by binding to (partially unfolded proteins. Our recent data reveal that HSPs prevent electrical, contractile and structural remodeling of cardiomyocytes, thus attenuating the AF substrate in cellular, Drosophila melanogaster and animal experimental models. Furthermore, studies in humans suggest a protective role for HSPs against the progression from paroxysmal AF to persistent AF and in recurrence of AF. In this review, we discuss upregulation of the heat shock response system as a novel target for upstream therapy to prevent derailment of proteostasis and consequently promotion and recurrence of AF.

  2. Heat shock protein90 in lobular neoplasia of the breast

    International Nuclear Information System (INIS)

    Zagouri, Flora; Nonni, Afrodite; Sergentanis, Theodoros N; Papadimitriou, Christos A; Michalopoulos, Nikolaos V; Lazaris, Andreas C; Patsouris, Efstratios; Zografos, George C

    2008-01-01

    Heat shock protein 90 (Hsp90) overexpression has been implicated in breast carcinogenesis, with putative prognostic and therapeutic implications. The purpose of this study is to evaluate the immunohistochemical expression of Hsp90 and to examine whether Hsp90 expression is associated with estrogen receptor alpha (ER-alpha) and beta (ER-beta) immunostaining in lobular neoplasia (LN) of the breast. Tissue specimens were taken from 44 patients with LN. Immunohistochemical assessment of Hsp90, ER-alpha and ER-beta was performed both in the lesion and the adjacent normal breast ducts and lobules; the latter serving as control. As far as Hsp90 evaluation is concerned: i) the percentage of positive cells, and ii) the intensity was separately analyzed. Additionally, the Allred score was adopted and calculated. Accordingly, Allred score was separately evaluated for ER-alpha and ER-beta. The intensity was treated as an ordinal variable-score (0: negative, low: 1, moderate: 2, high: 3). Statistical analysis followed. Hsp90 immunoreactivity was mainly cytoplasmic in both the epithelial cells of normal breast (ducts and lobules) and LN. Some epithelial cells of LN also showed nuclear staining, but all the LN foci mainly disclosed a positive cytoplasmic immunoreaction for Hsp90. In addition, rare intralobular inflammatory cells showed a slight immunoreaction. The percentage of Hsp90 positive cells in the LN areas was equal to 67.1 ± 12.2%, whereas the respective percentage in the normal adjacent breast tissue was 69.1 ± 11.6%; the difference was not statistically significant. The intensity score of Hsp90 staining was 1.82 ± 0.72 in LN foci, while in the normal adjacent tissue the intensity score was 2.14 ± 0.64. This difference was statistically significant (p = 0.029, Wilcoxon matched-pairs signed-ranks test). The Hsp90 Allred score was 6.46 ± 1.14 in the LN foci, significantly lower than in the normal adjacent tissue (6.91 ± 0.92, p = 0.049, Wilcoxon matched-pairs signed

  3. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network.

    Science.gov (United States)

    Narberhaus, Franz

    2002-03-01

    Alpha-crystallins were originally recognized as proteins contributing to the transparency of the mammalian eye lens. Subsequently, they have been found in many, but not all, members of the Archaea, Bacteria, and Eucarya. Most members of the diverse alpha-crystallin family have four common structural and functional features: (i) a small monomeric molecular mass between 12 and 43 kDa; (ii) the formation of large oligomeric complexes; (iii) the presence of a moderately conserved central region, the so-called alpha-crystallin domain; and (iv) molecular chaperone activity. Since alpha-crystallins are induced by a temperature upshift in many organisms, they are often referred to as small heat shock proteins (sHsps) or, more accurately, alpha-Hsps. Alpha-crystallins are integrated into a highly flexible and synergistic multichaperone network evolved to secure protein quality control in the cell. Their chaperone activity is limited to the binding of unfolding intermediates in order to protect them from irreversible aggregation. Productive release and refolding of captured proteins into the native state requires close cooperation with other cellular chaperones. In addition, alpha-Hsps seem to play an important role in membrane stabilization. The review compiles information on the abundance, sequence conservation, regulation, structure, and function of alpha-Hsps with an emphasis on the microbial members of this chaperone family.

  4. TG2 regulates the heat-shock response by the post-translational modification of HSF1.

    Science.gov (United States)

    Rossin, Federica; Villella, Valeria Rachela; D'Eletto, Manuela; Farrace, Maria Grazia; Esposito, Speranza; Ferrari, Eleonora; Monzani, Romina; Occhigrossi, Luca; Pagliarini, Vittoria; Sette, Claudio; Cozza, Giorgio; Barlev, Nikolai A; Falasca, Laura; Fimia, Gian Maria; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi; Piacentini, Mauro

    2018-05-11

    Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response. © 2018 The Authors.

  5. A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors.

    Science.gov (United States)

    Urquhart, Kyle R; Zhao, Yinghong; Baker, Jessica A; Lu, Ye; Yan, Lei; Cook, Melloni N; Jones, Byron C; Hamre, Kristin M; Lu, Lu

    2016-04-01

    Genetic differences mediate individual differences in susceptibility and responses to stress and ethanol, although, the specific molecular pathways that control these responses are not fully understood. Heat shock protein alpha 8 (Hspa8) is a molecular chaperone and member of the heat shock protein family that plays an integral role in the stress response and that has been implicated as an ethanol-responsive gene. Therefore, we assessed its role in mediating responses to stress and ethanol across varying genetic backgrounds. The hippocampus is an important mediator of these responses, and thus, was examined in the BXD family of mice in this study. We conducted bioinformatic analyses to dissect genetic factors modulating Hspa8 expression, identify downstream targets of Hspa8, and examined its role. Hspa8 is trans-regulated by a gene or genes on chromosome 14 and is part of a molecular network that regulates stress- and ethanol-related behaviors. To determine additional components of this network, we identified direct or indirect targets of Hspa8 and show that these genes, as predicted, participate in processes such as protein folding and organic substance metabolic processes. Two phenotypes that map to the Hspa8 locus are anxiety-related and numerous other anxiety- and/or ethanol-related behaviors significantly correlate with Hspa8 expression. To more directly assay this relationship, we examined differences in gene expression following exposure to stress or alcohol and showed treatment-related differential expression of Hspa8 and a subset of the members of its network. Our findings suggest that Hspa8 plays a vital role in genetic differences in responses to stress and ethanol and their interactions.

  6. A comparison of piezosurgery and conventional surgery by heat shock protein 70 expression.

    Science.gov (United States)

    Gülnahar, Y; Hüseyin Köşger, H; Tutar, Y

    2013-04-01

    The effects of mechanical instruments on the viability of cells are essential in terms of regeneration. There is considerable interest in cell repair following damage mediated by dental surgical procedures. Cells can tolerate stress by expressing heat shock protein 70 (Hsp70). During and after surgical tooth removal, oxidative stress can activate Hsp70 expression proportional to the intensity of the stress signal stimulus to cope with stress. This study examined the expression of Hsp70 as a potential biomarker of immediate postoperative stress in patients undergoing two different surgical procedures of different severity. Expression of Hsp70 both at mRNA and at protein level in the conventional group was two-fold higher than that of the piezo group. This suggests that tooth movement by the piezo method causes relatively lower stress in the alveolar bone. Piezosurgery provides relatively low stress to the patients and this may help cell repair after the surgical procedure. Patients undergoing more aggressive surgery using conventional methods showed a significant increase in Hsp70 in the immediate postoperative period. Therefore, Hsp70 induction can be a potential tool as a prognostic surgical marker. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70 Function

    Directory of Open Access Journals (Sweden)

    Tawanda Zininga

    2017-07-01

    Full Text Available Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of two plants, Pterocarpus angolensis and Ziziphus mucronata were obtained and their antimalarial functions were investigated. Furthermore, we explored the capability of the extracts to inhibit Plasmodium falciparum heat shock protein 70 (Hsp70 function. Heat shock protein 70 (Hsp70 are molecular chaperones whose function is to facilitate protein folding. Plasmodium falciparum the main agent of malaria, expresses two cytosol-localized Hsp70s: PfHsp70-1 and PfHsp70-z. The PfHsp70-z has been reported to be essential for parasite survival, while inhibition of PfHsp70-1 function leads to parasite death. Hence both PfHsp70-1 and PfHsp70-z are potential antimalarial drug targets. Extracts of P. angolensis and Z. mucronata inhibited the basal ATPase and chaperone functions of the two parasite Hsp70s. Furthermore, fractions of P. angolensis and Z. mucronata inhibited P. falciparum 3D7 parasite growth in vitro. The extracts obtained in the current study exhibited antiplasmodial activity as they killed P. falciparum parasites maintained in vitro. In addition, the findings further suggest that some of the compounds in P. angolensis and Z. mucronata may target parasite Hsp70 function.

  8. Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice.

    Directory of Open Access Journals (Sweden)

    Fei Jiang

    Full Text Available Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu and heat shock protein 70 (HSP 70 are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70, IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.

  9. Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou's general PseAAC.

    Science.gov (United States)

    Ahmad, Saeed; Kabir, Muhammad; Hayat, Maqsood

    2015-11-01

    Heat Shock Proteins (HSPs) are the substantial ingredients for cell growth and viability, which are found in all living organisms. HSPs manage the process of folding and unfolding of proteins, the quality of newly synthesized proteins and protecting cellular homeostatic processes from environmental stress. On the basis of functionality, HSPs are categorized into six major families namely: (i) HSP20 or sHSP (ii) HSP40 or J-proteins types (iii) HSP60 or GroEL/ES (iv) HSP70 (v) HSP90 and (vi) HSP100. Identification of HSPs family and sub-family through conventional approaches is expensive and laborious. It is therefore, highly desired to establish an automatic, robust and accurate computational method for prediction of HSPs quickly and reliably. Regard, a computational model is developed for the prediction of HSPs family. In this model, protein sequences are formulated using three discrete methods namely: Split Amino Acid Composition, Pseudo Amino Acid Composition, and Dipeptide Composition. Several learning algorithms are utilized to choice the best one for high throughput computational model. Leave one out test is applied to assess the performance of the proposed model. The empirical results showed that support vector machine achieved quite promising results using Dipeptide Composition feature space. The predicted outcomes of proposed model are 90.7% accuracy for HSPs dataset and 97.04% accuracy for J-protein types, which are higher than existing methods in the literature so far. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Intracellular formation of α-synuclein oligomers and the effect of heat shock protein 70 characterized by confocal single particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Johannes [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); German Center for Neurodegenerative Diseases – DZNE, Site Munich, Feodor-Lynen-Str. 17, 81377 Munich (Germany); Hillmer, Andreas S. [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany); Högen, Tobias [Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich (Germany); McLean, Pamela J. [Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 (United States); Giese, Armin, E-mail: armin.giese@med.uni-muenchen.de [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich (Germany)

    2016-08-12

    Synucleinopathies such as dementia with Lewy bodies or Parkinson’s disease are characterized by intracellular deposition of pathologically aggregated α-synuclein. The details of the molecular pathogenesis of PD and especially the conditions that lead to intracellular aggregation of α-synuclein and the role of these aggregates in cell death remain unknown. In cell free in vitro systems considerable knowledge about the aggregation processes has been gathered. In comparison, the knowledge about these aggregation processes in cells is far behind. In cells α-synuclein aggregates can be toxic. However, the crucial particle species responsible for decisive steps in pathogenesis such as seeding a continuing aggregation process and triggering cell death remain to be identified. In order to understand the complex nature of intracellular α-synuclein aggregate formation, we analyzed fluorescent particles formed by venus and α-synuclein-venus fusion proteins and α-synuclein-hemi-venus fusion proteins derived from gently lyzed cells. With these techniques we were able to identify and characterize α-synuclein oligomers formed in cells. Especially the use of α-synuclein-hemi-venus fusion proteins enabled us to identify very small α-synuclein oligomers with high sensitivity. Furthermore, we were able to study the molecular effect of heat shock protein 70, which is known to inhibit α-synuclein aggregation in cells. Heat shock protein 70 does not only influence the size of α-synuclein oligomers, but also their quantity. In summary, this approach based on fluorescence single particle spectroscopy, that is suited for high throughput measurements, can be used to detect and characterize intracellularly formed α-synuclein aggregates and characterize the effect of molecules that interfere with α-synuclein aggregate formation. - Highlights: • Single particle spectroscopy detects intracellular formed α-synuclein aggregates. • Fusion proteins allow detection of protein

  11. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis.

    Science.gov (United States)

    McConnell, Kevin W; Fox, Amy C; Clark, Andrew T; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A; Farris, Alton B; Buchman, Timothy G; Hunt, Clayton R; Coopersmith, Craig M

    2011-03-15

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation.

  12. CELLS OVEREXPRESSING HSP27 SHOW ACCELERATED RECOVERY FROM HEAT-INDUCED NUCLEAR-PROTEIN AGGREGATION

    NARCIS (Netherlands)

    KAMPINGA, HH; BRUNSTING, JF; STEGE, GJJ; KONINGS, AWT; LANDRY, J

    1994-01-01

    Protein denaturation/aggregation upon cell exposure to heat shock is a likely cause of cell death. in the nucleus, protein aggregation has often been correlated to inhibition of nuclear located processes and heat-induced cell killing. in Chinese hamster 023 cells made thermotolerant by a prior

  13. Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Gisella L Puga Yung

    Full Text Available Pediatric Crohn's disease is a chronic auto inflammatory bowel disorder affecting children under the age of 17 years. A putative etiopathogenesis of Crohn's disease (CD is associated with disregulation of immune response to antigens commonly present in the gut microenvironment. Heat shock proteins (HSP have been identified as ubiquitous antigens with the ability to modulate inflammatory responses associated with several autoimmune diseases. The present study tested the contribution of immune responses to HSP in the amplification of autoimmune inflammation in chronically inflamed mucosa of pediatric CD patients. Colonic biopsies obtained from normal and CD mucosa were stimulated with pairs of Pan HLA-DR binder HSP60-derived peptides (human/bacterial homologues. The modulation of RNA and protein levels of induced proinflammatory cytokines were measured. We identified two epitopes capable of sustaining proinflammatory responses, specifically TNF< and IFN induction, in the inflamed intestinal mucosa in CD patients. The responses correlated positively with clinical and histological measurements of disease activity, thus suggesting a contribution of immune responses to HSP in pediatric CD site-specific mucosal inflammation.

  14. Small heat shock proteins mediate cell-autonomous and -nonautonomous protection in a Drosophila model for environmental-stress-induced degeneration.

    Science.gov (United States)

    Kawasaki, Fumiko; Koonce, Noelle L; Guo, Linda; Fatima, Shahroz; Qiu, Catherine; Moon, Mackenzie T; Zheng, Yunzhen; Ordway, Richard W

    2016-09-01

    Cell and tissue degeneration, and the development of degenerative diseases, are influenced by genetic and environmental factors that affect protein misfolding and proteotoxicity. To better understand the role of the environment in degeneration, we developed a genetic model for heat shock (HS)-stress-induced degeneration in Drosophila This model exhibits a unique combination of features that enhance genetic analysis of degeneration and protection mechanisms involving environmental stress. These include cell-type-specific failure of proteostasis and degeneration in response to global stress, cell-nonautonomous interactions within a simple and accessible network of susceptible cell types, and precise temporal control over the induction of degeneration. In wild-type flies, HS stress causes selective loss of the flight ability and degeneration of three susceptible cell types comprising the flight motor: muscle, motor neurons and associated glia. Other motor behaviors persist and, accordingly, the corresponding cell types controlling leg motor function are resistant to degeneration. Flight motor degeneration was preceded by a failure of muscle proteostasis characterized by diffuse ubiquitinated protein aggregates. Moreover, muscle-specific overexpression of a small heat shock protein (HSP), HSP23, promoted proteostasis and protected muscle from HS stress. Notably, neurons and glia were protected as well, indicating that a small HSP can mediate cell-nonautonomous protection. Cell-autonomous protection of muscle was characterized by a distinct distribution of ubiquitinated proteins, including perinuclear localization and clearance of protein aggregates associated with the perinuclear microtubule network. This network was severely disrupted in wild-type preparations prior to degeneration, suggesting that it serves an important role in muscle proteostasis and protection. Finally, studies of resistant leg muscles revealed that they sustain proteostasis and the microtubule

  15. Expression levels of hsc70 and hsp60 are developmentally regulated during B-cell maturation and not associated to childhood c-ALL at presentation or relapse

    DEFF Research Database (Denmark)

    Wehner, Peder Skov; Nielsen, Bendt; Hokland, Marianne

    2003-01-01

    ) or heat shock protein 60 (hsp60) contribute to B-cell differentiation and leukemogenesis. We compared the expression of these hsps in normal peripheral blood (PB) CD19+ B-cells, in pediatric bone marrow (BM) CD19+ CD10+ B-cell precursors (BCPs) from normal donors, and in BCPs from common acute......Heat shock proteins are potent regulators of apoptosis, and so they may also be involved in normal cellular differentiation and cancerogenesis. We used quantitative two-dimensional gel electrophoresis for determining whether either the constitutive chaperonic heat shock cognate protein 70 (hsc70...

  16. Biophoton emission induced by heat shock.

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kobayashi

    Full Text Available Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock.

  17. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones

    Directory of Open Access Journals (Sweden)

    Morioka Mizue

    2003-08-01

    Full Text Available Abstract Background It is well known that expression of certain bacterial genes responds rapidly to such stimuli as exposure to toxic chemicals and physical agents. It is generally believed that the proteins encoded in these genes are important for successful survival of the organism under the hostile conditions. Analogously, the proteins induced in bacterial cells exposed to antibiotics are believed to affect the organisms' susceptibility to these agents. Results We demonstrated that Escherichia coli cells exposed to levofloxacin (LVFX, a fluoroquinolone (FQ, induce the syntheses of heat shock proteins and RecA. To examine whether the heat shock proteins affect the bactericidal action of FQs, we constructed E. coli strains with mutations in various heat shock genes and tested their susceptibility to FQs. Mutations in dnaK, groEL, and lon increased this susceptibility; the lon mutant exhibited the greatest effects. The increased susceptibility of the lon mutant was corroborated by experiments in which the gene encoding the cell division inhibitor, SulA, was subsequently disrupted. SulA is induced by the SOS response and degraded by the Lon protease. The findings suggest that the hypersusceptibility of the lon mutant to FQs could be due to abnormally high levels of SulA protein resulting from the depletion of Lon and the continuous induction of the SOS response in the presence of FQs. Conclusion The present results show that the bactericidal action of FQs is moderately affected by the DnaK and GroEL chaperones and strongly affected by the Lon protease. FQs have contributed successfully to the treatment of various bacterial infections, but their widespread use and often misuse, coupled with emerging resistance, have gradually compromised their utility. Our results suggest that agents capable of inhibiting the Lon protease have potential for combination therapy with FQs.

  18. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. The human TRPV6 channel protein is associated with cyclophilin B in human placenta.

    Science.gov (United States)

    Stumpf, Tobias; Zhang, Qi; Hirnet, Daniela; Lewandrowski, Urs; Sickmann, Albert; Wissenbach, Ulrich; Dörr, Janka; Lohr, Christian; Deitmer, Joachim W; Fecher-Trost, Claudia

    2008-06-27

    Transcellular calcium transport in the kidney, pancreas, small intestine, and placenta is partly mediated by transient receptor potential (TRP) channels. The highly selective TRPV6 calcium channel protein is most likely important for the calcium transfer in different specialized epithelial cells. In the human placenta the protein is expressed in trophoblast tissue, where it is implicated in the transepithelial calcium transfer from mother to the fetus. We enriched the TRPV6 channel protein endogenously expressed in placenta together with annexin A2 and cyclophilin B (CypB), which is a member of the huge immunophilin family. In the human placenta TRPV6 and CypB are mainly located intracellularly in the syncytiotrophoblast layer, but a small amount of the mature glycosylated TRPV6 channel protein and CypB is also expressed in microvilli apical membranes, the fetomaternal barrier. To understand the role of CypB on the TRPV6 channel function, we evaluated the effect of CypB co-expression on TRPV6-mediated calcium uptake into Xenopus laevis oocytes expressing TRPV6. A significant increase of TRPV6-mediated calcium uptake was observed after CypB/TRPV6 co-expression. This stimulatory effect of CypB was reversed by the immunosuppressive drug cyclosporin A, which inhibits the enzymatic activity of CypB. Cyclosporin A had no significant effect on TRPV6 and CypB protein expression levels in the oocytes. In summary, our results establish CypB as a new TRPV6 accessory protein with potential involvement in TRPV6 channel activation through its peptidyl-prolyl cis/trans isomerase activity.

  20. Transcriptome, expression, and activity analyses reveal a vital heat shock protein 70 in the stress response of stony coral Pocillopora damicornis.

    Science.gov (United States)

    Zhang, Yidan; Zhou, Zhi; Wang, Lingui; Huang, Bo

    2018-02-12

    Coral bleaching occurs worldwide with increasing frequencies and intensities, which is caused by the stress response of stony coral to environmental change, especially increased sea surface temperature. In the present study, transcriptome, expression, and activity analyses were employed to illustrate the underlying molecular mechanisms of heat shock protein 70 (HSP70) in the stress response of coral to environmental changes. The domain analyses of assembled transcripts revealed 30 HSP70 gene contigs in stony coral Pocillopora damicornis. One crucial HSP70 (PdHSP70) was observed, whose expressions were induced by both elevated temperature and ammonium after expression difference analysis. The complete complementary DNA (cDNA) sequence of PdHSP70 was identified, which encoded a polypeptide of 650 amino acids with a molecular weight of 71.93 kDa. The deduced amino acid sequence of PdHSP70 contained a HSP70 domain (from Pro8 to Gly616), and it shared the highest similarity (95%) with HSP70 from Stylophora pistillata. The expression level of PdHSP70 gene increased significantly at 12 h, and returned to the initial level at 24 h after the stress of high temperature (32 °C). The cDNA fragment encoding the mature peptide of PdHSP70 was recombined and expressed in the prokaryotic expression system. The ATPase activity of recombinant PdHSP70 protein was determined, and it did not change significantly in a wide range of temperature from 25 to 40 °C. These results collectively suggested that PdHSP70 was a vital heat shock protein 70 in the stony coral P. damicornis, whose mRNA expression could be induced by diverse environmental stress and whose activity could remain stable under heat stress. PdHSP70 might be involved in the regulation of the bleaching owing to heat stress in the stony coral P. damicornis.

  1. Genome-Wide Characterization of Heat-Shock Protein 70s from Chenopodium quinoa and Expression Analyses of Cqhsp70s in Response to Drought Stress.

    Science.gov (United States)

    Liu, Jianxia; Wang, Runmei; Liu, Wenying; Zhang, Hongli; Guo, Yaodong; Wen, Riyu

    2018-01-23

    Heat-shock proteins (HSPs) are ubiquitous proteins with important roles in response to biotic and abiotic stress. The 70-kDa heat-shock genes ( Hsp70s ) encode a group of conserved chaperone proteins that play central roles in cellular networks of molecular chaperones and folding catalysts across all the studied organisms including bacteria, plants and animals. Several Hsp70s involved in drought tolerance have been well characterized in various plants, whereas no research on Chenopodium quinoa HSPs has been completed. Here, we analyzed the genome of C. quinoa and identified sixteen Hsp70 members in quinoa genome. Phylogenetic analysis revealed the independent origination of those Hsp70 members, with eight paralogous pairs comprising the Hsp70 family in quinoa. While the gene structure and motif analysis showed high conservation of those paralogous pairs, the synteny analysis of those paralogous pairs provided evidence for expansion coming from the polyploidy event. With several subcellular localization signals detected in CqHSP70 protein paralogous pairs, some of the paralogous proteins lost the localization information, indicating the diversity of both subcellular localizations and potential functionalities of those HSP70s. Further gene expression analyses revealed by quantitative polymerase chain reaction (qPCR) analysis illustrated the significant variations of Cqhsp70s in response to drought stress. In conclusion, the sixteen Cqhsp70 s undergo lineage-specific expansions and might play important and varied roles in response to drought stress.

  2. Acclimation-dependent expression of heat shock protein 70 in Pacific abalone ( Haliotis discus hannai Ino) and its acute response to thermal exposure

    Science.gov (United States)

    Li, Jiaqi; He, Qingguo; Sun, Hui; Liu, Xiao

    2012-01-01

    Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses, especially thermal stress. Here we examined the response of Hsp70 gene to both chronic and acute thermal exposure in Pacific abalone ( Haliotis discus hannai Ino). For the chronic exposure, abalones were maintained at 8, 12, 20, and 30°C for four months and their mRNA levels were measured. The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30°C-acclimated group, followed by the 8°C-acclimated group and then the 12°C- and 20°C-acclimated groups. After the long-term acclimation, gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8°C and 38°C for 30 min. Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure. The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups. Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions, through which they deal with the stress of thermal variations.

  3. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors.

    Science.gov (United States)

    Nuss, Jonathan E; Kehn-Hall, Kylene; Benedict, Ashwini; Costantino, Julie; Ward, Michael; Peyser, Brian D; Retterer, Cary J; Tressler, Lyal E; Wanner, Laura M; McGovern, Hugh F; Zaidi, Anum; Anthony, Scott M; Kota, Krishna P; Bavari, Sina; Hakami, Ramin M

    2014-01-01

    Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.

  4. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors.

    Directory of Open Access Journals (Sweden)

    Jonathan E Nuss

    Full Text Available Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV. Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90, as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.

  5. Characterization of novel heat-responsive transcription factor (TaHSFA6e) gene involved in regulation of heat shock proteins (HSPs) - A key member of heat stress-tolerance network of wheat.

    Science.gov (United States)

    Kumar, Ranjeet R; Goswami, Suneha; Singh, Khushboo; Dubey, Kavita; Rai, Gyanendra K; Singh, Bhupinder; Singh, Shivdhar; Grover, Monendra; Mishra, Dwijesh; Kumar, Sanjeev; Bakshi, Suman; Rai, Anil; Pathak, Himanshu; Chinnusamy, Viswanathan; Praveen, Shelly

    2018-08-10

    Heat stress has an adverse effect on the quality and quantity of agriculturally important crops, especially wheat. The tolerance mechanism has not been explored much in wheat and very few genes/ TFs responsive to heat stress is available on public domain. Here, we identified, cloned and characterized a putative TaHSFA6e TF gene of 1.3 kb from wheat cv. HD2985. We observed an ORF of 368 aa with Hsf DNA binding signature domain in the amino acid sequence. Single copy number of TaHSFA6e was observed integrated in the genome of wheat. Expression analysis of TaHSFA6e under differential HS showed maximum transcripts in wheat cv. Halna (thermotolerant) in response to 38 °C for 2 h during pollination and grain-filling stages, as compared to PBW343, HD2329 and HD2985. Putative target genes of TaHSFA6e (HSP17, HSP70 and HSP90) showed upregulation in response to differential HS (30 & 38 °C, 2 h) during pollination and grain-filling stages. Small HSP17 was observed most triggered in Halna under HS. We observed increase in the catalase, guaiacol peroxidase, total antioxidant capacity (TAC), and decrease in the lipid peroxidation in thermotolerant cvs. (Halna, HD2985), as compared to thermosusceptible (PBW343, HD2329) under differential HS. Multiple stresses (heat - 38 °C, 2 h, and drought - 100 mL of 20% polyethylene Glycol 6000) during seedling stage of wheat showed positive correlation between the expression of TaHSFA6e, putative targets (HSP70, HSP90, HSP17) and TAC. Halna (thermotolerant) performed better, as compared to other contrasting cvs. TaHSFA6e TF can be used as promising candidate gene for manipulating the heat stress-tolerance network. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization.

    Science.gov (United States)

    Choresh, Omer; Loya, Yossi; Müller, Werner E G; Wiedenmann, Jörg; Azem, Abdussalam

    2004-03-01

    Sessile marine invertebrates undergo constant direct exposure to the surrounding environmental conditions, including local and global environmental fluctuations that may lead to fatal protein damage. Induction of heat shock proteins (Hsps) constitutes an important defense mechanism that protects these organisms from deleterious stress conditions. In a previous study, we reported the immunological detection of a 60-kDa Hsp (Hsp60) in the sea anemone Anemonia viridis (formerly called Anemonia sulcata) and studied its expression under a variety of stress conditions. In the present study, we show that the sponge Tetilla sp. from tidal habitats with a highly variable temperature regime is characterized by an increased level of Hsp60. Moreover, we show the expression of Hsp60 in various species among Porifera and Cnidaria, suggesting a general importance of this protein among marine invertebrates. We further cloned the hsp60 gene from A viridis, using a combination of conventional protein isolation methods and screening of a complementary deoxyribonucleic acid library by polymerase chain reaction. The cloned sequence (1764 bp) encodes for a protein of 62.8 kDa (588 amino acids). The 62.8-kDa protein, which contains an amino terminal extension that may serve as a mitochondrial targeting signal, shares a significant identity with mitochondrial Hsp60s from several animals but less identity with Hsp60s from either bacteria or plants.

  7. Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients.

    Science.gov (United States)

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2015-01-01

    Heat shock proteins (HSPs) are inducible stress proteins expressed in cells exposed to stress. HSPs promote wound healing by recruitment of dermal fibroblasts to the site of injury and bring about protein homeostasis. Diabetic wounds are hard to heal and inadequate HSPs may be important contributors in the etiology of diabetic foot ulcers (DFU). To analyze the differential expression of HSPs and their downstream molecules in human diabetic wounds compared to control wounds. Expressional levels of HSP27, HSP47 and HSP70 and their downstream molecules like TLR4, p38-MAPK were seen in biopsies from 101 human diabetic wounds compared to 8 control subjects without diabetes using RT-PCR, western blot and immunohistochemistry. Our study suggested a significant down regulation of HSP70, HSP47 and HSP27 (p value=diabetic wounds. Our study demonstrates that the down regulation of HSPs in diabetic wounds is associated with wound healing impairment in T2DM subjects. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress

    Science.gov (United States)

    Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.

    1998-01-01

    Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.

  9. S100B protein in serum is elevated after global cerebral ischemic injury

    Institute of Scientific and Technical Information of China (English)

    Bao-di Sun; Hong-mei Liu; Shi-nan Nie

    2013-01-01

    BACKGROUND:S100B protein in patients with cardiac arrest,hemorrhagic shock and other causes of global cerebral ischemic injury will be dramatically increased.Ischemic brain injury may elevate the level of serum S100 B protein and the severity of brain damage.METHODS:This article is a critical and descriptive review on S100 B protein in serum after ischemic brain injury.We searched Pubmed database with key words or terms such as 'S100B protein', 'cardiac arrest', 'hemorrhagic shock' and 'ischemia reperfusion injury' appeared in the last five years.RESULTS:S100B protein in patients with cardiac arrest,hemorrhagic shock and other causes of ischemic brain injury will be dramatically increased.Ischemic brain injury elevated the level of serum S100 B protein,and the severity of brain damage.CONCLUSION:The level of S100 B protein in serum is elevated after ischemic brain injury,but its mechanism is unclear.

  10. Expression of Heat Shock Proteins in Human Fibroblast Cells under Magnetic Resonant Coupling Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Kohei Mizuno

    2015-10-01

    Full Text Available Since 2007, resonant coupling wireless power transfer (WPT technology has been attracting attention and has been widely researched for practical use. Moreover, dosimetric evaluation has also been discussed to evaluate the potential health risks of the electromagnetic field from this WPT technology based on the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines. However, there has not been much experimental evaluation of the potential health risks of this WPT technology. In this study, to evaluate whether magnetic resonant coupling WPT induces cellular stress, we focused on heat shock proteins (Hsps and determined the expression level of Hsps 27, 70 and 90 in WI38VA13 subcloned 2RA human fibroblast cells using a western blotting method. The expression level of Hsps under conditions of magnetic resonant coupling WPT for 24 h was not significantly different compared with control cells, although the expression level of Hsps for cells exposed to heat stress conditions was significantly increased. These results suggested that exposure to magnetic resonant coupling WPT did not cause detectable cell stress.

  11. Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2) and malignancy in brain tumors

    International Nuclear Information System (INIS)

    Pozsgai, Eva; Gomori, Eva; Szigeti, Andras; Boronkai, Arpad; Gallyas, Ferenc Jr; Sumegi, Balazs; Bellyei, Szabolcs

    2007-01-01

    Small heat shock proteins are molecular chaperones that protect proteins against stress-induced aggregation. They have also been found to have anti-apoptotic activity and to play a part in the development of tumors. Recently, we identified a new small heat shock protein, Hsp16.2 which displayed increased expression in neuroectodermal tumors. Our aim was to investigate the expression of Hsp16.2 in different types of brain tumors and to correlate its expression with the histological grade of the tumor. Immunohistochemistry with a polyclonal antibody to Hsp16.2 was carried out on formalin-fixed, paraffin-wax-embedded sections using the streptavidin-biotin method. 91 samples were examined and their histological grade was defined. According to the intensity of Hsp16.2 immunoreactivity, low (+), moderate (++), high (+++) or none (-) scores were given. Immunoblotting was carried out on 30 samples of brain tumors using SDS-polyacrylamide gel electrophoresis and Western-blotting. Low grade (grades 1–2) brain tumors displayed low cytoplasmic Hsp16.2 immunoreactivity, grade 3 tumors showed moderate cytoplasmic staining, while high grade (grade 4) tumors exhibited intensive cytoplasmic Hsp16.2 staining. Immunoblotting supported the above mentioned results. Normal brain tissue acted as a negative control for the experiment, since the cytoplasm did not stain for Hsp16.2. There was a positive correlation between the level of Hsp16.2 expression and the level of anaplasia in different malignant tissue samples. Hsp16.2 expression was directly correlated with the histological grade of brain tumors, therefore Hsp16.2 may have relevance as becoming a possible tumor marker

  12. Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties

    Directory of Open Access Journals (Sweden)

    Chang-Nim Im

    2017-02-01

    Full Text Available Heat shock factor 1 (HSF1, a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2 interacting cell death suppressor (BIS. HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs. In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY-box 2 (SOX2 expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2 activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose polymerase (PARP cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.

  13. Glutamine's protection against cellular injury is dependent on heat shock factor-1.

    Science.gov (United States)

    Morrison, Angela L; Dinges, Martin; Singleton, Kristen D; Odoms, Kelli; Wong, Hector R; Wischmeyer, Paul E

    2006-06-01

    Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1(+/+)) and knockout (HSF-1(-/-)) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1(+/+) cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1(-/-) cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1(-/-) cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation.

  14. Heat shock protein90 in lobular neoplasia of the breast

    Directory of Open Access Journals (Sweden)

    Patsouris Efstratios

    2008-10-01

    Full Text Available Abstract Background Heat shock protein 90 (Hsp90 overexpression has been implicated in breast carcinogenesis, with putative prognostic and therapeutic implications. The purpose of this study is to evaluate the immunohistochemical expression of Hsp90 and to examine whether Hsp90 expression is associated with estrogen receptor alpha (ER-alpha and beta (ER-beta immunostaining in lobular neoplasia (LN of the breast. Methods Tissue specimens were taken from 44 patients with LN. Immunohistochemical assessment of Hsp90, ER-alpha and ER-beta was performed both in the lesion and the adjacent normal breast ducts and lobules; the latter serving as control. As far as Hsp90 evaluation is concerned: i the percentage of positive cells, and ii the intensity was separately analyzed. Additionally, the Allred score was adopted and calculated. Accordingly, Allred score was separately evaluated for ER-alpha and ER-beta. The intensity was treated as an ordinal variable-score (0: negative, low: 1, moderate: 2, high: 3. Statistical analysis followed. Results Hsp90 immunoreactivity was mainly cytoplasmic in both the epithelial cells of normal breast (ducts and lobules and LN. Some epithelial cells of LN also showed nuclear staining, but all the LN foci mainly disclosed a positive cytoplasmic immunoreaction for Hsp90. In addition, rare intralobular inflammatory cells showed a slight immunoreaction. The percentage of Hsp90 positive cells in the LN areas was equal to 67.1 ± 12.2%, whereas the respective percentage in the normal adjacent breast tissue was 69.1 ± 11.6%; the difference was not statistically significant. The intensity score of Hsp90 staining was 1.82 ± 0.72 in LN foci, while in the normal adjacent tissue the intensity score was 2.14 ± 0.64. This difference was statistically significant (p = 0.029, Wilcoxon matched-pairs signed-ranks test. The Hsp90 Allred score was 6.46 ± 1.14 in the LN foci, significantly lower than in the normal adjacent tissue (6.91

  15. Electron velocity distributions near collisionless shocks

    International Nuclear Information System (INIS)

    Feldman, W.C.

    1984-01-01

    Recent studies of the amount of electron heating and of the shapes of electron velocity distributions across shocks near the earth are reviewed. It is found that electron heating increases with increasing shock strength but is always less than the ion heating. The scale length of electron heating is also less than that for the ions. Electron velocity distributions show characteristic shapes which depend on the strength of the shocks. At the weaker shocks, electron heating is mostly perpendicular to the ambient magnetic field, bar B, and results in Gaussian-shaped velocity distributions at low-to-moderate energies. At the stronger shocks, parallel heating predominates resulting in flat-topped velocity distributions. A reasonable interpretation of these results indicates that at the weaker shocks electron heating is dominated by a tendency toward conservation of the magnetic moment. At the stronger fast-mode shocks, this heating is thought to be dominated by an acceleration parallel to bar B produced by the macroscopic shock electric field followed by beam driven plasma instabilities. Some contribution to the heating at the stronger shocks from conservation of the magnetic moment and cross-field current-driven instabilities cannot be ruled out. Although the heating at slow-mode shocks is also dominated by instabilities driven by magnetic field-aligned electron beams, their acceleration mechanism is not yet established

  16. Heat shock protein 27 mediates the effect of 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone on mitochondrial apoptosis in hepatocellular carcinoma.

    Science.gov (United States)

    Fu, Wei-ming; Zhang, Jin-fang; Wang, Hua; Xi, Zhi-chao; Wang, Wei-mao; Zhuang, Peng; Zhu, Xiao; Chen, Shih-chi; Chan, Tak-ming; Leung, Kwong-Sak; Lu, Gang; Xu, Hong-Xi; Kung, Hsiang-fu

    2012-08-03

    Hepatocellular carcinoma (HCC) is a global public health problem which causes approximately 500,000 deaths annually. Considering that the limited therapeutic options for HCC, novel therapeutic targets and drugs are urgently needed. In this study, we discovered that 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), isolated from the traditional Chinese medicinal herb, Garcinia oblongifolia, effectively inhibited cell growth and induced the caspase-dependent mitochondrial apoptosis in HCC. A two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were performed to find the molecular targets of TDP in HCC cells. Eighteen proteins were identified as differently expressed, with Hsp27 protein being one of the most significantly down-regulated proteins induced by TDP. In addition, the following gain- and loss-of-function studies indicated that Hsp27 mediates mitochondrial apoptosis induced by TDP. Furthermore, a nude mice model also demonstrated the suppressive effect of TDP on HCC. Our study suggests that TDP plays apoptosis-inducing roles by strongly suppressing the Hsp27 expression that is specifically associated with the mitochondrial death of the caspase-dependent pathway. In conclusion, TDP may be a potential anti-cancer drug candidate, especially to cancers with an abnormally high expression of Hsp27. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  18. Assessment of the role of oxygen and mitochondria in heat shock induction of radiation and thermal resistance in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1983-01-01

    In response to a heat shock, the yeast Saccharomyces cerevisiae undergoes a large increase in its resistance to heat and, by the induction of its recombinational DNA repair capacity, a corresponding increase in resistance to radiation. Yeast which lack mitochondrial DNA, mitochondria-controlled protein synthetic apparatus, aerobic respiration, and electron transport (rho 0 strain) were used to assess the role of O 2 , mitochondria, and oxidative processes controlled by mitochondria in the induction of these resistances. We have found that rho 0 yeast grown and heat shocked in either the presence or absence of O 2 are capable of developing both radiation and heat resistance. We conclude that neither the stress signal nor its cellular consequences of induced heat and radiation resistance are directly dependent on O 2 , mitochondrial DNA, or mitochondria-controlled protein synthetic or oxidative processes

  19. P53 and heat shock protein 70 expressions in colorectal adenocarcinoma

    International Nuclear Information System (INIS)

    Shotar, Ali M.

    2005-01-01

    To examine the localization and over expression of heat shock protein 70 (HSP70) and p53 in patients with colorectal cancer and compared it with control tissue (including normal colon tissue). This was a retrospective study of 60 patients with colorectal adenocarcinoma at the Jordan University of Science and Technology (JUST), Irbid, Jordan from 1997 to 2000. The Pathology Department at JUST is the chief provider of surgical pathology services in the north of Jordan. It receives specimens from both government and private hospitals. Immunohistochemistry was the technique of choice. The HSP70 was over expressed more highly in colorectal cancers than in the control tissue. Immuno-histochemistry showed that over expression of HSP70 had no statistically significant difference with any of the different prognostic factors assessed, mainly the grade and the stage. The p53 was over expressed in 60% of the cases. Control tissue (normal colon) was negative, p53, cell-cycle-related oncogene product, was strongly over expressed in the nuclei of the cancer cells of the cancer tissue. We found no significant difference in terms of size, patient age, lymph node state, and stage. The rate of expression was significantly less in high grade tumors than in intermediate and low grade ones. The strong expression however, may be valuable in estimating a prognosis for patients with colo-rectal carcinoma. (author)

  20. The heat shock response in congeneric land snails (Sphincterochila) from different habitats.

    Science.gov (United States)

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2012-09-01

    Land snails are subject to daily and seasonal variations in temperature and in water availability, and use heat shock proteins (HSPs) as part of their survival strategy. We used experimental heat stress to test whether adaptation to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desert species, Sphincterochila zonata, and a Mediterranean-type species, Sphincterochila cariosa. Our findings show that in S. cariosa, heat stress caused rapid induction of Hsp70 proteins and Hsp90 in the foot and kidney tissues, whereas the desert-inhabiting species S. zonata displayed delayed induction of Hsp70 proteins in the foot and upregulation of Hsp90 alone in the kidney. Our study suggests that Sphincterochila species use HSPs as part of their survival strategy following heat stress and that adaptation to different habitats results in the development of distinct strategies of HSP expression in response to heat, namely the reduced induction of HSPs in the desert-dwelling species. We suggest that the desert species S. zonata relies on mechanisms and adaptations other than HSP induction, thus avoiding the fitness consequences of continuous HSP upregulation.

  1. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  2. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice

    Science.gov (United States)

    Yang, Rui; Tang, Qiusha; Miao, Fengqin; An, Yanli; Li, Mengfei; Han, Yong; Wang, Xihui; Wang, Juan; Liu, Peidang; Chen, Rong

    2015-01-01

    Purpose To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. Methods CD90+ LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90+ LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. Results CD90+ LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90+ LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90+ LCSCs to magnetic hyperthermia. Conclusion The inhibition of HSP90 could sensitize CD90+ LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo. PMID:26677324

  3. The Role of HDAC6 in Cancer

    Directory of Open Access Journals (Sweden)

    Grace I. Aldana-Masangkay

    2011-01-01

    Full Text Available Histone deacetylase 6 (HDAC6, a member of the HDAC family whose major substrate is α-tubulin, has become a target for drug development to treat cancer due to its major contribution in oncogenic cell transformation. Overexpression of HDAC6 correlates with tumorigenesis and improved survival; therefore, HDAC6 may be used as a marker for prognosis. Previous work demonstrated that in multiple myeloma cells, inhibition of HDAC6 results in apoptosis. Furthermore, HDAC6 is required for the activation of heat-shock factor 1 (HSF1, an activator of heat-shock protein encoding genes (HSPs and CYLD, a cylindromatosis tumor suppressor gene. HDAC6 contributes to cancer metastasis since its upregulation increases cell motility in breast cancer MCF-7 cells and its interaction with cortactin regulates motility. HDAC6 also affects transcription and translation by regulating the heat-shock protein 90 (Hsp90 and stress granules (SGs, respectively. This review will discuss the role of HDAC6 in the pathogenesis and treatment of cancer.

  4. Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and their expression profiles in response to abiotic stresses

    OpenAIRE

    Chen, Xi’en; Zhang, Yalin

    2014-01-01

    We identify and characterize 14 small heat-shock protein (sHSP) genes from the diamondback moth (DBM), Plutella xylostella (L.), a destructive pest. Phylogenetic analyses indicate that, except for sHSP18.8 and sHSP19.22, the other 12 DBM sHSPs belong to five known insect sHSP groups. Developmental expression analysis revealed that most sHSPs peaked in the pupal and adult stages. The transcripts of sHSPs display tissue specificity with two exhibiting constitutive expression in four tested tiss...

  5. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  6. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    Science.gov (United States)

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.

  7. The effects of wet cupping on serum high-sensitivity C-reactive protein and heat shock protein 27 antibody titers in patients with metabolic syndrome.

    Science.gov (United States)

    Farahmand, Seyed Kazem; Gang, Li Zhi; Saghebi, Seyed Ahmad; Mohammadi, Maryam; Mohammadi, Shabnam; Mohammadi, Ghazaleh; Ferns, Gordan A; Ghanbarzadeh, Majid; Razmgah, Gholamreza Ghayour; Ramazani, Zahra; Ghayour-Mobarhan, Majid; Esmaily, Habibollah; Bahrami Taghanaki, Hamidreza; Azizi, Hoda

    2014-08-01

    It has previously been reported that increased level of serum heat shock proteins (Hsps) antibody in patients with metabolic syndrome. It is possible that the expression of Hsp and inflammatory markers can be affected by cupping and traditional Chinese medicine. There is a little data investigating the effects of cupping on markers of inflammation and Hsp proteins, hence, the objective of this study was evaluation of the effects of wet cupping on serum high-sensitivity C-reactive protein (hs-CRP) and Hsp27 antibody titers in patients with metabolic syndrome. Serum Hs-CRP and Hsp27 antibody titers were assessed in samples from 126 patients with metabolic syndrome (18-65 years of age) at baseline, and after 6 and 12 weeks after treatment. One hundred and twenty-six patients were randomly divided into the experimental group treated with wet cupping combined with dietary advice, and the control group treated with dietary advice alone using a random number table. Eight patients in case group and five subjects in control groups were excluded from the study. Data were analyzed using SPSS 15.0 software and a repeated measure ANCOVA. Serum hs-CRP titers did not change significantly between groups (p>0.05) and times (p=0.27). The same result was found for Hsp27 titers (p>0.05). Wet-cupping on the interscapular region has no effect on serum hs-CRP and Hsp27 patients with metabolic syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    Science.gov (United States)

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  9. Heating and generation of suprathermal particles at collisionless shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1985-01-01

    Collisionless plasma shocks are different from ordinary collisional fluid shocks in several important respects. They do not in general heat the electrons and ions equally, nor do they produce Maxwellian velocity distributions downstream. Furthermore, they commonly generate suprathermal particles which propagate into the upstream region, giving advance warning of the presence of the shock and providing a ''seed'' population for further acceleration to high energies. Recent space observations and theory have revealed a great deal about the heating mechanisms which occur in collisionless shocks and about the origin of the various suprathermal particle populations which are found in association with them. An overview of the present understanding of these subjects is presented herein. 83 refs., 8 figs

  10. Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2 and malignancy in brain tumors

    Directory of Open Access Journals (Sweden)

    Gallyas Ferenc

    2007-12-01

    Full Text Available Abstract Background Small heat shock proteins are molecular chaperones that protect proteins against stress-induced aggregation. They have also been found to have anti-apoptotic activity and to play a part in the development of tumors. Recently, we identified a new small heat shock protein, Hsp16.2 which displayed increased expression in neuroectodermal tumors. Our aim was to investigate the expression of Hsp16.2 in different types of brain tumors and to correlate its expression with the histological grade of the tumor. Methods Immunohistochemistry with a polyclonal antibody to Hsp16.2 was carried out on formalin-fixed, paraffin-wax-embedded sections using the streptavidin-biotin method. 91 samples were examined and their histological grade was defined. According to the intensity of Hsp16.2 immunoreactivity, low (+, moderate (++, high (+++ or none (- scores were given. Immunoblotting was carried out on 30 samples of brain tumors using SDS-polyacrylamide gel electrophoresis and Western-blotting. Results Low grade (grades 1–2 brain tumors displayed low cytoplasmic Hsp16.2 immunoreactivity, grade 3 tumors showed moderate cytoplasmic staining, while high grade (grade 4 tumors exhibited intensive cytoplasmic Hsp16.2 staining. Immunoblotting supported the above mentioned results. Normal brain tissue acted as a negative control for the experiment, since the cytoplasm did not stain for Hsp16.2. There was a positive correlation between the level of Hsp16.2 expression and the level of anaplasia in different malignant tissue samples. Conclusion Hsp16.2 expression was directly correlated with the histological grade of brain tumors, therefore Hsp16.2 may have relevance as becoming a possible tumor marker.

  11. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs

    Energy Technology Data Exchange (ETDEWEB)

    Sundarraj, Kiruthika; Raghunath, Azhwar; Panneerselvam, Lakshmikanthan; Perumal, Ekambaram, E-mail: ekas2009@buc.edu.in

    2017-02-15

    With increased industrial utilization of iron oxide nanoparticles (Fe{sub 2}O{sub 3}-NPs), concerns on adverse reproductive health effects following exposure have been immensely raised. In the present study, the effects of Fe{sub 2}O{sub 3}-NPs exposure in the seminal vesicle and prostate gland were studied in mice. Mice were exposed to two different doses (25 and 50 mg/kg) of Fe{sub 2}O{sub 3}-NPs along with the control and analyzed the expressions of heat shock proteins (HSP60, HSP70 and HSP90) and organ specific markers (Caltrin, PSP94, and SSLP1). Fe{sub 2}O{sub 3}-NPs decreased food consumption, water intake, and organo-somatic index in mice with elevated iron levels in serum, urine, fecal matter, seminal vesicle and prostate gland. FTIR spectra revealed alterations in the functional groups of biomolecules on Fe{sub 2}O{sub 3}-NPs treatment. These changes are accompanied by increased lactate dehydrogenase levels with decreased total protein and fructose levels. The investigation of oxidative stress biomarkers demonstrated a significant increase in reactive oxygen species, nitric oxide, lipid peroxidation, protein carbonyl content and glutathione peroxidase with a concomitant decrement in the glutathione and ascorbic acid in the male accessory organs which confirmed the induction of oxidative stress. An increase in NADPH-oxidase-4 with a decrease in glutathione-S-transferase was observed in the seminal vesicle and prostate gland of the treated groups. An alteration in HSP60, HSP70, HSP90, Caltrin, PSP94, and SSLP1 expression was also observed. Moreover, accumulation of Fe{sub 2}O{sub 3}-NPs brought pathological changes in the seminal vesicle and prostate gland of treated mice. These findings provide evidence that Fe{sub 2}O{sub 3}-NPs could be an environmental risk factor for reproductive disease. - Highlights: • Fe{sub 2}O{sub 3}-NPs caused adverse effects on the seminal vesicle and prostate gland of mice • Heat shock proteins (Hsp60, 70 and 90) were

  12. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90.

    Science.gov (United States)

    Li, Wanxia; Tao, Shaoyu; Wu, Qinghua; Wu, Tao; Tao, Ran; Fan, Jun

    2017-12-01

    Myocardial cell injury and cardiac myocyte apoptosis are associated with sepsis. Glutamine (Gln) has been reported to repair myocardial cell injury. The aim of this study was to explore the role of Gln on cardiac myocytes in a cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Following induction of sepsis in a CLP rat model, viral encoding heat shock protein 90 (Hsp90) gene and Hsp90dsDNA were designed to express and knockdown Hsp90, respectively. Rat cardiac tissues were examined histologically, and apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, Hsp90, p53 upregulated modulator of apoptosis, and p53 was measured by western blotting and real-time polymerase chain reaction. Caspase-3, caspase-8, and caspase-9 were detected by enzyme-linked immunosorbent assay. Rat cardiac myocyte damage induced by CLP was reduced by Gln treatment and Hsp90 overexpression, and these changes were reversed by Hsp90 knockdown. Bcl-2 expression, Bcl-2-associated X protein, p53, p53 upregulated modulator of apoptosis, caspase-8, caspase-9, and caspase-3 activities were significantly upregulated in the CLP model, which were reduced by Gln treatment and Hsp90 overexpression. Gln reduced apoptosis of cardiac myocytes in a rat model of sepsis, by promoting Hsp90 expression. Further studies are needed to determine the possible therapeutic action of Gln in sepsis in human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Anti-citrullinated protein antibodies promote apoptosis of mature human Saos-2 osteoblasts via cell-surface binding to citrullinated heat shock protein 60.

    Science.gov (United States)

    Lu, Ming-Chi; Yu, Chia-Li; Yu, Hui-Chun; Huang, Hsien-Bin; Koo, Malcolm; Lai, Ning-Sheng

    2016-01-01

    We hypothesized that anti-citrullinated protein antibodies (ACPAs) react with osteoblast surface citrullinated proteins and affect cell function, leading to joint damage in patients with rheumatoid arthritis (RA). First, we purified ACPAs by cyclic citrullinated peptide (CCP)-conjugated affinity column chromatography. The cognate antigens of ACPAs on Saos-2 cells, a sarcoma osteogenic cell line generated from human osteoblasts, were probed by ACPAs, and the reactive bands were analyzed using proteomic analyses. We found that ACPAs bind to Saos-2 cell membrane, and several protein candidates, including HSP60, were identified. We then cloned and purified recombinant heat shock protein 60 (HSP60) and citrullinated HSP60 (citHSP60) and investigated the effect of ACPAs on Saos-2 cell. We confirmed that HSP60 obtained from Saos-2 cell membrane were citrullinated and reacted with ACPAs, which induces Saos-2 cells apoptosis via binding to surface-expressed citHSP60 through Toll-like receptor 4 signaling. ACPAs promoted interleukin (IL)-6 and IL-8 expression in Saos-2 cells. Finally, sera from patients with RA and healthy controls were examined for their titers of anti-HSP60 and anti-citHSP60 antibodies using an enzyme-linked immunosorbent assay. The radiographic change in patients with RA was evaluated using the Genant-modified Sharp scoring system. Patients with RA showed higher sera titers of anti-citHSP60, but not anti-HSP60, antibodies when compared with controls. In addition, the anti-citHSP60 level was positively associated with increased joint damage in patients with RA. In conclusion, Saos-2 cell apoptosis was mediated by ACPAs via binding to cell surface-expressed citHSP60 and the titer of anti-citHSP60 in patients with RA positively associated with joint damage. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Comparison of the heat shock response induced by conventional heating and two methods of delivery of pulsed radiofrequency energy

    International Nuclear Information System (INIS)

    Laurence, J.A.; University of Sydney, NSW; McKenzie, D.R.; Veas, L.; French, P.W.

    2002-01-01

    Full text: In 2001, we published a (hypothetical) mechanism by which radiofrequency (RF) radiation from mobile phones could induce cancer, via the chronic induction of the heat shock response (HSR). This hypothesis provides the focus for our research. Other groups have reported induction of the HSR by RF at apparently non thermal levels. The aim of this study was to determine whether the HSR induced by RF is (a) truly non thermal and (b) quantitatively or qualitatively different from that induced by conventional heating of cells. A rat mast cell line, RBL-2H3, was chosen as the target RBL-2H3 cells were exposed in an air incubator at 41.1 deg C for 45 minutes and 75 minutes, and then returned to a 37 deg C incubator. Sham exposures were performed in the same air incubator at 37 deg C. Cells were exposed for 1 hour in the two pulsed RF exposure systems. The first was a converted 750W microwave oven that emits a short burst of 2.45GHz pulses at the start of each contiguous six minute period. This exposes cells to an average specific energy absorption rate (SAR) of 20W/kg. The second system was a TEM cell, which simulates. GSM pulses - the earner frequency is 0.9GHz pulse modulated at 217Hz. The SAR was approx 0.1W/kg. Both of these exposure systems are housed in incubators maintained at 37 deg C. Sham exposures were performed in the two systems with the same conditions but with no RF radiation present. Cell samples for the conventional heating and microwave exposures were taken 0, 2. 5, 5 and 20 hours after exposure, and expression of heat shock proteins hsp 110, 90, 70, 60 and 56 were determined by Western Blotting and compared between exposures

  15. Heat Shock Proteins 60 and 70 Specific Proinflammatory and Cytotoxic Response of CD4+CD28null Cells in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Ashok K. Yadav

    2013-01-01

    Full Text Available Background. CD4+CD28null T cells are expanded in peripheral blood of patients with chronic kidney disease and associated with subclinical atherosclerosis. However, triggers for the oligoclonal expansion and activation of these cells are not clear. Methods. We investigated twenty-five stage V-IV chronic kidney disease (CKD patients and eight healthy subjects (HC. Peripheral mononuclear cells were isolated and incubated with heat shock protein- (HSP 60 and 70. CD4+CD28null and CD4+CD28+ cells were sorted by flowcytometry and antigen specific response was assessed by the mRNA and protein expression of interferon (IFN-γ, perforin, and granzyme B using qRT-PCR and Elispot. Results. The basal mRNA expression of IFN-γ, perforin, and granzyme B in CD4+CD28null cells was higher in subjects with CKD compared to that in HC (P<0.0001. Subjects with CKD also showed expression of IFN-γ, perforin, and granzyme B in the CD4+CD28+ subset, but this was much weaker than that seen in the CD4+CD28null population (P<0.0001. We did not note the expression of these molecules at mRNA or protein level in either subset of CD4 cells in HC. After incubation with HSP60 and HSP70, CD4+CD28null cells showed increased expression at mRNA (P<0.001 and protein level (P<0.001. CD4+CD28+ cells also showed a weak increase in expression. No antigen-specific response was noted in HC. Conclusion. These data show that CD4+CD28null cells in subjects with CKD react with HSP60 and HSP70 by upregulating the expression of IFN-γ, perforin and granzyme B. Increased circulating level of HSP60 and HSP70 might play a role in initiation and/or progression of atherosclerosis in CKD subjects through perturbation of CD4+CD28null cells.

  16. Characterization of heat shock protein 70 transcript from Nilaparvata lugens (Stål): Its response to temperature and insecticide stresses.

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhang, Zhichao; Wang, Ying; You, Keke; Li, Yue; Zhang, Rongbin; Zhou, Qiang

    2017-10-01

    The brown planthopper, Nilaparvata lugens, possesses a strong adaptability to extreme temperature and insecticide stresses. Heat shock proteins (Hsps) are highly conserved molecular chaperones and play a pivotal role in response to various environmental stresses in insects. However, little is known about the response of Hsps to stresses in N. lugens. In the present study, an inducible Hsp70 (NlHsp70) was isolated from this insect and transcriptional expression patterns of NlHsp70 under temperature and insecticide stresses were analyzed. The full-length of NlHsp70 was 2805bp with an open reading frame (ORF) of 1896bp, showing high homology to its counterparts in other species. Expression of NlHsp70 was not altered by heat shock for 1h, nor following recovery from thermal stress. Conversely, decreased expression of NlHsp70 was observed in response to cold shock. In addition, the expression of NlHsp70 increased after imidacloprid exposure. RNA interference experiment combined with insecticide injury assay also demonstrated that NlHsp70 was essential for resistance against insecticide exposure. These observations indicated that NlHsp70 was an important gene involved in the resistance or tolerance to environmental stresses in N. lugens. Interestingly, weak changes in mRNA expression levels of two thermal-inducible Hsp genes, NlHsp90 and NlHsc70 were observed in imidacloprid-exposed N. lugens adults, suggesting that different Hsps may respond differential to the extreme temperature and insecticide stresses. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Assessment of the efficacy of laser hyperthermia and nanoparticle-enhanced therapies by heat shock protein analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fei [Department of Precision Instrument, Tsinghua University, Beijing, 100084 (China); Zhang, Ye; Zhang, Juan; Liu, Ran, E-mail: liuran@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084 (China); Guo, Junwei [Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 (China)

    2014-03-15

    Tumor thermotherapy is a method of cancer treatment wherein cancer cells are killed by exposing the body tissues to high temperatures. Successful clinical implementation of this method requires a clear understanding and assessment of the changes of the tumor area after the therapy. In this study, we evaluated the effect of near-infrared laser tumor thermotherapy at the molecular, cellular, and physical levels. We used single-walled carbon nanotubes (SWNTs) in combination with this thermotherapy. We established a mouse model for breast cancer and randomly divided the mice into four groups: mice with SWNT-assisted thermotherapy; mice heat treated without SWNT; mice injected with SWNTs without thermotherapy; and a control group. Tumors were irradiated using a near-infrared laser with their surface temperature remaining at approximately 45 °C. We monitored the tumor body growth trend closely by daily physical measurements, immunohistochemical staining, and H and E (hematoxylin-eosin) staining by stage. Our results showed that infrared laser hyperthermia had a significant inhibitory effect on the transplanted breast tumor, with an inhibition rate of 53.09%, and also significantly reduced the expression of the heat shock protein Hsp70. Furthermore, we have found that protein analysis and histological analysis can be used to assess therapeutic effects effectively, presenting broad application prospects for determining the effect of different treatments on tumors. Finally, we discuss the effects of SWNT-assisted near-infrared laser tumor thermotherapy on tumor growth at the molecular, cellular, and physical levels.

  18. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.

    Science.gov (United States)

    Chaikam, Vijay; Karlson, Dale T

    2010-01-01

    The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs. [BMB reports 2010; 43(1): 1-8].

  19. Heat-flow equation motivated by the ideal-gas shock wave.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  20. Environmental temperature and stocking density effects on acute phase proteins, heat shock protein 70, circulating corticosterone and performance in broiler chickens

    Science.gov (United States)

    Najafi, Pardis; Zulkifli, Idrus; Amat Jajuli, Nurfarahin; Farjam, Abdoreza Soleimani; Ramiah, Suriya Kumari; Amir, Anna Aryani; O'Reily, Emily; Eckersall, David

    2015-11-01

    An experiment was conducted to determine the effect of different stocking densities on serum corticosterone (CORT), ovotransferrin (OVT), α1-acid glycoprotein (AGP) and ceruloplasmin (CP) concentrations, brain heat shock protein (HSP) 70 expression and performance in broiler chickens exposed to unheated and heated conditions. Day-old chicks were stocked at 0.100 m2/bird (low density (LD)) or 0.063 m2/bird (high density (HD)), in battery cages and housed in environmentally controlled rooms. From 21 to 35 days of age, birds from each stocking density group were exposed to either 24 or 32 °C. Growth performance was recorded during the heat treatment period, and blood and brain samples were collected to determine CORT, OVT, AGP, CP and HSP 70 levels on day 35. Heat treatment but not stocking density was detrimental to growth performance. There were significant temperature × density interactions for CORT, CP and OVT on day 35. Although HD elevated CORT, CP and OVT when compared to LD, the effects of the former were more obvious under heated condition. Both temperature and density had significant effect on AGP and HSP 70. In conclusion, irrespective of temperature, high stocking density was physiologically stressful to broiler chickens, as indicated by CORT, AGP, CP, OVT and HSP 70, but not detrimental to growth performance and survivability. As it was shown in the present study, AGP, CP and OVT could be useful biomarkers to determine the effect of overcrowding and high temperature on the welfare of broiler chickens.

  1. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects.

    Science.gov (United States)

    Ito, Tomohiro; Maeda, Takahiro; Goto, Kazunori; Miura, Takehito; Wakame, Koji; Nishioka, Hiroshi; Sato, Atsuya

    2014-03-01

    A novel enzyme-treated asparagus extract (ETAS) has been developed as a functional material produced from asparagus stem. Studies were conducted to determine the effect of ETAS on heat shock protein 70 (HSP70) expression and alleviation of stress. HeLa cells were treated with ETAS, and HSP70 mRNA and protein levels were measured using a reverse transcription-polymerase chain reaction (RT-PCR) assay and an enzyme-linked immunosorbent assay (ELISA), respectively. ETAS showed significant increases in HSP70 mRNA at more than 0.125 mg/mL and the protein at more than 1.0 mg/mL. The antistress effect was evaluated in a murine sleep-deprivation model. A sleep-deprivation stress load resulted in elevation of blood corticosterone and lipid peroxide concentrations, while supplementation with ETAS at 200 and 1000 mg/kg body weight was associated with significantly reduced levels of both stress markers, which were in the normal range. The HSP70 protein expression level in mice subjected to sleep-deprivation stress and supplemented with ETAS was significantly enhanced in stomach, liver, and kidney, compared to ETAS-untreated mice. A preliminary and small-sized human study was conducted among healthy volunteers consuming up to 150 mg/d of ETAS daily for 7 d. The mRNA expression of HSP70 in peripheral leukocytes was significantly elevated at intakes of 100 or 150 mg/d, compared to their baseline levels. Since HSP70 is known to be a stress-related protein and its induction leads to cytoprotection, the present results suggest that ETAS might exert antistress effects under stressful conditions, resulting from enhancement of HSP70 expression. © 2014 Institute of Food Technologists®

  2. ANTIOXIDANT STATUS AND EXPRESSION OF HEAT SHOCK PROTEIN OF COBALT-TREATED PORCINE OVARIAN GRANULOSA CELLS

    Directory of Open Access Journals (Sweden)

    Marcela Capcarová

    2013-02-01

    Full Text Available The aim of this study was to determine the activity of superoxide dismutase (SOD, total antioxidant status (TAS and expression of heat shock protein 70 (Hsp70 of porcine ovarian granulosa cells cultured in vitro after cobalt (Co administrations. Ovarian granulosa cells were incubated with cobalt sulphate administrations as follows: group E1 (0.09 mg.ml-1, group E2 (0.13 mg.ml-1, group E3 (0.17 mg.ml-1, group E4 (0.33 mg.ml-1, group E5 (0.5 mg.ml-1 and the control group without any additions for 18 h. Co administration developed stress reaction and promoted accumulation of Hsp70 what resulted in increasing activity of SOD. TAS of granulosa cells increased with higher doses of Co whereas low doses had no effect on this parameter. Trace elements can adversely affect animal female reproductive system and its functions, through either direct or indirect effects on oxidative stress induction.

  3. Hydroimidazolone modification of the conserved Arg12 in small heat shock proteins: studies on the structure and chaperone function using mutant mimics.

    Directory of Open Access Journals (Sweden)

    Ram H Nagaraj

    Full Text Available Methylglyoxal (MGO is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12 is a conserved amino acid residue in Hsp27 as well as αA- and αB-crystallin. When treated with MGO at or near physiological concentrations (2-10 µM, R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only αA-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of αA-crystallin. This mutation induced the exposure of additional client protein binding sites on αA-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in αA-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation.

  4. PRDM14 directly interacts with heat shock proteins HSP90α and glucose-regulated protein 78.

    Science.gov (United States)

    Moriya, Chiharu; Taniguchi, Hiroaki; Nagatoishi, Satoru; Igarashi, Hisayoshi; Tsumoto, Kouhei; Imai, Kohzoh

    2018-02-01

    PRDM14 is overexpressed in various cancers and can regulate cancer phenotype under certain conditions. Inhibiting PRDM14 expression in breast and pancreatic cancers has been reported to reduce cancer stem-like phenotypes, which are associated with aggressive tumor properties. Therefore, PRDM14 is considered a promising target for cancer therapy. To develop a pharmaceutical treatment, the mechanism and interacting partners of PRDM14 need to be clarified. Here, we identified the proteins interacting with PRDM14 in triple-negative breast cancer (TNBC) cells, which do not express the three most common types of receptor (estrogen receptors, progesterone receptors, and HER2). We obtained 13 candidates that were pulled down with PRDM14 in TNBC HCC1937 cells and identified them by mass spectrometry. Two candidates-glucose-regulated protein 78 (GRP78) and heat shock protein 90-α (HSP90α)-were confirmed in immunoprecipitation assay in two TNBC cell lines (HCC1937 and MDA-MB231). Surface plasmon resonance analysis using GST-PRDM14 showed that these two proteins directly interacted with PRDM14 and that the interactions required the C-terminal region of PRDM14, which includes zinc finger motifs. We also confirmed the interactions in living cells by NanoLuc luciferase-based bioluminescence resonance energy transfer (NanoBRET) assay. Moreover, HSP90 inhibitors (17DMAG and HSP990) significantly decreased breast cancer stem-like CD24 -  CD44 + and side population (SP) cells in HCC1937 cells, but not in PRDM14 knockdown HCC1937 cells. The combination of the GRP78 inhibitor HA15 and PRDM14 knockdown significantly decreased cell proliferation and SP cell number in HCC1937 cells. These results suggest that HSP90α and GRP78 interact with PRDM14 and participate in cancer regulation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. How specialized volatiles respond to chronic and short-term physiological and shock heat stress in Brassica nigra.

    Science.gov (United States)

    Kask, Kaia; Kännaste, Astrid; Talts, Eero; Copolovici, Lucian; Niinemets, Ülo

    2016-09-01

    Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses. © 2016 John Wiley & Sons Ltd.

  6. Analysis of heat shock gene expression in Lactococcus lactis MG1363

    DEFF Research Database (Denmark)

    Arnau, José; Sørensen, Kim; Appel, Karen Fuglede

    1996-01-01

    The induction of the heat shock response in Lactococcus lactis subsp. cremoris strain MG1363 was analysed at the RNA level using a novel RNA isolation procedure to prevent degradation. Cloning of the dnaJ and groEL homologous was carried out. Nothern blot analysis showed a similar induction pattern...... in the heat shock response in L. lactis MG1363 is presented. A gene located downstream of the dnaK operon in strain MG1363, named orf4, was shown not to be regulated by heat shock....

  7. DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock

    International Nuclear Information System (INIS)

    Vivino, A.A.; Smith, M.D.; Minton, K.W.

    1986-01-01

    A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation

  8. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    Science.gov (United States)

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  9. Proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, during short-term exposure to irradiance stress reveals significant down regulation of several heat-shock proteins.

    Science.gov (United States)

    Mahong, Bancha; Roytrakul, Suttiruk; Phaonaklop, Narumon; Wongratana, Janewit; Yokthongwattana, Kittisak

    2012-03-01

    Oxygenic photosynthetic organisms often suffer from excessive irradiance, which cause harmful effects to the chloroplast proteins and lipids. Photoprotection and the photosystem II repair processes are the mechanisms that plants deploy to counteract the drastic effects from irradiance stress. Although the protective and repair mechanisms seemed to be similar in most plants, many species do confer different level of tolerance toward high light. Such diversity may originate from differences at the molecular level, i.e., perception of the light stress, signal transduction and expression of stress responsive genes. Comprehensive analysis of overall changes in the total pool of proteins in an organism can be performed using a proteomic approach. In this study, we employed 2-DE/LC-MS/MS-based comparative proteomic approach to analyze total proteins of the light sensitive model unicellular green alga Chlamydomonas reinhardtii in response to excessive irradiance. Results showed that among all the differentially expressed proteins, several heat-shock proteins and molecular chaperones were surprisingly down-regulated after 3-6 h of high light exposure. Discussions were made on the possible involvement of such down regulation and the light sensitive nature of this model alga.

  10. Reduced Contractility and Motility of Prostatic Cancer-Associated Fibroblasts after Inhibition of Heat Shock Protein 90

    Directory of Open Access Journals (Sweden)

    Alex Henke

    2016-08-01

    Full Text Available Background: Prostate cancer-associated fibroblasts (CAF can stimulate malignant progression and invasion of prostatic tumour cells via several mechanisms including those active in extracellular matrix; Methods: We isolated CAF from prostate cancer patients of Gleason Score 6–10 and confirmed their cancer-promoting activity using an in vivo tumour reconstitution assay comprised of CAF and BPH1 cells. We tested the effects of heat shock protein 90 (HSP90 inhibitors upon reconstituted tumour growth in vivo. Additionally, CAF contractility was measured in a 3D collagen contraction assay and migration was measured by scratch assay; Results: HSP90 inhibitors dipalmitoyl-radicicol and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG reduced tumour size and proliferation in CAF/BPH1 reconstituted tumours in vivo. We observed that the most contractile CAF were derived from patients with lower Gleason Score and of younger age compared with the least contractile CAF. HSP90 inhibitors radicicol and 17-DMAG inhibited contractility and reduced the migration of CAF in scratch assays. Intracellular levels of HSP70 and HSP90 were upregulated upon treatment with HSP90 inhibitors. Inhibition of HSP90 also led to a specific increase in transforming growth factor beta 2 (TGFβ2 levels in CAF; Conclusions: We suggest that HSP90 inhibitors act not only upon tumour cells, but also on CAF in the tumour microenvironment.

  11. Structure of slow shocks in a magnetized plasma with heat conduction

    International Nuclear Information System (INIS)

    Tsai, C.L.; Tsai, R.H.; Wu, B.H.; Lee, L.C.

    2002-01-01

    The structure of slow shocks in the presence of a heat conduction parallel to the local magnetic field is simulated from the set of magnetohydrodynamic equations. In this study, a pair of slow shocks is formed through the evolution of a current sheet initiated by the presence of a normal magnetic field. It is found that the slow shock consists of two parts: The isothermal main shock and foreshock. Significant jumps in plasma density, velocity and magnetic field occur across the main shock, but the temperature is found to be continuous across the main shock. The foreshock is featured by a smooth temperature variation and is formed due to the heat flow from downstream to upstream region. The plasma density downstream of the main shock decreases with time, while the downstream temperature increases with time, keeping the downstream pressure constant. It is shown that the jumps in plasma density, pressure, velocity, and magnetic field across the main shock are determined by the set of modified isothermal Rankine-Hugoniot conditions. It is also found that a jump in the temperature gradient is present across the main shock in order to satisfy the energy conservation. The present results can be applied to the heating in the solar corona and solar wind

  12. Acidic pH shock induces the expressions of a wide range of stress-response genes

    Directory of Open Access Journals (Sweden)

    Hong Soon-Kwang

    2008-12-01

    Full Text Available Abstract Background Environmental signals usually enhance secondary metabolite production in Streptomycetes by initiating complex signal transduction system. It is known that different sigma factors respond to different types of stresses, respectively in Streptomyces strains, which have a number of unique signal transduction mechanisms depending on the types of environmental shock. In this study, we wanted to know how a pH shock would affect the expression of various sigma factors and shock-related proteins in S. coelicolor A3(2. Results According to the results of transcriptional and proteomic analyses, the major number of sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of sigH (heat shock, sigR (oxidative stress, sigB (osmotic shock, and hrdD that play a major role in the secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL2 were also observed to be upregulated by the pH shock, while their repressor of hspR was strongly downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and osmotic shock-related protein such as vesicle synthases were also upregulated in overall. Conclusion From these observations, an acidic pH shock was considered to be one of the strongest stresses to influence a wide range of sigma factors and shock-related proteins including general stress response proteins. The upregulation of the sigma factors and shock proteins already found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for actinorhodin production.

  13. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    International Nuclear Information System (INIS)

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-01-01

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43 0 C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37 0 C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 μg per 10 9 cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs

  14. Effect of Hypergravity on the Level of Heat Shock Proteins 70 and 90 in Pea Seedlings

    Science.gov (United States)

    Kozeko, Liudmyla; Kordyum, Elizabeth

    2009-01-01

    Exposure to hypergravity induces significant changes in gene expression of plants which are indicative of stress conditions. A substantial part of the general stress response is up-regulation of heat shock proteins (Hsp) which function as molecular chaperones. The objective of this research was to test the possible changes in the Hsp70 and Hsp90 level in response to short-term hypergravity exposure. In this study 5-day-old etiolated pea seedlings were exposed to centrifuge-induced hypergravity (3-14 g) for 15 min and 1 h and a part of the seedlings was sampled at 1.5 and 24 h after the exposures. Western blot analysis showed time-dependent changes in Hsp70 and Hsp90 levels: an increase under hypergravity and a tendency towards recovery of the normal content during re-adaptation. The quantity and time of their expression was correlated with the g-force level. These data suggest that short-term hypergravity acts as a stress which could increase the risk of protein denaturation and aggregation. Molecular chaperons induced during the stress may have an essential role in counteracting this risk.

  15. Effect of Morinda citrifolia (Noni-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Joshua Flees

    2017-11-01

    Full Text Available Heat stress (HS has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1 to determine the effects of acute (2 h and chronic (3 weeks HS on the expression of key molecular signatures involved in hepatic lipogenic and lipolytic programs, and (2 to assess if diet supplementation with dried Noni medicinal plant (0.2% of the diet modulates these effects. Broilers (480 males, 1 d were randomly assigned to 12 environmental chambers, subjected to two environmental conditions (heat stress, HS, 35°C vs. thermoneutral condition, TN, 24°C and fed two diets (control vs. Noni in a 2 × 2 factorial design. Feed intake and body weights were recorded, and blood and liver samples were collected at 2 h and 3 weeks post-heat exposure. HS depressed feed intake, reduced body weight, and up regulated the hepatic expression of heat shock protein HSP60, HSP70, HSP90 as well as key lipogenic proteins (fatty acid synthase, FASN; acetyl co-A carboxylase alpha, ACCα and ATP citrate lyase, ACLY. HS down regulated the hepatic expression of lipoprotein lipase (LPL and hepatic triacylglycerol lipase (LIPC, but up-regulated ATGL. Although it did not affect growth performance, Noni supplementation regulated the hepatic expression of lipogenic proteins in a time- and gene-specific manner. Prior to HS, Noni increased ACLY and FASN in the acute and chronic experimental conditions, respectively. During acute HS, Noni increased ACCα, but reduced FASN and ACLY expression. Under chronic HS, Noni up regulated ACCα and FASN but it down regulated ACLY. In vitro studies, using chicken hepatocyte cell lines, showed that HS down-regulated the expression of ACCα, FASN, and ACLY. Treatment with quercetin, one bioactive ingredient in Noni, up-regulated the expression of ACCα, FASN, and ACLY under TN conditions, but it appeared to down-regulate ACCα and increase ACLY

  16. Effect of Morinda citrifolia (Noni)-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens.

    Science.gov (United States)

    Flees, Joshua; Rajaei-Sharifabadi, Hossein; Greene, Elizabeth; Beer, Lesleigh; Hargis, Billy M; Ellestad, Laura; Porter, Tom; Donoghue, Annie; Bottje, Walter G; Dridi, Sami

    2017-01-01

    Heat stress (HS) has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1) to determine the effects of acute (2 h) and chronic (3 weeks) HS on the expression of key molecular signatures involved in hepatic lipogenic and lipolytic programs, and (2) to assess if diet supplementation with dried Noni medicinal plant (0.2% of the diet) modulates these effects. Broilers (480 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to two environmental conditions (heat stress, HS, 35°C vs. thermoneutral condition, TN, 24°C) and fed two diets (control vs. Noni) in a 2 × 2 factorial design. Feed intake and body weights were recorded, and blood and liver samples were collected at 2 h and 3 weeks post-heat exposure. HS depressed feed intake, reduced body weight, and up regulated the hepatic expression of heat shock protein HSP60, HSP70, HSP90 as well as key lipogenic proteins (fatty acid synthase, FASN; acetyl co-A carboxylase alpha, ACCα and ATP citrate lyase, ACLY). HS down regulated the hepatic expression of lipoprotein lipase (LPL) and hepatic triacylglycerol lipase (LIPC), but up-regulated ATGL. Although it did not affect growth performance, Noni supplementation regulated the hepatic expression of lipogenic proteins in a time- and gene-specific manner. Prior to HS, Noni increased ACLY and FASN in the acute and chronic experimental conditions, respectively. During acute HS, Noni increased ACCα, but reduced FASN and ACLY expression. Under chronic HS, Noni up regulated ACCα and FASN but it down regulated ACLY. In vitro studies, using chicken hepatocyte cell lines, showed that HS down-regulated the expression of ACCα, FASN, and ACLY. Treatment with quercetin, one bioactive ingredient in Noni, up-regulated the expression of ACCα, FASN, and ACLY under TN conditions, but it appeared to down-regulate ACCα and increase ACLY levels

  17. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  18. Minor Coat and Heat Shock Proteins Are Involved in the Binding of Citrus Tristeza Virus to the Foregut of Its Aphid Vector, Toxoptera citricida.

    Science.gov (United States)

    Killiny, N; Harper, S J; Alfaress, S; El Mohtar, C; Dawson, W O

    2016-11-01

    Vector transmission is a critical stage in the viral life cycle, yet for most plant viruses how they interact with their vector is unknown or is explained by analogy with previously described relatives. Here we examined the mechanism underlying the transmission of citrus tristeza virus (CTV) by its aphid vector, Toxoptera citricida, with the objective of identifying what virus-encoded proteins it uses to interact with the vector. Using fluorescently labeled virions, we demonstrated that CTV binds specifically to the lining of the cibarium of the aphid. Through in vitro competitive binding assays between fluorescent virions and free viral proteins, we determined that the minor coat protein is involved in vector interaction. We also found that the presence of two heat shock-like proteins, p61 and p65, reduces virion binding in vitro Additionally, treating the dissected mouthparts with proteases did not affect the binding of CTV virions. In contrast, chitinase treatment reduced CTV binding to the foregut. Finally, competition with glucose, N-acetyl-β-d-glucosamine, chitobiose, and chitotriose reduced the binding. These findings together suggest that CTV binds to the sugar moieties of the cuticular surface of the aphid cibarium, and the binding involves the concerted activity of three virus-encoded proteins. Limited information is known about the specific interactions between citrus tristeza virus and its aphid vectors. These interactions are important for the process of successful transmission. In this study, we localized the CTV retention site as the cibarium of the aphid foregut. Moreover, we demonstrated that the nature of these interactions is protein-carbohydrate binding. The viral proteins, including the minor coat protein and two heat shock proteins, bind to sugar moieties on the surface of the foregut. These findings will help in understanding the transmission mechanism of CTV by the aphid vector and may help in developing control strategies which interfere

  19. Heat shock proteins and chronic fatigue in primary Sjögren's syndrome.

    Science.gov (United States)

    Bårdsen, Kjetil; Nilsen, Mari Mæland; Kvaløy, Jan Terje; Norheim, Katrine Brække; Jonsson, Grete; Omdal, Roald

    2016-04-01

    Fatigue occurs frequently in patients with cancer, neurological diseases and chronic inflammatory diseases, but the biological mechanisms that lead to and regulate fatigue are largely unknown. When the innate immune system is activated, heat shock proteins (HSPs) are produced to protect cells. Some extracellular HSPs appear to recognize cellular targets in the brain, and we hypothesize that fatigue may be generated by specific HSPs signalling through neuronal or glial cells in the central nervous system. From a cohort of patients with primary Sjögren's syndrome, 20 patients with high and 20 patients with low fatigue were selected. Fatigue was evaluated with a fatigue visual analogue scale. Plasma concentrations of HSP32, HSP60, HSP72 and HSP90α were measured and analysed to determine if there were associations with the level of fatigue. Plasma concentrations of HSP90α were significantly higher in patients with high fatigue compared with those with low fatigue, and there was a tendency to higher concentrations of HSP72 in patients with high fatigue compared with patients with low fatigue. There were no differences in concentrations of HSP32 and HSP60 between the high- and low-fatigue groups. Thus, extracellular HSPs, particularly HSP90α, may signal fatigue in chronic inflammation. This supports the hypothesis that fatigue is generated by cellular defence mechanisms. © The Author(s) 2016.

  20. The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2003-09-01

    Full Text Available Abstract Background The naturally occurring benzoquinone ansamycin compound, geldanamycin (GA, is a specific inhibitor of heat shock protein 90 (Hsp90 and is a potential anticancer agent. Since Plasmodium falciparum has been reported to have an Hsp90 ortholog, we tested the possibility that GA might inhibit it and thereby display antiparasitic activity. Results We provide direct recombinant DNA evidence for the Hsp90 protein of Plasmodium falciparum, the causative agent of fatal malaria. While the mRNA of Hsp90 was mainly expressed in ring and trophozoite stages, the protein was found in all stages, although schizonts contained relatively lower amounts. In vitro the parasitic Hsp90 exhibited an ATP-binding activity that could be specifically inhibited by GA. Plasmodium growth in human erythrocyte culture was strongly inhibited by GA with an IC50 of 20 nM, compared to the IC50 of 15 nM for chloroquine (CQ under identical conditions. When used in combination, the two drugs acted synergistically. GA was equally effective against CQ-sensitive and CQ-resistant strains (3D7 and W2, respectively and on all erythrocytic stages of the parasite. Conclusions Together, these results suggest that an active and essential Hsp90 chaperone cycle exists in Plasmodium and that the ansamycin antibiotics will be an important tool to dissect its role in the parasite. Additionally, the favorable pharmacology of GA, reported in human trials, makes it a promising antimalarial drug.

  1. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets.

    Science.gov (United States)

    Xue, Gang-Ping; Drenth, Janneke; McIntyre, C Lynne

    2015-02-01

    Heat stress is a significant environmental factor adversely affecting crop yield. Crop adaptation to high-temperature environments requires transcriptional reprogramming of a suite of genes involved in heat stress protection. This study investigated the role of TaHsfA6f, a member of the A6 subclass of heat shock transcription factors, in the regulation of heat stress protection genes in Triticum aestivum (bread wheat), a poorly understood phenomenon in this crop species. Expression analysis showed that TaHsfA6f was expressed constitutively in green organs but was markedly up-regulated during heat stress. Overexpression of TaHsfA6f in transgenic wheat using a drought-inducible promoter resulted in up-regulation of heat shock proteins (HSPs) and a number of other heat stress protection genes that included some previously unknown Hsf target genes such as Golgi anti-apoptotic protein (GAAP) and the large isoform of Rubisco activase. Transgenic wheat plants overexpressing TaHsfA6f showed improved thermotolerance. Transactivation assays showed that TaHsfA6f activated the expression of reporter genes driven by the promoters of several HSP genes (TaHSP16.8, TaHSP17, TaHSP17.3, and TaHSP90.1-A1) as well as TaGAAP and TaRof1 (a co-chaperone) under non-stress conditions. DNA binding analysis revealed the presence of high-affinity TaHsfA6f-binding heat shock element-like motifs in the promoters of these six genes. Promoter truncation and mutagenesis analyses identified TaHsfA6f-binding elements that were responsible for transactivation of TaHSP90.1-A1 and TaGAAP by TaHsfA6f. These data suggest that TaHsfA6f is a transcriptional activator that directly regulates TaHSP, TaGAAP, and TaRof1 genes in wheat and its gene regulatory network has a positive impact on thermotolerance. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Cellular stress induces cancer stem-like cells through expression of DNAJB8 by activation of heat shock factor 1.

    Science.gov (United States)

    Kusumoto, Hiroki; Hirohashi, Yoshihiko; Nishizawa, Satoshi; Yamashita, Masamichi; Yasuda, Kazuyo; Murai, Aiko; Takaya, Akari; Mori, Takashi; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Kondo, Toru; Sato, Noriyuki; Hara, Isao; Torigoe, Toshihiko

    2018-03-01

    In a previous study, we found that DNAJB8, a heat shock protein (HSP) 40 family member is expressed in kidney cancer stem-like cells (CSC)/cancer-initiating cells (CIC) and that it has a role in the maintenance of kidney CSC/CIC. Heat shock factor (HSF) 1 is a key transcription factor for responses to stress including heat shock, and it induces HSP family expression through activation by phosphorylation. In the present study, we therefore examined whether heat shock (HS) induces CSC/CIC. We treated the human kidney cancer cell line ACHN with HS, and found that HS increased side population (SP) cells. Western blot analysis and qRT-PCR showed that HS increased the expression of DNAJB8 and SOX2. Gene knockdown experiments using siRNAs showed that the increase in SOX2 expression and SP cell ratio depends on DNAJB8 and that the increase in DNAJB8 and SOX2 depend on HSF1. Furthermore, treatment with a mammalian target of rapamycin (mTOR) inhibitor, temsirolimus, decreased the expression of DNAJB8 and SOX2 and the ratio of SP cells. Taken together, the results indicate that heat shock induces DNAJB8 by activation of HSF1 and induces cancer stem-like cells. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Two-state ion heating at quasi-parallel shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.; Gosling, J.T.; Bame, S.J.; Onsager, T.G.; Russell, C.T.

    1990-01-01

    In a previous study of ion heating at quasi-parallel shocks, the authors showed a case in which the ion distributions downstream from the shock alternated between a cooler, denser, core/shoulder type and a hotter, less dense, more Maxwellian type. In this paper they further document the alternating occurrence of two different ion states downstream from several quasi-parallel shocks. Three separate lines of evidence are presented to show that the two states are not related in an evolutionary sense, but rather both are produced alternately at the shock: (1) the asymptotic downstream plasma parameters (density, ion temperature, and flow speed) are intermediate between those characterizing the two different states closer to the shock, suggesting that the asymptotic state is produced by a mixing of the two initial states; (2) examples of apparently interpenetrating (i.e., mixing) distributions can be found during transitions from one state to the other; and (3) examples of both types of distributions can be found at actual crossings of the shock ramp. The alternation between the two different types of ion distribution provides direct observational support for the idea that the dissipative dynamics of at least some quasi-parallel shocks is non-stationary and cyclic in nature, as demonstrated by recent numerical simulations. Typical cycle times between intervals of similar ion heating states are ∼2 upstream ion gyroperiods. Both the simulations and the in situ observations indicate that a process of coherent ion reflection is commonly an important part of the dissipation at quasi-parallel shocks

  4. Purification and Characterization of a Novel Cold Shock Protein-Like Bacteriocin Synthesized by Bacillus thuringiensis.

    Science.gov (United States)

    Huang, Tianpei; Zhang, Xiaojuan; Pan, Jieru; Su, Xiaoyu; Jin, Xin; Guan, Xiong

    2016-10-20

    Bacillus thuringiensis (Bt), one of the most successful biopesticides, may expand its potential by producing bacteriocins (thuricins). The aim of this study was to investigate the antimicrobial potential of a novel Bt bacteriocin, thuricin BtCspB, produced by Bt BRC-ZYR2. The results showed that this bacteriocin has a high similarity with cold-shock protein B (CspB). BtCspB lost its activity after proteinase K treatment; however it was active at 60 °C for 30 min and was stable in the pH range 5-7. The partial loss of activity after the treatments of lipase II and catalase were likely due to the change in BtCspB structure and the partial degradation of BtCspB, respectively. The loss of activity at high temperatures and the activity variation at different pHs were not due to degradation or large conformational change. BtCspB did not inhibit four probiotics. It was only active against B. cereus strains 0938 and ATCC 10987 with MIC values of 3.125 μg/mL and 0.781 μg/mL, and MBC values of 12.5 μg/mL and 6.25 μg/mL, respectively. Taken together, these results provide new insights into a novel cold shock protein-like bacteriocin, BtCspB, which displayed promise for its use in food preservation and treatment of B. cereus-associated diseases.

  5. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.).

    Science.gov (United States)

    Guo, Meng; Lu, Jin-Ping; Zhai, Yu-Fei; Chai, Wei-Guo; Gong, Zhen-Hui; Lu, Ming-Hui

    2015-06-19

    Heat shock factors (Hsfs) play crucial roles in plant developmental and defence processes. The production and quality of pepper (Capsicum annuum L.), an economically important vegetable crop, are severely reduced by adverse environmental stress conditions, such as heat, salt and osmotic stress. Although the pepper genome has been fully sequenced, the characterization of the Hsf gene family under abiotic stress conditions remains incomplete. A total of 25 CaHsf members were identified in the pepper genome by bioinformatics analysis and PCR assays. They were grouped into three classes, CaHsfA, B and C, based on highly conserved Hsf domains, were distributed over 11 of 12 chromosomes, with none found on chromosome 11, and all of them, except CaHsfA5, formed a protein-protein interaction network. According to the RNA-seq data of pepper cultivar CM334, most CaHsf members were expressed in at least one tissue among root, stem, leaf, pericarp and placenta. Quantitative real-time PCR assays showed that all of the CaHsfs responded to heat stress (40 °C for 2 h), except CaHsfC1 in thermotolerant line R9 leaves, and that the expression patterns were different from those in thermosensitive line B6. Many CaHsfs were also regulated by salt and osmotic stresses, as well as exogenous Ca(2+), putrescine, abscisic acid and methyl jasmonate. Additionally, CaHsfA2 was located in the nucleus and had transcriptional activity, consistent with the typical features of Hsfs. Time-course expression profiling of CaHsfA2 in response to heat stress revealed differences in its expression level and pattern between the pepper thermosensitive line B6 and thermotolerant line R9. Twenty-five Hsf genes were identified in the pepper genome and most of them responded to heat, salt, osmotic stress, and exogenous substances, which provided potential clues for further analyses of CaHsfs functions in various kinds of abiotic stresses and of corresponding signal transduction pathways in pepper.

  6. Dietary supplementation of Zingiber officinale and Zingiber zerumbet to heat-stressed broiler chickens and its effect on heat shock protein 70 expression, blood parameters and body temperature.

    Science.gov (United States)

    Hasheimi, S R; Zulkifli, I; Somchit, M N; Zunita, Z; Loh, T C; Soleimani, A F; Tang, S C

    2013-08-01

    The present study was conducted to assess the effects of dietary supplementation of Zingiber officinale and Zingiber zerumbet and to heat-stressed broiler chickens on heat shock protein (HSP) 70 density, plasma corticosterone concentration (CORT), heterophil to lymphocyte ratio (HLR) and body temperature. Beginning from day 28, chicks were divided into five dietary groups: (i) basal diet (control), (ii) basal diet +1%Z. zerumbet powder (ZZ1%), (iii) basal diet +2%Z. zerumbet powder (ZZ2%), (iv) basal diet +1%Z. officinale powder (ZO1%) and (v) basal diet +2%Z. officinale powder (ZO2%). From day 35-42, heat stress was induced by exposing birds to 38±1°C and 80% RH for 2 h/day. Irrespective of diet, heat challenge elevated HSP70 expression, CORT and HLR on day 42. On day 42, following heat challenge, the ZZ1% birds showed lower body temperatures than those of control, ZO1% and ZO2%. Neither CORT nor HLR was significantly affected by diet. The ZO2% and ZZ2% diets enhanced HSP70 expression when compared to the control groups. We concluded that dietary supplementation of Z. officinale and Z. zerumbet powder may induce HSP70 reaction in broiler chickens exposed to heat stress. © 2012 Blackwell Verlag GmbH.

  7. Heat shock protein 90 positively regulates Chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection.

    Directory of Open Access Journals (Sweden)

    Indrani Das

    Full Text Available BACKGROUND: The high morbidity and socio-economic loss associated with the recent massive global outbreak of Chikungunya virus (CHIKV emphasize the need to understand the biology of the virus for developing effective antiviral therapies. METHODS AND FINDINGS: In this study, an attempt was made to understand the molecular mechanism involved in Heat shock protein 90 (Hsp90 mediated regulation of CHIKV infection in mammalian cells using CHIKV prototype strain (S 27 and Indian outbreak strain of 2006 (DRDE-06. Our results showed that Hsp90 is required at a very early stage of viral replication and Hsp90 inhibitor Geldanamycin (GA can abrogate new virus particle formation more effectively in the case of S 27 than that of DRDE-06. Further analysis revealed that CHIKV nsP2 protein level is specifically reduced by GA treatment as well as HSP90-siRNA transfection; however, viral RNA remains unaltered. Immunoprecipitation analysis showed that nsP2 interacts with Hsp90 during infection; however this interaction is reduced in the presence of GA. In addition, our analysis on Hsp90 associated PI3K/Akt/mTOR signaling pathway demonstrated that CHIKV infection stabilizes Raf1 and activates Hsp90 client protein Akt, which in turn phosphorylates mTOR. Subsequently, this phosphorylation leads to the activation of two important downstream effectors, S6K and 4EBP1, which may facilitate translation of viral as well as cellular mRNAs. Hence, the data suggests that CHIKV infection is regulated by Hsp90 associated Akt phosphorylation and DRDE-06 is more efficient than S 27 in enhancing the activation of host signaling molecules for its efficient replication and virus production. CONCLUSION: Hsp90 positively regulates Chikungunya virus replication by stabilizing CHIKV-nsP2 through its interaction during infection. The study highlights the possible molecular mechanism of GA mediated inhibition of CHIKV replication and differential effect of this drug on S 27 and DRDE-06

  8. Heat shock protein expression in canine malignant mammary tumours

    International Nuclear Information System (INIS)

    Romanucci, Mariarita; Marinelli, Alessia; Sarli, Giuseppe; Salda, Leonardo Della

    2006-01-01

    Abnormal levels of Heat Shock Proteins (HSPs) have been observed in many human neoplasms including breast cancer and it has been demonstrated that they have both prognostic and therapeutic implications. In this study, we evaluated immunohistochemical expression of HSPs in normal and neoplastic canine mammary glands and confronted these results with overall survival (OS), in order to understand the role of HSPs in carcinogenesis and to establish their potential prognostic and/or therapeutic value. Immunohistochemical expression of Hsp27, Hsp72, Hsp73 and Hsp90 was evaluated in 3 normal canine mammary glands and 30 malignant mammary tumours (10 in situ carcinomas, 10 invasive carcinomas limited to local structures without identifiable invasion of blood or lymphatic vessels, 10 carcinomas with invasion of blood or lymphatic vessels and/or metastases to regional lymph nodes). A semi-quantitative method was used for the analysis of the results. Widespread constitutive expression of Hsp73 and Hsp90 was detected in normal tissue, Hsp72 appeared to be focally distributed and Hsp27 showed a negative to rare weak immunostaining. In mammary tumours, a significant increase in Hsp27 (P < 0.01), Hsp72 (P < 0.05) and Hsp90 (P < 0.01) expression was observed as well as a significant reduction in Hsp73 (P < 0.01) immunoreactivity compared to normal mammary gland tissue. Hsp27 demonstrated a strong positivity in infiltrating tumour cells and metaplastic squamous elements of invasive groups. High Hsp27 expression also appeared to be significantly correlated to a shorter OS (P = 0.00087). Intense immunolabelling of Hsp72 and Hsp73 was frequently detected in infiltrative or inflammatory tumour areas. Hsp90 expression was high in all tumours and, like Hsp73, it also showed an intense positivity in lymphatic emboli. These results suggest that Hsp27, Hsp72 and Hsp90 are involved in canine mammary gland carcinogenesis. In addition, Hsp27 appears to be implicated in tumour invasiveness and

  9. Modeling and Docking Studies on Novel Mutants (K71L and T204V of the ATPase Domain of Human Heat Shock 70 kDa Protein 1

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2014-04-01

    Full Text Available The purpose of exploring protein interactions between human adenovirus and heat shock protein 70 is to exploit a potentially synergistic interaction to enhance anti-tumoral efficacy and decrease toxicity in cancer treatment. However, the protein interaction of Hsp70 with E1A32 kDa of human adenovirus serotype 5 remains to be elucidated. In this study, two residues of ATPase domain of human heat shock 70 kDa protein 1 (PDB: 1 HJO were mutated. 3D mutant models (K71L and T204V using PyMol software were then constructed. The structures were evaluated by PROCHECK, ProQ, ERRAT, Verify 3D and ProSA modules. All evidence suggests that all protein models are acceptable and of good quality. The E1A32 kDa motif was retrieved from UniProt (P03255, as well as subjected to docking interaction with NBD, K71L and T204V, using the Autodock 4.2 program. The best lowest binding energy value of −9.09 kcal/mol was selected for novel T204V. Moreover, the protein-ligand complex structures were validated by RMSD, RMSF, hydrogen bonds and salt bridge analysis. This revealed that the T204V-E1A32 kDa motif complex was the most stable among all three complex structures. This study provides information about the interaction between Hsp70 and the E1A32 kDa motif, which emphasizes future perspectives to design rational drugs and vaccines in cancer therapy.

  10. Effects of Friction and Plastic Deformation in Shock-Comminuted Damaged Rocks on Impact Heating

    Science.gov (United States)

    Kurosawa, Kosuke; Genda, Hidenori

    2018-01-01

    Hypervelocity impacts cause significant heating of planetary bodies. Such events are recorded by a reset of 40Ar-36Ar ages and/or impact melts. Here we investigate the influence of friction and plastic deformation in shock-generated comminuted rocks on the degree of impact heating using the iSALE shock-physics code. We demonstrate that conversion from kinetic to internal energy in the targets with strength occurs during pressure release, and additional heating becomes significant for low-velocity impacts (projectile mass to temperatures for the onset of Ar loss and melting from 8 and 10 km s-1, respectively, for strengthless rocks to 2 and 6 km s-1 for typical rocks. Our results suggest that the impact conditions required to produce the unique features caused by impact heating span a much wider range than previously thought.

  11. Cloning, purification and characterization of a 90kDa heat shock protein from Citrus sinensis (sweet orange).

    Science.gov (United States)

    Mendonça, Yuri A; Ramos, Carlos H I

    2012-01-01

    Protein misfolding is stimulated by stress, such as heat, and heat shock proteins (Hsps) are the first line of defense against these undesirable situations. Plants, which are naturally sessile, are perhaps more exposed to stress factors than some other organisms, and consequently, the role of Hsps is crucial to maintain homeostasis. Hsp90, because of its key role in infection and other stresses, is targeted in therapies that improve plant production by increasing resistance to both biotic and abiotic stress. In addition, Hsp90 is a primary factor in the maintenance of homeostasis in plants. Therefore, we cloned and purified Hsp90 from Citrus sinensis (sweet orange). Recombinant C. sinensis Hsp90 (rCsHsp90) was produced and measured by circular dichroism (CD), intrinsic fluorescence spectroscopy and dynamic light scattering. rCsHsp90 formed a dimer in solution with a Stokes radius of approximately 62Å. In addition, it was resistant to thermal unfolding, was able to protect citrate synthase from aggregation, and Western blot analysis demonstrated that CsHsp90 was constitutively expressed in C. sinensis cells. Our analysis indicated that CsHsp90 is conformationally similar to that of yeast Hsp90, for which structural information is available. Therefore, we showed that C. sinensis expresses an Hsp90 chaperone that has a conformation and function similar to other Hsp90s. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. Peripheral T-Cell Reactivity to Heat Shock Protein 70 and Its Cofactor GrpE from Tropheryma whipplei Is Reduced in Patients with Classical Whipple's Disease.

    Science.gov (United States)

    Trotta, Lucia; Weigt, Kathleen; Schinnerling, Katina; Geelhaar-Karsch, Anika; Oelkers, Gerrit; Biagi, Federico; Corazza, Gino Roberto; Allers, Kristina; Schneider, Thomas; Erben, Ulrike; Moos, Verena

    2017-08-01

    Classical Whipple's disease (CWD) is characterized by the lack of specific Th1 response toward Tropheryma whipplei in genetically predisposed individuals. The cofactor GrpE of heat shock protein 70 (Hsp70) from T. whipplei was previously identified as a B-cell antigen. We tested the capacity of Hsp70 and GrpE to elicit specific proinflammatory T-cell responses. Peripheral mononuclear cells from CWD patients and healthy donors were stimulated with T. whipplei lysate or recombinant GrpE or Hsp70 before levels of CD40L, CD69, perforin, granzyme B, CD107a, and gamma interferon (IFN-γ) were determined in T cells by flow cytometry. Upon stimulation with total bacterial lysate or recombinant GrpE or Hsp70 of T. whipplei , the proportions of activated effector CD4 + T cells, determined as CD40L + IFN-γ + , were significantly lower in patients with CWD than in healthy controls; CD8 + T cells of untreated CWD patients revealed an enhanced activation toward unspecific stimulation and T. whipplei -specific degranulation, although CD69 + IFN-γ + CD8 + T cells were reduced upon stimulation with T. whipplei lysate and recombinant T. whipplei -derived proteins. Hsp70 and its cofactor GrpE are immunogenic in healthy individuals, eliciting effective responses against T. whipplei to control bacterial spreading. The lack of specific T-cell responses against these T. whipplei -derived proteins may contribute to the pathogenesis of CWD. Copyright © 2017 American Society for Microbiology.

  13. Heat shock protein 27-derived atheroprotection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1 expression in ApoE-/- mice.

    Science.gov (United States)

    Pulakazhi Venu, Vivek Krishna; Adijiang, Ayinuer; Seibert, Tara; Chen, Yong-Xiang; Shi, Chunhua; Batulan, Zarah; O'Brien, Edward R

    2017-06-01

    Recently, we demonstrated that heat shock protein (HSP)-27 is protective against the development of experimental atherosclerosis, reducing plaque cholesterol content by more than 30%. Moreover, elevated HSP-27 levels are predictive of relative freedom from clinical cardiovascular events. HSP-27 signaling occurs via the activation of NF-κB, which induces a marked up-regulation in expression of granulocyte-monocyte colony-stimulating factor (GM-CSF), a cytokine that is known to alter ABC transporters involved in reverse cholesterol transport (RCT). Therefore, we hypothesized that HSP-27-derived GM-CSF has a potent role in impeding plaque formation by promoting macrophage RCT and sought to better characterize this pathway. Treatment of THP-1 cells, RAW-Blue cells, and primary macrophages with recombinant HSP-27 resulted in NF-κB activation via TLR-4 and was inhibited by various pharmacologic blockers of this pathway. Moreover, HSP-27-induced upregulation of GM-CSF expression was dependent on TLR-4 signaling. Recombinant (r)HSP-27 treatment of ApoE -/- female (but not male) mice for 4 wk yielded reductions in plaque area and cholesterol clefts of 33 and 47%, respectively, with no effect on GM-CSF -/- ApoE -/- mice. With 12 wk of rHSP-27 treatment, both female and male mice showed reductions in plaque burden (55 and 42%, respectively) and a 60% reduction in necrotic core area but no treatment effect in GM-CSF -/- ApoE -/- mice. In vitro functional studies revealed that HSP-27 enhanced the expression of ABCA1 and ABCG1, as well as facilitated cholesterol efflux in vitro by ∼10%. These novel findings establish a paradigm for HSP-27-mediated RCT and set the stage for the development of HSP-27 atheroprotective therapeutics.-Pulakazhi Venu, V. K., Adijiang, A., Seibert, T., Chen, Y.-X., Shi, C., Batulan, Z., O'Brien, E. R. Heat shock protein 27-derived atheroprotection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1

  14. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response

    NARCIS (Netherlands)

    Meijering, Roelien A. M.; Wiersma, Marit; van Marion, Denise M. S.; Zhang, Deli; Hoogstra-Berends, Femke; Dijkhuis, Anne-Jan; Schmidt, Martina; Wieland, Thomas; Kampinga, Harm H.; Henning, Robert H.; Brundel, Bianca J. J. M.

    2015-01-01

    Background The heat shock response (HSR) is an ancient and highly conserved program of stress-induced gene expression, aimed at reestablishing protein homeostasis to preserve cellular fitness. Cells that fail to activate or maintain this protective response are hypersensitive to proteotoxic stress.

  15. Structure of the cold-shock domain protein from Neisseria meningitidis reveals a strand-exchanged dimer

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jingshan [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Nettleship, Joanne E.; Sainsbury, Sarah [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Saunders, Nigel J. [Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Owens, Raymond J., E-mail: ray@strubi.ox.ac.uk [The Oxford Protein Production Facility, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2008-04-01

    The X-ray crystal structure of the cold-shock domain protein from N. meningitidis reveals a strand-exchanged dimer. The structure of the cold-shock domain protein from Neisseria meningitidis has been solved to 2.6 Å resolution and shown to comprise a dimer formed by the exchange of two β-strands between protein monomers. The overall fold of the monomer closely resembles those of other bacterial cold-shock proteins. The neisserial protein behaved as a monomer in solution and was shown to bind to a hexathymidine oligonucleotide with a stoichiometry of 1:1 and a K{sub d} of 1.25 µM.

  16. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis).

    Science.gov (United States)

    Sodhi, M; Mukesh, M; Kishore, A; Mishra, B P; Kataria, R S; Joshi, B K

    2013-09-25

    Due to evolutionary divergence, cattle (taurine, and indicine) and buffalo are speculated to have different responses to heat stress condition. Variation in candidate genes associated with a heat-shock response may provide an insight into the dissimilarity and suggest targets for intervention. The present work was undertaken to characterize one of the inducible heat shock protein genes promoter and coding regions in diverse breeds of Indian zebu cattle and buffaloes. The genomic DNA from a panel of 117 unrelated animals representing 14 diversified native cattle breeds and 6 buffalo breeds were utilized to determine the complete sequence and gene diversity of HSP70.1 gene. The coding region of HSP70.1 gene in Indian zebu cattle, Bos taurus and buffalo was similar in length (1,926 bp) encoding a HSP70 protein of 641 amino acids with a calculated molecular weight (Mw) of 70.26 kDa. However buffalo had a longer 5' and 3' untranslated region (UTR) of 204 and 293 nucleotides respectively, in comparison to Indian zebu cattle and Bos taurus wherein length of 5' and 3'-UTR was 172 and 286 nucleotides, respectively. The increased length of buffalo HSP70.1 gene compared to indicine and taurine gene was due to two insertions each in 5' and 3'-UTR. Comparative sequence analysis of cattle (taurine and indicine) and buffalo HSP70.1 gene revealed a total of 54 gene variations (50 SNPs and 4 INDELs) among the three species in the HSP70.1 gene. The minor allele frequencies of these nucleotide variations varied from 0.03 to 0.5 with an average of 0.26. Among the 14 B. indicus cattle breeds studied, a total of 19 polymorphic sites were identified: 4 in the 5'-UTR and 15 in the coding region (of these 2 were non-synonymous). Analysis among buffalo breeds revealed 15 SNPs throughout the gene: 6 at the 5' flanking region and 9 in the coding region. In bubaline 5'-UTR, 2 additional putative transcription factor binding sites (Elk-1 and C-Re1) were identified, other than three common sites

  17. Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Gopinath, Subash C. B.; Perumal, Veeradasan; Lakshmipriya, Thangavel; Rajintraprasad, Haarindraprasad; Rao, Balakrishnan S.; Arshad, M. K. Md; Hashim, Uda; Kumaresan, Ramanujam; Kotani, Norito; Chen, Yeng

    2016-01-01

    The 16 kDa heat shock protein (16 kDa HSP) against Mycobacterium tuberculosis (MT), expressed during the growth phase of MT, is a potential target in diagnostic tests for tuberculosis (TB). We describe here a method for impedimetric determination of the antigen by using a nanogapped dielectric surface consisting of a silver support coated with a thin finger-shaped coating made from zinc oxide and gold and patterned through a lift-off process. The electrode was characterized by scanning electron microscopy, field emission scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray spectroscopy. Surface chemical functionalization and immobilization of antibody against the 16 kDa HSP was evidenced by FTIR. In order to improve the detection limit, the antigen was conjugated to 10 nm gold nanoparticles. The resulting biosensor is capable of detecting the 16 kDa HSP in concentrations as low as 100 fM. The method covers a wide analytical range that extends from 100 fM to 1 nM. (author)

  18. Aberrant expression and secretion of heat shock protein 90 in patients with bullous pemphigoid.

    Directory of Open Access Journals (Sweden)

    Stefan Tukaj

    Full Text Available The cell stress chaperone heat shock protein 90 (Hsp90 has been implicated in inflammatory responses and its inhibition has proven successful in different mouse models of autoimmune diseases, including epidermolysis bullosa acquisita. Here, we investigated expression levels and secretory responses of Hsp90 in patients with bullous pemphigoid (BP, the most common subepidermal autoimmune blistering skin disease. In comparison to healthy controls, the following observations were made: (i Hsp90 was highly expressed in the skin of BP patients, whereas its serum levels were decreased and inversely associated with IgG autoantibody levels against the NC16A immunodominant region of the BP180 autoantigen, (ii in contrast, neither aberrant levels of circulating Hsp90 nor any correlation of this protein with serum autoantibodies was found in a control cohort of autoimmune bullous disease patients with pemphigus vulgaris, (iii Hsp90 was highly expressed in and restrictedly released from peripheral blood mononuclear cells of BP patients, and (iv Hsp90 was potently induced in and restrictedly secreted from human keratinocyte (HaCaT cells by BP serum and isolated anti-BP180 NC16A IgG autoantibodies, respectively. Our results reveal an upregulated Hsp90 expression at the site of inflammation and an autoantibody-mediated dysregulation of the intracellular and extracellular distribution of this chaperone in BP patients. These findings suggest that Hsp90 may play a pathophysiological role and represent a novel potential treatment target in BP.

  19. RECEPTOR SUPERFAMILY OF TUMOR NECROSIS FACTOR Α, AND HSP90 HEAT SHOCK PROTEIN: A MOLECULAR BASIS FOR INTERACTIONS

    Directory of Open Access Journals (Sweden)

    N. V. Ryazantseva

    2011-01-01

    Full Text Available Abstract.  A  study  was  performed  aiming  to  investigate  interactions  between  TNFα  receptor  (TNF1 superfamily and heat shock protein Hsp90, using a Jurkat tumor cell line. The tumor cells cultured in presence of Hsp90 inhibitor (17-AAG showed increased numbers of cells, presenting surface TNFR1 and FasR, which facilitate  triggering  of  programmed  cell  death.  It  was  also  revealed  that  Hsp90  blockage  under  the  in  vitro conditions causes a decrease in FasL, while not affecting TNFα and sTNFR1 production by the tumor cells. (Med. Immunol., 2011, vol. 13, N 2-3, pp 247-252 

  20. Formation of non-toxic Aβ fibrils by small heat shock protein under heat-stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sakono, Masafumi [Bioengineering Laboratory, RIKEN Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); PRESTO, JST, Saitama (Japan); Utsumi, Arata [Bioengineering Laboratory, RIKEN Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan); Zako, Tamotsu, E-mail: zako@riken.jp [Bioengineering Laboratory, RIKEN Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tetsuya; Yohda, Masafumi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588 (Japan); Maeda, Mizuo [Bioengineering Laboratory, RIKEN Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2013-01-25

    Highlights: ► We examined effect of the quaternary structure of yeast sHsp on Aβ aggregation. ► Aβ aggregation was inhibited by the oligomeric form of sHsp, but not by dimeric sHsp. ► The fibrillar amyloids consisted of both Aβ and dimeric sHsp. ► They exhibited different inner structure and cytotoxicity from authentic Aβ amyloids. ► These results suggest the formation of new type fibrillar Aβ amyloid by sHsp. -- Abstract: Small heat shock protein (sHsp) is a molecular chaperone with a conserved alpha-crystallin domain that can prevent protein aggregation. It has been shown that sHsps exist as oligomers (12–40 mer) and their dissociation into small dimers or oligomers is functionally important. Since several sHsps are upregulated and co-localized with amyloid-β (Aβ) in senile plaques of patients with Alzheimer’s disease (AD), sHsps are thought to be involved in AD. Previous studies have also shown that sHsp can prevent Aβ aggregation in vitro. However, it remains unclear how the quaternary structure of sHsp influences Aβ aggregation. In this study, we report for the first time the effect of the quaternary structure of sHsp on Aβ aggregation using sHsp from the fission yeast Schizosaccharomyces pombe (SpHsp16.0) showing a clear temperature-dependent structural transition between an oligomer (30 °C) and dimer (50 °C) state. Aβ aggregation was inhibited by the oligomeric form of SpHsp16.0. In contrast, amyloid fibrils were formed in the presence of dimeric SpHsp16.0. Interestingly, these amyloid fibrils consisted of both Aβ and SpHsp16.0 and showed a low ThT intensity and low cytotoxicity due to their low binding affinity to the cell surface. These results suggest the formation of novel fibrillar Aβ amyloid with different characteristics from that of the authentic Aβ amyloid fibrils formed in the absence of sHsp. Our results also suggest the potential protective role of sHsp in AD under stress conditions.

  1. The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE.

    Science.gov (United States)

    Wu, B; Georgopoulos, C; Ang, D

    1992-08-01

    The grpE gene product is one of three Escherichia coli heat shock proteins (DnaK, DnaJ, and GrpE) that are essential for both bacteriophage lambda DNA replication and bacterial growth at all temperatures. In an effort to determine the role of GrpE and to identify other factors that it may interact with, we isolated multicopy suppressors of the grpE280 point mutation, as judged by their ability to reverse the temperature-sensitive phenotype of grpE280. Here we report the characterization of one of them, designated msgB. The msgB gene maps at approximately 53 min on the E. coli chromosome. The minimal gene possesses an open reading frame that encodes a protein with a predicted size of 41,269 M(r). This open reading frame was confirmed the correct one by direct amino-terminal sequence analysis of the overproduced msgB gene product. Genetic experiments demonstrated that msgB is essential for E. coli growth in the temperature range of 22 to 37 degrees C. Through a sequence homology search, MsgB was shown to be identical to N-succinyl-L-diaminopimelic acid desuccinylase (the dapE gene product), which participates in the diaminopimelic acid-lysine pathway involved in cell wall biosynthesis. Consistent with this finding, the msgB null allele mutant is viable only when the growth medium is supplemented with diaminopimelic acid. These results suggest that GrpE may have a previously unsuspected function(s) in cell wall biosynthesis in E. coli.

  2. The inactivation of RNase G reduces the Stenotrophomonas maltophilia susceptibility to quinolones by triggering the heat shock response.

    Directory of Open Access Journals (Sweden)

    Alejandra eBernardini

    2015-10-01

    Full Text Available Quinolone resistance is usually due to mutations in the genes encoding bacterial topoisomerases. However different reports have shown that neither clinical quinolone resistant isolates nor in vitro obtained S. maltophilia mutants present mutations in such genes. The mechanisms so far described consist on efflux pumps' overexpression. Our objective is to get information on novel mechanisms of S. maltophilia quinolone resistance. For this purpose, a transposon-insertion mutant library was obtained in S. maltophilia D457.. One mutant presenting reduced susceptibility to nalidixic acid was selected. Inverse PCR showed that the inactivated gene encodes RNase G. Complementation of the mutant with wild-type RNase G allele restored the susceptibility to quinolones. Transcriptomic and real-time RT-PCR analyses showed that several genes encoding heat-shock response proteins were expressed at higher levels in the RNase defective mutant than in the wild-type strain. In agreement with this situation, heat-shock reduces the S. maltophilia susceptibility to quinolone. We can then conclude that the inactivation of the RNase G reduces the susceptibility of S. maltophilia to quinolones, most likely by regulating the expression of heat-shock response genes. Heat-shock induces a transient phenotype of quinolone resistance in S. maltophilia.

  3. Solution structure of the cold-shock-like protein from Rickettsia rickettsii

    International Nuclear Information System (INIS)

    Gerarden, Kyle P.; Fuchs, Andrew M.; Koch, Jonathan M.; Mueller, Melissa M.; Graupner, David R.; O’Rorke, Justin T.; Frost, Caleb D.; Heinen, Heather A.; Lackner, Emily R.; Schoeller, Scott J.; House, Paul G.; Peterson, Francis C.; Veldkamp, Christopher T.

    2012-01-01

    The solution structure of the cold-shock-like protein from R. rickettsii, the causative agent of Rocky Mountain spotted fever, is reported. Rocky Mountain spotted fever is caused by Rickettsia rickettsii infection. R. rickettsii can be transmitted to mammals, including humans, through the bite of an infected hard-bodied tick of the family Ixodidae. Since the R. rickettsii genome contains only one cold-shock-like protein and given the essential nature of cold-shock proteins in other bacteria, the structure of the cold-shock-like protein from R. rickettsii was investigated. With the exception of a short α-helix found between β-strands 3 and 4, the solution structure of the R. rickettsii cold-shock-like protein has the typical Greek-key five-stranded β-barrel structure found in most cold-shock domains. Additionally, the R. rickettsii cold-shock-like protein, with a ΔG of unfolding of 18.4 kJ mol −1 , has a similar stability when compared with other bacterial cold-shock proteins

  4. Aggregation of SND1 in Stress Granules is Associated with the Microtubule Cytoskeleton During Heat Shock Stimulus.

    Science.gov (United States)

    Shao, Jie; Gao, Fei; Zhang, Bingbing; Zhao, Meng; Zhou, Yunli; He, Jinyan; Ren, Li; Yao, Zhi; Yang, Jie; Su, Chao; Gao, Xingjie

    2017-12-01

    Stress granules (SGs) are dynamic dense structures in the cytoplasm that form in response to a variety of environmental stress stimuli. Staphylococcal nuclease and Tudor domain containing 1 (SND1) is a type of RNA-binding protein and has been identified as a transcriptional co-activator. Our previous studies have shown that SND1 is a component of the stress granule, which forms under stress conditions. Here, we observed that SND1 granules were often surrounded by ɑ-tubulin-microtubules in 45°C-treated HeLa cells at 15 min or colocalized with microtubules at 30 or 45 min. Furthermore, Nocodazole-mediated microtubule depolymerization could significantly affect the efficient recruitment of SND1 proteins to the SGs during heat shock stress. In addition, the 45°C heat shock mediated the enhancement of eIF2α phosphorylation, which was not affected by treatment with Nocodazole, an agent that disrupts the cytoskeleton. The intact microtubule cytoskeletal tracks are important for the efficient assembly of SND1 granules under heat shock stress and may facilitate SND1 shuttling between cytoplasmic RNA foci. Anat Rec, 300:2192-2199, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. Copyright © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  5. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity.

    Science.gov (United States)

    Wang, Xiao-Ping; Wang, Qiao-Xia; Lin, Huan-Ping; Xu, Bing; Zhao, Qian; Chen, Kun

    2016-11-01

    Alpha-fetoprotein (AFP) is a marker of hepatocellular carcinoma (HCC) and serves as a target for immunotherapy. However, current treatments targeting AFP are not reproducible and do not provide complete protection against cancer. This issue may be solved by developing novel therapeutic vaccines with enhanced immunogenicity that could effectively target AFP-expressing tumors. In this study, we report construction of a therapeutic peptide vaccine by linking heat shock protein 70 (HSP70) functional peptide to the AFP epitope to obtain HSP70-P/AFP-P. This novel peptide was administered into BALB/c mice to observe the effects. Quantification of AFP-specific CD8 + T cells that secrete IFN-γ in these mice via ELISPOT revealed the synergistic effects of HSP70-P/AFP-P with increased numbers of AFP-specific CD8 + T cells. Similarly, ELISA analysis showed increased granzyme B and perforin released by natural killer cells. Moreover, in vitro cytotoxic T-lymphocyte assays and in vivo tumor preventive experiments clearly showed the higher antitumor effects of HSP70-P/AFP-P against AFP-expressing tumors. These results show that treatment of BALB/c mice with HSP70-P/AFP-P induced stronger T-cells responses and improved protective immunity. Our data suggest that HSP70-P/AFP-P may be used as a therapeutic approach in the treatment of AFP-expressing cancers.

  6. Synthetic 6B di-, tri-, and tetrasaccharide-protein conjugates contain pneumococcal type 6A and 6B common and 6B-specific epitopes that elicit protective antibodies in mice

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Jansen, W.T.M.; Hogenboom, S.; Thijssen, M.J.L.; Kamerling, J.P.; Verhoef, J.; Snippe, H.; Verheul, A.F.M.

    2001-01-01

    The immunogenicity and protective capacity of Streptococcus pneumoniae 6B capsular polysaccharide (PS)-derived synthetic phosphate-containing disaccharide (Rha-ribitol-P-), trisaccharide (ribitol-P-Gal-Glc-), and tetrasaccharide (Rha-ribitol-P-Gal-Glc-)-protein conjugates in rabbits and mice were

  7. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    International Nuclear Information System (INIS)

    Hayashi, Kokoro; Kojima, Chojiro

    2010-01-01

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in 1 H- 15 N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  8. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    Science.gov (United States)

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  9. Specific heat measurements of TiB2 and 6LiF from 0.5 to 30 K

    International Nuclear Information System (INIS)

    Lang, Brian E.; Donaldson, Marcus H.; Woodfield, Brian F.; Burger, Arnold; Roy, Utupal N.; Lamberti, Vincent; Bell, Zane W.

    2005-01-01

    The specific heats of TiB 2 and 6 LiF have been measured from 0.5 to 30 K as part of a larger project in the construction of a neutron spectrometer. For this application, the measured specific heats were used to extrapolate the specific heats down to 0.1 K with lattice, electronic, and Schottky equations for the respective samples. The resultant specific heat values at 0.1 K for TiB 2 and 6 LiF are 4.08 x 10 -4 ± 0.27 x 10 -4 J/K/mol and 9.19 x 10 -9 ± 0.15 x 10 -9 J/K/mol, respectively

  10. Elevated expression of proto-oncogenes accompany enhanced induction of heat-shock genes after exposure of rat embryos in utero to ionizing irradiation

    International Nuclear Information System (INIS)

    Higo, H.; Lee, J.Y.; Satow, Y.; Higo, K.

    1989-01-01

    We have recently found that the effects of exposing rat embryos in utero to teratogens capable of producing cardiac anomalies were expressed later as enhanced induction of heat-shock proteins (hsp70 family) when embryonic hearts were cultured in vitro. However, it remained to be determined whether heat-shock proteins are induced in vivo after exposure to teratogens. The heat-shock response in some mammalian systems is known to be accompanied by elevated expression of proto-oncogenes. Using gene-specific DNA probes, we examined the levels of the expression (transcription) of heat-shock protein genes and two nuclear proto-oncogenes, c-fos and c-myc, in the embryos removed from irradiated pregnant mother rats 4 or 5 days after the irradiation. We found that the levels of expression in vivo of the hsp70 and c-myc genes in the irradiated embryos increased by approximately twofold as compared with those in the control. The expression in vivo of the c-fos gene was not detected in either the irradiated or non-irradiated embryos. After 0.5-hr incubation in vitro of the embryos, however, the expression of the c-fos gene in the irradiated embryos was highly enhanced whereas the control showed no changes. Although the exact functions of these gene products still remain obscure, the enhanced expression of hsp70 gene(s) and the nuclear proto-oncogenes observed in the present study may reflect repair of intracellular damages and/or regeneration of tissue by compensatory cell proliferation, processes that may disturb the normal program of organogenesis

  11. Chimeric vaccine composed of viral peptide and mammalian heat-shock protein 60 peptide protects against West Nile virus challenge.

    Science.gov (United States)

    Gershoni-Yahalom, Orly; Landes, Shimon; Kleiman-Shoval, Smadar; Ben-Nathan, David; Kam, Michal; Lachmi, Bat-El; Khinich, Yevgeny; Simanov, Michael; Samina, Itzhak; Eitan, Anat; Cohen, Irun R; Rager-Zisman, Bracha; Porgador, Angel

    2010-08-01

    The protective efficacy and immunogenicity of a chimeric peptide against West Nile virus (WNV) was evaluated. This virus is the aetiological agent of West Nile fever, which has recently emerged in the western hemisphere. The rapid spread of WNV throughout North America, as well as the constantly changing epidemiology and transmission of the virus by blood transfusion and transplantation, have raised major public-health concerns. Currently, there are no effective treatments for WNV or vaccine for human use. We previously identified a novel, continuous B-cell epitope from domain III of the WNV envelope protein, termed Ep15. To test whether this epitope can protect against WNV infection, we synthesized a linear chimeric peptide composed of Ep15 and the heat-shock protein 60 peptide, p458. The p458 peptide is an effective carrier peptide for subunit vaccines against other infectious agents. We now report that mice immunized with the chimeric peptide, p458-Ep15, were resistant to lethal challenges with three different WNV strains. Moreover, their brains were free of viral genome and infectious virus. Mice immunized with Ep15 alone or with p431-Ep15, a control conjugate, were not protected. The chimeric p458-Ep15 peptide induced WNV-specific immunoglobulin G antibodies that neutralized the virus and induced the secretion of interferon-gammain vitro. Challenge of chimeric peptide-immunized mice considerably enhanced WNV-specific neutralizing antibodies. We conclude that this chimeric peptide can be used for formulation of a human vaccine against WNV.

  12. Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis.

    Science.gov (United States)

    Gomez, F J; Allendoerfer, R; Deepe, G S

    1995-07-01

    HIS-62 is a glycoprotein that has been isolated from the cell wall and cell membrane fraction of the pathogenic fungus Histoplasma capsulatum. It is a target of the cellular immune response to this fungus, and it protects mice against a lethal intravenous inoculum of H. capsulatum yeast cells. In this study, we cloned the gene encoding this antigen to reveal its biological nature and studied the immunological activity of recombinant antigen. The amino acid sequences of the NH2 terminus and internal peptides were obtained by Edman degradation. Degenerate oligonucleotides were used to isolate a gene fragment of HIS-62 by PCR. One 680-bp segment that corresponded to the known peptide sequence was amplified from H. capsulatum DNA. This DNA was used to screen a genomic library, and the full-length gene was isolated and sequenced. The deduced amino acid sequence of the gene demonstrated approximately 70 and approximately 50% identity to heat shock protein 60 (hsp 60) from Saccharomyces cerevisiae and hsp 60 from Escherichia coli, respectively. A cDNA was synthesized by reverse transcription PCR and was expressed in E. coli. Recombinant protein reacted with a monospecific polyclonal rabbit antiserum raised against native HIS-62, with monoclonal HIS-62-reactive T cells, and with splenocytes from mice immunized with viable yeast cells. Moreover, vaccination with the recombinant protein conferred protection in mice against a lethal intranasal inoculation with yeast cells. Thus, HIS-62 is a member of the hsp 60 family, and the recombinant hsp 60 is protective against pulmonary histoplasmosis in mice.

  13. The expression of heat shock proteins 70 and 90 in pea seedlings under simulated microgravity conditions

    Science.gov (United States)

    Kozeko, L.

    Microgravity is an abnormal and so stress factor for plants. Expression of known stress-related genes is appeared to implicate in the cell response to different kinds of stress. Heat shock proteins HSP70 and HSP90 are present in plant cells under the normal growth conditions and their quantity increases during stress. The effect of simulated microgravity on expression of HSP70 and HSP90 was studied in etiolated Pisum sativum seedlings grown on the horizontal clinostat (2 rpm) from seed germination for 3 days. Seedlings were also subjected to two other types of stressors: vertical clinorotatoin (2 rpm) and 2 h temperature elevation (40°C). HSPs' level was measured by ELISA. The quantity of both HSPs increased more than in three times in the seedlings on the horizontal clinostat in comparison with the stationary 1 g control. Vertical clinorotation also increased HSPs' level but less at about 20% than horizontal one. These effects were comparable with the influence of temperature elevation. The data presented suggest that simulated microgravity upregulate HSP70 and HSP90 expression. The increased HSPs' level might evidence the important functional role of these proteins in plant adaptation to microgravity. We are currently investigating the contribution of constitutive or inducible forms of the HSPs in this stress response.

  14. The Influence of Hyperoxia On Heat Shock Proteins Expression and Nitric Oxide Synthase Activity – the Review

    Directory of Open Access Journals (Sweden)

    Szyller Jakub

    2017-03-01

    Full Text Available Any stay in an environment with an increased oxygen content (a higher oxygen partial pressure, pO2 and an increased pressure (hyperbaric conditions leads to an intensification of oxidative stress. Reactive oxygen species (ROS damage the molecules of proteins, nucleic acids, cause lipid oxidation and are engaged in the development of numerous diseases, including diseases of the circulatory system, neurodegenerative diseases, etc. There are certain mechanisms of protection against unfavourable effects of oxidative stress. Enzymatic and non-enzymatic systems belong to them. The latter include, among others, heat shock proteins (HSP. Their precise role and mechanism of action have been a subject of intensive research conducted in recent years. Hyperoxia and hyperbaria also have an effect on the expression and activity of nitrogen oxide synthase (NOS. Its product - nitrogen oxide (NO can react with reactive oxygen species and contribute to the development of nitrosative stress. NOS occurs as isoforms in various tissues and exhibit different reactions to the discussed factors. The authors have prepared a brief review of research determining the effect of hyperoxia and hyperbaria on HSP expression and NOS activity.

  15. Serum Heat Shock Protein 70 Concentration in Relation to Polycystic Ovary Syndrome in a Non-Obese Chinese Population.

    Science.gov (United States)

    Gao, Hui; Meng, Jie; Xu, Mengjing; Zhang, Shun; Ghose, Bishwajit; Liu, Jun; Yao, Ping; Yan, Hong; Wang, Di; Liu, Liegang

    2013-01-01

    Polycystic ovary syndrome (PCOS) represents the most common cause of anovulatory infertility and affects 6-15% of women of reproductive age. However, the underlying etiology is still poorly understood. In this study, we attempted to examine the association between circulating heat shock protein 70 (Hsp70) concentrations and PCOS in a non-obese Chinese population. Human peripheral blood from 52 patients with PCOS and 57 healthy controls, matched for age and BMI, were analyzed. Women with PCOS were found to have significantly higher fasting insulin (FI) levels, as well as Insulin resistance index (HOMA-IR) (P oxidative stress (malondialdehyde (MDA), 8-Hydroxy-desoxyguanosine (8-OHdG), Nitric oxide (NO)) and inflammation (tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP)) were markedly increased when compared to controls (P oxidative stress and inflammation in PCOS, even after adjustment for age, BMI and gynecologic inflammation (GI). The receiver-operating characteristic curve (ROC) analysis yielded notably different discriminative value for PCOS, with or without an addition of Hsp70 (areas under the curves were 0.884 (95% CI 0.822-0.946) vs. 0.822 (95% CI 0.744-0.900); P for difference = 0.015). Increased serum Hsp70 levels are associated with the combination of IR, oxidative stress and low-grade chronic inflammation in PCOS individuals, which provides supportive evidence that Hsp70 plays a key role in the pathogenesis of PCOS. More consequent studies were warranted to confirm the clinical utility of circulating Hsp70, especially in diagnosis and prognosis of PCOS and its long-term health cost.

  16. Interaction of ATP with a small heat shock protein from Mycobacterium leprae: effect on its structure and function.

    Science.gov (United States)

    Nandi, Sandip Kumar; Chakraborty, Ayon; Panda, Alok Kumar; Ray, Sougata Sinha; Kar, Rajiv Kumar; Bhunia, Anirban; Biswas, Ashis

    2015-03-01

    Adenosine-5'-triphosphate (ATP) is an important phosphate metabolite abundantly found in Mycobacterium leprae bacilli. This pathogen does not derive ATP from its host but has its own mechanism for the generation of ATP. Interestingly, this molecule as well as several antigenic proteins act as bio-markers for the detection of leprosy. One such bio-marker is the 18 kDa antigen. This 18 kDa antigen is a small heat shock protein (HSP18) whose molecular chaperone function is believed to help in the growth and survival of the pathogen. But, no evidences of interaction of ATP with HSP18 and its effect on the structure and chaperone function of HSP18 are available in the literature. Here, we report for the first time evidences of "HSP18-ATP" interaction and its consequences on the structure and chaperone function of HSP18. TNP-ATP binding experiment and surface plasmon resonance measurement showed that HSP18 interacts with ATP with a sub-micromolar binding affinity. Comparative sequence alignment between M. leprae HSP18 and αB-crystallin identified the sequence 49KADSLDIDIE58 of HSP18 as the Walker-B ATP binding motif. Molecular docking studies revealed that β4-β8 groove/strands as an ATP interactive region in M. leprae HSP18. ATP perturbs the tertiary structure of HSP18 mildly and makes it less susceptible towards tryptic cleavage. ATP triggers exposure of additional hydrophobic patches at the surface of HSP18 and induces more stability against chemical and thermal denaturation. In vitro aggregation and thermal inactivation assays clearly revealed that ATP enhances the chaperone function of HSP18. Our studies also revealed that the alteration in the chaperone function of HSP18 is reversible and is independent of ATP hydrolysis. As the availability and binding of ATP to HSP18 regulates its chaperone function, this functional inflection may play an important role in the survival of M. leprae in hosts.

  17. Removal of the phage-shock protein PspB causes reduction of virulence in Salmonella enterica serovar Typhimurium independently of NRAMP1

    DEFF Research Database (Denmark)

    Wallrodt, Inke; Jelsbak, Lotte; Thomsen, Line E.

    2014-01-01

    The phage-shock protein (Psp) system is believed to manage membrane stress in all Enterobacteriaceae and has recently emerged as being important for virulence in several pathogenic species of this phylum. The core of the Psp system consists of the pspA-D operon and the distantly located pspG gene......IV-induced secretin stress. In conclusion, our results demonstrate that removal of PspB reduces virulence in S. Typhimurium independently of host NRAMP1 expression, demonstrating that PspB has roles in intra-host survival distinct from the reported contributions of PspA....

  18. Real-time cell analysis and heat shock protein gene expression in the TcA Tribolium castaneum cell line in response to environmental stress conditions.

    Science.gov (United States)

    García-Reina, Andrés; Rodríguez-García, María Juliana; Ramis, Guillermo; Galián, José

    2017-06-01

    The rust red flour beetle, Tribolium castaneum (Herbst, 1797) (Coleoptera: Tenebrionidae), is a pest of stored grain and one of the most studied insect model species. Some of the previous studies involved heat response studies in terms of survival and heat shock protein expression, which are regulated to protect other proteins against environmental stress conditions. In the present study, we characterize the impedance profile with the xCELLigence Real-Time Cell Analyzer and study the effect of increased temperature in cell growth and viability in the cell line BCIRL-TcA-CLG1 (TcA) of T. castaneum. This novel system measures cells behavior in real time and is applied for the first time to insect cells. Additionally, cells are exposed to heat shock, increased salinity, acidic pH and UV-A light with the aim of measuring the expression levels of Hsp27, Hsp68a, and Hsp83 genes. Results show a high thermotolerance of TcA in terms of cell growth and viability. This result is likely related to gene expression results in which a significant up-regulation of all studied Hsp genes is observed after 1 h of exposure to 40 °C and UV light. All 3 genes show similar expression patterns, but Hsp27 seems to be the most affected. The results of this study validate the RTCA method and reveal the utility of insect cell lines, real-time analysis and gene expression studies to better understand the physiological response of insect cells, with potential applications in different fields of biology such as conservation biology and pest management. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  19. Analysis of oligomeric transition of silkworm small heat shock protein sHSP20.8 using high hydrostatic pressure native PAGE

    Science.gov (United States)

    Fujisawa, Tetsuro; Ueda, Toshifumi; Kameyama, Keiichi; Aso, Yoichi; Ishiguro, Ryo

    2013-06-01

    The small heat shock proteins (sHSPs) solubilize thermo-denatured proteins without adenosine triphosphate energy consumption to facilitate protein refolding. sHSP20.8 is one of the silkworm (Bombyx mori) sHSPs having only one cystein in the N-terminal domain: Cys43. We report a simple measurement of oligomeric transition of sHSP20.8 using high hydrostatic pressure native polyacrylamide gel electrophoresis (high hydrostatic pressure (HP) native polyacrylamide gel electrophoresis (PAGE)). At ambient pressure under oxydative condition, the native PAGE of thermal transition of sHSP20.8 oligomer displayed a cooperative association. In contrast, HP native PAGE clearly demonstrated that sHSP20.8 dissociated at 80 MPa and 25°C, and the resultant molecular species gradually reassociated with time under that condition. In addition, the reassociation process was suppressed in the presence of the reductant. These results are consistent with the idea that sHSP20.8 oligomer temporally dissociates at the first thermo-sensing step and reassociates with the oxidation of Cys43.

  20. Study of HSPB6: Insights into the Properties of the Multifunctional Protective Agent

    Directory of Open Access Journals (Sweden)

    Fazhao Li

    2017-11-01

    Full Text Available HSPB6(Heat shock protein B6, is also referred to as P20/HSP20. Unlike other many other members of sHSP(small Heat shock protein family, which tend to form high-molecular-mass oligomers, in solution, human HSPB6 only forms dimers. However, it still exhibits chaperon-like activity comparable with that of HSPB5. It is expressed ubiquitously, with high and constitutive expression in muscular tissues. sHSPs characteristically function as molecular chaperones and HSPB6 also has a molecular chaperone activity. HSPB6 is up-regulated in response to diverse cellular stress or damage and protect cells from otherwise lethal conditions. HSPB6 is widely recognized as a principle mediator of cardioprotective signaling and recent studies have unraveled the protective role of HSPB6 in disease or injury to the central nervous system. Moreover, accumulating evidence has implicated HSPB6 as a key mediator of diverse vital physiological processes, such as smooth muscle relaxation, platelet aggregation. The versatility of HSPB6 can be explained by its direct involvement in regulating different client proteins and its ability to form heterooligomer with other sHSPs, which seems to be dependent on HSPB6 phosphorylation. This review focuses on the properties including expression and regulation pattern, phosphorylation, chaperon activity, multiple cellular targets of HSPB6, as well as its possible role in physical and pathological conditions.

  1. The rapid and direct determination of ATPase activity by ion exchange chromatography and the application to the activity of heat shock protein-90.

    Science.gov (United States)

    Bartolini, Manuela; Wainer, Irving W; Bertucci, Carlo; Andrisano, Vincenza

    2013-01-25

    Adenosine nucleotides are involved as substrates or co-factors in several biochemical reactions, catalyzed by enzymes, which modulate energy production, signal transduction and cell proliferation. We here report the development and optimization of an ion exchange liquid chromatography (LC) method for the determination of ATP, ADP and AMP. This method is specifically aimed at the determination of the ATP-ase activity of human heat shock protein 90 (Hsp90), a molecular chaperone that has emerged as target enzyme in cancer therapy. Separation of the three nucleotides was achieved in a 15-min run by using a disk shaped monolithic ethylene diamine stationary phase of small dimensions (2mm×6mm i.d.), under a three-solvent gradient elution mode and UV detection at 256nm. The described direct LC method resulted highly specific as a consequence of the baseline separation of the three adenosine nucleotides and could be applied to the determination of the enzymatic activity of ADP/ATP generating or consuming enzymes (such as kinases). Furthermore, comparison of the LOD and LOQ values of the LC method with those obtained with the malachite green assay, which is one of the most used indirect screening methodologies for ATP-ase activity, showed that the LC method has a similar range of application without presenting the drawbacks related to contamination by inorganic phosphate ions and glycerol, which are present in Hsp90 commercial samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Test of a new heat-flow equation for dense-fluid shock waves.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  3. Small but Crucial: The Novel Small Heat Shock Protein Hsp21 Mediates Stress Adaptation and Virulence in Candida albicans

    Science.gov (United States)

    Mayer, François L.; Wilson, Duncan; Jacobsen, Ilse D.; Miramón, Pedro; Slesiona, Silvia; Bohovych, Iryna M.; Brown, Alistair J. P.; Hube, Bernhard

    2012-01-01

    Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21Δ/Δ mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity. Hsp21 therefore represents the first

  4. Effect of heat stress on the pattern of protein synthesis in wheat endosperm

    International Nuclear Information System (INIS)

    Inwood, W.; Bernardin, J.

    1990-01-01

    The exposure of detached wheat heads (T. aestivum L. cv Cheyenne) to elevated temperatures resulted not only in the induction of a typical set of high and low molecular weight heat shock proteins (hsps), but also in a differential effect on the synthesis of wheat storage proteins in endosperm tissue when monitored by SDS PAGE of 35 S-labeled polypeptides. The synthesis of hsps in the endosperm had a rapid onset, reached a maximum rate within the first 2 hours at 40 degree C, and then steadily decreased during the next four hours. When heads were returned to 25 degree C after 3 hours at 40 degree C, hsp synthesis did not cease abruptly, but gradually declined over the next several hours. High molecular weight glutenin protein synthesis was drastically reduced with the same time course as heat shock protein synthesis was induced at 40 degree C. Conversely, the synthesis of gliadin proteins remained at a high level at 40 degree C. The synthesis rates for glutenin and gliadin proteins remained at low and high levels, respectively, for as long as the elevated temperature was maintained up to 7 hours

  5. Evaluation of heat shock protein (HSP-60) induction on accumulation of carbohydrate in Isochrysis galbana

    International Nuclear Information System (INIS)

    Olsen, H.; Wolfe, M.; Tell, J.; Tjeerdema, R.

    1995-01-01

    Primary levels of the marine food chain may play an important role in the fate of petroleum hydrocarbons in both chemically dispersed and un-dispersed oil spills. HSP-60 proteins, members of the chaperonin family of stress proteins, are induced in response to a wide variety of environmental agents, including UV light, heavy metals, and xenobiotics. Increased production and storage of carbohydrate in I. galbana has been associated with aging and stress. Thus, HSP-60 and carbohydrate storage were selected as sublethal endpoints of exposure to the primary producer, I. galbana, a golden brown, unicellular algae, and a significant component of the marine phytoplankton community. The authors have found that I. galbana cultures exposed to water-accommodated fractions (WAF) of Prudhoe Bay Crude Oil (PBCO), and PBCO/dispersant preparations efficiently induce HSP-60. Studies indicated that WAF produced a dose-related response in I. galbana, which increased as a function of time. Dispersant alone showed the greatest induction, while combined WAF-dispersant showed less induction, suggesting a possible competition between crude oil and algae for dispersant interaction. In addition, they have demonstrated that I. galbana accumulates carbohydrates in response to exposure to WAF and PBCO/dispersant preparations and therefore represents another index of stress in this organism. They were interested in determining if induction of stress proteins and HSP60 in particular represented an adaptive-mechanism, allowing this algae to better cope with exposure to petroleum hydrocarbons released in the marine environment during an oil spill. In an effort to determine if stress protein induction serves as a protective adaptive response to exposure to petroleum hydrocarbons they examined the effect of heat shock induction on the accumulation of carbohydrates by these organisms in response to exposure to WAF and dispersed oil preparations

  6. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Tomas Grousl

    Full Text Available In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs. Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p and eEF1Bγ2 (Tef4p as well as translation termination factors eRF1 (Sup45p and eRF3 (Sup35p. Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.

  7. Heat shock proteins 70 and 90 from Clonorchis sinensis induce Th1 response and stimulate antibody production.

    Science.gov (United States)

    Chung, Eun Joo; Jeong, Young-Il; Lee, Myoung-Ro; Kim, Yu Jung; Lee, Sang-Eun; Cho, Shin-Hyeong; Lee, Won-Ja; Park, Mi-Yeoun; Ju, Jung-Won

    2017-03-01

    Heat shock proteins (HSPs) are found in all prokaryotes and most compartments of eukaryotic cells. Members of the HSP family mediate immune responses to tissue damage or cellular stress. However, little is known about the immune response induced by the oriental liver fluke, Clonorchis sinensis, even though this organism is carcinogenic to humans. We address this issue in the present study in mouse bone marrow dendritic cells (mBMDCs), using recombinant HSP70 and 90 from C. sinensis (rCsHSP70 and rCsHSP90). rCsHSP70 and rCsHSP90 were produced in an E. coli system. Purified recombinant proteins were treated in BMDCs isolated from C57BL/6 mice. T cells were isolated from Balb/c mice and co-cultured with activated mBMDCs. Expression of surface molecules was measured by flow cytometry and cytokine secretion was quantified using ELISA. C57BL/6 mice were divided into four groups, including peptide alone, peptide/Freund's adjuvant, peptide/CsHSP70, peptide/CsHSP90, and were immunized intraperitoneally three times. Two weeks after final immunization, antibodies against peptide were measured using ELISA. Both proteins induced a dose-dependent upregulation in major histocompatibility complex and co-stimulatory molecule expression and increased secretion of pro-inflammatory cytokines including interleukin (IL)-1β, -6, and -12p70 and tumor necrosis factor-α in mBMDCs. Furthermore, when allogenic T cells were incubated with mBMDCs activated by rCsHSP70 and rCsHSP90, the helper T cell (Th)1 cytokine interferon-γ was up-regulated whereas the level of the Th2 cytokine IL-4 was unchanged. These results indicate that rCsHSPs predominantly induce a Th1 response. Over and above these results, we also demonstrated that the production of peptide-specific antibodies can be activated after immunization via in vitro peptide binding with rCsHSP70 or rCsHSP90. This study showed for the first time that the HSP or HSP/peptide complexes of C. sinensis could be considered as a more effective

  8. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes

    Science.gov (United States)

    Rurek, Michał; Czołpińska, Magdalena; Pawłowski, Tomasz Andrzej; Krzesiński, Włodzimierz; Spiżewski, Tomasz

    2018-01-01

    Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria. PMID:29547512

  9. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response.

    Science.gov (United States)

    Schmidt, Andreas; Trentini, Débora Broch; Spiess, Silvia; Fuhrmann, Jakob; Ammerer, Gustav; Mechtler, Karl; Clausen, Tim

    2014-02-01

    Arginine phosphorylation is an emerging protein modification implicated in the general stress response of Gram-positive bacteria. The modification is mediated by the arginine kinase McsB, which phosphorylates and inactivates the heat shock repressor CtsR. In this study, we developed a mass spectrometric approach accounting for the peculiar chemical properties of phosphoarginine. The improved methodology was used to analyze the dynamic changes in the Bacillus subtilis arginine phosphoproteome in response to different stress situations. Quantitative analysis showed that a B. subtilis mutant lacking the YwlE arginine phosphatase accumulated a strikingly large number of arginine phosphorylations (217 sites in 134 proteins), however only a minor fraction of these sites was increasingly modified during heat shock or oxidative stress. The main targets of McsB-mediated arginine phosphorylation comprise central factors of the stress response system including the CtsR and HrcA heat shock repressors, as well as major components of the protein quality control system such as the ClpCP protease and the GroEL chaperonine. These findings highlight the impact of arginine phosphorylation in orchestrating the bacterial stress response.

  10. An investigation of hierachical protein recruitment to the inhibitory platelet receptor, G6B-b.

    Directory of Open Access Journals (Sweden)

    Carmen H Coxon

    Full Text Available Platelet activation is regulated by both positive and negative signals. G6B-b is an inhibitory platelet receptor with an immunoreceptor tyrosine-based inhibitory motif (ITIM and an immunoreceptor tyrosine-based switch motif (ITSM. The molecular basis of inhibition by G6B-b is currently unknown but thought to involve the SH2 domain-containing tyrosine phosphatase SHP-1. Here we show that G6B-b also associates with SHP-2, as well as SHP-1, in human platelets. Using a number of biochemical approaches, we found these interactions to be direct and that the tandem SH2 domains of SHP-2 demonstrated a binding affinity for G6B-b 100-fold higher than that of SHP-1. It was also observed that while SHP-1 has an absolute requirement for phosphorylation at both motifs to bind, SHP-2 can associate with G6B-b when only one motif is phosphorylated, with the N-terminal SH2 domain and the ITIM being most important for the interaction. A number of other previously unreported SH2 domain-containing proteins, including Syk and PLCγ2, also demonstrated specificity for G6B-b phosphomotifs and may serve to explain the observation that G6B-b remains inhibitory in the absence of both SHP-1 and SHP-2. In addition, the presence of dual phosphorylated G6B-b in washed human platelets can reduce the EC(50 for both CRP and collagen.

  11. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kokoro [Fujifilm Corporation, Analysis Technology Center (Japan); Kojima, Chojiro, E-mail: kojima@protein.osaka-u.ac.j [Nara Institute of Science and Technology (NAIST), Graduate School of Biological Sciences (Japan)

    2010-11-15

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in {sup 1}H-{sup 15}N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  12. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui

    2017-07-01

    CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.

  13. A Rice CaMBP Gene is Induced in Organ-Specific Manner by Both Chilling and Heat-Shock Treatments

    Directory of Open Access Journals (Sweden)

    Jia WAN

    2008-09-01

    Full Text Available A rice CaMBP gene, OsCaMBP (AB363406, was isolated from a chilling treated rice using the fluorescent differential display (FDD screening method. Its cDNA sequence (2094 bp contains an opening reading frame (ORF encoding a 569 amino acids protein (63.2 kD. OsCaMBP has the typical structural features of the CaMBP family, including the conserved IQ calmodulin-binding motif at the N-terminus. Homology analysis revealed 38.25%–47.28% identities of OsCaMBP with other CaMBPs in plants. RT-PCR analysis showed that the expression of OsCaMBP was remarkably inducible under the chilling (8°C and heat-shock (42°C treatments. OsCaMBP was undetectable under the normal conditions, and induced under the chilling treatment for 1 h, as well as the heat-shock treatment for 15 min, suggesting that the gene plays important roles in the signaling pathway in rice under both chilling and heat-shock stresses.

  14. Heat-shock protein 40 is the key farnesylation target in meristem size control, abscisic acid signaling, and drought resistance.

    Science.gov (United States)

    Barghetti, Andrea; Sjögren, Lars; Floris, Maïna; Paredes, Esther Botterweg; Wenkel, Stephan; Brodersen, Peter

    2017-11-15

    Protein farnesylation is central to molecular cell biology. In plants, protein farnesyl transferase mutants are pleiotropic and exhibit defective meristem organization, hypersensitivity to the hormone abscisic acid, and increased drought resistance. The precise functions of protein farnesylation in plants remain incompletely understood because few relevant farnesylated targets have been identified. Here, we show that defective farnesylation of a single factor-heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes-is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. We also show that expression of an abiotic stress-related microRNA (miRNA) regulon controlled by the transcription factor SPL7 requires HSP40 farnesylation. Expression of a truncated SPL7 form mimicking its activated proteolysis fragment of the membrane-bound SPL7 precursor partially restores accumulation of SPL7-dependent miRNAs in farnesyl transferase mutants. These results implicate the pathway directing SPL7 activation from its membrane-bound precursor as an important target of farnesylated HSP40, consistent with our demonstration that HSP40 farnesylation facilitates its membrane association. The results also suggest that altered gene regulation via select miRNAs contributes to abiotic stress-related phenotypes of farnesyl transferase mutants. © 2017 Barghetti et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Stem cell-like dog placenta cells afford neuroprotection against ischemic stroke model via heat shock protein upregulation.

    Directory of Open Access Journals (Sweden)

    Seongjin Yu

    Full Text Available In this study, we investigated the dog placenta as a viable source of stem cells for stroke therapy. Immunocytochemical evaluation of phenotypic markers of dog placenta cells (DPCs cultured in proliferation and differentiation medium revealed that DPCs expressed both stem cell and neural cell markers, respectively. Co-culture with DPCs afforded neuroprotection of rat primary neural cells in a dose-dependent manner against oxygen-glucose deprivation. Subsequent in vivo experiments showed that transplantation of DPCs, in particular intravenous and intracerebral cell delivery, produced significant behavioral recovery and reduced histological deficits in ischemic stroke animals compared to those that received intra-arterial delivery of DPCs or control stroke animals. Furthermore, both in vitro and in vivo studies implicated elevated expression of heat shock protein 27 (Hsp27 as a potential mechanism of action underlying the observed therapeutic benefits of DPCs in stroke. This study supports the use of stem cells for stroke therapy and implicates a key role of Hsp27 signaling pathway in neuroprotection.

  16. Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2014-07-01

    Heat stress causes a decrease of fertility in roosters. Yet, the way acute heat stress affects protein expression remains poorly understood. This study investigated differential protein expression in testes of the L2 strain of Taiwan country chickens following acute heat stress. Twelve 45-week-old roosters were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2 hours of recovery, and with 6 hours of recovery. Testis samples were collected for morphologic assay and protein analysis. Some of the differentially expressed proteins were validated by Western blot and immunohistochemistry. Abnormal and apoptotic spermatogenic cells were observed at 2 hours of recovery after acute heat stress, especially among the spermatocytes. Two-dimensional difference gel electrophoresis revealed that 119 protein spots were differentially expressed in chicken testes following heat stress, and peptide mass fingerprinting revealed that these spots contained 92 distinct proteins. In the heat-stressed samples, the heat shock proteins, chaperonin containing t-complex, and proteasome subunits were downregulated, and glutathione S-transferase, transgelin, and DJ-1 were upregulated. Our results demonstrate that acute heat stress impairs the processes of translation, protein folding, and protein degradation, and thus results in apoptosis and interferes with spermatogenesis. On the other hand, the increased expression of antioxidant enzymes, including glutathione S-transferase and DJ-1, may attenuate heat-induced damage. These findings may have implications for breeding chickens that can tolerate more extreme conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Impaired heat shock response in cells expressing full-length polyglutamine-expanded huntingtin.

    Directory of Open Access Journals (Sweden)

    Sidhartha M Chafekar

    Full Text Available The molecular mechanisms by which polyglutamine (polyQ-expanded huntingtin (Htt causes neurodegeneration in Huntington's disease (HD remain unclear. The malfunction of cellular proteostasis has been suggested as central in HD pathogenesis and also as a target of therapeutic interventions for the treatment of HD. We present results that offer a previously unexplored perspective regarding impaired proteostasis in HD. We find that, under non-stress conditions, the proteostatic capacity of cells expressing full length polyQ-expanded Htt is adequate. Yet, under stress conditions, the presence of polyQ-expanded Htt impairs the heat shock response, a key component of cellular proteostasis. This impaired heat shock response results in a reduced capacity to withstand the damage caused by cellular stress. We demonstrate that in cells expressing polyQ-expanded Htt the levels of heat shock transcription factor 1 (HSF1 are reduced, and, as a consequence, these cells have an impaired a heat shock response. Also, we found reduced HSF1 and HSP70 levels in the striata of HD knock-in mice when compared to wild-type mice. Our results suggests that full length, non-aggregated polyQ-expanded Htt blocks the effective induction of the heat shock response under stress conditions and may thus trigger the accumulation of cellular damage during the course of HD pathogenesis.

  18. [Expression of heat shock protein 70 and its mRNA in career exposure to manganese].

    Science.gov (United States)

    Chen, Wenwen; Shao, Hua; Chi, Mingfeng; Zhang, Zhihu; Shan, Yongle; Zou, Wei

    2015-10-01

    To analyze the expression levels of heat shock protein70 (HSPs70) and HSPs70 mRNA in different exposure to manganese, and research the neuroprotective effect on the career exposure to manganese. From 2008 to 2009, with cross-sectional study design, and in a locomotive and rolling stock works, by stratified random sampling method, the exposed sample consisted of 180 welders from different welding shops and 100 unexposed in the last three years, non-welder controls with age-matched workers of similar socioeconomic status from the same industry. The control workers had not been exposed to neurotoxic chemicals. The mRNA expressions of four different metabolic enzyme were detected by SYBR Green I quantitative real-time polymerase chain reaction. The expression levels of the two enzymes mRNA in different exposure to manganese were analyzed. The expressions of HSPs70 were detected by Western blot. The concentration of air manganese was determined by GFAAS. The average concentration of 8 h time (8h-TWA) was used to express the level of individual exposure to manganese, according to the air manganese workplace occupational exposure limit (8h-TWA=0.15 mg/m3), the exposed group is divided into high exposed group (>0.15 mg/m3) and low exposure group (<0.15 mg/m3). The individuals exposed to manganese dose of exposed group ((0.25±0.31) mg/m3) was higher than the control group ((0.06±0.02) mg/m3) (t=6.15, P=0.001); individuals exposed to manganese dose of high exposure group for (0.42±0.34) mg/m3, which was higher than low exposure group (0.09±0.07) mg/m3 (t=9.80, P=0.001). HSPs70 mRNA and protein of exposure group (5.65±0.21, 3.26±0.15) were higher than the reference group (0.41±0.03, 1.32±0.12) (t=18.91, t=8.68, P=0.001). HSP70 mRNA and protein of high exposure group (6.48±0.37, 3.67±0.26) were higher than the low exposure group (5.15±0.23, 3.02±0.19) (t=3.24, t=2.01, P=0.003, P=0.043). The expression of peripheral blood lymphocytes HSPs70 level and HSPs70 m

  19. Polymorphisms of heat shock protein 70 genes (HSPA1A, HSPA1B and HSPA1L and susceptibility of noise-induced hearing loss in a Chinese population: A case-control study.

    Directory of Open Access Journals (Sweden)

    Yanhong Li

    Full Text Available Noise-induced hearing loss (NIHL is the second-most frequent form of sensorineural hearing loss. When exposed to the same noise, some workers develop NIHL while others do not, suggesting that NIHL may be associated with genetic factors. To explore the relationship between single nucleotide polymorphisms (SNPs in heat shock protein 70 (HSP70 genes (HSPA1A, HSPA1B and HSPA1L and susceptibility to NIHL in Han Chinese workers exposed to noise, a case-control association study was carried out with 286 hearing loss cases and 286 matched with gender, age, type of work, and exposure time, drawn from a population of 3790 noise-exposed workers. Four SNPs were selected and genotyped. Subsequently, the effects of the alleles and genotypes of the three HSP70 genes (HSPA1A, HSPA1B and HSPA1L on NIHL were analyzed by using a conditional logistic regression. A generalized multiple dimensionality reduction (GMDR was applied to further detect an interaction between the four SNPs. Compared with the combined genotypes CC/TC, carriers of the TT genotype of rs2763979 appeared to show greater susceptibility to NIHL (P = 0.042, adjusted OR = 1.731, 95% CI 1.021-2.935. A significant interaction between rs2763979 and CNE was found (P = 0.029, and a significant association was found between TT of s2763979 and NIHL (P = 0.024, adjusted OR = 5.694, 95%CI 1.256-25.817 in the 96 dB (A≤CNE<101 dB (A group. The results suggest that the rs2763979 locus of the HSP70 genes may be associated with susceptibility to NIHL in Chinese individuals, and other HSP70 genes may also be susceptibility genes for NIHL, but the results must be further replicated in additional independent sample sets.

  20. Balmer line diagnostic of electron heating at collisionless shocks in supernova remnants

    International Nuclear Information System (INIS)

    Rakowski, C.

    2008-01-01

    The mechanism and extent of electron heating at collisionless shocks has recently been under intense investigation. H α Balmer line emission is excited immediately behind the shock front and provides the best diagnostic for the electron to proton temperature ratio at supernova remnant shocks. Two components of emission are produced, a narrow component from electron and proton impact excitation of cold neutrals, and a broad component produced through charge exchange between the cold neutrals and the shock heated protons. Thus the broad and narrow component fluxes reflect the competition between electron and proton impact ionization, electron and proton impact excitation and charge exchange. This diagnostic has led to the discovery of an approximate inverse square relationship between the electron to proton temperature ratio and the shock velocity. In turn, this implies a constant level of electron heating, independent of shock speed above ∼ 450 km/s. In this talk I will present the observational evidence to date. Time permitting, I will introduce how lower-hybrid waves in an extended cosmic ray precursor could explain such a relationship, and how this and other parameters in the H α profile might relate to properties of cosmic rays and magnetic field amplification ahead of the shock. (author)